diff -r 6105b5cd8d89 -r f0e8704d3f0e src/pdps.rs
--- a/src/pdps.rs Tue Aug 01 10:25:09 2023 +0300
+++ b/src/pdps.rs Mon Feb 17 13:54:53 2025 -0500
@@ -6,8 +6,7 @@
* Valkonen T. - _Proximal methods for point source localisation_,
[arXiv:2212.02991](https://arxiv.org/abs/2212.02991).
-The main routine is [`pointsource_pdps`]. It is based on specilisatinn of
-[`generic_pointsource_fb_reg`] through relevant [`FBSpecialisation`] implementations.
+The main routine is [`pointsource_pdps_reg`].
Both norm-2-squared and norm-1 data terms are supported. That is, implemented are solvers for
$$
@@ -37,10 +36,6 @@
For $F_0(y)=\frac{1}{2}\|y\|_2^2$ the second part reads $y = Aμ -b$.
For $F_0(y)=\|y\|_1$ the second part reads $y ∈ ∂\|·\|_1(Aμ - b)$.
-
-Based on zero initialisation for $μ$, we use the [`Subdifferentiable`] trait to make an
-initialisation corresponding to the second part of the optimality conditions.
-In the algorithm itself, standard proximal steps are taking with respect to $F\_0^* + ⟨b, ·⟩$.
*/
use numeric_literals::replace_float_literals;
@@ -48,37 +43,23 @@
use nalgebra::DVector;
use clap::ValueEnum;
-use alg_tools::iterate:: AlgIteratorFactory;
-use alg_tools::sets::Cube;
-use alg_tools::loc::Loc;
+use alg_tools::iterate::AlgIteratorFactory;
use alg_tools::euclidean::Euclidean;
+use alg_tools::linops::Mapping;
use alg_tools::norms::{
- L1, Linfinity,
- Projection, Norm,
+ Linfinity,
+ Projection,
};
-use alg_tools::bisection_tree::{
- BTFN,
- PreBTFN,
- Bounds,
- BTNodeLookup,
- BTNode,
- BTSearch,
- P2Minimise,
- SupportGenerator,
- LocalAnalysis,
-};
-use alg_tools::mapping::RealMapping;
+use alg_tools::mapping::{RealMapping, Instance};
use alg_tools::nalgebra_support::ToNalgebraRealField;
use alg_tools::linops::AXPY;
use crate::types::*;
-use crate::measures::DiscreteMeasure;
-use crate::measures::merging::{
- SpikeMerging,
-};
-use crate::forward_model::ForwardModel;
-use crate::seminorms::{
- DiscreteMeasureOp, Lipschitz
+use crate::measures::{DiscreteMeasure, RNDM};
+use crate::measures::merging::SpikeMerging;
+use crate::forward_model::{
+ ForwardModel,
+ AdjointProductBoundedBy,
};
use crate::plot::{
SeqPlotter,
@@ -86,12 +67,21 @@
PlotLookup
};
use crate::fb::{
+ postprocess,
+ prune_with_stats
+};
+pub use crate::prox_penalty::{
FBGenericConfig,
- FBSpecialisation,
- generic_pointsource_fb_reg,
- RegTerm,
+ ProxPenalty
};
-use crate::regularisation::NonnegRadonRegTerm;
+use crate::regularisation::RegTerm;
+use crate::dataterm::{
+ DataTerm,
+ L2Squared,
+ L1
+};
+use crate::measures::merging::SpikeMergingMethod;
+
/// Acceleration
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, ValueEnum, Debug)]
@@ -107,7 +97,30 @@
Full
}
-/// Settings for [`pointsource_pdps`].
+#[replace_float_literals(F::cast_from(literal))]
+impl Acceleration {
+ /// PDPS parameter acceleration. Updates τ and σ and returns ω.
+ /// This uses dual strong convexity, not primal.
+ fn accelerate
(self, τ : &mut F, σ : &mut F, γ : F) -> F {
+ match self {
+ Acceleration::None => 1.0,
+ Acceleration::Partial => {
+ let ω = 1.0 / (1.0 + γ * (*σ)).sqrt();
+ *σ *= ω;
+ *τ /= ω;
+ ω
+ },
+ Acceleration::Full => {
+ let ω = 1.0 / (1.0 + 2.0 * γ * (*σ)).sqrt();
+ *σ *= ω;
+ *τ /= ω;
+ ω
+ },
+ }
+ }
+}
+
+/// Settings for [`pointsource_pdps_reg`].
