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geodesics on a cube and a capped cylinder

Heikki von Koch

1 geodesics on a cube
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We start our examples with a cube (surface) of side length 1 with the origin of ℝ3 and labelling
of its faces as indicated by the pictures. For the standard ℝ3-coordinates, we always use the triple
(·, ·, ·). In addition, each face 𝐹 has their own fixed local two-dimensional coordinate system denoted by
(𝑥𝐹 , 𝑦𝐹 )𝐹 , where 𝐹 ∈ {1, 2, 3, 4, 5, 6} and 𝑥𝐹 , 𝑦𝐹 ∈ [0, 1] (we shall often just use the shorthand notation
(𝑥, 𝑦)𝐹 ). Their orientations are shown above.
As an example, we have that (0, 0)1 = (1, 0)3 = (0, 0)4 and (1, 0)6 = (0, 1)2 = (1, 1)4 and, in fact, we

always have (𝑥, 𝑦)1 = (𝑥, 𝑦, 0) and (𝑥, 𝑦)6 = (𝑥, 𝑦, 1) (permanently fixing the vertices).

1.1 anatomy of geodesics on a cube

All geodesics on the cube are straight lines when the cube is unfolded in any manner but not all straight
lines in the unfolding are geodesics as, for example, some go through a vertex and some appear to
go through a face onto the same face. The important fact is that the globally shortest straight lines
are always geodesics. There are effectively three different places where the geodesic might end with
respect to the starting point:

1. the endpoint is on the same face;

2. the endpoint is on an adjacent face;

3. the endpoint is on the opposite face.

Geodesics of the 1. kind are obviously regular straight lines in the plane and need no further analysis.
Geodesics of the 2. kind have three options: going through the shared side or going through either

of the faces that also share a side with the face of the endpoint. For example, let the starting point be
on face 1 and the endpoint on face 2, then we have the three options: 1 − 2, 1 − 5 − 2, and 1 − 4 − 2,
where 𝑎 − 𝑏 − 𝑐 means that we start from face 𝑎, move to face 𝑏, and move to face 𝑐 where we stop.

Geodesics of the 3. kind have 12 options: for each adjacent face, there are three options (as can be
seen from the 2. kind). Note that not all of these will necessarily be actual geodesics with the same
being true for geodesics of the 2. kind. However, at least one of them will be a geodesic as well as
realise the globally shortest path between the start and endpoints.
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Now all we need are the face-to-face transformations between local coordinate systems, which can
then be composed together to make longer chains between the faces. A coordinate transformation
from one face to another is made by rotating (with respect to the common edge) the target face onto
the same plane as the starting face (keeping this face fixed) such that there is no overlap. For the
unfoldings of the different coordinate grids, we essentially need two transformations of a point (𝑥, 𝑦)
on the plane:

• Rotation of (𝑥, 𝑦) about a point (𝑎, 𝑏) for +90◦: (𝑥, 𝑦) → (𝑏 + 𝑎 − 𝑦,𝑏 − 𝑎 + 𝑥);

• Rotation of (𝑥, 𝑦) about a point (𝑎, 𝑏) for −90◦: (𝑥, 𝑦) → (𝑎 − 𝑏 + 𝑦, 𝑎 + 𝑏 − 𝑥).

The following matrix contains all of the coordinate transformations between the faces with 𝑥, 𝑦 ∈ [0, 1]
and their standard three-dimensional coordinates.

