diff -r efa60bc4f743 -r b087e3eab191 src/kernels/base.rs --- a/src/kernels/base.rs Thu Aug 29 00:00:00 2024 -0500 +++ b/src/kernels/base.rs Tue Dec 31 09:25:45 2024 -0500 @@ -14,16 +14,22 @@ GlobalAnalysis, Bounded, }; -use alg_tools::mapping::{Apply, Differentiable}; +use alg_tools::mapping::{ + Mapping, + DifferentiableImpl, + DifferentiableMapping, + Differential, +}; +use alg_tools::instance::{Instance, Space}; use alg_tools::maputil::{array_init, map2, map1_indexed}; use alg_tools::sets::SetOrd; use crate::fourier::Fourier; -use crate::types::Lipschitz; +use crate::types::*; /// Representation of the product of two kernels. /// -/// The kernels typically implement [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. +/// The kernels typically implement [`Support`] and [`Mapping`]. /// /// The implementation [`Support`] only uses the [`Support::support_hint`] of the first parameter! #[derive(Copy,Clone,Serialize,Debug)] @@ -34,59 +40,94 @@ pub B ); -impl Apply> +impl Mapping> for SupportProductFirst -where A : for<'a> Apply<&'a Loc, Output=F>, - B : for<'a> Apply<&'a Loc, Output=F> { - type Output = F; +where + A : Mapping, Codomain = F>, + B : Mapping, Codomain = F>, +{ + type Codomain = F; + #[inline] - fn apply(&self, x : Loc) -> Self::Output { - self.0.apply(&x) * self.1.apply(&x) + fn apply>>(&self, x : I) -> Self::Codomain { + self.0.apply(x.ref_instance()) * self.1.apply(x) } } -impl<'a, A, B, F : Float, const N : usize> Apply<&'a Loc> +impl DifferentiableImpl> for SupportProductFirst -where A : Apply<&'a Loc, Output=F>, - B : Apply<&'a Loc, Output=F> { - type Output = F; +where + A : DifferentiableMapping< + Loc, + DerivativeDomain=Loc, + Codomain = F + >, + B : DifferentiableMapping< + Loc, + DerivativeDomain=Loc, + Codomain = F, + > +{ + type Derivative = Loc; + #[inline] - fn apply(&self, x : &'a Loc) -> Self::Output { - self.0.apply(x) * self.1.apply(x) + fn differential_impl>>(&self, x : I) -> Self::Derivative { + let xr = x.ref_instance(); + self.0.differential(xr) * self.1.apply(xr) + self.1.differential(xr) * self.0.apply(x) } } -impl Differentiable> +impl Lipschitz for SupportProductFirst -where A : for<'a> Apply<&'a Loc, Output=F> - + for<'a> Differentiable<&'a Loc, Output=Loc>, - B : for<'a> Apply<&'a Loc, Output=F> - + for<'a> Differentiable<&'a Loc, Output=Loc> { - type Output = Loc; +where A : Lipschitz + Bounded, + B : Lipschitz + Bounded { + type FloatType = F; #[inline] - fn differential(&self, x : Loc) -> Self::Output { - self.0.differential(&x) * self.1.apply(&x) + self.1.differential(&x) * self.0.apply(&x) + fn lipschitz_factor(&self, m : M) -> Option { + // f(x)g(x) - f(y)g(y) = f(x)[g(x)-g(y)] - [f(y)-f(x)]g(y) + let &SupportProductFirst(ref f, ref g) = self; + f.lipschitz_factor(m).map(|l| l * g.bounds().uniform()) + .zip(g.lipschitz_factor(m).map(|l| l * f.bounds().uniform())) + .map(|(a, b)| a + b) } } -impl<'a, A, B, F : Float, const N : usize> Differentiable<&'a Loc> -for SupportProductFirst -where A : Apply<&'a Loc, Output=F> - + Differentiable<&'a Loc, Output=Loc>, - B : Apply<&'a Loc, Output=F> - + Differentiable<&'a Loc, Output=Loc> { - type Output = Loc; +impl<'a, A, B, M : Copy, Domain, F : Float> Lipschitz +for Differential<'a, Domain, SupportProductFirst> +where + Domain : Space, + A : Clone + DifferentiableMapping + Lipschitz + Bounded, + B : Clone + DifferentiableMapping + Lipschitz + Bounded, + SupportProductFirst : DifferentiableMapping, + for<'b> A::Differential<'b> : Lipschitz + NormBounded, + for<'b> B::Differential<'b> : Lipschitz + NormBounded +{ + type FloatType = F; #[inline] - fn differential(&self, x : &'a Loc) -> Self::Output { - self.0.differential(&x) * self.1.apply(&x) + self.1.differential(&x) * self.0.apply(&x) + fn lipschitz_factor(&self, m : M) -> Option { + // ∇[gf] = f∇g + g∇f + // ⟹ ∇[gf](x) - ∇[gf](y) = f(x)∇g(x) + g(x)∇f(x) - f(y)∇g(y) + g(y)∇f(y) + // = f(x)[∇g(x)-∇g(y)] + g(x)∇f(x) - [f(y)-f(x)]∇g(y) + g(y)∇f(y) + // = f(x)[∇g(x)-∇g(y)] + g(x)[∇f(x)-∇f(y)] + // - [f(y)-f(x)]∇g(y) + [g(y)-g(x)]∇f(y) + let &SupportProductFirst(ref f, ref g) = self.base_fn(); + let (df, dg) = (f.diff_ref(), g.diff_ref()); + [ + df.lipschitz_factor(m).map(|l| l * g.bounds().uniform()), + dg.lipschitz_factor(m).map(|l| l * f.bounds().uniform()), + f.lipschitz_factor(m).map(|l| l * dg.norm_bound(L2)), + g.lipschitz_factor(m).map(|l| l * df.norm_bound(L2)) + ].into_iter().sum() } } impl<'a, A, B, F : Float, const N : usize> Support for SupportProductFirst -where A : Support, - B : Support { +where + A : Support, + B : Support +{ #[inline] fn support_hint(&self) -> Cube { self.0.support_hint() @@ -125,7 +166,7 @@ /// Representation of the sum of two kernels /// -/// The kernels typically implement [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. +/// The kernels typically implement [`Support`] and [`Mapping`]. /// /// The implementation [`Support`] only uses the [`Support::support_hint`] of the first parameter! #[derive(Copy,Clone,Serialize,Debug)] @@ -136,55 +177,48 @@ pub B ); -impl<'a, A, B, F : Float, const N : usize> Apply<&'a Loc> +impl<'a, A, B, F : Float, const N : usize> Mapping> for SupportSum -where A : Apply<&'a Loc, Output=F>, - B : Apply<&'a Loc, Output=F> { - type Output = F; +where + A : Mapping, Codomain = F>, + B : Mapping, Codomain = F>, +{ + type Codomain = F; + #[inline] - fn apply(&self, x : &'a Loc) -> Self::Output { - self.0.apply(x) + self.1.apply(x) - } -} - -impl Apply> -for SupportSum -where A : for<'a> Apply<&'a Loc, Output=F>, - B : for<'a> Apply<&'a Loc, Output=F> { - type Output = F; - #[inline] - fn apply(&self, x : Loc) -> Self::Output { - self.0.apply(&x) + self.1.apply(&x) + fn apply>>(&self, x : I) -> Self::Codomain { + self.0.apply(x.ref_instance()) + self.1.apply(x) } } -impl<'a, A, B, F : Float, const N : usize> Differentiable<&'a Loc> +impl<'a, A, B, F : Float, const N : usize> DifferentiableImpl> for SupportSum -where A : Differentiable<&'a Loc, Output=Loc>, - B : Differentiable<&'a Loc, Output=Loc> { - type Output = Loc; +where + A : DifferentiableMapping< + Loc, + DerivativeDomain = Loc + >, + B : DifferentiableMapping< + Loc, + DerivativeDomain = Loc, + > +{ + + type Derivative = Loc; + #[inline] - fn differential(&self, x : &'a Loc) -> Self::Output { - self.0.differential(x) + self.1.differential(x) + fn differential_impl>>(&self, x : I) -> Self::Derivative { + self.0.differential(x.ref_instance()) + self.1.differential(x) } } -impl Differentiable> -for SupportSum -where A : for<'a> Differentiable<&'a Loc, Output=Loc>, - B : for<'a> Differentiable<&'a Loc, Output=Loc> { - type Output = Loc; - #[inline] - fn differential(&self, x : Loc) -> Self::Output { - self.0.differential(&x) + self.1.differential(&x) - } -} impl<'a, A, B, F : Float, const N : usize> Support for SupportSum where A : Support, B : Support, Cube : SetOrd { + #[inline] fn support_hint(&self) -> Cube { self.0.support_hint().common(&self.1.support_hint()) @@ -237,10 +271,29 @@ } } +impl<'b, F : Float, M : Copy, A, B, Domain> Lipschitz +for Differential<'b, Domain, SupportSum> +where + Domain : Space, + A : Clone + DifferentiableMapping, + B : Clone + DifferentiableMapping, + SupportSum : DifferentiableMapping, + for<'a> A :: Differential<'a> : Lipschitz, + for<'a> B :: Differential<'a> : Lipschitz +{ + type FloatType = F; + + fn lipschitz_factor(&self, m : M) -> Option { + let base = self.base_fn(); + base.0.diff_ref().lipschitz_factor(m) + .zip(base.1.diff_ref().lipschitz_factor(m)) + .map(|(a, b)| a + b) + } +} /// Representation of the convolution of two kernels. /// -/// The kernels typically implement [`Support`]s and [`Mapping`][alg_tools::mapping::Mapping]. +/// The kernels typically implement [`Support`]s and [`Mapping`]. // /// Trait implementations have to be on a case-by-case basis. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] @@ -252,18 +305,45 @@ ); impl Lipschitz for Convolution -where A : Bounded , +where A : Norm , B : Lipschitz { type FloatType = F; fn lipschitz_factor(&self, m : M) -> Option { - self.1.lipschitz_factor(m).map(|l| l * self.0.bounds().uniform()) + // For [f * g](x) = ∫ f(x-y)g(y) dy we have + // [f * g](x) - [f * g](z) = ∫ [f(x-y)-f(z-y)]g(y) dy. + // Hence |[f * g](x) - [f * g](z)| ≤ ∫ |f(x-y)-f(z-y)|g(y)| dy. + // ≤ L|x-z| ∫ |g(y)| dy, + // where L is the Lipschitz factor of f. + self.1.lipschitz_factor(m).map(|l| l * self.0.norm(L1)) + } +} + +impl<'b, F : Float, M, A, B, Domain> Lipschitz +for Differential<'b, Domain, Convolution> +where + Domain : Space, + A : Clone + Norm , + Convolution : DifferentiableMapping, + B : Clone + DifferentiableMapping, + for<'a> B :: Differential<'a> : Lipschitz +{ + type FloatType = F; + + fn lipschitz_factor(&self, m : M) -> Option { + // For [f * g](x) = ∫ f(x-y)g(y) dy we have + // ∇[f * g](x) - ∇[f * g](z) = ∫ [∇f(x-y)-∇f(z-y)]g(y) dy. + // Hence |∇[f * g](x) - ∇[f * g](z)| ≤ ∫ |∇f(x-y)-∇f(z-y)|g(y)| dy. + // ≤ L|x-z| ∫ |g(y)| dy, + // where L is the Lipschitz factor of ∇f. + let base = self.base_fn(); + base.1.diff_ref().lipschitz_factor(m).map(|l| l * base.0.norm(L1)) } } /// Representation of the autoconvolution of a kernel. /// -/// The kernel typically implements [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. +/// The kernel typically implements [`Support`] and [`Mapping`]. /// /// Trait implementations have to be on a case-by-case basis. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] @@ -273,11 +353,27 @@ ); impl Lipschitz for AutoConvolution -where C : Lipschitz + Bounded { +where C : Lipschitz + Norm { type FloatType = F; fn lipschitz_factor(&self, m : M) -> Option { - self.0.lipschitz_factor(m).map(|l| l * self.0.bounds().uniform()) + self.0.lipschitz_factor(m).map(|l| l * self.0.norm(L1)) + } +} + +impl<'b, F : Float, M, C, Domain> Lipschitz +for Differential<'b, Domain, AutoConvolution> +where + Domain : Space, + C : Clone + Norm + DifferentiableMapping, + AutoConvolution : DifferentiableMapping, + for<'a> C :: Differential<'a> : Lipschitz +{ + type FloatType = F; + + fn lipschitz_factor(&self, m : M) -> Option { + let base = self.base_fn(); + base.0.diff_ref().lipschitz_factor(m).map(|l| l * base.0.norm(L1)) } } @@ -285,42 +381,47 @@ /// Representation a multi-dimensional product of a one-dimensional kernel. /// /// For $G: ℝ → ℝ$, this is the function $F(x\_1, …, x\_n) := \prod_{i=1}^n G(x\_i)$. -/// The kernel $G$ typically implements [`Support`] and [`Mapping`][alg_tools::mapping::Mapping] +/// The kernel $G$ typically implements [`Support`] and [`Mapping`] /// on [`Loc`]. Then the product implements them on [`Loc`]. