Mon, 18 Nov 2019 11:31:40 -0500
Add write_log to LinkedLists
######################### # Some utility functions ######################### module Util ############## # Our exports ############## export map_first_slice!, reduce_first_slice, norm₂, γnorm₂, norm₂w, norm₂², norm₂w², norm₂₁, γnorm₂₁, dot, mean, proj_norm₂₁ball!, curry, ⬿ ######################## # Functional programming ######################### curry = (f::Function,y...)->(z...)->f(y...,z...) ############################### # For working with NamedTuples ############################### ⬿ = merge ###### # map ###### @inline function map_first_slice!(f!, y) for i in CartesianIndices(size(y)[2:end]) @inbounds f!(@view(y[:, i])) end end @inline function map_first_slice!(x, f!, y) for i in CartesianIndices(size(y)[2:end]) @inbounds f!(@view(x[:, i]), @view(y[:, i])) end end @inline function reduce_first_slice(f, y; init=0.0) accum=init for i in CartesianIndices(size(y)[2:end]) @inbounds accum=f(accum, @view(y[:, i])) end return accum end ########################### # Norms and inner products ########################### @inline function dot(x, y) @assert(length(x)==length(y)) accum=0 for i=1:length(y) @inbounds accum += x[i]*y[i] end return accum end @inline function norm₂w²(y, w) #Insane memory allocs #return @inbounds sum(i -> y[i]*y[i]*w[i], 1:length(y)) accum=0 for i=1:length(y) @inbounds accum=accum+y[i]*y[i]*w[i] end return accum end @inline function norm₂w(y, w) return √(norm₂w²(y, w)) end @inline function norm₂²(y) #Insane memory allocs #return @inbounds sum(i -> y[i]*y[i], 1:length(y)) accum=0 for i=1:length(y) @inbounds accum=accum+y[i]*y[i] end return accum end @inline function norm₂(y) return √(norm₂²(y)) end @inline function γnorm₂(y, γ) hubersq = xsq -> begin x=√xsq return if x > γ x-γ/2 elseif x<-γ -x-γ/2 else xsq/(2γ) end end if γ==0 return norm₂(y) else return hubersq(norm₂²(y)) end end function norm₂₁(y) return reduce_first_slice((s, x) -> s+norm₂(x), y) end function γnorm₂₁(y,γ) return reduce_first_slice((s, x) -> s+γnorm₂(x, γ), y) end function mean(v) return sum(v)/prod(size(v)) end @inline function proj_norm₂₁ball!(y, α) α²=α*α y′=reshape(y, (size(y, 1), prod(size(y)[2:end]))) @inbounds @simd for i=1:size(y′, 2)# in CartesianIndices(size(y)[2:end]) n² = norm₂²(@view(y′[:, i])) if n²>α² y′[:, i] .*= (α/√n²) end end end end # Module