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1 Introduction

1.1 Minima of non-smooth functions

We recall from basic optimisation courses and textbooks (e.g., [1]), that if f : Rn → R is di�erentiable,

and x̂ is a minimiser of f ,

f (x̂) = min

x ∈Rn
f (x), (1.1)

then

∇f (x) = 0. (1.2)

If f is convex, the condition (1.2) is even su�cient to ensure (1.1). But what if f is non-smooth, such

as when

f (x) = |x |, (x ∈ R)?

It is clear that x̂ = 0 is a minimiser of this function, but at the same time ∇f (0) does not exist. If we

look at the epigraph of f , de�ned for general f : Rn → R as the set of points

epi f := {(x , t) ∈ Rn ×R | t ≥ f (x), x ∈ Rn},

as illustrated in Figure 1.1, we can however see that the hyperplane orthogonal to (0,−1) supports

f , touching it at (0, 0). It will turn out, as we will see in this course, that this geometric, set-valued

approach allows us to di�erentiate non-smooth functions. In fact, we can even di�erentiate more

general set-valued functions F : Rn ⇒ Rm
, where for each x ∈ Rn

, the value F (x) ⊂ Rm
is a set.

This will be useful for stability analysis: seeing how the solutions of problems change, as the data

changes—we next take a brief look at problems involving data.

f

epi f

(a) Epigraph of a function.

epi f

(0,−1)

(b) Epigraph of f (x) = |x | with a

supporting hyperplane at (0, 0).

epi f

(z,−1)

(c) An alternative supporting hyper-

plane at (0, 0).

Figure 1.1: Epigraphs and supporting hyperplanes. The supporting hyperplane in (b) together with

the orthogonal vector, correspond to optimality conditions.

1.2 Applications in image processing

Non-smooth optimisation problems can be found in various �elds. In important application area is

image processing. The most prototypical problem therein is denoising. This can be done by total

variation regularisation,

min

u ∈Rn
1
n

2

1

2

‖ f − u‖2 + α ‖∇du‖2,1. (1.1)
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1 Introduction

(a) Noisy image (b) Denoised image

Figure 1.2: Demonstration of image denoising with total variation regularisation (1.1). Note how

the leaf edges are preserved by the denoising procedure. This is an important feature of

total variation type approaches.

i

j 7→

k = i + n1(j − 1)

Figure 1.3: Mapping of an n1 × n2 pixel grid into a vector of length n1n2.

Here we consider images as n1 × n2 pixels grids, mapping them for simplicity of overall treatment

in these notes, into vectors of length n1n2. Thus the pixel at index (i, j) is the element ui+n1(j−1) of

the vector u, as illustrated in Figure 1.3. Here i ∈ {1, . . . ,n1} and j ∈ {1, . . . ,n2}. The �rst term in

(1.1), the �delity term, measures the distance of our solution u to the noisy image f . The second

regularisation term tells us that the solution should be pretty. The regularisation parameter α > 0

balances between these two goals. We illustrate the e�ect of TV-denoising on a colour image in (1.2).

The matrix

∇d =

(
∇d,x
∇d,y

)
∈ R2n1n2×n1n2

is a �nite-di�erences approximation of the image gradient. For example, forward di�erences with

Neumann boundary conditions, may be written

[∇d,xu]i+n1(j−1) =

{
ui+1+n1(j−1) − ui+n1(j−1), 1 ≤ i < n1, 1 ≤ j ≤ n2

0, i = n1, 1 ≤ j ≤ n2

[∇d,yu]i+n1(j−1) =

{
ui+n1 j − ui+n1(j−1), 1 ≤ i ≤ n1, 1 ≤ j < n2

0, 1 ≤ i ≤ n2, j = n2.

We use the 1-2 combination norm

‖д‖2,1 :=

n1n2∑
k=1

√
д2

k + д
2

n1n2+k
,

where we take the image-wide 1-norm over the �eld of 2-norms of the pixelwise gradient approx-

imations. Observe—just try to di�erentiate!—that this norm is non-smooth: it does not have a

conventional gradient if д2

k + д
2

n1n2+k
= 0. If we replaced ‖∇du‖2,1 by the squared norm ‖∇du‖

2

2,1, we
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1 Introduction

could make the problem smooth. However, the special properties of the image-wide one-norm are

important for edge preservation in image processing.

Besides the total variation regulariser ‖∇du‖, various more modern higher-order regularisers—that

make the image even prettier–also exist. They are also non-smooth. For the purposes of this course,

total variation will however su�ce.

Various other image processing problems besides denoising can be constructed by replacing the

�rst term by one involving a matrix T ∈ Rm×n1n2
, that is

min

u ∈Rn
1
n

2

1

2

‖ f −Tu‖2 + α ‖∇du‖2,1.

For deblurring, T can be a convolution operation. For sub-sampled reconstruction from Fourier

samples, as is the case with magnetic resonance imaging (MRI) reconstructions, T = SF for S ∈
Rm×n1n2

form � n1n2 a sub-sampling operator, selecting certain pixels from u and neglecting the

rest, and F the Fourier transform. If simply T = S for a sub-sampling operator, then we are talking

about inpainting. This might be used, for example, to hide hairs and scratches in old photographs or

�lms. For a detailed treatment of various image processing tasks, see, for example [2].

1.3 Applications in the data sciences

Problems of similar structure can be found in statistics and machine learning. Various problems

therein can be formulated as instances of empirical risk minimisation

min

x ∈Rm
д(x) +

1

n

n∑
i=1

ϕi (a
T
i x) (1.1)

where aTi x is a linear predictor, ϕi a convex loss function, and д a regulariser.

Example 1.1 (Support vector machines). If ai is a feature vector associated to a label bi = ±1,

and we set ϕi (z) = max{0, 1−biz} to be the hinge loss, and д(x) = λ
2
‖x ‖2

2
for a parameter λ > 0,

then (1.1) becomes a linear support vector machine (SVM). The interpretation here is that ϕi
does not penalise x if ai is on the right side of the hyperplane

Hx = {y ∈ R
m | 〈x ,y〉 = 0}.

This side is determined by the sign of bi , known as the label or class of the data ai . If ai is too

far on the wrong side of Hx , meaning

ai < Hx + bi
x

‖x ‖2
, (1.2)

then it is penalised by the amount 1−bia
T
i x . Observe how the length of x , which is controlled by

д and particularly the parameter λ > 0, controls the thickness of the set in (1.2), also known as

the margin of the SVM. Linear support vector machines can thus be used to �nd—if possible—a

separating hyperplane to samples ai spurning from two di�erent clusters characterised by

bi = ±1. They are also tolerant to outliers through the penalisation in ϕi instead of strict

constraints. When the hyperplane is discovered, it can then be used for classifying new samples

Note that the general approach described here only supports hyperplanes Hx containing the

origin, but increasing dimensions through replacing ai by a′i = (ai , 1), it is easy to support a�ne

separating hyperplanes.
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1 Introduction

�� �� ��

��

��

(a) The hyperplane H1 does not separate the

two classes. H2 does, but only with a

small margin. The hyperplane H3 sepa-

rates them with the optimum margin.

(b) The margin of the SVM is the dis-

tance 2/‖x ‖ between the dashed

lines.

Figure 1.4: Illustrations of a linear support vector machines.

(a) is due to user ZackWeinberg on Wikipedia, licensed under Creative Commons BY-SA-3.0. It can be found at https:
//commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg.
(b) is based on an image due to user Peter Buch on Wikipedia, and in the public domain. The original can be found at
https://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png.

Non-linear support vector machines, that basically amount to transforming the data into a

higher-dimensional space, and then applying the basic linear support vector machine, also exist.

These kernel methods are discussed, for example, in [3].

Example 1.2 (Lasso). For linear regression, with each ai a data vector associated with a dependent

variable or measurement bi ∈ R, let us set ϕi (z) =
1

2
‖z − bi ‖

2

2
and д(x) = λ‖x ‖1. This is the

so-called Lasso. It �nds sparse least squares solutions to the system aTi x = bi , (i = 1, . . . ,n).

Sparse here means that the solution x will have many zero components, as enforced by the

1-norm. Thus, to explain the data, Lasso automatically selects more relevant features from the

data, ignoring irrelevant ones.

1.4 Saddle-point formulations

The problems we have looked at above, are of the general form

min

x ∈Rn
д(x) + f (Kx), (1.1)

for some K ∈ Rm×n
, f : Rm → R non-smooth, and д : Rn → R smooth. If we can write

f (z) = max

y ∈Rm
〈y, z〉 − f ∗(y), (1.2)

for some conjugate function f ∗, then we may write the problem in the saddle-point form

min

x ∈Rn
max

y ∈Rm
д(x) + 〈Kx ,y〉 − f ∗(y),

It will turn out that this kind of formulations are useful for deriving e�cient algorithms. Indeed, if

m = 2M for some M , and

f (z) = ‖z‖2,1 =
M∑
k=1

√
z2

k + z
2

M+k ,
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1 Introduction

as we would have for the total variation denoising (1.1), we may write

f (z) =
M∑
k=1

max{zkyk + zM+kyM+k | |y
2

k + y
2

M+k | ≤ 1} = max

y ∈Rm
〈y, z〉 − f ∗(y).

Here

f ∗(y) =

{
0, maxk=1, ...,M |y

2

k + y
2

M+k | ≤ 1,

∞, otherwise

is the indicator function of the pointwise (index k) two-dimensional unit ball. This is the most

important example of conjugacy for our needs. It turns out that if f is convex, proper, and lower

semicontinuous—topics that we will in no time get into—then f ∗ will always exist, and is de�ned by

f ∗(y) = sup

z∈Rm
〈z,y〉 − f (y).

Exercise 1.1. What are the conjugate representations of

(i) д(x) = ‖ f − x ‖2
2
/2, (x ∈ Rn)?

(ii) ϕ(t) = max{0, 1 − bt}, (t ∈ R)?

Write the support vector machine of Example 1.1 in explicit saddle-point form.

1.5 About the course

As we have already seen, modern approaches to image processing, machine learning, and various

big data applications, almost invariably involve the solution of non-smooth optimisation problems.

Already at the start, in the characterisation of optimal solutions to these problems, and the devel-

opment of numerical methods, we run into the most fundamental concept of set-valued analysis:

the convex subdi�erential, which is the topic of Chapter 2. We then develop some fundamental

optimisation methods for convex problems, based the subdi�erential and set-valued view in Chapter

3, with an eye to our image processing and data science example applications.

For the understanding of the stability and sensitivity of solutions under perturbations of data and

model parameters (Chapter 4), we need to delve further into the di�erentiation of general set-valued

functions–a fascinating concept faced with many challenges. In Chapter 5, we develop general

set-valued di�erentiation and take a look at the central analytical results of this area.

Our main reference on set-valued analysis is [4], and similar to this work, we stay in the �nite-

dimensional con�nes. Set-valued analysis in in�nite-dimensions is a highly involved a�air, studied in

detail in [5]. For a less extensive and slightly out-dated treatment, see also [6]. Basic convex analysis,

with which we start, may be studied from [7] and [8]. The in�nite-dimensional case is treated in the

classic [9], and more comprehensively in [10]. For brushing up on basics of numerical optimisation

of smooth functions, we point to [1]—such background is however not strictly necessary. All that is

required is knowledge of undergraduate calculus and linear algebra, as well as elementary geometry.
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2 Convex analysis—subdi�erentials

2.1 Convexity

We know intuitively what a convex set is: one can see from any point in the set, to any other point

in the set. This is also the proper de�nition of a convex set.

Definition 2.1. A subset C ⊂ Rn
is convex if

λx + (1 − λ)y ∈ C, whenever x ,y ∈ C, λ ∈ [0, 1].

Clearly, the intersection of convex sets is a convex set. One way to de�ne a convex function then

is, that epi f is convex. We will however provide a more explicit de�nition. We work with extended

real numbers, R := [−∞,∞].

