Thu, 18 Apr 2024 11:31:32 +0300
added seed restart
0 | 1 | ################## |
2 | # Our main module | |
3 | ################## | |
4 | ||
5 | __precompile__() | |
6 | ||
7 | module PredictPDPS | |
8 | ||
9 | ######################## | |
10 | # Load external modules | |
11 | ######################## | |
12 | ||
13 | using Printf | |
14 | using FileIO | |
15 | #using JLD2 | |
16 | using Setfield | |
2
be7cab83b14a
Update packages and manifest to Julia 1.7.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
17 | using ImageQualityIndexes: assess_psnr, assess_ssim |
0 | 18 | using DelimitedFiles |
19 | import GR | |
20 | ||
21 | using AlgTools.Util | |
22 | using AlgTools.StructTools | |
23 | using AlgTools.LinkedLists | |
24 | using AlgTools.Comms | |
25 | using ImageTools.Visualise: secs_ns, grayimg, do_visualise | |
26 | using ImageTools.ImFilter: gaussian | |
27 | ||
28 | ##################### | |
29 | # Load local modules | |
30 | ##################### | |
31 | ||
32 | include("OpticalFlow.jl") | |
33 | include("ImGenerate.jl") | |
34 | include("Algorithm.jl") | |
35 | include("AlgorithmBoth.jl") | |
36 | include("AlgorithmBothGreedyV.jl") | |
37 | include("AlgorithmBothCumul.jl") | |
38 | include("AlgorithmBothMulti.jl") | |
39 | include("AlgorithmBothNL.jl") | |
40 | include("AlgorithmFB.jl") | |
41 | include("AlgorithmFBDual.jl") | |
42 | ||
5 | 43 | # Additional |
44 | include("AlgorithmProximal.jl") | |
45 | include("AlgorithmGreedy.jl") | |
46 | include("AlgorithmRotation.jl") | |
47 | include("AlgorithmNoPrediction.jl") | |
48 | include("AlgorithmPrimalOnly.jl") | |
49 | include("AlgorithmDualScaling.jl") | |
50 | ||
0 | 51 | import .Algorithm, |
52 | .AlgorithmBoth, | |
53 | .AlgorithmBothGreedyV, | |
54 | .AlgorithmBothCumul, | |
55 | .AlgorithmBothMulti, | |
56 | .AlgorithmBothNL, | |
57 | .AlgorithmFB, | |
5 | 58 | .AlgorithmFBDual, |
59 | .AlgorithmProximal, | |
60 | .AlgorithmGreedy, | |
61 | .AlgorithmRotation, | |
62 | .AlgorithmNoPrediction, | |
63 | .AlgorithmPrimalOnly, | |
64 | .AlgorithmDualScaling | |
0 | 65 | |
66 | using .ImGenerate | |
67 | using .OpticalFlow: DisplacementFull, DisplacementConstant | |
68 | ||
69 | ############## | |
70 | # Our exports | |
71 | ############## | |
72 | ||
73 | export run_experiments, | |
74 | batchrun_article, | |
75 | demo_known1, | |
76 | demo_known2, | |
77 | demo_known3, | |
5 | 78 | demo_known4, |
79 | demo_known5, | |
80 | demo_known6, | |
0 | 81 | demo_unknown1, |
82 | demo_unknown2, | |
5 | 83 | demo_unknown3, |
84 | demo_predictor1, | |
85 | demo_predictor2, | |
86 | demo_predictor3, | |
87 | demo_predictor4, | |
88 | demo_predictor5, | |
89 | demo_predictor6, | |
90 | batchrun_predictors | |
0 | 91 | |
92 | ################################### | |
93 | # Parameterisation and experiments | |
94 | ################################### | |
95 | ||
96 | struct Experiment | |
97 | mod :: Module | |
98 | DisplacementT :: Type | |
99 | imgen :: ImGen | |
100 | params :: NamedTuple | |
101 | end | |
102 | ||
103 | function Base.show(io::IO, e::Experiment) | |
104 | displacementname(::Type{DisplacementFull}) = "DisplacementFull" | |
105 | displacementname(::Type{DisplacementConstant}) = "DisplacementConstant" | |
106 | print(io, " | |
107 | mod: $(e.mod) | |
108 | DisplacementT: $(displacementname(e.DisplacementT)) | |
109 | imgen: $(e.imgen.name) $(e.imgen.dim[1])×$(e.imgen.dim[2]) | |
