Fri, 03 May 2024 21:55:23 +0300
README demo options added
| 0 | 1 | #################################################################### |
| 2 | # Predictive online PDPS for optical flow with known velocity field | |
| 3 | #################################################################### | |
| 4 | ||
| 5 | __precompile__() | |
| 6 | ||
| 7 | module AlgorithmFB | |
| 8 | ||
| 9 | identifier = "fb_known" | |
| 10 | ||
| 11 | using Printf | |
| 12 | ||
| 13 | using AlgTools.Util | |
| 14 | import AlgTools.Iterate | |
| 15 | using ImageTools.Gradient | |
| 16 | ||
| 17 | using ..OpticalFlow: Image, | |
| 18 | ImageSize, | |
| 19 | flow! | |
| 20 | ||
| 21 | ######################### | |
| 22 | # Iterate initialisation | |
| 23 | ######################### | |
| 24 | ||
| 25 | function init_rest(x::Image) | |
| 26 | imdim=size(x) | |
| 27 | ||
| 28 | y = zeros(2, imdim...) | |
| 29 | Δx = copy(x) | |
| 30 | Δy = copy(y) | |
| 31 | ỹ = copy(y) | |
| 32 | y⁻ = copy(y) | |
| 33 | ||
| 34 | return x, y, Δx, Δy, ỹ, y⁻ | |
| 35 | end | |
| 36 | ||
| 37 | function init_iterates(xinit::Image) | |
| 38 | return init_rest(copy(xinit)) | |
| 39 | end | |
| 40 | ||
| 41 | function init_iterates(dim::ImageSize) | |
| 42 | return init_rest(zeros(dim...)) | |
| 43 | end | |
| 44 | ||
| 45 | ############ | |
| 46 | # Algorithm | |
| 47 | ############ | |
| 48 | ||
| 49 | function solve( :: Type{DisplacementT}; | |
| 50 | dim :: ImageSize, | |
| 51 | iterate = AlgTools.simple_iterate, | |
| 52 | params::NamedTuple) where DisplacementT | |
| 53 | ||
| 54 | ################################ | |
| 55 | # Extract and set up parameters | |
| 56 | ################################ | |
| 57 | ||
| 58 | α, ρ = params.α, params.ρ | |
| 59 | τ₀, τ̃₀ = params.τ₀, params.τ̃₀ | |
| 60 | ||
| 61 | R_K² = ∇₂_norm₂₂_est² | |
| 62 | τ̃ = τ̃₀/R_K² | |
| 63 | τ = τ₀ | |
| 64 | ||
| 65 | ###################### | |
| 66 | # Initialise iterates | |
| 67 | ###################### | |
| 68 | ||
| 69 | x, y, Δx, Δy, ỹ, y⁻ = init_iterates(dim) | |
| 70 | init_data = (params.init == :data) | |
| 71 | ||
| 72 | #################### | |
| 73 | # Run the algorithm | |
| 74 | #################### | |
| 75 | ||
| 76 | v = iterate(params) do verbose :: Function, | |
| 77 | b :: Image, | |
| 78 | v_known :: DisplacementT, | |
| 79 | 🚫unused_b_next :: Image | |
| 80 | ||
| 81 | ################## | |
| 82 | # Prediction step | |
| 83 | ################## | |
| 84 | ||
| 85 | if init_data | |
| 86 | x .= b | |
| 87 | init_data = false | |
| 88 | else | |
| 89 | # Δx is a temporary storage variable of correct dimensions | |
| 90 | flow!(x, v_known, Δx) | |
| 91 | end | |
| 92 | ||
| 93 | ################################################################## | |
| 94 | # We need to do forward–backward step on min_x |x-b|^2/2 + α|∇x|. | |
| 95 | # The forward step is easy, the prox requires solving the predual | |
| 96 | # problem of a problem similar to the original. | |
| 97 | ################################################################## | |
| 98 | ||
| 99 | @. x = x-τ*(x-b) | |
| 100 | ||
| 101 | ############## | |
| 102 | # Inner FISTA | |
| 103 | ############## | |
| 104 | ||
| 105 | t = 0 | |
| 106 | # Move step length from proximal quadratic term into L1 term. | |
| 107 | α̃ = α*τ | |
| 108 | @. ỹ = y | |
| 109 | for i=1:params.fb_inner_iterations | |
| 110 | ∇₂ᵀ!(Δx, ỹ) | |
| 111 | @. Δx .-= x | |
| 112 | ∇₂!(Δy, Δx) | |
| 113 | @. y⁻ = y | |
| 114 | @. y = (ỹ - τ̃*Δy)/(1 + τ̃*ρ/α̃) | |
| 115 | proj_norm₂₁ball!(y, α̃) | |
| 116 | t⁺ = (1+√(1+4*t^2))/2 | |
| 117 | @. ỹ = y+((t-1)/t⁺)*(y-y⁻) | |
| 118 | t = t⁺ | |
| 119 | end | |
| 120 | ||
| 121 | ∇₂ᵀ!(Δx, y) | |
| 122 | @. x = x - Δx | |
| 123 | ||
| 124 | ################################ | |
| 125 | # Give function value if needed | |
| 126 | ################################ | |
| 127 | v = verbose() do | |
| 128 | ∇₂!(Δy, x) | |
| 129 | value = norm₂²(b-x)/2 + α*γnorm₂₁(Δy, ρ) | |
| 130 | value, x, [NaN, NaN], nothing | |
| 131 | end | |
| 132 | ||
| 133 | v | |
| 134 | end | |
| 135 | ||
| 136 | return x, y, v | |
| 137 | end | |
| 138 | ||
| 139 | end # Module | |
| 140 | ||
| 141 |