Wed, 22 Dec 2021 11:13:38 +0200
Planar finite elements, simple linear solvers for fixed dimensions
######################################################## # Abstract Hilbert space linear operators. Does not set # any limits on the input and output data types unlike # the package LinearOperators. ######################################################## __precompile__() module LinOps export LinOp, IdOp, AdjointOp, AdjointableOp, MatrixOp, calc_adjoint, calc_adjoint!, inplace!, opnorm_estimate # General type abstract type LinOp{X, Y} end function inplace!(y::Y, op::LinOp{X,Y}, x::X) where {X, Y} y .= op(x) end # Adjoint operator for operators that define calc_adjoint and calc_adjoint! abstract type AdjointableOp{X, Y} <: LinOp{X,Y} end struct AdjointOp{X,Y,T<:AdjointableOp{X,Y}} <: LinOp{Y,X} op :: T end function Base.adjoint(op::T) where {X, Y, T<:AdjointableOp{X,Y}} return AdjointOp{X,Y,T}(op) end function Base.adjoint(adj::AdjointOp{X,Y,T}) where {X, Y, T<:AdjointableOp{X,Y}} return adj.op end function (adj::AdjointOp{X,Y,T})(y::Y) where {X, Y, T<:AdjointableOp{X,Y}} calc_adjoint(adj, y) end function inplace!(x::X, adj::AdjointOp{X,Y,T}, y::Y) where {X, Y, T<:AdjointableOp{X,Y}} calc_adjoint!(x, adj.op, y) end function calc_adjoint(op::T, y::Y) where {X, Y, T<:AdjointableOp{X,Y}} @error "unimplemented" end function calc_adjoint!(x::X, adj::T, y::Y) where {X, Y, T<:AdjointableOp{X,Y}} x .= calc_adjoint(adj, y) end function opnorm_estimate(adj::AdjointOp{X,Y,T}) where {X, Y, T<:AdjointableOp{X,Y}} return opnorm_estimate(adj.op) end # Identity operator struct IdOp{X} <: LinOp{X,X} end function (op::IdOp{X})(x::X) where X return x end function Base.adjoint(op::IdOp{X}) where X return op end function opnorm_estimate(op::IdOp{X}) where X return 1 end # Matrix operator struct MatrixOp{T<:Real} <: LinOp{Vector{T}, Vector{T}} m :: AbstractMatrix{T} end function (op::MatrixOp{T})(v::Vector{T}) where T return op.m*v end function Base.adjoint(op::MatrixOp{T}) where T return MatrixOp(op.m') end function opnorm_estimate(op::MatrixOp{T}) where T return opnorm(op.m, 2) end function Base.:+(a::MatrixOp{T}, b::MatrixOp{T}) where T return MatrixOp(a.m+b.m) end function Base.:-(a::MatrixOp{T}, b::MatrixOp{T}) where T return MatrixOp(a.m-b.m) end function Base.:*(a::MatrixOp{T}, b::MatrixOp{T}) where T return MatrixOp(a.m*b.m) end end