110 | params: $(e.params ⬿ (kernel = "(not shown)",)) | |
111 | ") | |
112 | end | |
113 | ||
114 | const default_save_prefix="img/" | |
115 | ||
116 | const default_params = ( | |
117 | ρ = 0, | |
118 | verbose_iter = 100, | |
119 | maxiter = 10000, | |
120 | save_results = true, | |
121 | save_images = true, | |
122 | save_images_iters = Set([1, 2, 3, 5, | |
123 | 10, 25, 30, 50, | |
124 | 100, 250, 300, 500, | |
125 | 1000, 2500, 3000, 5000, | |
126 | 10000]), | |
127 | pixelwise_displacement=false, | |
128 | dual_flow = true, | |
129 | prox_predict = true, | |
130 | handle_interrupt = true, | |
131 | init = :zero, | |
132 | plot_movement = false, | |
133 | ) | |
134 | ||
135 | const square = imgen_square((200, 300)) | |
136 | const lighthouse = imgen_shake("lighthouse", (200, 300)) | |
137 | ||
138 | const p_known₀ = ( | |
139 | noise_level = 0.5, | |
5 | 140 | shake_noise_level = 0.025, |
141 | shake = 3.0, | |
142 | α = 1.0, | |
143 | ρ̃₀ = 1.0, | |
144 | σ̃₀ = 1.0, | |
0 | 145 | δ = 0.9, |
5 | 146 | σ₀ = 0.1, |
0 | 147 | τ₀ = 0.01, |
148 | ) | |
149 | ||
150 | const p_unknown₀ = ( | |
151 | noise_level = 0.3, | |
152 | shake_noise_level = 0.05, | |
153 | shake = 2, | |
154 | α = 0.2, | |
155 | ρ̃₀ = 1, | |
156 | σ̃₀ = 1, | |
157 | σ₀ = 1, | |
158 | δ = 0.9, | |
159 | λ = 1, | |
160 | θ = (300*200)*100^3, | |
161 | kernel = gaussian((3, 3), (11, 11)), | |
162 | timestep = 0.5, | |
163 | displacement_count = 100, | |
164 | τ₀ = 0.01, | |
165 | ) | |
166 | ||
167 | const experiments_pdps_known = ( | |
168 | Experiment(Algorithm, DisplacementConstant, lighthouse, | |
169 | p_known₀ ⬿ (phantom_ρ = 0,)), | |
170 | Experiment(Algorithm, DisplacementConstant, lighthouse, | |
171 | p_known₀ ⬿ (phantom_ρ = 100,)), | |
172 | Experiment(Algorithm, DisplacementConstant, square, | |
173 | p_known₀ ⬿ (phantom_ρ = 0,)) | |
174 | ) | |
175 | ||
176 | const experiments_pdps_unknown_multi = ( | |
177 | Experiment(AlgorithmBothMulti, DisplacementConstant, lighthouse, | |
178 | p_unknown₀ ⬿ (phantom_ρ = 0,)), | |
179 | Experiment(AlgorithmBothMulti, DisplacementConstant, lighthouse, | |
180 | p_unknown₀ ⬿ (phantom_ρ = 100,)), | |
181 | Experiment(AlgorithmBothMulti, DisplacementConstant, square, | |
182 | p_unknown₀ ⬿ (phantom_ρ = 0,)), | |
183 | ) | |
184 | ||
185 | const experiments_fb_known = ( | |
186 | Experiment(AlgorithmFB, DisplacementConstant, lighthouse, | |
187 | p_known₀ ⬿ (τ̃₀=0.9, fb_inner_iterations = 10)), | |
188 | ) | |
189 | ||
5 | 190 | const predictor_experiments_pdps_known = ( |
191 | Experiment(AlgorithmProximal, DisplacementConstant, lighthouse, | |
192 | p_known₀ ⬿ (phantom_ρ = 100,)), | |
193 | Experiment(AlgorithmRotation, DisplacementConstant, lighthouse, | |
194 | p_known₀), | |
195 | Experiment(AlgorithmGreedy, DisplacementConstant, lighthouse, | |
196 | p_known₀), | |
197 | Experiment(AlgorithmPrimalOnly, DisplacementConstant, lighthouse, | |
198 | p_known₀), | |
199 | Experiment(AlgorithmNoPrediction, DisplacementConstant, lighthouse, | |
200 | p_known₀), | |
201 | Experiment(AlgorithmDualScaling, DisplacementConstant, lighthouse, | |
202 | p_known₀), | |
203 | ) | |
204 | ||
205 | const predictor_experiments_all = Iterators.flatten(( | |
206 | predictor_experiments_pdps_known, | |
207 | )) | |
208 | ||
0 | 209 | const experiments_all = Iterators.flatten(( |