Definition 2.2. We say that f : Rn → R is convex if

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y), (x ,y ∈ Rn
; λ ∈ [0, 1]).

Example 2.1. Any norm is convex, indeed ‖λx + (1 − λ)y ‖ ≤ λ‖x ‖ + (1 − λ)‖y ‖.

For our application purposes, the next exercise covers the most interesting types of convex

functions.

Exercise 2.1. Show that the following functions are convex:

(i) Any linear function x 7→ 〈x ,a〉 for some a ∈ Rn .

(ii) Any linear combination
∑n

i=1
αi fi of convex functions fi with αi ≥ 0.

(iii) x 7→ f (Ax), if A ∈ Rn×m is a matrix, and f : Rn → R convex.

(iv) t 7→ |t |p for t ∈ R is convex for p ≥ 1.

(v) t 7→ − log t if t ≥ 0 and∞ otherwise.

Hint: For the last two examples, try to write the epigraph as the intersection of a�ne half-spaces
Ax := {(z,v) | v − f (z) ≥ f ′(x)(z − x)}.

Example 2.2. For a set C ⊂ Rn
‚ we de�ne the indicator function

δC (x) :=

{
0, x ∈ C,

∞, x < C .

Then C is convex if and only if δC is convex.

Exercise(Light) 2.2. For a convex function f : Rn → R, show that the sub-level sets

levc f := {x ∈ Rn | f (x) ≤ c}

are convex for any c ∈ R.
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2 Convex analysis—subdi�erentials

f

epi f

Figure 2.1: The line segment with start points within the epigraph of a convex function f , belongs

completely to the epigraph.

We don’t work much with general convex sets in this course, but introduce them to give a more

geometric �avour to convex functions. We recall the following de�nition from the introduction.

Definition 2.3. The epigraph of a function f : Rn → R is the set

epi f := {(x , t) ∈ Rn ×R | t ≥ f (x), x ∈ Rn}.

Exercise 2.3. Show that f : Ω → R is a convex function if and only if epi f is a convex set, cf. Figure
2.1.

2.2 Properties of (convex) functions

Frequently, we will be making some additional assumptions about our convex function f .

Definition 2.1. Let f : Rn → R. We then say that

(i) f is proper, if f (x) < ∞ for some x ∈ Rn
, and f (x) > −∞ for all x ∈ Rn

.

(ii) f is lower semicontinuous at x if for any sequence {x i }∞i=1
⊂ Rn

, with x i → x holds

f (x) ≤ lim inf

i→∞
f (x i ).

(iii) f is lower semicontinuous, if it is lower semicontinuous at every x ∈ Rn
.

(iv) f is closed if epi f is a closed set.

Exercise 2.4. Show that f is closed if and only if it is lower semicontinuous, and that cl epi f is convex
for convex f .

This exercise motivates the following de�nition.

Definition 2.2. The closure or lower semicontinuous envelope of f : Rn → R is the function

cl f : Rn → R de�ned by

epi(cl f ) = cl(epi f ).

All of these properties are important for optimisation problems, as evidence by the next proposition.

Proposition 2.1. Let f : Rn → R be proper and lower semicontinuous, andC ⊂ Rn closed and bounded.
Then there exists x̂ ∈ C such that

f (x̂) = inf

x ∈C
f (x),

and this value is �nite.

10



2 Convex analysis—subdi�erentials

Proof. Let

M := inf

x ∈C
f (x).

Suppose M = −∞. Then there exists a sequence {x i }∞i=1
⊂ C with f (x i ) ≤ −i for each i ∈ N. Since C

is closed and bounded, we can �nd a limit point x ∈ C of a subsequence. By lower semicontinuity of

f , then

f (x) ≤ lim

i→∞
(−i) = −∞.

This is in contradiction to f being proper.

So M > −∞. Since f is proper, there exists a point x ′ ∈ Rn
such that f (x ′) < ∞. Therefore also

M < ∞.

So M is �nite. We may then take a minimising sequence {x i }∞i=1
⊂ C , such that

f (x i ) ≤ M + 1/i .

Again, we may �nd a limit point x of a subsequence, and see by lower semicontinuity that f (x) = M .

We have found our x̂ = x . �

Alternative proof. The set Ẽ := epi f ∩(C ×R) is closed. Since f is proper, we may �nd a point x with

f (x) < ∞. If we let E := Ẽ ∩ ([−∞, f (x)] ×R), then E is non-empty, because f is proper. Now taking

zi := (x i , f (x i )) ∈ Ẽ for a minimising sequence (which eventually and w.log satis�es f (x i ) ≤ f (x),
we either �nd that f (x i ) ↘ −∞, a contradiction, or may switch to a compact subset of E, where a

subsequence of zi converges. �

Remark 2.1. Note that we did not yet use convexity for the previous proposition.

For convex sets, a relative de�nition of the interior is often useful.

Definition 2.3. For a convex set C ⊂ Rn
, we de�ne the relative interior riC as the interior of C

relative to the smallest a�ne subspace V ⊃ C .

Example 2.1. For a vector z ∈ Rn
, de�ne the line segment

C := {−λz + (1 − λ)z | 0 ≤ λ ≤ 1}.

This is a one-dimensional set with

riC = {−λz + (1 − λ)z | 0 < λ < 1}.

Also, if

H = {x ∈ Rn | xT z = 0},

is the hyperplane orthogonal to z, a (n − 1)-dimensional set, we have

riH = H .

Remark 2.2. If intA , ∅, then riA = intA.

Definition 2.4. For a proper function f : Rn → R, we de�ne the e�ective domain

dom f := {x ∈ Rn | f (x) < ∞}.

Exercise* 2.5. Show that a convex function f : Rn → R is continuous on ri dom f . Conclude that
cl f = f on ri dom f , and that

ri(epi f ) = {(x , t) ∈ Rn+1 | x ∈ ri(dom f ), t > f (x)}.

11



2 Convex analysis—subdi�erentials

2.3 Subdi�erentials

Let f : Rn → R be Fréchet-di�erentiable at x ∈ R. That is, the gradient ∇f (x) := z exists, de�ned by

lim

h→0

f (x + h) − f (x) − 〈z,h〉

‖h‖
= 0.

Note that this can also be written

lim

h→0

〈(
x + h

f (x + h)

)
−

(
x

f (x)

)
,

(
z
−1

)〉
= 0.

In terms of epi f , there therefore exists a supporting tangent hyperplane at (x , f (x)), orthogonal to

(−1, z); see Figure 1.1c.

Indeed, for any hi → 0, and ti ≥ f (x + hi ), we have

lim

i→∞

ti − f (x) − 〈z,hi 〉

‖hi ‖
≥ 0.

In particular, as the hardest case

lim

i→∞

f (x + hi ) − f (x) − 〈z,hi 〉

‖hi ‖
≥ 0. (2.1)

Definition 2.1. Let f : Rn → R. If z satis�es (2.1) for any sequence hi → 0, we say that z is a Fréchet

subgradient of f at x . We denote the set of all Fréchet subgradients of f at x by ∂F f (x).

If f is convex, we have the following simple characterisation.

Lemma 2.1. If f is convex, (2.1) is equivalent to

f (x + h) − f (x) ≥ 〈z,h〉, (h ∈ Rm). (2.2)

Proof. Indeed, (2.2) implies

lim

i→∞
f (x + hi ) − f (x) − 〈z,hi 〉 ≥ 0,

which implies (2.1).

On the other hand, if (2.2) does not hold, then

f (x + h) − f (x) ≤ 〈z,h〉 − ϵ

for some h ∈ Rn \ {0} and ϵ > 0. For any i ∈ N it follows

f (x+h/2i )− f (x) = f ((x+h)/2i +(1−1/2i )x)− f (x) ≤ (1/2i )f (x+h)−(1/2i )f (x) ≤ 〈z,h/2i 〉−ϵ/2i .

Therefore, setting hi := h/2i , we have

lim

i→∞

f (x + hi ) − f (x) − 〈z,hi 〉

‖hi ‖
≤ lim

i→∞

−ϵ/2i

‖h‖/2i
= −ϵ/‖h‖.

This violates (2.1). �

This motivates the following de�nition.

Definition 2.2. Let f : Rn → R be convex, and x ∈ Rn
. If z ∈ Rn

satis�es

f (x ′) − f (x) ≥ 〈z,x ′ − x〉, for all x ′ ∈ Rn , (2.3)

we say that z is a (convex) subgradient of f at x . We denote the set of all convex subgradients of f
at x by ∂ f (x).

12



2 Convex analysis—subdi�erentials

Geometrically, we already know that (z,−1) for any z ∈ ∂ f (x) is normal to a supporting tangent

hyperplane

H = {(x ′, f (x) + 〈z,x ′ − x〉) ∈ Rn+1 | x ′ ∈ Rn}

of epi f at (x , f (x)); see Figure 1.1c. Therefore the entire set ∂ f (x) provides a collection of such.

Moreover, each hyperplane supports the whole function globally, not just locally, in the sense that

epi f stays on one side of H .

Example 2.1. Let f (x) = |x | for x ∈ R. Then

∂ f (x) =


{1}, x > 0,

{−1}, x < 0,

[−1, 1], x = 0.

This is illustrated in Figure 2.2.

f

(д,−1)

(a) ∂ f (x) = {sgnx} at x , 0

f

(д,−1)

(b) ∂ f (x) = [−1, 1] at x = 0

Figure 2.2: Subdi�erentials of f (x) = |x |.

Exercise 2.6. What is the subdi�erential of ‖x ‖2 on Rn?

Example 2.2. Let C ⊂ Rn
be a convex set. Then the subdi�erential of the indicator function δC

is the normal cone

∂δC (x) = NC (x) := {z ∈ Rn | 〈x ′ − x , z〉 ≤ 0 for all x ′ ∈ C}.

We illustrate this in Figure 2.3.

C

NC(x1)
NC(x2)

Figure 2.3: Normal cones of f = δC at two points x1 and x2.

13



2 Convex analysis—subdi�erentials

The subdi�erential ∂ f : Rn ⇒ Rn
is an example of a set-valued map: for each x ∈ Rn

, the

value is a subset of Rn
, ∂ f (x) ⊂ Rn

. For general set-valued functions the equivalent concept of

subdi�erentiability is given by the next de�nition.

Definition 2.3. A set-valued function A : Rn ⇒ Rn
is monotone if

〈A(x ′) −A(x),x ′ − x〉 ≥ 0, (x ′,x ∈ Rn).

(This inequality is to be understood in the sense

〈y ′ − y,x −′ x〉 ≥ 0, (x ′,x ∈ Rn
; y ′ ∈ A(x ′), y ∈ A(x))

)
.

Exercise 2.7. Let f : Rn → R be convex. Show that ∂ f is monotone.

Exercise* 2.8. Show that ∂ f is, in fact, maximal monotone. This means that there is no monotone
operator A : Rn ⇒ Rn such that GraphA ⊃ Graph ∂ f . Hint: Observe that any z ∈ Rn can be written
as z = x + y for x ∈ Rn and y ∈ ∂ f (x) for some convex function f .

We want to build some calculus rules for the convex subdi�erential. For that, we need some

additional results and concepts.

Proposition 2.1. Let f : Rn → R be convex, proper, and lower semicontinuous. Then the sub-di�erential
mapping ∂ f is outer semicontinuous, meaning that for any sequence x i → x , and zi ∈ ∂ f (x i ), any
limit z of a converging subsequence of {zi }, satis�es z ∈ ∂ f (x). We denote

lim sup

i→∞
∂ f (x i ) ⊂ ∂ f (x).

Moreover ∂ f (x) is a closed set at each x ∈ Rn .

Proof. Assume, without loss of generality, that {zi } converges to z. Choose arbitrary x ′ ∈ Rn
. We

have by De�nition 2.2 that

f (x ′) ≥ f (x i ) − 〈zi ,x ′ − x i 〉, (i ∈ N).

