Tue, 25 Oct 2022 23:05:40 +0300
Added NormExponent trait for exponents of norms
/*! Second order polynomical (P2) models on real intervals and planar 2D simplices. */ use crate::types::*; use crate::loc::Loc; use crate::sets::{Set,NPolygon,SpannedHalfspace}; use crate::linsolve::*; use crate::euclidean::Dot; use super::base::{LocalModel,RealLocalModel}; use crate::sets::Cube; use numeric_literals::replace_float_literals; /// Type for simplices of arbitrary dimension `N`. /// /// The type parameter `D` indicates the number of nodes. (Rust's const generics do not currently /// allow its automatic calculation from `N`.) pub struct Simplex<F : Float, const N : usize, const D : usize>(pub [Loc<F, N>; D]); /// A two-dimensional planar simplex pub type PlanarSimplex<F> = Simplex<F, 2, 3>; /// A real interval pub type RealInterval<F> = Simplex<F, 1, 2>; /// Calculates (a+b)/2 #[inline] #[replace_float_literals(F::cast_from(literal))] pub(crate) fn midpoint<F : Float, const N : usize>(a : &Loc<F,N>, b : &Loc<F,N>) -> Loc<F, N> { (a+b)/2.0 } impl<'a, F : Float> Set<Loc<F,1>> for RealInterval<F> { #[inline] fn contains(&self, &Loc([x]) : &Loc<F,1>) -> bool { let &[Loc([x0]), Loc([x1])] = &self.0; (x0 < x && x < x1) || (x1 < x && x < x0) } } impl<'a, F : Float> Set<Loc<F,2>> for PlanarSimplex<F> { #[inline] fn contains(&self, x : &Loc<F,2>) -> bool { let &[x0, x1, x2] = &self.0; NPolygon([[x0, x1].spanned_halfspace(), [x1, x2].spanned_halfspace(), [x2, x0].spanned_halfspace()]).contains(x) } } trait P2Powers { type Output; type Diff; type Full; fn p2powers(&self) -> Self::Output; fn p2powers_full(&self) -> Self::Full; fn p2powers_diff(&self) -> Self::Diff; } #[replace_float_literals(F::cast_from(literal))] impl<F : Float> P2Powers for Loc<F, 1> { type Output = Loc<F, 1>; type Full = Loc<F, 3>; type Diff = Loc<Loc<F, 1>, 1>; #[inline] fn p2powers(&self) -> Self::Output { let &Loc([x0]) = self; [x0*x0].into() } #[inline] fn p2powers_full(&self) -> Self::Full { let &Loc([x0]) = self; [1.0, x0, x0*x0].into() } #[inline] fn p2powers_diff(&self) -> Self::Diff { let &Loc([x0]) = self; [[x0+x0].into()].into() } } #[replace_float_literals(F::cast_from(literal))] impl<F : Float> P2Powers for Loc<F, 2> { type Output = Loc<F, 3>; type Full = Loc<F, 6>; type Diff = Loc<Loc<F, 3>, 2>; #[inline] fn p2powers(&self) -> Self::Output { let &Loc([x0, x1]) = self; [x0*x0, x0*x1, x1*x1].into() } #[inline] fn p2powers_full(&self) -> Self::Full { let &Loc([x0, x1]) = self; [1.0, x0, x1, x0*x0, x0*x1, x1*x1].into() } #[inline] fn p2powers_diff(&self) -> Self::Diff { let &Loc([x0, x1]) = self; [[x0+x0, x1, 0.0].into(), [0.0, x0, x1+x1].into()].into() } } /// A trait for generating second order polynomial model of dimension `N` on `Self´. /// /// `Self` should present a subset aset of elements of the type [`Loc`]`<F, N>`. pub trait P2Model<F : Num, const N : usize> { /// Implementation type of the second order polynomical model. /// Typically a [`P2LocalModel`]. type Model : LocalModel<Loc<F,N>,F>; /// Generates a second order polynomial model of the function `g` on `Self`. fn p2_model<G : Fn(&Loc<F, N>) -> F>(&self, g : G) -> Self::Model; } /// A local second order polynomical model of dimension `N` with `E` edges pub struct P2LocalModel<F : Num, const N : usize, const E : usize/*, const V : usize, const Q : usize*/> { a0 : F, a1 : Loc<F, N>, a2 : Loc<F, E>, //node_values : Loc<F, V>, //edge_values : Loc<F, Q>, } // // 1D planar model construction // impl<F : Float> RealInterval<F> { #[inline] fn midpoints(&self) -> [Loc<F, 1>; 1] { let [ref n0, ref n1] = &self.0; let n01 = midpoint(n0, n1); [n01] } } impl<F : Float> P2LocalModel<F, 1, 1/*, 2, 0*/> { /// Creates a new 1D second order polynomical model based on three nodal coordinates and /// corresponding function values. #[inline] pub fn new( &[n0, n1, n01] : &[Loc<F, 1>; 3], &[v0, v1, v01] : &[F; 3], ) -> Self { let p = move |x : &Loc<F, 1>, v : F| { let Loc([c, d, e]) = x.p2powers_full(); [c, d, e, v] }; let [a0, a1, a11] = linsolve([ p(&n0, v0), p(&n1, v1), p(&n01, v01) ]); P2LocalModel { a0 : a0, a1 : [a1].into(), a2 : [a11].into(), //node_values : [v0, v1].into(), //edge_values: [].into(), } } } impl<F : Float> P2Model<F,1> for RealInterval<F> { type Model = P2LocalModel<F, 1, 1/*, 2, 0*/>; #[inline] fn p2_model<G : Fn(&Loc<F, 1>) -> F>(&self, g : G) -> Self::Model { let [n01] = self.midpoints(); let [n0, n1] = self.0; let vals = [g(&n0), g(&n1), g(&n01)]; let nodes = [n0, n1, n01]; Self::Model::new(&nodes, &vals) } } // // 2D planar model construction // impl<F : Float> PlanarSimplex<F> { #[inline] /// Returns the midpoints of all the edges of the simplex fn midpoints(&self) -> [Loc<F, 2>; 3] { let [ref n0, ref n1, ref n2] = &self.0; let n01 = midpoint(n0, n1); let n12 = midpoint(n1, n2); let n20 = midpoint(n2, n0); [n01, n12, n20] } } impl<F : Float> P2LocalModel<F, 2, 3/*, 3, 3*/> { /// Creates a new 2D second order polynomical model based on six nodal coordinates and /// corresponding function values. #[inline] pub fn new( &[n0, n1, n2, n01, n12, n20] : &[Loc<F, 2>; 6], &[v0, v1, v2, v01, v12, v20] : &[F; 6], ) -> Self { let p = move |x : &Loc<F,2>, v :F| { let Loc([c, d, e, f, g, h]) = x.p2powers_full(); [c, d, e, f, g, h, v] }; let [a0, a1, a2, a11, a12, a22] = linsolve([ p(&n0, v0), p(&n1, v1), p(&n2, v2), p(&n01, v01), p(&n12, v12), p(&n20, v20), ]); P2LocalModel { a0 : a0, a1 : [a1, a2].into(), a2 : [a11, a12, a22].into(), //node_values : [v0, v1, v2].into(), //edge_values: [v01, v12, v20].into(), } } } impl<F : Float> P2Model<F,2> for PlanarSimplex<F> { type Model = P2LocalModel<F, 2, 3/*, 3, 3*/>; #[inline] fn p2_model<G : Fn(&Loc<F, 2>) -> F>(&self, g : G) -> Self::Model { let midpoints = self.midpoints(); let [ref n0, ref n1, ref n2] = self.0; let [ref n01, ref n12, ref n20] = midpoints; let vals = [g(n0), g(n1), g(n2), g(n01), g(n12), g(n20)]; let nodes = [*n0, *n1, *n2, *n01, *n12, *n20]; Self::Model::new(&nodes, &vals) } } macro_rules! impl_local_model { ($n:literal, $e:literal, $v:literal, $q:literal) => { impl<F : Float> LocalModel<Loc<F, $n>, F> for P2LocalModel<F, $n, $e/*, $v, $q*/> { #[inline] fn value(&self, x : &Loc<F,$n>) -> F { self.a0 + x.dot(&self.a1) + x.p2powers().dot(&self.a2) } #[inline] fn differential(&self, x : &Loc<F,$n>) -> Loc<F,$n> { self.a1 + x.p2powers_diff().map(|di| di.dot(&self.a2)) } } } } impl_local_model!(1, 1, 2, 0); impl_local_model!(2, 3, 3, 3); // // Minimisation // #[replace_float_literals(F::cast_from(literal))] impl<F : Float> P2LocalModel<F, 1, 1/*, 2, 0*/> { /// Minimises the model along the edge `[x0, x1]`. #[inline] fn minimise_edge(&self, x0 : Loc<F, 1>, x1 : Loc<F,1>) -> (Loc<F,1>, F) { let &P2LocalModel{ a1 : Loc([a1]), a2 : Loc([a11]), //node_values : Loc([v0, v1]), .. } = self; // We do this in cases, first trying for an interior solution, then edges. // For interior solution, first check determinant; no point trying if non-positive if a11 > 0.0 { // An interior solution x[1] has to satisfy // 2a₁₁*x[1] + a₁ =0 // This gives let t = -a1/(2.0*a11); let (Loc([t0]), Loc([t1])) = (x0, x1); if (t0 <= t && t <= t1) || (t1 <= t && t <= t0) { let x = [t].into(); let v = self.value(&x); return (x, v) } } let v0 = self.value(&x0); let v1 = self.value(&x1); if v0 < v1 { (x0, v0) } else { (x1, v1) } } } impl<'a, F : Float> RealLocalModel<RealInterval<F>,Loc<F,1>,F> for P2LocalModel<F, 1, 1/*, 2, 0*/> { #[inline] fn minimise(&self, &Simplex([x0, x1]) : &RealInterval<F>) -> (Loc<F,1>, F) { self.minimise_edge(x0, x1) } } #[replace_float_literals(F::cast_from(literal))] impl<F : Float> P2LocalModel<F, 2, 3/*, 3, 3*/> { /// Minimise the 2D model along the edge `[x0, x1] = {x0 + t(x1 - x0) | t ∈ [0, 1] }`. #[inline] fn minimise_edge(&self, x0 : &Loc<F,2>, x1 : &Loc<F,2>/*, v0 : F, v1 : F*/) -> (Loc<F,2>, F) { let &P2LocalModel { a0, a1 : Loc([a1, a2]), a2 : Loc([a11, a12, a22]), .. } = self; let &Loc([x00, x01]) = x0; let d@Loc([d0, d1]) = x1 - x0; let b0 = a0 + a1*x00 + a2*x01 + a11*x00*x00 + a12*x00*x01 + a22*x01*x01; let b1 = a1*d0 + a2*d1 + 2.0*a11*d0*x00 + a12*(d0*x01 + d1*x00) + 2.0*a22*d1*x01; let b11 = a11*d0*d0 + a12*d0*d1 + a22*d1*d1; let edge_1d_model = P2LocalModel { a0 : b0, a1 : Loc([b1]), a2 : Loc([b11]), //node_values : Loc([v0, v1]), }; let (Loc([t]), v) = edge_1d_model.minimise_edge(0.0.into(), 1.0.into()); (x0 + d*t, v) } } #[replace_float_literals(F::cast_from(literal))] impl<'a, F : Float> RealLocalModel<PlanarSimplex<F>,Loc<F,2>,F> for P2LocalModel<F, 2, 3/*, 3, 3*/> { #[inline] fn minimise(&self, el : &PlanarSimplex<F>) -> (Loc<F,2>, F) { let &P2LocalModel { a1 : Loc([a1, a2]), a2 : Loc([a11, a12, a22]), //node_values : Loc([v0, v1, v2]), .. } = self; // We do this in cases, first trying for an interior solution, then edges. // For interior solution, first check determinant; no point trying if non-positive let r = 2.0*(a11*a22-a12*a12); if r > 0.0 { // An interior solution (x[1], x[2]) has to satisfy // 2a₁₁*x[1] + 2a₁₂*x[2]+a₁ =0 and 2a₂₂*x[1] + 2a₁₂*x[1]+a₂=0 // This gives let x = [(a22*a1-a12*a2)/r, (a12*a1-a11*a2)/r].into(); if el.contains(&x) { return (x, self.value(&x)) } } let &[ref x0, ref x1, ref x2] = &el.0; let mut min_edge = self.minimise_edge(x0, x1); let more_edge = [self.minimise_edge(x1, x2), self.minimise_edge(x2, x0)]; for edge in more_edge { if edge.1 < min_edge.1 { min_edge = edge; } } min_edge } } #[replace_float_literals(F::cast_from(literal))] impl<'a, F : Float> RealLocalModel<Cube<F, 2>,Loc<F,2>,F> for P2LocalModel<F, 2, 3/*, 3, 3*/> { #[inline] fn minimise(&self, el : &Cube<F, 2>) -> (Loc<F,2>, F) { let &P2LocalModel { a1 : Loc([a1, a2]), a2 : Loc([a11, a12, a22]), //node_values : Loc([v0, v1, v2]), .. } = self; // We do this in cases, first trying for an interior solution, then edges. // For interior solution, first check determinant; no point trying if non-positive let r = 2.0*(a11*a22-a12*a12); if r > 0.0 { // An interior solution (x[1], x[2]) has to satisfy // 2a₁₁*x[1] + 2a₁₂*x[2]+a₁ =0 and 2a₂₂*x[1] + 2a₁₂*x[1]+a₂=0 // This gives let x = [(a22*a1-a12*a2)/r, (a12*a1-a11*a2)/r].into(); if el.contains(&x) { return (x, self.value(&x)) } } let [x0, x1, x2, x3] = el.corners(); let mut min_edge = self.minimise_edge(&x0, &x1); let more_edge = [self.minimise_edge(&x1, &x2), self.minimise_edge(&x2, &x3), self.minimise_edge(&x3, &x0)]; for edge in more_edge { if edge.1 < min_edge.1 { min_edge = edge; } } min_edge } } #[cfg(test)] mod tests { use super::*; #[test] fn p2_model_1d_test() { let vertices = [Loc([0.0]), Loc([1.0])]; let domain = Simplex(vertices); // A simple quadratic function for which the approximation is exact on reals, // and appears exact on f64 as well. let f = |&Loc([x]) : &Loc<f64, 1>| x*x + x + 1.0; let model = domain.p2_model(f); let xs = [Loc([0.5]), Loc([0.25])]; for x in vertices.iter().chain(xs.iter()) { assert_eq!(model.value(&x), f(&x)); } assert_eq!(model.minimise(&domain), (Loc([0.0]), 1.0)); } #[test] fn p2_model_2d_test() { let vertices = [Loc([0.0, 0.0]), Loc([1.0, 0.0]), Loc([1.0, 1.0])]; let domain = Simplex(vertices); // A simple quadratic function for which the approximation is exact on reals, // and appears exact on f64 as well. let f = |&Loc([x, y]) : &Loc<f64, 2>| - (x*x + x*y + x - 2.0 * y + 1.0); let model = domain.p2_model(f); let xs = [Loc([0.5, 0.5]), Loc([0.25, 0.25])]; for x in vertices.iter().chain(xs.iter()) { assert_eq!(model.value(&x), f(&x)); } assert_eq!(model.minimise(&domain), (Loc([1.0, 0.0]), -3.0)); } }