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ABSTRACT

Valkonen, Tuomo
Diff-convex combinations of Euclidean distances: a search for optima
Jyväskylä: University of Jyväskylä, 2008, 148 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 99)
ISBN 978-951-39-3418-7
Finnish summary
Diss.

This work presents a study of optimisation problems involving differences of
convex (diff-convex) functions of Euclidean distances. Results are provided in
four themes: general theory of diff-convex functions, extensions of the Weiszfeld
method, interior point methods, and applications to location problems.

Within the theme of general theory, new results on optimality conditions
and sensitivity to perturbations of diff-convex functions are provided. Addition-
ally, a characterisation of level-boundedness is provided, and the internal struc-
ture is studied for a class of diff-convex functions involving symmetric cones.

Based on this study, the Jordan-algebraic approach to interior point methods
for linear programs on symmetric cones is extended. Local convergence of the
method is proved, and a globalisation strategy is studied, based on the concept
of the filter method.

The Weiszfeld method is extended to “perturbed spatial medians with in-
complete data”, where the convex spatial median objective function with scaled
Euclidean distances can be perturbed by a concave function. The convergence of
the method is studied, along with application to location problems.

The location problems of interest include in particular clustering and the
Euclidean travelling salesperson problem (TSP). The classical multisource Weber
problem is studied, and a new clustering objective is presented, based on a multi-
objective interpretation of the problem. It is then shown that the Euclidean TSP
can be presented as either of the above clustering objectives perturbed with a
path length penalty.

The focus of the work is theoretical.

Keywords: Euclidean distance, diff-convexity, symmetric cone, interior point
method, Weiszfeld method, clustering, travelling salesperson prob-
lem
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1 INTRODUCTION

The general theme of this thesis is the problem of finding the minimisers, or at
least critical points, of functions that can be presented as the difference of two con-
vex functions that, moreover, are combinations of (projected) Euclidean distances
themselves – typically sums and maxima. Various location problems of consider-
able practical importance are representable in such a form. The simplest example
is the convex problem of finding the spatial median of a set of points, but some
clustering or facility location problems as well as the Euclidean travelling salesperson
problem (TSP) are encompassed by this scheme. The study of these applications
is one of the four sub-themes of the present thesis, introduced in Section 1.4, and
further covered in the final chapters, 6 and 7.

Our focus is primarily theoretical, however, and the remaining sub-themes
consist of analysis of algorithms for these problems, as well as some general
mathematical results for differences of convex functions. This class of functions
is introduced in Section 1.1 that follows, and some aspects are studied in Chapter
2. In Chapter 3 we further study the internal structure of differences of restricted
support functions of slices of symmetric cones. Such functions, also briefly dis-
cussed in Section 1.2 below, include sums of Euclidean norms, of relevance to the
general theme of this thesis.

Our first algorithmic theme is the extension of interior point methods for lin-
ear programs over symmetric cones, to the above class of functions. Our mod-
elling and analysis of the methods and problem is based on the Jordan algebraic
approach. In this context, we also encounter filter methods as a tool to globalise
methods with only local convergence guarantees. This theme is further intro-
duced in Section 1.2, and covered in detail in Chapter 4, based on the analysis of
Chapter 3.

Our second algorithmic theme, and where the work on this thesis began,
is the analysis of generalisations of the Weiszfeld method, conventionally for the
above-mentioned problem of the spatial median, to more general problems, in-
cluding incomplete data and concave perturbations to the objective function for
the spatial median. This method is introduced in Section 1.3, analysed in Chapter
5, and applied in chapters 6 and 7.
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Before the detailed coverage of each of these themes in the remaining chap-
ters of this thesis, we now further introduce them in the following sections, and
discuss the contributions of this thesis on a coarse level.

1.1 Diff-convexity

1.1.1 Convex functions

Recall from, e.g., the classic of Rockafellar [1972] that a function f : Rm → R is
convex if it satisfies f (λy + (1 − λ)y′) ≤ λ f (y) + (1 − λ) f (y′) for all λ ∈ [0, 1]
and y, y′ ∈ Rm. It is called proper if f (y) > −∞ and it is finite at some point. It is
closed if the epigraph {(y, r) | r ≥ f (y), y ∈ Rm} is closed, which for proper f is
the same as lower-semicontinuity. In what follows, we will only consider proper
closed convex functions.

Denoting the inner product of Rm by 〈·, ·〉, we can define the (Fenchel) sub-
differential ∂ f (y) of f at y as the set of subgradients z that satisfy

f (y′) − f (y) ≥ 〈z, y′ − y〉 for all y′ ∈ Rm.

The directional derivative in the direction Δy is then given as f ′(y; Δy) =
sup{〈z, Δy〉 | z ∈ ∂ f (y)}. We often denote the range of the subdifferential by
R(∂ f ) � ⋃

y∈Rm ∂ f (y).
Likewise, for ε ≥ 0, the approximate or ε-subdifferential ∂ε f (y) is defined

as the set of approximate subgradients z that satisfy

f (y′) − f (y) ≥ 〈z, y′ − y〉 − ε for all y′ ∈ Rm.

Then f will have its ε-minimum over Rm at y if and only if 0 ∈ ∂ε f (y).
The convex conjugate of f is defined as f ∗(z) � supx{〈z, x〉 − f (x)}. If f is

proper and closed, z ∈ ∂ε f (y) if and only if y ∈ ∂ε f ∗(z), and we have f (y) +
f ∗(z) ≤ 〈z, y〉 + ε; see, e.g., the latter of the two volumes by Hiriart-Urruty and
Lemaréchal [1993].

1.1.2 Differences of convex functions

We call the function g diff-convex (DC) if it can be represented as the difference of
two convex functions f and ν, denoted by g(y) = fν(y) � f (y) − ν(y); introduc-
tions to the topic are provided by Hiriart-Urruty [1984],Horst and Thoai [1999],
and Tuy [1995]. Such a representation is not unique, as can be seen by adding the
same finite convex function to both f and ν.

The class of diff-convex functions is important: many important problems
have a natural diff-convex representation, as we will see even in this thesis. In
fact, every twice continuously differentiable (C2) function on Rm is diff-convex,
and the set of diff-convex functions on a compact set of Rm is dense among the
continuous functions on this set [Tuy, 1995].
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Assuming f is proper and closed, and ν is finite-valued, the point y is a
global minimiser of fν if and only if for all ε ≥ 0, ∂εν(y) ⊂ ∂ε f (y); see, e.g.,
Hiriart-Urruty [1988, 1995]. On the other hand, according to Dür [2003], if this
condition holds for all ε ∈ [0, ε] for some ε > 0, then y is a local minimiser. This
condition is however not necessary for local optimality, and in Chapter 2 of this
thesis, we analyse additional requirements towards that end along with deriving
related characterisations of strict optimality. The basic condition ∂ν(y) ⊂ ∂ f (y)
is, in any case, necessary but not sufficient for local optimality. In fact, a similar
condition can be derived more generally by means of exhausters, discussed, for
example, in a survey by Demyanov [2002].

In practise, checking all the inclusions in the above characterisations of op-
timality can be difficult, as can be finding points satisfying them, although there
do exist approximation methods convergent to global optima. In fact, the min-
imisation of DC functions is generally NP-hard. Kearfott and Kreinovich [2005]
have showed that this remains the case even for the subset of DC functions that
contains all the convex functions, at least one non-convex function, and is closed
under addition, multiplication by constants, and affine precomposition. This the-
sis also includes, in Chapter 7, a proof of NP-hardness of another subclass of DC
functions, through transformation of the Euclidean TSP.

Given these difficulties, we often settle in this thesis, for what we call ε-semi-
criticality. This we define to stand for 0 ∈ ∂DC

ε fν(y) (ε ≥ 0), where, following the
sum rule for approximate subdifferentials of convex functions [cf. Hiriart-Urruty
and Lemaréchal 1993], we have defined

∂DC
ε fν(y) �

⋃
{∂ε1 f (y) − ∂ε2ν(y) | ε1 + ε2 = ε, ε1, ε2 ≥ 0}. (1.1)

Here the arithmetical difference of two sets is, as usual, defined as A − B � {x −
y | x ∈ A, y ∈ B}. Note that when ε = 0, the semi-criticality condition can be
written as ∂ f (y) ∩ ∂ν(y) �= ∅.

Let ∂◦ denote the subdifferential of Clarke [1983], also covered in, e.g.,
Mäkelä and Neittaanmäki [1992]. We then have ∂◦ fν(y) ⊂ ∂◦ f (y) + ∂◦(−ν)(y) =
∂ f (y) − ∂ν(y) with equality whenever either f or ν is differentiable by convexity
and finiteness. Thus we see that semi-criticality is necessary for criticality in the
sense 0 ∈ ∂◦ fν(y), and equivalent to it whenever either function is differentiable
– almost everywhere in the interior of the common domain, by Rademacher’s
Theorem. Under the standing assumption of finite-valued ν, one may also easily
observe the necessity of ε-semi-criticality for ε-minimality; cf., e.g., Section 4.4.1.

We note that (1.1) clearly depends on the choice of f and ν in the decomposi-
tion, and not just the difference g = fν itself: for example, let ε = 0, and suppose
that ‖∇ f (0) − ∇ν(0)‖ ∈ (0, 2). Then add to both f and ν the same function
y �→ ‖y‖ with ∂‖0‖ = B(0, 1) and ∂‖0‖ − ∂‖0‖ = B(0, 2). Here and throughout
this thesis, B(x, r) denotes the closed ball of radius r around x.

By writing 0 ∈ ∂DC
ε fν(y) as z ∈ ∂ε1 f (y) ∩ ∂ε2ν(y), we see by the above-

mentioned convex subdifferential duality properties that the latter holds if and
only if y ∈ ∂ε1 f ∗(z) ∩ ∂ε2ν∗(z). Therefore there exist simultaneous “dual” so-
lutions to 0 ∈ ∂DC

ε fν(y) and 0 ∈ ∂DC
ε f ∗ν∗(z), where f ∗ν∗(z) = f ∗(z) − ν∗(z). In
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fact, there exists another important duality relationship related to this critical-
ity duality. Assuming for simplicity that ν is finite-valued and closed, one may
define the Fenchel conjugate f ∗ν as above for convex functions. Then f ∗ν (z) =
supz′∈dom ν∗{ f ∗(z + z′)− ν∗(z′)} according to a result of Pshenichnyi also proved
by Ellaia and Hiriart-Urruty [1986] and more generally Hiriart-Urruty [1986].
Setting z = 0 and equating with the definition, we therefore have infy fν(y) +
supz∈dom ν∗ f ∗ν∗(z) = 0. This provides an important duality relationship and op-
timality condition, which is exploited, e.g., in the DCA method of An and Tao
[2005].

Finally, along with the characterisations of optimality in Chapter 2, we de-
rive closely-related sensitivity and level-boundedness formulae. These properties
can be important, respectively, in the study of behaviour of solutions to perturbed
optimisation problems, and to ensure the boundedness of iterates in optimisation
methods. While the latter generally follows from showing level-coercivity [see,
e.g., Rockafellar and Wets, 1998], we provide relationships to the inclusion of
R(∂ν) within R(∂ f ), which is sometimes more easily checked. Also the “qual-
ity” of this inclusion, as R(∂ν) ⊂ ψR(∂ f ) for some ψ ∈ [0, 1), plays a role in the
complexity and convergence analyses of Chapter 4. In case of our reformulation
of the Euclidean TSP in Chapter 7, through this property we are able to show that
an ε-semi-critical point can be found in polynomial time.1

1.2 Interior point methods and Jordan algebras

1.2.1 Interior point methods

Interior point methods have their roots in Karmarkar’s [1984] ground-breaking
potential-reduction method for linear programming, as well as classical barrier
methods, as considered by Fiacco and McCormick [1968]. Introductions to the
linear and convex cases are provided by, e.g., Potra and Wright [2000], and to
the general non-linear case by Forsgren et al. [2002]; we will merely sketch some
overall ideas, and then move on to more specific cases of the present interest.

In application to constrained programming of the barrier function (or path-
following) approach, the idea is to add to the objective function a weighted barrier
function, defining a sequence of problems approximating the original problem.
As the barrier function is chosen to approach infinity on the boundary of the re-
gion defined by the inequality constraints of the original problem, these approxi-
mate problems have interior solutions, and thus the constraints can be neglected.
As the barrier weight decreases towards zero, then under second order conditions
on the behaviour of the original objective function, the solutions to these modi-
fied problems will converge to a solution of the original problem, often along a
continuous central path [Fiacco and McCormick 1968; Forsgren et al. 2002]. The

1 In the sense of a polynomial-time approximation scheme [PTAS, see, e.g., Ausiello et al., 1999];
the dependency on ε is log-polynomial in 1/ε, quickly yielding high constant factors.
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solution from a problem with higher parameter value, can presumably be used
to help solving a problem with a lower parameter value, as in continuation meth-
ods.

In the potential-reduction approach, by contrast, the idea is to minimise a
potential function, that in some sense includes the (barrier) weight decrease in
the objective. Typically, after a suitable transformation, the objective function is
linear in methods derived this way (while the constraints may be convex). How-
ever, the barrier function approach can also be used to yield similar methods in
these special cases, and it is often not actually necessary to solve the sequence of
problems corresponding to different weights near-exactly, or to follow the cen-
tral path closely. Rather, at each iteration of the algorithm, it suffices to take both
a normal step towards the central path, i.e., towards the solution of the problem
corresponding to the present parameter value, as well as a tangential step with the
intent of decreasing this parameter.

Consider the linear program

min
p

〈c, p〉 with Ap = b, p ∈ Rm
+, (1.2)

where Rm
+ � {p ∈ Rm | p ≥ 0} is the non-negative orthant of Rm. By replac-

ing the constraint p ≥ 0 with the addition of the logarithmic barrier function
−μ ∑i log pi (μ > 0) to the objective, one gets a series of problems with solutions
tending towards the solutions of (1.2) under slight non-degeneracy assumptions.
The Karush-Kuhn-Tucker (KKT) conditions for the barrier function problem turn
out to be

Ap = b, A∗y + d = c, p ◦ d = μe; p, d ∈ Rm
+, (1.3)

where we denote p ◦ d � (p1d1, . . . , pmdm), e � (1, . . . , 1) ∈ Rm, and (d, y) are
variables for the dual problem max{〈b, y〉 | A∗y + d = c, d ∈ Rm

+}.
If one linearises (1.3) and hopes to reduce μ by a factor of σ ∈ (0, 1), then

provided p, d ∈ int Rm
+, one gets the linear system

AΔp = 0, A∗Δy + Δd = 0, p ◦ Δd + d ◦ Δp = Δq,

where Δq � σμe − p ◦ d consists of the normal step μe − p ◦ d and tangential
step (σ − 1)μe. The crude primal-dual method that follows, can be refined into
a polynomial-time method for linear programming, as shown by Todd and Ye
[1990] as well as Kojima et al. [1991] through a potential reduction analysis. These
methods, and the generalisations to convex settings by Nesterov and Nemirovskii
[1994] and Nesterov and Todd [1997], form the basis of the class of interior point
methods considered in Chapter 4 of this thesis.

1.2.2 The Jordan-algebraic approach

A Jordan algebra J is basically a generalisation of many of the properties of
the algebra of symmetric matrices on Rm, when the product is defined as the
symmetry-preserving A ◦ B = (AB + BA)/2. In the general case, the product
◦ is assumed to be bilinear, commutative, and power-associative; for details
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on the theory, we refer the reader to Faraut and Korányi [1994] or Koecher
[1999], while Chapter 3 also contains a more detailed summary than the present
one. A Euclidean Jordan algebra, possessing an associative inner product
(〈x, y ◦ z〉 = 〈x ◦ y, z〉), will also have an unit element e. Its elements will have
eigenvalues, wherefore also traces, determinants, non-integer powers, and
various norms can be defined. The maximum number of distinct eigenvalues is
called the rank of J and denoted by r in the sequel.

In fact, every finite-dimensional Euclidean Jordan algebra is a direct product
of a small set of simple Euclidean Jordan algebras: those of quadratic forms on
Rm+1, the above-mentioned m × m real symmetric matrices, complex Hermitian
m × m matrices, Hermitian m × m matrices with quaternion entries, and a special
Albert algebra of 3 × 3 matrices with octonion entries.

Of particular importance is the cone K of positive-semidefinite elements of
J , and its interior of positive-definite elements, i.e., the set where all the eigenval-
ues are positive. This interior is a symmetric cone, i.e., a self-dual and homogeneous
convex cone. The latter property means that the automorphisms of the cone, i.e.,
the invertible linear mappings Q such that QK = K, act transitively on int K.
That is, for every x, y ∈ int K, there is a Q such that Qx = y. This is important in
relation to convergence-ensuring scaling transformations in optimisation meth-
ods. Indeed, symmetric cones are the same as the self-scaled cones of Nesterov and
Todd [1997]. Furthermore, to each w ∈ int K, there corresponds a unique auto-
morphism Qw, the quadratic representation of w, which can be used to define local
norms in K. This is again useful in locally determining the interior of K.

If we replace the cone Rm
+ in (1.2) by the cone of squares K of a Jordan algebra

J , and apply the barrier −μ log det(p), we still get the equivalent of (1.3), with
◦ and e standing for the the corresponding operators and elements of J . Vari-
ous interior point algorithms also remain polynomial for the resulting problem
[Faybusovich 1997b,a; Schmieta and Alizadeh 2001, 2003].

We are most interested in the Jordan algebra of quadratic forms. We write an
element of the algebra as p = (p0, p̄), where p0 ∈ R and p̄ ∈ Rm. The product is
defined as p ◦ d � (p0d0 + p̄Td̄, p0d̄ + d0 p̄). This Jordan algebra has the important
property that K = {p ∈ J | p0 ≥ ‖ p̄‖} is the second-order or Lorentz cone. It
is of obvious importance in relation to optimisation with Euclidean norms. In
particular, we can write ‖x‖ = max{xT p̄ | p0 = 1, p ∈ K}, which turns a non-
linear constraint on a norm, into linear and symmetric-cone constraints.

Thus we see that the KKT conditions for various sums of Euclidean norms,
and in particular the extended Weber problem (1.4) below, can be reduced into
the form of condition (1.3) with μ = 0 [see, e.g., Andersen et al., 2000; Xue and
Ye, 1997; Alizadeh and Goldfarb, 2003]. Higher values of μ then correspond to
perturbation of these conditions to allow working within the interior of K. In fact,
as shown in Chapter 3, the conditions (1.3) then correspond to 0 ∈ ∂rμ f (y) along
with p ◦ d = μe forcing a particular “selection” within an expanded substructure
of ∂rμ f . Alternatively, the conditions (1.3) for μ > 0 are obtained by smoothing
‖x‖ by applying a barrier function in the above expansion.

In Chapter 4, we further extend this approach to diff-convex problems, em-
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ploying ε-semi-criticality as defined using (1.1).

1.3 The Weiszfeld method

What is known as the Weiszfeld method, was first proposed by Weiszfeld [1937]
for solving the (Fermat-)Weber problem, or the spatial median of a set of points in
Rm. That is, the problem in question is

min
y

n

∑
k=1

‖ak − y‖,

where ‖ · ‖ is the Euclidean norm, and a1, . . . , ak ∈ Rm are prescribed points. In
this basic case, on the assumption y �= ak, the method itself is actually just a gra-
dient descent method with a particular choice of step length, 1/ ∑k(1/‖ak − y‖).
The convergence on this assumption was proved by Kuhn [1973]. The method
was extended and convergence proved for the y = ak case by Ostresh [1978].
Various generalisations of the method exist to �p distances [Üster and Love, 2000;
Morris, 1981] and more abstract settings [Eckhardt, 1980; Puerto and Rodríguez-
Chía, 1999, 2006].

The extension of the method to incomplete data was proposed by Kärkkäi-
nen and Äyrämö [2004, 2005] and partial convergence shown in Valkonen [2006,
2008a]. The problem is to find a solution to

min
y

n

∑
k=1

‖Wk(y − ak)‖, (1.4)

where Wk are diagonal positive-semidefinite matrices modelling the importance
and incompleteness of the data ak. This extension, where the step lengths are typ-
ically (that is, when Wk(y − ak) �= 0) calculated coordinate-wise with the above
formula, is no longer generally a gradient descent method. In fact, it is shown in
Valkonen [2006] that such a generalisation would have worse convergence prop-
erties than the proposed one, which also may not converge unless the data is
simple enough.

In Chapter 5 we further extend the algorithm to problems involving a con-
cave perturbation −ν to (1.4), making the problem a diff-convex one. This ex-
tension bears similar theoretical convergence properties as the above extension,
if we replace “minimiser” with “semi-critical point”.

1.4 Applications

We already covered the spatial median, or the Weber problem, in the previous
section on the Weiszfeld method. The first obvious diff-convex extension of this
convex problem is called the Weber problem with attraction and repulsion. It includes
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some repulsive components with negative weights in the sum. Although we have
not studied the application of our methods to this problem, it is studied by, e.g.,
Chen et al. [1992] and Drezner and Wesolowsky [1991]. Another extension of the
Weber problem is the multi-prototype version, considered below, among other
clustering objectives. Other potential applications of (some of) our methods, in-
clude the Euclidean TSP, which is considered later in this section, and the Euclidean
Steiner tree problem, which we briefly discuss in Appendix 4.

1.4.1 Clustering

The prototypical clustering objective is that of the the K-means and similar parti-
tioning objectives based on different distances. We are most interested in the one
that uses Euclidean distances: the multisource Weber problem, or K-spatial-medians.
The typical formulation is

min
y1,...,yK

n

∑
k=1

min
i=1,...,K

‖ak − yi‖,

where the data {ak} are as before. Alternatively, the objective may be written
with ȳ = (y1, . . . , yK) in the DC form

f (ȳ) − νKM(ȳ) �
n

∑
k=1

K

∑
i=1

‖ak − yi‖ −
n

∑
k=1

max
j=1,...,K

∑
i �=j

‖ak − yi‖. (1.5)

The standard method for this problem is the method developed by Cox [1957]
for the related K-means problem, and consists of successively assigning vertices
to clusters by closest prototype, solving the resulting K Weber problems, and re-
peating until there is no change in assignments. The convergence to critical points
is proved by Selim and Ismail [1984], although the characterisation of local opti-
mality in that paper is flawed. To this we include corrections in Appendix 1. The
computational and statistical properties of the K-spatial-medians are studied ex-
tensively by Äyrämö [2006], whereas we study, in Chapter 6, the application of
the perturbed Weiszfeld method to this latter formulation, mainly on the theoret-
ical level.

The objective function (1.5) bears a multi-objective interpretation: f asks to
place all cluster prototypes y1, . . . , yK as close as possible to the spatial median
of the data, whereas −νKM asks to place them as far as possible from the data
belonging to other clusters. (See Miettinen [1999] for an introduction to multi-
objective optimisation.) Such a multi-objective interpretation led us to propose
an alternative clustering criteria, where we replace νKM with an objective that
asks to place all the cluster centres as far as possible from each other,

νMO � ∑
i<j

‖yi − yj‖.

The resulting problem, including the choice of suitable scalarisation parameters
(weights for νMO), is studied primarily in Chapter 6 with the addition of a few
notes in Chapter 4.
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1.4.2 The Euclidean travelling salesperson problem

It turns out that, as shown in Chapter 7, both of the above clustering objectives
can, with very small modifications, be turned into objectives for the Euclidean
travelling salesperson problem. This is the problem of finding a permutation
σ : {1, . . . , n} → {1, . . . , n}, such that the length of the path traversing all the
points a1, . . . , an, is minimised,

min
σ

n

∑
i=1

‖aσi − aσ(i+1)‖,

identifying an+1 with a1.
Let us define fTSP(ȳ) � ‖yi − y(i+1)‖ (with the same identification as above).

Then, as shown in Chapter 7, the solutions to (1.5) with added λ fTSP, are the
solutions of the Euclidean TSP for λ ∈ (0, 1/2). Likewise, there exists a λ̂ > 0,
such that minimisers of

f (ȳ) + λ fTSP(ȳ) − νMO(ȳ)

related to the “MO” clustering objective, are solutions of the Euclidean TSP for
λ ∈ (0, λ̂). Since fTSP for λ ≤ 1 is subsumed into νMO, the perturbed Weiszfeld
method is still applicable to this problem, although that is not the case for the
“KM” formulation. The interior point methods of Chapter 4, however, are appli-
cable to both formulations.

These problems are studied in further detail in Chapter 7, along with devel-
oping some heuristic approaches for performance improvements.

Chronology and publications

Chronologically, the contents of this thesis should be ordered as follows: the re-
sults in Chapters 5 and 6 along with Section 2.5, some improvements and cor-
rections aside, were achieved in 2006 as a continuation of the paper Valkonen
[2006, 2008a]. These results have been submitted as Valkonen and Kärkkäinen
[2008a]. Chapter 7 is a further development of that research, as a study of ap-
plication of the perturbed Weiszfeld method to the Euclidean TSP. That research
was largely performed in 2006–2007, and has been published as Valkonen and
Kärkkäinen [2008b]. After that, during the autumn 2007 and early 2008, a study
of a potentially improved method was embarked on, encouraged by the perfor-
mance of convex interior point methods. The results of that research are found
in Chapters 3 and 4, and have been submitted as Valkonen [2008c]. Finally, the
results of Chapter 2, excluding Section 2.5, were achieved during a short period
of the spring 2008, as an offshoot of the preceding Introduction. They have been
submitted as Valkonen [2008b].



2 SOME PROPERTIES OF DIFF-CONVEX
FUNCTIONS

2.1 Introduction

Let f and ν be proper closed convex functions on Rm, with ν finite-valued. We
define the difference of these functions as fν � f − ν. As shown in particular by
Hiriart-Urruty [1988, 1995], a necessary and sufficient condition for ŷ ∈ Rm to be
a global minimiser of fν, is that

∂εν(ŷ) ⊂ ∂ε f (ŷ) for all ε ≥ 0. (2.1)

For local optimality, Dür [2003] has showed the sufficiency of the existence of
ε > 0, such that (2.1) holds for all ε ∈ [0, ε). This condition is, however, not
necessary for local optimality. In this chapter, we show that necessity follows
under the additional constraint of the set of “mutual linearity” of f and ν around
ŷ, being the singleton {ŷ}.

We also show, that the condition on mutual linearity along with a strict in-
clusion in (2.1) for ε ∈ (0, ε) – but importantly not necessarily for ε = 0 – is both
necessary and sufficient for strict local optimality. Also, when fν is level-bounded,
it turns out that strict inclusion for all ε > 0 and a singleton mutual linearity set,
is both necessary and sufficient for the uniqueness of ŷ as a global minimiser.

Also in this chapter, we provide some formulae for the sensitivity of min-
imisers, as the function fν is subject to perturbations. We are able to bound such
minimisers in a scaled polar of a star-difference ∂ε f (ŷ) ∗− ∂εν(ŷ), guaranteed to
be bounded by the strict optimality conditions. In our analysis, we apply and
modify the epigraphical methods of Attouch and Wets [1993, 1991], also found
and refined in Rockafellar and Wets [1998]. Finally, we study the relationship
of level-boundedness to the inclusion R(∂ν) ⊂ R(∂ f ), which is a “limiting ver-
sion” of the inclusions ∂εν(y) ⊂ ∂ε f (y) seen in the discussed characterisations of
optimality.

The rest of this chapter is organised as follows. In Section 2.2 we introduce
notation and concepts employed in the later analysis. In Section 2.3 we provide



21

the aforementioned characterisations of optimality. Section 2.4 concentrates on
the sensitivity analysis, and we conclude the chapter with the level-boundedness
analysis of Section 2.5.

2.2 Definitions

We denote the support function of a convex set A by σ(x; A) � sup{〈z, x〉 | z ∈ A},
and the gauge by ψA(x) � inf{t ≥ 0 | x ∈ tA}. The normal cone is defined as
NA(x) � {z ∈ Rm | 〈z, x′ − x〉 ≤ 0 for all x′ ∈ A}, and the polar by A◦ � {z |
〈z, x〉 ≤ 1 for all x ∈ A}. The star-difference is defined for two sets A and B as

A ∗− B � {z | z + B ⊂ A}.

Note that this set is closed and convex, if both A and B are. The closure, boundary,
interior, and relative interior of a set A are denoted, respectively, by cl A, bd A,
int A, and ri A.

We say that a function g : Rm → R is level-bounded, if the level sets levc g �
{y | g(y) ≤ c} are bounded for all c ∈ R.

We denote the domain of a convex function by dom f = {y | f (y) < ∞},
which is non-empty for our functions of interest. We recall that the (Fenchel)
ε-subdifferential of f at y ∈ Rm is defined as the set ∂ε f (y) of z ∈ Rm that satisfy

f (y′) − f (y) ≥ 〈z, y′ − y〉 − ε for all y′ ∈ Rm

for a given ε ≥ 0. When ε = 0, this definition reduces to the convex sub-
differential, denoted by ∂ f . We denote the range of the subdifferential by
R(∂ f ) � ⋃

y∈Rm ∂ f (y). Our general reference for many of the basic properties
of ε-subdifferentials listed below is provided by Hiriart-Urruty and Lemaréchal
[1993].

Defining the convex graphs

Gf (y) � Graph(ε �→ ∂ε f (y)) = {(z, ε) | ε ≥ 0, z ∈ ∂ε f (y)},

we have the expression

f (y + h) − f (y) = sup{〈h, z〉 − ε | ε > 0, z ∈ ∂ε f (y)}
= sup{σ(h; ∂ε f (y)) − ε | ε > 0}
= σ((h, −1); Gf (y)).

(2.2)

Let us also recall the definition of the linearisation error,

e f (y′; y, z) � f (y′) − f (y) − 〈z, y′ − y〉,
and the subdifferential transportation formula: if z ∈ ∂η f (y), then z ∈ ∂ε f (y′) for
ε ≥ η + e f (y′; y, z). Now we may define the region of mutual linearity around y as

L(y) � {y′ | z ∈ ∂ f (y) ∩ ∂ν(y), e f (y′; y, z) = eν(y′; y, z) = 0}.
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fν

L(y)

(z,−1)

FIGURE 2.1 Illustration of the set L(y). In this example ∂ f (y) = ∂ν(y) = {z}.

This region is illustrated in Figure 2.1.
Finally, we denote

Cε(y) � ∂ε f (y) ∗− ∂εν(y).

The condition 0 ∈ (int) Cε(ŷ) is then the same as ∂εν(ŷ) ⊂ (int) ∂ε f (ŷ), since
∂εν(ŷ) is compact by our standing assumption on ν being finite-valued. Thus
0 ∈ ⋂

ε>0 Cε(y) is equivalent to the necessary and sufficient global optimality
condition ∂εν(y) ⊂ ∂ε f (y) for all ε > 0. According to Martínez-Legaz and Seeger
[1992], ∂ fν(y) =

⋂
ε>0 Cε(y), providing the connection to yet another characteri-

sation of optimality.

2.3 Optimality

2.3.1 Strict local optimality

We may now state the main result of the present chapter.

Theorem 2.1. The point ŷ ∈ Rm is a strict local minimiser of fν if and only if L(ŷ) =
{ŷ} and the following subdifferential inclusion is satisfied:

there exists ε > 0, such that 0 ∈ int Cε(ŷ) for each ε ∈ (0, ε). (SDI)

We begin the proof with a few lemmas.

Lemma 2.1. Suppose ŷ ∈ dom f , and that (zν, εν) ∈ Gν(ŷ) \ int Gf (ŷ). Then there
exists (z f , ε f ) ∈ bd Gf (ŷ), α ≥ 0, and (h, δ) ∈ NGf (ŷ)(z f , ε f ) with δ ∈ {0, −1} and
‖h‖ ≥ 1 + δ, such that (zν, εν) = (z f , ε f ) + α(h, δ). We additionally have ‖h‖ > 0 if
εν > 0.

Proof. Since ŷ ∈ dom f , Gf (ŷ) is non-empty, in addition to being convex and
closed. We may therefore choose (z f , ε f ) ∈ Gf (ŷ) as a constrained (not necessar-
ily unique) minimiser of the function (z, ε) �→ ‖(zν, εν) − (z, ε)‖2/2, satisfying
[see, e.g., Rockafellar, 1972, Theorem 27.4]

(zν, εν) − (z f , ε f ) ∈ NGf (ŷ)(z f , ε f ). (2.3)
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We also have (z f , ε f ) ∈ bd Gf (ŷ), because it was assumed that (zν, εν) ∈ Gν(ŷ) \
int Gf (ŷ).

Because ε �→ ∂ε f (ŷ) forms an increasing sequence of sets, we must have

(h, δ) ∈ NGf (ŷ)(z f , ε f ) implies δ ≤ 0. (2.4)

Applying this to (2.3), we find that ε f ≥ εν.
If ε f − εν > 0, we may set α � ε f − εν, and find (h, −1) ∈ NGf (ŷ)(z f , ε f )

after dividing (2.3) by α.
If ε f = εν, there are two cases to consider. Suppose first that z f = zν. If there

exists some (h, −1) ∈ NGf (ŷ)(z f , ε f ), we make this choice. Otherwise, we choose
arbitrary (h, 0) ∈ NGf (ŷ)(z f , ε f ) with ‖h‖ = 1. Such a selection is guaranteed
to exist by the observation (2.4), as well as the normal cone being non-zero at
the boundary [see, e.g., Rockafellar, 1972, Corollary 11.6.1]. In both cases we set
α = 0.

If z f �= zν, we choose h = (zν − z f )/α and δ = 0 with α = ‖zν − z f ‖.
Finally, if εν > 0, recalling that also ε f > 0, it follows from ∂ε f (ŷ) being

non-empty for ε ∈ (0, ε f ), that (0, −1) �∈ NGf (ŷ)(z f , ε f ). Therefore ‖h‖ > 0.

Lemma 2.2. Under the results of the preceding lemma, let yλ � ŷ + λh. Then, when
δ = −1, fν(yλ) ≤ fν(ŷ) + (1 − λ)εν − λα for λ ∈ [0, 1], and z f ∈ ∂ f (y1). In the case
δ = 0, fν(yλ) ≤ fν(ŷ) + εν − λα for all λ ≥ 0.

Proof. In all cases, applying (zν, εν) = (z f , ε f ) + α(h, δ), we have

ν(yλ) − ν(ŷ) ≥ λ〈zν, h〉 − εν = λ(〈zν, h〉 − εν) − (1 − λ)εν

= λ(〈z f , h〉 − ε f + α(‖h‖2 − δ)) − (1 − λ)εν

≥ λ(〈z f , h〉 − ε f ) + λα − (1 − λ)εν,

(2.5)

where the last inequality follows from ‖h‖ ≥ 1 + δ ∈ {0, 1}.
Consider the δ = −1 case first. By the expression (2.2), and the property

(h, −1) ∈ NGf (ŷ)(z f , ε f ), we have

f (y1) − f (ŷ) = 〈z f , h〉 − ε f .

This implies e f (y1; ŷ, z f ) = −ε f , whence z f ∈ ∂ f (y1). Furthermore, by convexity

f (yλ) − f (ŷ) ≤ λ( f (y1) − f (ŷ)) = λ(〈z f , h〉 − ε f ) for λ ∈ [0, 1]. (2.6)

Thus the inequalities (2.6) and (2.5) imply as claimed,

fν(yλ) − fν(ŷ) ≤ (1 − λ)εν − λα.

Now, if δ = 0, since (h, 0) ∈ NGf (ŷ)(z f , ε f ) with ‖h‖ ≥ 1 + δ > 0, we find
that z f maximises 〈z, h〉 over all Gf (ŷ). Consequently, the supremum in (2.2) is
reached by ε ≤ ε f . Therefore

f (yλ) − f (ŷ) = sup{λ〈z, h〉 − ε | 0 < ε ≤ ε f , z ∈ ∂ε f (ŷ)}
≤ sup{λ〈z f , h〉 − ε | 0 < ε ≤ ε f } = λ〈z f , h〉.

Combining this with (2.5) yields the claim, since δ = 0 implies ε f = εν.
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Lemma 2.3. Suppose (SDI) holds for ŷ (possibly without the interior restriction), z ∈
∂ν(y) and ε > εν � eν(ŷ; y, z). Then

fν(y) − fν(ŷ) ≥ sup{σ(y − ŷ; Cε(ŷ)) − (ε − εν) | ε ∈ [εν, ε)}. (2.7)

Proof. By the subdifferential transportation formula, z ∈ ∂εν ν(ŷ) as well as

ν(ŷ) − ν(y) = −〈y − ŷ, z〉 + εν = −σ(y − ŷ; ∂εν ν(ŷ)) + εν, (2.8)

the latter equality following from the definition of the subdifferential.
Since ε > εν, we furthermore get

f (y) − f (ŷ) = sup{σ(y − ŷ; ∂ε f (ŷ)) − ε | ε > 0}
≥ sup{σ(y − ŷ; ∂ε f (ŷ)) − ε | ε ∈ [εν, ε)}
≥ sup{σ(y − ŷ; Cε(ŷ)) + σ(y − ŷ; ∂εν(ŷ)) − ε | ε ∈ [εν, ε)}
≥ sup{σ(y − ŷ; Cε(ŷ)) + σ(y − ŷ; ∂εν ν(ŷ)) − ε | ε ∈ [εν, ε)}.

(2.9)

Combining (2.8) and (2.9), we get (2.7).

Proof of Theorem 2.1. Necessity. We may assume that ŷ ∈ dom f , since otherwise
ŷ can not minimise fν strictly, even locally. That we must have L(ŷ) = {ŷ} is
clear from the definition of the linearisation error. To prove the necessity of (SDI),
we assume the contrary, i.e., that there exists a sequence εν,[k] ↘ 0 (k → ∞),
such that 0 �∈ int Cεν,[k] (ŷ). Then by the compactness of ∂εν,[k]ν(ŷ), there exists
zν,[k] with (zν,[k], εν,[k]) ∈ Gν(ŷ) \ int Gf (ŷ). Consequently Lemma 2.1 provides
(z f ,[k], ε f ,[k]) ∈ bd Gf (ŷ) and (h[k], δ[k]) ∈ NGf (ŷ)(z f ,[k], ε f ,[k]) with δ[k] ∈ {0, −1}
and ‖h[k]‖ ≥ 1 + δ[k], as well as α[k] ≥ 0 such that (zν,[k], εν,[k]) = (z f ,[k], ε f ,[k]) +
α[k](h[k], δ[k]).

First, consider the case that (for a subsequence) ‖h[k]‖ → 0. We may also
assume that δ[k] = −1, as this must eventually be the case. Consequently, for
y[k] � ŷ + h[k], we have from Lemma 2.2 that fν(y[k]) ≤ fν(ŷ). But y[k] → ŷ, which
provides a contradiction. We may therefore assume that ‖h[k]‖ ≥ θ > 0.

The sequence zν,[k] is bounded by the finiteness of ν, and therefore may be
assumed convergent to some zν ∈ ∂ν(ŷ), as εν,[k] ↘ 0. It follows by construc-
tion from the boundedness of (zν,[k], εν,[k]), that the sequence (z f ,[k], ε f ,[k]) is also
bounded, and may likewise be assumed convergent to some (z f , ε f ) ∈ bd Gf (ŷ).
Since these considerations force α[k](h[k], δ[k]) to be convergent, we may find α ≥
0, and (h, δ) ∈ NGf (ŷ)(z f , ε f ) such that1 δ ∈ {0, −1}, ‖h‖ ≥ max{1 + δ, θ} > 0
and (zν, 0) = (z f , ε f ) + α(h, δ).

The data at the limit therefore satisfies the assumptions of Lemma 2.2, and
consequently, since εν = 0, in either of the cases δ ∈ {0, −1}, we have for λ ∈
1 The data (α, δ, h) cannot be chosen as a limit of a subsequence of (α[k], δ[k], h[k]) only if h[k]

contains no bounded subsequence, in which case α[k] → 0. But then by the outer semicon-
tinuity of NGf (ŷ), we may take h as a normalised limit of h[k], δ = 0, and choose α to satisfy
the sum constraint.



25

[0, 1] that f (yλ) ≤ f (ŷ) − λα ≤ f (ŷ). Since ‖h‖ > 0, letting λ ↘ 0 provides a
contradiction.

Sufficiency. Assume to the contrary, that there exists a sequence y[k] → ŷ
(y[k] �= ŷ), such that fν(y[k]) ≤ fν(ŷ). We may choose z[k] ∈ ∂ν(y[k]) since dom ν =
Rm.

Let then εν,[k] � eν(ŷ; y[k], z[k]). For sufficiently large k, we have εν,[k] < ε,
since {z[k]} is bounded, ν is continuous, and y[k] → ŷ. Therefore Lemma 2.3
applies, and we get

fν(y[k]) − fν(ŷ) ≥ sup{σ(y[k] − ŷ; Cε(ŷ)) − (ε − εν,[k]) | ε ∈ [εν,[k], ε)}. (2.10)

If εν,[k] > 0, then choosing ε = εν,[k], we have 0 ∈ int Cε(ŷ), so that (2.10)
yields fν(y[k]) − fν(ŷ) > 0, which is the desired contradiction.

If εν,[k] = 0, we have z[k] ∈ ∂ν(ŷ), and therefore also z[k] ∈ ∂ f (ŷ), since it
follows from (SDI) that 0 ∈ C0(ŷ). Therefore, as eν(y[k]; ŷ, z[k]) = 0 by (2.8), and
y[k] �= ŷ by assumption, the condition L(ŷ) = {ŷ} forces e f (y[k]; ŷ, z[k]) > 0. But
e f (y[k]; ŷ, z[k]) − eν(y[k]; ŷ, z[k]) > 0 says that fν(y[k]) > fν(ŷ).

Remark 2.1.

(i) Note that our conditions ensure 0 ∈ C0(ŷ) by closedness of the subdifferen-
tials, but we do not require 0 ∈ int C0(ŷ), which in itself is sufficient for strict
local optimality, as shown by, e.g., Penot [1998] in a more general setting.

(ii) We have assumed ν to be finite-valued. This is not strictly necessary: all that
is really needed is that the subdifferentials are uniformly bounded around ŷ.
Clearly this follows if ŷ ∈ int dom ν. Elsewhere, for a well-defined decom-
position either fν(ŷ) = −∞, or there are points close to ŷ with this property,
i.e., ŷ ∈ bd dom ν. In the former case, ŷ is a minimiser, and ∂εν(ŷ) = ∅.
Thus there is no problem. In the latter case, ŷ is not a minimiser. But since
dom ν ∪ dom f = Rm for well-defined decompositions, the cone Ndom ν(ŷ)
contains no non-zero vector in common with Ndom f (ŷ). Therefore the sub-
differential inclusion cannot hold [cf. Rockafellar, 1972, Theorem 25.6].

(iii) The condition L(ŷ) = {ŷ} follows if f (or ν) is strictly convex, for then the
sets y �→ {y′ | e f (y′; y, z) = 0, z ∈ ∂ f (y)} are singletons. Indeed, we have
the following corollary.

Corollary 2.1. The diff-convex function g : Rm → (−∞, ∞] has a strict local minimum
at ŷ ∈ Rm, if and only if (SDI) holds for every decomposition fν = g (with ν finite).

Proof. The necessity is obvious from Theorem 2.1, while the sufficiency follows
from choosing a decomposition fν with L(ŷ) = {ŷ}. This can be done by taking
an arbitrary decomposition and adding the function y �→ θ‖y − ŷ‖2 for arbitrary
θ > 0 to both f and ν, to form the functions f θ and νθ. Then ∂ f θ(ŷ) = ∂ f (ŷ),
whence for all z ∈ ∂ f θ(ŷ) and y �= ŷ,

f θ(y) − f θ(ŷ) = f (y) − f (ŷ) + θ‖y − ŷ‖ > f (y) − f (ŷ) ≥ 〈z, y − ŷ〉.
This says that e f θ(y; ŷ, z) > 0. Since g = f θ − νθ, and by assumption (SDI) holds,
Theorem 2.1 proves strict local optimality.
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The next example demonstrates that the condition L(ŷ) = {ŷ} cannot be
omitted, that is, (SDI) is not sufficient alone.

Example 2.1. Define the real functions

f (y) �
{

0, y ∈ (−1, 1),
|y| − 1, otherwise,

and ν(y) � f (y/2).

Then clearly y = 0 is a non-strict global minimiser of fν. But ∂εν(0) = ∂ε f (0)/2,
wherefore (SDI) holds, although strict optimality does not.

2.3.2 Non-strict local optimality

We now consider necessary conditions for local optimality, improving the suffi-
ciency analysis of Dür [2003].

Theorem 2.2. For the point ŷ ∈ Rm to be a local minimiser of fν, it is sufficient that

there exists ε > 0, such that 0 ∈ Cε(ŷ) for each ε ∈ [0, ε). (SDI′)

If L(ŷ) = {ŷ}, this condition is also necessary.

(We do not require ŷ ∈ dom f for necessity, because L(ŷ) = {ŷ} forces this.)

Proof. As mentioned, sufficiency has been shown in Dür [2003], but the proof of
sufficiency in Theorem 2.1 can also be directly adapted by assuming the existence
of a sequence y[k] → ŷ with fν(y[k]) < fν(ŷ), and then choosing ε = εν,[k] in (2.10).

Necessity likewise follows by adapting the proof of Theorem 2.1. In the
present situation, to reach a contradiction, we take zν,[k] �∈ ∂εν,[k] f (ŷ), wherefore
z f ,[k] �= zν,[k] and α[k] > 0.

Thus, in the case ‖h[k]‖ → 0, we actually have f (y[k]) ≤ f (ŷ) − α[k] < f (ŷ)
with y[k] → ŷ, which is a contradiction.

Likewise, in the case ‖h[k]‖ ≥ θ > 0, after choosing cluster points as in the
proof of Theorem 2.1, we have f (yλ) ≤ f (ŷ) − λα for λ ∈ [0, 1], wherefore α > 0
provides a contradiction.