The map (̃z, x̃) 7→ 〈̃z,x ′ − x̃〉 is continuous, and by assumption f is lower semicontinuous. Therefore

f (x ′) ≥ lim inf

i→∞

(
f (x i ) − 〈zi ,x ′ − x i 〉

)
≥ f (x) − 〈z,x ′ − x〉.

Since this holds for any x ′ ∈ Rn
, we have proved that z ∈ ∂ f (x).

Finally, the closedness of ∂ f (x) is immediate from the de�nition, or choosing x i = x above. �

Definition 2.4. For f : Rn → R, we de�ne the directional di�erential at x ∈ Rn
in the direction

h ∈ Rn
by

f ′(x ;h) := lim

t↘0

f (x + th) − f (x)

t
. (2.4)

Lemma 2.2. Let f : Rn → R be convex and proper, and x ∈ dom f . Then

∂ f (x) = {z ∈ Rn | 〈z,h〉 ≤ f ′(x ;h) ∀h ∈ Rn}, (2.5)

and
cl(h 7→ f ′(x ;h)) = sup

z∈∂f (x )
〈z,h〉. (2.6)

If x ∈ ri dom f , moreover
f ′(x ;h) = sup

z∈∂f (x )
〈z,h〉. (2.7)

14



2 Convex analysis—subdi�erentials

(a) For the two-norm, ∂‖0‖2 is

the unit circle.

(b) For the one-norm, ∂‖0‖1 is

the rectangle [−1, 1]2.

(c) For the∞-norm, ∂‖0‖1 is the

diamond.

Figure 2.4: Some support functions on R2
and their corresponding convex sets.

Proof. Observe that

f ′(x ;h) = inf

t>0

f (x + th) − f (x)

t
. (2.8)

Indeed, for any 0 < s < t by convexity

s

t
f (x + th) +

t − s

t
f (x) ≥ f (x + sh).

This gives

f (x + th) − f (x) ≥
t

s

(
f (x + sh) − f (x)

)
.

Therefore, the sequence s 7→
f (x+sh)−f (x )

s is monotonically increasing, proving (2.8).

If we de�ne

A := {z ∈ Rn | 〈z,h〉 ≤ f ′(x ;h) for all h ∈ Rn},

then (2.8) and (2.3) show that A = ∂ f (x). This proves (2.5). Observe also from the continuity of

h 7→ 〈z,h〉 that A is closed (this also follows from Proposition 2.1), and that

A = {z ∈ Rn | 〈z,h〉 ≤ cl[f ′(x ; · )](h) for all h ∈ Rn}. (2.9)

De�ning the support function of the closed convex set A,

σA(h) := sup

z∈A
〈z,h〉,

we �nd that σA is proper, lower semicontinuous, and sublinear,

σA(s1h1 + s2h2) ≤ s1σA(h1) + s2σA(h2), (h1,h2 ∈ R
n

; s1, s2 ≥ 0).

Also f ′(x ; · ) is proper and sublinear (although possibly not lower semicontinuous). Proving this

is the content of Exercise 2.9. It follows easily that cl[f ′(x ; · )] is proper, sublinear, and lower

semicontinuous. Since by (2.9), A is the maximal convex set A′ satisfying σA′ ≤ cl[f ′(x ; · )], the next

therefore lemma shows that σA = cl[f ′(x ; · )].
Finally, if x ∈ ri dom f , we have cl[f ′(x ; · )] = f ′(x ; · ) by the lower semicontinuity of f on

ri dom f (Exercise 2.5). This shows (2.7). �

Exercise 2.9. For a convex proper function f : Rn → R, prove that f ′(x ; · ) is proper and sublinear at
x ∈ dom f .

Lemma 2.3. Let σ : Rn → R be proper, lower semicontinuous, and sub-linear. Then σ is the support
function of the convex set

∂σ (0) = {z ∈ Rn | 〈z,h〉 ≤ σ (h) for all h ∈ Rn}. (2.10)

That is
σ = σ∂σ (0),

Further, σA is sub-linear for any convex set A.
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2 Convex analysis—subdi�erentials

Some very common support functions σ and corresponding “dual balls” ∂σ (0) are depicted in

Figure 2.4.

Proof. A sub-linear function is convex. For any convex function f , we have

f (x) = sup

x ′∈Rn, z∈∂f (x ′)
f (x ′) + 〈z,x − x ′〉. (2.11)

Indeed, by the de�nition of the subdi�erential, ≥ holds here, while choosing x ′ = x gives equality.

Since a sub-linear function is positively homogeneous, meaning

σ (λx) = λσ (x) for λ > 0,

we have

∂σ (λx) = ∂σ (x), for all x , 0, λ > 0. (2.12)

By the outer semicontinuity of ∂σ (Proposition 2.1), letting λ↘ 0, we see that

∂σ (x) ⊂ ∂σ (0), for any x ∈ Rn .

Let x ′ ∈ Rn
, and z ∈ ∂σ (x ′). Then, since z ∈ ∂σ (λx ′), we get

0 = σ (λx ′) − σ (x ′) ≥ 〈z, λx ′ − x ′〉 ≥ σ (λx ′) − σ (x ′).

Thus, for any λ > 0 and x ∈ Rn
, we have

σ (x ′) + 〈z,x − x ′〉 = σ (λx ′) + 〈z,x − λx ′〉.

Letting λ↘ 0, we have

σ (x ′) + 〈z,x − x ′〉 = 〈z,x〉.

Thus by (2.12), we have

σ (x) = sup

x ′∈Rn, z∈∂σ (x ′)
(σ (x ′) + 〈z,x − x ′〉)

= sup

x ′∈Rn, z∈∂σ (x ′)
〈z,x〉

= sup

z∈∂σ (0)
〈z,x〉.

This proves (2.10).

Finally, that σA is sub-linear for any convex set A, follows immediately from the de�nition. �

Lemma 2.4. Let f : Rn → R be a proper convex function. Then

(i) ∂ f (x) = ∅ for every x < dom f .

(ii) ∂ f (x) , ∅ for every x ∈ ri dom f .

Proof. The �rst claim is clear from the de�nition of the subdi�erential: if x < dom f , (2.3) gives the

condition

f (x ′) − ∞ ≥ 〈z,x ′ − x〉, (x ′ ∈ Rn),

which cannot hold.

For the second claim, let y ∈ dom f , and x ∈ ri dom f . If we cannot choose y distinct from x , then

ri dom f = dom f = {x̄} for some x̄ ∈ Rn
. This by the properness of f means that for some constant

c ∈ R holds

f (x) =

{
c, x = x̄ ,

∞ otherwise.
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But, as is easily veri�ed, ∂ f (x̄) = Rn
. Thus (ii) holds in this degenerate case.

For the rest, we may thus assume y distinct from x . With h := y − x , writing x as the convex

combination

x =
t

1 + t
y +

1

1 + t
(x − th),

we then deduce

1

1 + t
f (x − th) − f (x) ≥ −

t

1 + t
f (y).

Thus

f (x − th) − f (x) ≥ t(f (x) − f (y)).

In consequence

f ′(x ;−h) ≥ f (x) − f (y) = C ′ > −∞.

By Lemma 2.2 we observe that ∂ f (x) has to be non-empty. �

Remark 2.1. In the context of the proof, it can be that f ′(x ;h) = −∞. Consider, for example,

f (x) =


∞, x < 0

1, x = 0,

0, x > 0.

With x = 0, any y > 0, and h = y − x > 0, we have f ′(x ;h) = −∞. The crucial bit is that

f ′(x ;−h) > −∞; in this example f ′(x ;−h) = ∞. This example illustrates how convex functions with

non-full domain can exhibit somewhat strange behaviour.

Theorem 2.1. Suppose f ,д : Rn → R are convex and proper. Then at any point x ∈ dom(f +д) one has

∂(f + д)(x) ⊃ ∂ f (x) + ∂д(x).

If ri dom f ∩ ri domд , ∅, then this holds as an equality.

Proof. Take �rst z ∈ ∂ f (x), and w ∈ ∂д(x). Then (2.3) immediately shows that z +w ∈ ∂(f + д)(x).
This shows the claimed inclusion.

To prove the equality under the additional assumption, we note from Lemma 2.4 for each q =
f ,д, f + д that ∂q(x) is non-empty. By Lemma 2.2 this implies

q′(x ;h) > −∞

for any h. Since q′(x ; 0) = 0, we �nd that q′(x ; · ) is proper. Hence we can sum f ′(x ; · ) and д′(x ; · ).
Now

lim sup

t↘0

(f + д)(x + th) − (f + д)(x)

t
≤ lim sup

t↘0

f (x + th) − f (x)

t
+ lim sup

t↘0

д(x + th) − д(x)

t
.

Also

inf

t>0

f (x + th) − f (x)

t
+ inf

t>0

д(x + th) − д(x)

t
≤ inf

t>0

(f + д)(x + th) − (f + д)(x)

t
.

Recalling the equivalence (2.8), and the de�nition (2.4), therefore

(f + д)′(x ;h) = f ′(x ;h) + д′(x ;h). (2.13)

This would be enough for the application of the formulas provided by Lemma 2.2, if we had x ∈
ri dom f ∩ ri domд ∩ ri dom(f + д). In general, without requiring this condition, using that q′(x ; · )
is proper for q = f ,д, f + д, (2.13) implies

lim inf

h′→h
(f + д)′(x ;h′) = lim inf

h′→h
f ′(x ;h′) + lim inf

h′→h
д′(x ;h′).
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That is

cl[(f + д)′(x ; · )] = cl[f ′(x ; · )] + cl[д′(x ; · )].
(Note that taking the closure here is only e�ective if x is not in the relative interior of the domain of

one of the functions.) Lemma 2.2 therefore gives

sup

q∈∂(f +д)(x )
〈h,q〉 = sup

z∈∂f (x )
〈h, z〉 + sup

w ∈∂д(x )
〈h,w〉

= sup

q∈∂f (x )+∂д(x )
〈h,q〉.

(2.14)

Since this holds for every h ∈ Rn
, and both ∂(f + д)(x) and ∂ f (x) + ∂д(x) are closed convex sets, we

conclude equivalence. Indeed, if there was a point z ∈
(
∂ f (x) + ∂д(x)

)
\ ∂(f +д)(x), it would be at a

positive distance from ∂(f + д)(x), and yield a contradiction to the statement (2.14) on the support

functions of these sets. �

Exercise 2.10. Let A ∈ Rn×m , and f : Rn → R be convex. Show that ∂(f ◦A)(x) ⊃ AT [∂ f ](Ax) with
equality if R(A) ∩ ri dom f , ∅.

2.4 Characterisation of minima

We now concentrate on convex f : Rn → R. How can we characterise minima of such functions?

Going back to (2.3), we see that if z = 0, we have

f (x ′) − f (x) ≥ 0, for all x ′ ∈ Rn .

This means exactly that x is a minimiser. Since this works both ways, we obtain the following.

Theorem 2.1. Let f : Rn → R by convex. Then x ∈ Rn is a minimiser of f ,

f (x) = min

x ′∈Rn
f (x ′),

if and only if
0 ∈ ∂ f (x). (2.1)

Example 2.1. Let C ⊂ Rn
be a convex set, and f : Rn → R convex and di�erentiable. Then, by

Theorem 2.1 and Example 2.2, we have

x̂ ∈ arg min

x ∈C
f (x)

if and only if

0 ∈ ∇f (x̂) + NC (x̂).

In particular, let

C = {x ∈ Rn | д(x) ≤ 0},

for some convex, di�erentiable, constraint function д satisfying

inf

x ∈Rn
д(x) < 0. (2.2)

Then, as we will shortly see

NC (x) =


∅, д(x) > 0,

{0}, д(x) < 0,

[0,∞)∇д(x), д(x) = 0.

