diff -r 92cae2e8f598 -r b3312eee105c src/seminorms.rs --- a/src/seminorms.rs Mon Feb 17 14:10:45 2025 -0500 +++ b/src/seminorms.rs Mon Feb 17 14:10:52 2025 -0500 @@ -4,31 +4,31 @@ the trait [`DiscreteMeasureOp`]. */ -use std::iter::Zip; -use std::ops::RangeFrom; -use alg_tools::types::*; +use crate::measures::{DeltaMeasure, DiscreteMeasure, Radon, SpikeIter, RNDM}; +use alg_tools::bisection_tree::*; +use alg_tools::instance::Instance; +use alg_tools::iter::{FilterMapX, Mappable}; +use alg_tools::linops::{BoundedLinear, Linear, Mapping}; use alg_tools::loc::Loc; -use alg_tools::sets::Cube; -use alg_tools::bisection_tree::*; use alg_tools::mapping::RealMapping; -use alg_tools::iter::{Mappable, FilterMapX}; -use alg_tools::linops::{Mapping, Linear, BoundedLinear}; -use alg_tools::instance::Instance; use alg_tools::nalgebra_support::ToNalgebraRealField; use alg_tools::norms::Linfinity; -use crate::measures::{DiscreteMeasure, DeltaMeasure, SpikeIter, Radon, RNDM}; +use alg_tools::sets::Cube; +use alg_tools::types::*; +use itertools::Itertools; use nalgebra::DMatrix; +use std::iter::Zip; use std::marker::PhantomData; -use itertools::Itertools; +use std::ops::RangeFrom; /// Abstraction for operators $𝒟 ∈ 𝕃(𝒵(Ω); C_c(Ω))$. /// /// Here $𝒵(Ω) ⊂ ℳ(Ω)$ is the space of sums of delta measures, presented by [`DiscreteMeasure`]. -pub trait DiscreteMeasureOp - : BoundedLinear, Radon, Linfinity, F> +pub trait DiscreteMeasureOp: + BoundedLinear, Radon, Linfinity, F> where - F : Float + ToNalgebraRealField, - Domain : 'static + Clone + PartialEq, + F: Float + ToNalgebraRealField, + Domain: 'static + Clone + PartialEq, { /// The output type of [`Self::preapply`]. type PreCodomain; @@ -40,12 +40,13 @@ /// for a $x_1, …, x_n$ the coordinates given by the iterator `I`, and $a=(α_1,…,α_n)$. /// Here $C_* ∈ 𝕃(C_c(Ω); ℝ^n) $ stands for the preadjoint. ///

- fn findim_matrix<'a, I>(&self, points : I) -> DMatrix - where I : ExactSizeIterator + Clone; + fn findim_matrix<'a, I>(&self, points: I) -> DMatrix + where + I: ExactSizeIterator + Clone; /// [`Mapping`] that typically returns an uninitialised [`PreBTFN`] /// instead of a full [`BTFN`]. - fn preapply(&self, μ : DiscreteMeasure) -> Self::PreCodomain; + fn preapply(&self, μ: DiscreteMeasure) -> Self::PreCodomain; } // Blanket implementation of a measure as a linear functional over a predual @@ -67,28 +68,37 @@ // /// A trait alias for simple convolution kernels. -pub trait SimpleConvolutionKernel -: RealMapping + Support + Bounded + Clone + 'static {} +pub trait SimpleConvolutionKernel: + RealMapping + Support + Bounded + Clone + 'static +{ +} -impl SimpleConvolutionKernel for T -where T : RealMapping + Support + Bounded + Clone + 'static {} +impl SimpleConvolutionKernel for T where + T: RealMapping + Support + Bounded + Clone + 'static +{ +} /// [`SupportGenerator`] for [`ConvolutionOp`]. -#[derive(Clone,Debug)] -pub struct ConvolutionSupportGenerator -where K : SimpleConvolutionKernel { - kernel : K, - centres : RNDM, +#[derive(Clone, Debug)] +pub struct ConvolutionSupportGenerator +where + K: SimpleConvolutionKernel, +{ + kernel: K, + centres: RNDM, } -impl ConvolutionSupportGenerator -where K : SimpleConvolutionKernel { - +impl ConvolutionSupportGenerator +where + K: SimpleConvolutionKernel, +{ /// Construct the convolution kernel corresponding to `δ`, i.e., one centered at `δ.x` and /// weighted by `δ.α`. #[inline] - fn construct_kernel<'a>(&'a self, δ : &'a DeltaMeasure, F>) - -> Weighted, F> { + fn construct_kernel<'a>( + &'a self, + δ: &'a DeltaMeasure, F>, + ) -> Weighted, F> { self.kernel.clone().shift(δ.x).weigh(δ.α) } @@ -98,22 +108,27 @@ #[inline] fn construct_kernel_and_id_filtered<'a>( &'a self, - (id, δ) : (usize, &'a DeltaMeasure, F>) + (id, δ): (usize, &'a DeltaMeasure, F>), ) -> Option<(usize, Weighted, F>)> { (δ.