Mon, 18 Nov 2019 17:37:23 -0500
Added missing main file
| 0 | 1 | ###################################### |
| 2 | # Image subpixel accuracy translation | |
| 3 | ###################################### | |
| 4 | ||
| 5 | module Translate | |
| 6 | ||
| 7 | ########## | |
| 8 | # Exports | |
| 9 | ########## | |
| 10 | ||
| 11 | export interpolate2d, | |
| 12 | interpolate2d_quadrants, | |
| 13 | extract_subimage!, | |
| 14 | translate_image!, | |
| 15 | DisplacementFull, | |
| 16 | DisplacementConstant, | |
| 17 | Displacement, | |
| 18 | Image | |
| 19 | ||
| 20 | ################## | |
| 21 | # Types | |
| 22 | ################## | |
| 23 | ||
| 24 | # Two different types of displacement data supported: | |
| 25 | # a) given in each pixel | |
| 26 | # b) constant in space | |
| 27 | Image = Array{Float64,2} | |
| 28 | DisplacementFull = Array{Float64,3} | |
| 29 | DisplacementConstant = Array{Float64,1} | |
| 30 | Displacement = Union{DisplacementFull,DisplacementConstant} | |
| 31 | ||
| 32 | ############################# | |
| 33 | # Base interpolation routine | |
| 34 | ############################# | |
| 35 | ||
| 36 | @inline function interpolate2d_quadrants(v, (x, y)) | |
| 37 | (m, n) = size(v) | |
| 38 | clipx = xʹ -> max(1, min(xʹ, m)) | |
| 39 | clipy = yʹ -> max(1, min(yʹ, n)) | |
| 40 | ||
| 41 | xfℤ = clipx(floor(Int, x)) | |
| 42 | xcℤ = clipx(ceil(Int, x)) | |
| 43 | yfℤ = clipy(floor(Int, y)) | |
| 44 | ycℤ = clipy(ceil(Int, y)) | |
| 45 | ||
| 46 | xf = convert(Float64, xfℤ) | |
| 47 | xc = convert(Float64, xcℤ) | |
| 48 | yf = convert(Float64, yfℤ) | |
| 49 | yc = convert(Float64, ycℤ) | |
| 50 | xm = (xf+xc)/2 | |
| 51 | ym = (yf+yc)/2 | |
| 52 | ||
| 53 | vff = @inbounds v[xfℤ, yfℤ] | |
| 54 | vfc = @inbounds v[xfℤ, ycℤ] | |
| 55 | vcf = @inbounds v[xcℤ, yfℤ] | |
| 56 | vcc = @inbounds v[xcℤ, ycℤ] | |
| 57 | vmm = (vff+vfc+vcf+vcc)/4 | |
| 58 | ||
| 59 | if xfℤ==xcℤ | |
| 60 | if yfℤ==ycℤ | |
| 61 | # Completely degenerate case | |
| 62 | v = vmm | |
| 63 | else | |
| 64 | # Degenerate x | |
| 65 | v = vff+(y-yf)/(yc-yf)*(vfc-vff) | |
| 66 | end | |
| 67 | elseif yfℤ==ycℤ | |
| 68 | # Degenerate y | |
| 69 | v = vff + (x-xf)/(xc-xf)*(vcf-vff) | |
| 70 | elseif y-ym ≥ x-xm | |
| 71 | # top-left half | |
| 72 | if (y-ym) + (x-xm) ≥ 0 | |
| 73 | # top quadrant | |
| 74 | v = vfc + (x-xf)/(xc-xf)*(vcc-vfc) + (y-yc)/(ym-yc)*(vmm-(vcc+vfc)/2) | |
| 75 | else | |
| 76 | # left quadrant | |
| 77 | v = vff + (y-yf)/(yc-yf)*(vfc-vff) + (x-xf)/(xm-xf)*(vmm-(vfc+vff)/2) | |
| 78 | end | |
| 79 | else | |
| 80 | # bottom-left half | |
| 81 | if (y-ym) + (x-xm) ≥ 0 | |
| 82 | # right quadrant | |
| 83 | v = vcf + (y-yf)/(yc-yf)*(vcc-vcf) + (x-xc)/(xm-xc)*(vmm-(vcc+vcf)/2) | |
| 84 | else | |
| 85 | # bottom quadrant | |
| 86 | v = vff + (x-xf)/(xc-xf)*(vcf-vff) + (y-yf)/(ym-yf)*(vmm-(vcf+vff)/2) | |
| 87 | end | |
| 88 | end | |
| 89 | ||
| 90 | return v | |
| 91 | end | |
| 92 | ||
| 93 | interpolate2d = interpolate2d_quadrants | |
| 94 | ||
| 95 | ############## | |
| 96 | # Translation | |
| 97 | ############## | |
| 98 | ||
| 99 | @polly function translate_image!(x, z, u::DisplacementFull) | |
| 100 | @assert(size(u, 1)==2 && size(x)==size(u)[2:end] && size(x)==size(z)) | |
| 101 | ||
| 102 | @inbounds @simd for i=1:size(x, 1) | |
| 103 | @simd for j=1:size(x, 2) | |
| 104 | pt = (i - u[1, i, j], j - u[2, i, j]) | |
| 105 | x[i, j] = interpolate2d(z, pt) | |
| 106 | end | |
| 107 | end | |
| 108 | end | |
| 109 | ||
| 110 | @polly function translate_image!(x, z, u::DisplacementConstant) | |
| 111 | @assert(size(u)==(2,) && size(x)==size(z)) | |
| 112 | ||
| 113 | @inbounds @simd for i=1:size(x, 1) | |
| 114 | @simd for j=1:size(x, 2) | |
| 115 | pt = (i - u[1], j - u[2]) | |
| 116 | x[i, j] = interpolate2d(z, pt) | |
| 117 | end | |
| 118 | end | |
| 119 | end | |
| 120 | ||
| 121 | ###################### | |
| 122 | # Subimage extraction | |
| 123 | ###################### | |
| 124 | ||
| 125 | @polly function extract_subimage!(b, im, v::DisplacementConstant) | |
| 126 | (imx, imy) = size(im) | |
| 127 | (bx, by) = size(b) | |
| 128 | ||
| 129 | # Translation from target to source coordinates | |
| 2 | 130 | vxʹ = (imx-bx)/2 - v[1] |
| 131 | vyʹ = (imy-by)/2 - v[2] | |
| 0 | 132 | |
| 133 | # Target image indices within source image | |
| 134 | px = ceil(Int, max(1, vxʹ + 1) - vxʹ) | |
| 135 | py = ceil(Int, max(1, vyʹ + 1) - vyʹ) | |
| 136 | qx = floor(Int, min(imx, vxʹ + bx) - vxʹ) | |
| 137 | qy = floor(Int, min(imy, vyʹ + by) - vyʹ) | |
| 138 | ||
| 139 | b .= 0 | |
| 140 | ||
| 141 | @inbounds @simd for i=px:qx | |
| 142 | for j=py:qy | |
| 143 | b[i, j] = interpolate2d(im, (i+vxʹ, j+vyʹ)) | |
| 144 | end | |
| 145 | end | |
| 146 | end | |
| 147 | ||
| 148 | end |