(2.3)

18
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Therefore, we recover the usual Karush-Kuhn-Tucker conditions

∇f (x̂) + λ∇д(x̂) = 0 with λ ≥ 0, λд(x̂) = 0, д(x̂) ≤ 0.

To see the expression (2.3), we �rst of all recall that if x < C = domδC , then NC (x) = ∂δC (x)
is empty. Otherwise, z ∈ NC (x) for x ∈ C is de�ned by

0 ≥ 〈z,x ′ − x〉, (for all x ′, д(x ′) ≤ 0). (2.4)

If д(x) < 0, we can �nd δ > 0 such that д(x ′) < 0 for ‖x ′ − x ‖ < δ . Therefore, we see that the

only possibility is z = 0, that is, NC (x) = {0}. The case д(x) = 0 remains. Since д is convex and

(2.2) holds, we deduce

C = cl{x ′ ∈ Rn | д(x ′) < 0}.

Indeed, by convexity of д, if д(x ′) < 0, then д(λx ′ + (1 − λ) < λд(x ′) < 0 for any λ ∈ (0, 1). We

now note from (2.8) that д(x ′) < 0 if and only if x ′ = x + λh for some λ > 0 and h ∈ Rn
with

д′(x ;h) < 0. Therefore

C = cl{x + λh | λ > 0, h ∈ Rn , д′(x ;h) < 0}

= cl{x + λh | λ > 0, h ∈ Rn , cl[д′(x ; · )](h) ≤ 0}.

Since the the normal cone of an open set agrees with the normal cone of the closure, we deduce

that z ∈ NC (x) if and only if

0 ≥ 〈z,h〉, (for all h, cl[д′(x ; · )](h) ≤ 0).

By Lemma 2.2, this is the same as

0 ≥ 〈z,h〉, (for all h, 〈∇д(x),h〉 ≤ 0).

This shows that z = λ∇д(x) for some λ ≥ 0.

2.5 Strong convexity and smoothness

Definition 2.1. Let f : Rn → R be convex. We say that f is

(i) strictly convex if (2.3) holds strictly, that is

f (x ′) − f (x) > 〈∂ f (x),x ′ − x〉, (x ′ , x ∈ Rn).

(ii) γ -strongly-convex for γ > 0 if

f (x ′) − f (x) ≥ 〈∂ f (x),x ′ − x〉 +
γ

2

‖x ′ − x ‖2, (x ′,x ∈ Rn).

Obviously, strong convexity implies strict convexity.

Lemma 2.1. Suppose f : Rn → R is strictly convex. Then it has at most one minimiser.

Proof. Let x̂ be a minimiser. By Theorem 2.1, 0 ∈ ∂ f (x̂). By strict convexity then

f (x ′) > f (x), (x ′ ∈ Rn).

Definition 2.2. Let f : Rn → R be convex. We say that f is L-smooth if it is di�erentiable and

f (x ′) ≤ f (x) + 〈∇f (x),x ′ − x〉 +
L

2

‖x ′ − x ‖2, (x ′,x ∈ Rn). (2.1)
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One could, in principle, not require di�erentiability in De�nition 2.2, and replace ∇f by ∂ f in

(2.1). Exercise 2.11 shows that this would lead nowhere.

For the next chapter, on optimisation methods, the following consequence is important. It intro-

duces a stronger version of monotonicity of ∇f .

Lemma 2.2. Let f : Rn → R be convex and L-smooth. Then ∇f is L−1-co-coercive, that is

L−1‖∇f (x) − ∇f (y)‖2 ≤ 〈∇f (x) − ∇f (y),x − y〉, (x ,y ∈ Rn). (2.2)

Proof. We have

f (x ′) ≤ f (x) + 〈∇f (x),x ′ − x〉 +
L

2

‖x ′ − x ‖2. (2.3)

Thus, adding 〈∇f (y),x − x ′〉 on both sides, we get

f (x ′) − 〈∇f (y),x ′〉 ≤ f (x) − 〈∇f (y),x〉 − 〈∇f (x) − ∇f (y),x ′ − x〉 +
L

2

‖x ′ − x ‖2.

The left hand side is minimised by x ′ = y . Using x ′ = x + L−1(∇f (x) − ∇f (y)) on the right-hand side

gives

f (y) − 〈∇f (y),y〉 ≤ f (x) − 〈∇f (y),x〉 −
1

2L
‖∇f (x) − ∇f (y)‖2.

A fully analogous argument, starting from (2.3) with roles of x and y exchanged, gives

f (x) − 〈∇f (x),x〉 ≤ f (y) − 〈∇f (x),y〉 −
1

2L
‖∇f (x) − ∇f (y)‖2.

Summing these two estimates, we obtain (2.2). �

Exercise 2.11. Show that the following are equivalent:

(i) L-smoothness of f ,

(ii) L−1-co-coercivity of ∇f .

(iii) Lipschitz continuity of ∇f with factor L.

2.6 Convex conjugates and duality

Let us brie�y get back into the conjugate functions introduced in Section 1.4. We now make this

precise.

Definition 2.1. Let f : Rn → R be a general, possibly non-convex function. We then de�ne the

(convex) conjugate

f ∗(y) := sup

x ∈Rn
(〈x ,y〉 − f (x)) .

We also denote the second conjugate f ∗∗ := (f ∗)∗.

Example 2.1. The support function σA equals δ ∗A for any set A ⊂ Rn
. In Theorem 2.1 below we

will see that if A , ∅ is convex and closed, then the opposite also holds, δA = σ
∗
A. In particular,

the norms in Figure 2.4 are in one-to-one correspondence with the corresponding unit balls

Bq = ∂‖ · ‖p (0) also through δBq = (‖ · ‖p )∗ for q the conjugate exponent of p. This is de�ned

through 1/p + 1/q = 1.

The next exercise and proposition list some basic properties of f ∗ for arbitrary f .
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Exercise 2.12. Show that the function f ∗ is convex and lower semicontinuous for any f : Rn → R. Also
show that f ∗ is proper if f is proper, lower semicontinuous, and level-bounded. The latter means that all
of the level sets levc f are bounded.

Proposition 2.1. Let f : Rn → R. Then

(i) f ≥ f ∗∗.

(ii) (Fenchel–Young) f (x) + f ∗(y) ≥ 〈x ,y〉 for all x ,y ∈ Rn .

Proof. We �rst of all note that by de�ninition of f ∗ holds

f ∗(y) ≥ 〈y ,x〉 − f (x), (y ,x ∈ Rn). (2.2)

Since f is proper, we cannot have f (x) = −∞, so simple rearrangements quickly yield (ii).

To prove (i), we note that if f ∗∗(x) < ∞, then for every ϵ > 0 we can �nd y with

f ∗∗(x) ≤ 〈x ,y〉 − f ∗(y) + ϵ .

Combining this with (2.2) yields

f ∗∗(x) ≤ f (x) + ϵ .

Since ϵ > 0 was arbitrary, we get f ∗∗ ≤ f .

If f ∗∗(x) = ∞, we can likewise for any k ≥ 0 �nd y such that

f ∗∗(x) ≥ 〈x ,y〉 − f ∗(y) ≥ k .

This shows for any x ′ ∈ Rn
that

〈x ,y〉 −
(
〈x ′,y〉 − f (x ′)

)
≥ k .

Choosing x ′ = x shows that f (x) ≥ k . Since k ≥ 0 was arbitrary, f (x) = ∞. This �nishes the proof

of (i). �

For convex f , we have the following stronger relationships. In particular, (i) justi�es the expression

(1.2) in the introduction.

Theorem 2.1. Let f : Rn → R be convex, proper, and lower semicontinuous. Then

(i) (Fenchel–Moreau) f = f ∗∗.

(ii) f (x) + f ∗(y) = 〈x ,y〉 if and only if y ∈ ∂ f (x).

(iii) y ∈ ∂ f (x) if and only if x ∈ ∂ f ∗(y).

Proof. We already know from Proposition 2.1(i) that f ≥ f ∗∗. If f ∗∗(x) = ∞, then this already

shows that f (x) = f ∗∗(x). We may therefore suppose that f ∗∗(x) < ∞. By Exercise 2.12, we know

that f ∗∗ is proper, so also f ∗∗(x) > −∞. If there exists some y ∈ ∂ f (x) , ∅, then by Theorem 2.1,

f ∗(y) = 〈y ,x〉 − f (x). This shows that

f ∗∗(x) ≥ 〈x ,y〉 − f ∗(y) ≥ f (x).

This establishes that f ∗∗ = f on dom ∂ f = {x ∈ Rn | ∂ f (x) , ∅}.
We then observe that

y ∈ ∂ f (x) =⇒ x ∈ ∂ f ∗(y). (2.3)

Indeed, suppose y ∈ ∂ f (x). By Theorem 2.1, this holds of and only if

f ∗(y) = 〈y ,x〉 − f (x). (2.4)
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In particular, (ii) holds. By Proposition 2.1(ii), moreover

f (x) + f ∗(y ′) ≥ 〈x ,y ′〉. (2.5)

The inequality (2.5) and equality (2.4) imply

f ∗(y ′) − f ∗(y) ≥ 〈y ′ − y,x〉.

Thus x ∈ ∂ f ∗(y ′), so (2.3) holds.

The same argument naturally also establishes

x ∈ ∂ f ∗(y) =⇒ y ∈ ∂ f ∗∗(x). (2.6)

Thus ∂ f ∗∗(x) ⊃ ∂ f (x) for all x ∈ Rn
. We recall from (2.11) that

f (x) = sup

x ′∈Rn, y ∈∂f (x ′)
f (x ′) + 〈y,x − x ′〉.

Since the sup-expression can be limited to x ′ ∈ dom ∂ f , having established that f ∗∗ = f and

∂ f ∗∗(x) ⊃ ∂ f (x) on dom ∂ f , we see that f ∗∗ ≥ f on Rn
. This is what we needed to prove (i).

To prove (iii), we simply use (i) in (2.6), and combine this with (2.3). �

The next theorem provides a very useful duality correspondence.

Theorem 2.2 (Fenchel–Rockafellar “lite”). Let f : Rm → R and д : Rm → R be convex, proper, and
lower semicontinuous, and K ∈ Rm×n . Then we have weak duality

inf

x ∈Rn
(д(x) + f (Kx)) + inf

y ∈Rm

(
д∗(−KTy) + f ∗(y)

)
≥ 0. (2.7)

Suppose
K(ri domд) ∩ int dom f , ∅, (2.8)

and that x 7→ д(x) + f (Kx) has a minimiser x̂ . Then we have strong duality

min

x ∈Rn
(д(x) + f (Kx)) + min

y ∈Rm

(
д∗(−KTy) + f ∗(y)

)
= 0. (2.9)

Proof. For any x ∈ Rn
and y ∈ Rm

, we have by Proposition 2.1(ii) that

д(x) + д∗(−KTy) ≥ −〈x ,KTy〉 and f (Kx) + f ∗(y) ≥ 〈Kx ,y〉. (2.10)

Summing these expressions shows (2.7).

For (2.9) we plan to use Theorem 2.1(ii). By Theorem 2.1 and Theorem 2.1, whose conditions are

veri�ed by (2.8), we have

0 ∈ ∂д(x̂) + (f ◦ K)(x̂).