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)]
#[serde(default)]
pub struct PDPSConfig {
@@ -118,176 +131,77 @@
/// Accelerate if available
pub acceleration : Acceleration,
/// Generic parameters
- pub insertion : FBGenericConfig,
+ pub generic : FBGenericConfig,
}
#[replace_float_literals(F::cast_from(literal))]
impl Default for PDPSConfig {
fn default() -> Self {
- let τ0 = 0.5;
+ let τ0 = 5.0;
PDPSConfig {
τ0,
σ0 : 0.99/τ0,
acceleration : Acceleration::Partial,
- insertion : Default::default()
+ generic : FBGenericConfig {
+ merging : SpikeMergingMethod { enabled : true, ..Default::default() },
+ .. Default::default()
+ },
}
}
}
-/// Trait for subdifferentiable objects
-pub trait Subdifferentiable {
- /// Calculate some subdifferential at `x`
- fn some_subdifferential(&self, x : V) -> U;
+/// Trait for data terms for the PDPS
+#[replace_float_literals(F::cast_from(literal))]
+pub trait PDPSDataTerm : DataTerm {
+ /// Calculate some subdifferential at `x` for the conjugate
+ fn some_subdifferential(&self, x : V) -> V;
+
+ /// Factor of strong convexity of the conjugate
+ #[inline]
+ fn factor_of_strong_convexity(&self) -> F {
+ 0.0
+ }
+
+ /// Perform dual update
+ fn dual_update(&self, _y : &mut V, _y_prev : &V, _σ : F);
}
-/// Type for indicating norm-2-squared data fidelity.
-pub struct L2Squared;
-impl> Subdifferentiable for L2Squared {
+#[replace_float_literals(F::cast_from(literal))]
+impl PDPSDataTerm
+for L2Squared
+where
+ F : Float,
+ V : Euclidean + AXPY,
+ for<'b> &'b V : Instance,
+{
fn some_subdifferential(&self, x : V) -> V { x }
+
+ fn factor_of_strong_convexity(&self) -> F {
+ 1.0
+ }
+
+ #[inline]
+ fn dual_update(&self, y : &mut V, y_prev : &V, σ : F) {
+ y.axpy(1.0 / (1.0 + σ), y_prev, σ / (1.0 + σ));
+ }
}
-impl Subdifferentiable> for L1 {
+#[replace_float_literals(F::cast_from(literal))]
+impl
+PDPSDataTerm, N>
+for L1 {
fn some_subdifferential(&self, mut x : DVector) -> DVector {
// nalgebra sucks for providing second copies of the same stuff that's elsewhere as well.
x.iter_mut()
.for_each(|v| if *v != F::ZERO { *v = *v/::abs(*v) });
x
}
-}
-/// Specialisation of [`generic_pointsource_fb_reg`] to PDPS.
-pub struct PDPS<
- 'a,
- F : Float + ToNalgebraRealField,
- A : ForwardModel, F>,
- D,
- const N : usize
-> {
- /// The data
- b : &'a A::Observable,
- /// The forward operator
- opA : &'a A,
- /// Primal step length
- τ : F,
- // Dual step length
- σ : F,
- /// Whether acceleration should be applied (if data term supports)
- acceleration : Acceleration,
- /// The dataterm. Only used by the type system.
- _dataterm : D,
- /// Previous dual iterate.
- y_prev : A::Observable,
-}
-
-/// Implementation of [`FBSpecialisation`] for μPDPS with norm-2-squared data fidelity.