ℝ3 (𝑥, 𝑦, 0) (1, 𝑥, 𝑦) (0, 1 − 𝑥, 𝑦) (𝑥, 0, 𝑦) (1 − 𝑥, 1, 𝑦) (𝑥, 𝑦, 1)
1 2 3 4 5 6©­­­­­­­«

ª®®®®®®®¬

1 (𝑥, 𝑦)1 (𝑦 + 1, 𝑥)1 (−𝑦, 1 − 𝑥)1 (𝑥,−𝑦)1 (1 − 𝑥, 𝑦 + 1)1
2 (𝑦, 𝑥 − 1)2 (𝑥, 𝑦)2 (𝑥 − 1, 𝑦)2 (𝑥 + 1, 𝑦)2 (𝑦, 2 − 𝑥)2
3 (1 − 𝑦,−𝑥)3 (𝑥, 𝑦)3 (𝑥 + 1, 𝑦)3 (𝑥 − 1, 𝑦)3 (1 − 𝑦, 𝑥 + 1)3
4 (𝑥,−𝑦)4 (𝑥 + 1, 𝑦)4 (𝑥 − 1, 𝑦)4 (𝑥, 𝑦)4 (𝑥, 𝑦 + 1)4
5 (1 − 𝑥, 𝑦 − 1)5 (𝑥 − 1, 𝑦)5 (𝑥 + 1, 𝑦)5 (𝑥, 𝑦)5 (1 − 𝑥, 2 − 𝑦)5
6 (2 − 𝑦, 𝑥)6 (𝑦 − 1, 1 − 𝑥)6 (𝑥, 𝑦 − 1)6 (1 − 𝑥, 2 − 𝑦)6 (𝑥, 𝑦)6

Note the abundance of regularity in the table because of the way the local coordinate systems were
chosen. The side faces all share the 𝑦-coordinate, and the 𝑥-coordinate always has the same orientation,
that is, the coordinate transformations from one side face to the next when going counterclockwise
(or clockwise, for that matter) are the same.

1.2 coordinate calculations

The distances can now be easily calculated with the Pythagorean theorem. For example, let our starting
point (𝑥1, 𝑦1)1 be on face 1 and endpoint (𝑥2, 𝑦2)2 on face 2. First we need to figure out the three different
possible coordinates of (𝑥2, 𝑦2)2 in the coordinate system of face 1 by composing the transformations
together using Table 1:

1. Path 1 − 2: (𝑥, 𝑦)2 → (𝑦 + 1, 𝑥)1;

2. Path 1 − 5 − 2: (𝑥, 𝑦)2 → (𝑥 − 1, 𝑦)5 → (2 − 𝑥, 𝑦 + 1)1;

3. Path 1 − 4 − 2: (𝑥, 𝑦)2 → (𝑥 + 1, 𝑦)4 → (𝑥 + 1,−𝑦)1.

This gives us three possible shortest paths between them with the distances

1. Path 1 − 2: 𝑑 ((𝑥1, 𝑦1)1, (𝑥2, 𝑦2)2) =
√︁
(𝑥1 − (𝑦2 + 1))2 + (𝑦1 − 𝑥2)2;

2. Path 1 − 5 − 2: 𝑑 ((𝑥1, 𝑦1)1, (𝑥2, 𝑦2)2) =
√︁
(𝑥1 − (2 − 𝑥2))2 + (𝑦1 − (𝑦2 + 1))2;

3. Path 1 − 4 − 2: 𝑑 ((𝑥1, 𝑦1)1, (𝑥2, 𝑦2)2) =
√︁
(𝑥1 − (𝑥2 + 1))2 + (𝑦1 + 𝑦2)2.

von Koch Geodesics on a cube and a capped cylinder
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Let (𝑥1, 𝑦1)1 = (1/2, 1/2)1 and the endpoint similarly be the middle point of face 2, that is, (1/2, 1/2)2.
Clearly the shortest distance between the start and endpoint is 1. The distance formulas give us 1,

√
2,
√
2,

respectively, that is, the shortest path is rather unsurprisingly through the common side (in fact, the
other paths aren’t geodesics at all since they go through vertices as can be seen from drawing a simple
picture).
Lets change our starting point to (1/4, 3/4)1 and our endpoint to (3/4, 3/4)2. Now we have the

distances 3/2,
√
2,
√
18/2, respectively, that is, the shortest path is through face 5.
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(5/4, 7/4)
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(7/4,−3/4)

An unfolding of the cube with the labels
of the faces marked on their upper left cor-
ners. Included are the three colour-coded
paths from face 1 to face 2 with starting
point (1/4, 3/4)1 and endpoint (3/4, 3/4)2,
and their endpoints in the coordinate sys-
tem of face 1. The dashed red path is not a
geodesic as it goes through the vertex (1, 0)1.
Note that the two zigzag edges between faces
2 are not real butmerely artifacts of the draw-
ing.