But if α = 0, we must have (z f , ε f ) = (zν, 0). Then, from the proof of Lemma
2.2, for either choice of δ,

f (yλ) − f (ŷ) ≤ λ〈z f , h〉 for λ ∈ [0, 1]. (2.11)

Since z f ∈ ∂ f (ŷ), recalling that ε f = 0, the above must actually hold as an equal-
ity. Consequently e f (yλ; ŷ, z f ) = 0.

Now, if (2.5) holds strictly, i.e., ν(yλ) − ν(ŷ) > λ〈z f , h〉, by combining with
(2.11), we find a contradiction to local optimality as λ ↘ 0. But if we have
equality for small λ, this means that eν(yλ; ŷ, z f ) = 0 with z f ∈ ∂ν(ŷ) (since
z f = zν). Therefore yλ ∈ L(ŷ). We have our contradiction, since ‖h‖ > 0 implies
yλ �= ŷ.
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Similarly and with a proof analogous to Corollary 2.1, we get the following
result. Notice the contrast between “every” and “some”.

Corollary 2.2. The diff-convex function g : Rm → (−∞, ∞] has a local minimum at
ŷ ∈ Rm, if and only if (SDI′) holds for some decomposition fν = g (with ν finite).

Example 2.2. Dür [2003] provides a counterexample to the necessity of the exis-
tence of ε without the additional assumption L(ŷ) = {ŷ}, in the form of

f (y) �
{

0, y ≤ 1,
(y − 1)2, y > 1,

and ν(y) � f (−y).

The function fν has local minimum at y = 0, but

∂ε f (0) = [0, 2(
√

1 + ε − 1)], and ∂εν(0) = −∂ε f (0),

whence the condition ∂εν(0) ⊂ ∂ε f (0) does not hold for any ε > 0. But we have
{y | e f (y; 0, 0)} = (−∞, 1], and {y | eν(y; 0, 0)} = [−1, ∞), whence L(0) = [−1, 1].

2.3.3 Uniqueness of global minimisers

Finally, we represent some results pertaining to global optimality.

Theorem 2.3. For the point ŷ to be the unique global minimiser of fν, it is sufficient that
L(ŷ) = {ŷ} and (SDI) holds with ε = +∞. If fν is level-bounded, this is also necessary.

Proof. Only necessity demands further proof, sufficiency following from Lemma
2.3 completely analogously to the proof of Theorem 2.1 (without taking y[k] → ŷ).

Clearly again L(ŷ) = {ŷ} is necessary, because fν takes on a single value on
this set. Suppose that (zν, εν) violates (SDI), with εν > 0. As before, we apply
Lemma 2.1 to the pair. Note that the resulting h is non-zero.

Now, if we have α > 0 or δ = −1, then Lemma 2.2 for suitable choice of λ

provides a contradiction to uniqueness of the minimiser.
But if δ = 0, by Lemma 2.2 fν(yλ) ≤ f (ŷ) + εν on the set {yλ | λ ≥ 0}, which

is unbounded since h �= 0. This is in contradiction to level-boundedness.

At this point, it is interesting to take a sneak peek into Corollary 2.6 to fol-
low in Section 2.5. According to it, the inclusion cl R(∂ν) ⊂ int R(∂ f ) ensures
level-boundedness, provided R(∂ν) is bounded. Thus, if the subdifferentials of
ν are bounded and the interior inclusion condition (SDI) holds “in the limit”, it is
necessary that it holds for all ε > 0, for ŷ to be the unique global minimiser.

The following example shows that the strict inclusion condition does not
necessarily hold without the additional level-boundedness assumption in Theo-
rem 2.3.

Example 2.3. Consider

f (y) � ‖y‖, and ν(y) �
{
‖y‖2/4, ‖y‖ ≤ 2,
‖y‖ − 1, ‖y‖ > 2.
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Clearly fν(y) = 1 outside B(0, 2), while it has its unique global minimiser at
y = 0. But (SDI) does not hold for ε ≥ 1, because

∂ε f (0) = B(0, 1), and ∂εν(0) =

{
B(0,

√
ε), ε ≤ 1,

B(0, 1), ε > 1.

Remark 2.2. Theorem 2.3 could be refined. In the final case of the proof, since
α = 0, we have (z f , ε f ) = (zν, εν). Therefore, since also δ = 0, the procedure of
Lemma 2.1 guarantees that there does not exist (h′, −1) ∈ NGf (ŷ)(z f , ε f ). Thus it
is merely necessary to have

z ∈ ∂ε f (ŷ) ∩ ∂εν(ŷ) =⇒ (h, −1) �∈ NGf (ŷ)(z, ε) for all h ∈ Rm (2.12)

along with L(ŷ) = {ŷ} and (SDI′) for ε = +∞.
We now show that this relaxed condition is sufficient as well: If y, z, and εν

are as in Lemma 2.3, they satisfy the premises of (2.12) by (SDI′). Because ri Gf (ŷ)
is non-empty, the optimality characterisation [Rockafellar, 1972, Theorem 27.4]
and (2.12) imply that 〈(y − ŷ, −1), (z, εν)〉 cannot reach σ((y − ŷ, −1); Gf (ŷ)). We
therefore have f (y) − f (ŷ) > 〈z, y − ŷ〉 − εν. Combining this estimate with (2.8),
we get sufficiency.

2.4 Sensitivity

2.4.1 Local bounds for the inverse

Suppose ŷ is a local minimiser of fν, satisfying (SDI′) (which necessarily follows
in case of a strict minimiser). Let y′ be another point, for which we have

ε > εν � min{eν(ŷ; y′, z) | z ∈ ∂ν(y′)}, (2.13)

as well as the estimate
η ≥ fν(y′) − fν(ŷ).

Then, recalling Lemma 2.3, we have

η ≥ sup{σ(y′ − ŷ; Cε(ŷ)) − (ε − εν) | ε ∈ [εν, ε)}. (2.14)

But, since the set Cε(ŷ) is closed and convex, and contains the origin, the support
function of this set is the gauge of the polar, σ(·; Cε(ŷ)) = ψC◦

ε (ŷ), and the polar is
closed and contains the origin [Rockafellar, 1972, Theorem 14.5]. Thus

η + (ε − εν) ≥ ψC◦
ε (ŷ)(y′ − ŷ) = inf{t ≥ 0 | y′ − ŷ ∈ tC◦

ε (ŷ)}. (2.15)

This says that (2.14) is equivalent to

y′ ∈ ŷ + tC◦
ε (ŷ) for all t > η + ε − εν and ε ∈ [εν, ε), (2.16)
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and then
y′ ∈ ŷ +

⋂
ε∈[εν,ε)

⋂
t>η+ε−εν

tC◦
ε (ŷ). (2.17)

Now, if t = η + ε − εν is not actually valid, the infimum is not reached in
(2.15). But then it must actually be zero, because C◦

ε (ŷ) is closed. Consequently,
we may fix t = η + ε − εν if this quantity is greater than zero. That can fail only
if η = 0 and ε = εν, because η ≥ 0 by (2.14) and 0 ∈ Cεν(ŷ). Therefore

y′ ∈ ŷ +
⋂

ε∈[εν,ε)

(η + ε − εν)C◦
ε (ŷ) when η > 0. (2.18)

In particular y′ ∈ ŷ + ηC◦
εν

(ŷ) for η > 0.
If 0 ∈ int Cεν(ŷ), such as when ŷ is a strict local minimiser (or the unique

global minimiser of a level-bounded function) and ε is chosen according to (SDI),
then C◦

εν
(ŷ) is bounded. Consequently t = 0 yields no problem, and (2.18) holds.

On the other hand, if 0 ∈ bd Cεν(ŷ), then the polar is unbounded and we need to
take the intersection over t.

If ŷ is a global minimiser, we may take ε = +∞, so the formula is valid for
all points, while for a local minimiser, ε and the linearisation error of ν bound the
domain of applicability. Indeed, the formula (2.17) still depends on knowing εν as
defined in (2.13). Hence we still have the problem that our estimate is merely an a
posteriori one. However, taking the union over εν in (2.17), we get the following
local restricted a priori estimate of the inverse of fν.

Lemma 2.4. Suppose ŷ is a local minimiser of fν, such that (SDI′) holds. Choose ε′ ∈
[0, ε), and let Dŷ(ε′) � {y′ ∈ Rm | eν(ŷ; y′, z) ≤ ε′, z ∈ ∂ν(y′)}. When y′ ∈ Dŷ(ε′)
and η ≥ fν(y′) − fν(ŷ), we then have

y′ ∈ Uŷ(η, ε′) � ŷ +
⋃

εν∈[0,ε′]

⋂
ε∈[εν,ε)

⋂
t>η+ε−εν

tC◦
ε (ŷ).

When η > 0, ε > εν, or 0 ∈ int Cεν(ŷ), we may fix t = η + ε − εν.

Corollary 2.3. Let A be a non-empty set of global minimisers of fν, and choose ε′ ≥ 0.
Then y′ ∈ UA(η, ε′) � ⋃

ŷ∈A Uŷ(η, ε′) whenever y′ ∈ DA(ε′) � ⋃
ŷ∈A Dŷ(ε′) and

η ≥ fν(y′) − min fν.

Remark 2.3. One could, of course, choose ε′ independently for each ŷ, and extend
the corollary to a set of local minimisers sharing the same function value.

Now, if y′ is a (local) minimiser of a perturbed function, and we can ap-
proximate η for such points, we have a sensitivity result. Before calculating such
bounds in Section 2.4.3 below, we look at some examples and study conditions
ensuring the good behaviour of Uŷ(η, ε′) as η ↘ 0.

Example 2.4. Let f (y) � ‖y‖2/2, and ν(y) � ‖y‖. For simplicity we consider the
situation on the real line, m = 1. Then the global minimisers of fν are ŷ = ±1. We
fix ŷ = 1. Then

∂ε f (1) = [1 −
√

2ε, 1 +
√

2ε], and ∂εν(1) = [1 − min{ε, 2}, 1],
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and consequently

Cε(1) = [min{ε, 2} −
√

2ε,
√

2ε].

Thus we may take ε = +∞ in (SDI′). For the polars we get

C◦
ε (1) = [1/(min{ε, 2} −

√
2ε), 1/

√
2ε].

Notice that C◦
2 (1) = [−∞, 1/2], so the estimate becomes unbounded. But, in

fact, εν = 0 for y′ ∈ [0, ∞) and always εν ∈ {0, 2}. Thus, after some tedious
but elementary minimisation and maximisation calculations for an expression of⋂

ε≥0(η + ε)C◦
ε (1), we arrive at

y′ ∈ 1 +
[
−η −

√
η2 + 2η,

√
2η

]
when η ∈ [0, 2] and y′ ∈ [0, ∞).

(For η > 2, optimal ε > 2 in the lower bound, and the overall result would be a
more complicated piecewise expression.) Now note that by symmetricity a mirror
estimate holds around ŷ = −1, and the set {y′ | eν(ŷ; y′, z) = 0, z ∈ ∂ν(y′), ŷ =
±1} covers the whole space. Therefore we have a well-behaved inverse estimate
for the entire real line.

(The estimate remains bounded if we do indeed take the union of the esti-
mates over εν ∈ [0, 2]: While the exact expression is tedious to calculate, this can
be seen by choosing, e.g., ε = 3 for every εν.)

Example 2.5. Exchanging the roles of f and ν in the previous example, we get
that ŷ = 0 is a local minimiser, and that Cε(0) = [

√
2ε − 1, 1 − √

2ε] for 0 ≤
ε ≤ ε � 1/2. Therefore C◦

ε (0) = [1/(
√

2ε − 1), 1/(1 − √
2ε)]. We may then

approximate
⋂

ε∈[εν,ε)(η + ε − εν)C◦
ε (0) ⊂ ηC◦

εν
(0). But then, choosing ε′ ∈ (0, ε],

we get U0(η, ε′) ⊂ ⋃
εν∈[0,ε′] ηC◦

εν
(0) = ηC◦

ε′(0). Thus, for all y′ with eν(y′; 0, 0) ≤
ε′, i.e., |y′| ≤

√
2ε′, we have the estimate y′ ∈ [η/(

√
2ε′ − 1), η/(1 −

√
2ε′)]. The

expression becomes unbounded as ε′ ↗ ε = 1/2, i.e., as the region of validity
closes [−1, +1], the endpoints of which are global maxima, beyond which the
function is decreasing to minus infinity; cf. the previous example.

Example 2.6. Let ŷ ∈ dom f be a local minimiser of a closed proper convex
function f , and choose ν ≡ 0. Then ε′ = εν = 0, ε = +∞, Dŷ(ε′) = Rm,
and Cε(ŷ) = ∂ε f (ŷ). Assume η > 0 for simplicity. Then y′ ∈ Uŷ(η, 0) =
ŷ +

⋂
ε≥0(η + ε)(∂ε f (ŷ))◦. In particular, y′ ∈ ŷ + η(∂ f (ŷ))◦, which is of use if

0 ∈ int ∂ f (ŷ).
Similar results continue to hold in a region of local convexity of fν, as ex-

ploited in Chapter 7 for sensitivity analysis of reformulations of the Euclidean
TSP.
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2.4.2 Continuity of the bounds

Recall that for a set-valued mapping F, the inner and outer limits are defined,
respectively, as

lim inf
x′→x

F(x′) � {z | for all x[k] → x there exist F(x[k]) � z[k] → z}, and

lim sup
x′→x

F(x′) � {z | there exist x[k] → x and F(x[k]) � z[k] → z}.

Clearly lim sup F ⊃ cl F(x) ⊃ lim inf F. When both limits coincide, it is denoted
lim F, and when the common limit is F(x), F is said to be continuous.

Lemma 2.5. Suppose ε ≥ 0. Then lim supε↘ε Cε(ŷ) ⊂ Cε(ŷ). If (SDI′) holds with
ε > ε and either Cε = {0} or int Cε �= ∅, then lim infε↘0 Cε(ŷ) ⊃ Cε(ŷ). Conse-
quently Cε is continuous from above at ε.

Proof. For the first inclusion, let w[k] ∈ Cε[k] (ŷ) converge to some w as ε[k] ↘ ε.
Choose also z[k] ∈ ∂ε[k]ν(ŷ) convergent to a given z ∈ ∂εν(ŷ) =

⋂
ε>ε ∂εν(ŷ),

recalling that this set is non-empty and bounded. Then also ∂ε[k] f (ŷ) � wk + zk →
w + z ∈ ∂ε f (ŷ). Since z was arbitrary, w ∈ Cε(ŷ).

The second inclusion is immediate from (SDI′) in the case Cε = {0}. In the
case int Cε �= ∅, we choose μ > 0 small enough that Cμ � Cε

∗− B(0, μ) �= ∅.
Next we choose ε > ε small enough that ∂εν(ŷ) ⊂ ∂εν(ŷ) + B(0, μ). Then

∂εν(ŷ) + Cμ ⊂ ∂εν(ŷ) + Cμ + B(0, μ) ⊂ ∂εν(ŷ) + Cε ⊂ ∂ε f (ŷ) ⊂ ∂ε f (ŷ).

That is, Cμ ⊂ Cε for small enough ε. But lim infμ↘0 Cμ = Cε, because for all
z ∈ int Cε, also z ∈ Cμ for small enough μ.

Lemma 2.6. Suppose (SDI′) holds, and that ε �→ Cε(ŷ) is continuous from above at
every ε ∈ [0, ε′). Then Uŷ(η0, ε′) =

⋂
η>η0

U(η, ε′) for all η0 ≥ 0.

Proof. The inclusion Uŷ(η0, ε′) ⊂ ⋂
η>η0

Uŷ(η, ε′) follows from the fact
⋂

i
⋃

j xij ⊃⋃
j
⋂

i xij.
For the other direction, suppose y′ ∈ Uŷ(η, ε′) for all η > η0. Reversing

the argument that led to the definition of Uŷ, we get that (2.14) holds for some
εν = εν(η) ∈ [0, ε′] and all η > η0. Therefore, letting εν = lim inf εν(η) ∈ [0, ε′] as
η ↘ η0, we have

η0 ≥ σ(y′ − ŷ; Cε(ŷ)) − (ε − εν) for all ε ∈ (εν, ε). (2.19)

Since Cεν(ŷ) ⊂ lim infε↘εν
Cε(ŷ), the above holds for ε = εν as well. Therefore

(2.14) holds for η = η0 and εν. But this says y′ ∈ Uŷ(η0, ε′).

For the next lemma, we directly extend the definition of the convex normal
cone NQ to possibly non-convex sets Q. Clearly, the property required below
holds for NQ if it holds for the regular normal cone N̂Q; see Rockafellar and Wets
[1998].



32

Lemma 2.7. Suppose that ŷ is a strict local minimiser of fν with ε > 0 satisfying (SDI).
Let Q � Graph(ε �→ Cε(ŷ)) ∩ {ε ≤ ε}. Then Uŷ(0, ε′) = {ŷ} is equivalent to
(h, −1) ∈ NQ(0) implying h = 0.

Proof. The statement y′ ∈ Uŷ(0, ε′) says that (2.14) holds for some εν ∈ [0, ε′] and
η = 0. That is,

0 ≥ sup{σ(y′ − ŷ; Cε(ŷ)) − (ε − εν) | ε ∈ [εν, ε)}. (2.20)

If εν > 0, choosing ε = εν provides a contradiction, since 0 ∈ int Cε(ŷ).
Thus εν = 0 and therefore (2.20) says precisely that (y′ − ŷ, −1) ∈ NQ(0). In
consequence y′ = ŷ, if the normal cone condition holds.

Conversely, (y′ − ŷ, −1) ∈ NQ(0) implies (2.20) for εν = 0. Then y′ ∈
Uŷ(0, ε′).

Theorem 2.4. Under the conditions of Lemma 2.7 and the inner semi-continuity condi-
tions of Lemma 2.5 for all ε ∈ [0, ε′),

⋂
η>0 Uŷ(η, ε′) = {ŷ}.

Proof. Apply the above three lemmas.

The following example demonstrates the potential for failure of continuity
in Lemma 2.5 when the dimension of Cε is not 0 or m.

Example 2.7. Let ν(y) � ‖y‖2/4 and f (y) � max{ν(y), |y2|} when y = (y1, y2).
Then ∂εν(0) = B(0,

√
ε), while [cf., e.g., Hiriart-Urruty and Lemaréchal, 1993,

Theorem XI.3.5.1]

∂ε f (0) =
⋃{

∂ε1(α1ν)(0) + ∂ε2(α2|y2|)(0)
∣∣ α1+α2=1, αi≥0

ε1+ε2≤ε, εi≥0
}

=
⋃{

α1B(0,
√

ε1/α1) + α2({0} × B(0, 1))
∣∣ α1+α2=1, αi≥0

ε1+ε2≤ε, εi≥0
}

=
⋃

{B(0,
√

α1ε) + α2({0} × B(0, 1)) | α1 + α2 = 1, αi ≥ 0}.

But now, because ∂ε f (0) achieves the values (±√
ε, y2) for some y2 only when

ε = 0 or α1 = 1, we find that Cε = {0} for ε > 0. On the other hand, ∂ν(0) =
{0} and ∂ f (0) = {0} × B(0, 1), wherefore C0 = {0} × B(0, 1). Thus Cε is not
continuous from above at ε = 0.

The failure of the normal cone condition in Lemma 2.7 is demonstrated by
the next example.

Example 2.8. Let ν(y) � y2/4 for y ∈ R, and f (y) � ν(y)/(1 − |y|) when |y| < 1,
and +∞ otherwise. Clearly the function has a unique global minimum at ŷ = 0,
so we set ε = +∞. One can show through elementary manipulations that for ε ≥
0, ∂εν(0) = B(0,

√
ε), and ∂ε f (0) = B(0,

√
ε + ε). Thus Cε(0) = [−ε, ε], so that in

the notation of Lemma 2.7, Q is a self-dual cone, i.e., NQ(0) = −Q. This violates
the condition in the lemma. We also have

⋂
ε∈[εν,ε](η + ε − εν)C◦

ε (0) ⊃ [−1, 1]
whenever εν < η. Thus

⋂
η>0 U0(η, ε′) ⊃ [−1, 1]. Note that also ∇2 fν(0) = 0.
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2.4.3 The estimate η

We may apply the epigraphical methods of Attouch and Wets [1993, 1991], also
covered in Rockafellar and Wets [1998], to finding an estimate η. However, a
direct application of these findings results in sub-optimal results when we have
a poor estimate of the epigraphical distance:

Let η̄ be an “auxiliary epigraphical ρ-distance” of g = fν and another
function g̃, defined as the the infimum of η ≥ 0 that satisfy minB(x,η) g̃ ≤
max{g(x), −ρ} + η and minB(x,η) g ≤ max{g̃(x), −ρ} + η for all x ∈ B(0, ρ).
Suppose that ρ is sufficiently large (that it does not actually feature in the max-
ima), and that y′ minimises g̃ in B(0, ρ). Then under some additional technical
conditions, for small η̄,

2η̄ ≥ min
y∈B(y′,η̄)

( fν(y) − min fν).

While we can deal with the minimisation, it and the factor two are unnec-
essary when we have poor maximum-difference estimates of the epigraphical
distance. Consequently, we have the following result relying on a “two-sided dis-
tance”. We denote [D]δ � D ∗− B(0, δ) = {y ∈ D | B(y, δ) ∈ D}, γ -arg min g �
{x | g(x) ≤ min g + γ}, and by F the functions g : Rm → R ∪ {+∞} that are
lower-semicontinuous and level-bounded. (This ensures existence of minimis-
ers).

Lemma 2.8. Let g, g̃ ∈ F , and D be a closed set, such that minD g < ∞. Suppose
δ, δ̃ ≥ 0 and η, η̃ ∈ R are such that A � arg minD g ⊂ [D]δ and

min
B(y,δ̃)

g ≤ g̃(y) + η̃ for all y ∈ D, (2.21)

min
B(y,δ)

g̃ ≤ g(y) + η for all y ∈ A. (2.22)

Then η + η̃ + γ ≥ minB(y′,δ̃)(g − minD g) whenever y′ ∈ γ -arg minD g̃ (γ ≥ 0).

Proof. Let ŷ ∈ A. Then by assumption B(ŷ, δ) ⊂ D. Therefore, by (2.22),
minD g̃ ≤ minB(ŷ,δ) g̃ ≤ minD g + η.

Choose then y′ ∈ γ -arg minD g̃. By (2.21) minB(y′,δ̃) g ≤ g̃(y′) + η̃ ≤
minD g̃ + γ + η̃. Combine this with the result of the previous paragraph, to get
the claim.

Corollary 2.4. Let g, g̃ ∈ F , and D be a closed set, such that minD g < ∞. Let
η � supD∩dom g̃(g − g̃) − infA(g − g̃). Then η + γ ≥ g(y′) − minD g whenever
y′ ∈ γ -arg minD g̃.

Proof. Choose δ = δ̃ = 0 in Lemma 2.8.

2.4.4 The main sensitivity result

Let fν ∈ F and ∅ �= A ⊂ arg min fν. Choose ε′ ≥ 0 as in Corollary 2.3, and
suppose D is a closed set with A ⊂ [D]δ and D ⊂ [DA(ε′)]δ̃. Suppose that
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y′ ∈ γ -arg minD g̃. We then have y ∈ DA(ε′) for y ∈ B(y′, δ̃). Therefore, for
y achieving minB(y′,δ̃)( fν − minD fν), we have y ∈ UA(η + η̃ + γ, ε′) by Corollary
2.3 and Lemma 2.8. Thus, we have

Theorem 2.5. Let fν = g, g̃ ∈ F and D be a closed set. Suppose δ, δ̃ ≥ 0 and η, η̃ ∈ R

are such that the assumptions of Lemma 2.8 hold along with D ⊂ [DA(ε′)]δ̃. Then
y′ ∈ UA(η + η̃ + γ, ε′) + B(0, δ̃) whenever y′ ∈ γ -arg minD g̃.

Combining with Corollary 2.4, we get

Corollary 2.5. Suppose g = fν, g̃ ∈ F and that D is a closed set with A ⊂ D ⊂
DA(ε′). Let η � supD∩dom g̃(g − g̃) − infA(g − g̃). Then γ -arg minD g̃ ⊂ UA(η +
γ, ε′).

Remark 2.4. Instead of D ⊂ [DA(ε′)]δ̃, we may assume D ⊂ DA(ε′) along with
γ -arg minD g̃ ⊂ [D]δ̃, and get similar results.

These results extend in a straightforward manner to sets of local minimisers
A, provided that the minimum of fν on D is reached by all ŷ ∈ A. This extension
is utilised in the following simple example.

Example 2.9. Consider the situation of Example 2.5. We have D0(ε′) =
√

2ε′ ·
[−1, +1] and U0(η, ε′) ⊂ η/(1 −

√
2ε′) · [−1, +1] for ε′ < 1/2. Consider a simple

tilted perturbation: g̃(y) = fν(y) + λy for some λ ∈ R. Then the function value
does not change in A = {0}, and in D0(ε′), the maximum difference is η =
|λ|

√
2ε′. Thus we have y′ ∈ U0(η, ε′) ⊂ |λ|

√
2ε′/(1 −

√
2ε′) · [−1, +1] for y′ ∈

arg minD0(ε′) g̃. Consequently, y′ ∈ int D0(ε′), i.e., y′ is an unconstrained local

minimiser, when |λ| < 1 −
√

2ε′.

2.5 Level-boundedness

Theorem 2.6. Suppose that f and ν are closed proper convex functions in Rm, with
R(∂ f ) bounded. For the level sets levc fν to be bounded, it is sufficient that cl R(∂ν) ⊂
int R(∂ f ) and necessary that R(∂ν) ⊂ int R(∂ f ).

From the assumption that R(∂ f ) bounded, it follows of course that f is
finite-valued, so that the difference fν = f − ν is also pointwise well-defined.

Proof. Let A � R(∂ f ) and B � R(∂ν).
First we tackle sufficiency. We may assume that 0 ∈ int A, because if the

interior is empty, the required condition cannot hold, and for arbitrary z ∈ int A,
we may rewrite ( f − ν)(y) = ( f (y) − 〈z, y〉) − (ν(y) − 〈z, y〉), yielding another
DC representation of the same function fν, for which 0 ∈ R(∂( f −〈z, ·〉)), and the
required inclusion condition holds. Likewise we may assume that ν(0) is finite.
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Denote ν̃v
ỹ(y) � ν(ỹ) + 〈v, y − ỹ〉. Since ν(y) = supỹ∈Rm,v∈∂ν(ỹ) ν̃v

ỹ(y), with
the supremum achieved (at least by ỹ = y), we may expand

levc fν = {y | f (y) − sup
ỹ,v

ν̃v
ỹ(y) ≤ c}

= {y | inf
ỹ,v

( f (y) − ν̃v
ỹ(y)) ≤ c}

=
⋃

ỹ∈Rm,v∈∂ν(ỹ)

{y | f (y) − ν(ỹ) − 〈v, y − ỹ〉 ≤ c}.

But, since v ∈ ∂ν(ỹ), we have ν(0)− ν(ỹ) ≥ 〈v, 0− ỹ〉, or that ν(ỹ)−〈v, ỹ〉 ≤ ν(0).
Hence, ỹ can be removed from the equation, and we have

levc fν ⊂
⋃

v∈B
{y | f (y) − 〈v, y〉 ≤ c0} =

⋃
v∈B

levc0( f − v)

with c0 = c + ν(0). Therefore it suffices to prove that the sets levc( f − v) are
uniformly bounded over v for any fixed c. Boundedness of levc( f − v) when
v ∈ int A is known from, e.g., Rockafellar [1966]. For the uniform boundedness
of this family of sets, a little more work is needed.

By the inclusion cl B ⊂ int A, 0 ∈ A and cl A being convex [Rockafellar,
1972, Section 24] and bounded, every v ∈ cl B \ {0} has an εv ∈ (0, 1/4) such that
B(v, 4εv) ⊂ int A and v/(1 − 4εv) ∈ cl A. Since cl B is a subset of the bounded
set A, it is compact, and we can find a finite set B∗ ⊂ cl B \ {0} such that the
sets v∗ + 2εv∗ A for v∗ ∈ B∗ cover B. It then suffices to prove that each of the sets
Lv∗ � ⋃

v∈v∗+2εv∗ A levc( f − v) is bounded for v∗ ∈ B∗, which are finite in number.
To prove this, first notice that for any y ∈ Rm,

|( f (y) − 〈v∗, y〉) − ( f (y) − 〈v, y〉)| = |〈v∗ − v, y〉|.
But

sup
v∈v∗+2εv∗ A

|〈v∗ − v, y〉| = sup
z∈A

2εv∗ |〈z, y〉| = 2εv∗ |〈z∗(y), y〉|

for some z∗(y) on the boundary of A. Therefore, for v ∈ v∗ + 2εv∗ A,

Lv∗ ⊂ {y | f (y) − 〈v∗, y〉 ≤ c + 2εv∗ |〈z∗(y), y〉|}.

But as v∗/(1 − 4εv∗) ∈ cl A by our choice of εv∗ , it holds that

|〈v∗, y〉| = (1 − 4εv∗)|〈v∗/(1 − 4εv∗), y〉| ≤ (1 − 4εv∗)|〈z∗(y), y〉|,
and

Lv∗ ⊂ {y | f (y) ≤ c + (1 − 2εv∗)|〈z∗(y), y〉|}.

We must still bound f from below. For this, notice that

f (y) = sup{〈z, y〉 − f ∗(z) | z ∈ Rm}
≥ sup{〈z, y〉 − f ∗(z) | z ∈ A′}
≥ (1 − εv∗)|〈z∗(y), y〉| − sup{ f ∗(z) | z ∈ A′}



36

for A′ = (1 − εv∗)(int A) ⊂ int A. Thus, if f ∗ is bounded within A′ by c′, we get

Lv∗ ⊂ {y | εv∗ |〈z∗(y), y〉| ≤ c + c′},

and this is clearly bounded, because we have assumed 0 ∈ int A, whence
|〈z∗(y), y〉| ≥ δ‖y‖ for some δ > 0.

To prove the boundedness of f ∗ within A′, we note that the interior of the
finite domain of f ∗ is contained in int A [Rockafellar, 1972, Section 24]. Hence, if
f ∗ was not bounded in A′, a bounded set, we could find a sequence {z[k]}∞

k=1 ⊂ A′
converging to some z ∈ bd A′ for which f ∗(z) = ∞. But this contradicts the
finiteness of f ∗ on int A.

As for the necessity of B ⊂ int A, let v ∈ ∂ν(ỹ) some for some ỹ, and suppose
first that v �∈ A. Then v �∈ ∂ f (y) for any y ∈ Rm, i.e., 0 ∈ ∂( f − v) has no solution.
Therefore f − v must be descending in some direction y for infinitely large values
of ‖y‖. Since f − ν ≤ f − ν̃v

ỹ , it follows that f − ν must have unbounded level
sets.

Suppose then that v ∈ bd A ∩ A. Then v ∈ ∂ f (y) for some y. Let h ∈
Ncl A(v) \ {0}. Then also h ∈ N∂ε f (y)(v) for all ε ≥ 0. By (2.2), this says that for
yλ � y + λh, f (yλ) = f (y) + λ〈v, h〉. Thus

fν(yλ) ≤ f (yλ) − ν̃v
ỹ(yλ) = f (yλ) − ν(ỹ) − 〈v, yλ − ỹ〉

= f (y) − ν(ỹ) − 〈v, y − ỹ〉,

wherefore fν is bounded on the line λ �→ y + λh. Therefore it has unbounded
level sets.

Example 2.10. To see that cl R(∂ν) ⊂ int R(∂ f ) is not necessary, consider the real
functions f : y �→ |y| and

ν : y �→ sup
k=1,2,3,...

νk(y) with νk(y) =
k

∑
i=1

2−i(|y| − 2i). (2.23)

Then R(∂ f ) = [−1, 1] and R(∂ν) = (−1, 1). But,

f (y) − νk(y) =
∞

∑
i=1

2−i|y| − νk(y) =
∞

∑
i=k+1

2−i|y| +
k

∑
i=1

1

and f (y) − ν(y) = mink( f (y) − νk(y)) = f (y) − ν�(y) with � = max{k | 2k ≤
|y|}, as ( f (y) − νk(y)) − ( f (y) − νk+1(y)) = 2−k−1|y| − 1 ≤ 0, when |y| ≤ 2k+1.
Therefore f (y) − ν(y) > ∑k

i=1 1 = k for sufficiently large |y|. Thus the level sets
are bounded.

Example 2.11. To see that R(∂ν) ⊂ int R(∂ f ) is not sufficient, one only needs to
consider f with open R(∂ f ), and set ν = f . One example of such a function is
the ν in (2.23).

Regarding conditions on f , we have the following extension:
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Corollary 2.6. The boundedness assumption on R(∂ f ) in Theorem 2.6 can be lifted,
provided R(∂ν) is bounded.

Proof. The necessity proof does not depend on the boundedness assumption. As
for sufficiency, let A ⊂ int R(∂ f ) be a bounded set such that cl R(∂ν) ⊂ A, and
approximate f from below by f̃ (y) � sup{ f (ỹ) + 〈z, y − ỹ〉 | z ∈ A ∩ ∂ f (ỹ)}.
R(∂ f̃ ) is then bounded, and the previous theorem yields that f̃ − ν and therefore
also f − ν ≥ f̃ − ν has bounded level sets.

Example 2.12. Similar conclusions do not necessarily follow if R(∂ν) is un-
bounded. This can be illustrated by considering the functions y �→ αy2 for
varying α ∈ R. The difference of functions in this class is still a function in this
class, and for α ≤ 0 the level sets are unbounded.

Lemma 2.9. Let f and ν be proper convex functions, such that f − ν is well-defined. If
f − ν has some bounded level set, it is bounded from below.

Proof. Let A be that bounded level set. We may assume that it is non-empty, for
otherwise there is nothing to prove. Then f is bounded from below on A, for
otherwise it could not be proper. But ν must also be bounded from above on
A, for otherwise it would attain the value +∞ on some half-line starting from
the boundary of A. Then f − ν would also have to attain −∞ on this line to be
well-defined, which would contradict the boundedness of A. Therefore f − ν is
bounded from below on A and consequently on the entire Rm.



3 DIFF-CONVEX FUNCTIONS ON SYMMETRIC
CONES

3.1 Introduction

In this chapter we consider functions fν = f − ν expressible as the difference of
convex functions of the form

f (y) � sup{〈B∗y + c, p〉 | p ∈ K, Ap = b}, (3.1)

where K is (the closure of) a symmetric cone, c and b are constant vectors, and
B and A are constant linear mappings such that the constraint set for p is non-
empty and bounded. Our interest stems from potential applications and the fact
that convex functions of the form (3.1) are important in relation to interior point
methods. In particular, the necessary and sufficient optimality conditions for f
may be written

B∗y + A∗λ + d + c = 0, Ap = b, Bp = 0, p ◦ d = 0, p, d ∈ K. (3.2)

This condition is of the form (1.3), whence various efficient interior point methods
are available for perturbed versions of (3.2) – which turn out to correspond to
0 ∈ ∂ε f (y).

In order to study the extension of these methods to fν in Chapter 4, we
must analyse the solvability of the equivalent condition for fν. This is the main
topic of the present chapter, covered in Section 3.4, and our tool is second order
graphical differentiation. As additional consequences of our analysis we obtain
an alternative derivation of the perturbed version of conditions (3.2) – often also
derived through the use of barrier functions – as well as an alternative interpreta-
tion of what an “interior point” is. It could be said that this makes our approach
in Chapter 4 “graphical programming”.

First we, however, introduce in Section 3.2 some basic notations for the
present and the following chapter, including a quick introduction to the Jordan-
algebraic machinery used. The tangent and normal sets of ε-complementary pairs
in a symmetric cone are also analysed in Section 3.3.
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3.2 Preliminaries

3.2.1 Sets and mappings

First we introduce some basic notations. Let A be a mapping. Then R(A) de-
notes its range. When A is also linear, N (A) denotes its null-space. The ad-
joint of a linear operator A between two inner product spaces is denoted by A∗,
and the pseudoinverse by A†. For two mappings, (A, B)(x, y) � (Ax, By), and
(A; B)(x, y) � Ax + By.

Let then C be a cone. Given an inner product 〈·, ·〉, for the purposes of
the present chapter, we define the polar as C◦ � {z | 〈z, y〉 ≤ 0 for all y ∈ C}.
The earlier definition in Section 2.2 gives the same result for cones, justifying the
notation.

Following Rockafellar and Wets [1998], recall that the (contingent) tangent
cone to a set C ⊂ Rm at x ∈ C is defined as

TC(x) � lim sup
τ↘0

(C − x)/τ = {Δx | x + τΔx′ ∈ C, τ ↘ 0, Δx′ → Δx}.

This agrees with the tangent cone of convex analysis in that case, justifying the
notation. The set of regular normals is defined as the polar N̂C(x) � TC(x)◦. The
set of normals in the general sense is defined as NC(p, d) � lim sup N̂C(p′, d′). Since
we will be dealing with closed sets, it suffices to define the set of regular tangents
T̂C(p, d) as the polar of this cone [Ibid., Theorem 6.28]. We always have TC(p, d) ⊃
T̂C(p, d) [Ibid., Theorem 6.26]. The set C is regular at (p, d) when equality holds.

The following results will be of frequent use. As should be clear from the
context, F−1 sometimes denotes the set-valued inverse, which always exists.

Theorem 3.1. [Ibid., Theorem 6.31] For closed sets X ⊂ Rn and D ⊂ Rm, a C1

mapping F : Rn → Rm, and the set C � {x ∈ X | F(x) ∈ D}, we have TC(x) ⊂ {w ∈
TX(x) | ∇F(x)w ∈ TD(F(x))}. Also T̂C(x) ⊃ {w ∈ T̂X(x) | ∇F(x)w ∈ T̂D(F(x))},
subject to the constraint qualification

y ∈ ND(F(x)), 0 ∈ ∇F(x)∗y + NX(x) =⇒ y = 0. (3.3)

Theorem 3.2. [Ibid., Theorem 6.14] Analogously to the above, N̂C(x) ⊃ {∇F(x)∗y +
z | y ∈ N̂D(F(x)), z ∈ N̂X(x)}, and subject to (3.3), NC(x) ⊂ {∇F(x)∗y + z | y ∈
ND(F(x)), z ∈ NX(x)}.

Theorem 3.3. [Ibid., Theorem 6.43] For D � F(X), we have the inclusion TD(u) ⊃⋃
x∈F−1(u)∩X ∇F(x)TX(x). Subject to there existing a neighbourhood U � u such that

F−1(U) ∩ X is bounded, also T̂D(u) ⊃ ⋂
x∈F−1(u)∩X ∇F(x)T̂X(x).

Taking the tangent to the graph of a set-valued function S at (y, z), z ∈ S(y),
we get the (contingent) graphical derivative

DS(y|z)(Δy) � {Δz | (Δy, Δz) ∈ TGraph S(y, z)}
= {Δz | z + τΔz′ ∈ T(y + τΔy′), τ ↘ 0, (Δy′, Δz′) → (Δy, Δz)}.
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Likewise we define the regular graphical derivative D̂S from T̂Graph S. The map-
ping S is said to be graphically regular at (y, z) if its graph is regular at this point.

3.2.2 Euclidean Jordan algebras

In this subsection we introduce the bare minimum of the theory of (finite-
dimensional Euclidean) Jordan algebras necessary for the analysis of this thesis.
We will rely on the Jordan algebra of quadratic forms related to the familiar
second-order cone as a concrete example in our exposition. More detailed
treatment may be found in, e.g., Faraut and Korányi [1994] and Koecher [1999].

A (real) Jordan algebra J is a real vector space endowed with a multipli-
cation operator ◦ : J × J → J , that is bilinear, commutative, and satisfies the
property

x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) where x2 = x ◦ x.

We assume in addition that J is Euclidean (or formally real), satisfying: x2 + y2 = 0
implies x = y = 0.

Then J has a multiplicative unit element e (x ◦ e = x). An element x is
called invertible, if there exists an element x−1, such that x ◦ x−1 = x−1 ◦ x = e.
We denote by L(x) the symmetric linear operator (x ◦ ·) : J → J . The operator
L(x) is invertible precisely when x is. We say that x and y operator-commute when
L(x)L(y) = L(y)L(x).

An element c is called an idempotent, if c ◦ c = c. It is primitive, if it cannot
be composed by summing from other idempotents. A complete orthogonal system
of primitive idempotents or a Jordan frame c1, . . . , cr is such that ci ◦ cj = 0 for i �= j,
and ∑r

j=1 cj = e. The number r is the rank of J .
It turns out that for each x ∈ J , there exist unique real numbers ζ1, . . . , ζr,

called the eigenvalues of x, and a Jordan frame c1, . . . , cr, such that x = ∑r
j=1 ζici.

If all the eigenvalues are positive, x is called positive-definite. The number of non-
zero eigenvalues is the rank of x. Powers of x may be defined as xα � ∑j ζα

i ci

when meaningful. We may also define the determinant det x � ∏j ζ j, and the
trace tr x � ∑j ζ j.

The trace may be used to define the inner product 〈x, y〉 � tr(x ◦ y), which is
positive-definite and associative, satisfying 〈L(x)y, z〉 = 〈y, L(x)z〉. We may also
define the norms ‖x‖F �

√
∑j ζ2

j =
√〈x, x〉 and ‖x‖2 � maxj |ζ j|. According

to [Schmieta and Alizadeh, 2001, Lemma 4], we have ‖x ◦ y‖F ≤ ‖x‖2‖y‖F ≤
‖x‖F‖y‖F.

The quadratic presentation of x is defined as Qx � 2L(x)2 − L(x2). It turns out
that the invertibility of x is equivalent to the invertibility of Qx as well. Important
properties, which can be found in Schmieta and Alizadeh [2003], include Qk

x =
Qxk , QQxy = QxQyQx, Qxx−1 = x, and Qxe = x2.

Also denote Qx,y � L(x)L(y) + L(y)L(x) − L(x ◦ y). Then Qx = Qx,x. For
a Jordan frame c1, . . . , cr, Qci,cj = 2L(ci)L(cj) = 2L(cj)L(ci) for i �= j, and the
operators Qci (i = 1 . . . r) and 2Qci,cj (i < j) form a complete set of orthogonal
projection operators in J . More precisely, R(Qci) = {x | L(ci)x = x} = Rci and
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R(Qci,cj) = {x | L(ci)x = L(cj)x = x/2} for i �= j, as follows from the theory of
Peirce decompositions. If x = ∑r

i=1 ζici, then L(x) = ∑i ζiQci + ∑i<j(ζi + ζ j)Qci,cj =
∑i,j(ζi + ζ j)Qci,cj /2.

Example 3.1 (Quadratic forms). Consider the space Em+1 of m + 1 element vectors
x = (x0, x̄) with x0 ∈ R and x̄ ∈ Rm. Define the operator ◦ on Em+1 as

x ◦ y = (xTy, x0ȳ + y0x̄).

Then (Em+1, ◦) is a Euclidean Jordan algebra with inner product 〈x, y〉 = 2xTy,
identity e = (1, 0), and rank r = 2. The operator L(x) is given by

L(x) = Arw(x) �
[

x0 x̄T

x̄ x0 I

]
with I the identity matrix. Denote R �

[ 1 0
0 −I

]
. Then det x = xTRx = (x0)2 −

‖x̄‖2, and x−1 = Rx/ det x when det x �= 0.

3.2.3 Symmetric cones

The cone of squares of J is defined as K = K(J ) � {x2 | x ∈ J }. It turns out
that the cones generated this way are precisely the so-called symmetric cones1,
and are the same as the self-scaled cones of Nesterov and Todd [1997]. Important
properties include [Faraut and Korányi, 1994; Koecher, 1999]

(i) int K = {x ∈ J | x is positive-definite} = {x ∈ J | L(x) pos. def.}.

(ii) 〈x, y〉 ≥ 0 for all y ∈ K if and only if x ∈ K, and

(iii) 〈x, y〉 > 0 for all y ∈ K \ {0} if and only if x ∈ int K.

(iv) Qx for x ∈ int K maps K onto itself.

(v) For x, y ∈ int K, there is a unique a ∈ int K, such that x = Qay.

(vi) For any x, y ∈ K, 〈x, y〉 = 0 if and only if x ◦ y = 0 [Faybusovich, 1997b].

In relation to (barrier) interior point methods, the following properties are partic-
ularly important:

(vii) B(x) � − log(det x) tends to infinity as x goes to bd K.

(viii) ∇B(x) = −x−1, ∇2B(x) = Qx when differentiated with respect to 〈·, ·〉.
(ix) ‖y‖x � ‖Q−1/2

x y‖F defines a local norm around x ∈ int K, such that ‖y −
x‖x = ‖Q−1/2

x y − e‖F ≤ 1 implies y ∈ K. (This follows by considering
the eigenvalue definition of ‖ · ‖F, and the onto-property of Qx; cf. also
Nesterov and Todd [1997].)

1 The term is also used of just int K.
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Next we consider the normal structure of K. Recall that, following Hiriart-Urruty
and Lemaréchal [1993], the set of ε-normals with respect to the inner product 〈·, ·〉
to a convex set C ⊂ Rm at x is defined as

NC,ε(x) � {s ∈ Rm | 〈s, y〉 ≤ 〈s, x〉 + ε for all y ∈ C}, ε ≥ 0.

This definition reduces to the usual normal cone NC at ε = 0. In J we use the
trace-based inner product. When J is simple, i.e., contains no non-trivial ideal,
every associative symmetric bilinear form on J is given by a constant factor times
this inner product, and therefore a different choice only scales the ε-normal set.
Otherwise J is a product of simple Jordan algebras, and we get matrix scaling.

Lemma 3.1. For ε ≥ 0, NK,ε(x) � −{s ∈ K | 〈x, s〉 ≤ ε}. This may be written
−Q−1/2

x {z ∈ K | tr z ≤ ε} for x ∈ int K. Furthermore, for ε = 0, s is a non-
negatively weighted sum of those primitive idempotents in any Jordan frame of x with
zero eigenvalue. Thus p ◦ NK(p) = 0.