-#[replace_float_literals(F::cast_from(literal))]
-impl<
- 'a,
- F : Float + ToNalgebraRealField,
- A : ForwardModel, F>,
- const N : usize
-> FBSpecialisation for PDPS<'a, F, A, L2Squared, N>
-where for<'b> &'b A::Observable : std::ops::Add {
-
- fn update(
- &mut self,
- μ : &mut DiscreteMeasure, F>,
- μ_base : &DiscreteMeasure, F>
- ) -> (A::Observable, Option) {
- let σ = self.σ;
- let τ = self.τ;
- let ω = match self.acceleration {
- Acceleration::None => 1.0,
- Acceleration::Partial => {
- let ω = 1.0 / (1.0 + σ).sqrt();
- self.σ = σ * ω;
- self.τ = τ / ω;
- ω
- },
- Acceleration::Full => {
- let ω = 1.0 / (1.0 + 2.0 * σ).sqrt();
- self.σ = σ * ω;
- self.τ = τ / ω;
- ω
- },
- };
-
- μ.prune();
-
- let mut y = self.b.clone();
- self.opA.gemv(&mut y, 1.0 + ω, μ, -1.0);
- self.opA.gemv(&mut y, -ω, μ_base, 1.0);
- y.axpy(1.0 / (1.0 + σ), &self.y_prev, σ / (1.0 + σ));
- self.y_prev.copy_from(&y);
-
- (y, Some(self.τ))
- }
-
- fn calculate_fit(
- &self,
- μ : &DiscreteMeasure, F>,
- _y : &A::Observable
- ) -> F {
- self.calculate_fit_simple(μ)
- }
-
- fn calculate_fit_simple(
- &self,
- μ : &DiscreteMeasure, F>,
- ) -> F {
- let mut residual = self.b.clone();
- self.opA.gemv(&mut residual, 1.0, μ, -1.0);
- residual.norm2_squared_div2()
- }
-}
-
-/// Implementation of [`FBSpecialisation`] for μPDPS with norm-1 data fidelity.
-#[replace_float_literals(F::cast_from(literal))]
-impl<
- 'a,
- F : Float + ToNalgebraRealField,
- A : ForwardModel, F>,
- const N : usize
-> FBSpecialisation for PDPS<'a, F, A, L1, N>
-where A::Observable : Projection + Norm,
- for<'b> &'b A::Observable : std::ops::Add {
- fn update(
- &mut self,
- μ : &mut DiscreteMeasure, F>,
- μ_base : &DiscreteMeasure, F>
- ) -> (A::Observable, Option) {
- let σ = self.σ;
-
- μ.prune();
-
- //let ȳ = self.opA.apply(μ) * 2.0 - self.opA.apply(μ_base);
- //*y = proj_{[-1,1]}(&self.y_prev + (ȳ - self.b) * σ)
- let mut y = self.y_prev.clone();
- self.opA.gemv(&mut y, 2.0 * σ, μ, 1.0);
- self.opA.gemv(&mut y, -σ, μ_base, 1.0);
- y.axpy(-σ, self.b, 1.0);
+ #[inline]
+ fn dual_update(&self, y : &mut DVector, y_prev : &DVector, σ : F) {
+ y.axpy(1.0, y_prev, σ);
y.proj_ball_mut(1.0, Linfinity);
- self.y_prev.copy_from(&y);
-
- (y, None)
- }
-
- fn calculate_fit(
- &self,
- μ : &DiscreteMeasure, F>,
- _y : &A::Observable
- ) -> F {
- self.calculate_fit_simple(μ)
- }
-
- fn calculate_fit_simple(
- &self,
- μ : &DiscreteMeasure, F>,
- ) -> F {
- let mut residual = self.b.clone();
- self.opA.gemv(&mut residual, 1.0, μ, -1.0);
- residual.norm(L1)
}
}
@@ -304,93 +218,106 @@
///
/// Returns the final iterate.
#[replace_float_literals(F::cast_from(literal))]
-pub fn pointsource_pdps_reg<'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, D, Reg, const N : usize>(
- opA : &'a A,
- b : &'a A::Observable,
+pub fn pointsource_pdps_reg(
+ opA : &A,
+ b : &A::Observable,
reg : Reg,
- op𝒟 : &'a 𝒟,
- config : &PDPSConfig,
+ prox_penalty : &P,
+ pdpsconfig : &PDPSConfig,
iterator : I,
- plotter : SeqPlotter,
+ mut plotter : SeqPlotter,
dataterm : D,
-) -> DiscreteMeasure, F>
-where F : Float + ToNalgebraRealField,
- I : AlgIteratorFactory>,
- for<'b> &'b A::Observable : std::ops::Neg