2 geodesics on a capped cylinder

A cylinder (more specifically, a right circular cylinder) is a surface defined as the set of points 𝑥, 𝑦, 𝑧 ∈ ℝ

such that (𝑥, 𝑦, 𝑧) = (𝑟 cos𝜃, 𝑟 sin𝜃, 𝑧) = (𝜃, 𝑧), where 𝑟 > 0 is the radius of the circle defined by 𝑥 and
𝑦 . Furthermore, we will consider the capped cylinder by adding circular discs of the same radius 𝑟 to
the top and bottom of the cylinder.

2.1 geodesics on either the side or the top and bottom discs

Geodesics between points on the same discs are clearly straight lines and one can check (using the
geodesic equation) that geodesics on the side are helices (in the degenerate cases, these include straight
lines and arcs of circles). A helix is a space curve parametrised by

𝑥 (𝜑) = 𝑟 cos𝜑, 𝑦 (𝜑) = 𝑟 sin𝜑, 𝑧 (𝜑) = 𝑐𝜑, for𝜑 ∈ [0, 𝑑],

where 𝑐 is a constant such that 2𝜋𝑐 gives the vertical separation of the helix’s loops and 𝑑 a parameter
depending on 𝑐 , such that we stay on the side of the cylinder (so not in the interior of top or bottom
disc). Instead of vertical separation, one could also say that the helix has a slope of 𝑟/𝑐 . In fact, this is
its defining feature: a curve for which the tangent makes a constant angle with a fixed line (center axis
for our cylinder). The helix between two points 𝑝1 = (𝑧1, 𝜑1) and 𝑝2 = (𝑧2, 𝜑2) is given by

𝛾 (𝜑) =
(
𝑟 cos𝜑, 𝑟 sin𝜑, 𝑧1 − 𝑧2

𝜑1 − 𝜑2
𝜑 + 𝜑1𝑧2 − 𝜑2𝑧1

𝜑1 − 𝜑2

)
and its arc length 𝐿 can be calculated with 𝐿 = 𝑑

√
𝑟 2 + 𝑐2.

von Koch Geodesics on a cube and a capped cylinder
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Example 2.1 (No vertical separation between loops). Since there is no separation between loops,
2𝜋𝑐 = 0 =⇒ 𝑐 = 0, meaning that 𝑧 (𝜑) = 0 for all 𝜑 , i.e., the 𝑧-coordinate does not change and thus
the parametrisation is that of an arc of a circle of radius 𝑟 . The arc length is naturally 𝐿 = 𝑑𝑟 .
Example 2.2 (Zero angle with central axis). Since the angle is zero, we have that tan(0) = 𝑟/𝑐 = 0 =⇒
𝑟 = 0, meaning that 𝑥 (𝜑) = 𝑦 (𝜑) = 0 for all 𝜑 , i.e., the parametrisation is that of a straight line, where
the points only differ by their 𝑧-coordinates. The arc length is now 𝐿 = 𝑑𝑐 .
Example 2.3 (Existence of a shortest path and arbitrary long paths). Between any two points on the
cylinder that, w.l.o.g., only differ in their 𝑧-coordinate, there exist infinitely many geodesics. Fur-
thermore, there is no upper bound for their length but there does exist at least one shortest one. By
controlling the angle 𝜑 (or 𝑐), we control how many rotations we take around the cylinder. For 𝑛 ≥ 0
rotations we have by Pythagoras (by unfolding the cylinder 𝑛 times and excluding the top and bottom),
that tan(𝜑) = 𝑛𝑟/𝑐 ⇐⇒ 𝜑 = arctan(𝑛𝑟/𝑐). The shortest path is now with zero rotations while there
is no longest path as we can do as many rotations as we which: 𝑛 → ∞ =⇒ 𝜑 → 𝜋/2 =⇒ 𝐿 → ∞.