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] +#[allow(dead_code)] struct UniformProduct( /// The one-dimensional kernel G ); -impl<'a, G, F : Float, const N : usize> Apply<&'a Loc> +impl<'a, G, F : Float, const N : usize> Mapping> for UniformProduct -where G : Apply, Output=F> { - type Output = F; +where + G : Mapping, Codomain = F> +{ + type Codomain = F; + #[inline] - fn apply(&self, x : &'a Loc) -> F { - x.iter().map(|&y| self.0.apply(Loc([y]))).product() + fn apply>>(&self, x : I) -> F { + x.cow().iter().map(|&y| self.0.apply(Loc([y]))).product() } } -impl Apply> + + +impl<'a, G, F : Float, const N : usize> DifferentiableImpl> for UniformProduct -where G : Apply, Output=F> { - type Output = F; +where + G : DifferentiableMapping< + Loc, + DerivativeDomain = F, + Codomain = F, + > +{ + type Derivative = Loc; + #[inline] - fn apply(&self, x : Loc) -> F { - x.into_iter().map(|y| self.0.apply(Loc([y]))).product() - } -} - -impl<'a, G, F : Float, const N : usize> Differentiable<&'a Loc> -for UniformProduct -where G : Apply, Output=F> + Differentiable, Output=F> { - type Output = Loc; - #[inline] - fn differential(&self, x : &'a Loc) -> Loc { - let vs = x.map(|y| self.0.apply(Loc([y]))); - product_differential(x, &vs, |y| self.0.differential(Loc([y]))) + fn differential_impl>>(&self, x0 : I) -> Loc { + x0.eval(|x| { + let vs = x.map(|y| self.0.apply(Loc([y]))); + product_differential(x, &vs, |y| self.0.differential(Loc([y]))) + }) } } @@ -342,13 +443,39 @@ }).into() } -impl Differentiable> -for UniformProduct -where G : Apply, Output=F> + Differentiable, Output=F> { - type Output = Loc; - #[inline] - fn differential(&self, x : Loc) -> Loc { - self.differential(&x) +/// Helper function to calulate the Lipschitz factor of $∇f$ for $f(x)=∏_{i=1}^N g(x_i)$. +/// +/// The parameter `bound` is a bound on $|g|_∞$, `lip` is a Lipschitz factor for $g$, +/// `dbound` is a bound on $|∇g|_∞$, and `dlip` a Lipschitz factor for $∇g$. +#[inline] +pub(crate) fn product_differential_lipschitz_factor( + bound : F, + lip : F, + dbound : F, + dlip : F +) -> F { + // For arbitrary ψ(x) = ∏_{i=1}^n ψ_i(x_i), we have + // ψ(x) - ψ(y) = ∑_i [ψ_i(x_i)-ψ_i(y_i)] ∏_{j ≠ i} ψ_j(x_j) + // by a simple recursive argument. In particular, if ψ_i=g for all i, j, we have + // |ψ(x) - ψ(y)| ≤ ∑_i L_g M_g^{n-1}|x-y|, where L_g is the Lipschitz factor of g, and + // M_g a bound on it. + // + // We also have in the general case ∇ψ(x) = ∑_i ∇ψ_i(x_i) ∏_{j ≠ i} ψ_j(x_j), whence + // using the previous formula for each i with f_i=∇ψ_i and f_j=ψ_j for j ≠ i, we get + // ∇ψ(x) - ∇ψ(y) = ∑_i[ ∇ψ_i(x_i)∏_{j ≠ i} ψ_j(x_j) - ∇ψ_i(y_i)∏_{j ≠ i} ψ_j(y_j)] + // = ∑_i[ [∇ψ_i(x_i) - ∇ψ_j(x_j)] ∏_{j ≠ i}ψ_j(x_j) + // + [∑_{k ≠ i} [ψ_k(x_k) - ∇ψ_k(x_k)] ∏_{j ≠ i, k}ψ_j(x_j)]∇ψ_i(x_i)]. + // With $ψ_i=g for all i, j, it follows that + // |∇ψ(x) - ∇ψ(y)| ≤ ∑_i L_{∇g} M_g^{n-1} + ∑_{k ≠ i} L_g M_g^{n-2} M_{∇g} + // = n [L_{∇g} M_g^{n-1} + (n-1) L_g M_g^{n-2} M_{∇g}]. + // = n M_g^{n-2}[L_{∇g} M_g + (n-1) L_g M_{∇g}]. + if N >= 2 { + F::cast_from(N) * bound.powi((N-2) as i32) + * (dlip * bound + F::cast_from(N-1) * lip * dbound) + } else if N==1 { + dlip + } else { + panic!("Invalid dimension") } }