Sat, 04 Dec 2021 09:12:46 +0200
Update metadata to Julia 1.7 format
################################################## # Simple (and fast for small filters compared to # ImageFiltering) image filtering ################################################## __precompile__() module ImFilter using OffsetArrays using AlgTools.Util: @threadsif, norm₁ using AlgTools.LinOps ########## # Exports ########## export simple_imfilter, simple_imfilter!, simple_imfilter_adjoint, simple_imfilter_adjoint!, gaussian, FilterKernel ############## # The routine ############## Image = Array{Float64,2} Kernel = OffsetArray{Float64,2,Image} @inline function inside(i, aʹ, bʹ, a, b) return (max(a, i - aʹ) - i):(min(b, i + bʹ) - i) end function simple_imfilter!(res::Image, b::Image, kernel::Kernel; threads::Bool=true) n, m = size(b) k, 𝓁 = size(kernel) o₁, o₂ = kernel.offsets a₁, a₂ = k + o₁, 𝓁 + o₂ b₁, b₂ = -1 - o₁, -1 - o₂ kp = kernel.parent @assert(isodd(k) && isodd(𝓁) && size(res)==size(b)) @threadsif threads for i=1:n @inbounds for j=1:m tmp = 0.0 it₁ = inside(i, a₁, b₁, 1, n) it₂ = inside(j, a₂, b₂, 1, m) for p=it₁ @simd for q=it₂ tmp += kp[p-o₁, q-o₂]*b[i+p,j+q] end end res[i, j] = tmp end end return res end function simple_imfilter(b::Image, kernel::Kernel; threads::Bool=true) res = similar(b) simple_imfilter!(res, b, kernel) end function simple_imfilter_adjoint!(res::Image, b::Image, kernel::Kernel; threads::Bool=true) n, m = size(b) k, 𝓁 = size(kernel) o₁, o₂ = kernel.offsets a₁, a₂ = k + o₁, 𝓁 + o₂ b₁, b₂ = -1 - o₁, -1 - o₂ kp = kernel.parent @assert(isodd(k) && isodd(𝓁) && size(res)==size(b)) res .= 0 @threadsif threads for i=1:n @inbounds for j=1:m it₁ = inside(i, a₁, b₁, 1, n) it₂ = inside(j, a₂, b₂, 1, m) for p=it₁ @simd for q=it₂ res[i+p,j+q] += kp[p-o₁, q-o₂]*b[i, j] end end end end return res end function simple_imfilter_adjoint(b::Image, kernel::Kernel; threads::Bool=true) res = similar(b) simple_imfilter_adjoint!(res, b, kernel) end ########################### # Abstract linear operator ########################### struct FilterKernel <: AdjointableOp{Image, Image} kernel::Kernel end function (op::FilterKernel)(b::Image) return simple_imfilter(b, op.kernel) end function LinOps.inplace!(y::Image, op::FilterKernel, x::Image) return simple_imfilter!(y, x, op.kernel) end function LinOps.calc_adjoint(op::FilterKernel, y::Image) return simple_imfilter_adjoint(y, op.kernel) end function LinOps.calc_adjoint!(res::Image, op::FilterKernel, y::Image) return simple_imfilter_adjoint!(res, y, op.kernel) end function LinOps.opnorm_estimate(op::FilterKernel) # Due to |f * g|_p ≤ |f|_p|g|_1 return norm₁(op.kernel) end ###################################################### # Distributions. Just to avoid the long load times of # ImageFiltering and heavy dependencies on FFTW etc. ###################################################### function gaussian(σ, n) @assert(all(isodd.(n))) a=convert.(Integer, @. (n-1)/2) g=OffsetArray{Float64}(undef, [-m:m for m in a]...); for i in CartesianIndices(g) g[i]=exp(-sum(Tuple(i).^2 ./ (2 .* σ.^2))) end g./=sum(g) end end # Module