Proof. For a cone, we must have 〈s, y〉 ≤ 0 in the definition of NK,ε(x), for oth-
erwise a scaling of y would violate the inequality 〈s, y〉 ≤ 〈s, x〉 + ε. But for a
symmetric cone, 〈s, y〉 ≤ 0 for all y ∈ K implies −s ∈ K. Choosing y = 0, we also
get 〈s, x〉 + ε ≥ 0. This says −〈x, s〉 = − tr(Q1/2

x s) ≤ ε. Since Q1/2
x maps K onto

K for x ∈ int K, NK,ε can be expressed as claimed by negating s.
Let then ε = 0, 〈s, x〉 = 0, and x = ∑r

j=1 ζ jcj for the primitive idempotents
cj and ζ j ≥ 0. Since all these elements are in K, ζ j〈s, cj〉 = 0 for all j. This says
that 〈s, ci〉 = 0, and therefore s ◦ ci = 0, for all ci with ζi > 0. The same must hold
for the primitive idempotents in the decomposition of s by the properties (ii) and
(iii) listed above.

Example 3.2 (The second order cone). For the Jordan algebra Em+1 of quadratic
forms, considered in Example 3.1, we get the so-called second order cone, K =
{x | x0 ≥ ‖x̄‖}. For 0 �= x ∈ bd K, x2 = 2x0x, so scaling gives a primi-
tive idempotent, and the only orthogonal one is proportional to Rx. Therefore,
NK(x) = {−αRx | α ≥ 0}, a set approximated by {−αy−1 | α ≥ 0} for invertible
y close to x.

3.3 ε-complementary pairs in a symmetric cone

We next consider the tangent and normal structure of the graph of NKε
.

Definition 3.1. We say that two elements p, d ∈ K are strictly complementary, if
p ◦ d = 0, and p + d ∈ int K [Pataki, 1996; Schmieta and Alizadeh, 2003].

Lemma 3.2.

(i) Suppose that p, d are strictly complementary. Then p ◦ Δd + d ◦ Δp = 0 if and
only if (Δp, Δd) = (L(p)η, −L(d)η) for some η ∈ J .
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(ii) When the latter representation of (i) holds, 〈Δp, NK(p)〉 = 〈Δd, NK(d)〉 = 0, and
consequently Δp ∈ TK(p), Δd ∈ TK(d).

(iii) The consequences of (ii) respectively imply that tr(p ◦ Δd + d ◦ Δp) = 0, and
tr(p ◦ Δd + d ◦ Δp) ≥ 0.

Proof. (i) Since p ◦ d = 0, there exists a common Jordan frame c1, . . . , cr and
eigenvalues ζ1, . . . , ζr ≥ 0 and σ1, . . . , σr ≥ 0 with ζiσi = 0 and ζi + σi > 0,
such that p = ∑i ζici, and d = ∑i σici. Therefore, recalling the representation of
L(p) = ∑i,j(ζi + ζ j)Qci,cj /2 and L(d) = ∑i,j(σi + σj)Qci,cj /2, we have

L(p)Δd + L(d)Δp = 0 ⇐⇒ Qci,cj

(
(ζi + ζ j)Δd + (σi + σj)Δp

)
= 0 for all i, j.

Note that always either ζi + ζ j > 0 or σi + σj > 0, so that ζi + ζ j = 0 forces
Qci,cj Δp = 0, and the other way around. Consequently, Δp is proportional to Δd
on R(Qci,cj). Therefore Δp, Δd ∝ Qci,cj η for some η ∈ J , which may be chosen
the same for all i, j by orthogonality of the projection operators Qci,cj . The correct
proportionality factors are given by the choice Δp = L(p)η and Δd = −L(d)η for
some η ∈ J .

On the other hand, strictly complementary p and d operator-commute (as
seen from the Q-decomposition of L; cf. [Schmieta and Alizadeh, 2003, Theorem
27]), so the equality follows from the representation.

(ii) As a consequence of the representation of (i), 〈NK(p), Δp〉 =
〈p ◦ NK(p), η〉 = 0, from which also Δp ∈ TK(p). The claims for Δd fol-
low similarly.

(iii) From Lemma 3.1, −p ∈ NK(d) and −d ∈ NK(p). The claim follows.

Theorem 3.4. Let Cε � {(p, d) ∈ K × K | tr p ◦ d ≤ ε} and (p, d) ∈ Cε. Then, for
ε > 0, Cε is regular at (p, d), and

TCε
(p, d) = {(Δp, Δd) ∈ TK(p) × TK(d) | tr(p ◦ Δd + d ◦ Δp) ≤ ∞(ε − tr p ◦ d)},

whereas for ε = 0,

TC0(p, d) ⊂ {(Δp, Δd) ∈ TK(p) × TK(d) | p ◦ Δd + d ◦ Δp = 0}, and

T̂C0(p, d) ⊃ {(L(p)η, −L(d)η) | η ∈ J }.

When p and d are strictly complementary, the two right hand sides above are equal, and
we have regularity as well as the representation

TC0(p, d) = {(Δp, Δd) ∈ J ×J | p ◦ Δd + d ◦ Δp = 0}.

Proof. Write Cε = {(p, d) ∈ X | F(p, d) ∈ D} for X = K × K, F(p, d) � p ◦ d,
and D � {x ∈ J | tr x ≤ ε}. Then ND(x) = e{α ≥ 0 | α(tr x − ε) = 0} and
∇F(p, d) = (L(d), L(p)). Suppose ε > 0. That TCε

is included in the set of the
statement is now immediate from Theorem 3.1. Since the convex sets D and K
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are regular, the same theorem provides the other inclusion and hence equality
and regularity after we check the constraint qualification (3.3), i.e.,

(zp, zd) ∈ NK(p) × NK(d), αe ∈ ND(F(p, d))
(zp, zd) + α∇F(p, d)∗e = 0

}
=⇒ α = 0.

The sum condition writes out to zp + αd = 0 and zd + αp = 0. Multiplying from
left by p and d, respectively, we get applying Lemma 3.1 that α(p ◦ d) = 0 in both
cases. Since ε > 0, either α = 0 or tr p ◦ d = ε. But in the latter case p ◦ d �= 0,
which provides a contradiction.

Let now ε = 0. For the first inclusion, note that we may take D = {0},
and then apply again Theorem 3.1. As for the second inclusion, the constraint
qualification is not satisfied this time, so some extra tricks that furbish a similar
aid are needed (only yielding a lower bound in the non-strictly complementary
case). So let U(p, d) � {(L(p)η, −L(d)η) | η ∈ J }. Now, for the polar of this
cone we have

U◦(p, d) = {(zp, zd) | 〈(zp, zd), (Δp, Δd)〉 ≤ 0, for all (Δp, Δd) ∈ U(p, d)}
= {(zp, zd) | 〈(zp, zd), (L(p)η, −L(d)η)〉 ≤ 0 for all η}
= {(zp, zd) | 〈L(p)zp − L(d)zd, η〉 ≤ 0 for all η}
= {(zp, zd) | L(p)zp − L(d)zd = 0}.

Let then v ∈ N̂C0(p, d). We will show that v ∈ U◦(p, d). Following the
argument of the proof of Theorem 3.2 in [Rockafellar and Wets, 1998, Theorem
6.14], we choose a smooth function h with arg maxC0

h = {(p, d)}, ∇h(p, d) = v,
existent by [Ibid., Theorem 6.11]. Then we consider the penalty functions

ψ[k](p, d, u) � −h(p, d) +
1

2τ[k]
‖F(p, d) − u‖2, τ[k] ↘ 0, k = 1, 2, . . . .

Minimising these functions on K ×K × D yields convergent sequences

h[k] = z[k] + ∇F(p[k], d[k])
∗y[k] → v, (p[k], d[k]) ∈ K ×K → (p, d),

with h[k] � ∇h(p[k], d[k]), z[k] = (zp,[k], zd,[k]) ∈ NK(p[k]) × NK(d[k]), y[k] = α[k]e ∈
ND(u[k]), and u[k] ∈ D.

Normally the constraint qualification is used to prove that v is of the re-
quired form, but in this case we need another argument. Presently

h[k] = (zp,[k] + α[k]d[k], zd,[k] + α[k]p[k]). (3.4)

Multiplying (3.4) by (L(p[k]); −L(d[k])) yields α[k](L(p[k])d[k] − L(d[k])p[k]) = 0.
On the other hand, since h[k] → v is bounded, and p[k] − p → 0, we have ‖(L(p)−
L(p[k]))(zp,[k] + α[k]d[k])‖ → 0, and likewise for the other term. Therefore

(L(p); −L(d))v = lim
k

(L(p); −L(d))h[k]

= lim
k

(L(p) − L(p[k]); −L(d) + L(d[k]))h[k] = 0,
(3.5)
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and consequently U◦(p, d) ⊃ N̂C0(p, d).
An argument similar to (3.5) shows that U◦(p, d) is outer semicontinuous.

Therefore U◦(p, d) ⊃ NC0(p, d), and consequently U◦◦(p, d) ⊂ T̂C0(p, d). As
clearly U(p, d) ⊂ U◦◦(p, d), we get that part of our claim.

In the strictly complementary case, we just apply Lemma 3.2 to the presen-
tations obtained for the general case.

Corollary 3.1. For ε > 0,

N̂Cε
(p, d) = {(NK(p), NK(d)) + α(d, p) | α ≥ 0, α(ε − tr p ◦ d) = 0}.

For ε = 0,

N̂C0(p, d) ⊃ {(NK(p) + L(d)η, NK(d) + L(p)η) | η ∈ J },
NC0(p, d) ⊂ {(zp, zd) | L(p)zp = L(d)zd}. (3.6)

When p and d are strictly complementary, the two right hand sides above are equal, and
we also have N̂C0(p, d) = {(L(d)η, L(p)η) | η ∈ J }.

Proof. For ε > 0 and the first inclusion for ε = 0, the claims follow by applying
Theorem 3.2 instead of Theorem 3.1 in the proof of Theorem 3.4, or alternatively
through polarity relationships. The latter inclusion for ε = 0 follows directly from
the proof of Theorem 3.4. The claim on the strictly complementary case follows
from applying Lemma 3.2(i) to the expression in (3.6).

3.4 The class of functions

3.4.1 A class of convex functions

We now consider convex functions on Rm of the form (3.1). That is,

f (y) � sup{〈B∗y + c, p〉 | p ∈ K, Ap = b} = σ(B∗y + c; V), (3.7)

where K is a symmetric cone with associated Jordan algebra J , A : J → RmA

and B : J → Rm are linear mappings, c ∈ J , V � {p ∈ K | Ap = b}, and σ(·; V)
is the support function of V. We require that N (B∗; A∗) = {0}, and that

AK = {λ ∈ RmA | λ ≥ 0}, (3.8)
N (A) ∩K = {0}, and (3.9)

b ∈ A(int K). (3.10)

Example 3.3 (Euclidean norms).

(i) If K is the second-order cone on Em+1, Ap � p0 = 〈e/2, p〉 (recalling that
the inner product on Em+1 is two times the standard Rm+1 inner product)
b � 1, c � (0, −a/2), and Bp � p̄ (whence B∗y = (0, y/2)), we get f (y) =
sup{(y − a)T p̄ | 1 = p0 ≥ ‖ p̄‖} = ‖y − a‖.
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(ii) Weighted sums ∑n
k=1 ‖Wk(y − ak)‖ of Euclidean norms can be rep-

resented by a straightforward extension: p = (p1, . . . , pn) ∈ Kn,
Ap � (p0

1, . . . , p0
n), b ≡ 1, B∗y � ((0, W1y), . . . , (0, Wny))/2, and

c � −((0, W1a1), . . . , (0, Wnan))/2.

(iii) Finally, if we instead set Ap � ∑n
k=1 p0

k and b = 1, the supremum favours
maximum 〈Wk(y − ak), p̄〉. We therefore have f (y) = maxk=1,...,n ‖Wk(y −
ak)‖.

Lemma 3.3. We have the following equivalences and implications:

(i) Assumption (3.8) is equivalent to A∗λ ∈ K if and only if λ ≥ 0.

(ii) Under assumptions (3.8) and (3.10), we have b > 0, and assumption (3.9) is equiv-
alent to V being non-empty and bounded.

(iii) Assumption (3.8) is equivalent to (Ap)i = 〈ai, p〉 for some ai ∈ K \ {0},
〈ai, aj〉 = 0 (j �= i).

(iv) Under assumption (3.8), assumption (3.9) is equivalent to ∑mA
i=1 ai ∈ int K.

Proof. (iii) Since p �→ (Ap)i is linear, there exists a vector ai such that (Ap)i =
〈ai, p〉. It then follows from assumption (3.8) that 〈ai, p〉 ≥ 0 for all p ∈ int K and
i = 1, . . . , mA. By surjectivity ai �= 0, so that ai ∈ K \ {0}. If ai and aj were not
orthogonal, we could write aj = αai + w for α > 0 and w orthogonal to ai. If
w ∈ K, 〈ai, p〉 = λi for p ∈ K forces 〈aj, p〉 ≥ αλi, so surjectivity fails. If w �∈ K,
the set K ∩ (ai + R+w) is bounded, so again surjectivity fails.

(iv) Assumption (3.9) then says that there is no v ∈ K such that 〈ai, v〉 = 0
for all i = 1, . . . , mA. Since 〈ai, v〉 ≥ 0, this is equivalent to 〈∑i ai, v〉 > 0 for all
v ∈ K, which says that ∑i ai ∈ int K.

(i) Let p ∈ K. Then Ap ≥ 0 is equivalent to 〈Ap, λ〉 ≥ 0 for all λ ≥ 0,
which says the same as 〈p, A∗λ〉 ≥ 0 for all λ ≥ 0 and p ∈ K. This is equivalent
to A∗λ ∈ K for λ ≥ 0. This shows the equivalence of AK ⊂ {λ ≥ 0} with
A∗{λ ≥ 0} ⊂ K.

Suppose then that λ �≥ 0. Then for some λ′ ≥ 0, we have 〈λ, λ′〉 < 0. When
assumption (3.8) holds, λ′ = Ap′ for some p′ ∈ K. Consequently 〈p′, A∗λ〉 =
〈Ap′, λ〉 < 0, so that A∗λ �∈ K.

As for the converse, if the inclusion AK ⊂ {λ ≥ 0} is strict, then because
these sets are closed convex cones, there exists some λ′ ∈ (−NAK(0)) \ {λ ≥ 0}.
This says that for all p ∈ K, 0 ≤ 〈Ap, λ′〉 = 〈p, A∗λ′〉. Therefore A∗λ′ ∈ K for
λ′ �≥ 0, and consequently the condition A∗λ ∈ K if and only if λ ≥ 0 cannot hold.

(ii) Assumption (3.10) and the representation of (iii) give b > 0. By the same
assumption V is non-empty.

Suppose then that assumption (3.9) holds and p[0] ∈ V. If V is unbounded,
there is a sequence z[k] ∈ N (A) (k = 1, 2, . . .), such that p[k] � p[0] + z[k] ∈ K, and
‖z[k]‖ → ∞. Now, we have z � lim p[k]/‖p[k]‖ = lim z[k]/‖z[k]‖ ∈ K ∩N (A), as
well as ‖z‖ = 1, which is a contradiction. Thus V is bounded.
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On the other hand, if 0 �= z ∈ N (A) ∩K, and p ∈ V, then p + λz ∈ V for all
λ ≥ 0, so that V is unbounded.

Our next task is to calculate ∂ε f (y). Towards that end, we first need to study
NV,ε. As is well known, actually NV,ε(p) = ∂εδV(p) for the indicator function of
the set V. In the present case, δV = δK + δ{p∈J |Ap=b}. Therefore, as the relative
interior of V is non-empty by assumption (3.10), we may apply [Hiriart-Urruty
and Lemaréchal, 1993, Theorem XI.3.1.1] to yield NV,ε(p) = NK,ε(p) + R(A∗),
the ε-normal set of a linear space being the normal set. Thus by Lemma 3.1,
z ∈ NV,ε(p) at p ∈ V iff for some λ ∈ RmA and d ∈ K, we have 〈p, d〉 ≤ ε and
z + A∗λ + d = 0.

Now, applying [Ibid., Theorem XI.3.2.1 and Example XI.1.2.5] in the first
two equalities, we get

∂ε f (y) = B∂εσ(B∗y + c; V)
= B{p ∈ V | σ(B∗y + c; V) ≤ 〈p, B∗y + c〉 + ε}
= B{p ∈ V | 〈p′ − p, B∗y + c〉 ≤ ε for all p′ ∈ V}
= B{p ∈ V | B∗y + c ∈ NV,ε(p)}
= B{p ∈ V | −d ∈ NK,ε(p), B∗y + A∗λ + d + c = 0}
= {Bp | 〈p, d〉 ≤ ε, Ap = b, B∗y + A∗λ + d + c = 0, p, d ∈ K}.

(3.11)

Remark 3.1. The set of equations for 0 ∈ ∂ε f (y) are very similar to the standard
primal-dual equations for barrier methods, but without an explicit central path
(p ◦ d = μe) selected. Indeed, let f μ(y) � supp∈V{〈B∗y + c, p〉 + μ log(det p)} be
a barrier-smoothing of f . It is differentiable because log(det p) is strictly concave
in int K (with ∇2 log(det p) = −Qp), and we have ∇ f μ(y) = B{p ∈ V | B∗y + c +
μp−1 ∈ −NV(p)} = {Bp | Ap = b, B∗y + A∗λ + c + d = 0, p ◦ d = μe, p, d ∈ K},
using d = μp−1.

After we look at the difference of functions of the form (3.7) shortly, we
will be doing some second-order analysis, where we need the following notion
of non-degeneracy. Conditions ensuring this will be further discussed in Section
3.4.5.

Definition 3.2. We say that a strictly complementary pair (p, d) is non-degenerate
relative to a subspace X ⊂ J , if (L(d)η, L(p)η) ∈ R(A∗) × (X ∩ N (A)) implies
η = 0.

Example 3.4 (Euclidean norms). Consider the base case of Example 3.3. At y = a,
we have d = 0 and strict complementarity holds for p = (1, p̄) with ‖ p̄‖ < 1.
As L(p) is non-singular, (p, d) is not non-degenerate (relative to J ), but it is non-
degenerate relative to N (B) = Re = R(A∗).

3.4.2 Taking the difference

Let f be of the form (3.7), and subscript the data and variables as Bf , A f , c f , b f ,
K f , etc. Let ν be another function in this class, with similar subscripts. Now let
fν � f − ν, making fν a diff-convex function.
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Example 3.5 (Location problems). Recalling from Example 3.3 that sums and
maxima of (matrix-scaled) Euclidean distances can be represented in the form
(3.7), we find that, e.g., the multisource Weber problem objective function (1.5)
has the form fν. So does the “MO” clustering objective and the reformulations of
the Euclidean TSP, as discussed in Section 1.4 and to be studied in Chapters 6 and
7.

Our objective in Chapter 4 that follows is to minimise fν, or at least find an
approximately critical point. That is, we are interested in finding ε-semi-critical
points. This property we recall to be defined as

0 ∈ ∂DC
ε fν(y) �

⋃
{∂ε1 f (y) − ∂ε2ν(y) | ε1 + ε2 = ε, ε1, ε2 ≥ 0}.

Now, note that the condition

tr p f ◦ d f ≤ ε1 and tr pν ◦ dν ≤ ε2 for some ε1 + ε2 = ε, ε1, ε2 ≥ 0

reduces to tr(p f , pν) ◦ (d f , dν) ≤ ε in the product cone K � K f × Kν. Thus,
recalling the representation of ∂ε f from (3.11), we actually get

∂DC
ε fν(y) = {B−p | (p, d) ∈ Cε, Ap = b, B∗y + A∗λ + d + c = 0},

with A � (A f , Aν), B � (Bf ; Bν), B− � (Bf ; −Bν), c � (c f , cν), and b � (b f , bν).
Note that the non-degeneracy condition relative to N (B) is equivalent to

that relative to N (B−): supposing it did not hold for one, replacing η = (η f , ην)
with (η f , −ην) in the definition, shows that it does not hold for the other, for
L(p)η ∈ N (A) and L(d)η ∈ R(A∗) are unaffected by such change.

3.4.3 Second order behaviour

Lemma 3.4. Let Sε � {(p, d) ∈ Cε | Ap = b, B∗y + A∗λ + c + d = 0}. Then

TSε
(p, d) ⊂ {

(Δp, Δd) ∈ TCε
(p, d)

∣∣ AΔp = 0, B∗Δy + A∗Δλ + Δd = 0
}

,

with regularity and equality when ε > 0, or p and d are strictly complementary and
non-degenerate relative to N (B).

Proof. By (3.10), b = Ap0 for some p0 ∈ int K. So let F(p, d) � (p, d) − (p0, −c)
and D � N (A) × (R(A∗) ∪R(B∗)). Then Sε = {(p, d) ∈ Cε | F(p, d) ∈ D}, and
the inclusion for TSε

is again immediate from Theorem 3.1. For the equality we
get the claim from the same theorem by proving the constraint qualification (3.3).

In the case of ε > 0, applying Corollary 3.1, this constraint qualification
becomes

zp + αd = A∗λ, zd + αp = s ∈ N (A) ∩N (B) =⇒ s = 0, λ = 0, (3.12)

with zp ∈ NK(p), zd ∈ NK(d), α ≥ 0, and α(ε − 〈p, d〉) = 0.
Suppose α = 0. Then, because zd ∈ −K, s ∈ N (A) ∩ (−K) = {0}. Like-

wise, A∗λ = zp ∈ −K, whence by Lemma 3.3, λ ≤ 0. Therefore, unless λ = 0,
0 = α〈p, zp〉 = 〈p, A∗λ〉 = 〈b, λ〉 < 0, which is a contradiction.
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Suppose then that α > 0, whence 〈p, d〉 = ε. Recalling that 〈p, zp〉 =
〈d, zd〉 = 0 by Lemma 3.1, we get by multiplying the terms on the left hand side
of (3.12) that 0 = 〈s, ATλ〉 = 〈zp, zd〉 + α2〈p, d〉 = 〈zp, zd〉 + α2ε. But this says that
〈zd, zp〉 < 0, which is not possible, since zd, zp ∈ −K.

When p and d are strictly complementary, Corollary 3.1 gives to (3.3) the
format

L(d)η = A∗λ, L(p)η = s ∈ N (A) ∩N (B) =⇒ λ = 0, s = 0.

This is the non-degeneracy condition relative to N (B), because L(p + d) is invert-
ible by strict complementarity.

Theorem 3.5. Let G be a C1 mapping with domain S∞, such that it has a continuous
partial inverse into {0} × R(B∗).2 Denote G−1

ε (v) � {(p, d) ∈ Sε | G(p, d) = v}.
Then

TGSε
(v) ⊃ UG

ε (v) � {Δv ∈ ∇G(p, d)TSε
(p, d) | (p, d) ∈ G−1

ε (v)}.

Equality holds when for all (p, d) ∈ G−1
ε (v),

(Δp, Δd) ∈ TSε
(p, d), ∇G(p, d)(Δp, Δd) = 0 =⇒ (Δp, Δd) = 0. (3.13)

Proof. The inclusion TGSε
(v) ⊃ UG

ε (v) is just Theorem 3.3.
To show the equality, let Δv ∈ TGSε

(v). Then by definition there exists se-
quences Δv[k] → Δv and τ[k] ↘ 0, as well as (p[k], d[k]) ∈ G−1

ε (v + τ[k]Δv[k])
(k = 1, 2, . . .). By Lemma 3.3(ii), p[k] is bounded. By the convergence of Δv[k]
and the continuity of the partial inverse of G, d[k] is bounded in R(B∗). Since the
remaining free part of d[k] is in R(A∗), it is bounded also in N (A). If d[k] were un-
bounded in R(A∗), we’d have d[k]γ[k] → A∗λ ∈ K \ {0} for some γ[k] ↘ 0. Con-
sequently, since 〈p[k], d[k]〉 ≤ ε, we’d have 0 = 〈p[k], A∗λ〉 = 〈b, λ〉, in contradic-
tion to the results of Lemma 3.3. Thus (p[k], d[k]) is bounded, and by possibly mov-
ing to a subsequence, we may assume that (p[k], d[k]) → (p, d) for some (p, d) ∈
G−1

ε (v). We must also have (p[k] − p, d[k] − d)/γ[k] → (Δp, Δd) ∈ TSε
(p, d) for

some sequence γ[k] ↘ 0, with either γ[k] = τ[k], or τ[k]/γ[k] → 0 and (Δp, Δd) �= 0.
Thus also (τ[k]/γ[k])Δv[k] = (G(p[k], d[k]) − G(p, d))/γ[k] → ∇G(p, d)(Δp, Δd).
Therefore, if it can be chosen γ[k] = τ[k], we have the wanted representation for
Δv. Otherwise

0 �= (Δp, Δd) ∈ TSε
(p, d), ∇G(p, d)(Δp, Δd) = 0. (3.14)

This is forbidden by the constraint qualification (3.13).3

2 In other words, the composition of projection into that subspace with any single-valued
selection of the set-valued inverse of G is continuous.

3 This constraint is related to that expressed in [Rockafellar and Wets, 1998, Theorem 4.26].
Indeed, this short direct proof is mostly about calculating the horizon limit supremum of⋃

(p,d)∈G−1
ε (v)(Sε − (p, d))/τ.
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Corollary 3.2. Let G(p, d) � ((I; 0)(B∗; A∗)†(−d − c), B−p). Then ∂DC
ε fν(y) = {z |

(y, z) ∈ GSε} and D(∂DC
ε fν)(y|z)(Δy) ⊃ Uε(y|z) with

Uε(y|z) �
⋃

(p,d)∈G−1
ε (y,z)

{Δz | (Δy, Δz) ∈ ∇G(p, d)TSε
(p, d)}.

Equality holds for ε = 0 when all (p, d) ∈ G−1
ε (y, z) are strictly complementary and

non-degenerate relative to N (B−).

Proof. The expression for ∂DC
ε fν is just what we have shown in (3.11), written in

a different form, as G(p, d) = (y, B−p) when A∗λ + B∗y + d + c = 0. This holds
because we have from N (B∗; A∗) = {0} that (B∗; A∗)†(B∗; A∗) = I and then

(I; 0)(B∗; A∗)†(−d − c) = (I; 0)(B∗; A∗)†(B∗; A∗)(y, λ) = y. (3.15)

Since y continuously and uniquely determines d in R(B∗) through G, the
partial inverse continuity condition of Theorem 3.5 holds. The rest of the claims
therefore follow from that theorem, after proving the constraint qualification
(3.13) for the equality claim.

From (Δp, Δd) ∈ N (∇G(p, d))∩ TSε
(p, d), we have by Lemma 3.4 and (3.15)

that

Δd ∈ R(B∗; A∗) ∩N ((I; 0)(B∗; A∗)†) = R(A∗), and Δp ∈ N (B−) ∩N (A).
(3.16)

When ε = 0, Theorem 3.4 shows that under strict complementarity, (Δp, Δd) ∈
TCε

(p, d) reduces to Δp = L(p)η and Δd = −L(d)η for some η ∈ J . Therefore
the precedent of (3.13) implies

(L(p)η, −L(d)η) ∈ (N (A) ∩N (B−)) ×R(A∗). (3.17)

Now non-degeneracy relative to N (B−) forces η = 0, and then (Δp, Δd) = 0.

The information in D(∂DC
ε fν) is not quite sufficient for our needs yet, so we

extend it. More specifically, we let Ĝ(p, d) � (G(p, d), p ◦ d) for the G of Corollary
3.2, and consider

∂̂DC
ε fν(y) � {(z, q) | (y, z, q) ∈ ĜSε},

Ûε(y|z, q)(Δy) �
⋃

(p,d)∈Ĝ−1
ε (y,z,q)

{(Δz, Δq) | (Δy, Δz, Δq) ∈ ∇Ĝ(p, d)TSε
(p, d)}.

The following assumption will be used frequently in what follows. Condi-
tions ensuring the stated requirements will be further discussed in Section 3.4.5.
Note that it may happen that p ◦ d �∈ K.

Assumption 3.1. Let (z, q) ∈ ∂̂DC
ε fν(y). Then q = 0 (resp. q ∈ K \ {0}) and all

(p, d) ∈ Ĝ−1
ε (y, z, q) are strictly complementary and non-degenerate relative to

N (B−) (resp. p, d ∈ int K).
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Lemma 3.5. Suppose Assumption 3.1 holds and ε > 0 (resp. ε = 0). Then
(Δy, Δz, Δq) ∈ ∇Ĝ(p, d)TSε

(p, d) if and only if

tr Δq ≤ ∞(ε − tr p ◦ d) (resp. Δq = 0), (3.18)
B∗Δy + A∗Δλ + Δd = 0, (3.19)

AΔp = 0, (3.20)
B−Δp = Δz, (3.21)

p ◦ Δd + d ◦ Δp = Δq. (3.22)

Proof. Recalling (from the remark in Section 3.4.2) that non-degeneracy relative
to N (B−) is equivalent to that relative to N (B), we find that Assumption 3.1
guarantees the conditions for regularity in Lemma 3.4 and Theorem 3.4. Fur-
thermore, the condition (Δp, Δd) ∈ TK(p) × TK(d) is redundant (by Theorem 3.4
when ε = 0, and by p, d int K when ε > 0). Therefore

TSε
= {(Δp, Δd) ∈ J ×J | (3.18)–(3.22) hold for some (Δy, Δλ, Δz, Δq)}.

Furthermore, we have

∇Ĝ(p, d) =

⎛⎝ 0 −(I; 0)(B∗; A∗)†

B− 0
L(d) L(p)

⎞⎠ , (3.23)

and therefore, employing (3.15), we find that (Δy, Δz, Δq) ∈ ∇Ĝ(p, d)TSε
(p, d)

forces (3.18)–(3.22) for this triple.

Corollary 3.3. D(∂̂DC
ε fν)(y|z, q) ⊃ Ûε(y|z, q) with equality when Assumption 3.1

holds. For ε = 0, ∂̂DC fν(y) = ∂DC fν(y) × {0}.

Proof. Noting that q = p ◦ d = 0 when ε = 0, takes care of the second claim.
From Lemma 3.5 we find that the constraint qualification (3.13) is equivalent

to the linear system (3.19)–(3.22) for (Δy, Δz, Δq) = 0 implying (Δp, Δd) = 0. That
is,

AΔp = 0, B−Δp = 0, A∗Δλ + Δd = 0, L(p)Δd + L(d)Δp = 0 (3.24)

has (Δp, Δd, Δλ) = 0 as the only solution
When q = 0, we proceed as in Corollary 3.2, applying Lemma 3.2.
When q ∈ K \ {0}, we further tighten the uniqueness requirements by drop-

ping B−Δp = 0. Then the resulting system of equations is of a form familiar from
linear programming on symmetric cones. Indeed, when furthermore p ◦ d ∈ K,
the non-singularity of this system follows from assumptions (3.8)–(3.9) and stan-
dard results [Faybusovich, 1997b, Corollary 4.4].

With the constraint qualification now proved, we just apply Theorem 3.5.
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Remark 3.2. We may regard the q-component of ∂̂DC fν as indicating a specific “se-
lection” y �→ {z | (z, q) ∈ ∂̂DC

ε fν(y)} within ∂DC
ε fν, approximating the differences

of subgradients of f and ν. In particular, the selections q = (ε/r)e give the gra-
dients of barrier-approximations to fν; see Remark 3.1. So ∂DC

ε fν is then a bundle
with the information of the particular approximation lost, whereas ∂̂DC

ε fν retains
that information. D(∂̂DC

ε fν)(y|z, q) then combines the gradient of a selection with
inter-selection differential information.

3.4.4 Solvability and regularity

In the interior point methods that we will develop in Chapter 4, it is of importance
to know when we can solve (0, Δq) ∈ D(∂̂DC

ε fν)(y|z, q)(Δy) for Δy with fixed Δq,
along with obtaining (Δp, Δd). The following results study conditions towards
that end.

Lemma 3.6. Suppose Assumption 3.1 holds along with the following second order con-
dition: 0 ∈ D(∂̂DC

ε fν)(y|z, q)(Δy) implies Δy = 0. Then

Δy �→ {(Δz, Δq) | (Δy, Δz, Δq) ∈ ∇Ĝ(p, d)TSε
(p, d)}

has full range for all (p, d) ∈ Ĝ−1
ε (y, z, q). Additionally the system (3.19)–(3.22) is

solvable for (Δp, Δd, Δy, Δλ) in a neighbourhood (in K ×K) of (p, d) ∈ Ĝ−1
ε (y, z, q).

Proof. By Lemma 3.5, the condition 0 ∈ D(∂̂DC
ε fν)(y|z, q)(Δy) is equivalent to

(3.19)–(3.22) with (Δz, Δq) = 0. Now, if also Δy = 0, the system further reduces
into (3.24), and the proof of the constraint qualification (3.13) in Corollary 3.3
shows that there is no non-zero solution. Thus zero is the only solution of⎛⎜⎜⎝

A
B−

B∗ A∗ I
L(d) L(p)

⎞⎟⎟⎠
⎛⎜⎜⎝

Δp
Δy
Δλ

Δd

⎞⎟⎟⎠ = 0,

and the matrix has full rank. The same must hold in a neighbourhood of (p, d) ∈
Ĝ−1

ε (y, z, q).
Finally, reverse application of Lemma 3.5 implies full range for Δy �→

{(Δz, Δq) | (Δy, Δz, Δq) ∈ ∇Ĝ(p, d)T̂Sε
(p, d)} for all (p, d) ∈ Ĝ−1

ε (y, z, q).

Remark 3.3. When fν is twice continuously differentiable at y, we have
D(∂DC fν)(y|z)(Δy) = ∇2 fν(y)Δy. Thus the second order condition reduces to
non-singularity of the Hessian.

The picture is further revealed by considering the metric regularity of ∂̂DC
ε fν.

A set-valued mapping S : Rn ⇒ Rm is said to be metrically regular at (y, z) if S−1

has the Aubin property at this point [Rockafellar and Wets, 1998, Theorem 9.43],
i.e., if its graph is locally closed (i.e., has a closed neighbourhood of (y, z)) and
there exist neighbourhoods Y � y and Z � z, and a κ > 0 such that S−1(z′′)∩Y ⊂
S−1(z′) + κ‖z′ − z′′‖B for all z′, z′′ ∈ Z, with B denoting the unit ball. The result
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[Ibid., Theorem 9.40] states that under local closedness, metric regularity holds
if R(D̂S(y|z)) = Rm, and it is equivalent to this property when S is graphically
regular at (y, z).

Lemma 3.7. Let

W(y|z, q)(Δy) �
⋂

(p,d)∈Ĝ−1
ε (y,z,q)

{(Δz, Δq) | (Δy, Δz, Δq) ∈ ∇Ĝ(p, d)T̂Sε
(p, d)}.

Then the following regularity properties hold for ∂̂DC
ε fν and (z, q) ∈ ∂̂DC

ε fν(y).

(i) If ∂̂DC
ε fν is graphically regular at (y, z, q), then it is metrically regular at this point

if and only if D(∂̂DC
ε fν)(y|z, q) has full range.

(ii) Suppose graphical and metric regularity hold at (y, z, q) along with Assumption
3.1. Then Ûε(y|z, q) has full range.

(iii) ∂̂DC
ε fν is metrically regular at (y, z, q) if W(y|z, q) has full range.

Proof. (i) The graph ĜSε of ∂̂DC
ε fν is locally closed: if a sequence v[k] =

(y[k], z[k], q[k]) ∈ ĜSε has an accumulation point, it arises from bounded
(p[k], d[k]) ∈ Sε as proved in Theorem 3.5, and Sε is closed. Therefore the first
claim follows directly from [Ibid., Theorem 9.40], quoted above.

(ii) Assumption 3.1 and Corollary 3.3 ensure D(∂̂DC
ε f )(y|z, q) = Ûε(y|z, q).

Now apply (i).
(iii) By Theorem 3.3 D̂(∂̂DC

ε f )(y|z, q)(Δy) ⊃ W(y|z, q)(Δy), and conse-
quently the former has full range, the boundedness requirement (see Section
3.2.1) again proved as in Theorem 3.5. Now [Ibid., Theorem 9.40] yields metric
regularity.

3.4.5 Non-degeneracy

The following results ensure relative non-degeneracy, uniqueness, and Assump-
tion 3.1. We often use

Assumption 3.2. K = ∏mA
i=1 Ki for symmetric cones Ki (in a Jordan algebra

Ji of rank ri), and Ap = (〈a′1, p1〉, . . . , 〈a′mA
, pmA〉) with a′i ∈ int Ki when

p = (p1, . . . , pmA), pi ∈ Ki .

Lemma 3.8. Suppose Assumption 3.2 holds and b > 0. Then (3.8)–(3.10) hold, and
(p, d) ∈ S0 and L(d)η ∈ R(A∗) imply L(d)η = 0.

Proof. Assumptions (3.8)–(3.10) are immediate from the form of A. If L(d)η =
A∗λ, we may assume λ ≥ 0: by the independence of L(d) on the sub-algebras
corresponding to the Ki, by negating components, we could find such a λ′ ≥ 0
and η′ for which this holds. Therefore, unless λ = 0,

〈a′i, pi〉 = bi > 0 (3.25)

implies 0 < 〈b, λ〉 = 〈p, A∗λ〉 = 〈p, L(d)η〉 = 〈p ◦ d, η〉 = 0. This is a contradic-
tion, whence L(d)η = 0.
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Lemma 3.9. Suppose that W p = (∑i W1i pi, . . . , ∑i WNi pi) in addition to Assumption
3.2. Let W ′ denote W with those Wji removed, for which di has rank ri − 1. Likewise
denote by A′ the corresponding modification of A. Then L(p)η = 0 if

N (A′) ∩N (W ′) = {0}, (3.26)

(p, d) ∈ S0, L(d)η = 0, and L(p)η ∈ N (A) ∩ N (W). Consequently, strict comple-
mentarity of (p, d) ∈ S0 and (3.26) imply non-degeneracy relative to N (W).

Proof. If di has rank ri − 1, then pi is proportional to a single primitive idempo-
tent c complementary to di. This and L(di)ηi = 0 imply that ηi ∈ R(Q∗

c ) =
R(Qc) = Rc (as can be seen from the Q-decomposition of L(p)). Consequently
si � L(pi)ηi ∝ pi. But then si ∈ ±Ki, which is in contradiction to 〈a′i, si〉 = 0 un-
less si = 0, since a′i ∈ int Ki. Therefore L(pi)ηi = 0, and we may consequently re-
move the corresponding terms from the equations WL(p)η = 0 and AL(p)η = 0.
The resulting equation has no non-zero solution when N (A′) ∩N (W ′) = {0}.

As for the final claim, Lemma 3.8 reduces the non-degeneracy requirement
relative to N (W) into (L(d)η, L(p)η) ∈ {0} × (N (A) ∩N (W)) implying η = 0.
Since L(d + p) is invertible when p and d are strictly complementary, it suffices to
show that L(p)η = 0. The first part of this lemma did that.

Corollary 3.4. Suppose each Ji has rank ri = 2 (i.e., Ki is isomorphic to the second
order cone), and N (Wji) ∩ N (〈a′i, ·〉) = {0}. Then strictly complementary (p, d) are
non-degenerate relative to N (W) when for each j = 1, . . . , N, at most one di = 0 with
Wji �= 0.

Proof. When di �= 0, pi �= 0 is proportional to a single primitive idempotent.
Consequently W ′ has just one non-zero Wji on each row. But by assumption
N (Wji) ∩ N (〈a′i, ·〉) = {0}, so (3.26) holds. Therefore Lemma 3.9 provides non-
degeneracy.

The following results prove and simplify Assumption 3.1 through unique-
ness.

Lemma 3.10. Suppose (p, d) ∈ Ĝ−1
0 (y, z, 0) is strictly complementary and non-

degenerate relative to N (B−). Then it is unique. In particular, Assumption 3.1
holds.

Proof. Suppose (p + Δp, d + Δd) ∈ Ĝ−1
0 (y, z, 0). Then Δd ∈ R(A∗) and Δp ∈

N (A) ∩N (B−). Consequently tr Δp ◦ Δd = 0. As p ◦ d = (p + Δp) ◦ (d + Δd) =
0, taking the trace we then find that tr(p ◦ Δd + d ◦ Δp) = 0. This says that
tr(p + αΔp) ◦ (d + αΔd) = 0 for all α ∈ [0, 1]. Because p + αΔp, d + αΔd ∈ K
by convexity, we find that (p + αΔp) ◦ (d + αΔd) = 0. Differentiating (p + αΔp) ◦
(d + αΔd) at α = 0, we find p ◦ Δd + d ◦ Δp = 0. Now strict complementarity
and Lemma 3.2(i) imply (Δp, Δd) = (L(p)η, −L(d)η) for some η ∈ J . By non-
degeneracy η = 0. Therefore (p, d) is unique.

Lemma 3.11. Suppose p, d ∈ K and q = p ◦ d ∈ int K. Then p, d ∈ int K, so
Assumption 3.1 holds.
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Proof. If d ∈ bd K, there is a v ∈ K\{0} such that v ◦ d = 0 (as this is equivalent to
〈v, d〉 = 0). Now, 〈v, q〉 = 〈v, p ◦ d〉 = 〈v ◦ d, p〉 = 0, in contradiction to q ∈ int K.
The case p ∈ bd K is analogous.

Lemma 3.12. If q ∈ int K and Assumption 3.2 holds, then there is at most one (p, d) ∈
Ĝ−1

∞ (y, z, q).

Proof. Let λ be such that p, d ∈ K when B∗y + A∗λ + d + c = 0 and p is defined
through p ◦ d = q. Due to Lemma 3.11, actually p, d ∈ int K. Choose a direction
Δλ, and differentiate these equations to find A∗Δλ + Δd = 0, L(p)Δd + L(d)Δp =
0. Solving for Δp and taking the inner product with Δd yields

〈Δd, Δp〉 = −〈Δd, L(d)−1L(p)Δd〉 = −〈Δd, (L(d)−1L(p) + L(p)L(d)−1)Δd〉/2.

The operator on the right may be expanded as L(d)−1(L(p)L(d)+ L(d)L(p)
)

L(d)−1.
The middle term is positive-definite according to [Faybusovich, 1997b, proof
of Corollary 4.4]. Therefore the entire operator is positive-definite, and conse-
quently −〈Δλ, AΔp〉 = 〈Δd, Δp〉 < 0 if Δλ �= 0.

Now, since A is independent in each Ki under Assumption 3.2, 〈a′i, Δpi〉 > 0
whenever Δλi > 0. Thus 〈a′i, pi〉 is an increasing function of λi. Consequently
〈a′i, pi〉 = bi has a unique solution.

Example 3.6 (Sums of Euclidean norms). Suppose f (y) = ∑n
i=1 ‖y − ci‖ and

ci �= cj for i �= j. Strict complementarity implies non-degeneracy and Assumption
3.1, because at most one term is non-differentiable at a single point, with corre-
sponding pi ∈ int Ki, and 〈a′i, pi〉 = p0

i , Wji pi = p̄i. Thus the linear independence
condition holds. Similar results hold for more complex combinations of norms;
cf. also [Qi et al., 2002, Section 3].

3.4.6 Scaling

The following scaling invariance of the presentation of f , and by extension fν,
holds with respect to the automorphisms of the cone K.

Lemma 3.13. Let f have the form (3.7), and let v ∈ int K. Define

f̃ (y) � sup{〈B˜∗y + c˜, p̃〉 | p̃ ∈ K, A˜ p̃ = b}
with B˜ � BQ−1

v , A˜ � AQ−1
v , and c˜ = Q−1

v c. Then f̃ = f with p̃ = Qv p producing
the same value. In the representation of ∂ε f , same result is produced when furthermore
d˜ = Q−1

v d. This scaling invariance extends to ∂DC
ε fν in the obvious way.

Proof. Firstly note that assumptions (3.8)–(3.9) as well as the property
N (B˜∗; A˜ ∗) = {0} continue to hold after scaling, so f̃ has the required form
(3.7). Now the claims follow in a straightforward manner from Qv being a
bijection in K.

Note, however, that the q of (z, q) ∈ ∂̂DC
ε fν(y) generally depends on the

scaling. In the special case of the “central selection” q = μe, it is unaffected, as
seen from [Schmieta and Alizadeh, 2003, Lemma 28] for μ > 0 and from Lemma
3.14 below for μ = 0.
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Lemma 3.14. Scaling as above preserves (strict) complementarity.

Proof. When p and d are strictly complementary, d ∈ ri NK(p), as follows from
Lemma 3.1. But now

NK(p) = −{s ∈ K | 〈p, s〉 = 0}
= −{s ∈ K | 〈Qv p, Q−1

v s〉 = 0} = −Qv{s˜ ∈ K | 〈 p̃, s˜〉 = 0},

so that NK( p̃) = Q−1
v NK(p). As linear transformations map relative interior onto

relative interior [Rockafellar, 1972, Theorem 6.6], d˜ = Q−1
v d ∈ ri NK( p̃).

When the complementarity is non-strict, the same argument holds without
the relative interior taken.

Relative non-degeneracy and Assumption 3.1 are also preserved by scaling
under the conditions of Section 3.4.5:

Lemma 3.15. Assumption 3.2, the representation of Lemma 3.9, and (3.26) are preserved
by scaling.

Proof. The transformation Qv decomposes into a product (Qv1 , . . . , Qvma ), so that
Qv maps each Ki independently onto itself and a˜′i = Q−1

vi
a′i ∈ int Ki. Likewise W˜is composed of W˜ ij = WijQ−1

vi
. Thus the special forms of A and W in Assumption

3.2 and Lemma 3.9 are preserved by scaling.
By the proof of Lemma 3.14, scaling preserves the rank of di. Now note that

N (A˜ ′) = Qv′N (A′) (for suitably modified v′) and likewise for W˜ ′. Therefore
N (A˜ ′) ∩ N (W˜ ′) = {0} if and only if N (A′) ∩ N (W ′) = {0}. The assumptions
of Lemma 3.9 thus continue to hold after scaling.



