diff -r d14c877e14b7 -r b3c35d16affe src/linops.rs --- a/src/linops.rs Tue Feb 20 12:33:16 2024 -0500 +++ b/src/linops.rs Mon Feb 03 19:22:16 2025 -0500 @@ -4,58 +4,79 @@ use numeric_literals::replace_float_literals; use std::marker::PhantomData; +use serde::Serialize; use crate::types::*; -use serde::Serialize; -pub use crate::mapping::Apply; +pub use crate::mapping::{Mapping, Space, Composition}; +use crate::direct_product::Pair; +use crate::instance::Instance; +use crate::norms::{NormExponent, PairNorm, L1, L2, Linfinity, Norm}; /// Trait for linear operators on `X`. -pub trait Linear : Apply - + for<'a> Apply<&'a X, Output=Self::Codomain> { - type Codomain; -} +pub trait Linear : Mapping +{ } /// Efficient in-place summation. #[replace_float_literals(F::cast_from(literal))] -pub trait AXPY { +pub trait AXPY : Space + std::ops::MulAssign +where + F : Num, + X : Space, +{ + type Owned : AXPY; + /// Computes `y = βy + αx`, where `y` is `Self`. - fn axpy(&mut self, α : F, x : &X, β : F); + fn axpy>(&mut self, α : F, x : I, β : F); /// Copies `x` to `self`. - fn copy_from(&mut self, x : &X) { + fn copy_from>(&mut self, x : I) { self.axpy(1.0, x, 0.0) } /// Computes `y = αx`, where `y` is `Self`. - fn scale_from(&mut self, α : F, x : &X) { + fn scale_from>(&mut self, α : F, x : I) { self.axpy(α, x, 0.0) } + + /// Return a similar zero as `self`. + fn similar_origin(&self) -> Self::Owned; + + /// Set self to zero. + fn set_zero(&mut self); } /// Efficient in-place application for [`Linear`] operators. #[replace_float_literals(F::cast_from(literal))] -pub trait GEMV>::Codomain> : Linear { +pub trait GEMV>::Codomain> : Linear { /// Computes `y = αAx + βy`, where `A` is `Self`. - fn gemv(&self, y : &mut Y, α : F, x : &X, β : F); + fn gemv>(&self, y : &mut Y, α : F, x : I, β : F); + #[inline] /// Computes `y = Ax`, where `A` is `Self` - fn apply_mut(&self, y : &mut Y, x : &X){ + fn apply_mut>(&self, y : &mut Y, x : I){ self.gemv(y, 1.0, x, 0.0) } + #[inline] /// Computes `y += Ax`, where `A` is `Self` - fn apply_add(&self, y : &mut Y, x : &X){ + fn apply_add>(&self, y : &mut Y, x : I){ self.gemv(y, 1.0, x, 1.0) } } /// Bounded linear operators -pub trait BoundedLinear : Linear { - type FloatType : Float; +pub trait BoundedLinear : Linear +where + F : Num, + X : Space + Norm, + XExp : NormExponent, + CodExp : NormExponent +{ /// A bound on the operator norm $\|A\|$ for the linear operator $A$=`self`. /// This is not expected to be the norm, just any bound on it that can be - /// reasonably implemented. - fn opnorm_bound(&self) -> Self::FloatType; + /// reasonably implemented. The [`NormExponent`] `xexp` indicates the norm + /// in `X`, and `codexp` in the codomain. + fn opnorm_bound(&self, xexp : XExp, codexp : CodExp) -> F; } // Linear operator application into mutable target. The [`AsRef`] bound @@ -69,16 +90,16 @@ }*/ /// Trait for forming the adjoint operator of `Self`. -pub trait Adjointable : Linear { - type AdjointCodomain; +pub trait Adjointable : Linear +where + X : Space, + Yʹ : Space, +{ + type AdjointCodomain : Space; type Adjoint<'a> : Linear where Self : 'a; /// Form the adjoint operator of `self`. fn adjoint(&self) -> Self::Adjoint<'_>; - - /*fn adjoint_apply(&self, y : &Yʹ) -> Self::AdjointCodomain { - self.adjoint().apply(y) - }*/ } /// Trait for forming