Tue, 20 Feb 2024 12:33:16 -0500
Logarithmic logging base correction
/*! Traits for representing the support of a [`Apply`], and analysing the mapping on a [`Cube`]. */ use serde::Serialize; use std::ops::{MulAssign,DivAssign,Neg}; use crate::types::{Float, Num}; use crate::maputil::map2; use crate::mapping::Apply; use crate::sets::Cube; use crate::loc::Loc; use super::aggregator::Bounds; use crate::norms::{Norm, L1, L2, Linfinity}; /// A trait for encoding constant [`Float`] values pub trait Constant : Copy + Sync + Send + 'static + std::fmt::Debug + Into<Self::Type> { /// The type of the value type Type : Float; /// Returns the value of the constant fn value(&self) -> Self::Type; } impl<F : Float> Constant for F { type Type = F; #[inline] fn value(&self) -> F { *self } } /// A trait for working with the supports of [`Apply`]s. /// /// Apply is not a super-trait to allow more general use. pub trait Support<F : Num, const N : usize> : Sized + Sync + Send + 'static { /// Return a cube containing the support of the function represented by `self`. /// /// The hint may be larger than the actual support, but must contain it. fn support_hint(&self) -> Cube<F,N>; /// Indicate whether `x` is in the support of the function represented by `self`. fn in_support(&self, x : &Loc<F,N>) -> bool; // Indicate whether `cube` is fully in the support of the function represented by `self`. //fn fully_in_support(&self, cube : &Cube<F,N>) -> bool; /// Return an optional hint for bisecting the support. /// /// The output along each axis a possible coordinate at which to bisect `cube`. /// /// This is useful for nonsmooth functions to make finite element models as used by /// [`BTFN`][super::btfn::BTFN] minimisation/maximisation compatible with points of /// non-differentiability. /// /// The default implementation returns `[None; N]`. #[inline] #[allow(unused_variables)] fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { [None; N] } /// Translate `self` by `x`. #[inline] fn shift(self, x : Loc<F, N>) -> Shift<Self, F, N> { Shift { shift : x, base_fn : self } } /// Multiply `self` by the scalar `a`. #[inline] fn weigh<C : Constant<Type=F>>(self, a : C) -> Weighted<Self, C> { Weighted { weight : a, base_fn : self } } } /// Trait for globally analysing a property `A` of a [`Apply`]. /// /// Typically `A` is an [`Aggregator`][super::aggregator::Aggregator] such as /// [`Bounds`][super::aggregator::Bounds]. pub trait GlobalAnalysis<F : Num, A> { /// Perform global analysis of the property `A` of `Self`. /// /// As an example, in the case of `A` being [`Bounds`][super::aggregator::Bounds], /// this function will return global upper and lower bounds for the mapping /// represented by `self`. fn global_analysis(&self) -> A; } // default impl<F, A, N, L> GlobalAnalysis<F, A, N> for L // where L : LocalAnalysis<F, A, N> { // #[inline] // fn global_analysis(&self) -> Bounds<F> { // self.local_analysis(&self.support_hint()) // } // } /// Trait for locally analysing a property `A` of a [`Apply`] (implementing [`Support`]) /// within a [`Cube`]. /// /// Typically `A` is an [`Aggregator`][super::aggregator::Aggregator] such as /// [`Bounds`][super::aggregator::Bounds]. pub trait LocalAnalysis<F : Num, A, const N : usize> : GlobalAnalysis<F, A> + Support<F, N> { /// Perform local analysis of the property `A` of `Self`. /// /// As