4 PRIMAL-DUAL INTERIOR POINT METHODS FOR
DIFF-CONVEX PROBLEMS ON SYMMETRIC
CONES

4.1 Introduction

As seen in Chapter 3, the optimality conditions (3.2) for convex functions of the
form (3.1) belong to the same class as those for linear programs on symmetric
cones and, as already discussed in Chapter 1 very efficient algorithms exist for
approximately solving such equations; cf., e.g., [Nesterov and Todd, 1997; Schmi-
eta and Alizadeh, 2003, 2001; Faybusovich, 1997a,b; Alizadeh and Goldfarb, 2003;
Monteiro and Tsuchiya, 2000] in more general cases, and [Andersen et al., 2000;
Xue and Ye, 1997; Qi et al., 2002] in the special case of Euclidean norms, various
sums of which are included in the class of functions of the form (3.1).

As it has also turned out to be, those approximate solutions in the present
case correspond to 0 ∈ ∂ε f (y) with some additional conditions on choice of selec-
tion within the subdifferential. In the present chapter, we intend to extend these
methods to solving 0 ∈ ∂DC

ε fν(y), with the consequent central path conditions

B∗y + A∗λ + d + c = 0, Ap = b, B−p = 0, p ◦ d = (ε/r)e, p, d ∈ K. (4.1)

The extension of the interior point methods faces the problem that the lin-
earised version of (4.1) may become singular, something that does not occur in
the convex case under rather mild assumptions. As the first topic of Section 4.2,
we therefore analyse such singularities through the graphical (second-order) dif-
ferentials derived in Chapter 3, before extending the aforementioned methods in
the same section. It will be seen that our extension still bears good convergence
properties near a point satisfying rather standard second order (optimality) con-
ditions.

Aside from the general literature on interior point methods (see, e.g., Fors-
gren et al. [2002] and references therein), and the already-cited papers on linear
programs over symmetric cones, the work of Yamashita and Yabe [2005] bears
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close relationship to ours, in extending the Jordan-algebraic approach. There non-
linear programs are considered, however only over second-order cones rather
than general symmetric cones, and with C2 assumptions. The analysis is also
vastly different from ours, based on merit functions.

As our extension is, however, not globally convergent due to the above-
mentioned singularities, we next study globalisation strategies in Section 4.3. Our
approach is that of a filter method, following the line of research initiated by
Fletcher and Leyffer [2002].

Filter methods, which we will introduce in further detail in Section 4.3, cru-
cially depend on so-called restoration methods that restore feasibility after the
main filter method – which will presently be a variation of the interior point
method of Section 4.2 – runs into trouble. Our next topic is therefore to derive
and analyse one in Section 4.4, based on the simple idea of sequential convex
programming (SCP).

We finish this chapter with a discussion of practical aspects and experience
in Section 4.5.

4.2 A primal-dual interior point method

4.2.1 On interior point methods for the convex case

Suppose we are given a point 0 ∈ ∂ε f (y). To minimise f , we want to reduce ε,
while at the same time keeping the constraint 0 ∈ ∂ε f (y). Thus we want to choose
a direction Δy such that 0 ∈ D(∂ε f )(y|0)(Δy) and ε can be reduced afterwards. If
(y, 0) ∈ int Graph ∂ε f (y), any direction satisfies this. When we additionally want
to be moving towards a “central selection” from a selection q with (0, q) ∈ ∂̂ε f (y),
we require that (0, Δq) ∈ D(∂̂ε f )(y|0, q)(Δy) for Δq � σμe − q, μ = μ(q) � tr q/r,
and a chosen σ ∈ (0, 1). We may think of Δq consisting of a “tangential step”
(σ − 1)μe aiming to reduce μ or ε, and a “normal step” μe − q aiming to move
closer to the central selection for ∂rμ f .

Suppose furthermore that we have (p, d) ∈ Ĝ−1
ε (y, 0, q), and want to make

our movement in the neighbourhood of (p, d). Then q = p ◦ d, and by the proof
of Lemma 3.5, we arrive from (Δy, 0, σμe − q) ∈ ∇Ĝ(p, d)TSε(p,d) into the system

AΔp = 0, BΔp = 0,
B∗Δy + A∗Δλ + Δd = 0,

p ◦ Δd + d ◦ Δp = σμe − p ◦ d,
Δp ∈ TK(p), Δd ∈ TK(d).

When p, d ∈ int K and p ◦ d ∈ K, the linear system is solvable. By iterating steps
in directions found this way after suitable scaling and step length selection, we
get the usual primal-dual interior point method for linear programs on symmet-
ric cones [Nesterov and Todd, 1997; Schmieta and Alizadeh, 2003, 2001; Faybuso-
vich, 1997a,b; Alizadeh and Goldfarb, 2003; Monteiro and Tsuchiya, 2000].



59

Whereas typically the “interior” refers to the interior of a constraint set, and
the above system of equations have been derived through either the use of bar-
rier functions, or by perturbation of the KKT conditions, here the conditions have
been derived through subdifferential analysis, and we can alternatively consider
to be moving in the interior of ∂ε f and even the set ĜS∞ = Graph ∂̂∞ f , while
maintaining the ε-optimality constraint 0 ∈ ∂ε f (y), reducing ε by a constant fac-
tor at each iteration. Additionally, we try to stay close to a “central selection”
p ◦ d = μe, corresponding to the differential of a smoothing of f by a barrier
function.

4.2.2 Solvability in the diff-convex case

Our objective is now analogous to the convex case: given (0, q) ∈ ∂̂DC
ε fν(y) and

(p, d) ∈ Ĝ−1
ε (y, 0, q), we try to solve (0, Δq) ∈ D(∂̂DC

ε f )(y|0, q)(Δy) near (p, d).
When p, d ∈ int K and Δq = σμe − p ◦ d, the resulting set of equations may then
according to Lemma 3.5 be written

AΔp = 0, B−Δp = 0, (4.2)
B∗Δy + A∗Δλ + Δd = 0, (4.3)

p ◦ Δd + d ◦ Δp = σμe − p ◦ d. (4.4)

This differs from the convex case by the use of B− instead of B in the condition
for Δp. Consequently, we run into the following two problems in a direct gen-
eralisation of the methods for convex problems: (a) we may have 〈Δp, Δd〉 �= 0,
and (b) the system may not have a solution for any specific value of Δq. Therefore
other strategies are needed for global convergence. But let us first analyse how
far a direct generalisation goes, and its convergence properties.

According to the results of Section 3.4.4 and Lemma 3.6 in particular, the
system (4.2)–(4.4) can be solved at least locally in the neighbourhood of a point
y arising from relatively non-degenerate and strictly complementary (p, d), and
where 0 ∈ D(∂̂DC fν)(y|0)(Δy) implies Δy = 0. Furthermore, this second order
condition reduces to non-singularity of the Hessian when fν is twice continuously
differentiable.

Likewise, by the same lemma, the system (4.2)–(4.4) is solvable near nicely-
behaving selections of ∂̂DC

ε fν. Also, since central selections q = μe ∈ K, μ > 0,
are unaffected by scaling as remarked in Section 3.4.6, the same applies to scaled
representation of f near central selections.

Study of metric regularity offers some further insight. Statement (i) of
Lemma 3.7 says that D(∂̂DC

ε fν)(y|z, q) can behave badly when ∂̂DC
ε fν is not

metrically regular. In particular (assuming ε > tr q, or ε = 0 and working
with ∂DC fν), if there exists (z′, q′) in each neighbourhood of (z, q) such that
(z′, q′) �∈ R(∂̂DC

ε f ), then we may not be able to solve (4.2)–(4.4). This happens in
particular when Graph ∂DC

ε fν locally evades the z = 0 plane as ε shrinks. Another
way of metric regularity failing is that for some q′ in each neighbourhood of q,
the selection y �→ {z | (z, q′) ∈ ∂̂DC

ε fν(y)} fails to be metrically regular at (y, z),
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and consequently has a singular (or otherwise poorly-behaved graphical second
order) differential.

On the other hand, by Lemma 3.7(ii), metrical and graphical regularity im-
ply for every (Δz, Δq), the existence of some (p, d) ∈ Ĝ−1

ε (y, z, q) such that (4.2)–
(4.4) has a solution. Under Assumption 3.2, by Lemma 3.12, this (p, d) is unique,
so the system is invertible. Conversely, Lemma 3.7(iii) says that ∂̂DC

ε fν actually is
metrically (and graphically) regular at (y, z, q) provided that (p, d) ∈ Ĝ−1

ε (y, z, q)
is unique, the matrix of the system (4.2)–(4.4) has full range, and Assumption 3.1
holds (such as when q ∈ int K).

4.2.3 Neighbourhoods

Let P⊥
e q � q − 〈e, q〉e/r be the projection of q to the subspace orthogonal to e. If

the spectrum of q is {ζi(q)}, then by the e-sum property of Jordan frames, the
spectrum of P⊥

e q is {ζi(q) − μ(q)} with μ(q) � ∑j ζ j(q)/r = tr q/r. Now, define
the distance functions

d•(p, d) � ‖P⊥
e Q1/2

p d‖• and d∗
•(p, d) � ‖P⊥

e (p ◦ d)‖•,

with • ∈ {F, 2, −∞} and, abusing norm notation for the sake of convenience,
‖s‖−∞ � − mini ζi(s). For P⊥

e q we then get ‖P⊥
e q‖−∞ = μ(q) − min ζi(q),

‖P⊥
e q‖F =

√
∑i(ζi(q) − μ(q))2, and ‖P⊥

e q‖2 = maxi |ζi(q) − μ(q)|.
When p, d ∈ int K, we know from the effects of P⊥

e on the spectrum and
[Schmieta and Alizadeh, 2003, Proposition 21 and Lemma 30] that d•(d, p) =
d•(p, d) ≤ d∗•(p, d) = d∗•(d, p) for p, d ∈ int K. When p and d operator-commute,
equality holds as then p ◦ d = Q1/2

p d.
Now, let γ ∈ (0, 1), and for • ∈ {F, 2, −∞} define the corresponding short,

semi-long, and long-step neighbourhoods of K ×K as

C•(γ) � {(p, d) ∈ int K × int K | d•(p, d) ≤ γμ(p ◦ d)} and

C∗
• (γ) � {(p, d) ∈ int K × int K | d∗

•(p, d) ≤ γμ(p ◦ d)},

We then have C∗• (γ) ⊂ C•(γ), as well as CF(γ) ⊂ C2(γ) ⊂ C−∞(γ), and like-
wise for the starred neighbourhoods. The unstarred neighbourhoods are scaling-
invariant, i.e., (p, d) ∈ C•(γ) implies ( p̃, d˜) = (Qv p, Q−1

v d) ∈ C•(γ) for v ∈ int K
[Schmieta and Alizadeh, 2003, Proposition 29]. Furthermore, a scaling that results
in operator-commutative ( p̃, d˜) ensures that ( p̃, d˜) ∈ C∗• (γ) for (p, d) ∈ C•(γ).

In the method we keep (p, d) in an appropriate γ-neighbourhood to ensure
desirable properties, such as p ◦ d ∈ int K (cf. Lemma 3.11).

4.2.4 Rate of convergence

We now provide some rate of convergence properties, assuming we have a so-
lution (Δp, Δd) of (4.2)–(4.4). The proofs here follow the outline of [Schmieta
and Alizadeh, 2003, Section 3], generalising where necessary to accommodate
〈Δp, Δd〉 �= 0, and also to rely less on operator-commutativity. We note that our
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analysis does not actually depend on the exact form of the linear equations (4.2)–
(4.3). These conditions merely act as source of proximity to singularities for the
whole system, and therefore the analysis could easily be applied to other linear
systems sharing (4.4), arising from optimality conditions for more general classes
of problems.

So, let us set

p(α) � p + αΔp, d(α) � p + αΔp, (4.5)

μ(α) � tr p(α) ◦ d(α)/r.

Then, denoting Δ � Δp ◦ Δd,

rμ(α) = tr p ◦ d + α tr(p ◦ Δd + d ◦ Δp) + α2 tr Δp ◦ Δd

= rμ + α(σ − 1)rμ + α2 tr Δ

= (1 − α)rμ + ασrμ + α2 tr Δ.

(4.6)

The linear constraints of (p(α), d(α)) ∈ Srμ(α) obviously automatically con-
tinue to hold for any α. The next lemma bounds the non-linear constraints.

Lemma 4.1. If (p, d) ∈ C∗• (γ) for some • ∈ {F, 2, −∞}, then (p(α), d(α)) ∈ C∗• (γ) ∪
C0 for α ∈ [0, ᾱ], where

ᾱ �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ/κ, κ ≥ σ,
1/(1 − σ/2), κ = 0,√

(1 − σ/2)2/κ2 + 2/κ − (1 − σ/2)/κ, 0 �= κ ∈ (−(1 − σ/2)2/2, σ),
∞, otherwise,

(4.7)
and κ � (‖P⊥

e Δ‖F − γ tr Δ/r)/(γμ). When κ < σ, then ᾱ > 1.

Proof. It suffices to prove that for α ∈ (0, ᾱ), ‖P⊥
e (p(α) ◦ d(α))‖• < γμ(α). For, as

follows from the relationships presented in Section 4.2.3, then the same holds for
• = −∞, and consequently

(1 − γ)μ(α) < min
i

ζi(p(α) ◦ d(α)) ≤ min
i

ζi(Q1/2
p(α)d(α)),

where the second inequality is proved in [Schmieta and Alizadeh, 2003, Lemma
30], and applies when p(α) ∈ int K. But then, taking the power of r on both sides,
we get

((1 − γ)μ(α))r < det(Q1/2
p(α)d(α)) = det(p(α)) det(d(α)),

applying [Faraut and Korányi, 1994, Proposition III.4.2] on subalgebras for the
equality. Now, by the continuity of the involved quantities in α, this condition
would be violated if at some point either p(α) or d(α) reached bd K while still
μ(α) > 0. But if μ(α) = 0, we must also have ‖P⊥

e (p(α) ◦ d(α))‖• = 0, whence
α = ᾱ. Thus (p(α), d(α)) ∈ C0, and we have a solution to the problem.
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We have

P⊥
e (p(α) ◦ d(α)) = P⊥

e (p ◦ d) + αP⊥
e (p ◦ Δd + d ◦ Δp) + α2P⊥

e (Δd ◦ Δp)

= P⊥
e (p ◦ d) + αP⊥

e (σμe − p ◦ d) + α2P⊥
e Δ

= (1 − α)P⊥
e (p ◦ d) + α2P⊥

e Δ.

To approximate the norm, for • = F we can use the triangle inequality, whereas
for • = 2, −∞, we apply [Schmieta and Alizadeh, 2003, Lemma 14], which states
that for x, y ∈ J , − min ζi(x + y) ≤ − min ζi(x) + ‖y‖F, and max ζi(x + y) ≤
max ζi(x) + ‖y‖F. Therefore, for all • ∈ {F, 2, −∞}, we have the approximation

‖P⊥
e (p(α) ◦ d(α))‖• ≤ |1 − α|‖P⊥

e Q1/2
p d‖• + α2γ‖P⊥

e Δ‖F

≤ |1 − α|γμ + α2‖P⊥
e Δ‖F.

Comparing this approximation against μ(α) from (4.6), we get that

‖P⊥
e (p(α) ◦ d(α))‖ ≤ γμ(α)

if
α2‖P⊥

e Δ‖F ≤ (1 − α − |1 − α| + ασ)γμ + γα2 tr Δ/r,

i.e., α2κ ≤ (1 − α − |1 − α| + ασ).
Suppose we have equality at 0 < α ≤ 1. Then κ ≥ σ, and we get the bound

in (4.7). On the other hand, if κ < σ, the inequality holds strictly for all α ∈ (0, 1].
So equality is reached at α > 1, and we get the bound in (4.7) by solving the
quadratic equation α2κ − 2 + α(2 − σ) = 0. When κ �= 0, there are potentially two
solutions,

α =
−(1 − σ/2) ±√

(1 − σ/2)2 + 2κ

κ
,

but the bound in (4.7) is the one we want. This follows for κ > 0, because the
other solution is negative. For κ < 0 this follows from observing that a quadratic
function with a negative quadratic term, which is also negative and increasing
at α = 0, has only positive roots, if any. Therefore the smaller root, if any, gives
the bound, and otherwise it is infinite. Solving for the term under the square
root to equal zero gives the lower bound for the applicability of the expression in
(4.7).

Suppose tr Δ > 0. Then, minimising μ(α) over α ≥ 0, we get σμ = 2α̌ tr Δ,
or α̌ � (1 − σ)/(2κ̌) with κ̌ � tr Δ/(rμ). For convenience, we set α̌ = ∞ when
tr Δ ≤ 0.

Lemma 4.2. Suppose the conditions of Lemma 4.1 hold. Let α̂ � min{ᾱ, α̌}. Then

δ � 1 − μ(α̂)/μ ≥ (1 − σ)α̂/2. (4.8)

Proof. When tr Δ > 0, α̌ ≥ α is equivalent to κ̌α ≤ (1 − σ)/2. Then we find from
(4.6) that

μ(α)/μ − 1 = (σ − 1)α + α2κ̌

≤ (σ − 1)α + (1/2)(1 − σ)α = (1/2)(σ − 1)α.
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When tr Δ ≤ 0, the same result continues to hold because α2κ̌ ≤ 0 may be
dropped, and σ − 1 < 0. Therefore the claim holds when α̌ ≥ ᾱ.

When α̌ ≤ ᾱ, we get that μ(α̌)/μ − 1 = (σ − 1)α̌ + (1 − σ)α̌/2, which gives
the desired result.

Therefore, to obtain fast decrease in μ, it suffices to bound α̂ from below.
For, given a lower bound δ̂ ≤ δ, a standard argument1 shows that δ̂−1 log τ−1

steps are sufficient to ensure that μ ≤ τμ for an initial μ > 0 and desired decrease
factor τ ∈ (0, 1).

If κ < σ, then ᾱ > 1 from Lemma 4.1. Therefore in this case, it suffices to
have a bound for α̌ from below. Consequently, it suffices to bound both κ and κ̌

from above. Let us see how far that can be done.

Lemma 4.3. Let u, v ∈ J and let Hu and Hv be invertible linear operators on J , with
the induced norm ‖H‖F � maxx �=0 ‖Hx‖F/‖x‖F. Then

‖u‖F‖v‖F ≤ 1
2
‖H−1

u ‖F‖H−1
v ‖F

(‖Huu‖2 + ‖Hvv‖2).
Proof. We have ‖u‖F = ‖H−1

u Huu‖ ≤ ‖H−1
u ‖F‖Huu‖F and likewise for v. Now

apply the inequality 2ab ≤ a2 + b2.

Lemma 4.4. Suppose p, d, q = p ◦ d ∈ int K, and that (4.4) holds. Suppose H0 is an
invertible linear operator in J that satisfies H0q = q1/2 and H0e = q−1/2. Let Hd �
H0L(p) and Hp � H0L(d). Then ‖HdΔd‖2

F + ‖HpΔp‖2
F = θ − 2〈HpΔd, HdΔd〉 with

θ � θ(q, σ) �
r

∑
i=1

(σμ(q) − ζi(q))2

ζi(q)
.

Proof. Multiplying (4.4) from the left by H0, we get

HdΔd + HpΔp = H0(σμe − p ◦ d) = σμq−1/2 − q1/2,

where ‖σμq−1/2 − q1/2‖2 = tr[(σμq−1/2 − q1/2)2] = θ. On the other hand,

‖HdΔd + HpΔp‖2
F − 2〈HdΔd, HpΔp〉 = ‖HdΔd‖2

F + ‖HpΔp‖2
F.

Combining Lemmas 4.3 and 4.4, we get the bound

‖Δp‖F‖Δd‖F ≤ 1
2
‖H−1

p ‖F‖H−1
d ‖F(θ − 2〈HpΔp, HdΔd〉).

Now, if 〈HpΔp, HdΔd〉 ≥ 0, we may drop it. Otherwise, we have for β = 1 that

−〈HpΔp, HdΔd〉 ≤ β‖HpΔp‖F‖HdΔd‖F ≤ β

2
(‖HpΔp‖2

F + ‖HdΔd‖2
F).

If we can actually take β < 1, we get a geometrical series converging to the limit
(‖H−1

p ‖F‖H−1
d ‖F/2)θ/(1 − β). On the other hand, if β = 1 is the only option,

1 Each step obtains a proportional decrease of at least 1 − δ̂ in μ, so one obtains the condition
τ ≤ (1 − δ̂)k. Now apply the approximation − log(1 − δ̂) ≥ δ̂.
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we have −〈HpΔp, HdΔd〉 = ‖HpΔp‖F‖HdΔd‖F, which says that H0L(d)Δp +
τH0L(p)Δd = 0 for some τ ≥ 0. That is, L(d)Δp + τL(p)Δd = 0, which means
(4.2)–(4.4) must be singular. Consequently, if β ↗ 1, (p, d) must be approaching
a singularity of the system. Sufficiently far from a singularity, we thus get the
following bounds.

Lemma 4.5. Suppose that

−〈HpΔp, HdΔd〉 ≤ β‖HpΔp‖F‖HdΔd‖F

for β < 1. Then
κ ≤ (1/γ + 1/r)θ′ and κ̌ ≤ (1/r)θ′

for

θ′ �
‖H−1

p ‖F‖H−1
d ‖F

2(1 − β)μ
θ.

Consequently

δ−1 ≤ 2 max
{1/γ + 1/r

σ(1 − σ)
θ′,

2/r
(1 − σ)2 θ′,

1
1 − σ

}
,

where r = 1 gives an upper bound for the max-term.

Proof. Note that we have both ‖Δ‖F ≤ ‖Δd‖F‖Δp‖F, as remarked in Section 3.2.2,
as well as − tr Δ ≤ ‖Δd‖F‖Δp‖F. Thus κ ≤ (1 + γ/r)‖Δd‖F‖Δp‖F/(γμ) and
κ̌ ≤ ‖Δd‖F‖Δp‖F/(rμ). Approximating as discussed above, and noting that (1 +
γ/r)/γ = 1/γ + 1/r, yields the claimed bounds for κ and κ̌. Now apply these
bounds in ᾱ−1 = κ/σ (κ ≥ σ) and α̌−1 = 2κ̌/(1 − σ), and insert the results
into (4.8), i.e., δ−1 ≤ 2α̂−1/(1 − σ), to yield the first two terms of the maximum
expression. The last term is obtained by bounding α̂ ≤ ᾱ ≤ 1.

The following result ensures that θ/μ stays bounded in the neighbourhoods
C• under consideration.

Lemma 4.6. Suppose ‖P⊥
e w‖• ≤ γμ(w) for γ ∈ (0, 1), w ∈ J . Then, for σ > 0,

θ(w, σ) ≤
(γ2 + (1 − σ)2r

1 − γ

)
μ(w) when • = F, and (4.9)

θ(w, σ) ≤
(

1 − 2σ +
σ2

1 − γ

)
μ(w)r when • = 2, −∞. (4.10)

Proof. See the proof of [Schmieta and Alizadeh, 2003, Lemma 35], that actually
only depends on the properties of w, not of s and x (p and d).

It remains to consider Hp and Hd.

Lemma 4.7. Suppose p, d, q ∈ int K. Then,

(i) The operators L(q)−1/2 and L(q−1/2) satisfy the terms of Lemma 4.4 for H0.
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(ii) When p and d operator-commute, we may take H0 = L(d)−1/2L(p)−1/2, and get
‖H−1

p ‖F‖H−1
d ‖F ≤ √

cond(H) for H � L(d)−1L(p).

Proof. (i) Clearly the operators are invertible. Furthermore, L(q)−1/2 = L(q−1/2)
on the space spanned by the eigenvectors of q. Therefore, for both alternatives,
H0q = q1/2 and H0e = q−1/2.

(ii) Since p, d ∈ int K operator-commute, H0 is symmetric and they share a
Jordan frame, wherefore qt = pt ◦ dt. Thus H0q = q1/2 and H0e = q−1/2. Also
by operator-commutativity Hd = H0L(p) = H1/2 and Hp = H0L(d) = H−1/2, so
that ‖H−1

p ‖F‖H−1
d ‖F = (‖H‖F‖H−1‖F)1/2 =

√
cond(H).

The results of this section are summarised in the following algorithm and
theorem, recalling that we may scale our representation of fν. For • = F, better√

r complexities could actually be obtained by limiting σ, as shown in Schmieta
and Alizadeh [2003].

Algorithm 4.1 (Interior point method for DC problems on symmetric cones).

1. Choose target accuracy μ > 0, parameters γ, σ ∈ (0, 1), and an initial iterate
(p, d) ∈ C•(γ) ∩ G−1

rμ (y, 0) for some • ∈ {F, 2, −∞} and y ∈ Rm.

2. Choose a scaling Qv such that ( p̃, d˜) ∈ C∗• (γ), and a H0 satisfying the con-
straints of Lemma 4.4 with respect to ( p̃, d˜).

3. Solve (Δ p̃, Δd˜) from (4.2)–(4.4) if possible. Otherwise stop with failure.

4. Update (p, d) � (Q−1
v p̃(α̂), Qvd˜(α̂)) as the new iterate.

5. If μ ≤ μ, stop. Otherwise continue from Step 2

Theorem 4.1. Suppose that Step 3 of Algorithm 4.1 always succeeds, and there exists
at each iteration an H0 satisfying the conditions of Lemma 4.4 with respect to ( p̃, d˜).
Suppose furthermore that ‖H−1

p ‖F‖H−1
d ‖F/(1 − β) can be bounded from above by a

constant M < ∞. Denote by μ the initial (maximal) μ and let τ � μ/μ. Then
O(Mr log τ−1) iterations are sufficient for μ ≤ μ.

Proof. Note that since C∗• (γ) ⊂ C•(γ), and the latter is scaling invariant, after
reverse scaling still (Q−1

v p̃(α), Qvd˜(α)) ∈ C•(γ). Therefore Step 4 and the method
are well-defined.

Other dependencies on r in the bound for δ−1 from Lemma 4.5 can be ap-
proximated away, except the linear one in (4.9) or (4.10). Thus δ−1 = O(Mr), and
the claim follows from the discussion following Lemma 4.2.

4.2.5 Operator-commutative scalings

Suppose we choose the scaling such that p̃ = Qv p and d˜ = Q−1
v d operator-

commute. As discussed in Section 4.2.3, then (p, d) ∈ C•(γ) implies ( p̃, d˜) ∈
C∗• (γ), taking care of that assumption in Theorem 4.1. Lemma 4.7 then says that
it remains to bound cond(H) (and stay away from a singularity).
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In the Nesterov-Todd method, the scaling element is chosen to be v for the
unique element for which Qv2 p = d, expressible as v = (Qp1/2(Qp1/2d)−1/2)−1/2

according to Schmieta and Alizadeh [2003]. Then p̃ = d˜ operator-commute, and
L(d˜)−1L( p̃) = I, so that consequently cond(H) = 1. In the so-called “xs” method,
v = d1/2, so that d˜ = e, wherefore we have operator-commutativity, and get
cond(H) ≤ 2/(1 − γ) for • = 2, F, and cond(H) ≤ r/(1 − γ) for • = −∞. In
the “sx” method v = p−1/2, with similar results. More generally, the so-called
power class of scalings (or search directions) considered by Muramatsu [2002],
yields bounded cond(H).

Of course, the question remains: what is the effect of scaling on the close-
ness of the system (4.2)–(4.4) to a singularity? By the discussion following Lemma
3.6, this is at least somewhat unaffected close to a central selection. Also, when
A and B− have the special forms of Assumption 3.2 and Lemma 3.9, Lemmas
3.14 and 3.15 show that (strict) complementarity and non-degeneracy are unaf-
fected by scaling. Therefore, Lemma 3.6 shows that any scaled representation is
non-singular in some neighbourhood of a point that satisfies additional scaling-
independent (for q = 0) second-order assumptions.

4.3 Globalisation: A filter method

4.3.1 The idea

The idea of the filter method was first introduced for constrained optimisation by
Fletcher and Leyffer [2002] in a sequential quadratic programming (SQP) frame-
work, with convergence proven in Fletcher et al. [2002], for the case considered.
Other works in filter algorithms that seem most related to our work include those
of Ulbrich et al. [2004] and Wächter and Biegler [2005], where interior point ap-
proaches are considered.

The filter is basically a multi-dimensional generalisation of a monotonically
decreasing sequence bounded from below, where the decrease at each step is
sufficient by some criterion. Each point inserted in the filter defines a cone of
other points it dominates. Points belonging in an envelope of such a cone are
not allowed in future iterations. A filter method is therefore multi-objective op-
timisation applied to single-objective problems, where typically the additional
objectives are related to the constraints of the problem.

In practical methods in the literature so far, there are only two objectives,
and each of them is improved separately. One of them, typically the original
objective function value, is assigned to be the primary objective, and decrease in
it is sought while allowed by the filter, and some additional sufficient decrease
conditions are met. New points are inserted in the filter at appropriate places,
to force convergence in the future. When this primary phase of the algorithm
runs into trouble, a restoration phase is entered, with the purpose of improving the
second objective and restoring feasibility and acceptability to the filter. Often this
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restoration method is taken to be a black box.
The restoration method in Ulbrich et al. [2004], however, is closely related to

the primary method, and merely advances slightly differently. Indeed, although
rather general (C2) constrained nonlinear programming is considered therein, the
resulting analysis bears many parallels to the work in Section 4.2, and more gener-
ally the work on linear programming on symmetric cones. Their two elements of
the filter actually include the values μ(p ◦ d) and ‖P⊥

e (p ◦ d)‖ (in the non-negative
orthant of Rm, instead of general symmetric cones), plus additional terms related
to dissatisfaction of linear constraints. However, to prove convergence for the fil-
ter method, it is assumed that the equivalent of the system (4.2)–(4.4) is suitably
far from a singularity. But with such assumptions, the methods of Section 4.2
do already converge, “fast”. It is our intent to use the idea of the filter method
to circumvent that assumption. We will use a filter and a restoration method
to restore feasibility, when the main interior point method runs into trouble. To
do this, we apply the results of Section 4.4 to follow, as a consequence of which
our restoration phase algorithm will also be closely related to the primary phase
algorithm.

4.3.2 The method

We take the filter F to be a set of pairs (gF , hF ) ∈ R × [0, ∞). Then, another point
(g, h) is considered acceptable to the filter if for prescribed values of δF ∈ (0, 1) and
θF > 0,

for all (gF , hF ) ∈ F either g ≤ gF − θFhF or h ≤ (1 − δF )hF .

By augmenting the filter with (g, h) we mean replacing it with

{(g, h)} ∪ {(gF , hF ) ∈ F | gF < g or hF < h}.

The first part of the following lemma is standard:

Lemma 4.8. Suppose points added to the filter satisfy g ∈ [g, g] ⊂ (−∞, ∞) and h ≥
h > 0. Then the filter may be augmented only finitely many times with acceptable
points (g, h). If, furthermore, h ≤ h, then the filter may be augmented at most [(g −
g)/(θFh) + 1][δ−1

F log τ−1 + 1] times for τ � h/h. In particular, if g − g = O(h),
then we have the bound O(τ−1 log τ−1) for the number of augmentations.

Proof. Consider the square A � [h, h] × [g, g]. It is covered by the rectangles
(h(1 − δF )n[1 − δF , 1]) × (g − θFh[k, k + 1]), where n = 0, 1, . . . , N − 1, and k =
0, 1, . . . , K − 1. At most one point acceptable to the filter may lie in each rect-
angle, so the number of rectangles KN gives an upper bound on the number of
acceptable points that may be inserted in the filter. Solving g > g − θFhK, we
get K > (g − g)/(θFh). Solving for N from h > (1 − δF )Nh, we get the sufficient
condition N > log(h/h)δ−1

F (by application of − log(1 − δF ) ≥ δ2
F/2 + δF ≥ δF ).

This gives the desired bound in the case h ≤ h.
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Suppose then that there is an infinite sequence (h[k], g[k]) ∈ F , k = 1, 2, . . .,
with h[k+1] ≥ h[k]. Then g[k+1] ≤ g[k] − θFh[k] ≤ g[k] − θFh, so that g[k+1] ≤
g[1] − kθFh, and for large enough k, g[k+1] < g, which is a contradiction. Therefore
there exists some finite h ≥ h, and only finitely many entries may be added in the
filter.

In our present situation, we take g = fν(y) as the quality of the solution
in terms of objective function value, and h = ε = rμ as the quality of the solu-
tion in terms of 0 ∈ ∂DC

ε fν(y), as in Algorithm 4.1. Therefore, in contrast to the
situation in constrained optimisation, either filter element becoming sufficiently
small provides an approximate solution of prescribed quality. Unless the restora-
tion method fails (which our restoration method of choice will not do), it always
generates either a point acceptable to the filter, or a solution of such prescribed
quality, by reducing the value of fν or ε sufficiently. Therefore Lemma 4.8 alone
proves convergence of the filter method in case of non-failure, if we augment the
filter with acceptable points between restoration steps. Hence, the primary de-
sign goal of the filter method is to obtain greater (in practise) convergence speeds
than the pure restoration method.

A crude filter method would therefore simply augment the filter and enter
the restoration phase, whenever the main interior point method does not provide
sufficient decrease in ε (or sufficiently long step), or the candidate iterate is un-
acceptable to the filter. Limited practical experience, however, suggests that an
approach familiar from other filter methods in the literature works better. We
next represent such a method. The idea is to choose a shorter step size than al-
lowed by the pure interior point method, if fν is sufficiently descending in the
search direction. Also, if a linear model of the function does not predict decrease,
we augment the filter for future reference.

In the rest of this section, we assume that both f and ν are of the form (3.7).
Suppose y, Δy ∈ Rm are given, and 0 ∈ ∂DC

ε f (y). For arbitrary z ∈ ∂DC fν(y),
we define the linear model of fν,

l(α) � fν(y) + α〈z, Δy〉.

We say that the model decreases sufficiently, if for prescribed κ > 0,

l(0) − l(α) ≥ κε, (4.11)

and that fν itself decreases sufficiently with respect to the model, if for given
η > 0,

fν(y) − fν(y(α))
l(0) − l(α)

≥ η. (4.12)

Here we denote y(α) � y + αΔy akin to (4.5). We also introduce the notation
ε(α) � 〈p(α), d(α)〉 = rμ(α), where μ(α) is given by (4.6).

With these definitions, the filter method is as follows.

Algorithm 4.2 (Filter method for DC problems on symmetric cones).
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1. Choose target accuracy ε > 0, parameters δ, δF ∈ (0, 1), θF > 0, η ∈ (0, 1),
and κ > 0, as well as the filter F and its initial contents.

2. Initialise the interior point method per instructions of Algorithm 4.1 for the
data of fν, yielding (p, d, y, ε) with (p, d) ∈ G−1

ε (y, 0) ∩ C•(γ).

3. If ε ≤ ε, stop, for we have a solution.

4. Calculate the direction (Δp, Δd, Δy) by solving, as in Algorithm 4.1, a scaled
version of (4.2)–(4.4). Set α � α̂ with the latter as in Lemma 4.2.

5. If Step 4 failed, or ε(α)/ε > 1 − δ, augment F with ( fν(y), ε), and enter the
restoration phase that either

(a) Produces a new iterate (p, d, y, ε) with (p, d) ∈ G−1
ε (y, 0) ∩ C•(γ) and

( fν(y), ε) acceptable to the filter. In this case we continue from Step 4.

(b) Detects an ε-semi-critical point (or fails), in which case we stop.

6. If ( fν(y(α)), ε(α)) is acceptable to F , and either (4.11) fails or (4.12) holds,
go to Step 8.

7. Set α � α/2, and go to Step 5.

8. If (4.11) fails, augment F with ( fν(y), ε).

9. Update (p, d, y, ε) � (p(α), d(α), y(α), ε(α)), and continue from Step 3.

Theorem 4.2. Suppose the filter F is initialised to include {(g, 0)} for some g > min fν

(and that the initial iterate is acceptable to F ). Then Algorithm 4.2 converges in a finite
number of iterations to an ε-semi-critical point (if the restoration method does not fail). If,
furthermore, always ε ≤ ε for some ε > ε such that ε > g − min fν, and the restoration
method is taken as an oracle, then the number of iterations is O(τ−1(log τ−1)2) for
τ � ε/ε.

Proof. Step 5 ensures ε(α)/ε ≤ 1 − δ. Thus a standard argument (cf. Lemma 4.8)
shows that there are at most O(log τ−1) iterations of the main phase of the algo-
rithm between each restoration phase. Since the filter is augmented before each
restoration phase with a point acceptable to it, Lemma 4.8 says that the restora-
tion method may be called only a finite number of times. Furthermore, when
ε ≤ ε, Lemma 4.8 with g = min fν provides the bound O(τ−1 log τ−1) for the
number of augmentations.

Remark 4.1. Instead of directly specifying δ, we could specify β ∈ (0, 1), and
calculate δ−1 according to Lemma 4.5. In this case we should include in the com-
plexity estimate, the contribution by r, and potentially γ as well, depending on
whether reinitialisation of (p, d) ∈ G−1

ε (y, 0) ∩ C•(γ) in the restoration method
allows free choice, or guarantees a bound.
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4.4 The restoration method

4.4.1 Sequential convex programming

Consider two arbitrary finite convex functions f and ν on Rm. Let ε ≥ 2ρ ≥ 0 be
chosen. Suppose z ∈ ∂ρν(y), z �∈ ∂ε−ρ f (y). In other words,

ν(y′) − ν(y) ≥ zT(y′ − y) − ρ, for all y′, (4.13)

f (y′′) − f (y) < zT(y′′ − y) − (ε − ρ), for some y′′. (4.14)

Setting y′ = y′′ and summing,

fν(y′′) − fν(y) < −ε + 2ρ

so that y is not ε − 2ρ -optimal.
Suppose then that we have z ∈ ∂ε′ f (ŷ), i.e.,

f (y′) − f (ŷ) ≥ zT(y′ − ŷ) − ε′, for all y′.

Setting y′ = y′′, and summing with (4.14), we have

f (y) − f (ŷ) > zT(y − ŷ) − ε′ + (ε − ρ).

Setting y′ = ŷ and further summing with (4.13),

fν(y) − fν(ŷ) > (ε − 2ρ) − ε′. (4.15)

Thus, if ε′ ≤ σSCP(ε − 2ρ) for σSCP ∈ (0, 1), a reduction of (1 − σSCP)(ε − 2ρ) has
been achieved in the value of fν.

The conceptual algorithm for finding ε-semi-critical points of fν is now clear.

Algorithm 4.3 (Sequential convex programming (SCP) method).

1. Choose target accuracy ε > 0, gradient accuracy ρ ∈ [0, ε/2), stepwise
reduction σSCP ∈ (0, 1), and an initial iterate y[0].

2. Select a subgradient z[k] ∈ ∂ρν(y[k]).

3. Set ε′ � σSCP(ε − 2ρ), and find ŷ such that z[k] ∈ ∂ε′ f (ŷ).

4. If a reduction of (1 − σSCP)(ε − 2ρ) is not obtained in the value of fν, by
the above analysis it must have been that z[k] ∈ ∂ε−ρ f (y[k]), so that 0 ∈
∂DC

ε fν(y[k]), and we already were at a ε-semi-critical point. Therefore, stop
with result y[k].

5. Otherwise repeat from Step 2 with y[k+1] � ŷ, and k � k + 1.
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Clearly, as a constant reduction in the value of fν is achieved on each non-
final iteration, the method is convergent if Step 3 always succeeds, and fν is
bounded from below. For the success, we should have R(∂ν) ⊂ R(∂ f ). The
stricter bound cl R(∂ν) ⊂ int R(∂ f ) along with bounded R(∂ν) in fact ensures
that fν has bounded level sets and is therefore bounded from below according to
Theorem 2.6.

We note that this method can be seen as an approximate variant of the DCA
method of An and Tao [2005], the “simplified” version of which amounts to ρ =
ε = 0 (while the “complete” version sets further restrictions). The method of
truncated codifferential considered by Demyanov et al. [2002] also bears many
parallels to SCP.

Remark 4.2. Alternatively, instead of fixing ε′ in Step 3, we may attempt to find ŷ
and ε′ > 0 with z ∈ ∂ε′ f (ŷ), such that the objective function value is reduced by
0 < Δ[k] ≤ ε − 2ρ, or (4.15) is violated (for y = y[k]), one of which must occur for
small enough ε′ > 0.

Remark 4.3. The SCP argument actually proves convergence for inexact
K-means -style local convex optimisation methods; cf. Section 6.3 and the
references therein. Suppose fν(y) = f (y) − ν(y) for ν(y) � maxt∈T νt(y) for
some finite index set T and convex functions νt, and that ft � f − νt are convex.
Now, suppose fν(y) = ft(y), and choose in the SCP method, ft for f , 0 for ν,
z = 0 and ρ = 0. If the predicted decrease is not achieved, then the SCP argument
says 0 ∈ ∂ε ft(y), that is f (y′) − f (y) ≥ νt(y′) − νt(y) − ε for all y′. But then for
any z ∈ ∂νt(y) ⊂ ∂ν(y), f (y′) − f (y) ≥ zT(y′ − y) − ε. This says z ∈ ∂ε f (y), so
that y is ε-semi-critical for fν.

4.4.2 Interior point SCP

If f (but not necessarily ν) has the form (3.7), we may apply Algorithm 4.1 in Step
3 of Algorithm 4.3 to reducing ε′ > 0 in z ∈ ∂ε′ f (ŷ), after finding initial values
for which this holds. For, as is clear from the analysis, Algorithm 4.1 always
maintains the linear constraints for any set values, and therefore works for other
values besides z = 0. If we can initialise each iteration in a bounded manner, we
have finite convergence. More precisely,

Theorem 4.3. Suppose that for all y[k] and z[k] ∈ ∂ρν(y[k]), we can (in negligible time)
initialise (p f , d f ) ∈ G−1

f ,ε(y′, z[k]) ∩ C•(γ) at some y′ for fixed ε ≥ fν(y[0]) − min fν,
γ ∈ (0, 1), and • ∈ {F, 2, −∞}. Then, if Algorithm 4.1 is used in Step 3 with one
of the operator-commutative scalings from Section 4.2.5, O(Kγ,r f τ

−1 log τ−1) steps of
the interior point method are sufficient to reach an ε-semi-critical point, with τ � (ε −
2ρ)/ε, and Kγ,r f a polynomial of 1/(1 − γ) and r f ,

Here and in the rest of this section, G−1
f ,ε is G−1

ε as defined in Corollary 3.2
for the data of f , while without the specifier, the data of all of fν is implied, as
before. C•(γ) is a subset of one of K, K f , or Kν, depending on the context.
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The factor Kγ,r f replaces Mr f and omitted terms from Theorem 4.1, where
the dependence on γ was de-emphasised, being something that can be chosen
arbitrarily small by suitable initialisation. Here, however, z limits the quality of
the initialisation – which cannot be done if z �∈ R(∂ f ).

Proof. The term 1/(1−γ) is the dominant one involving γ as γ ↗ 1 in the bounds
of Lemma 4.6 and the bounds for cond(H) in Section 4.2.5. Therefore, similarly
to the proof of Theorem 4.1, we find from Lemmas 4.5 and 4.2 that to find an
ε − 2ρ critical point, each invocation of Step 3 requires O(Kγ,r f log τ−1) steps of
the interior point method, where Kγ,r f is as claimed.

Since each non-terminal step of the SCP algorithm achieves a reduction of
at least (1 − σSCP)(ε − 2ρ) in the value of fν, and Δ0 � fν(y[0]) − min fν ≤ ε, we
get that n ≥ Δ0/((1 − σSCP)(ε − 2ρ)) = O(τ−1) iterations of the SCP method
are sufficient. This results in the claimed total number of iterations of the interior
point method.

Next we study when the initialisation required above can be performed, and
with what quality. We begin with a few basic results needed towards that end.

Lemma 4.9. Suppose fν is bounded from below, ρ ≥ 0, Δ0 ≥ fν(y) − min fν, and
z ∈ ∂ρν(y). Then z ∈ ∂Δ0+ρ f (y).

Proof. By assumption ρ ≥ ν(y) − ν(y′) + zT(y′ − y) and Δ0 ≥ f (y) − ν(y) −
f (y′) + ν(y′) for all y′. By combining these inequalities, we get the claim.

Lemma 4.9 and (3.11) thus show the existence of some (p f , d f ) ∈
G−1

f ,Δ0+ρ(y[k], z[k]). The objective is then to improve (p f , d f ) ∈ C•(γ) for
fixed γ ∈ (0, 1) without ε ≥ Δ0 + ρ increasing unboundedly.

To provide such results, we need to show that ‖ · ‖−∞ actually satisfies the
triangle inequality (although it is not a norm).

Lemma 4.10. Suppose x, y ∈ J . Then ‖x + y‖−∞ ≤ ‖x‖−∞ + ‖y‖−∞.

Proof. As defined in Section 4.2.3, ‖z‖−∞ = − mini ζi(z), so it suffices to show
mini ζi(z) ≥ mini ζi(x) + mini ζi(y) for z = x + y. Let x = ∑r

i=1 ζi(x)xi, y =
∑r

i=1 ζi(y)yi, and z = ∑r
i=1 ζi(z)zi be the decompositions of x, y, z ∈ K into sums

of primitive idempotents. Applying ∑j xj = e, tr zi = 1, and the fact that since
primitive idempotents are in K, their inner product is non-negative, we have

ζi(z) = 〈zi, z〉 = 〈zi, x〉 + 〈zi, y〉 = ∑
j
(ζ j(x)〈zi, xj〉 + ζ j(y)〈zi, yj〉)

≥ min
k

ζk(x)〈zi, ∑
j

xj〉 + min
k

ζk(y)〈zi, ∑
j

yj〉 = min
j

ζ j(x) + min
j

ζ j(y).