For now, we have only discussed geodesics lying strictly on the curved side of the cylinder or on the
flat top and bottom discs. What about when we go on two or more of them?

2.2 side -> disc geodesics

Let 𝑝1 be a point on the side and 𝑝2 a point on one of the discs. Denote the point where the geodesic
crosses the edge by 𝑥 ; we now have a picture where the side of the cylinder is unfolded and the disc is
touching this at the point 𝑥 . The point 𝑥 needs to be chosen such that the line 𝑝1𝑥𝑝2 is straight (in the
unfolded picture), i.e., we have

𝑑 (𝑝1, 𝑝2) =min
𝑥

{
𝑑cyl(𝑝1, 𝑥) + 𝑑disc(𝑥, 𝑝2)

}
.

Denote 𝑝1 = (𝑧1, 𝜑1), ∠𝑝1𝑂𝑥 = 𝛼1, where 𝑝1 is the point on the boundary of the disc corresponding to
𝑝1 (same phase), and 𝑝2 = (𝑟2, 𝜑2), ∠𝑝2𝑂𝑥 = 𝛼2, where 𝑑disc(𝑂, 𝑝2) = 𝑟2. Assume further that 𝜑2 > 𝜑1
(mod 2𝜋 ). We have

𝑑cyl(𝑝1, 𝑥) =
√︃
𝑧21 + 𝑟 2𝛼2

1 and 𝑑disc(𝑥, 𝑝2) =
√︃
𝑟 2 + 𝑟 22 − 2𝑟𝑟2 cos𝛼2,

where the first is by Pythagoras (the non 𝑧-coordinate side of the triangle is simply the arc length 𝑟𝛼1
of the circle) and the second by the cosine rule. Since 𝛼2 = 𝜑2 − 𝜑1 − 𝛼1, we get

𝑑 (𝑝1, 𝑝2) =min
𝛼1

{√︃
𝑧21 + 𝑟 2𝛼2

1 +
√︃
𝑟 2 + 𝑟 22 − 2𝑟𝑟2 cos(𝜑2 − 𝜑1 − 𝛼1)

}
.

To calculate its minima, set 𝑓 (𝛼1;𝑝1, 𝑝2, 𝑟 ) =

√︃
𝑧21 + 𝑟 2𝛼2

1 +
√︃
𝑟 2 + 𝑟 22 − 2𝑟𝑟2 cos(𝜑2 − 𝜑1 − 𝛼1) and

calculate its derivatives as

𝐷𝛼1 𝑓 =
𝑟 2𝛼1√︃

𝑧21 + 𝑟 2𝛼2
1

− 𝑟𝑟2 sin(𝜑2 − 𝜑1 − 𝛼1)√︃
𝑟 2 + 𝑟 22 − 2𝑟𝑟2 cos(𝜑2 − 𝜑1 − 𝛼1)

and

𝐷2
𝛼1 𝑓 =

𝑟 2𝑧21
(𝑧21 + 𝑟 2𝛼2

1 )3/2
+ 𝑟𝑟2(𝑟 cos(𝜑2 − 𝜑1 − 𝛼1) − 𝑟2) (𝑟 − 𝑟2 cos(𝜑2 − 𝜑1 − 𝛼1))

(𝑟 2 + 𝑟 22 − 2𝑟𝑟2 cos(𝜑2 − 𝜑1 − 𝛼1))3/2
.

von Koch Geodesics on a cube and a capped cylinder
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2.3 disc -> side -> disc geodesics