an example, in the case of `A` being [`Bounds`][super::aggregator::Bounds], /// this function will return upper and lower bounds within `cube` for the mapping /// represented by `self`. fn local_analysis(&self, cube : &Cube<F, N>) -> A; } /// Trait for determining the upper and lower bounds of an float-valued [`Apply`]. /// /// This is a blanket-implemented alias for [`GlobalAnalysis`]`<F, Bounds<F>>` /// [`Apply`] is not a supertrait to allow flexibility in the implementation of either /// reference or non-reference arguments. pub trait Bounded<F : Float> : GlobalAnalysis<F, Bounds<F>> { /// Return lower and upper bounds for the values of of `self`. #[inline] fn bounds(&self) -> Bounds<F> { self.global_analysis() } } impl<F : Float, T : GlobalAnalysis<F, Bounds<F>>> Bounded<F> for T { } /// Shift of [`Support`] and [`Apply`]; output of [`Support::shift`]. #[derive(Copy,Clone,Debug,Serialize)] // Serialize! but not implemented by Loc. pub struct Shift<T, F, const N : usize> { shift : Loc<F, N>, base_fn : T, } impl<'a, T, V, F : Float, const N : usize> Apply<&'a Loc<F, N>> for Shift<T,F,N> where T : Apply<Loc<F, N>, Output=V> { type Output = V; #[inline] fn apply(&self, x : &'a Loc<F, N>) -> Self::Output { self.base_fn.apply(x - &self.shift) } } impl<'a, T, V, F : Float, const N : usize> Apply<Loc<F, N>> for Shift<T,F,N> where T : Apply<Loc<F, N>, Output=V> { type Output = V; #[inline] fn apply(&self, x : Loc<F, N>) -> Self::Output { self.base_fn.apply(x - &self.shift) } } impl<'a, T, F : Float, const N : usize> Support<F,N> for Shift<T,F,N> where T : Support<F, N> { #[inline] fn support_hint(&self) -> Cube<F,N> { self.base_fn.support_hint().shift(&self.shift) } #[inline] fn in_support(&self, x : &Loc<F,N>) -> bool { self.base_fn.in_support(&(x - &self.shift)) } // fn fully_in_support(&self, _cube : &Cube<F,N>) -> bool { // //self.base_fn.fully_in_support(cube.shift(&vectorneg(self.shift))) // todo!("Not implemented, but not used at the moment") // } #[inline] fn bisection_hint(&self, cube : &Cube<F,N>) -> [Option<F>; N] { let base_hint = self.base_fn.bisection_hint(cube); map2(base_hint, &self.shift, |h, s| h.map(|z| z + *s)) } } impl<'a, T, F : Float, const N : usize> GlobalAnalysis<F, Bounds<F>> for Shift<T,F,N> where T : LocalAnalysis<F, Bounds<F>, N> { #[inline] fn global_analysis(&self) -> Bounds<F> { self.base_fn.global_analysis() } } impl<'a, T, F : Float, const N : usize> LocalAnalysis<F, Bounds<F>, N> for Shift<T,F,N> where T : LocalAnalysis<F, Bounds<F>, N> { #[inline] fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { self.base_fn.local_analysis(&cube.shift(&(-self.shift))) } } macro_rules! impl_shift_norm { ($($norm:ident)*) => { $( impl<'a, T, F : Float, const N : usize> Norm<F, $norm> for Shift<T,F,N> where T : Norm<F, $norm> { #[inline] fn norm(&self, n : $norm) -> F { self.base_fn.norm(n) } } )* } } impl_shift_norm!