Assumption 4.1. We assume that A(p1, . . . , pn) = (〈a′1, p1〉, . . . , 〈a′n, pn〉) as in As-
sumption 3.2, along with (R(A∗) ∩ int K)−1 ⊂ N (B) ∩N (〈c, ·〉).

Remark 4.4. Inversion in the latter condition can always be made unnecessary by
scaling with v = (a′1, . . . , a′n) to yield A˜ p̃ = (〈e, p̃1〉, . . . , 〈e, p̃n〉); cf. Section 3.4.6.
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Example 4.1. This assumption is satisfied by combinations of Euclidean norms
(cf. Example 3.3), where of pi = (p0

i , p̄i) ∈ Em+1, A depends only on p0
i , and B

and 〈c, ·〉 on p̄i.

When the assumption holds, we set a � (φ1a′1, . . . , φna′n), where φi ∈ R

is chosen so that Aa−1 = b, i.e., ri = φibi. Then a ∈ R(A∗) ∩ int K, so that
〈a−1, B∗y〉 = 〈a−1, c〉 = 0. Also, μ(a ◦ p) = 1 for any p ∈ V = {p ∈ K | Ap = b},
because 〈a, p〉 = ∑i φi〈a′i, p f ,i〉 = ∑i φibi = ∑i ri.

Lemma 4.11. Suppose Assumption 4.1 holds, and that (p′, d′) ∈ G−1
ε′ (y, z)∩ C−∞(γ′).

Then, for 0 < ψ < γ ≤ γ′, there exist (p, d) ∈ G−1
ε (y, ψz) ∩ C−∞(γ) with

ε � ψ
γ′ − ψ

γ − ψ
〈p′, d′〉 +

(1 − ψ)2

γ − ψ
〈a−1, d′〉 ≤ 1 + (γ′ − 2)ψ

γ − ψ
ε′ +

(1 − ψ)2

γ − ψ
v(y),

(4.16)
where v(y) � supp∈V〈p, B∗y + c〉. In particular, with γ′ = 1 and γ = (1 + ψ)/2, we
get ε = 2〈p, d′〉 and 1/(1 − γ) = O(1/(1 − ψ)).

By the definition of f and ν, when the lemma is applied to the data of f
alone, v = f , and when it is applied to fν, v = f + ν.

Proof. Letting p � ψp′ + (1 − ψ)a−1, we have Bp = ψz, and by convexity p ∈ V.
Furthermore, Q1/2

a p = Q1/2
a (ψp′) + (1 − ψ)e, so that P⊥

e Q1/2
a p = ψP⊥

e Q1/2
a p′.

Since Q1/2
a p′ ∈ K, we have mini ζi(Q1/2

a p′) ≥ 0, and then

‖P⊥
e Q1/2

a p‖−∞ = ψ‖P⊥
e Q1/2

a p′‖−∞ ≤ ψμ(Q1/2
a p′) = ψ = ψμ(a ◦ p). (4.17)

Now, let d � d′ + λa, for yet unspecified λ ≥ 0. Clearly d ∈ K. Now
Q1/2

p d = λQ1/2
p a + Q1/2

p d′, and both of the components are in K. Therefore,
we may apply Lemma 4.10 and get by the symmetricity ‖P⊥

e Q1/2
p a‖−∞ =

‖P⊥
e Q1/2

a p‖−∞ [Schmieta and Alizadeh, 2003, Proposition 21] that

‖P⊥
e Q1/2

p d‖−∞ ≤ λ‖P⊥
e Q1/2

p a‖−∞ + ‖P⊥
e Q1/2

p d′‖−∞

≤ λ‖P⊥
e Q1/2

p a‖−∞ + ψ‖P⊥
e Q1/2

d′ p′‖−∞ + (1 − ψ)‖P⊥
e Q1/2

d′ a−1‖−∞

≤ λψ + ψγ′μ(p′ ◦ d′) + (1 − ψ)μ(a−1 ◦ d′).

Since

μ(p ◦ d) = λμ(p ◦ a) + μ(p ◦ d′) = λ + ψμ(p′ ◦ d′) + (1 − ψ)μ(a−1 ◦ d′), (4.18)

we therefore have ‖P⊥
e Q1/2

p d‖−∞ ≤ γμ(d ◦ p), if

ψ(γ′ − γ)μ(p′ ◦ d′) + (1 − ψ)(1 − γ)μ(a−1 ◦ d′) ≤ (γ − ψ)λ.

Setting this to equality and inserting the resulting λ in (4.18), gives the first half
of (4.16) (as ε = rμ(p ◦ d)).

For the second half of (4.16), observe that 〈a−1, d′〉 = 〈p′, d′〉 + 〈a−1 −
p′, d′〉 = 〈p′, d′〉 + 〈p′ − a−1, B∗y + c〉 = 〈p′, d′〉 + 〈p′, B∗y + c〉 ≤ ε + v(y) by
Assumption 4.1.
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Finally, setting γ′ = 1 and γ = (1 + ψ)/2, we have γ − ψ = (1 − ψ)/2, and
therefore ε = 2(ψ〈p′, d′〉 + (1 − ψ)〈a−1, d′〉). By the definition of p, this proves
the claim for that case.

Lemma 4.12. Suppose Assumption 4.1 holds for f , and that R(∂ν) ⊂ ψR(∂ f ) for
some ψ ∈ (0, 1). Then there exist (p f , d f ) ∈ G−1

f ,ε(y, z) ∩ C−∞(γ), γ ∈ (0, 1), with
1/(1 − γ) = O(1/(1 − ψ)), in the following cases:

(i) Varying y with fν(y) − min fν ≤ Δ0 and z ∈ ∂ρν(y), in which case ε = O(Δ0 +
ρ + ‖Vf ‖F‖c f ‖F).

(ii) Fixed y with z ∈ R(∂ν), in which case ε = O( f (y)) = O(‖Vf ‖F‖B∗
f y + c f ‖F).

As usual, the set norm is defined as ‖Vf ‖F � maxp∈Vf ‖p‖F.

Proof. Note that cl R(∂ f ) = cl
⋃

y∈Rm,ε≥0 ∂ε f (y) = Bf Vf , also from the representa-
tion of (3.11). Therefore, for z ∈ R(∂ν), there exists p′ ∈ Vf such that Bf p′ = z/ψ.
An application of Lemma 4.11 to (p′, d′) and z/ψ with γ′ = 1 and γ = (1 + ψ)/2
then provides (p f , d f ) � (p, d) and the requested bounds as follows:

(i) Let (p′′, d′) ∈ G−1
f ,Δ0+ρ(y, z) as shown to exist by Lemma 4.9 and the rep-

resentation of (3.11). Now, for the p provided by Lemma 4.11 we approximate
〈p, d′〉 = 〈p′′, d′〉 + 〈p − p′′, d′〉 = 〈p′′, d′〉 + 〈p′′ − p, c f 〉 ≤ Δ0 + ρ + 2‖Vf ‖F‖c f ‖F,
where in the second equality we have used Bf p = Bf p′′ = z and A f p = A f p′′ =
b.

(ii) Choose (p′′, d′) ∈ G−1
f ,0(y, z′) for some z′ ∈ ∂ f (y). Then, as in case i),

〈p, d′〉 = 〈p′′, d′〉 + 〈p − p′′, d′〉 = 〈p′′ − p, B∗
f y + c f 〉, and we readily get the claim

by the definition of f .

According to Lemma 4.12, there then is a solution to our initialisation prob-
lem under rather reasonable assumptions; cf. the level-boundedness results of
Section 2.5. But when can we actually find p such that Bf p = z/ψ in Vf ? Since
tr(Q1/2

a p) is constant, by the proof of Lemma 4.11, ‖Q1/2
a p‖−∞ can be made small

enough to imply that p ∈ K. Therefore, after scaling by a to work on p̃ � Q1/2
a p,

and relaxing the norm to • ∈ {F, 2, −∞}, this problem may be cast as minp̃ ‖ p̃‖•
subject to W p̃ = xψ and p̃ ∈ K, where W p̃ � (A f Q−1/2

a p̃, Bf Q−1/2
a p̃) and xψ �

(b, z/ψ).
If • = −∞, there exists an interior solution for non-minimal ψ. The prob-

lem then becomes minp̃(− minj ζ j( p̃)) = minp̃ maxj(−ζ j( p̃)). If f has the prod-
uct presentation of Assumption 4.1, and each of the cones Ki are second-order
cones, the smallest eigenvalue in each cone is p̃0

i − ‖ ¯̃pi‖. But p̃0
i is fixed because

b = A f Q−1/2
a p̃ = (φ−1

1 〈e, p̃1〉, . . . , φ−1
n 〈e, p̃2〉) = (b1 p̃0

1, . . . , bn p̃0
n). Therefore the

problem becomes minp̃ maxi ‖ ¯̃pi‖ subject to the linear constraints.
If we set • = F, we have p̃ = W†xψ for the Moore-Penrose pseudo-inverse

W† = W∗(WW∗)−1 (as by assumption N (W∗) = {0}), if the minimiser p̃ ∈ int K.
Unfortunately this may not be so, unless the norm is small enough that there
actually exists a solution (p, a) ∈ CF(1). In some applications, as we shall see
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in Section 4.5, the pseudo-inverse however provides a usable result (and is the
solution for • = −∞ as well, in fact).

Remark 4.5. In the SCP method and case i) of Lemma 4.12, actually O(ρ) =
O(Δ0), so ε = O(Δ0 + ‖Vf ‖F‖c f ‖F). This is because, if fν(y) − min fν ≤ 2ρ ≤ ε,
then choosing z ∈ ∂ν(y), we have z ∈ ∂ε f (y), by Lemma 4.9, so y is ε-semi-
critical.

Remark 4.6. When the function ν can also be expressed as (3.7), we may actually
use any feasible initialisation at y[k], by solving for z ∈ ∂ρν(y[k]) simultaneously
with z ∈ ∂ε′ f (ŷ), keeping z free during the interior point method instead of choos-
ing and initialising at one. This is particularly well suited with the modification
in Remark 4.2 of Algorithm 4.3. For, replacing B = (Bf ; Bν) with B′ = (Bf ; 0),
in (4.2)–(4.4) and advancing in the direction of any solution to the system, will
not alter the y component of dν. In fact, the components of the equation only
featuring ν, become

A∗
νΔλν + Δdν = 0, AνΔpν = 0, L(pν)Δdν + L(dν)Δpν = Δqν.

This equation is fully determined in the interior of Kν under standard assump-
tions following from (3.8)–(3.10); see Faybusovich [1997b]. Therefore it would
suffice to solve this equation first, and then use Δz = BνΔpν for solving the f
component separately. This argument also shows that the resulting full system of
equations is non-singular.

However, the rate of decrease can be low. More precisely: We have
(pν, dν) ∈ C−∞(γ′) for some γ′ ≤ (γ + r f /rν)/(1 + r f /rν) ∈ (0, 1) when
(p, d) ∈ C−∞(γ).2 Therefore, since 〈Δpν, Δdν〉 = 0, the results of Section 4.2.4
show that (pν(α), dν(α)) ∈ C−∞(γ′) for α ∈ (0, ᾱ) with ᾱ bounded away from
zero. Since αΔz is bounded by R(∂ν) being bounded, Δz must then also be
bounded. However, since 〈Δp f , Δd f 〉 = −〈Δy, Δz〉 �= 0 (generally), the condition
of the system

B∗
f Δy + A∗

f Δλ f + Δd f = 0, A f Δp f = 0, Bf Δp f = Δz,

L(p f )Δd f + L(d f )Δp f = Δq f

for the f components, can limit the step length considerably. The convergence
can therefore become slow, or even close to a halt as the iterates close to a point
(with μ = 0) that fails to be non-degenerate and strictly complementary (for f ),
as the system can be singular there.

4.4.3 Application of SCP to restoration phase

A variant of Algorithm 4.3 can be used for restoration in Algorithm 4.2, and it
never fails, so that convergence is attained. We simply add after Step 4 (of Algo-
rithm 4.3) the step:
2 This can be seen by approximating (1 − γ) ∑i ζi(q)/(r f + rν) ≤ mini{ζi(q)} ⇐⇒

‖P⊥
e q‖−∞ ≤ γμ(q) from above and below to remove the eigenvalues of the q f component

of q = (q f , qν) = Q1/2
p d.
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4+. Calculate (p, d, ε) such that (p, d) ∈ G−1
ε (ŷ, 0) ∩ C•(γ) (for the data of fν). If

( fν(ŷ), ε) is acceptable to F , return to the main phase with result (p, d, ŷ, ε).

If the basic version of Algorithm 4.3 is used (or the variant of Remark 4.2, but
not that of Remark 4.6), then provided that ε is large enough that the initiali-
sation required by Theorem 4.3 can be performed (cf. Lemma 4.12), we have
the bound O(Kγ f ,r f τ

−1
ρ log τ−1

ρ ) with τρ � (ε − 2ρ)/ε for the number of interior
point iterations in each restoration phase. Since τρ ≤ τ = ε/ε, the total num-
ber of interior point iterations in Algorithm 4.2 (with those in the main phase
for fν, and those in the restoration phase for f alone), is therefore bounded by
O(Kγ f ,r f τ

−2
ρ (log τ−1

ρ )3), provided that the conditions in Theorem 4.2 are satisfied,
including ε ≤ ε on return from Step 4+ above.

This bounded reinitialisation in Step 4+ can indeed be enforced by adding
such a check (or including (0, ε) in the filter), in which case the SCP restoration
method simply churns out new candidates while decreasing fν, until it reaches an
ε-semi-critical point or an acceptable candidate. The check does not degrade the
complexity bounds calculated above, because SCP alone has lower complexity.
It is thus seen that the complexity of the method is entirely dependent on τ, the
worst initialisation quality proportional to the desired solution quality, and ψ,
which describes the proportion of the concave component and closeness to level-
unboundedness of fν.

We may, however, also calculate some bounds for reinitialisation quality, to
ensure that provided with big enough but reasonably bounded ε and γ, the en-
forcement of ε ≤ ε does not simply reduce the filter method to SCP. The next
result proves the existence of such a “good” initialiser; later a more practical pro-
cedure is provided, with bounds not so directly related to the quality of the cur-
rent iterate. Note from the proof that the bounds are also good for initialisation
(of f data) for SCP restoration, in addition to reinitialisation (of fν data) on return
to the primary phase.

Theorem 4.4. Fix the constants ε ≥ 2ρ > 0. Suppose Assumption 4.1 holds for f and
R(∂ν) ⊂ ψR(∂ f ) for some ψ ∈ (0, 1). Suppose moreover that fν(y) − min fν ≤ Δ0.
Then either of the following holds:

(i) y is ε-semi-critical for fν.

(ii) There exists (p, d) ∈ G−1
ε (y, 0) ∩ C−∞(γ) for ε = O(Δ0 + ‖Vf ‖F‖c f ‖F), γ ∈

[0, 1) with (1 − γ)−1 = O((1 − ψ)−2τ−1), and τ � ε/ε.

Proof. Find z ∈ Rm and (pν, dν) ∈ G−1
ν,ρ (y, z) ∩ C−∞(ψ) with exactly 〈pν, dν〉 = ρ.

This can be done, even with ψ = 0, because the selection pν ◦ dν = μνe, with μν �
ρ/rν, within ∂ν comes from the subdifferential of a barrier-smoothed function; cf.
Remark 3.1. An alternative way to see this, is to write ξν � −B∗

νy − cν, to get the
system of equations

A∗
νλν + dν = ξ ′

ν, Aν pν = bν, pν ◦ dν = μνe; pν, dν ∈ Kν, (4.19)
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which [see, e.g., Faybusovich, 1997b; Schmieta and Alizadeh, 2003] characterises
the solutions of

min [〈ξν, pν〉 − μν log(det pν)] subject to Aν pν = bν, pν ∈ Kν.

With z and (pν, dν) found, apply Lemma 4.12 to find (p f , d f ) ∈ G−1
f ,ε(y, z) ∩

C−∞(γ′) for some ε = 〈p f , d f 〉 = O(Δ0 + ρ + ‖Vf ‖F‖c f ‖F), and γ′ ∈ [0, 1) with
(1 − γ′)−1 = O((1 − ψ)−1). Apply the following Lemma 4.13, to get the claim of
the theorem at y for ε = O(ε) � O(Δ0 + 2ρ + ‖Vf ‖F‖c f ‖F) and τ−1

y = O(τ−1).
Finish the proof by referring to Remark 4.5 to take out ρ from the complexity.

Lemma 4.13. Assume we have fixed ε ≥ 2ρ ≥ θε > 0 for some θ > 0. Suppose
that for some γ′ ∈ [0, 1) and ε′ > 0, we have (p f , d f ) = G−1

f ,ε′(y, z) ∩ C−∞(γ′) and

(pν, dν) = G−1
f ,ρ(y, z) ∩ C−∞(γ′) with exactly ε′ = 〈p f , d f 〉 and ρ = 〈pν, dν〉. Then

either of the following holds:

(i) ε′ + ρ ≤ ε, in which case y is ε-semi-critical for fν.

(ii) (p, d) = ((p f , pν), (d f , dν)) ∈ G−1
ε (y, 0) ∩ C−∞(γ) for ε � ε′ + ρ, and γ ∈

[0, 1) with (1 − γ)−1 = O((1 − γ′)−2τ−1
y ), and τy � ε/ε.

Proof. Let q = (q f , qν) � (Q1/2
p f d f , Q1/2

pν dν) = Q1/2
p d. Denoting ζ(q) � mini ζi(q),

we have
(1 − γ′)μ(q f ) ≤ ζ(q f ) ≤ μ(q f ), (4.20)

and likewise for ν. Therefore

(1 − γ′)μ(q) = (1 − γ′)
r f μ(q f ) + rνμ(qν)

r f + rν
≤ r f ζ(q f ) + rνζ(qν)

r f + rν
.

But

rνζ(qν)/ζ(q f ) ≤ rν
μ(qν)
μ(q f )

/(1 − γ′) ≤ r f
ρ

ε′
/(1 − γ′),

employing (4.20), as well as the exactness assumption in the denominator esti-
mate. Because an analogous estimate holds with the roles of f and ν reversed,
and ζ(q) = min{ζ(q f ), ζ(qν)}, we have

(1 − γ′)μ(q) ≤ 1 + max{ε′/ρ, ρ/ε′}
1 − γ′ ζ(q).

If ε′ ≤ ρ, then ε′ + ρ ≤ 2ρ ≤ ε, which is covered by case (i). So assume the
contrary.

We now get 1 + ε′/ρ = (ρ + ε′)/ρ ≤ ε/(θε). Therefore, with γ defined by
(1 − γ)−1 = (1 + ε′/ρ)(1 − γ′)−2, we have (1 − γ)−1 = O((1 − γ′)−2τ−1

y ), as
well as γ ∈ [0, 1) and (1 − γ)μ(q) ≤ ζ(q). Hence, case (ii) applies.
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We can in principle solve (4.19) approximately by standard interior point
methods. After all, instead of pν ◦ dν = μνe ∈ C−∞(0), we only wanted C−∞(ψ).
Then we could calculate (p f , d f ) and modify the result as indicated in the
proof. However, we would have to bound the quality of the initialisation for
this method, which would annoyingly seem to involve y or the linearisation
error eν (defined in Section 2.2). Sometimes (4.19) can be solved directly,
however, as the examples below show. After that, we would still have to find
(p f , d f ) ∈ G−1

f ,ε′(y, z) ∩ C−∞(γ′) as discussed towards the end of Section 4.4.2
above.

Example 4.2. Suppose Assumption 4.1 holds for ν. Let ξν = −B∗
νy − cν be as in

Theorem 4.4. Then, dropping the ν-subscripts to simplify the notation for this
example, di = ξi + λia′i and pi = μd−1

i , assuming λi is big enough for di to be
invertible. The problem now is to have 〈a′i, pi〉 = bi, i.e., tr(Q1/2

a′i
d−1

i ) = bi/μ.

Taking Q1/2
a′i

inside d−1
i [doable by, e.g., Faraut and Korányi, 1994, Proposition

II.3.3],
tr(Q−1/2

a′i
ξi + λie)−1 = bi/μ. (4.21)

Thus, if we can invert the trace of the resolvents of ξ˜i � Q−1/2
a′i

ξi, we can solve
(4.19).

Example 4.3. Suppose that (each) Ki in Example 4.2 is a second order cone. Then
for x = (x0, x̄), we have x−1 = (x0, −x̄)/ det(x), det(x) = (x0)2 − ‖x̄‖2, and
tr x = 〈e, x〉 = 2x0. By Assumption 4.1, 〈e, ξ˜i〉 = 〈(a′i)

−1, ξi〉 = 0, which implies
ξ˜0

i = 0. Therefore, tr(ξ˜i + λie)−1 = 2λi/(λ2
i − ‖ξ̄˜i

‖2), so we get from (4.21) the

quadratic equation (2μν/bi)λi = λ2
i − ‖ξ̄˜i

‖2. This can be solved for λi, as we
wanted.

The proof of the next result provides a simpler practical reinitialisation
method, which has worse bounds near an actual minimum of fν. It however ap-
pears to work better in practise, and provide lower ε, which may be attributable
to the fact the method is seldom near the global minimum, but rather a local one
or some other semi-critical point. The subgradient assumptions are guaranteed
by the SCP procedure.

Lemma 4.14. Suppose Assumption 4.1 holds (for both f and ν), and that z ∈ ∂ fε′(ŷ)
and z ∈ ∂ρν(y). Denote the linearisation error of ν by � � eν(ŷ; y, z). Then for all
ψ ∈ (0, 1), there exist (p, d) ∈ G−1

ε (ŷ, 0) ∩ C−∞(γ) with γ � (1 + ψ)/2 and ε/2 �
ψ(ε′ + ρ + �) + (1 − ψ)( f (ŷ) + ν(ŷ)).

Proof. We note that by the definition of f , there exists p̂ f (y) ∈ Vf such that
f (y) = 〈B∗

f y + c f , p̂ f (y)〉. Furthermore, by (3.11), there exists d̂ f (y) = −B∗
f y −

c f − A∗
f λ̂ f (y) ∈ K f such that 〈 p̂ f (y), d̂ f (y)〉 = 0. Therefore, for all p′

f ∈ Vf ,

f (y) − 〈B∗
f y + c f , p′

f 〉 = 〈d̂ f (y), p̂ f (y) − p′
f 〉 = 〈d̂ f (y), p′

f 〉. (4.22)
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An analogous result holds for ν.
By the approximate subgradient transportation formula (see Section 2.2),

z ∈ ∂νρ+�(ŷ). Therefore, we can find (p′, d′) ∈ G−1
ε′+ρ+�(ŷ, 0). In fact, we can

take d′ = d̂ � (d̂ f (ŷ), d̂ν(ŷ)), since with ŷ fixed, the choice λ̂(ŷ) for λ must
minimise d′ �→ 〈d′, p′〉. (If some other d′ at y achieved lower value, then also
〈d′, p̂〉 < 〈d̂, p̂〉 = 0, which is a contradiction to properties of symmetric cones.)
We therefore have by Assumption 4.1 and (4.22) with p′ = a−1 that

〈a−1, d′〉 = f (ŷ) + ν(ŷ) − 〈B∗ŷ + c, a−1〉 = f (ŷ) + ν(ŷ). (4.23)

Now we simply apply Lemma 4.11 with γ′ = 1 and γ = (1 + ψ)/2 to yield
the claim for

ε/2 = ψ〈p′, d′〉 + (1 − ψ)〈a−1, d′〉.
Then we just use (4.23) and 〈p′, d′〉 ≤ ε′ + ρ + �.

Remark 4.7. The subgradient transportation formula actually holds for fixed p′
ν.

To see this, suppose (p′
ν, d′

ν) ∈ G−1
ν,ρ (y, z) and calculate 〈p′

ν, d̂ν(ŷ)〉 = 〈p′
ν, d̂ν(y)〉 +

〈p′
ν, d̂ν(ŷ) − d̂ν(y)〉 = 〈p′

ν, d̂ν(y)〉 + ν(ŷ) − ν(y) − 〈B∗
ν(ŷ − y), p′

ν〉 ≤ ρ + �, where
we have applied (4.22) twice in the last equality.

What this means is that we can with simple modifications of (p′
ν, d′

ν) and
(p′

f , d′
f ) ∈ G−1

f ,ε′(ŷ, z), produce (p, d) satisfying the claims of Lemma 4.14: calculate

d̂(ŷ), translate p′ = (p′
f , p′

ν) towards a−1 by 1 − ψ, and add a factor of a to d̂(ŷ).

Remark 4.8. As we see, to ensure that (p, d) ∈ C−∞(γ), without any further
knowledge of the containment in C•(γ′) of (p′

ν, d′
ν) ∈ G−1

ν,ρ (ŷ, z) after transporta-
tion of z from y to ŷ, we have to ensure that p is also far enough from the boundary
of K. To do so, we apply the translation towards a−1. But this component brings
the annoying f + ν sum (instead of difference) into the bound, which is not found
in the bound of Theorem 4.4.

4.5 Practical considerations and experience

We have not tested (and compared against other methods) our algorithms to any
statistical significance. In this section, we however list some observations from
our limited experience with the methods. But we begin with a note of another
kind.

4.5.1 Reductions of the linear system

The system (4.2)–(4.4) can be huge. In a typical application to sums of K Eu-
clidean distances in Rm, the (block-diagonal) matrix A has size (m + 1)K × K.
Fortunately, we can reduce the system to only depend on the dimension of y.
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Denote F � L(d)−1L(p). Then, multiplying (4.4) from the left by L(d)−1 and
expanding Δd from (4.3), the system becomes

(A, B−)Δp = 0, −F(A, B)∗(Δλ, Δy) + Δp = L(d)−1Δq.

Multiplying the second equation by (A, B−), we get the normal equations, standard
in interior point methods,

(A, B−)F(A, B)∗(Δλ, Δy) = −(A, B−)L(d)−1Δq, (4.24)

The first block of lines says

AFA∗Δλ = −Au � −A(FB∗Δy + L(d)−1Δq).

Now, AFA∗ is positive-definite when F is symmetric positive-definite (ensured by
operator commutative scaling when p, d ∈ int K), for we have assumed R(A∗)
to be full. In fact, when the product-form representation of Section 3.4.5 holds,
AFA∗ is a positive definite diagonal matrix. Denote X � A∗(AFA∗)−1A. Then
A∗Δλ = −Xu. The second block of lines from (4.24) says now

B−F(A, B)∗(Δλ, Δy) = −B−L(d)−1Δq

⇐⇒ − B−FXu + B−FB∗Δy = −B−L(d)−1Δq

⇐⇒ B−(F − FXF)B∗Δy = −B−(I − FX)L(d)−1Δq

⇐⇒ B− F̃B∗Δy = −B− F̃L(p)−1Δq,

with F̃ � F − FXF. It thus suffices to solve this reduced equation, again of stan-
dard normal equation form. Note that when Δq = σμe − p ◦ d, L(p)−1Δq =
σμp−1 − d. We may therefore (still) incorporate all the effects of scaling into F̃:
B˜− F̃B˜∗ = B−(Q−1

v F̃Q−1
v )B∗ and B˜− F̃(σμ p̃−1 − d˜) = B−(Q−1

v F̃Q−1
v )(σμp−1 − d),

when F̃ already uses scaled data.

Example 4.4 (Sums of Euclidean norms). Recall from Example 3.3 that in this case
A(p1, . . . , pn) = (〈e, p1〉, . . . , 〈e, pn〉) with pi = (p0

i , p̄i) in a second order cone.
That is, A = diag(〈e, ·〉, . . . , 〈e, ·〉), and A∗ ∝ diag(e, . . . , e). Therefore AFA∗ ∝
diag(〈d−1

1 , p1〉, . . . , 〈d−1
n , pn〉) and X is block-diagonal with 1/〈d−1

i , pi〉 in the top-
left corner of each block and zero elsewhere.

4.5.2 Various practical remarks and examples

Remark 4.9 (Initialisation for SCP restore). If we use the variant of the SCP
method discussed in Remark 4.6, simultaneously solving for z ∈ ∂ε′ f (ŷ) and
z ∈ ∂ρν(y[0]), we will be able to directly use (p, d, y) from the main filter interior
point method (Algorithm 4.2) in the first iteration of the restoration method,
assuming the same neighbourhood C•(γ) is used. Therefore no specific initialisa-
tion is needed there. However, between iterations of the SCP method (if multiple
iterations are needed), and on return from it, reinitialisation is needed to update
dν to reflect ŷ, and to maintain constraints on the γ-neighbourhood.
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Remark 4.10 (Neighbourhoods). Since Algorithm 4.2 sets an explicit bound on
the minimum decrease in ε, and uses the SCP method otherwise, we do not par-
ticularly need the bounds in the decrease that Lemmas 4.5 and 4.6 provide for the
neighbourhoods C• with • ∈ {F, 2, −∞} – and which blow up near singularities
in our non-convex case. Thus it seems beneficial to use other neighbourhoods
that are easier to initialise to provide small ε. If K = ∏ Ki for smaller symmetric
cones Ki, one could therefore consider the neighbourhood defined as (topologi-
cal) product of the neighbourhoods C• for each Ki. In this case we also use as Δq,
not σμe − p ◦ d, but the product of these for each sub-algebra (i.e., different μ for
each component).

In the restoration phase we want to use the standard neighbourhoods and
Δq to ensure convergence. The initialisation optimisation of Remark 4.9 is, how-
ever, partially lost when product neighbourhoods are used in the main phase.
The problem is that although the eigenvalues of qi for q = p ◦ d are bounded away
from zero proportionally to μ(qi), this value may itself become small in relation
to the overall μ(q), and therefore even for C−∞(γ′), the required γ′ may approach
1. It is, of course, possible to set a bound on γ′, and do complete reinitialisation,
if it is violated.

Example 4.5 (SCP initialisation for spatial medians). Consider again the problem
from Lemma 4.12, of solving Bf p f = z/ψ with p f ∈ Vf . In the simple case
of the spatial median in Rm, f (y) = ∑n

i=1 ‖y − ai‖, as in general for sums of
Euclidean norms, we have p f = (p f ,1, . . . , p f ,n) with p f ,i = (p0

f ,i, p̄ f ,i) ∈ Em+1,
and a′i = e. Furthermore, Bf p f = ∑i p̄ f ,i, so that a simple solution with p f ,i = p f ,j
exists, when at all z ∈ Bf Vf . This obviously extends to sums of spatial medians
(∑k f (yk)), and suffices for our forthcoming application examples, where R(∂ν)
is small enough to be covered by the spatial median component of f , and we may
therefore take p̄ f ,i = 0 for any remaining terms.

4.5.3 Application to a clustering formulation

The primary applications we had in mind in the study Algorithms 4.1 and 4.2,
was the MO clustering formulation studied in Chapter 6, as well as the MO-
TSP formulation of the Euclidean TSP studied in Chapter 7. The former, as
already seen in Chapter 1, reads with the notation ȳ = (y1, . . . , yK) ∈ RKm,
ā = (a1, . . . , an) ∈ Rnm as

min
ȳ

f (ȳ; ā) − wνMO(ȳ) (4.25)

for some w ∈ (0, n/(K − 1)), and

f (ȳ; ā) �
K

∑
i=1

n

∑
k=1

‖yi − ak‖, νMO(ȳ) � ∑
i<j

‖yi − yj‖.

In the latter problem, we set K = n, w = 1, and add to (4.25), the path-length
penalty λTSP fTSP(ȳ) for some λTSP > 0 and fTSP(ȳ) � ∑n

i=1 ‖yi − yi+1‖ (with the
identification yn+1 = y1).
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According to Chapter 6, n(K − 1)−1R(∂ν) ⊂ R(∂ f ). Therefore, by our
choice of w = 1 in the TSP problem, we may take ψ = (n − 1)/n in Lemma
4.12 and Theorem 4.4, and obtain (1 − γ)−1 = O((1 − ψ)−1) = O(n). Thus
the complexity of the method in this application only depends polynomially
on n (through both r = 2(n2 + n(n − 1)/2 + n) = 3n2 + n and γ), and log-
polynomially on the reciprocal of the desired relative solution quality τ. Recall
from Example 4.5 that as a sum of spatial medians, finding p f ∈ Vf satisfying
Bf p f = z is easy, while we may choose BTSP pTSP = 0 (pTSP = e) for the fTSP
component.

Our principal practical observations from application of Algorithm 4.2 to
these problems are as follows:

(i) The spatial median of the data ā is highly attractive: Unless the filter is
initialised to forbid convergence to this point (by suitable values of g), or
if we can initialise the method with p and d (and not just y) close to some
other attractor (semi-critical point, cf. Lemma 3.6), it is likely that many of
the variables yi will converge to the spatial median. Especially this appears
to be a problem when K is a considerable proportion of n, such as in the
MO-TSP case. However, strict initialisation of the filter may provoke long
runs of the comparably slow SCP restoration method.

(ii) The reinitialisation method of Example 4.3, although with better theoretical
bounds (Theorem 4.4), does not work so well in practise, as the method of
Remark 4.7 (and Lemma 4.14).

(iii) In general, the performance is unpredictable: sometimes convergence is
fast, and sometimes it becomes slow, spending a lot of time in the restora-
tion phase. (Pure SCP by contrast provides slow but more consistent per-
formance.)

(iv) So far it appears that an extension of the Weiszfeld method, which we study
in the following chapter, provides more consistent practical performance.
At least in the MO-TSP application, our experience is that it provides rea-
sonable results in fewer iterations.

In summary, we find that although the theoretical basis of our method is sound,
more research and experimentation is still needed to find out if and with what
parametrisation and modifications, the algorithm can provide competitive practi-
cal performance in these, and other, applications. Such practically-oriented study
is outside the scope of this mainly theoretical thesis.



5 THE WEISZFELD METHOD AND PERTURBED
SPATIAL MEDIANS

5.1 Introduction

In this chapter, we are interested in minimisation problems, where the objective
function can be modelled as a perturbed version of the objective function for the
spatial median. More specifically, what concerns us are diff-convex problems of
the form

min
y

(
n

∑
k=1

‖Wk(ak − y)‖ − ν(y)

)
(5.1)

for some fixed points a1, . . . , an, weight matrices Wk, and a convex function ν.
On the application side, which we will leave to Chapter 6, we are primar-

ily concerned with location problems involving multiple prototypes to be placed
according to some optimality criterion that can be given the form (5.1). This
problem seems, at a first glance, to only involve a single prototype. However,
suitably choosing the matrices Wk to model incomplete data, will let us model
multi-prototype problems as single-prototype ones.

Indeed, the algorithm we develop for problems of the form (5.1), will be a
further extension of the generalisation to incomplete data sets of the Weiszfeld
algorithm in Kärkkäinen and Äyrämö [2004, 2005] and Valkonen [2006, 2008a].
This algorithm in its basic form [Weiszfeld, 1937; Kuhn, 1973] seeks a minimiser
to ∑n

i=1 wid(ai, ·) for the Euclidean distance in Rm by iterating

T : y �→ ∑n
i=1 siai

∑n
i=1 si

with si = wi/d(ai, y). (5.2)

Since the objective of (5.1) is a difference of convex functions, it is generally not
convex. Therefore, being a local algorithm, our convergence results are weaker
than in the above conventional case. The incomplete data sets also bring their
own considerable problems, even under rather strict assumptions. In practise the
results seem promising, however, as seen in the following chapters.
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This chapter is organised as follows. First, in Section 5.2, we introduce the
problem of the perturbed spatial median in more detail. Then, in Section 5.3,
we study directions of descent for this objective function. Based on these results,
along with studying optimality conditions, we define the perturbed Weiszfeld
method in Section 5.4. Its convergence is then studied in Section 5.5. We conclude
the chapter with an analysis of R(∂ f ) in Section 5.6, useful for obtaining level-
boundedness in the applications of the following Chapters 6 and 7.

5.2 The perturbed spatial median

Throughout most of this chapter, we work with n ≥ 1 vertices a1, . . ., an ∈ Rm

and diagonal positive-semidefinite matrices W1, . . . , Wn ∈ Rm×m. The matrices
Wi model the importance and incompleteness of the data, and typically have the
form Wi = wiρi, for a weight wi > 0 and a zero-one diagonal matrix ρi. A zero
diagonal element of ρi indicates that the corresponding field of ai is “missing”,
and an element with value one indicates that it is present. We assume (without
loss of generality) that the data covers the whole space, i.e., ∑n

i=1 R(Wi) = Rm,
with R denoting the range. The identity matrix is denoted by I.

With ‖ · ‖ denoting the Euclidean norm in Rm, we now define the semi-
norms and distance functions di(y) � ‖ai − y‖i � ‖Wi(ai − y)‖ as well, and the
sum of distances function f : Rm → R as

f (y) �
n

∑
i=1

di(y) =
n

∑
i=1

‖Wi(ai − y)‖. (5.3)

A minimiser of f is called a spatial median of the points {ai}. Existence and unique-
ness in case of non-collinear data covering the whole space, follows as in [Valko-
nen, 2006, Theorem 3.1], where the problem (5.3) was studied under a more elab-
orate model for missing data.

Now, consider the problem of finding the minimum of (5.3) perturbed with
the negation of a finite-valued convex function ν. That is, calling the objective
function fν � f − ν, we consider the problem

min
y∈Rm

fν(y) = min
y∈Rm

n

∑
i=1

di(y) − ν(y). (5.4)

Any solution of problem (5.4) will be called a perturbed spatial median. It turns out
that a slightly modified Weiszfeld algorithm is still applicable for finding what
we will call semi- and more generally D-critical points, on the assumption that
the subdifferentials of ν are in some sense properly contained in the range of the
subdifferentials of ∑n

i=1 di or if we can otherwise guarantee some boundedness
properties.

For now we will, however, only require that ν is finite-valued. Then it will
also have non-empty locally uniformly bounded subdifferentials by, e.g., [Rock-
afellar, 1972, Corollary 24.5.1]. Recall that a set-valued mapping F : X ⇒ Y
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between metric spaces X and Y is locally uniformly bounded at x ∈ X if there exists
a neighbourhood U of x such that

⋃
x′∈U F(x′) is bounded in Y.

5.3 Directions of descent

Notice that, since ν is convex, if we replace it with a linearisation ν̃v
y(y′) � ν(y) +

vT(y′ − y) for v ∈ ∂ν(y), then −ν ≤ −ν̃v
y and, furthermore, fν is dominated by the

upper convexification fνv
y . Therefore, for any y′ ∈ Rm, for which f (y′) − ν̃v

y(y′) <

f (y) − ν̃v
y(y) = f (y) − ν(y) it follows that f (y′) − ν(y′) < f (y) − ν(y). This

means that if some upper convexification at y is descending to some direction, so
is fν itself.

The next theorem provides a sufficient condition for search direction and
step length for the minimisation of fν. To state it, we need to introduce some
notation. We write π(y) � {i | Wi(ai − y) = 0}. The gradient of the differentiable
components of f at y is then given by

gπ(y) � ∑
i �∈π(y)

W2
i

y − ai

‖y − ai‖i
= ∑

i �∈π(y)
Si(y)(y − ai),

for Si(y) � W2
i /di(y). We also define Sπ(y) � ∑i �∈π(y) Si(y), and the pseudoin-

verse of the (diagonal positive-semidefinite) matrix Sπ(y) as S†
π(y). The orthogo-

nal projection matrix into ∑k∈π(y) R(Wk) is denoted ρπ(y), and the projection into
the orthogonal complement as ρ̄π(y). Let us also abbreviate gv

π(y) � gπ(y) − v,
and define

h(z, v; y) � gv
π(y)Tz + ∑

k∈π(y)
‖z‖k.

Theorem 5.1. Suppose ν(y) = vTy for some v ∈ Rm, and let z ∈ Rm. Then fν(y +
ωz) < fν(y), if ω ∈ (0, Ω) with Ω � Ω(y, v, z) defined as the supremum of ω′
satisfying

ω′(zTSπ(y)z) < −2h(z, v; y). (5.5)

Additionally, there exists z �= 0 with Ω(y, v, z) > 0 if and only if there exists a direction
of descent of fν at y.

Proof. We will write y′ � y + ωz, gπ � gπ(y) and π � π(y) to make the equations
more legible.

Write

f (y) = ∑
i �∈π

di(y)2

di(y)
and f (y′) = ∑

i �∈π

di(y′)di(y)
di(y)

+ ∑
k∈π

dk(y′).

As di(y′)di(y) − di(y)2 = 1
2

(
di(y′)2 − di(y)2 − (di(y) − di(y′))2), we have that

2( fν(y′) − fν(y)) = ∑
i �∈π

di(y′)2

di(y)
− ∑

i �∈π

di(y)2

di(y)
+ ∑

k∈π

2dk(y′) − 2vT(y′ − y) − C,
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where C � ∑i �∈π(di(y) − di(y′))2/di(y) is non-negative. Using y′ = y + ωz gives

di(y′)2 = ‖(y − ai) + ωz‖2
i = di(y)2 + 2ωzTW2

i (y − ai) + ω2zTW2
i z.

Thus, because dk(y′) = dk(y + ωz) = ω‖z‖k for k ∈ π, we have that fν(y′) −
fν(y) < 0 holds if

2ωzT

(
∑
i �∈π

W2
i

y − ai

di(y)

)
+ ω2 ∑

i �∈π

zTW2
i z

di(y)
+ 2ω ∑

k∈π

‖z‖k − 2ωvTz < 0,

or, more compactly put,

ω(zTSπz) < 2(−(gπ − v)Tz − ∑
k∈π

‖z‖k),

which gives the condition (5.5).
The second claim follows since, in fact, h(z, v; y) is the directional derivative

f ′ν(y; z).

The next result provides further detail on calculating a step z. To specify it,
we use the notation

Z(y) � {z ∈ Rm | ‖z‖ = 1, ρ̄π(y)z = 0} ∪ {0}

for the set of search directions in the subspace R(ρπ(y)) = ∑k∈π(y) R(Wk)
spanned by the non-differentiable components of f .

Lemma 5.1. Let v and fν be as in Theorem 5.1. Let z̃ ∈ Z(y) be such that h(z̃, v; y) < 0
if such a choice exists. Otherwise choose z̃ = 0. Suppose ω ∈ (0, 2) and that y ∈ Rm is
not a minimiser of fν. Then

z = z(y, v) � −ρ̄π(y)S
†
π(y)gv

π(y) + αz̃ (5.6)

is a direction of descent for fν when α ∈ (0, α0), where α0 � α0(ω, z̃, v; y) > 0 is the
supremum of α for which z satisfies the condition (5.5) at y for given ω and v. Further-
more, α0(2, z̃, v; y) gives for any ω ∈ (0, 2) a lower bound α2(z̃, v; y) ∈ (0, α0] (strict if
−ρ̄π(y)gv

π(y) �= 0), obtained as the supremum of α satisfying

αz̃Tρπ(y)Sπ(y)z̃ ≤ −h(z̃, v; y). (5.7)

Proof. We will abbreviate z � z(y, v), gv
π � gv

π(y), Sπ � Sπ(y), and π = π(y) for
legibility.

Inserting (5.6) into condition (5.5) of Theorem 5.1, we get

ω((gv
π)T ρ̄πS†

πSπS†
πρ̄πgv

π + α2z̃TρπSπρπ z̃ − 2αz̃TρπSπρ̄πS†
πgv

π)

< −2(−(gv
π)T ρ̄πS†

πgv
π + α(gv

π)Tρπ z̃ + ∑
k∈π

‖αz̃‖k),
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because Wkz = αWkz̃ for k ∈ π. As also ρπSπρ̄π = 0 and S†
πSπS†

π = S†
π, this

reduces to

ω((gv
π)T ρ̄πS†

πgv
π + α2z̃TρπSπ z̃) − 2((gv

π)T ρ̄πS†
πgv

π − αh(z̃, v; y)) < 0, (5.8)

where α has been taken outside norms because it is non-negative by assumption.
If z̃ = 0, then α does not contribute to (5.8), so its choice is irrelevant and

α0 infinite. If, furthermore, ρ̄πgv
π = 0, then min h(z, v; y) = 0 over ‖z‖ = 1, and

therefore by Theorem 5.1, y is a minimiser of fν. If, on the other hand, ρ̄πgv
π �= 0,

then any ω < 2 is valid.
If ρπSπ z̃ = 0 but z̃ �= 0, then since h(z̃, v; y) < 0, we see that α can still be

arbitrarily large, and any ω ∈ (0, 2) is valid even for small α.
Suppose then that all the terms in (5.8) involving z̃ are non-zero. Whenever

0 < ω < 2, the inequality is either satisfied for α = 0, or becomes an equal-
ity. Therefore, because the inequality is quadratic in α with the multiplier of the
second-order term positive, and that of the first order term negative, there is for
any 0 < ω < 2 an α0(ω, z̃, v; y) > 0, such that α ∈ (0, α0(ω, p, v)) satisfies the
inequality.

Setting ω = 2 in (5.8), gives the condition for α2. Furthermore, if α2 satisfies
(5.8) for ω = 2, possibly non-strictly, it must continue to do so for ω < 2, strictly
if (gv

π)T ρ̄πS†
πgv

π �= 0 (which is equivalent to the condition in the statement). The
lower bound on α0 follows.

Example 5.1.

(i) When π(y) = ∅, necessarily z̃ = 0, and we get from (5.6) that z(y, v) =
−S†

π(y)gv
π(y). If Wk = wk I, i.e., the weights are uniform and no data is

missing, Si = wi I/‖y − ai‖, and this step reduces to the the conventional
Weiszfeld step used in (5.2).

(ii) When π(y) = {k} is a singleton, a z̃ may be easily found by minimising
h(z, v; y) = gv

π(y)Tz + ‖z‖k over {z ∈ R(Wk) | ‖z‖k = 1}. By positive
homogeneity of h, its minimum value is zero over this set exactly when it
is the same over Z(y), so that we may choose z̃ = 0 in this case. The result
is therefore z̃ = −(W†

k )2gv
π(y)/‖W†

k gv
π(y)‖ ∈ Z(y) when ‖W†

k gv
π(y)‖ ≥ 1,

and z̃ = 0 otherwise.