Without loss of generality, let 𝑝1 be a point on the bottom disc and 𝑝2 on the top disc. Denote the
points where the geodesic crosses the edges by 𝑥1 and 𝑥2, respectively; we now have a picture where
the cylinder side is unfolded and the discs are touching the side at the points 𝑥1 and 𝑥2. These points
need to be chosen such that the line 𝑝1𝑥1𝑥2𝑝2 is straight (in the unfolded picture), i.e., we have

𝑑 (𝑝1, 𝑝2) = min
(𝑥1,𝑥2 )

{
𝑑disc(𝑝1, 𝑥1) + 𝑑cyl(𝑥1, 𝑥2) + 𝑑disc(𝑥2, 𝑝2)

}
.

Denote 𝑝𝑖 = (𝑟𝑖 , 𝜑𝑖), ∠𝑝𝑖𝑂𝑥𝑖 = 𝛼𝑖 , for 𝑖 = 1, 2, where 𝑑disc(𝑂𝑖 , 𝑝𝑖) = 𝑟𝑖 . Since the line 𝑝1𝑥1𝑥2𝑝2 is straight,
we can define a rectangle 𝑥1𝑥1𝑥2𝑥2 such that we have the correspondence of phases: 𝜑𝑥̃1 = 𝜑𝑥2 and
𝜑𝑥̃2 = 𝜑𝑥1 , i.e., ∠𝑥1𝑂1𝑥1 := 𝛼1 = 𝛼2 =: ∠𝑥2𝑂2𝑥2. Assume further that 𝜑2 > 𝜑1 (mod 2𝜋 ). We have

𝑑disc(𝑝1, 𝑥1) =
√︃
𝑟 2 + 𝑟 21 − 2𝑟𝑟1 cos𝛼1, 𝑑cyl(𝑥1, 𝑥2) =

√︁
ℎ2 + (𝛼1𝑟 )2, and 𝑑disc(𝑥2, 𝑝2) =

√︃
𝑟 2 + 𝑟 22 − 2𝑟𝑟2 cos𝛼2,

where the middle is by Pythagoras (the non 𝑧-coordinate side of the triangle is simply the arc length
𝑟𝛼𝑖 of a circle and ℎ is the height of the cylinder) and the others by the cosine rule. We have

𝛼1 = 𝜑𝑥̃1 − 𝛼1 − 𝜑1 and 𝛼2 = 𝜑2 − 𝛼2 − 𝜑𝑥̃2 =⇒ 𝛼1 + 𝛼2 = 𝜑𝑥̃1 − 𝜑𝑥̃2 + 𝜑2 − 𝜑1 − 𝛼1 − 𝛼2,

and since 𝜑𝑥̃2 = 𝜑𝑥1 with 𝜑𝑥̃1 − 𝜑𝑥1 = 𝛼1, we get

𝛼2 = 𝜑2 − 𝜑1 − 𝛼1 − 𝛼2.

Putting everything together gives us

𝑑 (𝑝1, 𝑝2) = min
(𝛼1,𝛼2 )

{√︃
𝑟 2 + 𝑟 21 − 2𝑟𝑟1 cos𝛼1 +

√︁
ℎ2 + ((𝜑2 − 𝜑1 − 𝛼1 − 𝛼2)𝑟 )2 +

√︃
𝑟 2 + 𝑟 22 − 2𝑟𝑟2 cos𝛼2

}
.

Here it becomes clear that the previous disc -> side calculation is simply a special/modified case of
this one; the first term is nonexistent, 𝛼1 = 0, and instead of ℎ, we have a 𝑧-coordinate for the point on
the side.

Finally, let us compute some derivatives. Set

𝑓 (𝛼1, 𝛼2; 𝑝1, 𝑝2, 𝑟 , ℎ) =
√︃
𝑟 2 + 𝑟 21 − 2𝑟𝑟1 cos𝛼1 +

√︁
ℎ2 + ((𝜑2 − 𝜑1 − 𝛼1 − 𝛼2)𝑟 )2 +

√︃
𝑟 2 + 𝑟 22 − 2𝑟𝑟2 cos𝛼2.