(L1 L2 Linfinity); /// Weighting of a [`Support`] and [`Apply`] by scalar multiplication; /// output of [`Support::weigh`]. #[derive(Copy,Clone,Debug,Serialize)] pub struct Weighted<T, C : Constant> { /// The weight pub weight : C, /// The base [`Support`] or [`Apply`] being weighted. pub base_fn : T, } impl<'a, T, V, F : Float, C, const N : usize> Apply<&'a Loc<F, N>> for Weighted<T, C> where T : for<'b> Apply<&'b Loc<F, N>, Output=V>, V : std::ops::Mul<F,Output=V>, C : Constant<Type=F> { type Output = V; #[inline] fn apply(&self, x : &'a Loc<F, N>) -> Self::Output { self.base_fn.apply(x) * self.weight.value() } } impl<'a, T, V, F : Float, C, const N : usize> Apply<Loc<F, N>> for Weighted<T, C> where T : Apply<Loc<F, N>, Output=V>, V : std::ops::Mul<F,Output=V>, C : Constant<Type=F> { type Output = V; #[inline] fn apply(&self, x : Loc<F, N>) -> Self::Output { self.base_fn.apply(x) * self.weight.value() } } impl<'a, T, F : Float, C, const N : usize> Support<F,N> for Weighted<T, C> where T : Support<F, N>, C : Constant<Type=F> { #[inline] fn support_hint(&self) -> Cube<F,N> { self.base_fn.support_hint() } #[inline] fn in_support(&self, x : &Loc<F,N>) -> bool { self.base_fn.in_support(x) } // fn fully_in_support(&self, cube : &Cube<F,N>) -> bool { // self.base_fn.fully_in_support(cube) // } #[inline] fn bisection_hint(&self, cube : &Cube<F,N>) -> [Option<F>; N] { self.base_fn.bisection_hint(cube) } } impl<'a, T, F : Float, C> GlobalAnalysis<F, Bounds<F>> for Weighted<T, C> where T : GlobalAnalysis<F, Bounds<F>>, C : Constant<Type=F> { #[inline] fn global_analysis(&self) -> Bounds<F> { let Bounds(lower, upper) = self.base_fn.global_analysis(); debug_assert!(lower <= upper); match self.weight.value() { w if w < F::ZERO => Bounds(w * upper, w * lower), w => Bounds(w * lower, w * upper), } } } impl<'a, T, F : Float, C, const N : usize> LocalAnalysis<F, Bounds<F>, N> for Weighted<T, C> where T : LocalAnalysis<F, Bounds<F>, N>, C : Constant<Type=F> { #[inline] fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { let Bounds(lower, upper) = self.base_fn.local_analysis(cube); debug_assert!(lower <= upper); match self.weight.value() { w if w < F::ZERO => Bounds(w * upper, w * lower), w => Bounds(w * lower, w * upper), } } } macro_rules! make_weighted_scalarop_rhs { ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => { impl<F : Float, T> std::ops::$trait_assign<F> for Weighted<T, F> { #[inline] fn $fn_assign(&mut self, t : F) { self.weight.$fn_assign(t); } } impl<'a, F : Float, T> std::ops::$trait<F> for Weighted<T, F> { type Output = Self; #[inline] fn $fn(mut self, t : F) -> Self { self.weight.$fn_assign(t); self } } impl<'a, F : Float, T> std::ops::$trait<F> for &'a Weighted<T, F> where T : Clone { type Output = Weighted<T, F>; #[inline] fn $fn(self, t : F) -> Self::Output { Weighted { weight : self.weight.$fn(t), base_fn : self.base_fn.clone() } } } } } make_weighted_scalarop_rhs!(Mul, mul, MulAssign, mul_assign); make_weighted_scalarop_rhs!(Div, div, DivAssign, div_assign); macro_rules! impl_weighted_norm { ($($norm:ident)*) => { $( impl<'a, T, F : Float> Norm<F, $norm> for Weighted<T,F> where T : Norm<F, $norm> { #[inline] fn norm(&self, n : $norm) -> F { self.base_fn.norm(n) * self.weight.abs() } } )* } } impl_weighted_norm!(L1 L2 Linfinity); /// Normalisation of [`Support`] and [`Apply`] to L¹ norm 1. /// /// Currently only scalar-valued functions are supported. #[derive(Copy, Clone, Debug, Serialize, PartialEq)] pub struct Normalised<T>( /// The base [`Support`] or [`Apply`]. pub T ); impl<'a, T, F : Float, const N : usize> Apply<&'a Loc<F, N>> for Normalised<T> where T : Norm<F, L1> + for<'b> Apply<&'b Loc<F, N>, Output=F> { type Output = F; #[inline] fn apply(&self, x : &'a Loc<F, N>) -> Self::Output { let w = self.0.norm(L1); if