The condition (2.8) also implies R(K) ∩ ri dom f , ∅ by (2.8). Exercise 2.10 therefore shows that

∂(f ◦ K)(x̂) = KT ∂ f (Kx̂). Thus there exists

ŷ ∈ ∂ f (Kx̂) (2.11a)

such that 0 ∈ ∂д(x̂) + KT ŷ . In other words,

− KT ŷ ∈ ∂д(x̂). (2.11b)

The “primal-dual” optimality conditions (2.11) and Theorem 2.1(ii) now make the inequalities in (2.10)

to hold as equalities for x = x̂ and y = ŷ . Thus (2.9) holds, with the �rst “min” in place of “inf” in (2.9)

justi�ed by our assumption of x̂ being a minimiser. The second “min” is also justi�ed. Indeed by (2.11),

Theorem 2.1(iii), Exercise 2.10, and Theorem 2.1, we see that 0 ∈ ∂h(ŷ) for h(y) := д∗(−KTy) + f ∗(y).
Therefore ŷ is a minimiser by Theorem 2.1. �
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Remark 2.1. The conditionK(ri domд)∩int dom f , ∅ is enough for strong duality, without requiring

the existence of a minimiser, albeit with the �rst “min” remaining an “inf” in (2.9). Even more relaxed

conditions exist [11]. We stick to our stronger requirements, as the relaxed ones demand a little bit

more machinery than we have time for, and in practise we are interested in the case when (2.11) is

satis�ed.

Remark 2.2. Note that (2.11) holding implies that x̂ is the minimiser required for the theorem.

Moreover, under (2.11), it is not necessary to assume (2.8), which was only used to prove (2.11).

Due to the relationships (2.7) and (2.9), we call

min

y ∈Rm
д∗(−KTy) + f ∗(y) (D)

the dual problem of the primal problem

min

x ∈Rn
д(x) + f (Kx). (P)

We denote by

G(x ,y) := д(x) + f (Kx) + д∗(−KTy) + f ∗(y) ≥ 0

the duality gap. It is only zero when x solves (P), and y solves (D), hence G(x ,y) ≤ ϵ for a suitable

level ϵ > 0 forms a good stopping criterion, independent of any knowledge of the optimal solution,

for primal-dual algorithms. These simultaneously look for x and y by working on the saddle point

problem

min

x ∈Rn
max

y ∈Rm
д(x) + 〈y ,Kx〉 − f ∗(y). (S)

Under the conditions of Theorem 2.2, this problem can be derived from (P) by writing f (Kx) =
supy

(
〈y,Kx〉 − f ∗(y)

)
. The supremum isn’t a maximum for all x ∈ Rn

, but under (2.11), it is for

x = x̂ ; hence the “max” in (S).

Exercise 2.13. Assuming (2.11) to hold, show that

min

x ∈Rn
sup

y ∈Rm
д(x) + 〈y ,Kx〉 − f ∗(y) = max

y ∈Rm
inf

x ∈Rn
д(x) + 〈y,Kx〉 − f ∗(y). (2.12)

Hence, show that (S) can alternatively be derived from (D) by writing

д∗(−KTy) = sup

x

(
−〈x ,KTy〉 − д(x)

)
.

Remark 2.3. The property (2.12) is why (S) is called a saddle point problem. Without that, it should

merely be called a min-max problem. Without conditions such as (2.11) holding, it is indeed generally

not possible to swap the order of “min” and “max” in (S) without changing the problem. Generally

infx supy L(x ,y) ≤ supx infy L(x ,y) for any function L. A saddle point (x̂ , ŷ) satis�es L(x̂ ,y) ≤
L(x̂ , ŷ) ≤ L(x , ŷ) for all x and y .

Exercise 2.14. Show that a solution (x̂ , ŷ) of (2.11) is a saddle point of the Lagrangian

L(x ,y) := д(x) + 〈y ,Kx〉 − f ∗(y).

Example 2.2. Consider the empirical risk minimisation problem (1.1), that is

min

x ∈Rm
д(x) +

1

n

n∑
i=1

ϕi (a
T
i x).
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We can also write this as

min

x ∈Rm
д(x) + ϕ(ATx) for A :=

(
a1 . . . an

)
∈ Rn×m

and ϕ(z) :=
1

n

n∑
i=1

ϕi (zi ).

The dual problem is

min

y ∈Rn
д∗(−Ay) + ϕ∗(y),

which we can also write as

min

y ∈Rn

1

n
д∗(−Ay) +

n∑
i=1

ϕ∗i (yi ).

(You can easily observe that since each ϕi only depends on zi , the conjugate of ϕ is the sum of

the conjugates ϕ∗i acting on yi .)
For the linear SVM,

д(x) =
α

2

‖x ‖2, and ϕi (t) := max{0, 1 − bit}.

These have the conjugates

д∗(z) =
1

2α
‖z‖2, and ϕ∗i (yi ) :=

{
yi/b, yi ∈ [−b, 0],

∞, otherwise,

where we denote [−b, 0] := [0,−b] if b < 0. In this dual formulation, the non-smooth function

ϕ∗ therefore nicely splits into componentwise functions, with the “mixing” of the di�erent

coordinates of yi by A moved into the smooth part д∗(−Ay). This dual form of the problem will

be easy to solve with the forward–backward splitting method that we introduce in the next

section, while the original form is less trivial. This dual form also forms the computationally

tractable basis of non-linear support vector machines, which might haveA ∈ Rn×m
for extremely

large n stemming from a non-linear transformation of the data. This is however completely

hidden in the dual formulation that only operates on variables of dimensionm.

Exercise 2.15. What is the dual problem of the Lasso? Is this likely to be useful? How about the saddle
point problem?
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3.1 Surrogate objectives and gradient descent

Let f : Rn → R be convex and di�erentiable. We want to �nd a point x̂ such that

f (x̂) = min

x ∈Rn
f (x). (P)

As we have learned, this is of course characterised by

∇f (x̂) = 0.

This system is, however, in most interesting cases di�cult to solve analytically. So let us try to derive

a numerical methods. One way of deriving numerical methods is to replace the original di�cult

objective with a simpler one whose minimisation provides improvement to the original objective.

Definition 3.1. A function f̃x̄ : Rn → R is a surrogate objective for f : Rn → R at x̄ if f̃x̄ ≥ f , and

f̃x̄ (x̄) = f (x̄).

Starting with a point x0
, we would then minimise f̃x 0 to obtain a new point x i+1

. Through the

properties of the surrogate objective, this will not increase the value of f . Hopefully it will provide

signi�cant improvement! Then we repeat the process, minimising f̃x 1 , and so on.

What options are there for surrogate objectives, and what would be a good one? If f is di�erentiable,

one possibility is

min

x ∈Rn
f̃x̄ (x) := f (x̄) + 〈∇f (x̄),x − x̄〉 +

1

2τ
‖x − x̄ ‖2. (3.1)

Here τ > 0 is a suitable factor. In general f (x̄) = f̃x̄ (x̄). If f is L-smooth per De�nition 2.2, and

Lτ ≤ 1, then also f ≤ f̃i . Therefore, in this case, f̃x̄ is a valid surrogate objective, and minimising f̃x̄
will provide improvement to f as well.

The optimality condition 0 ∈ ∂ f̃x i (x) becomes

∇f (x i ) + τ−1(x − x i ) = 0. (3.2)

This holds if x i = x̂ by taking also x = x̂ . Therefore, there is a direct correspondence between the

solutions of the surrogate objective and the original. If x i , x̂ , solving (3.2) for x = x i+1
, we get the

rule

x i+1 = x i − τ∇f (x i ). (GD)

This is known as the gradient descent method. In this context the quadratic term in (3.1) can be seen

as a step length condition.

Will sequentially minimising f̃x i provide su�cient decrease in f such that we obtain convergence

of {x i } to a minimiser x̂ of f ? This is what we study next.

3.2 Fixed point theorems

Convergence of optimisation methods can often by proved through various �xed point theorems

applied to the operator T : x i 7→ x i+1
, mapping one iterate to the next one. We will in particular use

the following result from [12].
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Theorem 3.1 (Browder fixed point theorem, version 1). Let T : Rn → Rn be �rmly non-expansive,
that is

‖T (x) −T (y)‖2 ≤ 〈T (x) −T (y),x − y〉, (x ,y ∈ Rn).

Suppose T admits some �xed point x∗ = T (x∗). Then, for any starting point x0 ∈ Rn , the iteration
sequence x i+1

:= T (x i ) satis�es x i → x̃ for some �xed point x̃ = T (x̃).

Remark 3.1. Firm non-expansivity is the co-coercivity of (2.2) with constant L = 1.

Th above variant of Browder’s �xed point theorem follows from a more general one for averaging

operators.

Definition 3.1. A map T : Rn → Rn
is non-expansive, if

‖T (x) −T (y)‖ ≤ ‖x − y ‖, (x ,y ∈ Rn).

It is α-averaging, if T = (1 − α)I + α J for some non-expansive J : Rn → Rn
, and α ∈ (0, 1).

Theorem 3.2 (Browder fixed point theorem, version 2). Let T : Rn → Rn be averaging, and suppose
T admits some �xed point x∗ = T (x∗). Then, for any starting point x0 ∈ Rn , the iteration sequence
x i+1

:= T (x i ) satis�es x i → x̃ for some �xed point x̃ = T (x̃).

Theorem 3.1 now follows from Theorem 3.2 and the following lemma.

Lemma 3.1. T : Rn → Rn is �rmly non-expansive if and only if it is (1/2)-averaging.

Proof. Suppose T is (1/2)-averaging. Then T = (I + J )/2 for some non-expansive J . We compute

‖T (x) −T (y)‖2 =
1

4

(
‖ J (x) − J (y)‖2 + 2〈J (x) − J (y),x − y〉 + ‖x − y ‖2

)
≤

1

2

(
〈J (x) − J (y),x − y〉 + ‖x − y ‖2

)
= 〈T (x) −T (y),x − y〉.

Thus T is �rmly non-expansive.

Suppose then that T is �rmly non-expansive. If we show that J := 2T − I is non-expansive, it

follows that T is (1/2)-averaging. This is established by the simple calculations

‖ J (x) − J (y)‖2 = 4‖T (x) −T (y)‖2 − 4〈T (x) −T (y),x − y〉 + ‖x − y ‖2

≤ ‖x − y ‖2.

This completes the proof. �

Browder’s �xed point theorem is a practical improvement over the classical Banach �xed point

theorem.

Theorem 3.3 (Banach fixed point theorem). Let T : Rn → Rn be a contraction mapping, that is for
some κ ∈ [0, 1) holds

‖T (x) −T (y)‖ ≤ κ‖x − y ‖, (x ,y ∈ Rn). (3.1)

Then T admits a unique �xed point x∗ = T (x∗). This can be moreover discovered as the limit of the
iteration sequence x i+1

:= T (x i ) for any starting point x0.

Note that �rm non-expansivity implies non-expansivity, that is (3.1) with κ = 1, motivating the

choice of the term. While non-expansivity is enough to show the existence of a �xed point of T in

some cases (T maps a bounded convex setC into itself [13]), it is not enough to show the convergence

of the sequence x i+1
:= T (x i ) to a �xed point. So we need one of the stronger conditions: �rm

non-expansivity, the averaging property, or contractivity with κ < 1.
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Theorem 3.4. Suppose f : Rn → R is convex and L-smooth. If the step length τ ≤ L−1, then, for any
starting point x0 ∈ Rn , the iterates {x i }∞i=0

of the gradient descent method (GD) converge to a minimiser
x̂ of f .

Proof. By Lemma 2.2, we have

L−1‖∇f (x) − ∇f (y)‖2 ≤ 〈∇f (x) − ∇f (y),x − y〉, (x ,y ∈ Rn). (3.2)

The iteration (GD) may be written in terms of the operator

T (x) := x − τ∇f (x).

Now

‖T (x) −T (y)‖2 = 〈T (x) −T (y),x − y〉 − τ 〈T (x) −T (y),∇f (x) − ∇f (y)〉

= 〈T (x) −T (y),x − y〉 + τ 2‖∇f (x) − ∇f (y)‖2 − τ 〈∇f (x) − ∇f (y),x − y〉

≤ 〈T (x) −T (y),x − y〉.

