diff -r 74b1a9f0c35e -r e4a8f662a1ac src/AlgorithmNoPrediction.jl --- a/src/AlgorithmNoPrediction.jl Thu Apr 25 11:14:41 2024 -0500 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,124 +0,0 @@ -#################################################################### -# Predictive online PDPS for optical flow with known velocity field -#################################################################### - -__precompile__() - -module AlgorithmNoPrediction - -identifier = "pdps_known_noprediction" - -using Printf - -using AlgTools.Util -import AlgTools.Iterate -using ImageTools.Gradient - -using ..OpticalFlow: ImageSize, - Image, - pdflow! - -######################### -# Iterate initialisation -######################### - -function init_rest(x::Image) - imdim=size(x) - - y = zeros(2, imdim...) - Δx = copy(x) - Δy = copy(y) - x̄ = copy(x) - - return x, y, Δx, Δy, x̄ -end - -function init_iterates(xinit::Image) - return init_rest(copy(xinit)) -end - -function init_iterates(dim::ImageSize) - return init_rest(zeros(dim...)) -end - -############ -# Algorithm -############ - -function solve( :: Type{DisplacementT}; - dim :: ImageSize, - iterate = AlgTools.simple_iterate, - params::NamedTuple) where DisplacementT - - ################################ - # Extract and set up parameters - ################################ - - α, ρ = params.α, params.ρ - R_K² = ∇₂_norm₂₂_est² - γ = 1.0 - Λ = params.Λ - τ₀, σ₀ = params.τ₀, params.σ₀ - - τ = τ₀/γ - @assert(1+γ*τ ≥ Λ) - σ = σ₀*1/(τ*R_K²) - - println("Step length parameters: τ=$(τ), σ=$(σ)") - - ###################### - # Initialise iterates - ###################### - - x, y, Δx, Δy, x̄ = init_iterates(dim) - init_data = (params.init == :data) - - #################### - # Run the algorithm - #################### - - v = iterate(params) do verbose :: Function, - b :: Image, - v_known :: DisplacementT, - 🚫unused_b_next :: Image - - ################## - # Prediction step - ################## - if init_data - x .= b - init_data = false - end - - # No prediction - - ############ - # PDPS step - ############ - - ∇₂ᵀ!(Δx, y) # primal step: - @. x̄ = x # | save old x for over-relax - @. x = (x-τ*(Δx-b))/(1+τ) # | prox - @. x̄ = 2x - x̄ # over-relax - ∇₂!(Δy, x̄) # dual step: y - @. y = (y + σ*Δy)/(1 + σ*ρ/α) # | - proj_norm₂₁ball!(y, α) # | prox - - ################################ - # Give function value if needed - ################################ - v = verbose() do - ∇₂!(Δy, x) - value = norm₂²(b-x)/2 + params.α*γnorm₂₁(Δy, params.ρ) - value, x, [NaN, NaN], nothing - end - - v - end - - return x, y, v -end - -end # Module - -