𝐷𝛼𝑖 𝑓 =
𝑟𝑟𝑖 sin(𝛼𝑖)√︃

𝑟 2 + 𝑟 2
𝑖
− 2𝑟𝑟𝑖 cos𝛼𝑖

− 𝑟 2(𝜑2 − 𝜑1 − 𝛼1 − 𝛼2)√︁
ℎ2 + 𝑟 2(𝜑2 − 𝜑1 − 𝛼1 − 𝛼2)2

.

𝐷2
𝛼1,𝛼2 𝑓 =

𝑟 2ℎ2

(ℎ2 + 𝑟 2(𝜑2 − 𝜑1 − 𝛼1 − 𝛼2)2)3/2
.

𝐷2
𝛼𝑖
𝑓 =

𝑟𝑟𝑖 (𝑟 cos𝛼𝑖 − 𝑟𝑖) (𝑟 − 𝑟𝑖 cos𝛼𝑖)
(𝑟 2 + 𝑟 2

𝑖
− 2𝑟𝑟𝑖 cos𝛼𝑖)3/2

+ 𝐷2
𝛼1,𝛼2 𝑓 .

2.4 side -> disc -> side geodesics

Do shortest paths ever cross a disc when both of the points are on the side of the cylinder? A simple
drawing shows that the answer is yes: take two points opposite (same 𝑧-coordinate but phase differing
by 𝜋 ) each other on a cylinder of radius 𝑟 . Now their distance on the side is 𝑟𝜋 while using the disc it
is 2(𝑟 + ℎ), where ℎ is the 𝑧-coordinate of the points. By controlling ℎ and 𝑟 we can thus order these
lengths as we wish.

von Koch Geodesics on a cube and a capped cylinder
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It’s clear thatwhether this happens or not depends on both the radius of the disc and the 𝑧-coordinates
and phases of the points. Let us assume that this happens and calculate the distance. Let 𝑝1 and 𝑝2 be
two points on the side of the cylinder and 𝑥1 and 𝑥2 be the points where the path crosses the sides of
the disc, respectively. The length to minimise is thus

𝑑 (𝑝1, 𝑝2) = min
(𝑥1,𝑥2 )

{𝑑cyl(𝑝1, 𝑥1) + 𝑑disc(𝑥1, 𝑥2) + 𝑑cyl(𝑥2, 𝑝2)}.

To determine whether we stay on the side or the take a shortcut through the disc, one simply compares
this distance to the one strictly on the side.
Remark 2.4. This problem is a somewhat generalisation of the first problem where we would’ve had
𝑝2 = 𝑥2 without the assumption that the point lies on the boundary of the disc. However, here we will
deal with chords, whereas there we most likely did not.
Denote 𝑝𝑖 = (𝑧𝑖 , 𝜑𝑖) and ∠𝑝𝑖𝑂𝑥𝑖 = 𝛼𝑖 , for 𝑖 = 1, 2, where 𝑝𝑖 is the point on the boundary of the disc

corresponding to 𝑝𝑖 (same phase) and assume again that 𝜑2 > 𝜑1. We have

min
(𝑥1,𝑥2 )

{𝑑cyl(𝑝1, 𝑥1) + 𝑑disc(𝑥1, 𝑥2) + 𝑑cyl(𝑥2, 𝑝2)} = min
(𝛼1,𝛼2 )

{√︃
𝑧21 + 𝑟 2𝛼2

1 + 2𝑟 cos 𝛽 +
√︃
𝑧22 + 𝑟 2𝛼2

2

}
,

where 𝛽 = 1/2(𝛼1 + 𝛼2 + 𝜑1 − 𝜑2 + 𝜋) and 𝜑2 > 𝜑1. We could equivalently write cos 𝛽 = cos(1/2(𝛼1 +
𝛼2 + 𝜑1 − 𝜑2 + 𝜋)) = − sin(1/2(𝛼1 + 𝛼2 + 𝜑1 − 𝜑2)) and

min
(𝑥1,𝑥2 )