(iii) When #π(y) > 1, but the data do not overlap, i.e., R(Wi)∩R(Wj) = {0} for
distinct i, j ∈ π(y), z̃ can be calculated independently on each R(Wi), with
the above result. This case is of importance in our application examples,
and also in relation to the convergence results below.

(iv) When #π(y) > 1, but the data overlaps, the determination of appropriate z̃
is more complicated. However, in practical data sets, it is rare to have multi-
ple vertices with partial coinciding information, furthermore agreeing with
the current iterate. Appendix 2 in any case establishes relevant formulae for
the non-partially-overlapping/hierarchical case.
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5.4 Optimality conditions and the method

We denote the set of semi-critical points for our problem of interest by P∂. Recall
that this means that 0 ∈ ∂ f (y) − ∂ν(y). But then, for some v ∈ ∂ν(y), the convex
function f − vT : y �→ f (y) − vTy (and then fν̃v

y ) has minimum at y. We therefore
find by Theorem 5.1 that y is semi-critical if and only if h(z, v; y) ≥ 0 for all z ∈
Rm \ {0} for some (fixed) v ∈ ∂ν(y).

Recalling that semi-criticality is equivalent to criticality in the sense of
Clarke subdifferentials, 0 ∈ ∂◦ fν(y) in particular when f is differentiable, we
find that this is the case whenever π(y) = ∅. On the other hand, if some upper
convexification of fν by ν̃v

y does not have a minimum at y, it then has a direction
of descent, and so has fν.

We can improve from semi-criticality a bit, however. Recall that a set-valued
mapping F is outer-semicontinuous [Rockafellar and Wets, 1998], if yi → y and
vi ∈ F(yi), imply that every accumulation point of {vi} is in F(y).

Definition 5.1. Let Dν be an outer-semicontinuous mapping, such that ∅ �=
Dν(y) ⊂ ∂ν(y), for y ∈ Rm. If ∂ f (y) ∩ Dν(y) �= ∅, we refer to y as D-critical
for fν. The set of D-critical points for our problem of interest is denoted PD.

By Theorem 5.1, D-criticality is equivalent to h(z, v; y) ≥ 0 holding for all z
for some v ∈ Dν(y). The maximal system of such sets is, of course, the system ∂ν

(as the subdifferential of a finite convex function is outer-semicontinuous). The
minimal system is of necessity

DNν(y) � { lim
r→∞

∇ν(y[r]) | y[r] → p, ν is differentiable at y[r]},

the convex hull of which is ∂ν(y).
These considerations finally lead us to extend the SOR-Weiszfeld iteration

for incomplete data as follows.

Algorithm 5.1 (The perturbed SOR-Weiszfeld method).

1. Set r = 0, and choose an initial iterate y[0] ∈ Rm. Choose Dν satisfying
Definition 5.1 (typically ∂ν or DNν), as well as a stopping criterion.

2. Choose v[r] ∈ Dν(y[r]), z̃ ∈ Z(y[r]), ω ∈ (1, 2) and α ∈ (0, α0(ω, z̃, v[r]; y[r])),
as described in Lemma 5.1.

3. Calculate y[r+1] � Tω(y[r], v[r]) with z defined by (5.6), and

Tω(y, v) � y + ωz(y, v).

4. If the stopping criterion is not satisfied, continue from Step 2 with r � r + 1.

The choice of v[r] ∈ Dν(y[r]) is arbitrary because we only have partial con-
vergence to D-critical points, and if there is a single v[r] for which fν̃[r] with

ν̃[r] � ν̃
v[r]
y[r] has no direction of descent, we have found such a point.
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Lemma 5.2. The iteration Tω is descending for fν if y �∈ PD.

Proof. By Lemma 5.1, z(y, v) is a direction of descend for fν̃v
y when v �∈ ∂ f (y), and

therefore for fν as well.

5.5 Convergence

We now turn to the convergence properties. The following Lemma 5.3 is an essen-
tial part that tells us that the iterates deflect from clusters of vertices at distance
from PD. This along with some additional assumptions on choice of step length
and the form of fν, allows us to exploit the continuity of Tω on a subspace to show
the convergence to D-critical points in Theorem 5.2, assuming the iterates do not
diverge.

We denote y′ � Tω(y, v). We will sometimes omit v from the parameters for
brevity, and write z̃(y) etc. The specific selection is denoted v(y).

Lemma 5.3. Let the points and subgradients y[r] ∈ Rm, v[r] ∈ Dν(y[r]) (r = 1, 2, . . .)
and q ∈ Rm, u ∈ Dν(q) be given, with constant π′ � π(y[r]) � π(q). Suppose that
z̃ ∈ Z(q) with (i) ρπ′ z̃ = 0, and (ii) h(z̃, u; q) < 0. If (y[r], v[r]) converge to (q, u), then
for all ω ≥ 1 and some k ∈ πz̃ � {k ∈ π(q) \ π′ | Wkz̃ �= 0}, it holds that

lim sup
r→∞

dk(y′
[r])

dk(y[r])
> 1. (5.9)

In fact, lim infr→∞ supk∈πz̃
dk(y′

[r])/dk(y[r]) > 1, since we may apply the ar-
gument to any subsequence of the original.

Proof. Denote y = y[r] and v = v[r] for arbitrary r, for lighter notation. We may
write

gπ(y) = ∑
i �∈π′

Si(y)(y − ai) =

(
∑

i �∈π′
Si(y)(q − ai) + Sπ(y)(y − q)

)
.

Since ρ̄π′S†
π(y)Sπ(y) = ρ̄π′ by our prevailing assumption ∑ R(Wk) = Rm, as well

as ρπ′(y − q) = 0, we have according to (5.6) that

ρ̄π′(y′ − q) = y − q − ωρ̄π′S†
π(y)gv

π(y) = (1 − ω)(y − q) − ωρ̄π′S†
π(y)g̃v(y)(y),

(5.10)
where g̃v(y) � ∑i �∈π(q) Si(y)(q − ai) − v.

Let now k ∈ πz̃. Since Wkq = Wkak, (5.9) follows if

lim sup
r→∞

‖ρ̄π′(y′
[r] − q)‖k

‖y[r] − q)‖k
> 1.
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Thus, by applying ω ≥ 1 and the reverse triangle inequality to the Wk-norm of
(5.10), it becomes sufficient to show that for some k, lim supr→∞(ωNk(y[r]) − |1 −
ω|) > 1, i.e., lim supr→∞ Nk(y[r]) > 1, where

Nk(y) �

∥∥∥∥∥∥ρ̄π′

(
∑

i �∈π′
W2

i
dk(y)
di(y)

)†

g̃v(y)(y)

∥∥∥∥∥∥
k

.

Suppose lim supr Nk(y[r]) ≤ 1 for all k ∈ πz̃, and choose ε > 0. Then, for
sufficiently large r, since ‖z̃‖k = 0 for k ∈ (π(q) \ π′) \ πz̃, an application of the
Cauchy-Schwarz inequality shows

ε + ∑
k∈π(q)\π′

‖z̃‖k ≥ ∑
k∈π(q)\π′

‖z̃‖kNk(y[r])

≥ − ∑
k∈π(q)\π′

z̃TW2
k (

ρ̄π′

dk(y[r])
)

(
∑

i �∈π′

ρ̄π′W2
i

di(y[r])

)†

g̃v[r](y[r])

= −z̃T

⎛⎝ ∑
k∈π(q)\π′

Γk(y[r])

⎞⎠(
∑

i �∈π′
Γi(y[r])

)†

g̃v[r](y[r]),

(5.11)

where Γi(y) � W2
i ρ̄π′x(y)/di(y), and x(y) � 1/‖ ∑k∈π(q)\π′ W2

k ρ̄π′/dk(y)‖ is a
normalising factor.

Observe that Γi(y[r]) → 0 for i �∈ π(q), faster than for i ∈ π(q) \ π′ (if such
were to happen). Therefore ∑i �∈π′ Γi(y[r]) − ∑k∈π(q)\π′ Γk(y[r]) → 0, and likewise
for the pseudo-inverses. Now letting ε ↘ 0 and going to the limit in (5.11) yields

∑
k∈π(q)\π′

‖z̃‖k ≥ −z̃T ρ̄π′ρπ(q)gu
π(q).

This combined with assumption (i) says that h(z̃, u; q) ≥ 0, in contradiction to
assumption (ii).

Lemma 5.4. Suppose (y[r], v[r]) → (q, u) with constant π(y[r]) = π′ and z̃(y[r]) = 0.
Then we may take ρπ′ z̃(q) = 0.

Proof. Since ρπ′(q − y[r]) = 0, we have as r → ∞ that

ρπ′gπ(y[r]) = ρπ′ ∑
i �∈π′

Si(y[r])(y[r] − ai) = ρπ′ ∑
i �∈π(q)

Si(y[r])(y[r] − ai) → ρπ′gπ(q).

Consequently, for z̃ ∈ Z(q),

gu
π(q)Tρπ′ z̃ + ∑

k∈π′
‖z̃‖k = lim

r→∞
gv

π(y[r])
Tρπ′ z̃ + ∑

k∈π′
‖z̃‖k = lim

r→∞
h(z̃, v[r]; y[r]) ≥ 0,

with the inequality holding by z̃(y[r]) = 0. Therefore we can take ρπ′ z̃ = 0, as any
other choice would increase the value of the remaining ‖z̃‖k for k ∈ π(q) \ π′ in
h(·, u; q).
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Assumption 5.1. The set of iterates {y[r] | r = 1, 2, . . .} generated by Algorithm
5.1 is bounded. The function fν is bounded from below. The step sizes ωr satisfy
the conditions of Algorithm 5.1, and there exists ω < 2, such that ωr ∈ [1, ω].
Furthermore, z̃(y[r]) = 0 (i.e., π(y′

[r]) ⊃ π(y[r])) eventually.

Conditions ensuring level-boundedness of f , and hence the assumption on
the boundedness of the iterates, will be studied in the following Section 5.6.

Lemma 5.5. The step sizes can be chosen to satisfy z̃(y[r]) = 0 eventually. Hence even-
tually π(y[r]) = π′ is constant.

Proof. Choose ω (eventually) so as to avoid adding elements to π(y[r]). This can
be done, since in each direction z(y[r], v[r]), there are finitely many step lengths
for which dk(y[r]) = 0 for some k �∈ π(y[r]). Then π(y′

[r]) ⊂ π(y[r]), which can be
strict only finitely many times, exactly when z̃(y[r]) �= 0.

Lemma 5.6. Suppose Assumption 5.1 holds, and let (q, u) be a cluster point of
{(y[r], v[r])}. Then q ∈ PD, if h(·, u; q) ≥ 0 on Z(q).

Proof. Since { fν(y[r])} is bounded from below by assumption, and monotonically
decreasing by Lemma 5.2, it holds that

lim
r→∞

( fν(y[r]) − fν(y′
[r])) = 0. (5.12)

Let then {(y[r�], v[r�])} be a subsequence convergent to (q, u). If y[r�] ∈ PD
for some �, then there is nothing to prove, so suppose this is not the case. We
may assume that π(y[r�]) = π′ is constant. Also, since for i �∈ π(q) it holds that
di(q) > 0, we must have π(y[r�]) ⊂ π(q), whence ρπ′(q − y[r�]) = 0.

If π(q) = ∅, then also π′ = ∅. If q were not D-critical, it would hold that
fν(q′) < fν(q) for all choices of v(q) ∈ Dν(q) and ω ∈ [1, ω]. But since Tω

for fixed ω is continuous around (q, u), and since (y[r�], v[r�]) → (q, u), we get
Tω(y[r�], v[r�]) → Tω(q, u). Therefore lim fν(y′

[r�]
) = fν(q′) < fν(q) = lim fν(y[r�]),

which contradicts (5.12). Thus Tω(q, u) = q, and consequently in the case of
varying ωr ∈ [1, ω], we see that the line segment [T1(y[r�], v[r�]), Tω(y[r�], v[r�])] �
Tωr�

(y[r�], v[r�]) = y′
[r�]

vanishes at the limit. Therefore q ∈ PD.
Suppose then that π(q) �= ∅. Since h(·, u; q) ≥ 0 over Z(q), we have

z̃(q, u) = 0, and it remains to show that z(q, u) = 0, i.e., ρ̄π(q)S†
π(q)gu

π(q) = 0.

We have ρπ(q)ρ̄π′z(y[r�]) = −ρπ(q)ρ̄π′S†
π(y[r�])gv[r�]

π (y[r�]) → 0, because v[r�] →
u is bounded, and ρπ(q)ρ̄π′S†

π(y[r�]) goes to zero (with 1/dk(y[r�]) going to in-

finity in Sπ(y[r�]) for k ∈ π(q) \ π′). As ρ̄π(q)S†
π(y[r�])gv[r�]

π (y[r�]) does not de-
pend on ak for k ∈ π(q), it is convergent. Therefore, in summary, we have
ρ̄π′S†

π(y[r�])gv[r�]
π (y[r�]) → ρ̄π(q)S†

π(q)gu
π(q).

Consequently, lim� Tω(y[r�], v[r�]) = Tω(q, u) for fixed ω, the choice of α be-
ing irrelevant because z̃(y[r�], v[r�]) = z̃(q, u) = 0.1 Now the same argument as
was used in the case π(q) = ∅ applies. We therefore have q ∈ PD.
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Lemma 5.7. Suppose Assumption 5.1 holds. Let Qk denote the set of cluster points (q, u)
of {(y[r], v[r])}, such that k ∈ π(q) \ π′. We have,

(i) If lim inf�→∞ dk(y′
[r�]

)/dk(y[r�]) > 1 for all subsequences approaching Qk, then
Qk = ∅.

(ii) The above condition follows if for each (q, u) ∈ Qk, there exists z̃ ∈ Zk(q) � {z̃ ∈
Z(q) | Wiz̃ = 0 for i ∈ π(q) \ {k}} such that h(z̃, u; q) < 0.

Proof. Note that Qk is compact by boundedness of {(y[r], v[r])}, and that
Zk(q) = {z̃ ∈ Z(q) | ρπ′ z̃ = 0, πz̃ = {k}}. Let {(y[r�], v[r�])} be a subsequence of
{(y[r], v[r])} approaching Qk (with constant π(y[r�]) = π′). Under the conditions
of (ii), we must have lim inf�→∞ dk(y′

[r�]
)/dk(y[r�]) > 1, because otherwise we

could find a subsequence convergent to some (q, u) ∈ Qk, for which an applica-
tion of Lemma 5.3 would yield h(z̃, u; q) ≥ 0 for all z̃ ∈ Zk(q), in contradiction to
our assumptions.

We may therefore assume that there exist δ > 0 and ε > 0, such that when-
ever (y[r], v[r]) ∈ Qk + B(0, δ), then dk(y′

[r]) ≥ (1 + ε)dk(y[r]). Therefore, since
dk(y[r]) > 0, there exists a t > r such that (y[t], v[t]) �∈ Qk + B(0, δ). Thus the
whole sequence cannot converge to Qk.

There then exists a subsequence {(y[r�], v[r�])} with (y[r�], v[r�]) �∈
Qk + B(0, δ), and (y′

[r�]
, v′

[r�]
) ∈ Qk + B(0, δ). Since Qk contains all the cluster

points with k ∈ π(q), there also exists δ′ > 0 such that dk(y[r�]) > δ′. Therefore, if
there is a subsequence convergent to Qk, we must have dk(y′

[r�]
) → 0. But, since

the algorithm moves from y[r] to a direction of descent of fν̃[r], we have

fν(y[r]) − fν(y′
[r]) ≥ fν̃[r](y[r]) − fν̃[r](y′

[r]) =
1
2 ∑

i �∈π(y[r])
(di(y[r]) − di(y′

[r]))
2/di(y[r]),

(5.13)
where the final estimate and term C/2 are from the proof of Theorem 5.1. This
with r = r� provides a contradiction to (5.12). Therefore Qk = ∅.

Theorem 5.2. Suppose Assumption 5.1 holds, and that for all π ∈ R(π(·)), k, i ∈ π,
k �= i implies R(Wk) ∩ R(Wi) = {0}. Then either {(y[r], v[r])} has a cluster point
(q, u) with q ∈ PD, or the sequence diverges.

Proof. If there exists a cluster point (q, u), such that h(·, u; q) ≥ 0 on Z(q), Lemma
5.6 proves the claim.

Otherwise, to reach a contradiction, we may assume that (y[r], v[r]) → (q, u),
where h(z̃, u; q) < 0 for some z̃ ∈ Z(q). According to Lemma 5.4, we may take
ρπ′ z̃(q) = 0. Furthermore, on the assumption that R(Wk) ∩ R(Wi) = {0} for
k, i ∈ π(q), h(·, u; q) is independent on each R(Wk). We may therefore choose

1 In this lemma, α ↘ 0 would suffice, instead of z̃ = 0. This could be explicitly assumed,
but also follows from convergence assumptions, and sometimes from (5.7). The argument
of Lemma 5.7 could also be extended to allow k ∈ π(y[r]), provided ‖αz̃‖k > 0 for a sub-
sequence. However, application/variant of Lemma 5.4 would demand additional assump-
tions.
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z̃ ∈ Zk(q) for some k ∈ π(q) \ π′. An application of Lemma 5.7 to Qk = {(q, u)}
now provides the desired contradiction.

Remark 5.1. We have the following further observations:

(i) If y[r] → q, but {v[r]} diverges, then ν must be nondifferentiable at q.

(ii) If a cluster point has π(q) = π′, q ∈ PD (by Lemma 5.6). In particular, any
cluster point with π(q) = ∅, is a solution.

(iii) If #π(y) ≤ 1 for all y ∈ Rm, then there is a cluster point q ∈ PD. (Combine
Lemmas 5.6 and 5.7.) This is unfortunately not the case in our forthcoming
applications with “lifted” data.

(iv) If there are multiple cluster points with differing π(q), there are actually
infinitely many of them: for some k, there are iterates with both dk(y[r]) > δ,
as well as dk(y′

[r�]
) ∈ [δ/2, δ), since dk(y′

[r�]
) → 0 is not possible by (5.13).

Therefore there are cluster points in this distance range. Now let δ ↘ 0.

5.6 Boundedness

For the above partial convergence results to be of any use, an easily checkable
condition is needed to ensure that fν is bounded from below, and that there are
cluster points: the iterates stay bounded. Because the sequence { fν(y[r])}∞

r=1 is
descending, it suffices to show that the level sets of fν are bounded. This is where
we need the general results of Section 2.5, relating cl R(∂ν) ⊂ int R(∂ f ) to this.
To apply these results, we need to calculate the boundary of R(∂ f ) for f defined
by (5.3).

Lemma 5.8. Let A � ⋃
y∈Rm ∂ f (y). Then cl A is convex and bounded, and

bd A = Z �
⋃
πb

Zπb ,

with the union taken over πb ⊂ {1, . . . , n} such that R(ρπb) � Rm and k ∈ πb
whenever R(Wk) ⊂ R(ρπb). Here

Zπb = { ∑
k �∈πb

W2
k q/‖q‖k + v | q ∈ Qπb , v ∈ cl Aπb},

Qπb � {q ∈ Rm | Wjq = 0 (j ∈ πb), Wkq �= 0 (k �∈ πb)},

Aπb �
⋃

y∈Rm

∂( ∑
k∈πb

dk)(y).

Proof. The subdifferentials of f are clearly uniformly bounded: for g ∈ ∂ f (y),
‖g‖ ≤ ∑n

k=1 ‖Wk‖. Hence A is bounded. By, e.g., [Rockafellar, 1972, Section 24]
cl A is also convex. It remains to prove that bd A is of the claimed form.
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Let q �= 0. Then maxg∈cl A gTq is attained by any g ∈ Zπb obtained (as
seen by considering qT∇(qT∇ f )(y) = qT∇2 f (y)q) as a limit of some sequence
g[i] ∈ ∂ f (y[i]) as ‖y[i]‖ → ∞ with W2

k (y[i] − ak)/‖y[i] − ak‖k → W2
k q/‖q‖k, when

Wkq �= 0. It then has the form

g = ∑
k �∈πb

W2
k q/‖q‖k + v (5.14)

with πb = {j ∈ {1, . . . , n} | Wjq = 0}, and v ∈ cl Aπb . Therefore, all the exposed
faces of cl A are contained in the sets Zπb , that are closures of unions of these
faces. It remains to prove that their union forms all of bd A.

The exposed faces of cl A are precisely the sets of the form cl A ∩ H, where
H is a supporting hyperplane to cl A [see Rockafellar, 1972]. But cl A is the in-
tersection of the corresponding half-spaces. Thus, if g ∈ cl A has a ball B(g, ε)
around it that is not intersected by any of the hyperplanes H (and thus not by
any of the Zπb), then g �∈ bd A. Otherwise, since the intersecting hyperplanes are
defined by a compact set of parameters (closed subset of bd A × bd B(0, 1)), we
may find a supporting hyperplane H that contains g. But then g ∈ cl A ∩ H, an
exposed face.



6 CLUSTERING APPLICATIONS

6.1 Introduction

As already discussed in Chapters 1 and 5, the general theme of the present chap-
ter is the problem of locating one or more points y1, . . . , yK according to some op-
timality criterion involving another set of n fixed points and combinations of dis-
tances between them. Furthermore, we require that the problem can be modelled
in the form (5.1), to study the application of the perturbed Weiszfeld method.

In the single-prototype case (K = 1), popular objectives are the data means
and the spatial median. In the latter case, the problem itself is then also known
as the (Fermat-)Weber problem, and the Weiszfeld algorithm may be used to look
for a solution [Weiszfeld, 1937; Kuhn, 1973]. Multi-prototype (K > 1) variants of
the location problem often somehow involve the single-facility case. In particular,
in case of criteria of the K-means type [Cox, 1957; Selim and Ismail, 1984], the goal
is to assign each vertex to the closest prototype yj, with the prototypes being the
data means, spatial medians, or other points somehow descriptive of the centres
of the corresponding clusters. For an overview of work on this and other cluster-
ing problems, as well as a unifying framework for smoothed and approximating
problems, we point the reader to Teboulle [2007].

The classic multisource Weber problem – the problem of finding the
K-spatial-medians – otherwise also known as the location-allocation problem
[Cooper, 1964], is a problem of K-means type. The distance between a point
and a prototype is merely taken to be the Euclidean instead of squared distance.
Indeed, the problem is of the form (5.1), and in our analysis of the problem in
Section 6.3, it furthermore turns out that the perturbed Weiszfeld method in this
case almost reduces into a single-step variant of the K-means style algorithm if
the Weiszfeld method were to be applied on each cluster.

We also analyse in this chapter – the following Section 6.2 more specifically
– a new clustering problem of the form (5.1). The objective is based on a multi-
objective approach to the general problem: a mathematical statement of “place
prototypes close to data and far from each other”. After the analysis of these two
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clustering formulations, we finish the chapter with a few experimental compar-
isons presented in Section 6.4.

6.2 Bi-objective clustering

Consider a multiobjective formulation of the multifacility location problem:

min
ȳ∈(Rm)K

( f1, f2)(ȳ; ā), (6.1)

where the minimum is in the sense of Pareto-optimality, ȳ = (y1, . . . , yK) ∈
(Rm)K, and ā = (a1, . . . , an) ∈ (Rm)n. The objectives are defined as

f1(ȳ) �
K

∑
i=1

n

∑
j=1

dj(yi), f2(ȳ) � −1
2

K

∑
i=1

K

∑
j=1

d(yj, yi)

for some distance functions d and dj, the latter dependent on aj. The objective f1
indicates our desire to place cluster centres {yj} as close to the data as possible
as defined by means of the distances dj, while f2 indicates our desire to place the
cluster centres as far apart from each other as possible. (We want to minimise f1
and at the same time maximise − f2.)

6.2.1 Squared Euclidean distance

Although it does not fit in the framework of the perturbed spatial median, for
comparison to what will follow and also to the classical K-means, we will first
consider the case when d(x, y) = 1

2‖x − y‖2 is the squared distance. For simplicity
we limit ourselves to the case of complete information, dj = d(aj, ·). We then get
as the Karush-Kuhn-Tucker necessary condition for Pareto optimality [see, e.g.,
Miettinen, 1999, Chapter I.3] that

λ1

n

∑
j=1

(yi − aj) − λ2

K

∑
j=1

(yi − yj) = 0 for all i = 1, . . . , K,

or that

(λ1n − λ2K)yi − λ1

n

∑
j=1

aj + λ2

K

∑
j=1

yj = 0 for all i = 1, . . . , K, (6.2)

for some λ1, λ2 ≥ 0 with strict inequality for at least one of λ1 or λ2.
If λ1n = λ2K, we get the solution candidates

1
K

K

∑
i=1

yi =
1
n

n

∑
j=1

aj. (6.3)
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If, on the other hand λ1n − λ2K �= 0, we find that all the {yi}K
i=1 are equal

by subtracting the term (6.2) for yi and yj (i �= j). Hence, unless λ1 = 0, in fact
(6.3) holds. In the case λ1 = 0 there is no finite minimum, so we may ignore it.

Let us now check when solutions of (6.3) are Pareto-optimal. Expand the
expressions for d to yield

f1(ȳ) =
K

∑
i=1

n

∑
j=1

1
2
(‖yi‖2 + ‖aj‖2)− ( K

∑
i=1

yi
)T( n

∑
j=1

aj
)

and

2 f2(ȳ) = −
K

∑
i=1

K

∑
j=1

1
2
(‖yi‖2 + ‖yj‖2)+

( K

∑
i=1

yi
)T( K

∑
j=1

yj
)
.

Thus if (6.3) holds, then both f1 and f2 have a constant term at the end and f2
decreases if and only if ∑i ‖yi‖2 increases. But since this means that f1 increases,
the solutions of (6.3) are precisely the Pareto-optimal solutions of the original
problem. This says that the Pareto-optima are where the cluster centre means
equal the data means. The condition for Pareto-optimality is therefore very weak,
and the solutions are abundant.

6.2.2 Euclidean distance

With the Euclidean distance d(x, y) = ‖x − y‖, and dj defined as in Section 5.2,
we get more interesting results. After rewriting νMO � − f2, the scalarisation of
the problem (6.1) by the factor λ ≥ 0 then reads as [cf. Miettinen, 1999, Section
II.3.1]

min f1(ȳ) − λνMO(ȳ). (6.4)

This problem can be cast as a problem of finding a perturbed spatial median as
follows. For each i = 1, . . . , K and j = 1, . . . , n, let

ai
j � ( 0, . . . , 0︸ ︷︷ ︸

m(i−1) times

, aT
j , 0, . . . , 0︸ ︷︷ ︸

m(K−i) times

)T,

and Wi
j be such that Wi

j (ȳ − ai
j) = Wj(yi − aj). Then

f1(ȳ) = ∑
i,j

‖Wi
j (ȳ − ai

j)‖.

Because νMO is convex and finite, the problem can be modelled as a perturbed
spatial median problem with vertices {ai

j} and perturbation λνMO. Note that
if {Wj} satisfy the range non-overlap assumption of Theorem 5.2, so do {Wi

j}.
Hence, by Theorem 5.2, Theorem 2.6, and Lemma 2.9, Algorithm 5.1 is applicable
for finding semi-critical points (Kuhn-Tucker points of the multiobjective prob-
lem), if we can bound R(∂(λνMO)) within R(∂ f1).

With f denoting here and throughout the chapter, the function defined by
(5.3) with the original data {aj}, not {ai

j}, we note that ∂ f1(ȳ) = ∂ f (y1) × · · · ×
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∂ f (yK), since f1 consists of K sets of n terms depending on different compo-
nents of ȳ. Also, since νMO is positively homogeneous, we have R(∂(λνMO)) =
∂(λνMO)(0). Now, since R(∂ f1) is a product space, it suffices to consider the slices
[∂(λνMO)(0)]i of this subdifferential independently. At differentiable points

[∇(λνMO)(ȳ)]i = λ ∑
j �=i

yi − yj

‖yi − yj‖ .

Therefore, by the limit characterisation of the subdifferential, it suffices to check
that

lim
q1,...qK−1→0

λ
K−1

∑
j=1

qj

‖qj‖ ∈ int R(∂ f )

or that
B(0, λ(K − 1)) ∈ int R(∂ f ).

In the simple case with Wk = I for all k = 1, . . . , n, this follows if λ < n/(K − 1)
(when K > 1), because cl R(∂ f ) = B(0, n) then. For incomplete and weighted
data, we must consider the “minimal dimension” of A: by Lemma 5.8, we must
find minimum ‖z‖ for z = ∑k �∈πb

W2
k q/‖q‖k + v ∈ Zπb , among all πb. The sets

Qπb and Aπb are orthogonal, and the v can be made arbitrarily close to zero, being
a subgradient of a reduced spatial median problem. Therefore, it can and must
be chosen to be zero, and the remaining sum sets the bound. Thus we may state:

Theorem 6.1.

(i) The level sets of the scalarised problem (6.4) are bounded if 0 ≤ λ < β/(K − 1)
with β = min ‖ ∑k �∈πb

W2
k q/‖q‖k‖, with the minimum taken over all q ∈ Qπb

and πb ⊂ {1, . . . , n} satisfying the conditions of Lemma 5.8.

(ii) If, furthermore, Wk = ρk for zero-one diagonal matrices ρk, β ≥ min #πc
b with

πc
b � {1, . . . , n} \ πb. In particular, β ≥ #{ρk = I}.

Proof. Only the lower bound min #πc
b ≤ β demands further proof. Since ρπb q = 0,

we have

‖ ∑
k∈πc

b

W2
k q/‖q‖k‖ ≥

√√√√ ∑
i:(ρ̄πb )ii=1

q2
i
(

∑
k∈πc

b :(ρk)ii=1

1
‖ρkq‖

)2

≥
√

∑
i:(ρ̄πb )ii=1

q2
i #{k ∈ πc

b : (ρk)ii = 1}2/‖q‖2

≥ min
i:(ρ̄πb )ii=1

#{k ∈ πc
b : (ρk)ii = 1}.

If (ρk)ii = 0 and (ρ̄πb)ii = 1, then (ρ̄πb∪{k})ii = 1. Therefore, for some πb′ ⊃
πb ∪ {k}, with πb′ � {1, . . . , n} since ρk �= I, both the set the minimum taken
over is larger, as well as the values smaller. Therefore, taking the minimum over
the admissible set of πb as defined in Lemma 5.8, we get the first claimed lower
bound. Finally, if R(ρk) is full, k is never contained in πb.
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With such choices of λ as above, Algorithm 5.1 can thus in principle be
applied to finding semi-critical points of the scalarised problem (6.4). We em-
phasise that Theorem 6.1(ii) provides a simple and explicit lower bound for the
supremum of practical scalarisation values, as the amount of complete data. On
the other hand, when λ > β/(K − 1), λ ∑K−1

j=1 qj/‖qj‖ ∈ cl R(∂ f ) can be violated,
whence R(∂(λνMO)) �⊂ R(∂ f1). Problem (6.4) is not bounded from below then,
wherefore no finite Pareto-optimal solution is generated by scalarisation param-
eters much larger than Algorithm 5.1 can be expected to handle.

Remark 6.1. Although we used the lifting of ai to aj
i in modelling the prob-

lem as a problem of perturbed spatial median, it is not necessary to work with
such expanded data sets in practical implementations. Since the ai

j for differing
j have no coordinates with overlapping information, we have in particular that
gπ(ȳ) = (gπ(y1), . . . , gπ(yK)) and Sπ(ȳ) = (Sπ(y1), . . . , Sπ(yK)), where the right-
hand-sides have been defined for the original data {ai}. In consequence, there is
no dependency between the yj within the iterations of the SOR-Weiszfeld algo-
rithm aside from calculating the “tilt” v ∈ ∂νMO(ȳ). Therefore each iteration of
Algorithm 5.1 can be calculated in parallel using the same step size for the differ-
ent cluster centres after a subgradient of νMO has been calculated.

Remark 6.2. The convergent sequences of our method are to semi-critical points,
not necessarily (local) minima. In addition to standard second degree conditions
for a posteriori optimality checking, we do, however, have at least the following
necessary optimality condition with a clear interpretation.

Lemma 6.1. Suppose yj = yk (j �= k) and rank(ρπ) < m for π � π(yj) = π(yk).
Then ȳ is not a local minimiser.

Proof. The term ‖yj − yk‖ is not differentiable at yj = yk, Therefore, with v̄ =
(v1, . . . , vK), there are multiple choices for vj and vk (dependent on each other) in
all m dimensions, and we can in (5.5) choose vj so that [gπ(ȳ)]j − vj �= 0, and the
same for k. Because rank(ρπ) < m, the term ∑i∈π ‖zj‖i does not pose problems
in forcing h(·; v, p) negative in (5.5). Thus the claim of the lemma follows from
Theorem 5.1.

6.3 The multisource Weber problem

The K-spatial median or the multisource Weber problem is a K-means type clus-
tering criteria. Instead of the squared distance, the Euclidean distance is simply
used. The standard formulation is

min
wij,ȳ

n

∑
i=1

K

∑
j=1

wijdi(yj) with wij ∈ {0, 1} and
K

∑
j=1

wij = 1. (6.5)

The weights wij indicate to which cluster j the vertex i belongs to, and yj is the
cluster prototype.
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The standard K-means-type algorithm [Cox, 1957; Selim and Ismail, 1984;
Cooper, 1964] proceeds by assigning each ai to the closest cluster centre yj (set-
ting wij = 1), calculating the spatial median y′

j for each of the clusters Aj = {ai |
wij = 1}, and repeating this until there is no change in the assignments. Con-
vergence of this class of methods to (differentiable) Karush-Kuhn-Tucker points
for some classes of distance functions in Rm is proved in Selim and Ismail [1984],
along with providing an extension to find local minima. The proof readily gen-
eralises to our case of incomplete data (but see also Appendix 1). For some other
heuristic and local methods for solving the problem, see Cooper [1964]; Brimberg
et al. [2000]; Bongartz et al. [1994]. The global solution with outer approximation
methods of the diff-convex formulation to be given below is studied in Chen et al.
[1998]. Other approximation schemes are derived in Arora et al. [1998].

Given the constraints on the weights, for fixed i, minwij ∑K
j=1 wijdi(yj) =

minj=1,...,K di(yj). Therefore an alternative way to write (6.5) is

min
ȳ

n

∑
i=1

min
j=1,...,K

di(yj). (6.6)

Because min{x, y} = x + y − max{x, y}, this formulation can be further recast as
a DC problem by writing the objective function as

f1(ȳ) − νKM(ȳ) �
( n

∑
i=1

K

∑
j=1

di(yj)
)− ( n

∑
i=1

max
j=1,...,K

∑
k �=j

di(yk)
)
.

But, indeed, using the lifting of ai to aj
i for j = 1, . . . , K as in Section 6.2.2,

this problem is seen to be a problem of perturbed spatial median. This problem,
however, has unbounded level sets: any change in yj sufficiently far from the data
when some other cluster centre is close to it does not affect the function value. In
other words, the problem may have “degenerate” solutions; cf. also Brimberg
and Mladenović [1999]. Therefore Theorem 2.6 cannot be used to prove the ap-
plicability of our Weiszfeld-like algorithm. However, we can prove boundedness
of the iterates directly with some conditions on the step sizes and the tilt v̄(ȳ),
after first analysing Algorithm 5.1 applied to this problem, in further detail.

6.3.1 Algorithm analysis and reduction

Let us calculate ∂νKM. Similarly to the derivation of ∂ f1 in Section 6.2.2, we get

∂
(
∑
k �=j

di(yk)
)
(ȳ) = ∂di(y1) × · · · ∂di(yj−1) × {0} × ∂di(yj+1) × · · · ∂di(yK)
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and therefore, with Ji � Ji(ȳ) denoting the set of indices j for which ∑k �=j di(yk)
reaches its maximum (di(yj) reaches minimum),

∂νKM(ȳ) =
⋃

Λ∈W

n

∑
i=1

∑
j∈Ji

λj,i∂
(
∑
k �=j

di(yk)
)
(ȳ)

=
⋃

Λ∈W

n

∑
i=1

K

∏
j=1

⎛⎝ ∑
k∈Ji\{j}

λk,i

⎞⎠ ∂di(yj) =
⋃

Λ∈W

n

∑
i=1

K

∏
j=1

Gj,i

(6.7)

with

Gj,i =

{
∂di(yj), j �∈ Ji,
(1 − λj,i)∂di(yj), j ∈ Ji.

(6.8)

Here Λ � {λj,i | j ∈ Ji, i = 1, . . . , n} and W � W(ȳ) � {Λ | ∑j∈Ji
λj,i = 1, λj,i ≥

0}. Also let Wext � {Λ | ∑j∈Ji
λj,i = 1, λj,i ∈ {0, 1}} be the extreme points of W .

After choosing the weights {λj,i}, we may therefore choose for v̄(ȳ) = v̄ =
(v1, . . . , vK) each vj ∈ ∑n

i=1 Gj,i independently. Noting that j �∈ Ji implies di(yj) >
0 and hence i �∈ π(yj), let

vj � ∑
i �∈π(yj)

Ji�j

(1 − λj,i)∇di(yj) + ∑
i �∈π(yj)

Ji ��j

∇di(yj) + ∑
i∈π(yj)

(1 − λj,i)W2
i zj/‖zj‖i. (6.9)

Then v̄ ∈ ∂νKM(ȳ), and ρ̄π(ȳ)gv
π(ȳ) = (ρ̄π(y1)g1, . . . , ρ̄π(yK)gK) for

gj = ∑
i �∈π(yj)

∇di(yj) − ρ̄π(yj)vj = ∑
i �∈π(yj),

Ji�j

λj,i∇di(yj),

which are the gπ(yj) for the K reduced spatial median problems with vertices
Aj � {ai | j ∈ Ji} and weights λj,i. Likewise h(z̄, v̄; ȳ) = ∑K

j=1 h(zj, vj; yj), where

h(zj, vj; yj) = ( ∑
i �∈π(yj)

∇di(yj) − vj)Tzj + ∑
i∈π(yj)

‖zj‖i = gT
j zj + ∑

i∈π(yj)
Ji�j

λj,i‖zj‖i,

(6.10)
which are h for the same reduced problems. It follows that z̃ required by Lemma
5.1 can be chosen independently for each j, together with vj. (Note that vj only
depends on the R(ρπ(yj)) part of zj, i.e., z̃j.) However, Sπ(ȳ) does not split
into clusters quite so well: it remains dependent on the whole original data set,
Sπ(ȳ) = (Sπ,full(y1), . . . , Sπ,full(yj)), where Sπ,full(yj) � ∑i∈{1,...,n}\π(yj) Si(yK).
Despite this, the direction of (5.6),

z(ȳ, v̄) = (. . . , −ρ̄π(yj)S
†
π,full(yj)gj + αρπ(yj)z̃j, . . .),

can be calculated almost independently for each j. We have therefore showed
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Theorem 6.2. For the multisource Weber problem, Algorithm 5.1 reduces to calculating
at each step, for the spatial median problems

min
y′

j
∑

i:j∈Ji

λj,idi(y′
j) (j = 1, . . . , K), (6.11)

one iteration starting from yj, of the convex SOR-Weiszfeld algorithm, modified to use
Sπ,full(yj) (instead of Sπ(yj) for the data set Aj), in the direction of (5.6). If the sum is
empty, the point remains unaltered. The step sizes ω and α must be the same for all j,
and valid for the full problem.

Since Sπ,full ≥ Sπ ≥ 0 (component-wise), the effect of this modification in
both (5.6) and (5.7) (for the problem (6.11)), is to shorten the step. In our study
on how the choice of step lengths affects the boundedness of the iterates, we may
therefore consider the application of the unperturbed Weiszfeld algorithm (for
incomplete data) without the Sπ,full-modification, to the problem (6.11).

6.3.2 Boundedness and convergence

If we are working with complete data and step size ω = 1, it is well known that
each iterate of the (convex unperturbed) Weiszfeld algorithm is in the convex
hull of the data points when the current iterate is not one of the vertices; cf. Kuhn
[1973]. In fact, when an iterate equals one of the vertices, we can freely choose
the step size as small as we want – the condition ω ≥ 1 does not apply to such
points – and therefore keep things bounded. Since the convex hull of a subset of
points belongs in the convex hull of the full set, we can therefore keep the iterates
bounded in this case.

Similarly in our case of incomplete data, for π(y) = ∅ and convex problems
of spatial medians, each coordinate of T1(y) is in the convex hull of the corre-
sponding (non-missing) coordinates of the data. (We drop v from the parameters
of Tω for the convex sub-problems, since it is zero.) But our convergence theorem
does not guarantee convergence for a fixed step size for all kinds of incomplete
data sets. It is therefore imperative to study how the selection of step sizes affects
boundedness of the iterates.

Let ŷ ∈ Rm be some reference point, e.g., a spatial median of the data, L > 1,
and π � π(yj). Then, for the difference of y′

j � Tω(yj) and ŷ, following (5.10), we
have for the coordinates k present in R(ρ̄π) that

|(y′
j − ŷ)k| = |((1 − ω)(yj − ŷ) + ω(c − ŷ))k| ≤ |1 − ω||(yj − ŷ)k| + ω|(c − ŷ)k|

≤ |1 − ω||(yj − ŷ)k| + ωCk,

with c some point in the coordinate-wise convex hull of the data (as an average
of ak weighted by Sk), and Ck = maxc |(c − ŷ)k|. Therefore, if |(yj − ŷ)k| < (L −
ω)/(ω − 1)Ck for some valid ω > 1, then we have that |(y′

j − ŷ)k| < LCk. Since
for L > 1, (L − ω)/(ω − 1) ↗ ∞ as ω ↘ 1, such an ω can always be found.

To bound (y′
j − ŷ)k for coordinates in R(ρπ), we alter the parameter α in the

iteration. By the definition of the step z(y) in (5.6), |(y′
j − ŷ)k| ≤ |(yj − ŷ)k| + αω.
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By Lemma 5.1, the iteration is descending for each ω ∈ (1, 2) and α ∈ (0, α0),
with α0 > 0. We may therefore make αω > 0 arbitrarily close to zero. Thus, with
|(yj − ŷ)k| < LCk − αω, we have |(y′

j − ŷ)k| < LCk. Hence we can state:

Theorem 6.3. With the choice of α and ω as above, the sequence of iterates for the per-
turbed SOR-Weiszfeld algorithm of Theorem 6.2 can be held bounded for the K-spatial-
medians objective. In consequence, the convergence results of Theorem 5.2 apply. Fur-
thermore, with choices of Λ ∈ Wext, we can take D = DN.

Proof. Above we have derived upper bounds for ω and α for each cluster centre to
stay in the box (y − ŷ) + ∏m

k=1(−LCk, LCk) for arbitrary L > 1 and reference point
ṗ, if the previous iterates satisfy this. Because the number of conditions is finite,
and allow for ω to vary in some non-singleton range above and including 1, there
is enough leeway for ω for it to be altered in such a manner that the conditions in
Theorem 5.2 on ω are met. Furthermore, the K-spatial-medians objective function
clearly is bounded from below, so the theorem applies.

In the choice (6.9) of vj used to obtain (6.10), we choose W2
i z̃/‖z̃‖i ∈ ∂di(yj)

for i ∈ π(yj). These are in the limit of gradients of differentiable points of νKM, for
at these points ∇di(yj) takes the form W2

i (yj − ai)/di(yj). Furthermore, directions
in DN(− f 2

KM)(ȳ) have Λ ∈ Wext. For, if #Ji(ȳ) > 1, then νKM is not differentiable,
and hence at differentiable points W = Wext. As directions in DN are limits of
directions at differentiable points, by the preceding we must have have Λ ∈ Wext
for such directions. Now, if ȳ is DN-critical, then there is a choice of weights
Λ ∈ Wext for which (ȳ, Λ) solves (6.11) for each j. Therefore, with such choice of
Λ, v̄ ∈ DN(ȳ).

6.3.3 Optimality

Extend Λ by setting λj,i = 0 for j �∈ Ji. For fixed Λ, we may then reformulate the
objective of Theorem 6.2 in a combined form as finding ȳ′ such that F(ȳ′; Λ) <
F(ȳ; Λ) for the function

F(ȳ; Λ) � ∑
j

∑
i

λj,idi(yj). (6.12)

Theorem 6.4. The point ȳ∗ is a local minimum of (6.6) if and only if it minimises F(·; Λ)
for all Λ ∈ W(ȳ∗).

Proof. Necessity is obvious: ( f1 − νKM)(ȳ) = ∑K
i=1 minj di(yj) ≤ F(ȳ; Λ) with

equality at ȳ∗, for all Λ ∈ W(ȳ∗). Hence if ȳ∗ is not a minimiser of the convex
function F(·; Λ) for some such Λ, it cannot minimise (6.6) even locally.

As for sufficiency: for all ȳ sufficiently close to ȳ∗, W(ȳ) ⊂ W(ȳ∗) (with
the identification λj,i = 0 for j �∈ Ji). Therefore, sufficiently close to ȳ∗, by the
definition of W(ȳ), f1(ȳ)− νKM(ȳ) = min{F(ȳ; Λ) | Λ ∈ W(ȳ)} ≥ min{F(ȳ; Λ) |
Λ ∈ W(ȳ∗)}. But since F(·; Λ) is minimised at ȳ∗ for all Λ ∈ W(ȳ∗), it must be a
local minimiser of f1 − νKM as well.
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Corollary 6.1. (i) If #Ji(ȳ∗) = 1 for all i = 1, . . . , n, and ȳ∗ minimises F(·; Λ∗) for the
unique Λ∗ ∈ W(ȳ∗), then ȳ∗ is a local minimiser of (6.6). (ii) If #Ji(ȳ) > 1, and we
have π(yj) = ∅ for some j ∈ Ji(ȳ), then ȳ is not a local minimiser.