In the �nal step we have used (3.2) and τ ≤ L−1
. Thus T is �rmly non-expansive. Theorem 3.1 now

proves the claim. �

3.3 Variational inclusions and the proximal point method

The gradient descent method is very basic, but often not very good. In particular, subgradient

extensions of (GD) can have very slow convergence. Therefore we need alternative methods.

We now allow for general (possibly non-di�erentiable) convex functions f : Rn → R, and replace

the surrogate objective in (3.1) by another surrogate

min

x ∈Rn
¯fx̄ (x) := f (x) +

1

2τ
‖x − x̄ ‖2. (3.1)

In other words, we remove the linearisation, and try to minimise f directly with a step length

condition. Again
¯fx̄ (x̄) = f (x̄), and clearly fx̄ ≥ f . Therefore

¯fx̄ is a valid surrogate objective for f
at x̄ . This time the optimality conditions for x minimising

¯fx i are

0 ∈ ∂ f (x) + τ−1(x − x i ). (3.2)

If x i = x̂ for x̂ a minimiser of the original objective f , then (3.2) is solved by x = x̂ , so again there is

a direct correspondence between the solutions of the surrogate objective and the original.

The method based on solving (3.2) resp. (3.1) is known as the proximal point method. The step

is the backward step, or the implicit step, since we cannot in general derive an explicit solution

x = x i+1
, and try to go “back to x i from x i+1

”. However often, and especially in context of splitting
algorithms, (3.2) is easy to solve. We will get back to this. By contrast, the gradient descent step (GD)

is also known as the forward step or the explicit step, because we calculate ∇f (x i ) already at the

current iterate, going “forward” from it.

Re-ordering as

x i ∈ τ ∂ f (x i+1) + x i+1,

the iteration resulting from the condition (3.2) may also be written as

x i+1
:= (I + τ ∂ f )−1(x i ), (PP)

where the proximal mapping

proxτ ∂f := (I + τ ∂ f )−1
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is the inverse of the set-valued map A := I + τ ∂ f , de�ned simply as

A−1y := {x | y ∈ Ax}.

(Thus y ∈ Ax ⇐⇒ x ∈ A−1y .) As is evident from the expression

proxτ ∂f (x) = arg min

x ′
f (x ′) +

1

2τ
‖x ′ − x ‖2,

the proximal mapping is, in fact, single-valued.

Remark 3.1. Let fτ := minx ′ f (x
′)+ 1

2τ ‖x
′−x ‖2. This is known as the Moreau–Yosida regularisation

of f —a type of smoothing. In this way, the proximal step also corresponds to solving a sequence of

smoothed problems.

Exercise 3.1. Calculate proxτ ∂f on Rn for

(i) f (x) = ‖ f − x ‖2
2
/2.

(ii) f (x) = δαB(x), where B is the unit ball and α > 0.

(iii) f (x) = α ‖x ‖2.

Hint: For (iii) you may �nd the next Exercise 3.2 useful.

Exercise 3.2. Suppose the convex function f (x) = supy ∈Rm (〈y,x〉 − f ∗(y)) for another proper convex
lower semicontinuous function f ∗. Prove Moreau’s identity

y = proxτ ∂f ∗(y) + τ proxτ −1∂f (τ
−1y). (3.3)

Hint: Use Theorem 2.1.

The proximal point method (PP) readily generalises to solving for monotone operators A : Rn ⇒
Rn

the monotone variational inclusion

0 ∈ A(x). (MVI)

The method is simply

x i+1
:= proxτA(x

i ) = (I + τA)−1(x i ). (MPP)

Theorem 3.1. Let A : Rn ⇒ Rn be monotone, and suppose there exists a solution x̂ to (MVI). Then for
any starting point x0 ∈ Rn , and any τ > 0, the iterates {x i }∞i=0

of the proximal point method (MPP)

converge to a solution of (MVI).

Proof. We again use the Browder �xed point theorem, writing the iteration (MPP) in terms of the

mapping T := proxτA. We have

Tx ∈ x − τA(Tx).

Thus

‖Tx −Ty ‖2 ∈ 〈Tx −Ty ,x − y〉 − τ 〈Tx −Ty,A(Tx) −A(Ty)〉 ≤ 〈Tx −Ty ,x − y〉.

In the latter step we have used the Cauchy–Schwarz inequality and the monotonicity of A. Thus T is

non-expansive, and the rest follows from Theorem 3.1. �

Corollary 3.1. Suppose f : Rn → R is convex and proper, and there exists a solution x̂ to (P). Then
for any starting point x0 ∈ Rn , and any τ > 0, the iterates {x i }∞i=0

of the proximal point method (PP)

converge to a solution x̂ of (P).
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Example 3.1. Let us return to the saddle point problems of Section 1.4 and Section 2.6. That is,

let us try to solve

min

x
max

y
д(x) + 〈Kx ,y〉 − f ∗(y), (3.4)

for some convex and proper д : Rn → R, and f ∗ : Rm → R, and some matrix K ∈ Rm×n
. As

we have seen in Section 2.6, the optimality conditions for this system are

−KT ŷ ∈ ∂д(x̂), and Kx̂ ∈ ∂ f ∗(ŷ).

This may be encoded as 0 ∈ H (x ,y) in terms of the monotone operator

H (x ,y) :=

(
∂д(x) + KTy
∂ f ∗(y) − Kx

)
. (3.5)

In principle, we may therefore apply (MPP) to solve the saddle point problem (3.4). In practise

we however need to work a little bit more, as the step (MPP) can rarely be given an explicit,

easily solvable form.

3.4 Forward–backward spli�ing

Let us consider the minimisation of the composite objective

min

x ∈Rn
h(x) := д(x) + f (x), (3.1)

where д is smooth, but f possibly non-smooth. By Theorem 2.1, we may write the optimality

conditions as

0 ∈ ∇д(x) + ∂ f (x).

We can rewrite this as

τ−1x − ∇д(x) ∈ τ−1x + ∂ f (x),

or

x = (I + τ ∂ f )−1(x − τ∇д(x)).

This gives the iteration

x i+1 = proxτ ∂f (x
i − τ∇д(x i )). (FB)

In other words, we do a gradient/forward step with respect to д, and a proximal/backward step with

respect to f . The resulting method is known as forward–backward splitting. Particular instances

include the so-called iterative soft-thresholding (IST) algorithm for Lasso.

Exercise 3.3. When does the method (FB) converge to a solution of (3.1)? Hint: You will need to use the
second version of Browder’s �xed point theorem.

Exercise 3.4. Implement (FB) for the Lasso problem of Example 1.2. With your implementation, �nd
the two most relevant physicochemical attributes for the quality of Portuguese vinho verde, according
to the Wine Quality data set from the UCI machine learning repository at http://archive.ics.uci.
edu/ml/datasets/Wine+Quality. Note: you will need to choose a stopping criterion for the algorithm.
For the purposes of this exercise, it is su�cient to take a �xed number of iterations, let’s say 1000.

Exercise(Light) 3.5. Express forward–backward splitting in terms of a surrogate objective.
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Exercise 3.6. The total variation denoising problem (1.1) may be written in a dual form (cf. Section 2.6)

min

ϕ∈R2n
1
n

2

1

2

‖ f + ∇Tdϕ‖
2, s.t.

√
ϕ2

k + ϕ
2

n1n2+k
≤ α ∀k = 1, . . . ,n1n2.

Implement (FB) for this problem. The solution of the original primal problem, the desired image, is
x̂ = f + ∇Td

ˆϕ for ˆϕ the solution of the dual problem.

Let A : Rn ⇒ Rn
be a general (set-valued) monotone operator, and B : Rn → Rn

a single-valued

monotone operator. Completely analogously to (3.1) and (FB), we can derive for the inclusion

B(x) +A(x) 3 0 (3.2)

the iteration

x i+1 = proxτA(x
i − τB(x i )).

3.5 Douglas–Rachford spli�ing

Let us try to derive an improved algorithm for (3.2), now both A,B : Rn ⇒ Rn
general (set-valued)

monotone operators. This will of course give an algorithm for (3.1) as well, through the choice

A = ∂ f and B = ∂д. Picking λ > 0, let us set z ∈ (I + λB)(x). Then proxλB(z) = x . Multiplying (3.2)

by λ, and inserting this, we obtain

z + λA(proxλB(z)) 3 proxλB(z).

This reorganises into

proxλB(z) + λA(proxλB(z)) ∈ (2 proxλB −I )(z),

and further into

proxλB(z) = proxλA((2 proxλB −I )(z)).

This gives the �xed point equation

z = proxλA((2 proxλB −I )(z)) + (I − proxλB)(z).

Consequently, we derive the algorithm

zi+1
:= proxλA((2 proxλB −I )(z

i )) + (I − proxλB)(z
i ). (3.1)

Note that this is for the transformed variable z, not our variable of interest x . To get a useful result,

after the �nal step i , we therefore need to set

x i+1
:= proxλB(z

i ). (3.2)

Performing this at each step, and employing the result in (3.1), we may divide the algorithm into two

distinct steps that are called the Douglas–Rachford splitting algorithm

x i+1
:= proxλB(z

i ), (DRS-0)

zi+1
:= zi + proxλA(2x

i+1 − zi ) − x i+1. (DRS-1)

Theorem 3.1 ([14, 15]). Let A,B : Rn ⇒ Rn be maximal monotone operators, and suppose there exists
a solution x̂ to 0 ∈ A(x̂) + B(x̂). Then, for any λ > 0, and any starting point z0, the iterates {x i }∞i=1

of
the method (DRS-0)–(DRS-1) converge to a point x̃ satisfying 0 ∈ A(x̃) + B(x̃).

In particular, since the convex subdi�erential can be shown to be a maximal monotone operator,

we have the following.
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3 Non-smooth optimisation methods

Corollary 3.1. Let f ,д : Rn → R be convex, and suppose there exists a solution to the composite
minimisation problem (3.1). Then, for any λ > 0, and any starting point z0, the iterates {x i }∞i=1

of the
method

x i+1
:= proxλ∂д(z

i ), (DRS’-0)

zi+1
:= zi + proxλ∂f (2x

i+1 − zi ) − x i+1
(DRS’-1)

converge to a solution of (3.1).

Exercise 3.7. Implement the Douglas–Rachford splitting algorithm for dual form of total variation
denoising, described in Exercise 3.6. How does the performance compare to basic forward–backward
splitting?
Note: You will need to invert I + ∇Td∇d . For small images, you can simply employ sparse matrices and
the slash operator in Matlab, but for bigger images it is bene�cial use Fourier transform techniques,
familiar from basic numerical analysis courses.

Remark 3.1. The Douglas–Rachford splitting method (DRS-0)–(DRS-1), when applied toA = ∂[д∗(−KT · )],
and B = ∂ f ∗, is also known as the Alternating Direction Method of Multipliers (ADMM) for the so-

lution of (1.1). In Exercise 3.7 we have, in fact, already implemented the ADMM for the TV denoising

problem (1.1). Since a solution of (1.1) corresponds the condition 0 ∈ H (x ,y) for H as in (3.5), we

have therefore �nally, through splitting, found a practical variant for solving the latter problem.

3.6 The Chambolle–Pock method

Let us study a very e�ective primal–dual method for the saddle point problem (3.1). For parameters

τ ,σ > 0, the primal variable x , and the dual variable y , we de�ne the iteration

x i+1
:= (I + τ ∂д)−1(x i − τKTy i ), (CP-0)

x̄ i+1
:= 2x i+1 − x i , (CP-1)

y i+1
:= (I + σ∂ f ∗)−1(y i + σKx̄ i+1). (CP-2)

The step (CP-0) is simply a proximal step for x in (3.4), keeping y = y i �xed. The step (CP-2) is

likewise a proximal step for y in (3.4), keeping x �xed, not to x i or x i+1
but to the inertial variable

x̄ i+1
de�ned in (CP-1). This may be visualised as a “heavy ball” version of x i+1

that has enough

inertia to not get stuck in small bumps in the landscape.