{𝑑cyl(𝑝1, 𝑥1)+𝑑disc(𝑥1, 𝑥2)+𝑑cyl(𝑥2, 𝑝2)} = min
(𝛼1,𝛼2 )

{√︃
𝑧21 + 𝑟 2𝛼2

1−2𝑟 sin(1/2(𝛼1+𝛼2+𝜑1−𝜑2))+
√︃
𝑧22 + 𝑟 2𝛼2

2

}
.

Set 𝑓 (𝛼1, 𝛼2; 𝑝1, 𝑝2, 𝑟 ) =
√︃
𝑧21 + 𝑟 2𝛼2

1 − 2𝑟 sin(1/2(𝛼1 + 𝛼2 + 𝜑1 − 𝜑2)) +
√︃
𝑧22 + 𝑟 2𝛼2

2 and calculate its
first derivatives and Hessian as

𝐷𝛼𝑖 𝑓 =
𝑟 2𝛼𝑖√︃

𝑧2
𝑖
+ 𝑟 2𝛼2

𝑖

− 𝑟 cos( 12 (𝛼1 + 𝛼2 + 𝜑1 − 𝜑2))

and

Hess(𝑓 ) =


𝑟 2𝑧21

(𝑧21+𝛼2
1 𝑟

2 )
3
2
+ 𝑟

2 sin(
1
2 (𝛼1 + 𝛼2 + 𝜑1 − 𝜑2)) 𝑟

2 sin(
1
2 (𝛼1 + 𝛼2 + 𝜑1 − 𝜑2))

𝑟
2 sin(

1
2 (𝛼1 + 𝛼2 + 𝜑1 − 𝜑2))

𝑟 2𝑧22

(𝑧22+𝛼2
2𝑟

2 )
3
2
+ 𝑟

2 sin(
1
2 (𝛼1 + 𝛼2 + 𝜑1 − 𝜑2))

 .
Example 2.5. Take opposite points on the side so that we have 𝜑2 = 𝜑1 + 𝜋 and 𝛼1 = 𝛼 = 𝛼2 and thus

min
(𝑥1,𝑥2 )

{𝑑cyl(𝑝1, 𝑥1) + 𝑑disc(𝑥1, 𝑥2) + 𝑑cyl(𝑥2, 𝑝2)} =min
𝛼

{√︃
𝑧21 + 𝑟 2𝛼2 + 2𝑟 cos𝛼 +

√︃
𝑧22 + 𝑟 2𝛼2

}
.

Differentiating this with respect to 𝛼 and setting the derivative to zero gives us
𝑟 2𝛼√︃

𝑧21 + 𝛼2𝑟 2
− 2𝑟 sin𝛼 + 𝑟 2𝛼√︃

𝑧22 + 𝛼2𝑟 2
= 0.

This holds, at least, when 𝛼 = 0. To see whether this is a maximum or a minimum, we take another
derivative

𝑟 2𝑧21

(𝑧21 + 𝛼2𝑟 2) 3
2
− 2𝑟 cos𝛼 +

𝑟 2𝑧22

(𝑧22 + 𝛼2𝑟 2) 3
2

and set 𝛼 = 0 to get
𝑟 ( 𝑟 (𝑧1 + 𝑧2)

𝑧1𝑧2
− 2) .

We thus have a maximum when (𝑧1 + 𝑧2)/(𝑧1𝑧2) < 2/𝑟 and a minimum when (𝑧1 + 𝑧2)/(𝑧1𝑧2) > 2/𝑟 .
Furthermore, if the heights are equal (𝑧1 = 𝑧 = 𝑧2), then the minimum is only achieved when 𝑧 < 𝑟 .
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