Proof. The first claim is obvious from the preceding theorem. As for the second
claim, suppose ȳ minimises F(·; Λ∗) for some Λ∗ ∈ W(ȳ). Let j, j′ ∈ Ji(ȳ), j �=
j′, and π(yj) = ∅. Let Λ be altered from Λ∗ by moving weight between λj,i
and λj′,i. This will not change the value of F at ȳ. However, the condition 0 ∈
{∇ ∑i λj,id(ai, yj)} will be upset, and hence the value of f1 − νKM can be improved
locally.

Corollary 6.2. If ȳ∗ is DN-critical and #Ji(ȳ∗) = 1 for all i, then ȳ∗ is a local solution
of (6.6).

Proof. The condition #Ji(ȳ∗) = 1 forces Λ∗ to be unique. Therefore (1 −
λj,i)∂di(y∗

j ) also reduces to the singleton {0} in (6.8). Hence v̄(ȳ∗) is uniquely
determined. It then follows from DN-criticality that ȳ∗ minimises (6.11) for all
j, and consequently minimises (6.12). That ȳ∗ is a local solution follows from
Corollary 6.1.

Remark 6.3. In fact, that #Ji(y∗) = 1 or minj di(y∗
j ) > 0 for all i forces v̄(ȳ∗) to be

uniquely determined by Λ. We may show that such points are in fact critical and
not only semi-critical. However, a simple example on the real line furnishes that
the relaxed condition does not guarantee local optimality:

a1

�

y1

a2 a3

�

y2

a4

Here y1 and y2 are at equal distance from a3. If a3 is assigned to the cluster of y2,
we have a critical point, yet assignment to y1 shows that both cluster centres can
be improved by just a small move of either or both y1 or y2 to the right.

Corollary 6.3. Under conditions of Theorem 6.3, with choices of Λ ∈ Wext(ȳ), if the
iterates {ȳ[r]} of the algorithm of Theorem 6.2 converge to ȳ∗, then it is either a local
minimiser, or has disputed vertices: #Ji(ȳ∗) > 1 for some i ∈ {1, . . . , n}.

Proof. Since {ȳ[r]} converge to ȳ∗, if {v̄(ȳ[r])} diverges, then νKM is non-
differentiable at ȳ∗ (cf. Remark 5.1(i)). This says that there are disputed vertices.
If {v̄(ȳ[r])} also converges, then by Theorem 6.3 (and Theorem 5.2), ȳ∗ is
DN-critical, and the previous corollary applies.

Remark 6.4. Suppose that eventually in the method, the assignments of ver-
tices to clusters is unique. Then, if the data set is complete (or more generally
#π(yi) ≤ 1 always), we have convergence to the set of local minimisers (being
able to analyse the method on each cluster separately, applying Remark 5.1(iii)).
Therefore, with such simple data, non-convergence is always a case of dispute
over assignment of vertices to clusters.
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6.3.4 Discussion and multiobjective interpretation

We have thus provided a method for the multisource Weber problem, providing
convergent sequences to semi-critical points of the problem and often, in fact, to
local minima. Our method does not depend on solving K inner spatial median
problems (likely with the Weiszfeld algorithm) between each step of allocating
vertices to clusters. Instead, we only solve a single perturbed spatial median
problem, which amounts to running K “tilted” SOR-Weiszfeld iterations in par-
allel, with tilts calculated from the results of all the K previous iterations, as was
explained in Section 6.2.2.

If we choose {λj,i} as extreme points of the feasible sets, then in some sense,
our method is “dual” to the basic K-means type algorithm: in that algorithm, spa-
tial medians are calculated between assignments of vertices to clusters, whereas
in our method vertices are assigned to clusters between iterations of a method to
find spatial medians. To summarise, Algorithm 5.1 reduces to the following:

Algorithm 6.1 (K-means type method with single step SOR-Weiszfeld).

1. Choose some starting points yj (j = 1, . . . , K).

2. Assign each vertex ai (i = 1, . . . , n) to one of the clusters Aj corresponding
to closest yj (j = 1, . . . , K).

3. To obtain y′
j, calculate for the (convex) spatial median problem on Aj, one

iteration of Algorithm 5.1 with the modified direction

zKM(yj) � −ρ̄π(yj)S
†
π,full(yj)gπ(yj) + αρπ(yj)z̃j, (6.13)

where gπ(yj) and z̃j are calculated for the data Aj. See below for constraints
on step sizes.

4. Continue from step 2 unless a stopping criterion is satisfied.

The step lengths ω ∈ [1, 2) and α should be the same for each cluster, according
to Theorem 6.2. Since (5.7) defining the bound α2 for the whole problem is the
sum of Sπ,full-modified conditions for the sub-problems, it suffices to bound α

from above by the minimum of the upper bounds for the sub-problems. Theorem
5.2 sets some minor restrictions on ω ∈ [1, 2) to avoid oscillation. Theorem 6.3
sets additional upper bounds on the step lengths by the coordinate-wise bound
LCk > Ck on |(ẏ′

j)k|, which we may, however, choose arbitrarily large.

Example 6.1. When Wk = wk I for all k = 1, . . . , n, Sπ,full is proportional to the
identity; cf. Example 5.1. Therefore, in that case, (6.13) is simply a shortened
standard Weiszfeld step for the data Aj. The effect of the data outside the cluster
Aj is therefore to damp too quick convergence to its centre. For more complex
weights Wk, the same conclusion holds coordinate-wise.
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In light of the multiobjective clustering criteria considered in Section 6.2,
it is interesting to interpret the K-spatial-medians as one scalarisation of a more
general problem

min
ȳ

( f1, −νKM)(ȳ).

The meaning of the objective f1 is the same as before. What the objective −νKM
means is: place all but the closest cluster centre as far from ai as possible. This
sounds like a very natural criteria. Thus, it will be interesting to look at the results
of minȳ f1(ȳ) − λνKM(ȳ) for λ ∈ [0, 1].

For λ ∈ [0, 1), Theorem 2.6 is applicable to proving boundedness of the level
sets. To see this, consider the inclusions λR(∂νKM) ⊂ λ

⋃
Λ R(∂ fΛ) ⊂ int R(∂ f1),

where fΛ : ȳ �→ ∑K
j=1 ∑n

i=1(1 − λj,i)di(yj), and Λ ranges over all the admissible
weights {λj,i} with λj,i ≥ 0 and ∑i λj,i = 1}. The first inclusion can be seen from
taking the union over ȳ in the expression (6.7). To see the second inclusion, note
that f1 = fΛ1 for Λ1 with all zero weights. Therefore f1 − λ fΛ is a convex function
with bounded level sets for λ ∈ [0, 1) and admissible Λ. Thus an application of
Theorem 2.6 yields that λR(∂ fΛ) ⊂ int R(∂ f1). Finally since the inclusions above
hold for some other λ′ ∈ (λ, 1), the result must hold for the closure as well, i.e.,
cl R(∂(λνKM)) ⊂ int R(∂ f1). Now Theorem 2.6 applies again.

6.4 Experiments

In this section we present some experiments with the proposed algorithm(s) and
clustering formulations. It is not our intent to provide thorough statistically sig-
nificant testing and comparison of the method with alternatives, but rather to pro-
vide minimal experimental proof that the method works, and to visually compare
the KM and MO clustering objectives. Especially, the statistical and computa-
tional properties of the K-spatial-medians, along with significant amount of tests
with real and simulated data, are covered in Äyrämö [2006].

Figures 6.1 and 6.2 show results for two cases using both the problem of
Section 6.2.2 (MO), and the multi-objective formulation of the K-spatial-medians
(KM) discussed in Section 6.3. The number of clusters is three, and the total num-
ber of vertices is 90. The weight λ was randomly varied between zero and the
indicated upper limit for 30 samples in each case. The stopping criterion used
was maxj=1,2,3 ‖y′

j − yj‖ < 10−6 and the maximum number of iterations was 300.
The actual mean, median, minimum and maximum numbers of iterations (nits)
of the perturbed SOR-Weiszfeld method to reach the threshold is given in the
figures (in that order: mean/median/min/max). The bigger dots in the figures
denote the data, and the smaller dots the clusters’ centres.

As we can see, for λ = 0 the result is in both cases the spatial median of the
data. From there, the solutions continuously move towards the centres of clusters,
as λ varies towards the respective upper bound for λ (λsup = n/(K − 1) for MO,
from Theorem 6.1, and λmax = 1 for KM, from the analysis of Section 6.3.2), just
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(a) MO, λsup = 90/2 (b) KM, λmax = 1

FIGURE 6.1 Results for a task with three clear clusters with varying λ and ω = 1.5.
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(a) MO, λsup = 90/2 (b) KM, λmax = 1

FIGURE 6.2 Results for a task with three less clear clusters with varying λ and ω = 1.5.

as suggested by results of sensitivity analysis of optimisation problems under
some assumptions on the second-order behaviour of the objective function at the
solution; see Section 2.4 for the subdifferential and epigraphical approach, and,
e.g., Bonnans and Shapiro [1998] for a review of other results. Interestingly, the
paths the solutions travel are very similar for both KM and MO, and the paths
for MO pass closely to the cluster centres for KM, but “overshoot” slightly for
big λ. This resemblance is not entirely unexpected, however: for tightly packed
clusters, we should have d(y∗

k , y∗
j ) ≈ ∑i:k∈Ji

d(ai, y∗
j )/#{i : k ∈ Ji} for all k �=

j. In case of the K-spatial-medians, the small amount of total iterations used is
also noteworthy when compared to the basic K-means-type algorithm, where a
comparable number of iterations would be used in the inner (SOR-Weiszfeld)
algorithm used to calculate the spatial medians [Kärkkäinen and Äyrämö, 2005].
One may also note that the MO formulation has required more iterations in our
tests. But since this number is dependent on the stopping criterion, and absolute
quality of the solutions is not known, not much conclusions can be drawn.



7 THE EUCLIDEAN TRAVELLING SALESPERSON
PROBLEM

7.1 Introduction

This chapter is concerned with the travelling salesperson problem with Euclidean
(�2) distances (undiscretised), i.e., the problem of finding the shortest closed path
that visits every vertex (or city) in a given finite subset of Rm exactly once, with
the distances given by the Euclidean metric. Whereas various rather efficient al-
gorithms exist for the general and general metric TSP [Johnson and McGeoch,
2002], few seem to be able to take advantage of the special features of the variant
with Euclidean distances – that still remains NP-hard. The most remarkable of
those that do are Arora’s [1998; 2003], polynomial time (and even “nearly linear
time”) approximation schemes (PTAS) the good performance of which is, how-
ever, only asymptotic. Other methods for Euclidean instances specifically include
various heuristics optimised for speed and based on clustering or partitioning of
the plane, or spacefilling curves.

Here, we make another stab at formulating and finding (local) solutions to
the Euclidean TSP. Our approach consists of first reformulating the problem as a
continuous diff-convex problem. Instead of attempting to find the optimal path,
we attempt to find points that construct the path, constrained to equal one of the
input vertices. We then relax this problem, converting the constraint into a mere
penalty. Dependent on the formulation of the constraint, the relaxed problem is
found to be equivalent to certain clustering problems (including the multisource
Weber problem or “K-spatial medians”) perturbed with the path length penalty.
(Perhaps not so coincidentally, Arora’s methods can also be extended to approxi-
mate the K-spatial medians [Arora et al., 1998; Arora, 2003].)

As a continuation of the work in Chapters 5 and 6, in the present chapter

0 This chapter is based on the article Valkonen and Kärkkäinen [2008b], “Continuous refor-
mulations and heuristics for the Euclidean travelling salesperson problem”, ESAIM: Con-
trol, Opt. Calc. Var., doi:10.1051/cocv:2008056. © EDP Sciences. The original publication is
available at www.esaim-cocv.org.
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we restrict ourselves to locally solving these penalised reformulations, by apply-
ing the perturbed Weiszfeld method applicable to finding “semi-critical” points
of a sum of Euclidean distances from fixed points, perturbed by a concave func-
tion. Although applicable to the multisource Weber problem (providing a sort
of dual of the K-means -style algorithm), it is unfortunately not applicable to the
problem perturbed with the path length penalty. The algorithm is, however, ap-
plicable to the clustering formulation presented in Section 6.2, perturbed with the
path length penalty. It is this latter reformulation we will use in our numerical
experiments.

An (approximate) solution of such a continuous reformulation of the Eu-
clidean TSP is not in practise – and not in theory either for big penalty parameters
– a permutation of the original vertices. Therefore, along the course of studying
these reformulations, we derive a heuristic that we use to “associate” the points
of a solution with the original vertices. We also develop some other heuristics to
reduce problem sizes, based on this heuristic and the clustering principle.

As for the applicability of our algorithms, we do not have any theoretical
proofs of efficiency aside from partial convergence to “semi-critical points” (often
local minima), and each step of the basic algorithm being O(n2) (consisting of n
parallel Weiszfeld steps). On the experimental side, our method does seem to
provide rather good results in quite few iterations for small problems. For bigger
problems the performance, however, degrades considerably – there are, after all,
many more local solutions then. A bigger penalty parameter value might help,
but the algorithm we apply has a limit on its magnitude. Clustering heuristics
that we develop, however, somewhat remedy the situation. Nevertheless, our
numerical results are not remarkable compared to what is achievable with other
(non-Euclidean) algorithms, as presented in Johnson and McGeoch [2002].

The primary contributions of this work are thus the reformulations that ap-
pear new and perhaps, with other methods applied to them, could provide better
numerical results. The basic method based on the Weiszfeld algorithm is also
new. Our clustering heuristics are related to the classic Karp clustering heuristic,
Bentley’s [1992] Fast Recursive Partitioning scheme, and Litke’s [1984] cluster-
ing heuristic. The first two of these use a “hard-coded” partitioning approach
until the clusters are small enough, after which the sub-problems in the cluster
are solved either approximately or exactly. Our approach, by contrast, uses a
more dynamic cluster configuration, as defined by a clustering problem objec-
tive function. Litke’s method also uses an ad hoc dynamic clustering method.
None of these methods incorporate TSP path length optimisation in the cluster
calculation phase. Finally, our geometric penalisation approach bears some re-
semblance to various geometric neural net methods for the problem – see John-
son and McGeoch [1997] and the references therein – as well as the Lazy TSP of
Polak and Wolansky [2007]. In this latter paper a formulation very similar to the
first one of ours, but with squared distances, is analysed along with its convex-
ification. This problem is also considered in Buttazzo and Stepanov [2004], in a
wider measure-theoretic transport optimisation framework. The papers of Jones
[1990] and Lerman [2003], considering the multiscale construction of paths cov-
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ering infinite point sets or measures, also bear relationship to the geometric and
clustering approach to the TSP.

The rest of this chapter is organised as follows: In Sections 7.2 and 7.3 we
present our continuous reformulations. Then, in Section 7.4, we consider the
sensitivity of the solutions of the penalised reformulations with respect to the
solutions of the original problem, as the penalty parameter is varied. Section
7.5 considers heuristic approaches that could be used to improve or speed up
results. Finally, in Section 7.6 we present and discuss the results of our numerical
experiments.

7.2 First reformulation

Consider the Euclidean travelling salesperson problem

min
σ

n

∑
i=1

‖aσi − aσ(i+1)‖, (7.1)

where ā � (a1, . . . , an) ∈ Rmn are distinct vertices, also called cities, and σ is a
permutation of the numbers {1, . . . , n}, with σ(n + 1) � σ1. We shall henceforth
use this identification without explicit mention. We denote by σ̂ any of the opti-
mal permutations that minimise (7.1). There are always at least n of these, every
“shift” of a solution being one.

Let us now reformulate the problem as finding ȳ � (y1, . . . , yn) that solves

min fTSP(ȳ) �
n

∑
i=1

‖yi − yi+1‖ subject to yi = aσi for some permutation σ.

Here again we identify yn+1 � y1. The qualification condition may be written as

fKM(ȳ; ā) �
n

∑
i=1

min
j=1,...,n

‖ai − yj‖ = 0.

The function fKM is precisely the multisource Weber problem (or “n-spatial medi-
ans”) objective function, when the number of data points and cluster prototypes
are equal; see Chapter 6. This function is diff-convex, as may be seen by rewriting
fKM(ȳ; ā) = f (ȳ; ā) − νKM(ȳ; ā) with

f (ȳ; ā) �
n

∑
i=1

n

∑
j=1

‖ai − yj‖ and νKM(ȳ; ā) �
n

∑
i=1

max
j=1,...,n

(
∑
k �=j

‖ai − yk‖
)
. (7.2)

These considerations suggest relaxing problem (7.1) to the problem

min
ȳ

fKM(ȳ; ā) + λ fTSP(ȳ), λ > 0, (7.3)

or

min
ȳ

(
n

∑
i=1

min
j=1,...,n

‖ai − yj‖ + λ
n

∑
i=1

‖yi − yi+1‖
)

.
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Notice that for permutations σ of the vertices, ȳ = āσ � (aσ1, . . . , aσn) are pre-
cisely all the global minimisers of (7.3) for λ = 0. The function fTSP therefore
acts as a perturbation to the multisource Weber problem, penalising such permu-
tations that result in long paths. For small enough perturbation parameter λ, a
minimiser ŷ of (7.3) actually equals āσ̂ for one of the optimal permutations σ̂, as
Theorem 7.1 below shows. For the proof we need first some preliminary results
and definitions.

Definition 7.1. The vertices ak (k = 1, . . . , n) are collinear (on the line L) if there are
vectors z, v ∈ Rm such that for the line L � Rz + v, {a1, . . . , an} ⊂ L. Otherwise
the points are non-collinear.

Definition 7.2. Given a path/permutation σ, there is said to be a degenerate angle
at the point aσk, if (aσ(k+1) − aσk)T(aσ(k−1) − aσk) = ‖aσ(k+1) − aσk‖‖aσ(k−1) − aσk‖.

Since the collinear case is trivial, we will only consider the case of

Assumption 7.1. The vertices ak ∈ Rm (k = 1, . . . , n) are non-collinear and dis-
tinct.

The following result is well-known, but we provide the proof for complete-
ness:

Lemma 7.1. Suppose that Assumption 7.1 holds on the points ak ∈ Rm (k = 1, . . . , n).
Then the points of an optimal path āσ̂ form a simple closed curve. In particular, there are
no degenerate angles.

Proof. Assume without loss of generality that σ̂ is the identity permutation. Sup-
pose two (open) straight line segments of the path (ak, ak+1) and (ai, ai+1) with
i �= k, cross at a point c. Then replacing the former segments with (ak, ai) and
(ak+1, ai+1), and reversing part of the remaining path, produces a valid path with
one less crossing. Now

‖ak − ai‖ + ‖ak+1 − ai+1‖ ≤ ‖ak − c‖ + ‖ai − c‖ + ‖ak+1 − c‖ + ‖ai+1 − c‖
= ‖ak − ak+1‖ + ‖ai − ai+1‖,

with the inequality strict if c does not lie on one (and then both) of the segments
(ak, ai) or (ak+1, ai+1). Thus the path can in that case be improved by removing
the crossing.

If c ∈ (ak, ai) ∩ (ak+1, ai+1), then these points are collinear, and (ak, ak+1)
or (ai, ai+1) contains an endpoint of the other; say ak ∈ [ai, ai+1], the other cases
being analogous. The path can therefore visit ak during this segment, not increas-
ing the cost. Furthermore, if this segment is part of the optimal path, the smaller
problem with ak removed will have equal optimal path length. If removing ak
does not improve the path length by going from ak−1 directly to ak+1, it must be
that ak−1, ak+1, ai and ai+1 are collinear. Therefore, if recursively applying the
argument never improves the path, all the points must be collinear. This is in
contradiction to our assumptions.
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Note that ∂‖ · −a‖(a) = B(0, 1), yielding (by local convexity) that
∂ fKM(āσ; ā) = ∏n

i=1 B(0, 1) when the points are distinct.

Theorem 7.1.

(i) For λ ∈ (0, 1/2], every global minimiser ȳ of (7.3), is a permutation of ā.

(ii) For λ ∈ (0, 1/2), global minimisers of (7.3), coincide with optimal TSP paths āσ̂;
the same holds for λ = 1/2 under Assumption 7.1.

(iii) However, for every permutation σ, āσ is a strict local minimiser of (7.3) for λ ∈
[0, 1/2) and a (possibly non-strict) local minimiser for λ = 1/2.

Proof. Let ȳ = (y1, . . . , yn) ∈ Rmn be arbitrary. Suppose that for some yj (j =
1, . . . , n) the following property holds: for every ak (k = 1, . . . , n) and some i(k) �=
j, ‖ak − yi(k)‖ ≤ ‖ak − yj‖. The point yj then does not contribute to fKM, and
we may assume that it lies on the straight line segment from yj−1 to yj+1, for
otherwise the cost could be decreased by making this alteration. We may in fact
freely move yj on the path composed of the remaining points yi (i �= j). Therefore
we can arrange the points in such a way that whenever yj minimises i �→ ‖ak −
pi‖ for Nj points ak, then the multiplicity of yi with yi = yj is also Nj.

The (possibly collinear) case with λ ∈ (0, 1/2). Let then yj minimise i �→
‖ak − yi‖ > 0. We may then alter ȳ by assigning yj �→ ak, actually decreasing
the cost. This follows from the following two observations. Firstly, a) by the pre-
vious alterations, if yj is a minimiser of the distance for another a� �= ak, then
there is also another yi = yj for which this holds. Therefore mini ‖a� − yi‖ is not
increased. Secondly, b) for λ ∈ (0, 1/2), we have

λ‖yj−1 − ak‖ < λ‖yj−1 − yj‖ +
1
2
‖yj − ak‖ (7.4)

and similarly for yj+1. Thus the increase in the length of the path (y1, . . . , yn, y1)
is consumed by the decrease of minj ‖ak − yj‖ to zero.

We have therefore showed that for λ ∈ (0, 1/2), only the points āσ for per-
mutations σ can be global minimisers. Obviously the actual global minimisers
correspond to the permutations that minimise fTSP.

However, 0 ∈ int ∂( fKM(·; ā) + λ fTSP)(āσ) because ∂ fKM(āσ; ā) =
∏n

i=1 B(0, 1) as already noted, and

∇yi fTSP(āσ) = ∇yi(‖yi − aσ(i−1)‖ + ‖yi − aσ(i+1)‖)(aσi)

=
aσi − aσ(i+1)

‖aσi − aσ(i+1)‖
+

aσi − aσ(i−1)

‖aσi − aσ(i−1)‖
for λ ∈ (0, 1/2). By the local convexity of fKM in a neighbourhood of āσ, strict
local optimality follows.

When λ = 1/2, we still have 0 ∈ ∂( fKM(·; ā) + λ fTSP)(āσ). Thus local op-
timality follows from local convexity. For an optimal permutation σ̂, by Lemma
7.1 we must in fact have ‖∇i fTSP(āσ̂)‖ < 2, wherefore strict local optimality still
holds. It remains to prove global optimality for this case.
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The non-collinear case with λ = 1/2. Let again yj minimise i �→ ‖ak − yi‖ > 0.
The inequality in (7.4) still holds as non-strict. In fact, when it holds as equality for
both j− 1 and j + 1, all the points yj, yj−1, yj+1 and ak must lie on a line L, such that
in one of the natural orders ≺ of L, ak ≺ yj, yj ≺ yj+1, and yj ≺ yj−1. As before,
we may then move yj to y′

j � ak, not increasing the cost. Since ‖ak − yj‖ > 0
was minimal, y′

j can equal neither yj−1 nor yj+1. Therefore there is a degenerate
angle in the altered path at y′

j. Now, if some yi is not on L, Lemma 7.1 applied to
the points y1, . . . , y′

j, . . . , yn (duplicates removed) shows that the path cannot be
optimal.

The possibility then remains that all the points yi are on L. By the non-
collinearity assumption, there is some ak that is not on L. But now (7.4) holds
strictly for the yj minimising i �→ ‖ak − yi‖ > 0. Therefore the cost can be de-
creased as before.

Corollary 7.1. Finding a point arbitrarily close to a minimiser of problem (7.3) is NP-
hard for λ ∈ (0, 1/2] when the vertices are non-collinear (with rational coordinates).
Consequently, we have another proof that finding minimisers of diff-convex functions is
NP-hard.

Proof. We can always assume that ‖ak − a�‖ ≥ 1 (k �= �), because scaling does
not alter σ̂. Suppose then that for problem (7.3) and a given ε > 0, we were
able to find in time polynomial in n (but not in ε), a point ŷ with ‖ŷi − aσ̂i‖ < ε

(i = 1, . . . , n) for some σ̂. Then, taking ε = 1/3, we could uniquely assign each
ŷi to aσ̂i in polynomial time. But this means we could solve the original NP-hard
Euclidean TSP problem (7.1) in polynomial time.

For small enough λ, a good enough approximate solution should therefore
identify the solution of problem (7.1), there being a unique distance-minimising
assignment of each yj to ak. For parameters greater than the threshold value of λ,
one could look for a permutation σ for which āσ closely matches ȳ, for example
by following the method used in the proof of Theorem 7.1. Deciding how to
optimally assign equal points yj to the corresponding vertices in that method,
can of course be expensive in itself.

The benefit from using a bigger λ comes from the local minima starting to
disappear as the objective function becomes “more convex”, and therefore possi-
bly easier to minimise. For very big λ, the global minimisers also drift far from
the sought solution, however: the study of this sensitivity is the topic of Section
7.4.

By the diff-convexity, one could thus try to solve problem (7.1) by (approx-
imately) solving a penalised version (7.3) by methods of global optimisation,
such as outer approximation methods [see, e.g., Horst and Pardolos, 1995]. As
stated, we are, however, interested in applying the somewhat more lightweight
perturbed Weiszfeld method from Chapter 5 to the problem. Unfortunately, the
present model does not exactly fit within the class of problems considered in
Chapter 5, for which we have partial convergence proofs. The problem is that
fTSP(ȳ) − νKM(ȳ; ā) is not concave.
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7.3 Second reformulation

We are thus led to seek for another way to formulate the condition yi = aσi, that
would fit within the above-mentioned class of problems. Given the observed
relationship to the K-means clustering problem, a natural candidate is based on
the multi-objective clustering problem formulated in Chapter 6. The problem
then becomes

min
ȳ

fMO(ȳ; ā) + λ fTSP(ȳ), λ > 0, (7.5)

where
fMO(ȳ; ā) � f (ȳ; ā) − νMO(ȳ)

is in structure similar to fKM: the function νKM has merely been replaced with

ν(ȳ) � νMO(ȳ) � 1
2

n

∑
i=1

n

∑
j=1

‖yi − yj‖.

We have fixed the factor 1/2 already at this point for simplicity; in Chapter 6 this
may vary up to (1/2)n/(K − 1), with K = n in the present case, while ensuring
level-boundedness of the objective function.

This time, the function fTSP(ȳ) − ν(ȳ) is concave for λ ∈ [0, 1], because ν(ȳ)
contains all the terms ‖yi − yi+1‖ in the sum expression.

The permutations āσ are strict local minimisers of fMO(·; ā), as

∇ν(āσ) ∈ int ∂ f (āσ; ā) = ∇ν(āσ) +
n

∏
i=1

int B(0, 1). (7.6)

This follows from

∇yi ν(āσ) = ∑
j �=i

∇yi‖yi − aσj‖(aσi), ∂yi f (āσ) = ∑
k

∂yi‖yi − ak‖(aσi),

with the difference B(0, 1) coming from σi = k.
As before, we have the inclusion ∂ fTSP(āσ) ⊂ B(0, 1), strict at σ = σ̂ under

Assumption 7.1 by Lemma 7.1. Therefore, all the points āσ are strict local min-
imisers for λ ∈ (0, 1/2), and āσ̂ for λ = 1/2 as well. As for global optimality, we
have:

Theorem 7.2. Suppose the points ai (i = 1, . . . , n) are distinct. Then,

(i) The global minimisers of fMO(·; ā) are exactly āσ for all σ.

(ii) There exists a λ̂ > 0, such that the minimisers of f λ
MOTSP � fMO(·; ā) + λ fTSP are

exactly the optimal TSP paths āσ̂ for λ ∈ (0, λ̂).

We begin the proof with a few lemmas. For the case m > 1, we will use
the following extension (to strict inequalities) of a reduction theorem of Levi [see
Mitrinović, 1970, p. 175].
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Lemma 7.2. Let ki ∈ R and ρij ∈ R, i = 1, . . . , K, j = 1, . . . , N. Suppose that for all
x̄ = (x1, . . . , xN) ∈ RN, we have

K

∑
i=1

ki|ρi1x1 + · · · + ρiNxN | ≥ 0, (7.7)

and let C be the cone of x̄s, on which this inequality is strict. Then for all
ȳ = (y1, . . . , yN) ∈ RmN,

K

∑
i=1

ki‖ρi1y1 + · · · + ρiNyN‖ ≥ 0.

Furthermore, this inequality is strict on the cone C′ where

A(ȳ) � {b ∈ Rm | ‖b‖ = 1, (bTy1, . . . , bTyN) ∈ C}
has positive Lebesgue measure on the unit sphere.

Proof. Let ξi � ρi1yj + · · · + ρiNyN. Then for some constant Cm > 0,

K

∑
i=1

ki‖ξi‖/Cm =
K

∑
i=1

ki‖ξi‖
∫
‖b‖=1

|bTξi/‖ξi‖|db =
∫
‖b‖=1

K

∑
i=1

ki|bTξi|db

=
∫
‖b‖=1

K

∑
i=1

ki|ρi1xj(b) + · · · + ρiNxN(b)|db ≥ 0,

where xj(b) � bTyj. As the area integrated over includes A(ȳ), the claim on
strictness of the inequality follows.

Lemma 7.3. Suppose the points ai (i = 1, . . . , n) are distinct, and define rσ(ȳ) �
2 ∑i ‖yi − aσi‖. Then for all λ ∈ [0, 1/2), and permutations σ, there exist neighbour-
hoods Eλ

σ of āσ, where

fMO(ȳ; ā) − fMO(āσ; ā) ≥ λrσ(ȳ), ȳ ∈ Eλ
σ . (7.8)

When m = 1,
⋃

σ Eλ
σ = Rnm (i.e., the whole space), and when λ = 0, E0

σ = Rnm. In
both of these cases, the inequality holds strictly when ȳ �= āσ for all σ.

Proof. We have

f (ȳ; ā) − f (āσ; ā) ≥ max ∂ f (āσ; ā)T(ȳ − āσ)

= max[
n

∏
i=1

B(0, 1) + ∇ν(āσ)]T(ȳ − āσ)

= (1/2)rσ(ȳ) + ∇ν(āσ)T(ȳ − āσ),

where the subdifferential is calculated as for (7.6), and the last equality follows
from the expression ‖x‖ = max{zTx | z ∈ B(0, 1)} for x ∈ Rm. Likewise,

ν(āσ) − ν(ȳ) ≥ ∂ν(ȳ)T(āσ − ȳ).
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Therefore

fMO(ȳ) − fMO(āσ) = [ f (ȳ; ā) − f (āσ; ā)] + [ν(āσ) − ν(ȳ)]

≥ (1/2)rσ(ȳ) − min[∂ν(ȳ) −∇ν(āσ)]T(ȳ − āσ).

By monotonicity [∂ν(ȳ) − ∇ν(āσ)]T(ȳ − āσ) ≥ 0. The problem is now to
bound

L � min[∂ν(ȳ) −∇ν(āσ)]T(ȳ − āσ) ≤ (1/2 − λ)rσ(ȳ). (7.9)

But, since the ai are distinct, ν is continuously differentiable1 in some neighbour-
hood of each aσ. Now, we approximate

L ≤
n

∑
i=1

‖[∇ν(ȳ) −∇ν(āσ)]i‖‖yi − aσi‖ ≤ max
j

‖∇jν(ȳ) −∇jν(āσ)‖rσ(ȳ)/2.

From this we see that some neighbourhoods Eλ
σ of āσ can be found, where the

maximum term is small enough for (7.9) to hold.
Now, if m = 1, there actually exists for each ȳ a permutation σ, for which

the left hand side of (7.9) is zero. Therefore, for all λ ≤ 1/2, (7.9) and then (7.8)
hold, and

⋃
σ Eλ

σ = R. To see this, recall that where ν is differentiable (i.e., yi �= yj
for i �= j),

∇yi ν(ȳ) =
n

∑
j �=i

yi − yj

‖yi − yj‖ .

In the m = 1 case the terms summed over are ±1, indicating the direction yj faces
from yi on the real line. But the set of these numbers over all i then uniquely
determines the order of the yi on the real line, and consequently a permutation σ,
for which ∇ν(ȳ) = ∇ν(āσ). In the non-differentiable case, yi = yj for some i �= j.
In this case we can arbitrarily decide on the order, and choose the corresponding
signs ±1 from ∂(y,y′)‖y − y′‖(y, y) = {(z, −z) | z ∈ B(0, 1)}.

The claim on strictness of the inequality (7.8) in the m = 1 case follows from
the non-strict variant, since E1/2

σ cover the whole space, and (1/2)rσ(ȳ) > λrσ(ȳ)
when ȳ �= aσ and λ < 1/2.

Now, if λ = 0 (and still m = 1), the right hand side of (7.8) is zero, and
independent of σ. We have also previously shown that for every ȳ, the inequality
holds for some σ. But since 2ν(āσ) = f (āσ; ā) and fMO(āσ) = f (āσ; ā) − ν(āσ) =
ν(āσ) = ν(ā) does not depend on σ, actually

fMO(ȳ; ā) − fMO(āσ; ā) = f (ȳ; ā) − ν(ȳ) − ν(ā) ≥ 0 for all σ and ȳ. (7.10)

Therefore, in the m = 1 case, E0
σ =

⋃
σ′ E0

σ′ = R for all σ.
Finally, suppose m > 1 and λ = 0. Since (7.10) is of the form (7.7) with

x̄ = (ȳ, ā) when yi, ak ∈ R, we may apply Lemma 7.2 with ȳ = (ȳ, ā) when
yi, ak ∈ Rm to obtain that (7.10) holds generally. For the strict inequality, to show
that A(ȳ, ā) has positive measure, choose the projection b in Lemma 7.2 so that
(7.8) holds strictly, i.e., at least for some i, bTyi �= bTak for all k. This can be done if

1 Twice actually, so we could alternatively apply the mean value theorem.
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yi �= ak for all k, because the set of projections with bTyi = bTak is then finite. By
continuity, the same holds in a neighbourhood of positive measure of the chosen
points and projection. Therefore A(ȳ, ā) has positive measure.

Proof of Theorem 7.2. Lemma 7.3 with λ = 0 proves claim (i).
As for claim (ii), since fMO is continuous and level-bounded (as noted

above), the cluster points of minimisers ŷ[λ] of f λ
MOTSP with λ ↘ 0, must be those

of fMO = f 0
MOTSP [Rockafellar and Wets, 1998, Theorem 1.17]. Since there are

finitely many permutations σ, there is a constant c dependent on ā, such that
fTSP(āσ) ≥ c + fTSP(āσ̂) for non-optimal σ. Therefore the cluster points must be
the optimal TSP paths āσ̂.

To show the existence of the threshold on λ, choose an arbitrary
λ̃ ∈ (0, 1/2). There must now exist λ̂ ≤ λ̃, such that ŷ[λ] ∈ E � ⋃

σ̂ Eλ̃
σ̂ for

λ ∈ (0, λ̂). If this were not so, we could find a cluster point outside E, in
contradiction to previously established results.

Now, apply

‖aσi − aσ(i+1)‖ = ‖aσi − yi + yi − yi+1 + yi+1 − aσ(i+1)‖
≤ ‖aσi − yi‖ + ‖yi − yi+1‖ + ‖yi+1 − aσ(i+1)‖,

(7.11)

to yield

fTSP(āσ) − fTSP(ȳ) = ∑
i
(‖aσi − aσ(i+1)‖ − ‖yi − yi+1‖) ≤ 2 ∑

i
‖yi − aσi‖. (7.12)

Combined with (7.8), we therefore have

f λ
MOTSP(ȳ) − f λ

MOTSP(āσ̂) = fMO(ȳ) − fMO(āσ̂) + λ( fTSP(ȳ) − fTSP(āσ̂))
≥ (λ̃ − λ)rσ̂(ȳ),

whenever λ ∈ [0, λ̃) and ȳ ∈ Eλ̃
σ̂ . This says that for λ ∈ (0, λ̂), we must have

ŷ[λ] = āσ̂ for some σ̂.

Corollary 7.2. Either (or both) the calculation of λ̂ is NP-hard, or the problem (7.5) is
NP-hard for λ ∈ (0, λ̂) (and non-collinear vertices ā).

Proof. Identical to Corollary 7.1.

Remark 7.1. Actually, the upper bound λ̂ is not strict under Assumption 7.1,
for (7.11) is strict for some i ∈ {1, . . . , n}. Suppose it were not. Then all the
vectors aσi − yi, yi − yi+1, and yi+1 − aσ(i+1) would point in the same direction,
for all i. But this cannot be unless both yi and yi+1 are collinear with aσi and
aσ(i+1). Therefore all the four points are collinear. But likewise yi+1 and aσ(i+1)
are collinear also with yi+2 and aσ(i+2). By extension, all the points y1, . . . , yn and,
in particular, a1, . . . , an are collinear, which violates our assumptions.

Lemma 7.3 also contains the following interesting special cases, obtained
with λ = 0, stated here separately:
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Corollary 7.3. For any points a1, . . . , an ∈ Rm, and y1, . . . , yn ∈ Rm, it holds that
n

∑
i=1

n

∑
k=1

‖yi − ak‖ ≥ 1
2

n

∑
i=1

n

∑
j=1

‖yi − yj‖ +
1
2

n

∑
k=1

n

∑
�=1

‖ak − a�‖.

In particular, when yi = −ai,
n

∑
k=1

n

∑
�=1

‖ak + a�‖ ≥
n

∑
k=1

n

∑
�=1

‖ak − a�‖.

Proof. This follows from the equivalence and inequality in (7.10).

7.4 Sensitivity analysis

Here we provide some sensitivity results for our penalised reformulations of the
Euclidean TSP. This is in order to understand how the solutions vary, as the
penalty parameter λ varies above 1/2 or λ̂, and to justify the use of values higher
than this threshold. We define f λ

KMTSP � fKM(·; ā) + λ fTSP. Note that this func-
tion is locally convex at āσ̂, so that the convex subdifferential is defined there.
For the reformulation based on the multisource Weber problem, we then get the
following theorem.

Theorem 7.3. Suppose Assumption 7.1 holds. Let γ ≥ 0, λ0 ∈ (0, 1/2], and λ ≥
λ0. Suppose D ∩ arg min f λ0

KMTSP �= ∅, and that ŷ ∈ γ -arg minD f λ
KMTSP. Denote

η � fTSP(āσ̂) − minD fTSP (this value does not depend on the choice of σ̂), and Cσ̂ �
∂ f λ0

KMTSP(āσ̂). Then,

(i) If for some σ̂, also ŷ ∈ āσ̂ + ∏n
i=1 B(0, δσ̂i) for δi � minj �=i ‖ai − aj‖/2, we

actually have
ŷ ∈ āσ̂ + ((λ − λ0)η + γ)C◦

σ̂, (7.13)

with the set on the right bounded.

(ii) Suppose (7.13) holds and λ ≤ λ0 + mini(δσ̂i − γMi)(ηMi)−1 with
Mi = maxx̄∈C◦̂

σ
‖xi‖. Then ŷ ∈ āσ̂ + ∏n

i=1 B(0, δσ̂i).

(iii) There exists a finite index set T , closed sets Et, compact sets Ct, points q̄t, and
constants ct ∈ [0, f λ0

KMTSP(q̄t) − f λ0
KMTSP(āσ̂)], such that C◦

t is bounded, and for
some t ∈ T ,

ŷ ∈ Et ∩
(
q̄t + ((λ − λ0)η + γ − ct)C◦

t
)
.

(iv) For ŷ ∈ Et in (iii), we must have (λ − λ0)η + γ ≥ f λ0
KMTSP(q̄t) − min f λ0

KMTSP.

Proof. (i) We have

sup
D

(
f λ0
KMTSP − f λ

KMTSP
)− inf

āσ̂

(
f λ0
KMTSP − f λ

KMTSP
)

= sup
D

(λ0 − λ)( fTSP − fTSP(āσ̂)) = η′ � (λ − λ0)η,
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wherefore η′ provides the distance between the functions on D, needed for the
application of Corollary 2.5. We want to exploit local convexity in doing so.

When ŷ ∈ āσ̂ + ∏n
i=1 B(0, δi), the choice of δi forces the distance ‖yi − aσ̂i‖

to be minimal for both yi and aσ̂i (against alternatives of the other), so that both ŷ
and āσ̂ belong to a neighbourhood Eāσ̂

on which fKM is locally convex. Therefore
f0 � f λ0

KMTSP is also convex in this neighbourhood, and we may actually take
ν = 0 and f = f0|Eāσ̂

to be the restriction of f0 (defined to be +∞ outside Eāσ̂
)

in Corollary 2.5, akin to Example 2.6. This provides the desired sensitivity result
with ε′ = ε = 0, as then A � {āσ̂} ⊂ Eāσ̂

∩ D ⊂ Rnm = Dāσ̂
(ε′), and

ŷ ∈ Uāσ̂
(η′ + γ, ε′) = āσ̂ +

⋃
εν∈[0,ε′]

⋂
ε∈[εν,ε)

(η′ + γ + ε − εν)(∂ε( f0|Eāσ̂
))◦(āσ̂)

= āσ̂ + (η′ + γ)C◦
σ̂.

The simplified expression of Uāσ̂
above (cf. Lemma 2.4) is justified, because

0 ∈ int Cσ̂, which also implies that C◦
σ̂ is bounded. To see this, since ∂ fKM(āσ̂) =

∏n
i=1 B(0, 1), it suffices to show that βi < 2 for

βi �
∥∥∥∥∥ aσ̂i − aσ̂(i−1)

‖aσ̂i − aσ̂(i−1)‖
+

aσ̂i − aσ̂(i+1)

‖aσ̂i − aσ̂(i+1)‖

∥∥∥∥∥ = ‖∇i fTSP(āσ̂)‖.

But βi ≤ 2, and equality can only happen when there is a degenerate angle be-
tween aσ̂(i−1), aσ̂i, and aσ̂(i+1). By Lemma 7.1 and Assumption 7.1 this cannot
happen for optimal permutations σ̂.

(ii) The condition λ ≤ λ0 + mini(δσ̂i − γMi)(ηMi)−1 is equiva-
lent to (λ − λ0)η + γ ≤ δσ̂i/Mi for all i = 1, . . . , n. Thus (7.13) says
ŷ ∈ āσ̂ + {(δσ̂1x1/M1, . . . , δσ̂nxn/Mn) | x̄ ∈ C◦

σ̂} ⊂ āσ̂ + ∏n
i=1 B(0, δσ̂i) by

the definition of Mi.
(iii) Notice that f0 = f λ0

KMTSP is convex on a finite family {Et | t ∈ T } of
closed sets – corresponding to different associations of the yi to ak (possibly mul-
tiple/empty) – that fill the entire space. On these regions fKM is equal to some
convex function f t : ȳ �→ ∑n

k=1 ‖ak − yi(k,t)‖ for some association i(k, t) (not neces-
sarily a permutation). Let q̄t be a minimiser of f t

TSP � f t + λ0 fTSP, not necessarily
in Et. The subdifferential of f t

TSP may be a singleton at q̄t, and thus not provide
much information. But we can use a more informative approximate subdifferen-
tial containing 0 in its interior and thus with bounded polar, as follows.

The function f t
TSP is level-bounded: Suppose ‖z̄‖ = 1. Then the trian-

gle inequality gives f t
TSP(q̄t + αz̄)/α ≥ ∑n

k=1 ‖zi(k,t)‖ + λ0 fTSP(z̄) − f t
TSP(q̄t)/α.

If fTSP(z̄) < δ, we must have ‖zk − zi‖ < δ for all k, i = 1, . . . , n. But then,
for small enough δ > 0, by ‖z̄‖ = 1 each ‖zi‖ must be close to 1/

√
n. Thus

∑n
k=1 ‖zi(k,t)‖ + fTSP(z̄) is bounded from below on {‖z̄‖ = 1} by some value

greater than zero. Therefore, for big enough α > 0, f t
TSP(q̄t + αz̄)/α is greater than

some constant, and hence f t
TSP is level-coercive and then level-bounded. Thus by

Lemma A3.2 in Appendix 3, 0 ∈ int ∂εt f t
TSP(q̄t) for εt > 0.

We may assume that q̄t �= āσ̂, for otherwise claim i) provides the result. Let
then Ct � ∂εt f t

TSP(q̄t) for some εt > 0 and ct � f0(q̄t)−min f0 − εt. Since η′ + γ ≥
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f0(ŷ)−min f0 by Corollary 2.4 (applied similarly to Corollary 2.5 above), we may
approximate

ηt � η′ + γ − ct − εt ≥ f0(ŷ) − min f0 − ct − εt

= f0(ŷ) − f0(q̄t) + ( f0(q̄t) − min f0 − εt) − ct

≥ f t
TSP(ŷ) − f t

TSP(q̄t) for ŷ ∈ Et ∩ D.

(7.14)

The last inequality follows since f0 ≤ f t
TSP with equality on Et. The inclusion

in claim (iii) now follows from Lemma 2.4 applied to f = f t
TSP and ν = 0 with

ε′ = 0 and ε > εt, since then ŷ ∈ Uq̄t(ηt, 0) ⊂ q̄t +
⋂

ε∈(0,ε)(ηt + ε)(∂ε f t
TSP(q̄t))

◦ ⊂
q̄t + (η′ + γ − ct)Ct. We have taken ε = εt for the last inclusion.

Finally, for claim (iv), note that since f t
TSP(ŷ) ≥ f t

TSP(q̄t), (7.14) implies η′ +
γ − ct ≥ εt > 0. Now just expand ct in this condition.