210 | experiments_pdps_known, | |
211 | experiments_pdps_unknown_multi, | |
212 | experiments_fb_known | |
213 | )) | |
214 | ||
5 | 215 | |
216 | ||
0 | 217 | ################ |
218 | # Log | |
219 | ################ | |
220 | ||
221 | struct LogEntry <: IterableStruct | |
222 | iter :: Int | |
223 | time :: Float64 | |
224 | function_value :: Float64 | |
5 | 225 | #v_cumul_true_y :: Float64 |
226 | #v_cumul_true_x :: Float64 | |
227 | #v_cumul_est_y :: Float64 | |
228 | #v_cumul_est_x :: Float64 | |
0 | 229 | psnr :: Float64 |
230 | ssim :: Float64 | |
5 | 231 | #psnr_data :: Float64 |
232 | #ssim_data :: Float64 | |
0 | 233 | end |
234 | ||
235 | struct LogEntryHiFi <: IterableStruct | |
236 | iter :: Int | |
237 | v_cumul_true_y :: Float64 | |
238 | v_cumul_true_x :: Float64 | |
239 | end | |
240 | ||
241 | ############### | |
242 | # Main routine | |
243 | ############### | |
244 | ||
245 | struct State | |
246 | vis :: Union{Channel,Bool,Nothing} | |
247 | start_time :: Union{Real,Nothing} | |
248 | wasted_time :: Real | |
249 | log :: LinkedList{LogEntry} | |
250 | log_hifi :: LinkedList{LogEntryHiFi} | |
251 | aborted :: Bool | |
252 | end | |
253 | ||
254 | function name(e::Experiment, p) | |
255 | ig = e.imgen | |
5 | 256 | # return "$(ig.name)_$(e.mod.identifier)_$(@sprintf "%x" hash(p))" |
257 | return "$(ig.name)_$(e.mod.identifier)_$(Int64(10000*p.σ₀))_$(Int64(10000*p.τ₀))" | |
0 | 258 | end |
259 | ||
260 | function write_tex(texfile, e_params) | |
261 | open(texfile, "w") do io | |
262 | wp = (n, v) -> println(io, "\\def\\EXPPARAM$(n){$(v)}") | |
263 | wf = (n, s) -> if isdefined(e_params, s) | |
264 | wp(n, getfield(e_params, s)) | |
265 | end | |
266 | wf("alpha", :α) | |
267 | wf("sigmazero", :σ₀) | |
268 | wf("tauzero", :τ₀) | |
269 | wf("tildetauzero", :τ̃₀) | |
270 | wf("delta", :δ) | |
271 | wf("lambda", :λ) | |
272 | wf("theta", :θ) | |
273 | wf("maxiter", :maxiter) | |
274 | wf("noiselevel", :noise_level) | |
275 | wf("shakenoiselevel", :shake_noise_level) | |
276 | wf("shake", :shake) | |
277 | wf("timestep", :timestep) | |
278 | wf("displacementcount", :displacementcount) | |
279 | wf("phantomrho", :phantom_ρ) | |
280 | if isdefined(e_params, :σ₀) | |
281 | wp("sigma", (e_params.σ₀ == 1 ? "" : "$(e_params.σ₀)") * "\\sigma_{\\max}") | |
282 | end | |
283 | end | |
5 | 284 | end |
0 | 285 | |
286 | function run_experiments(;visualise=true, | |
287 | recalculate=true, | |
288 | experiments, | |
289 | save_prefix=default_save_prefix, | |
290 | fullscreen=false, | |
291 | kwargs...) | |
292 | ||
293 | # Create visualisation | |
294 | if visualise | |
295 | rc = Channel(1) | |
5 | 296 | visproc = Threads.@spawn bg_visualise_enhanced(rc, fullscreen=fullscreen) |
0 | 297 | bind(rc, visproc) |
298 | vis = rc | |
299 | else | |
300 | vis = false | |
301 | end | |
302 | ||
303 | # Run all experiments | |
304 | for e ∈ experiments | |
305 | ||
306 | # Parameters for this experiment | |
307 | e_params = default_params ⬿ e.params ⬿ kwargs | |
308 | ename = name(e, e_params) | |
309 | e_params = e_params ⬿ (save_prefix = save_prefix * ename, | |
310 | dynrange = e.imgen.dynrange, | |
311 | Λ = e.imgen.Λ) | |
312 | ||
313 | if recalculate || !isfile(e_params.save_prefix * ".txt") | |
314 | println("Running experiment \"$(ename)\"") | |
315 | ||
316 | # Start data generation task | |
317 | datachannel = Channel{OnlineData{e.DisplacementT}}(2) | |