With the general notation

u = (x ,y),

the steps (CP-0)–(CP-2) may also be written in the preconditioned proximal point form

H (ui+1) +M(ui+1 − ui ) 3 0, (3.1)

for the monotone operator H as in (3.5), and the preconditioning matrix

M :=

(
I/τ −KT

−K I/σ

)
.

Through the replacement of I by M in the basic proximal point iterationui+1
:= (I +H )−1(ui ), we thus

have in (CP-0)–(CP-1) a proximal point method for which the steps can often be solved explicitly.

Theorem 3.1. Let f : Rn → R and д : Rm → R be convex, proper, and lower semicontinuous, and
K ∈ Rm×n . Choose τ ,σ > 0 such that τσ ‖K ‖2 < 1. Then the iterates of (CP-0)–(CP-2) convergece for
any starting point u0 = (x0,y0) to a saddle point u∗ = (x∗,y∗) of (3.4).
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3 Non-smooth optimisation methods

Proof. A saddle point û satis�es 0 ∈ H (û). Therefore

〈H (ui+1) − H (û),ui+1 − û〉 ≥ 0.

Thus (3.1) gives

〈M(ui+1 − ui ),ui+1 − û〉 ≤ 0. (3.2)

With the notation

〈x ,y〉M := 〈Mx ,y〉, and ‖x ‖M :=
√
〈x ,x〉M , (3.3)

we calculate

〈ui+1 − ui ,ui+1 − û〉M = ‖u
i+1 − ui ‖2M + 〈u

i − û,ui+1 − ui 〉M

= ‖ui+1 − ui ‖2M − ‖u
i − û‖2M + 〈u

i − û,ui+1 − û〉M

= ‖ui+1 − ui ‖2M − ‖u
i − û‖2M + ‖u

i+1 − û‖2M
+ 〈ui − ui+1,ui+1 − û〉M .

That is

〈ui+1 − ui ,ui+1 − û〉M =
1

2

‖ui+1 − ui ‖2M −
1

2

‖ui − û‖2M +
1

2

‖ui+1 − û‖2M .

Now (3.2) shows that

1

2

‖ui+1 − û‖2M +
1

2

‖ui+1 − ui ‖2M ≤
1

2

‖ui − û‖2M . (3.4)

Summing (3.4) over i = 0, . . . ,N − 1 shows that

1

2

‖uN − û‖2M +
N−1∑
i=0

1

2

‖ui+1 − ui ‖2M ≤
1

2

‖u0 − û‖2M . (3.5)

Now, the condition τσ ‖K ‖2 < 1 ensures that ‖u‖2M ≥ θ ‖u‖
2

for some θ > 0. Therefore (3.5) shows

that ‖ui+1 − ui ‖ → 0, and that {ui }i ∈N is bounded. It follows that the whole sequence {ui }i ∈N
converges to some u∗. Using this and ‖ui+1 − ui ‖ → 0 in (3.1) shows that 0 ∈ H (u∗), so we have

found a saddle point. (It might be that u∗ , û.) �

Exercise 3.8. Implement the Chambolle–Pock method for total variation denoising, described in Exercise
3.6. What is the e�ect of the choice of τ and σ? How does the performance compare to forward–backward
splitting and the ADMM of Exercise 3.7?

A few pointers for the aficionados

We won’t go deeper into optimisation methods in this course, concentrating next on sensitivity

analysis. Various further splitting algorithms exist in the literature, many of which are closely linked

to each other. The Chambolle–Pock method and forward–backward splitting can also be accelerated,

to obtain fast convergence rates on strongly convex problems [16–18]. We refer in particular to

[19–21] as starting points for further studies.

32



4 Set-valued maps and sensitivity analysis

In practise, interesting optimisation problems incorporate a model, parameters, and data. We are

therefore solving problems of the type

min

x ∈Rn
f (x ;p), (4.1)

for some parameter p ∈ Rm
, which could also be our data. To be able to rely on the solution x̂ under

noise and other corruptions to the data, or under very approximate parameter choices, we need to

know how much x̂ can vary as the data or parameters varies. This is the topic of the rest of the

course.

Our study is centred around the set-valued solution map

S : Rm ⇒ Rn , S(p) := {x ∈ Rn | 0 ∈ ∂x f (x ;p)},

where we assume f to be convex, so that the minima of (4.1) for �xed p ∈ Rm
are encoded in terms

of the convex subdi�erential ∂x f (x ;p) := ∂[f ( · ;p)](x). If we have a solution x̂ for some parameter

p̂—that is, x̂ ∈ S(p̂)—we would then like to obtain Lipschitz-style estimates

inf

x ∈S (p)
‖x − x̂ ‖ ≤ `‖p − p̂‖ (4.2)

for the parameter p close to p̂. This says that there exists solutions x for p close to x̂ in a Lipschitz

sense. Of course, even mere continuity of S would be encouraging.

4.1 Basic properties of set-valued maps

We have already learned the concept of outer semicontinuity of the subdi�erential in the context of

Proposition 2.1. Set-valued maps can also be inner semicontinuous.

Definition 4.1. Let {Ai }∞i=1
be a sequence of subsets of Rn

. We de�ne the

1. outer limit as the set

lim sup

i→∞
Ai

:= {x ∈ Rn | ∀j ∈ N∃i j+1 > i j ,x
i j ∈ Ai j : x i j → x}.

2. inner limit as the set

lim inf

i→∞
Ai

:= {x ∈ Rn | ∀i ∈ N∃x i ∈ Ai
: x i → x}.

The vast di�erence between inner and outer limits is illustrated by the extreme example Figure

4.1. We also extend these de�nitions to functions, i.e., an uncountable index set.

Definition 4.2. LetA : Rn ⇒ Rn
be a set-valued map. Then we set lim supx ′→x A(x

′) :=
⋃

x i→x lim supi→∞A(x
i ),

and lim infx ′→x A(x
′) :=

⋂
x i→x lim inf i→∞A(x

i )

Exercise 4.1. Show that both lim supx ′→x A(x
′) and lim infx ′→x A(x

′) are always (possibly empty)
closed sets.

Definition 4.3. Let A : Rn ⇒ Rn
be a set-valued map. We say that
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4 Set-valued maps and sensitivity analysis

A0 A10 A20 A30A40 . . . A 0

1

Figure 4.1: Illustration of a sequence of sets {Ai }i ∈N, Ai ⊂ [0, 1], with vastly di�erent inner and

outer limits. In this case, the outer limit lim supi→∞A
i = [0, 1], while the inner limit

lim inf i→∞A
i = ∅. The outer limit consists of all points approximable through some

subsequence of the sets Ai
, while the inner limit has to be approximable via every

subsequence. In this case, we can for any x ∈ [0, 1], �nd a subsequence of the somewhat

“random” {Ai } that will not contain points approaching x .

F

x1 x2

Figure 4.2: Illustration of outer and inner semicontinuity. The black line indicates the bounds on

the boundary of Graph F that belong to the graph. The set-valued map F is not outer

semicontinuous at x1, because F (x1) does not include all limits from the right. It is outer

semicontinuous at the “discontinuous” point x2, as F (x2) includes all limits from both

sides. The map F is not inner semicontinuous at x2, because at this point, F (x) cannot

be approximated from both sides. It is inner semicontinuous at every other point x ,

including x1, as at this points F (x) can be approximated from both sides.
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4 Set-valued maps and sensitivity analysis

(i) A is outer-semicontinuous at x if lim supx ′→x A(x
′) ⊂ A(x).

(ii) A is inner-semicontinuous at x if lim infx ′→x A(x
′) ⊃ A(x).

(iii) continuous (at x ), if it is both inner- and outer-semicontinuous (at x ).

We illustrate these concepts in Figure 4.2.

In fact, outer semicontinuity can be reduced to a simple property on GraphA, as the next easy

exercise shows.

Exercise(Light) 4.2. Show that A : Rn ⇒ Rn is outer semicontinuous if and only if GraphA is closed.

The outer semicontinuity of the solution map is crucial for approximation: If pi → p, and we

have solution x i ∈ S(pi ), it would be highly desirable that any accumulation point x of {x i } satis�es

x ∈ S(p). When can this hold?

Proposition 4.1. Let f : Rn ×Rm → R, and suppose ∂x f is outer semicontinuous as a function of (x ,p).
Then S is also outer semicontinuous.

Proof. Let us set F (x ,p) = ∂x f (x ;p), and S̃(p, z) := {x ∈ Rn | z ∈ F (x ,p)}. Then S(p) = S̃(p, 0).
Clearly the outer semicontinuity of S follows from that of S̃ . But, now

Graph F = {(x ,p, z) ∈ Rn ×Rm ×R | z ∈ F (x ,p)},

while

Graph S̃ = {(p, z,x) ∈ Rn ×R ×Rm | z ∈ F (x ,p)}.

In other words Graph S̃ = P Graph F for the permutation P(x ,p, z) := (p, z,x). By Exercise 4.2,

Graph F is closed. Clearly then also Graph S̃ is closed, which again by Exercise 4.2 is equivalent to S̃
being outer semicontinuous. �

Example 4.1. Let f (x ;p) := д(x − p) + h(x), where f : Rn → R is convex, proper, and lower

semicontinuous, and д : Rn → R is convex and continuously di�erentiable. Then

∂x f (x ,p) = ∇д(x − p) + ∂h(x)

is outer semicontinuous as a function of (x ,p). In particular, the solutions to Lasso and total

variation denoising are outer semicontinuous for varying data. By analogous calculations, we

can verify the same property for the SVM.

4.2 The Aubin property

So far, we have de�ned basic properties of continuity of set-valued maps. But how about more

strict forms of continuity, such as Lipschitz continuity? One successful approach of extending the

de�nition of Lipschitz continuity to set-valued maps is given by the next de�nition; for further

approaches we refer to [4]. Here and throughout, we denote the closed ball at x ∈ Rn
, for suitable n,

of radius ρ > 0 by

B(x , ρ) := {x ′ ∈ Rn | ‖x ′ − x ‖ ≤ ρ}.

Definition 4.1. The set-valued mapping F : Rn ⇒ Rm
has the Aubin property at x̄ for ȳ ∈ F (x̄) if

Graph F is locally closed (see below) at (x̄ , ȳ) and for some ` > 0 there exist ρ,δ > 0 such that

F (x ′) ∩B(ȳ , ρ) ⊂ F (x) +B(0, `‖x ′ − x ‖), (x ′,x ∈ B(x̄ ,δ )). (4.1)

The in�mum of all possible factors ` over all ρ,δ > 0 is denoted lip F (x̄ |ȳ), and called the graphical

modulus of F at x̄ for ȳ .
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4 Set-valued maps and sensitivity analysis

x̄

(a) An oscillating single-valued function

F (x) +B(0, `‖x ′ − x ‖)F (x)

x x′

(b) The graph of x 7→ F (x) +B(0, `‖x ′ − x ‖)

Figure 4.3: The single-valued example in (a) illustrates why Lipschitz properties ‖ f (x ′) − f (x)‖ ≤
`‖x ′−x ‖ at a point x̄ need to be based on two points x ,x ′ ∈ B(x̄ ,δ ). If we �xed x = x̄ , this

highly oscillatory example would be Lipschitz at x̄ . Indeed, the graph lies between the two

thick lines, demonstrating the bounds ‖ f (x ′) − f (x̄)‖ ≤ `‖x ′− x̄ ‖. If we do not �x x = x̄ ,

the function clearly will not be Lipschitz, and will also not satisfy the Aubin property. In

(b) we illustrate the “fat cone” structure Graph(x ′ 7→ F (x) +B(0, `‖x ′ − x ‖) appearing

on the right-hand-side in (4.1), and varying with the second base point x around x̄ . This

is to be contrasted with the leaner cone Graph(x ′ 7→ f (x̄) +B(0, `‖x ′ − x̄ ‖)) bounding

the function in (a).