α != F::ZERO).then(|| (id.into(), self.construct_kernel(δ))) } } -impl SupportGenerator -for ConvolutionSupportGenerator -where K : SimpleConvolutionKernel { +impl SupportGenerator for ConvolutionSupportGenerator +where + K: SimpleConvolutionKernel, +{ type Id = usize; type SupportType = Weighted, F>; - type AllDataIter<'a> = FilterMapX<'a, Zip, SpikeIter<'a, Loc, F>>, - Self, (Self::Id, Self::SupportType)>; + type AllDataIter<'a> = FilterMapX< + 'a, + Zip, SpikeIter<'a, Loc, F>>, + Self, + (Self::Id, Self::SupportType), + >; #[inline] - fn support_for(&self, d : Self::Id) -> Self::SupportType { + fn support_for(&self, d: Self::Id) -> Self::SupportType { self.construct_kernel(&self.centres[d]) } @@ -124,51 +139,53 @@ #[inline] fn all_data(&self) -> Self::AllDataIter<'_> { - (0..).zip(self.centres.iter_spikes()) - .filter_mapX(self, Self::construct_kernel_and_id_filtered) + (0..) + .zip(self.centres.iter_spikes()) + .filter_mapX(self, Self::construct_kernel_and_id_filtered) } } /// Representation of a convolution operator $𝒟$. -#[derive(Clone,Debug)] -pub struct ConvolutionOp -where F : Float + ToNalgebraRealField, - BT : BTImpl, - K : SimpleConvolutionKernel { +#[derive(Clone, Debug)] +pub struct ConvolutionOp +where + F: Float + ToNalgebraRealField, + BT: BTImpl, + K: SimpleConvolutionKernel, +{ /// Depth of the [`BT`] bisection tree for the outputs [`Mapping::apply`]. - depth : BT::Depth, + depth: BT::Depth, /// Domain of the [`BT`] bisection tree for the outputs [`Mapping::apply`]. - domain : Cube, + domain: Cube, /// The convolution kernel - kernel : K, - _phantoms : PhantomData<(F,BT)>, + kernel: K, + _phantoms: PhantomData<(F, BT)>, } -impl ConvolutionOp -where F : Float + ToNalgebraRealField, - BT : BTImpl, - K : SimpleConvolutionKernel { - +impl ConvolutionOp +where + F: Float + ToNalgebraRealField, + BT: BTImpl, + K: SimpleConvolutionKernel, +{ /// Creates a new convolution operator $𝒟$ with `kernel` on `domain`. /// /// The output of [`Mapping::apply`] is a [`BT`] of given `depth`. - pub fn new(depth : BT::Depth, domain : Cube, kernel : K) -> Self { + pub fn new(depth: BT::Depth, domain: Cube, kernel: K) -> Self { ConvolutionOp { - depth : depth, - domain : domain, - kernel : kernel, - _phantoms : PhantomData + depth: depth, + domain: domain, + kernel: kernel, + _phantoms: PhantomData, } } /// Returns the support generator for this convolution operator. - fn support_generator(&self, μ : RNDM) - -> ConvolutionSupportGenerator { - + fn support_generator(&self, μ: RNDM) -> ConvolutionSupportGenerator { // TODO: can we avoid cloning μ? ConvolutionSupportGenerator { - kernel : self.kernel.clone(), - centres : μ + kernel: self.kernel.clone(), + centres: μ, } } @@ -178,43 +195,43 @@ } } -impl Mapping> -for ConvolutionOp +impl Mapping> for ConvolutionOp where - F : Float + ToNalgebraRealField, - BT : BTImpl, - K : SimpleConvolutionKernel, - Weighted, F> : LocalAnalysis + F: Float + ToNalgebraRealField, + BT: BTImpl, + K: SimpleConvolutionKernel, + Weighted, F>: LocalAnalysis, { - type Codomain = BTFN, BT, N>; - fn apply(&self, μ : I) -> Self::Codomain - where I : Instance> { + fn apply(&self, μ: I) -> Self::Codomain + where + I: Instance>, + { let g = self.support_generator(μ.own()); BTFN::construct(self.domain.clone(), self.depth, g) } } /// [`ConvolutionOp`]s as linear operators over [`DiscreteMeasure`]s. -impl Linear> -for ConvolutionOp +impl Linear> for ConvolutionOp where - F : Float + ToNalgebraRealField, - BT : BTImpl, - K : SimpleConvolutionKernel, - Weighted, F> : LocalAnalysis -{ } + F: Float + ToNalgebraRealField, + BT: BTImpl, + K: SimpleConvolutionKernel, + Weighted, F>: LocalAnalysis, +{ +} -impl -BoundedLinear, Radon, Linfinity, F> -for ConvolutionOp -where F : Float + ToNalgebraRealField, - BT : BTImpl, - K : SimpleConvolutionKernel, - Weighted, F> : LocalAnalysis { - - fn opnorm_bound(&self, _ : Radon, _ : Linfinity) -> F { +impl BoundedLinear, Radon, Linfinity, F> + for ConvolutionOp +where + F: Float + ToNalgebraRealField, + BT: BTImpl, + K: SimpleConvolutionKernel, + Weighted, F>: LocalAnalysis, +{ + fn opnorm_bound(&self, _: Radon, _: Linfinity) -> F { // With μ = ∑_i α_i δ_{x_i}, we have // |𝒟μ|_∞ // = sup_z |∑_i α_i φ(z - x_i)| @@ -225,31 +242,33 @@ } } - -impl