w == F::ZERO { F::ZERO } else { self.0.apply(x) / w } } } impl<'a, T, F : Float, const N : usize> Apply<Loc<F, N>> for Normalised<T> where T : Norm<F, L1> + Apply<Loc<F,N>, Output=F> { type Output = F; #[inline] fn apply(&self, x : Loc<F, N>) -> Self::Output { let w = self.0.norm(L1); if w == F::ZERO { F::ZERO } else { self.0.apply(x) / w } } } impl<'a, T, F : Float, const N : usize> Support<F,N> for Normalised<T> where T : Norm<F, L1> + Support<F, N> { #[inline] fn support_hint(&self) -> Cube<F,N> { self.0.support_hint() } #[inline] fn in_support(&self, x : &Loc<F,N>) -> bool { self.0.in_support(x) } // fn fully_in_support(&self, cube : &Cube<F,N>) -> bool { // self.0.fully_in_support(cube) // } #[inline] fn bisection_hint(&self, cube : &Cube<F,N>) -> [Option<F>; N] { self.0.bisection_hint(cube) } } impl<'a, T, F : Float> GlobalAnalysis<F, Bounds<F>> for Normalised<T> where T : Norm<F, L1> + GlobalAnalysis<F, Bounds<F>> { #[inline] fn global_analysis(&self) -> Bounds<F> { let Bounds(lower, upper) = self.0.global_analysis(); debug_assert!(lower <= upper); let w = self.0.norm(L1); debug_assert!(w >= F::ZERO); Bounds(w * lower, w * upper) } } impl<'a, T, F : Float, const N : usize> LocalAnalysis<F, Bounds<F>, N> for Normalised<T> where T : Norm<F, L1> + LocalAnalysis<F, Bounds<F>, N> { #[inline] fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { let Bounds(lower, upper) = self.0.local_analysis(cube); debug_assert!(lower <= upper); let w = self.0.norm(L1); debug_assert!(w >= F::ZERO); Bounds(w * lower, w * upper) } } impl<'a, T, F : Float> Norm<F, L1> for Normalised<T> where T : Norm<F, L1> { #[inline] fn norm(&self, _ : L1) -> F { let w = self.0.norm(L1); if w == F::ZERO { F::ZERO } else { F::ONE } } } macro_rules! impl_normalised_norm { ($($norm:ident)*) => { $( impl<'a, T, F : Float> Norm<F, $norm> for Normalised<T> where T : Norm<F, $norm> + Norm<F, L1> { #[inline] fn norm(&self, n : $norm) -> F { let w = self.0.norm(L1); if w == F::ZERO { F::ZERO } else { self.0.norm(n) / w } } } )* } } impl_normalised_norm!(L2 Linfinity); /* impl<F : Num, S : Support<F, N>, const N : usize> LocalAnalysis<F, NullAggregator, N> for S { fn local_analysis(&self, _cube : &Cube<F, N>) -> NullAggregator { NullAggregator } } impl<F : Float, S : Bounded<F>, const N : usize> LocalAnalysis<F, Bounds<F>, N> for S { #[inline] fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { self.bounds(cube) } }*/ /// Generator of [`Support`]-implementing component functions based on low storage requirement /// [ids][`Self::Id`]. pub trait SupportGenerator<F : Float, const N : usize> : MulAssign<F> + DivAssign<F> + Neg<Output=Self> + Clone + Sync + Send + 'static { /// The identification type type Id : 'static + Copy; /// The type of the [`Support`] (often also a [`Apply`]). type SupportType : 'static + Support<F, N>; /// An iterator over all the [`Support`]s of the generator. type AllDataIter<'a> : Iterator<Item=(Self::Id, Self::SupportType)> where Self : 'a; /// Returns the component identified by `id`. /// /// Panics if `id` is an invalid identifier. fn support_for(&self, id : Self::Id) -> Self::SupportType; /// Returns the number of different components in this generator. fn support_count(&self) -> usize; /// Returns an iterator over all pairs of `(id, support)`. fn all_data(&self) -> Self::AllDataIter<'_>; }