a preadjoint of an operator. @@ -88,67 +109,576 @@ /// operator. The space `Ypre` is the predual of its codomain, and should be the /// domain of the adjointed operator. `Self::Preadjoint` should be /// [`Adjointable`]`<'a,Ypre,X>`. -pub trait Preadjointable : Linear { - type PreadjointCodomain; - type Preadjoint<'a> : Adjointable where Self : 'a; +/// We do not make additional restrictions on `Self::Preadjoint` (in particular, it +/// does not have to be adjointable) to allow `X` to be a subspace yet the preadjoint +/// have the full space as the codomain, etc. +pub trait Preadjointable : Linear { + type PreadjointCodomain : Space; + type Preadjoint<'a> : Linear< + Ypre, Codomain=Self::PreadjointCodomain + > where Self : 'a; - /// Form the preadjoint operator of `self`. + /// Form the adjoint operator of `self`. fn preadjoint(&self) -> Self::Preadjoint<'_>; } -/// Adjointable operators $A: X → Y$ on between reflexive spaces $X$ and $Y$. -pub trait SimplyAdjointable : Adjointable>::Codomain> {} -impl<'a,X,T> SimplyAdjointable for T where T : Adjointable>::Codomain> {} +/// Adjointable operators $A: X → Y$ between reflexive spaces $X$ and $Y$. +pub trait SimplyAdjointable : Adjointable>::Codomain> {} +impl<'a,X : Space, T> SimplyAdjointable for T +where T : Adjointable>::Codomain> {} /// The identity operator #[derive(Clone,Copy,Debug,Serialize,Eq,PartialEq)] pub struct IdOp (PhantomData); impl IdOp { - fn new() -> IdOp { IdOp(PhantomData) } + pub fn new() -> IdOp { IdOp(PhantomData) } } -impl Apply for IdOp { - type Output = X; +impl Mapping for IdOp { + type Codomain = X; - fn apply(&self, x : X) -> X { - x + fn apply>(&self, x : I) -> X { + x.own() } } -impl<'a, X> Apply<&'a X> for IdOp where X : Clone { - type Output = X; - - fn apply(&self, x : &'a X) -> X { - x.clone() - } -} - -impl Linear for IdOp where X : Clone { - type Codomain = X; -} - +impl Linear for IdOp +{ } #[replace_float_literals(F::cast_from(literal))] -impl GEMV for IdOp where Y : AXPY, X : Clone { +impl GEMV for IdOp +where + Y : AXPY, + X : Clone + Space +{ // Computes `y = αAx + βy`, where `A` is `Self`. - fn gemv(&self, y : &mut Y, α : F, x : &X, β : F) { + fn gemv>(&self, y : &mut Y, α : F, x : I, β : F) { y.axpy(α, x, β) } - fn apply_mut(&self, y : &mut Y, x : &X){ + fn apply_mut>(&self, y : &mut Y, x : I){ y.copy_from(x); } } -impl BoundedLinear for IdOp where X : Clone { - type FloatType = float; - fn opnorm_bound(&self) -> float { 1.0 } +impl BoundedLinear for IdOp +where + X : Space + Clone + Norm, + F : Num, + E : NormExponent +{ + fn opnorm_bound(&self, _xexp : E, _codexp : E) -> F { F::ONE } } -impl Adjointable for IdOp where X : Clone { +impl Adjointable for IdOp { type AdjointCodomain=X; type Adjoint<'a> = IdOp where X : 'a; + fn adjoint(&self) -> Self::Adjoint<'_> { IdOp::new() } } +impl Preadjointable for IdOp { + type PreadjointCodomain=X; + type Preadjoint<'a> = IdOp where X : 'a; + + fn preadjoint(&self) -> Self::Preadjoint<'_> { IdOp::new() } +} + + +/// The zero operator +#[derive(Clone,Copy,Debug,Serialize,Eq,PartialEq)] +pub struct ZeroOp<'a, X, XD, Y, F> { + zero : &'a Y, // TODO: don't pass this in `new`; maybe not even store. + dual_or_predual_zero : XD, + _phantoms : PhantomData<(X, Y, F)>, +} + +// TODO: Need to make Zero in Instance. + +impl<'a, F : Num, X : Space, XD, Y : Space + Clone> ZeroOp<'a, X, XD, Y, F> { + pub fn new(zero : &'a Y, dual_or_predual_zero : XD) -> Self { + ZeroOp{ zero, dual_or_predual_zero, _phantoms : PhantomData } + } +} + +impl<'a, F : Num, X : Space, XD, Y : AXPY + Clone> Mapping for ZeroOp<'a, X, XD, Y, F> { + type Codomain = Y; + + fn apply>(&self, _x : I) -> Y { + self.zero.clone() + } +} + +impl<'a, F : Num, X : Space, XD, Y : AXPY + Clone> Linear for ZeroOp<'a, X, XD, Y, F> +{ } + +#[replace_float_literals(F::cast_from(literal))] +impl<'a, F, X, XD, Y> GEMV for ZeroOp<'a, X, XD, Y, F> +where + F : Num, + Y : AXPY + Clone, + X : Space +{ + // Computes `y = αAx + βy`, where `A` is `Self`. + fn gemv>(&self, y : &mut Y, _α : F, _x : I, β : F) { + *y *= β; + } + + fn apply_mut>(&self, y : &mut Y, _x : I){ + y.set_zero(); + } +} + +impl<'a, F, X, XD, Y, E1, E2> BoundedLinear for ZeroOp<'a, X, XD, Y, F> +where + X : Space + Norm, + Y : AXPY + Clone + Norm, + F : Num, + E1 : NormExponent, + E2 : NormExponent, +{ + fn opnorm_bound(&self, _xexp : E1, _codexp : E2) -> F { F::ZERO } +} + +impl<'a, F : Num, X, XD, Y, Yprime : Space> Adjointable for ZeroOp<'a, X, XD, Y, F> +where + X : Space, + Y : AXPY + Clone + 'static, + XD : AXPY + Clone + 'static, +{ + type AdjointCodomain = XD; + type Adjoint<'b> = ZeroOp<'b, Yprime, (), XD, F> where Self : 'b; + // () means not (pre)adjointable. + + fn adjoint(&self) -> Self::Adjoint<'_> { + ZeroOp::new(&self.dual_or_predual_zero, ()) + } +} + +impl<'a, F, X, XD, Y, Ypre> Preadjointable for ZeroOp<'a, X, XD, Y, F> +where + F : Num, + X : Space, + Y : AXPY + Clone, + Ypre : Space, + XD : AXPY + Clone + 'static, +{ + type PreadjointCodomain = XD; + type Preadjoint<'b> = ZeroOp<'b, Ypre, (), XD, F> where Self : 'b; + // () means not (pre)adjointable. + + fn preadjoint(&self) -> Self::Preadjoint<'_> { + ZeroOp::new(&self.dual_or_predual_zero, ()) + } +} + +impl Linear for Composition +where + X : Space, + T : Linear, + S : Linear +{ } + +impl GEMV for Composition +where + F : Num, + X : Space, + T : Linear, + S : GEMV, +{ + fn gemv>(&self, y : &mut Y, α : F, x : I, β : F) { + self.outer.gemv(y, α, self.inner.apply(x), β) + } + + /// Computes `y = Ax`, where `A` is `Self` + fn apply_mut>(&self, y : &mut Y, x : I){ + self.outer.apply_mut(y, self.inner.apply(x)) + } + + /// Computes `y += Ax`, where `A` is `Self` + fn apply_add>(&self, y : &mut Y, x : I){ + self.outer.apply_add(y, self.inner.apply(x)) + } +} + +impl BoundedLinear for Composition +where + F : Num, + X : Space + Norm, + Z : Space + Norm, + Xexp : NormExponent, + Yexp : NormExponent, + Zexp : NormExponent, + T : BoundedLinear, + S : BoundedLinear, +{ + fn opnorm_bound(&self, xexp : Xexp, yexp : Yexp) -> F { + let zexp = self.intermediate_norm_exponent; + self.outer.opnorm_bound(zexp, yexp) * self.inner.opnorm_bound(xexp, zexp) + } +} + +/// “Row operator” $(S, T)$; $(S, T)(x, y)=Sx + Ty$. +pub struct RowOp(pub S, pub T); + +use std::ops::Add; + +impl Mapping> for RowOp +where + A : Space, + B : Space, + S : Mapping, + T : Mapping, + S::Codomain : Add, + >::Output : Space, + +{ + type Codomain = >::Output; + + fn apply>>(&self, x : I) -> Self::Codomain { + let Pair(a, b) = x.decompose(); + self.0.apply(a) + self.1.apply(b) + } +} + +impl Linear> for RowOp +where + A : Space, + B : Space, + S : Linear, + T : Linear, + S::Codomain : Add, + >::Output : Space, +{ } + + +impl<'b, F, S, T, Y, U, V> GEMV, Y> for RowOp +where + U : Space, + V : Space, + S : GEMV, + T : GEMV, + F : Num, + Self : Linear, Codomain=Y> +{ + fn gemv>>(&self, y : &mut Y, α : F, x : I, β : F) { + let Pair(u, v) = x.decompose(); + self.0.gemv(y, α, u, β); + self.1.gemv(y, α, v, F::ONE); + } + + fn apply_mut>>(&self, y : &mut Y, x : I) { + let Pair(u, v) = x.decompose(); + self.0.apply_mut(y, u); + self.1.apply_add(y, v); + } + + /// Computes `y += Ax`, where `A` is `Self` + fn apply_add>>(&self, y : &mut Y, x : I) { + let Pair(u, v) = x.decompose(); + self.0.apply_add(y, u); + self.1.apply_add(y, v); + } +} + +/// “Column operator” $(S; T)$; $(S; T)x=(Sx, Tx)$. +pub struct ColOp(pub S, pub T); + +impl Mapping for ColOp +where + A : Space, + S : Mapping, + T : Mapping, +{ + type Codomain = Pair; + + fn apply>(&self, a : I) -> Self::Codomain { + Pair(self.0.apply(a.ref_instance()), self.1.apply(a)) + } +} + +impl Linear for ColOp +where + A : Space, + S : Mapping, + T : Mapping, +{ } + +impl GEMV> for ColOp +where + X : Space, + S : GEMV, + T : GEMV, + F : Num, + Self : Linear> +{ + fn gemv>(&self, y : &mut Pair, α : F, x : I, β : F) { + self.0.gemv(&mut y.0, α, x.ref_instance(), β); + self.1.gemv(&mut y.1, α, x, β); + } + + fn apply_mut>(&self, y : &mut Pair, x : I){ + self.0.apply_mut(&mut y.0, x.ref_instance()); + self.1.apply_mut(&mut y.1, x); + } + + /// Computes `y += Ax`, where `A` is `Self` + fn apply_add>(&self, y : &mut Pair, x : I){ + self.0.apply_add(&mut y.0, x.ref_instance()); + self.1.apply_add(&mut y.1, x); + } +} + + +impl Adjointable, Yʹ> for RowOp +where + A : Space, + B : Space, + Yʹ : Space, + S : Adjointable, + T : Adjointable, + Self : Linear>, + // for<'a> ColOp, T::Adjoint<'a>> : Linear< + // Yʹ, + // Codomain=Pair + // >, +{ + type AdjointCodomain = Pair; + type Adjoint<'a> = ColOp, T::Adjoint<'a>> where Self : 'a; + + fn adjoint(&self) -> Self::Adjoint<'_> { + ColOp(self.0.adjoint(), self.1.adjoint()) + } +} + +impl Preadjointable, Yʹ> for RowOp +where + A : Space, + B : Space, + Yʹ : Space, + S : Preadjointable, + T : Preadjointable, + Self : Linear>, + for<'a> ColOp, T::Preadjoint<'a>> : Linear< + Yʹ, Codomain=Pair, + >, +{ + type PreadjointCodomain = Pair; + type Preadjoint<'a> = ColOp, T::Preadjoint<'a>> where Self : 'a; + + fn preadjoint(&self) -> Self::Preadjoint<'_> { + ColOp(self.0.preadjoint(), self.1.preadjoint()) + } +} + + +impl Adjointable> for ColOp +where + A : Space, + Xʹ : Space, + Yʹ : Space, + R : Space + ClosedAdd, + S : Adjointable, + T : Adjointable, + Self : Linear, + // for<'a> RowOp, T::Adjoint<'a>> : Linear< + // Pair, + // Codomain=R, + // >, +{ + type AdjointCodomain = R; + type Adjoint<'a> = RowOp, T::Adjoint<'a>> where Self : 'a; + + fn adjoint(&self) -> Self::Adjoint<'_> { + RowOp(self.0.adjoint(), self.1.adjoint()) + } +} + +impl Preadjointable> for ColOp +where + A : Space, + Xʹ : Space, + Yʹ : Space, + R : Space + ClosedAdd, + S : Preadjointable, + T : Preadjointable, + Self : Linear, + for<'a> RowOp, T::Preadjoint<'a>> : Linear< + Pair, Codomain = R, + >, +{ + type PreadjointCodomain = R; + type Preadjoint<'a> = RowOp, T::Preadjoint<'a>> where Self : 'a; + + fn preadjoint(&self) -> Self::Preadjoint<'_> { + RowOp(self.0.preadjoint(), self.1.preadjoint()) + } +} + +/// Diagonal