DiscreteMeasureOp, F> -for ConvolutionOp -where F : Float + ToNalgebraRealField, - BT : BTImpl, - K : SimpleConvolutionKernel, - Weighted, F> : LocalAnalysis { +impl DiscreteMeasureOp, F> for ConvolutionOp +where + F: Float + ToNalgebraRealField, + BT: BTImpl, + K: SimpleConvolutionKernel, + Weighted, F>: LocalAnalysis, +{ type PreCodomain = PreBTFN, N>; - fn findim_matrix<'a, I>(&self, points : I) -> DMatrix - where I : ExactSizeIterator> + Clone { + fn findim_matrix<'a, I>(&self, points: I) -> DMatrix + where + I: ExactSizeIterator> + Clone, + { // TODO: Preliminary implementation. It be best to use sparse matrices or // possibly explicit operators without matrices let n = points.len(); let points_clone = points.clone(); let pairs = points.cartesian_product(points_clone); let kernel = &self.kernel; - let values = pairs.map(|(x, y)| kernel.apply(y-x).to_nalgebra_mixed()); + let values = pairs.map(|(x, y)| kernel.apply(y - x).to_nalgebra_mixed()); DMatrix::from_iterator(n, n, values) } /// A version of [`Mapping::apply`] that does not instantiate the [`BTFN`] codomain with /// a bisection tree, instead returning a [`PreBTFN`]. This can improve performance when /// the output is to be added as the right-hand-side operand to a proper BTFN. - fn preapply(&self, μ : RNDM) -> Self::PreCodomain { + fn preapply(&self, μ: RNDM) -> Self::PreCodomain { BTFN::new_pre(self.support_generator(μ)) } } @@ -258,47 +277,46 @@ /// for [`ConvolutionSupportGenerator`]. macro_rules! make_convolutionsupportgenerator_scalarop_rhs { ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => { - impl, const N : usize> - std::ops::$trait_assign - for ConvolutionSupportGenerator { - fn $fn_assign(&mut self, t : F) { + impl, const N: usize> std::ops::$trait_assign + for ConvolutionSupportGenerator + { + fn $fn_assign(&mut self, t: F) { self.centres.$fn_assign(t); } } - impl, const N : usize> - std::ops::$trait - for ConvolutionSupportGenerator { + impl, const N: usize> std::ops::$trait + for ConvolutionSupportGenerator + { type Output = ConvolutionSupportGenerator; - fn $fn(mut self, t : F) -> Self::Output { + fn $fn(mut self, t: F) -> Self::Output { std::ops::$trait_assign::$fn_assign(&mut self.centres, t); self } } - impl<'a, F : Float, K : SimpleConvolutionKernel, const N : usize> - std::ops::$trait - for &'a ConvolutionSupportGenerator { + impl<'a, F: Float, K: SimpleConvolutionKernel, const N: usize> std::ops::$trait + for &'a ConvolutionSupportGenerator + { type Output = ConvolutionSupportGenerator; - fn $fn(self, t : F) -> Self::Output { - ConvolutionSupportGenerator{ - kernel : self.kernel.clone(), - centres : (&self.centres).$fn(t), + fn $fn(self, t: F) -> Self::Output { + ConvolutionSupportGenerator { + kernel: self.kernel.clone(), + centres: (&self.centres).$fn(t), } } } - } + }; } make_convolutionsupportgenerator_scalarop_rhs!(Mul, mul, MulAssign, mul_assign); make_convolutionsupportgenerator_scalarop_rhs!(Div, div, DivAssign, div_assign); - /// Generates an unary operation (e.g. [`std::ops::Neg`]) for [`ConvolutionSupportGenerator`]. macro_rules! make_convolutionsupportgenerator_unaryop { ($trait:ident, $fn:ident) => { - impl, const N : usize> - std::ops::$trait - for ConvolutionSupportGenerator { + impl, const N: usize> std::ops::$trait + for ConvolutionSupportGenerator + { type Output = ConvolutionSupportGenerator; fn $fn(mut self) -> Self::Output { self.centres = self.centres.$fn(); @@ -306,19 +324,18 @@ } } - impl<'a, F : Float, K : SimpleConvolutionKernel, const N : usize> - std::ops::$trait - for &'a ConvolutionSupportGenerator { + impl<'a, F: Float, K: SimpleConvolutionKernel, const N: usize> std::ops::$trait + for &'a ConvolutionSupportGenerator + { type Output = ConvolutionSupportGenerator; fn $fn(self) -> Self::Output { - ConvolutionSupportGenerator{ - kernel : self.kernel.clone(), - centres : (&self.centres).$fn(), + ConvolutionSupportGenerator { + kernel: self.kernel.clone(), + centres: (&self.centres).$fn(), } } } - } + }; } make_convolutionsupportgenerator_unaryop!(Neg, neg); -