Suppose that ŷ is an (approximate) minimiser of the perturbed problem
f λ
KMTSP in a predetermined neighbourhood D of any āσ̂. The first two claims of

Theorem 7.3 then say that for small λ > λ0 = 1/2, ŷ actually belongs to a smaller
set that behaves quite well with respect to λ and ε ≥ 0. The fourth claim says that
for ŷ to not belong to the predetermined neighbourhood of some āσ̂, λ or ε must
be large enough (since f0(q̄t) > min f0 for q̄t �= āσ̂). Therefore, for small enough
λ > 1/2, the minimisers of f λ

KMTSP stay within a linearly-scaled region around āσ̂.
While the optimal solution appears in the local bound in C◦

σ̂, applying the
argument proving its boundedness in the proof, we can approximate it by consid-
ering all the possible non-degenerate angles between the points ak, and choosing
the smallest ones. That will, of course, increase the bound. Computing the global
bound is much more complicated.

Note that claim (i) of Theorem 7.3 provides a necessary condition for a local
minimisers (or, in fact, any point for either the KM or MO reformulation) to be
close to a real solution of the Euclidean TSP: if the point ŷ can be unambiguously
morphed into āσ for some, not necessarily optimal σ – which is the case, e.g.,
when ŷ ∈ ∏n

i=1 B(aσi, δσi) – the condition (7.13) must hold for the permutation σ

to be an optimal path. It suffices to take η = fTSP(āσ) − fTSP(ŷ) and D = {āσ, ŷ},
for if η becomes negative this way, we know a better minimiser and test point.

It remains to discuss the sensitivity in λ of solutions to f λ
MOTSP. Clearly, we

could still directly apply Corollary 2.5, and may actually show that 0 ∈ int Cε(āσ̂)
(in the notation of Chapter 2) for ε = 0 and then for ε ∈ [0, ε) when ε > 0 is small
enough. We could thus approximate Uāσ̂

(η, ε′) ⊂ āσ̂ + ηC◦
εν

(āσ̂) with the polar
bounded, by choosing ε = εν ≤ ε′ < ε, the latter two values to be determined.

Alternatively, by Lemma 7.3 and (7.12), we could for λ1 ∈ (λ0, 1/2) approx-
imate f λ0

MOTSP(ŷ) − f λ0
MOTSP(āσ̂) from below in Eλ1

σ with

f λ0
MOTSP(ŷ) − f λ0

MOTSP(āσ̂) = fMO(ŷ; ā) − fMO(āσ̂; ā) − λ0( fTSP(āσ̂) − fTSP(ŷ))

≥ (λ1 − λ0)rσ̂(ŷ) = max(yi − aσ̂i)TCσ̂,

where Cσ̂ � 2(λ1 − λ0) ∏n
i=1 B(0, 1). Then we could apply the gauge-inversion

arguments in Section 2.4.1 to get the obvious bound. However, as the neigh-
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bourhoods Eλ1
σ are merely proved to exist (when m > 1, and λ1 > 0, which we

require), the bounds so obtained would be rather poor compared to f λ
KMTSP.

7.5 Heuristics

As we shall see in Section 7.6, the performance of our basic algorithm is not all
that great for larger instances of the Euclidean TSP. Therefore, in this section, we
consider various heuristic approaches that could be used to speed up the algo-
rithm or improve the results otherwise. As a first task, however, the association
heuristic demands some clarification.

7.5.1 The association heuristic

The proof of Theorem 7.1 provides a conceptual algorithm for obtaining a per-
mutation σ from any sequence of points ȳ = (y1, . . . , yn):

1. Assign the points ak to the closest yj, forming the cluster Cj (handling am-
biguous cases arbitrarily).

2. Remove all the points yj with empty clusters.

3. Re-insert points in the path, at any ak ∈ Cj, ak �= yj (the closest in our
implementations), before or after yj (depending on which seems to provide
shorter path).

4. Repeat steps 1–3 while there is something to be done.

Note that when Cj consists of ak alone (and there were no ambiguous assign-
ments), these steps amount to moving yj at ak, as yj would be removed after the
new point has been placed at ak.

Any reinsertion may change the clusters, the new (reinserted) point assim-
ilating points from clusters of yi, for i �= j as well as j. If we ignore this fact for
i �= j, we may construct σ locally in a hierarchic fashion, “splitting” each cluster
until it consist of a single ak. Otherwise we need to recalculate/shuffle the clus-
ters after each reinsertion. Some improvements to the resulting path length can
sometimes be obtained this way, but the method is quite dependent on the order
of processing.

7.5.2 Number of cluster centres

A straightforward heuristic derived from our reformulations in the earlier sec-
tions, is to reduce the number K of the points yi used in the minimisation method.
After the “shape” of the path has been obtained with a reduced number of points,
it can then be refined by adding more points using the already described rules
for associating (unassociated and duplicate) points with cities. In case of the MO
variant, when K < n, we have to alter the factor of the function νMO, in order
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to keep the objective function level-bounded, and for reasonable results. Our
somewhat arbitrary but obvious choice of factor is n/(2K), which is below the
n/(2K − 2) upper bound from Chapter 6:

νK
MO(ȳ) � n

2K

K

∑
i=1

K

∑
j=1

‖yi − yj‖.

Notice that the upper bound for λ ensuring that λ fTSP − νK
MO is concave, increases

similarly, and we have indeed used λ = n/K in our experiments.

7.5.3 Hierarchical clustering.

An obvious refinement of the previous heuristic is analogous to hierarchical clus-
tering:

1. Run our path-length perturbed clustering algorithm on the whole data,
with a small number K of clusters.

2. Assign each ak to the closest yi, producing the cluster Ci.

3. Run the algorithm again on Ci with a new set of “cluster centres”, of size
Ki ≤ #Ci. Continue this subdivision until the size of the cluster Ci is small
enough to merit choosing Ki = #Ci.

4. Construct the full path by combining the paths of the lowest-level clusters
along the paths formed by the higher-level clusters centres.

There is a small problem with this approach as such: the paths are closed, so com-
bining them will produce unnecessary detours. However, this is no big problem:
we just have to alter fTSP to not attract the first and last points of the open path
we want. We can do more: we can attract the endpoints to points in the previous
cluster:

f open
TSP (ȳ; aprev, anext) � ‖y1 − aprev‖ + ‖yK − anext‖ +

K−1

∑
j=1

‖yj − yj+1‖. (7.15)

There are various potential choices for aprev and anext. One is the points yi−1 and
yi+1 in the higher-level path (when we are working on Ci). Another would be
the points aprev ∈ Ci−1 and anext ∈ Ci+1 that minimise the distance to Ci. In the
experiments of Section 7.6 we have chosen the former. Based on a limited number
of tests, the latter more complex approach does not seem to improve the results.
Note that the first two terms of f open

TSP are Euclidean distances from fixed points.
They can therefore be included in the convex part of the objective function, when
we choose to minimise it with the perturbed Weiszfeld method.

A few more choices remain in the hierarchical algorithm: At which point
to run the association heuristic: for the whole path, or for the lowest-level clus-
ters? In the experiments to follow, we have chosen the former combined with the
local association heuristic, as this seems to provide the best ratio of time spent
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to quality of results. Another available choice is the number of points Ki to use
in each cluster. Our somewhat arbitrary choice has been to specify a maximum
number M ≥ 2, but instead of greedily choosing Ki = min{M, #Ci}, we try to do
this bottom-up: we try to predictively assign the largest number of points to the
lowest-level clusters, by choosing

Ki = �#Ci/M�logM #Ci� when #Ci > M. (7.16)

This appears to provide better results than the greedy approach, based on a lim-
ited number of tests.

7.5.4 Clustering for initial iterate

This approach consists of running the previous heuristic without the association
step to obtain an initial iterate for the basic algorithm, that we perform only a few
steps of.

7.5.5 Path-following

Yet another approach would be to calculate an approximate solution to a pe-
nalised version of the problem for some λ, and then with a smaller one start-
ing from the previous result. Unfortunately, at least with the limitation λ ≤ 1
inherent in the perturbed Weiszfeld method, this does not appear to provide con-
siderably improved results.

7.6 Experiments

We have implemented our algorithms [in Haskell; see Peyton Jones et al., 2003]
and tested our method on some problems from TSPLIB [Reinelt, 1991], on an
Athlon64 3200+ tabletop computer. In each case, we have used the step size
ω = 1.4 in the perturbed Weiszfeld algorithm of Chapter 5: of the values we’ve
tried, it seems to provide the most consistently best results, largely in agreement
with experimental results for the plain Weiszfeld algorithm [Äyrämö, 2006, Ap-
pendices 2–3]. Although each ω ∈ [1, 2) does provably provide a descending
sequence of iterates, it would be possible to do a line search step in the algorithm
as well. The initial iterate has likewise in each case been with the cities equally
distributed on a circle, centred and scaled to fit in the problem data. Such a choice
seems to provide generally better results than a (totally) random initial iterate,
which may contain self-crossings of the path on a large scale, that our method
seems poor at removing.

7.6.1 The basic algorithm

In summary, the basic algorithm consists of
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1. Choose an initial iterate ȳ[0], step length ω ∈ [1, 2), penalty parameter λ ∈
(0, 1], and maximum iterations count or other stopping criterion.

2. Apply the perturbed Weiszfeld method to problem (7.5), to get ŷ.

3. Use the association heuristic to find a permuted path āσ from ŷ.

The results for this method may be found in Tables 7.1 through 7.4. Furthermore,
Figure 7.1 shows results for some simple instances from the first series of tests. In
most of the test cases, we have used λ = 1.0, as it is the upper limit at which the
TSP penalty term can certainly be “absorbed” into the concave part of the diff-
convex objective, and thus that our algorithm can handle. Lower values also do
not appear to provide better results. In each of these tests of the basic algorithm,
we have used the “semi-global” variant of this association heuristic discussed in
Section 7.5, to obtain a permutation of the points a1, . . . , an from the results of
the Weiszfeld algorithm; cf. Figure 7.1(c). In two problems, Eil101’ and PR1002’,
some of the parameters have been varied to offer points of comparison: the prob-
lem Eil101’ uses λ = 2.0, although our algorithm is not entirely applicable for
such a choice. In the problem PR1002’ we have used only K = 50 yis in the per-
turbed Weiszfeld method and added the rest later, as again discussed in Section
7.5.

In the first series, in Table 7.1, the maximum number of iterations of the per-
turbed Weiszfeld method has been 1000, and the stopping threshold τ (maximum
difference in norm between successive iterates) has been 10−5, whereas in Table
7.2 the values have been 10000 and 10−2, respectively. In the third series in Table
7.1, where we have excluded the cases from the second series that used the max-
imum number of iterations, the values are 10000 and 10−5, respectively. Finally,
in Table 7.4, we have allowed for just 10 log2 n iterations.

In the tables, the “Weiszfeld time” field is the time (in seconds) it took for
the perturbed Weiszfeld method to finish, and the field “Weiszfeld iterations” is
the number of iterations of this method used. The “Total time” field indicates the
time it took in addition to this, to move the resulting points towards the cities, as
described above. Such an intermediate result is included in Figure 7.1(c) for the
Berlin52 problem. Note that the “TSPLIB path length” is calculated with the Eu-
clidean metric rounded to nearest integer, instead of the plain Euclidean metric,
with which “Our path length” has been calculated. Finally, the instance size (n)
is indicated by the TSPLIB problem name itself.

As we can see, the results are not all that great, compared to what is achiev-
able with other methods; cf. Johnson and McGeoch [2002, 1997]. Some of the
run-time can be attributed to our choice of language: Haskell and the compil-
ers available for it, with standard unoptimised data structures, are not presently
quite up to par with lower-level languages in speed, but offer much comfort of
implementation. As for the quality of the paths, it can clearly be seen that the
relative quality of the results degrades as the number of cities grows. Looking at
the figures, our results seem to share a lot of the overall structure of the optimal
results, however, which would indicate that they could serve as starting points
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TABLE 7.1 Results for max_iters = 1000, τ = 10−5, and ω = 1.4
Problem Berlin52 Eil101 TS225 PR1002 Eil101’ PR1002’
K n n n n n 50
λ 1.0 1.0 1.0 1.0 2.0 1.0
Weiszfeld iterations 1000 1000 1000 1000 1000 1000
Weiszfeld time 3.0 10.9 53.1 1315.0 11.5 46.4
Total time 3.1 11.3 56.0 1604.0 11.9 472.9
TSPLIB path length 7542 629 126643 259045 629 259045
Result path length 8951.6 726.0 207730.3 370184.2 706.8 375395.6

TABLE 7.2 Results for max_iters = 10000, τ = 10−2, and ω = 1.4
Problem Berlin52 Eil101 TS225 PR1002 Eil101’ PR1002’
K n n n n n 50
λ 1.0 1.0 1.0 1.0 2.0 1.0
Weiszfeld iterations 396 201 797 10000 10000 1875
Weiszfeld time 1.2 2.3 42.6 12877.3 114.1 88.2
Total time 1.3 2.6 45.5 13146.1 114.5 518.7
TSPLIB path length 7542 629 126643 259045 629 259045
Result path length 8951.6 719.7 207730.3 363456.1 702.9 365239.2

TABLE 7.3 Results for max_iters = 10000, τ = 10−5, and ω = 1.4
Problem Berlin52 Eil101 TS225 PR1002’
K n n n 50
λ 1.0 1.0 1.0 1.0
Weiszfeld iterations 1531 2573 2376 2344
Weiszfeld time 4.7 28.3 125.0 112.9
Total time 4.7 28.6 127.8 554.12
TSPLIB path length 7542 629 126643 259045
Result path length 8951.6 706.7 207730.3 365239.2

TABLE 7.4 Results for max_iters = 10 log2 n, τ = 10−5, and ω = 1.4
Problem Berlin52 Eil101 TS225 PR1002 Eil101’ PR1002’
K n n n n n 50
λ 1.0 1.0 1.0 1.0 2.0 1.0
Weiszfeld iterations 57 67 78 100 67 100
Weiszfeld time 0.18 0.8 4.6 145.5 0.8 4.8
Total time 0.25 1.2 9.6 617.4 1.2 442.5
TSPLIB path length 7542 629 126643 259045 629 259045
Result path length 9087.1 741.9 210694.5 392377.7 741.9 372602.0
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(a) Berlin52: Result, λ = 1.0 (b) Berlin52: TSPLIB optimal path
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(c) Berlin52: raw Weiszfeld, λ = 1.0 (d) Eil101: Result, λ = 1.0
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(e) Eil101: Result, λ = 2.0 (f) Eil101: TSPLIB optimal path

FIGURE 7.1 Results for Berlin52 and Eil101 from TSPLIB
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for other methods. Also note comparing Figure 7.1(a) to (c), that our naïve asso-
ciation heuristics induce some clear mistakes, such as self-crossings of the path.

That increasing λ for Eil101’ improves the path, seems to be a general trend,
although occasionally worse results are obtained as for λ = 1.0. Decreasing λ

below 1.0 also usually seems to degrade the result, as would increasing it too
much. In the second series of tests, we also see that the algorithm indeed does
not appear to converge.

In the last series with just 10 log2 n iterations, the performance does not ac-
tually decrease relatively that much from series with more iterations. In this se-
ries, the result for PR1002 with 50 yis actually beats the one for all 1002 yis in the
Weiszfeld method. In both cases, considerable time is spent in the (quite unopti-
mised and naïvely implemented) association heuristic.

7.6.2 The hierarchical algorithm

In summary, this heuristic consists of the steps

1. Choose maximum prototype count M ≥ 2, as well as parameters
for the perturbed Weiszfeld method, and initialise the initial cluster
C0 = {a1, . . . , an}.

2. Calculating new prototype count Ki for each cluster from (7.16).

3. Apply the Weiszfeld method with the modified penalty (7.15) and Ki new
prototypes on each present cluster Ci. The points aprev and anext are the
prototypes of the present prototypes with next and previous index.

4. Split clusters that did not yet have equally many new prototypes and ver-
tices, by the new prototypes. Recursively continue from Step 2.

5. Apply the association heuristic on each completed cluster, and join the in-
cluster paths in the order given by the higher-level clusters.

Table 7.5 lists results for this approach. The number “Total Weiszfeld its.” in the
table, is the total number of iterations of the Weiszfeld algorithm at all scales. As
already mentioned in Section 7.5, we have used the local variant of the associa-
tion heuristic on the full resulting hierarchical Weiszfeld path, to obtain the final
permutation.

In this series of experiments, we have used bigger problem instances than in
the previous experiments. As can be seen from the results, with this heuristic, the
running time becomes noticeably more feasible than that of the basic algorithm,
and without degrading the results – improving them, in fact. (For the smallest
instances from the other experiments, the heuristic degrades the results, how-
ever.) Note that for the biggest instances we only have bounds on the optimal
path length from TSPLIB, and for PLA33810 this is, in fact, for the ceiling of the
Euclidean distance, instead of rounded.

Using only a small number of iterations has been more our goal in this se-
ries of tests than obtaining the best possible result we can with our algorithms. By
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TABLE 7.5 Clustering heuristic results (max_iters = 10 log2 #C, τ = 10−5, ω = 1.4)
Problem PR1002 PR2392
M 50 100 150 50 100 150
Total Weiszfeld its. 1741 1033 835 4472 2606 1743
Weiszfeld time 5.2 7.7 10.6 27.2 24.5 32.4
Total time 5.4 8.0 10.9 28.6 25.8 33.7
TSPLIB path length 259045 378032
Result path length 345380 346628 346902 558451 535006 521040

Problem RL11849 PLA33810
M 50 100 150 50 100 150
Total Weiszfeld its. 21298 12759 8980 62609 34811 24940
Weiszfeld time 122.3 288.4 454.1 586.9 1270.3 2067.3
Total time 172.2 339.0 504.5 1037.0 1720.6 2518.7
TSPLIB path l. bnd. [920 847, 923 368] [65 913 275, 66 116 530]
Result path length 1 410 087 1 386 317 1 360 373 99 304 887 97 915 373 96 554 643

TABLE 7.6 Average results for random instances
Algorithm Basic Clustering 50,100 & 150
Problem set uniform 1k-3k clustered 1k-10k uniform 1k-3k clustered 1k-10k
# samples 15 15 54 54
Average performance 1.66 1.49 1.42 1.36

using two times as many steps in each cluster (20 log2 #C), we could still improve
some of the results noticeably, whereas others would simply take longer to com-
pute without much improvement. (More meticulous choice of τ could of course
be used to control the number of steps as well.) Likewise, using the hierarchical
method with a small number of iterations of the basic Weiszfeld method to obtain
an initial iterate, as discussed in Section 7.5, would slightly improve the results.
For larger instances there would be a noticeable increase in time spent, however.

Notice, nevertheless, that the results appear to fall approximately around
1.5 times the optimal path length (modulo slightly differing distance measures).
Further evidence for this is provided in Table 7.6. There, we have calculated
the average performance of our methods for the 1-3k city random and 1-10k city
random clustered Euclidean instances of the TSP DIMACS challenge problems
from Johnson and McGeoch [2002].2 The average for the clustering heuristic is
further taken over all the parameter values M = 50, 100, 150. The performance
reported is the proportion of the path length calculated by our algorithm, to the
Held-Karp bound for the problem. Our methods appear to perform better for the
clustered than non-clustered instances, as can be expected.

7.6.3 Use as an initial tour

We also tested in a few cases, the use of our method for providing an initial
tour for other methods: LKH [Helsgaun, 2000], Concorde [Applegate et al., 1998],
and basic 2-Opt. All of these methods improved upon the initial tour from our

2 For the data, see http://www.research.att.com/~dsj/chtsp/.
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method. Unfortunately, our method did not significantly improve upon a ran-
dom or default initial tour: LKH and Concorde did in fact seem to take longer
in their computations. The 2-Opt results varied, with the initial tour from our
method occasionally providing significant improvements in the final results, and
at other times slightly worse results. (The results obviously depend on the pro-
cessing order in the implementation of the method.) It seems to us that these
non-geometrical algorithms fail to exploit the overall shape of the path that our
method seems to approximate, with the errors being mostly (but not exclusively)
on the small scale.



8 CONCLUSIONS

We have provided both new general theoretical results for diff-convex functions,
as well as more applied mathematical results in relation to some location prob-
lems. General mathematical results were provided on optimality and sensitivity
of diff-convex functions, along with a characterisation of level-boundedness. We
also studied the internal structure of a special form of diff-convex functions, and
based on that study, proved local convergence for an extension of interior point
methods for linear programs on symmetric cones. A globalisation strategy was
also provided based on the idea of the filter method. The resulting method was
shown to converge polynomially in r to ε-semi-critical points under conditions
related to the degree of level-boundedness and reinitialisation quality. We also
extended the Weiszfeld method to problems of “perturbed spatial medians” and
proved its convergence to semi-critical points under some constraints.

On the application side, we provided a new clustering formulation, and
theoretically studied the applicability of the above-mentioned methods – the
Weiszfeld method in particular – to this problem, as well as the classical mul-
tisource Weber problem. We then showed a relationship of these problems to
the Euclidean TSP, and again studied the application of the above-mentioned
optimisation methods.

While our focus was theoretical, some numerical results were also provided.
Although the performance of the interior point methods was discussed briefly, we
concentrated on the Weiszfeld method, as it seemed to be more promising in prac-
tise – and demanding of far less meticulous parameter-tuning. The experiments
for the clustering problems were concentrated on comparing the two objectives.
More study remains for more practically oriented researchers, in particular in re-
lation to the performance of our methods in comparison to other methods, such
as the classical K-means -style method. In case of the Euclidean TSP, our tests
were slightly more extensive. While the Weiszfeld method managed to produce
rather reasonably-shaped paths in a low number of iterations, the results were
not all that good in comparison to existing methods for the TSP. Nevertheless,
our results could perhaps be improved upon, by using other optimisations meth-
ods, parameters, and heuristics.



APPENDIX 1 LOCAL MINIMA OF K-MEANS TYPE
PROBLEMS

Consider the K-means-type problem

min
w̄,ȳ

(
f (ȳ; w̄) �

n

∑
i=1

K

∑
j=1

wijd(ai, yj)

)
with wij ∈ {0, 1} and

K

∑
j=1

wij = 1. (A1.1)

Here d are some distance functions and the data {ai}n
i=1 ⊂ Rm. The weights wij

indicate to which cluster j the vertex i belongs to, and ȳ = (y1, . . . , yK) ∈ RmK are
the cluster prototypes.

The K-means-type algorithm for (A1.1) assigns each ai to the closest
prototype yj (setting wij = 1), and calculates new prototypes y′

j by minimising
∑n

i=1 wijd(ai, y′
j). This procedure is then repeated until there is no change in the

assignments.
Selim and Ismail [1984] prove the convergence of this method to (differ-

entiable) Karush-Kuhn-Tucker (KKT) points of the objective function under the
relaxed constraint wij ∈ [0, 1], which does not affect the optima of (A1.1). They
also make claims on local optimality of these points. However, these latter results
are not entirely correct, as their characterisation of local optimality by directional
derivatives [Selim and Ismail, 1984, Lemma 7], quoted without proof, is incor-
rect for non-convex functions. Directional derivatives being non-negative to all
feasible directions is not sufficient, merely necessary, for local optimality of non-
convex functions. However, positivity of the directional derivatives is sufficient.1

In this appendix, we provide corrections to the results depending on this incor-
rect characterisation.

We define the reduced objective function as F(w̄) � minȳ∈RmK f (ȳ; w̄), and
the feasible polytope of weights as W � {w̄ | ∑j wij = 1, wij ≥ 0}. Problem
(A1.1) may then be recast as

min
w̄∈W

F(w̄). (A1.2)

We denote the set of bounded minimisers for a weight w̄ as P(w̄) � {ȳ ∈ V |
ȳ minimises f (ȳ; w̄)}, and set Ji � Ji(ȳ) � {j | j minimises d(ai, yj)}.

We require that the minimum of f (·; w̄) is reached in some compact set V
for every w̄, whence in fact F(w̄) = minȳ∈V f (ȳ; w̄). This is a valid assumption
for most distances of interest, as shown by the following lemma:

1 This can be seen from the equivalence of the normal directional derivative to the Hadamard
lower directional derivative

dF(w̄; z) � lim inf
t↘0,v→z

F(w̄ + tv) − F(w̄)
t

for finite concave functions [cf., e.g., Penot 1978]. For, if dF(w̄; ·) > 0, and w̄[k] → w̄ with
F(w̄[k]) < F(w̄), we get a contradiction by setting v[k] � (w̄[k] − w̄)/t[k] and t[k] � ‖w̄[k] −
w̄‖, and choosing a subsequence of v[k] convergent to some feasible direction z. This can be
done in our finite-dimensional setting. Then dF(w̄; z) ≤ limk→∞(F(w̄[k]) − F(w̄))/t[k] ≤ 0.
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Lemma A1.1. Suppose each d(ai, ·) is a finite convex function minorised by c‖ · ‖ − b
for some norm ‖ · ‖ and constants c > 0, b ≥ 0. If also

⋂n
i=1 dom d(ai, ·) �= ∅, then

f (·; w̄) reaches its minimum in some compact set V for every w̄ ∈ W .

Proof. That f (·; w̄) has minimisers in a compact set V follows if f j : yj �→
∑n

i=1 wijd(ai, yj) always has minimisers in a compact set V′. It thus suffices to
consider the single-facility case.

When r � ∑n
i=1 wij = 0, the minimising yj may be taken in any compact set

of choice. If r > 0, then for a minimising yj

max
i

d(ai, 0) ≥ fj(0)/r ≥ fj(yj)/r ≥
n

∑
i=1

c(wij/r)(‖yj‖ − b) = c‖yj‖ − cb.

Thus a large yj cannot minimise fj.

The following theorem sharpens and fixes [Selim and Ismail, 1984, Theo-
rem 8] along with providing a condition of non-optimality for cases excluded
by these weakened claims. Some differentiability assumptions are made in the
claim, because in cases with only subdifferentiability present, small perturbations
in weights do not necessarily disturb optimality of individual prototypes.

Theorem A1.1. Suppose each d(ai, ·) is a finite convex function, and that f (·; w̄) has
finite minimum in some compact set V for all w̄. Let w̄∗ � {w∗

ij} be an extreme point
of W . Then w̄∗ is a local minimiser of the problem (A1.2) if for all ȳ∗ ∈ P(w̄∗) and
i = 1, . . . , n, we have #Ji(ȳ∗) = 1, and

F(w̄∗) = f (ȳ∗; w̄∗) ≤ min
w̄∈W

f (ȳ∗; w̄). (A1.3)

The allocation w̄∗ is not a local minimiser if (i) the condition (A1.3) does not
hold, or (ii) if #Ji′(ȳ∗) > 1 for some i′ ∈ {1, . . . , n} and for some j′ ∈ Ji′(ȳ∗), (a)
∇d(ai′ , ·)(yj′) �= 0, and (b) d(ai, ·) is differentiable at yj′ for all i with j′ ∈ Ji(ȳ).

Proof. The function F is concave [cf. Selim and Ismail, 1984]. As discussed above,
for w̄∗ to be a local minimiser, it is sufficient that F′(w̄∗; z) > 0 for all feasible
directions z. By [Danskin, 1966, Theorem 1], utilising the compactness of V,

F′(w̄∗; z) = min{∇w̄∗ f (ȳ; w̄∗)Tz | ȳ ∈ P(w̄∗)} = min{ f (ȳ; z) | ȳ ∈ P(w̄∗)}.

For extremal w̄∗, the feasible directions transfer weight from assignments
with wij = 1 to assignments wij′ = 0 for j′ �= j. If (A1.3) holds, it follows from
#Ji(ȳ∗) = 1 that the value of f (ȳ∗; ·) increases by such change for all ȳ∗ ∈ P(w̄∗).
Therefore f (ȳ∗; z) > 0, and by the compactness of P(w̄∗), F′(w̄∗; z) > 0.

The necessity of (A1.3) for local optimality is immediate from the linearity
of f in w̄.

Suppose then that (A1.3) holds. If #Ji′(ȳ) > 1, we still have f (ȳ∗; z) ≥ 0
and thus F′(w̄∗; z) ≥ 0. Any z that shifts weight between j′ and some j ∈ Ji′(ȳ),
j �= j′, will not change the value of f . However, the optimality condition 0 ∈
∂
(

∑i wij′d(ai, ·)
)
(yj′) for the prototype yj′ under fixed w̄, will be upset under the

assumptions (a) and (b). Hence the value of f can be improved from F(w̄∗; ȳ∗) by
altering ȳ∗. In consequence w̄∗ cannot be a local minimiser.
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FIGURE A1.1 KKT point with two non-collinear clusters, but not local optimum. The
arrow points to the “disputed” vertex and the dotted lines indicate the
optimal clusters.

Corollary A1.1. If (w̄∗, ȳ∗) is a KKT point of f , P(w̄∗) is a singleton, and Ji is singleton
for each i = 1, . . . , n, then w̄∗ is a local minimiser of F.

Proof. See [Selim and Ismail, 1984, Theorem 9].

As we have seen, the results of Selim and Ismail [1984] do not hold if two
prototypes yj and yk are at the same minimal distance from a vertex ai under
some additional conditions on the distances of these points to other vertices in
their corresponding clusters.

In particular, let d(a, y) = ‖a − y‖2
2 be the squared distance employed in

the K-means. We then have everywhere differentiability, and the additional non-
optimality conditions (a) and (b) reduce to d(ai′ , yj) = d(ai′ , yj′) > 0. The case of
zero distances obviously depends on the numbers of vertices and prototypes.

In case of the Euclidean metric d(a, y) = ‖a − y‖2 or other Minkowski met-
rics, (a) and (b) reduce to mini:j′∈Ji

d(ai, yj) > 0, because non-differentiability can
happen only when yj = ai. A sketch of the situation is provided in Figure A1.1.
If an undisputed vertex is at zero distance from a prototype, whether we have
a minimum is a more complicated issue. It depends on the magnitude of the
gradient of the sum of distances to remaining vertices of the cluster, as the subd-
ifferentials in the optimality condition can provide some slack; cf. Chapter 5.

Finally, we note that also in [Selim and Ismail, 1984, Theorem 12], the con-
dition F(W̄) ≤ F(W) needs to be changed into strict inequality to reflect the cor-
rected optimality condition.



APPENDIX 2 THE WEISZFELD DIRECTION IN
NON-PARTIALLY-OVERLAPPING CASE

As noted in Section 5.2, we are concerned with finding the ẑ ∈ Z(p) (we omit the
point p from notation in this section) that minimises h(z, v; p), that is, solves

min
z∈Z(p)

(
gTz + ∑

k∈π

‖z‖k

)
(A2.1)

for arbitrary g ∈ Rm in a special case. This is the case when Wk = wkρk for some
wk > 0 and a zero-one diagonal matrix wk, and such that the ρk do not “overlap”
only partially. To define this notion, we introduce the notation A � B for B − A
being positive definite. Equivalently, in case of the ρ-matrices, � is set inclusion
of the coordinates on with 1-entries on the diagonal. We also denote by ρ �! ρ′
the strict ordering ρ � ρ′, ρ �= ρ′.

Now, there are said to be no partially overlapping ρk, if for all k, i ∈ π, one of
the following holds: ρkρi = 0, ρk � ρi, or ρi � ρk. These constraints are satisfied
in cases like ρk = diag(1, 1, 0), ρi = diag(0, 1, 0), as well as ρk = diag(1, 0, 0), ρk =
diag(0, 0, 1), but are not satisfied in cases like ρk = diag(1, 1, 0), ρi = diag(0, 1, 1).

To start solving (A2.1), we need to do some partitioning of the coordinate
ranges. Thus, let ψ be the set of maximal elements of the set of operators

{ρ | ρρk = ρ or ρρk = 0 for all k ∈ π, ρρπ = ρ}.

Then
ẑ = − ∑

ρ∈ψ

βρgρ (A2.2)

for some βρ ≥ 0 and gρ � ρg; see Valkonen [2006] for a more detailed argument.
We denote by ρ̂k the orthogonal projection into R(ρk) \

⋃
ρi�!ρk

R(ρi), and
abbreviate β̂k � βρ̂k . Then ψ = {ρ̂k | k ∈ π}, and ρ̂k corresponds to the fields
present in ρk, but not in any ρi �! ρk.

Lemma A2.1. Suppose ρτ is maximal (in �). If β̂τ > 0 and ‖ρτ ẑ‖ > 0, then β̂τ ∝
1 − wτ/θτ (with respect to scaling of the final result), and β̂k = β̂τγk for ρk �! ρτ,
where

θτ �
∥∥∥gρ̂τ + ∑

ρk�!ρτ

γkgρ̂k

∥∥∥,

and γk are the multipliers for the smaller problem with the τ-component removed: wτ = 0
and gρ̂τ = 0.

Proof. The problem (A2.1) is a convex problem, and therefore the Karush-Kuhn-
Tucker conditions being fulfilled is sufficient for a minimum. Let αk � ‖ρkz‖ =
‖ ∑ρ′�ρk

βρ′gρ′ ‖. Then, inserting (A2.2) into (A2.1), differentiating with respect to
βρ, adding the constraints −βρ ≤ 0 and ‖z‖2 ≤ 1, we get after dividing by ‖gρ‖2,

λρ ≥ 0, λρβρ = 0 ∀ρ ∈ ψ, λ ≥ 0, λ(‖z‖2 − 1) = 0

1 − ∑
k∈π:ρ�ρk

wkδ
(βρ

αk

)
− λβρ + λρ � 0, ∀ρ ∈ ψ, (A2.3)
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where δ(·) is a formal expression for handling non-differentiability. (If ‖gρ‖2 is
zero, the condition for ρ may still be inserted, because the result does not then de-
pend on βρ.) We may take λ = 1, for by positive homogeneity of h, the constraint
on the norm is active unless the minimum is zero, and for any solution {βρ} with
λ = λ′ > 0, {λ′βρ} is a solution for λ = 1 (βρ/αk being independent of such
scaling).

For the maximal ρτ, by assumption ατ = ‖ρτ ẑ‖ > 0. Therefore β̂τ/ατ > 0 is
defined, and (A2.3) becomes for ρ̂τ,

1 − wτ
β̂τ

ατ
− β̂τ = 0,

so that β̂τ = γτ � 1 − wτ/θ′τ with θ′τ � ατ/β̂τ. If γτ ≤ 0, our assumptions must
be wrong, and β̂τ = 0. So suppose this is not so.

If ρτ is also minimal, we get γτ = 1 − wτ/‖gρ̂τ‖, so that it is fully deter-
mined, and θ′τ = θτ. Otherwise, set β̂k = γk β̂τ for some unknown γk for ρk �! ρτ.
Then also θ′τ = θτ, and (A2.3) becomes for � with ρ� �! ρτ,

1 − wτ
γ� β̂τ

ατ
− ∑

k∈π:k �=τ,ρ̂��ρk

wkδ
(γ�

α′
k

)
− γ� β̂τ − λρ̂�

� 0

where α′
k � αk/β̂τ = ‖ ∑ρ̂j�ρk

γjgρ̂j‖. But γ� β̂τ(1 + wτ/ατ) = γ�, so that we get
the condition

1 − ∑
k∈π′ :ρ̂��ρk

wkδ
(γ�

α′
k

)
− γ� − λρ̂�

� 0, ∀ρ̂� ∈ ψ′

for π′ � π \ {τ} and ψ′ � ψ \ {ρ̂τ}. This is a smaller problem of the original
form.

Note that the assumption ‖ρτ ẑ‖ > 0 follows from gρ̂τ �= 0 by β̂τ > 0. The
lemma suggests the following method to find the multipliers β̂k: assume β̂τ > 0
for maximal ρτ. Recursively repeat the procedure for the maximal ρk �! ρτ from
the smaller problems defined by the lemma, until ρk is also minimal, in which case
the lowest-depth factor 1 − wk/‖gρ̂k‖ can readily be calculated. Then calculate
the higher factors 1 − wτ/θτ based on the information obtained from the deeper
recursion levels. Finally scale the result. (This is not strictly necessary: the step
size bounds α0(ω, z̃, v; p) include the scaling.) If ever 1 − wτ/θτ ≤ 0, the original
assumption must be wrong, and we must have βτ = 0. This could result in a new
set of problems, but we do actually have the following:

Theorem A2.1. Lemma A2.1 continues to hold without the assumption β̂τ > 0, so that
we have (modulo scaling the final result) β̂τ = max{0, 1 − wτ/θτ} for maximal ρτ, and
β̂k = β̂τγk for ρk �! ρτ, with γk defined recursively from smaller problems.

Proof. If β̂τ = 0, and ατ > 0, as we have assumed, then δ(β̂τ/ατ) = 0, as there
are no differentiability troubles. But then the condition (A2.3) for maximal ρ̂τ

becomes 1 + λρ̂τ = 0, which has no solution, since λρ̂τ ≥ 0. Therefore, the only
way for β̂τ to be zero, is to have ατ = ‖ρτz‖ = 0, so that δ(β̂τ/ατ) is not a
singleton. But ατ = 0 says that we can choose β̂k = 0 for all ρk �! ρτ.
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Remark A2.1. Theorem 5.2 continues to hold with the range non-overlap as-
sumption replaced by non-partial overlap assumption: If z = −βρ̂k gρ̂k �= 0 for
some k ∈ π(q) \ π′ with minimal ρk, then (since we have assumed ρπ′z = 0),
0 > gTz + ‖z‖k with z ∈ R(ρ̂k). The argument of Lemma 5.3 may therefore be
applied to this sub-problem to show deflection for k. Otherwise, k may be ignored
(considered to be in π′ for the purposes of this argument), and we may repeat the
argument recursively.



APPENDIX 3 LEMMAS ON SUBDIFFERENTIALS

In this section we include a few simple results on convex (approximate) subd-
ifferentials needed in the sensitivity analysis of Section 7.4, that do not seem to
appear in the standard literature. First we have the rather obvious,

Lemma A3.1. Let f : Rm → R ∪ {∞} be convex, closed, proper, and level-bounded.
Then 0 ∈ int R(∂ f ).

Proof. Since f is proper, lower-semicontinuous, and level-bounded, it has a finite
minimum. We may assume without loss of generality, that 0 ∈ ∂ f (0). Denote A �
cl R(∂ f ). The set A is then convex [Rockafellar, 1972, Section 24]. Suppose 0 ∈
bd A. Then there exists a direction z ∈ NA(0), the normal cone to A at 0, with z �=
0. Thus in particular zT∂ f (αz) ≤ 0 for all α ≥ 0. But by monotonicity (abusing
notation slightly), (z − 0)T(∂ f (αz) − 0) = zT∂ f (αz) ≥ 0. Thus zT∂ f (αz) = 0 for
all α ≥ 0. But then f (0) ≥ f (αz) + ∂ f (αz)T(0 − αz) = f (αz) for all α ≥ 0 in
contradiction to level-boundedness.

Lemma A3.2. Let f : Rm → R be convex, continuous, and level-bounded, achieving its
minimum at ŷ. Then 0 ∈ int ∂ε f (ŷ) for ε > 0.

Proof. By Lemma A3.1, for small r > 0, B(0, r) ⊂ int R(∂ f ). Let now

ε(r) � − min
y∈Rm

g(y, r) � − min
y∈Rm

(
f (y) − f (ŷ) − r‖y − ŷ‖).

The function g is continuous, and since int R(∂ f ) ⊃ B(0, r) = R(∂(r‖ · −ŷ‖))
with the latter closed, g(·, r) is level-bounded by Theorem 2.6. Since g is a de-
creasing function of r, it is also locally uniformly level-bounded. Thus for small
r > 0, the function ε is continuous by [Rockafellar and Wets, 1998, Theorem 1.17]
and finite (by the showed properties of g). As, in fact,

ε(r) = − min
z̄∈B(0,r)

min
y∈Rm

(
f (y) − f (ŷ) − zT(y − ŷ)

)
,

we have [cf. Hiriart-Urruty and Lemaréchal, 1993, Section XI] that ∂ε(r) f (ŷ) ⊃
B(0, r). Finally, since ε is continuous and increasing with ε(0) = 0, we can find
for small enough ε > 0 an r(ε) > 0, such that ∂ε f (ŷ) ⊃ B(0, r(ε)). From this
the claim follows for small ε, and then for all from the nesting of the approximate
subdifferentials.



APPENDIX 4 THE EUCLIDEAN STEINER TREE PROBLEM

In the Euclidean Steiner tree problem, given points a1, . . . , an (with n ≥ 3 to rule
out the trivial case), we are supposed to find a tree structure connecting these
points, and possibly some additional points yi, so as to minimise the sum of the
edges of the tree. In essence, one minimises the size of the minimal spanning tree
over the graph consisting of the ak and the additional Steiner points yi. There are
at most K � n − 2 of these according to Gilbert and Pollak [1968], which is our
general reference for the basic properties of Steiner trees used below. We may
then assume that there are exactly K Steiner points, the extra points not affecting
the weight of the optimal solution. Let T2n−2 denote the possible tree structures
(their edges) on these 2n − 2 points. Actually we would only have to consider
a subset of trees, where each node has degree at most 3, because the minimal
angle between lines from a vertex in a Steiner tree is 120 degrees. Even with such
reductions, the set of trees is still huge, but fortunately, as we will see, we do not
have to care about that.

We may write the objective function for finding the extra nodes of the mini-
mal Steiner tree as

min
p̄

min
E∈T2n−2

∑
(q,q′)∈E

‖q − q′‖.

In fact, since in a full tree (with K = n − 2 Steiner points, n ≥ 3), no ak is directly
connected to a� for k �= �, we only have to consider trees on the yi:

min
p̄

⎛⎝ n

∑
k=1

min
j=1,...,K

‖ak − yj‖ + min
E∈TK

∑
(yi,yj)∈E

‖yi − yj‖
⎞⎠ . (A4.1)

The first term in this expression is of course the familiar K-spatial median objec-
tive function, and admits a diff-convex presentation. But so does the latter term,
in a similar manner:

min
E∈TK

∑
(yi,yj)∈E

‖yi − yj‖ =
K

∑
i=1

K

∑
j=1

‖yi − yj‖ − max
E∈TK

∑
(yi,yj) �∈E

‖yi − yj‖

The Euclidean Steiner tree problem can thus be given a formulation that
very closely resembles the formulations for the K-spatial median, and the Eu-
clidean travelling salesperson problem: diff-convex with double sums of Eu-
clidean norms and taking maxima in the concave part. Furthermore, the term in-
volving maxima or minima over TK is in fact relatively easy to calculate: we only
have to find a minimal spanning tree for the already prescribed points y1, . . . , yK,
and this can be done in O(n2) time with Prim’s algorithm.

The minimal spanning tree may, however, not be unique, and to calculate
the full subdifferential, all the minimal spanning trees should be found. In some
methods a single solution suffices, however, as only some subgradient is needed.
That would be the case with a further generalisation of the perturbed Weiszfeld
algorithm, to arbitrary symmetric and positive-semidefinite weight matrices Wk:
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dk(y) � ‖Wk(y − ak)‖, which include expressions of the form ‖yi − yj‖. Unfor-
tunately, while the method remains descending with straightforward generalisa-
tion of the expression for the search direction, it does not appear to be conver-
gent then, even to “semi-critical” points. (In particular, Lemma 5.4 does not go
through.)

SCP (Section 4.4) or K-means -style local convex optimisation on (A4.1),
however works in conjunction with an interior point method; cf. Remark 4.3. The
latter approach along with some heuristic improvements are studied by Dreyer
and Overton [1998].
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YHTEENVETO (FINNISH SUMMARY)

Tässä työssä tutkitaan optimointiongelmia, joissa kohdefunktio voidaan esittää
Euklidisten etäisyyksien niin kutsuttuna diff-konveksina yhdistelmänä, eli kon-
veksien funktioiden erotuksena. Työn tulokset jakautuvat neljään aihealueeseen:
yleinen diff-konveksien funktioiden teoria, Weiszfeldin optimointimenetelmän
laajennokset, sisäpistemenetelmät, sekä sovellukset sijaintiongelmiin. Näissä so-
velluksissa tavoitteena on yhden tai useamman pisteen sijoittaminen (Euklidi-
sessa) avaruudessa optimaalisesti määritellyn etäisyyksistä riippuvan ehdon mu-
kaan.

Yleisen teorian alueella työssä esitetään uusia tuloksia optimaalisuusehtoi-
hin liittyen, sekä näihin tuloksiin läheisesti liittyvää herkkyysanalyysiä. Lisäksi
työssä tutkitaan funktioiden tasojoukkojen rajoittuneisuutta, sekä erään symmet-
risiin kartioihin liittyvän diff-konveksien funktioiden luokan sisäistä rakennetta.

Näihin rakenneanalyyseihin pohjautuen työssä laajennetaan tähän funktio-
luokkaan sisäpistemenetelmiä lineaarisesta optimoinnista symmetrisillä kartio-
rajoitteilla. Työssä todistetaan paikallinen konvergenssi, ja tutkitaan suodatinme-
netelmiin pohjautuvaa globalisointistrategiaa.

Weiszfeldin menetelmä laajennetaan työssä niin kutsuttuun “spatiaalime-
diaaniin epätäydellisellä datalla ja häiriöillä”. Tässä spatiaalimediaanin kohde-
funktiosta on vähennetty konveksi häiriötermi, ja lisäksi käytetyt etäisyydet mal-
lintavat datan vaillinaisuutta. Työssä tutkitaan menetelmän konvergenssia sekä
sovelluksia sijaintiongelmiin.

Työssä lähinnä tarkasteltavat sijaintiongelmat liittyvät klusterointiin ja
Euklidiseen kaupparatsun ongelmaan. Klusterointiongelmista tutkitaan perin-
teistä niin kutsuttua usean lähteen Weberin ongelmaa eli K-spatiaalimediaania.
Lisäksi esitellään uusi klusterointiongelman monitavoitetulkintaan pohjautuva
kohdefunktio klusteroinnille, ja tutkitaan esitettyjen menetelmien soveltamista
tähän. Tämän jälkeen työssä osoitetaan, että Euklidisen kaupparatsun ongelman
ratkaisu voidaan määritellä ratkaisuna kummankin edellä mainitun klusterointi
kohdefunktiolla lisättynä sakolla polunpituudelle.

Työn pääpaino on teoreettinen, käytännöllis-numeerisen puolen jäädessä
vähemmälle.
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