318 | gentask = Threads.@spawn e.imgen.f(e.DisplacementT, datachannel, e_params) | |
319 | bind(datachannel, gentask) | |
320 | ||
321 | # Run algorithm | |
322 | iterate = curry(iterate_visualise, datachannel, | |
323 | State(vis, nothing, 0.0, nothing, nothing, false)) | |
324 | ||
325 | x, y, st = e.mod.solve(e.DisplacementT; | |
326 | dim=e.imgen.dim, | |
327 | iterate=iterate, | |
328 | params=e_params) | |
329 | ||
330 | # Clear non-saveable things | |
331 | st = @set st.vis = nothing | |
332 | ||
333 | println("Wasted_time: $(st.wasted_time)s") | |
334 | ||
335 | if e_params.save_results | |
336 | println("Saving " * e_params.save_prefix * "(.txt,_hifi.txt,_params.tex)") | |
337 | ||
338 | perffile = e_params.save_prefix * ".txt" | |
339 | hififile = e_params.save_prefix * "_hifi.txt" | |
340 | texfile = e_params.save_prefix * "_params.tex" | |
341 | # datafile = e_params.save_prefix * ".jld2" | |
342 | ||
343 | write_log(perffile, st.log, "# params = $(e_params)\n") | |
344 | write_log(hififile, st.log_hifi, "# params = $(e_params)\n") | |
345 | write_tex(texfile, e_params) | |
346 | # @save datafile x y st params | |
347 | end | |
348 | ||
349 | close(datachannel) | |
350 | wait(gentask) | |
351 | ||
352 | if st.aborted | |
353 | break | |
354 | end | |
355 | else | |
356 | println("Skipping already computed experiment \"$(ename)\"") | |
357 | # texfile = e_params.save_prefix * "_params.tex" | |
358 | # write_tex(texfile, e_params) | |
359 | end | |
360 | end | |
361 | ||
362 | if visualise | |
363 | # Tell subprocess to finish, and wait | |
364 | put!(rc, nothing) | |
365 | close(rc) | |
366 | wait(visproc) | |
367 | end | |
368 | ||
369 | return | |
370 | end | |
371 | ||
372 | ####################### | |
373 | # Demos and batch runs | |
374 | ####################### | |
375 | ||
376 | function demo(experiment; kwargs...) | |
377 | run_experiments(;experiments=(experiment,), | |
378 | save_results=false, | |
379 | save_images=false, | |
380 | visualise=true, | |
381 | recalculate=true, | |
5 | 382 | verbose_iter=1, |
383 | fullscreen=true, | |
0 | 384 | kwargs...) |
385 | end | |
386 | ||
387 | demo_known1 = () -> demo(experiments_pdps_known[3]) | |
388 | demo_known2 = () -> demo(experiments_pdps_known[1]) | |
389 | demo_known3 = () -> demo(experiments_pdps_known[2]) | |
5 | 390 | |
391 | demo_predictor1 = () -> demo(predictor_experiments_pdps_known[1]) # Proximal | |
392 | demo_predictor2 = () -> demo(predictor_experiments_pdps_known[2]) # Rotation | |
393 | demo_predictor3 = () -> demo(predictor_experiments_pdps_known[3]) # Greedy | |
394 | demo_predictor4 = () -> demo(predictor_experiments_pdps_known[4]) # PrimalOnly | |
395 | demo_predictor5 = () -> demo(predictor_experiments_pdps_known[5]) # NoPrediction | |
396 | demo_predictor6 = () -> demo(predictor_experiments_pdps_known[6]) # DualScaling | |
397 | ||
0 | 398 | demo_unknown1 = () -> demo(experiments_pdps_unknown_multi[3], plot_movement=true) |
399 | demo_unknown2 = () -> demo(experiments_pdps_unknown_multi[1], plot_movement=true) | |
400 | demo_unknown3 = () -> demo(experiments_pdps_unknown_multi[2], plot_movement=true) | |
401 | ||
402 | function batchrun_article(kwargs...) | |
403 | run_experiments(;experiments=experiments_all, | |
404 | save_results=true, | |
405 | save_images=true, | |
406 | visualise=false, | |