operator +pub struct DiagOp(pub S, pub T); + +impl Mapping> for DiagOp +where + A : Space, + B : Space, + S : Mapping, + T : Mapping, +{ + type Codomain = Pair; + + fn apply>>(&self, x : I) -> Self::Codomain { + let Pair(a, b) = x.decompose(); + Pair(self.0.apply(a), self.1.apply(b)) + } +} + +impl Linear> for DiagOp +where + A : Space, + B : Space, + S : Linear, + T : Linear, +{ } + +impl GEMV, Pair> for DiagOp +where + A : Space, + B : Space, + U : Space, + V : Space, + S : GEMV, + T : GEMV, + F : Num, + Self : Linear, Codomain=Pair>, +{ + fn gemv>>(&self, y : &mut Pair, α : F, x : I, β : F) { + let Pair(u, v) = x.decompose(); + self.0.gemv(&mut y.0, α, u, β); + self.1.gemv(&mut y.1, α, v, β); + } + + fn apply_mut>>(&self, y : &mut Pair, x : I){ + let Pair(u, v) = x.decompose(); + self.0.apply_mut(&mut y.0, u); + self.1.apply_mut(&mut y.1, v); + } + + /// Computes `y += Ax`, where `A` is `Self` + fn apply_add>>(&self, y : &mut Pair, x : I){ + let Pair(u, v) = x.decompose(); + self.0.apply_add(&mut y.0, u); + self.1.apply_add(&mut y.1, v); + } +} + +impl Adjointable, Pair> for DiagOp +where + A : Space, + B : Space, + Xʹ: Space, + Yʹ : Space, + R : Space, + S : Adjointable, + T : Adjointable, + Self : Linear>, + for<'a> DiagOp, T::Adjoint<'a>> : Linear< + Pair, Codomain=R, + >, +{ + type AdjointCodomain = R; + type Adjoint<'a> = DiagOp, T::Adjoint<'a>> where Self : 'a; + + fn adjoint(&self) -> Self::Adjoint<'_> { + DiagOp(self.0.adjoint(), self.1.adjoint()) + } +} + +impl Preadjointable, Pair> for DiagOp +where + A : Space, + B : Space, + Xʹ: Space, + Yʹ : Space, + R : Space, + S : Preadjointable, + T : Preadjointable, + Self : Linear>, + for<'a> DiagOp, T::Preadjoint<'a>> : Linear< + Pair, Codomain=R, + >, +{ + type PreadjointCodomain = R; + type Preadjoint<'a> = DiagOp, T::Preadjoint<'a>> where Self : 'a; + + fn preadjoint(&self) -> Self::Preadjoint<'_> { + DiagOp(self.0.preadjoint(), self.1.preadjoint()) + } +} + +/// Block operator +pub type BlockOp = ColOp, RowOp>; + + +macro_rules! pairnorm { + ($expj:ty) => { + impl + BoundedLinear, PairNorm, ExpR, F> + for RowOp + where + F : Float, + A : Space + Norm, + B : Space + Norm, + S : BoundedLinear, + T : BoundedLinear, + S::Codomain : Add, + >::Output : Space, + ExpA : NormExponent, + ExpB : NormExponent, + ExpR : NormExponent, + { + fn opnorm_bound( + &self, + PairNorm(expa, expb, _) : PairNorm, + expr : ExpR + ) -> F { + // An application of the triangle inequality bounds the norm by the maximum + // of the individual norms. A simple observation shows this to be exact. + let na = self.0.opnorm_bound(expa, expr); + let nb = self.1.opnorm_bound(expb, expr); + na.max(nb) + } + } + + impl + BoundedLinear, F> + for ColOp + where + F : Float, + A : Space + Norm, + S : BoundedLinear, + T : BoundedLinear, + ExpA : NormExponent, + ExpS : NormExponent, + ExpT : NormExponent, + { + fn opnorm_bound( + &self, + expa : ExpA, + PairNorm(exps, expt, _) : PairNorm + ) -> F { + // This is based on the rule for RowOp and ‖A^*‖ = ‖A‖, hence, + // for A=[S; T], ‖A‖=‖[S^*, T^*]‖ ≤ max{‖S^*‖, ‖T^*‖} = max{‖S‖, ‖T‖} + let ns = self.0.opnorm_bound(expa, exps); + let nt = self.1.opnorm_bound(expa, expt); + ns.max(nt) + } + } + } +} + +pairnorm!(L1); +pairnorm!(L2); +pairnorm!(Linfinity); +