Sat, 04 Dec 2021 09:12:46 +0200
Update metadata to Julia 1.7 format
######################################################## # Basic TV denoising via primal–dual proximal splitting ######################################################## __precompile__() module Denoise using AlgTools.Util import AlgTools.Iterate using ..Gradient ############## # Our exports ############## export denoise_pdps, denoise_fista ############# # Data types ############# ImageSize = Tuple{Integer,Integer} Image = Array{Float64,2} Primal = Image Dual = Array{Float64,3} ######################### # Iterate initialisation ######################### function init_rest(x::Primal) imdim=size(x) y = zeros(2, imdim...) Δx = copy(x) Δy = copy(y) x̄ = copy(x) return x, y, Δx, Δy, x̄ end function init_primal(xinit::Image, b) return copy(xinit) end function init_primal(xinit::Nothing, b :: Image) return zeros(size(b)...) end ############ # Algorithm ############ function denoise_pdps(b :: Image; xinit :: Union{Image,Nothing} = nothing, iterate = Iterate.simple_iterate, params::NamedTuple) ################################ # Extract and set up parameters ################################ α, ρ = params.α, params.ρ τ₀, σ₀ = params.τ₀, params.σ₀ R_K = ∇₂_norm₂₂_est γ = 1 @assert(τ₀*σ₀ < 1) σ = σ₀/R_K τ = τ₀/R_K ###################### # Initialise iterates ###################### x, y, Δx, Δy, x̄ = init_rest(init_primal(xinit, b)) #################### # Run the algorithm #################### v = iterate(params) do verbose :: Function ω = params.accel ? 1/√(1+2*γ*τ) : 1 ∇₂ᵀ!(Δx, y) # primal step: @. x̄ = x # | save old x for over-relax @. x = (x-τ*(Δx-b))/(1+τ) # | prox @. x̄ = (1+ω)*x - ω*x̄ # over-relax: x̄ = 2x-x_old ∇₂!(Δy, x̄) # dual step: y @. y = (y + σ*Δy)/(1 + σ*ρ/α) # | proj_norm₂₁ball!(y, α) # | prox if params.accel τ, σ = τ*ω, σ/ω end ################################ # Give function value if needed ################################ v = verbose() do ∇₂!(Δy, x) value = norm₂²(b-x)/2 + params.α*γnorm₂₁(Δy, params.ρ) value, x end v end return x, y, v end function denoise_fista(b :: Image; xinit :: Union{Image,Nothing} = nothing, iterate = AlgTools.simple_iterate, params::NamedTuple) ################################ # Extract and set up parameters ################################ α, ρ = params.α, params.ρ τ₀ = params.τ₀ τ = τ₀/∇₂_norm₂₂_est² ###################### # Initialise iterates ###################### x = init_primal(xinit, b) imdim = size(x) Δx = similar(x) y = zeros(2, imdim...) ỹ = copy(y) y⁻ = similar(y) Δy = similar(y) #################### # Run the algorithm #################### t = 0 v = iterate(params) do verbose :: Function ∇₂ᵀ!(Δx, ỹ) @. Δx .-= b ∇₂!(Δy, Δx) @. y⁻ = y @. y = (ỹ - τ*Δy)/(1 + τ*ρ/α) proj_norm₂₁ball!(y, α) t⁺ = (1+√(1+4*t^2))/2 @. ỹ = y+((t-1)/t⁺)*(y-y⁻) t = t⁺ ################################ # Give function value if needed ################################ v = verbose() do ∇₂ᵀ!(Δx, y) @. x = b - Δx ∇₂!(Δy, x) value = norm₂²(b-x)/2 + params.α*γnorm₂₁(Δy, params.ρ) value, x end v end ∇₂ᵀ!(Δx, y) @. x = b - Δx return x, y, v end end # Module