407 | recalculate=false, | |
408 | kwargs...) | |
409 | end | |
410 | ||
5 | 411 | function batchrun_predictors(kwargs...) |
412 | run_experiments(;experiments=predictor_experiments_all, | |
413 | save_results=true, | |
414 | save_images=true, | |
415 | visualise=false, | |
416 | recalculate=false, | |
417 | kwargs...) | |
418 | end | |
419 | ||
0 | 420 | ###################################################### |
421 | # Iterator that does visualisation and log collection | |
422 | ###################################################### | |
423 | ||
424 | function iterate_visualise(datachannel::Channel{OnlineData{DisplacementT}}, | |
425 | st :: State, | |
426 | step :: Function, | |
427 | params :: NamedTuple) where DisplacementT | |
428 | try | |
429 | sc = nothing | |
430 | ||
431 | d = take!(datachannel) | |
432 | ||
433 | for iter=1:params.maxiter | |
434 | dnext = take!(datachannel) | |
435 | st = step(d.b_noisy, d.v, dnext.b_noisy) do calc_objective | |
436 | stn = st | |
437 | ||
438 | if isnothing(stn.start_time) | |
439 | # The Julia precompiler is a miserable joke, apparently not crossing module | |
440 | # boundaries, so only start timing after the first iteration. | |
441 | stn = @set stn.start_time=secs_ns() | |
442 | end | |
443 | ||
444 | verb = params.verbose_iter!=0 && mod(iter, params.verbose_iter) == 0 | |
445 | ||
446 | # Normalise movement to image dimensions so | |
447 | # our TikZ plotting code doesn't need to know | |
448 | # the image pixel size. | |
449 | sc = 1.0./maximum(size(d.b_true)) | |
450 | ||
451 | if verb || iter ≤ 20 || (iter ≤ 200 && mod(iter, 10) == 0) | |
452 | verb_start = secs_ns() | |
453 | tm = verb_start - stn.start_time - stn.wasted_time | |
454 | value, x, v, vhist = calc_objective() | |
455 | ||
456 | entry = LogEntry(iter, tm, value, | |
5 | 457 | #sc*d.v_cumul_true[1], |
458 | #sc*d.v_cumul_true[2], | |
459 | #sc*v[1], sc*v[2], | |
2
be7cab83b14a
Update packages and manifest to Julia 1.7.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
460 | assess_psnr(x, d.b_true), |
be7cab83b14a
Update packages and manifest to Julia 1.7.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
461 | assess_ssim(x, d.b_true), |
5 | 462 | #assess_psnr(d.b_noisy, d.b_true), |
463 | #assess_ssim(d.b_noisy, d.b_true) | |
464 | ) | |
0 | 465 | |
466 | # (**) Collect a singly-linked list of log to avoid array resizing | |
467 | # while iterating | |
468 | stn = @set stn.log=LinkedListEntry(entry, stn.log) | |
469 | ||
470 | if !isnothing(vhist) | |
471 | vhist=vhist.*sc | |
472 | end | |
473 | ||
474 | if verb | |
475 | @printf("%d/%d J=%f, PSNR=%f, SSIM=%f, avg. FPS=%f\n", | |
476 | iter, params.maxiter, value, entry.psnr, | |
477 | entry.ssim, entry.iter/entry.time) | |
478 | if isa(stn.vis, Channel) | |
479 | put_onlylatest!(stn.vis, ((d.b_noisy, x), | |
480 | params.plot_movement, | |
481 | stn.log, vhist)) | |
482 | ||
483 | end | |
484 | end | |
485 | ||
486 | if params.save_images && (!haskey(params, :save_images_iters) | |
487 | || iter ∈ params.save_images_iters) | |
488 | fn = (t, ext) -> "$(params.save_prefix)_$(t)_frame$(iter).$(ext)" | |
6 | 489 | # save(File(format"PNG", fn("true", "png")), grayimg(d.b_true)) |
490 | # save(File(format"PNG", fn("data", "png")), grayimg(d.b_noisy)) | |
0 | 491 | save(File(format"PNG", fn("reco", "png")), grayimg(x)) |
492 | if !isnothing(vhist) | |
493 | open(fn("movement", "txt"), "w") do io | |
494 | writedlm(io, ["est_y" "est_x"]) | |
495 | writedlm(io, vhist) | |
496 | end | |
497 | end | |
498 | end | |
499 | ||
500 | stn = @set stn.wasted_time += (secs_ns() - verb_start) | |
501 | ||
502 | return stn | |
503 | end | |
504 | ||
505 | hifientry = LogEntryHiFi(iter, sc*d.v_cumul_true[1], sc*d.v_cumul_true[2]) | |
506 | st = @set st.log_hifi=LinkedListEntry(hifientry, st.log_hifi) | |
507 | ||
508 | return st | |
509 | end | |
510 | d=dnext | |
511 | end | |
512 | catch ex | |
513 | if params.handle_interrupt && isa(ex, InterruptException) | |
514 | # If SIGINT is received (user pressed ^C), terminate computations, | |
515 | # returning current status. Effectively, we do not call `step()` again, | |
516 | # ending the iterations, but letting the algorithm finish up. | |
517 | # Assuming (**) above occurs atomically, `st.log` should be valid, but | |
518 | # any results returned by the algorithm itself may be partial, as for | |
519 | # reasons of efficiency we do *not* store results of an iteration until | |
520 | # the next iteration is finished. | |
521 | printstyled("\rUser interrupt—finishing up.\n", bold=true, color=202) | |
522 | st = @set st.aborted = true | |
523 | else | |
524 | rethrow(ex) | |
525 | end | |
526 | end | |
527 | ||
528 | return st | |
529 | end | |
530 | ||
5 | 531 | function bg_visualise_enhanced(rc; fullscreen=false) |
0 | 532 | process_channel(rc) do d |
533 | imgs, plot_movement, log, vhist = d | |
5 | 534 | do_visualise(imgs, refresh=false, fullscreen=fullscreen) |
0 | 535 | # Overlay movement |
536 | GR.settextcolorind(5) | |
537 | GR.setcharheight(0.015) | |
538 | GR.settextpath(GR.TEXT_PATH_RIGHT) | |
539 | tx, ty = GR.wctondc(0, 1) | |
540 | GR.text(tx, ty, @sprintf "FPS %.1f, SSIM %.2f, PSNR %.1f" (log.value.iter/log.value.time) log.value.ssim log.value.psnr) | |
541 | if plot_movement | |
542 | sc=1.0 | |
543 | p=unfold_linked_list(log) | |
544 | x=map(e -> 1.5+sc*e.v_cumul_true_x, p) | |
545 | y=map(e -> 0.5+sc*e.v_cumul_true_y, p) | |
546 | GR.setlinewidth(2) | |
547 | GR.setlinecolorind(2) | |
548 | GR.polyline(x, y) | |
549 | x=map(e -> 1.5+sc*e.v_cumul_est_x, p) | |
550 | y=map(e -> 0.5+sc*e.v_cumul_est_y, p) | |
551 | GR.setlinecolorind(3) | |
552 | GR.polyline(x, y) | |
553 | if vhist != nothing | |
554 | GR.setlinecolorind(4) | |
555 | x=map(v -> 1.5+sc*v, vhist[:,2]) | |
556 | y=map(v -> 0.5+sc*v, vhist[:,1]) | |
557 | GR.polyline(x, y) | |
558 | end | |
559 | end | |
560 | GR.updatews() | |
561 | end | |
562 | end | |
563 | ||
564 | ############### | |
565 | # Precompiling | |
566 | ############### | |
567 | ||
568 | # precompile(Tuple{typeof(GR.drawimage), Float64, Float64, Float64, Float64, Int64, Int64, Array{UInt32, 2}}) | |
569 | # precompile(Tuple{Type{Plots.Plot{T} where T<:RecipesBase.AbstractBackend}, Plots.GRBackend, Int64, Base.Dict{Symbol, Any}, Base.Dict{Symbol, Any}, Array{Plots.Series, 1}, Nothing, Array{Plots.Subplot{T} where T<:RecipesBase.AbstractBackend, 1}, Base.Dict{Any, Plots.Subplot{T} where T<:RecipesBase.AbstractBackend}, Plots.EmptyLayout, Array{Plots.Subplot{T} where T<:RecipesBase.AbstractBackend, 1}, Bool}) | |
570 | # precompile(Tuple{typeof(Plots._plot!), Plots.Plot{Plots.GRBackend}, Base.Dict{Symbol, Any}, Tuple{Array{ColorTypes.Gray{Float64}, 2}}}) | |
571 | ||
572 | end # Module |