F
xx′

B(ȳ, ρ)

B(x̄ ,δ )

(a) Property is satis�ed

F

x x′

B(ȳ, ρ)

B(x̄ ,δ )

(b) Property is not satis�ed

Figure 4.4: Illustration of satisfaction and dissatisfaction of the Aubin property for x = x̄ . The

dashed lines indicate B(ȳ, ρ), and the dot marks (x̄ , ȳ), while the dark gray thick line

indicates F (x ′) ∩B(ȳ , ρ). It should remain within the bounds the bounds of the black

thick lines indicating F (x) +B(0, `‖x ′ − x ‖). The violation of the bounds at the bottom

in (a) does not matter, because we are only interested in the area between the dashed

lines.

We required the following concept on A = Graph F .

Definition 4.2. A set A is locally closed at x if there exists ρ > 0 such that B(x , ρ) ∩A is closed.

Naturally, in the case of A = Graph F , we can replace the ball in the de�nition by the product

neighbourhood B(x̄ ,δ ) ×B(ȳ , ρ).
The single-valued example in Figure 4.3a illustrates why we need two points x ′ and x in (4.1),

instead of �xing one of them to equal x̄ . Figure 4.3b illustrates the “fat cone” structure on the right

hand side of 4.1. It should locally at each base point x around x̄ bound F for the Aubin property to be

satis�ed. The satisfaction and dissatisfaction of the Aubin property we illustrate in Figure 4.4.

In fact, we do not need to restrict x ′ into a tiny neighbourhood of x̄ in the Aubin property.

Lemma 4.1. The condition (4.1) is equivalent to the existence of (possibly di�erent) ρ,δ > 0 satisfying

F (x ′) ∩B(ȳ , ρ) ⊂ F (x) +B(0, `‖x ′ − x ‖), (x ∈ B(x̄ ,δ ); x ′ ∈ Rn). (4.2)

Proof. Clearly (4.2) implies (4.1). To show the implication in the other direction, we start by applying
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(4.1) to x ′ = x̄ . For the moment, we also �x x ∈ B(x̄ ,δ ′). This gives for any δ ′ ∈ (0,δ ] the estimate

ȳ ∈ F (x) +B(0, `‖x̄ − x ‖).

Thus

ȳ ∈ F (x) +B(0, `δ ′).

In particular, for any ϵ ′ > 0, we have

B(ȳ, ϵ ′) ⊂ F (x) +B(0, `δ ′ + ϵ ′). (4.3)

For x ′ ∈ B(x̄ ,δ ), (4.2) is clear, so we may concentrate on x ′ ∈ Rn \B(x̄ ,δ ). Then

‖x ′ − x ‖ ≥ ‖x ′ − x̄ ‖ − ‖x̄ − x ‖ ≥ δ − δ ′.

If we pick ϵ ′,δ ′ > 0 such that `δ ′ + ϵ ′ ≤ `(δ − δ ′), it follows

`δ ′ + ϵ ′ ≤ `‖x ′ − x ‖.

Thus (4.3) gives

F (x ′) ∩B(ȳ, ϵ ′) ⊂ B(ȳ , ϵ ′)

⊂ F (x) +B(0, `δ ′ + ϵ ′)

⊂ F (x) + `B(0, ‖x ′ − x ‖),

as illustrated in Figure 4.5. �

(x̄ , ȳ)

B(x̄ ,δ )

B(x̄ ,δ ′)

x
F (x) + `B(0, ‖x′ − x ‖)

{x′} ×B(ȳ, ϵ′)

(a) Illustration of the technique (b) The critical areas

Figure 4.5: (a) Illustration of the technique in Lemma 4.1. For x ′ outside the ball B(x̄ ,δ ), the set

B(ȳ, ϵ ′) indicated by the thick dark grey line, is completely contained in the fat-cone

structure F (x) + `B(0, ‖x ′ − x ‖) of Figure 4.3b, indicated by the thick black and dotted

lines. Closer to x , within B(x̄ ,δ ), this is not the case, although F (x ′) ∩B(ȳ, ϵ ′) itself is

still contained in the structure. (b) highlights in dark grey the critical areas for the Aubin

property.

With the help of the above equivalent formulation, to facilitate development of the Mordukhovich

criterion and stability analysis later on, we still introduce a few further equivalent formulations of

the Aubin property.

Proposition 4.1. Suppose ȳ ∈ F (x̄). We may equivalently state (4.1) as

(i) The property
d(y, F (x)) ≤ `d(F−1(y),x), (x ∈ B(x̄ ,δ ), y ∈ B(ȳ , ρ)), (4.4)

where
d(A,y) := d(y ,A) := inf

y ′∈A
‖y ′ − y ‖.
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(ii) For some ρ ′,δ ′, `′ > 0, the Lipschitz continuity with uniform factor `′ > 0 over y ∈ B(ȳ, ρ ′), of
the maps x 7→ d(y, F (x)), where x ∈ B(x̄ ,δ ′).

Proof. We begin by showing (i). By Lemma 4.1, it su�ces to prove the equivalence of (4.4) to (4.2).

The latter may be expanded as

{y ′} ∩B(ȳ , ρ) ⊂ F (x) +B(0, `‖x ′ − x ‖), (y ′ ∈ F (x ′);x ∈ B(x̄ ,δ ); x ′ ∈ Rn).

In other words

inf

y ∈F (x )
‖y ′ − y ‖ ≤ `‖x ′ − x ‖, (y ′ ∈ F (x ′) ∩B(ȳ, ρ); x ∈ B(x̄ ,δ ); x ′ ∈ Rn).

This may further be rewritten as

inf

y ∈F (x )
‖y ′ − y ‖ ≤ inf

x ′∈F−1(y ′)
`‖x ′ − x ‖, (x ∈ B(x̄ ,δ );y ′ ∩B(ȳ, ρ)).

Thus (4.4) is equivalent to (4.1).

Regarding (ii), let us begin by de�ning the two distance functions

dρ′(A,B) := max

‖y ‖≤ρ′
|d(A,y) − d(B,y)|.

and

ˆdρ (A,B) := inf{t ≥ 0 | A ∩B(0, ρ) ⊂ B +B(0, t), B ∩B(0, ρ) ⊂ A +B(0, t)}.

Then, it is easily observed that, (ii) is equivalent to

dρ′(F (x), F (x
′)) ≤ `′‖x − x ′‖, (x ,x ′ ∈ B(x̄ ,δ ′)),

while (4.1) is equivalent to

ˆdρ (F (x), F (x
′)) ≤ `‖x − x ′‖, (x ,x ′ ∈ B(x̄ ,δ )).

Observe also that (ii) guarantees for some constant C > 0 the bound

d(0, F (x)) ≤ ‖ȳ ‖ + d(ȳ, F (x))

≤ ‖ȳ ‖ + |d(ȳ , F (x)) − d(ȳ , F (x̄))| + d(ȳ, F̄ (x̄)) ≤ C, (x ∈ B(x̄ ,δ ′)).

Therefore, we can �nd a constant ρ ′ satisfying

ρ ′ ≥ 2ρ + sup{d(0, F (x)) | x ∈ B(x̄ ,δ ′)}.

To prove the equivalence of (ii) to (4.1), it therefore su�ces to show that

ˆdρ (A,B) ≤ dρ (A,B) ≤ ˆdρ′(A,B)

whenever ρ ′ ≥ 2ρ +max{d(0,A),d(0,B)}. This follows from the next little lemma. �

Lemma 4.2. Let A,B ⊂ Rn be closed. Then we have the following implications.

(i) d( · ,A) ≤ d( · ,B) + ϵ on B(0, ρ) =⇒ B ∩B(0, ρ) ⊂ A +B(0, ϵ).

(ii) B ∩B(0, ρ ′) ⊂ A +B(0, ϵ) for some ρ ′ ≥ 2ρ + d(0,B) =⇒ d( · ,A) ≤ d( · ,B) + ϵ on B(0, ρ).
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B

NB(y)

y

x

B(0, ρ) B(0, ρ′)

Figure 4.6: Illustration for the proof of (4.5) in Lemma 4.2. The thick solid line depicts y as a

projection of x . The dotted lines illustrate the argument in (4.6), while the dash-dotted

line depicts d(0,B).

Proof. Regarding (i), take x ∈ B ∩B(0, ρ). Then d(x ,B) = 0, so d(x ,A) ≤ ϵ . That is, x ∈ A +B(0, ϵ).
The proof of (ii) is somewhat longer. To start with, let x be arbitrary. Then

d(x ,B ∩B(0, ρ ′)) ≥ d(x ,A +B(0, ϵ)) ≥ d(x ,A) − ϵ .

If

d(x ,B) ≥ d(x ,B ∩B(0, ρ ′)) when x ∈ B(0, ρ), (4.5)

we obtain (ii). To verify (4.5), let x ∈ B(0, ρ), and let y ∈ B satisfy ‖x − y ‖ = d(x ,B) (such a point

exists, because B is closed). Now

‖y ‖ ≤ ‖x ‖ + ‖y − x ‖ ≤ ρ + d(x ,B) ≤ 2ρ + d(0,B) ≤ ρ ′. (4.6)

Therefore y ∈ B(0, ρ ′). This is illustrated in Figure 4.6. We have thus discovered a point y such that

d(x ,B) = ‖y − x ‖ = d(x ,B ∩B(0, ρ ′)).

This immediately proves (4.5) and consequently (ii). �

Let us try to make sense of (4.2). If F has the Aubin property, then by Proposition 4.1, picking

y = ȳ , we have

d(ȳ , F (x)) ≤ `d(x̄ ,x), (x ∈ B(x̄ ,δ )).

or in other words

inf

y ∈F (x )
‖ȳ − y ‖ ≤ `‖x − x̄ ‖, (x ∈ B(x̄ ,δ )).

This is what we need: the Aubin property of the solution map S at p̂ for x̂ implies the stability of
solutions x = S(p) under perturbations p to the parameter p̂.

Unfortunately, in practise the direct calculation of the graphical modulus ` = lip S(p̂ |x̂) is infeasible.

The rest of this course concentrates on calculating the factor in special cases.

4.3 Tilt stability and metric regularity

Let us study

f (x ;p) = д(x) − 〈p,x〉,

for some д : Rn → R, and a tilt parameter p. Stability of solutions x ∈ S(p) with respect to p is then

called tilt stability. Now

S(p) = {x ∈ Rn | p ∈ ∂д(x)} = (∂д)−1(p).
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4 Set-valued maps and sensitivity analysis

The Aubin property 4.4 of S may now be written

d(x , (∂д)−1(p)) ≤ `d(∂д(x),p), (p ∈ B(p̂,δ ); x ∈ B(x̂ , ρ)).

In other words, S is stable, if (∂д)−1 has the Aubin property. This concept has a special name.

Definition 4.1. A set-valued map F : Rn ⇒ Rm
is metrically regular at x̄ for ȳ ∈ F (x̄) if F−1

has the

Aubin property at ȳ for x̄ , that is, when there exists ` > 0 such that for some ρ,δ > 0 holds

d(x , F−1(y)) ≤ `d(F (x),y), (x ∈ B(x̄ ,δ ); y ∈ B(ȳ, ρ)).

The in�mum of all possible factors ` over all ρ,δ > 0 is denoted lip F−1(ȳ |x̄), and called the modulus

of metric regularity of F at x̄ for ȳ .

Exercise 4.3. Study the tilt-stability of д(x) = ‖a − x ‖2/2. Observe how the tilt parameter p corresponds
to change in the data a. How about д(x) = ‖a −Tx ‖2/2 for some matrix T ∈ Rm×n?

Exercise 4.4. Study the tilt-stability of д(x) = ‖a − x ‖.

Exercise 4.5. Is the Lasso (Example 1.2) with ai = ei for the unit coordinate vectors ei stable with respect
to the data? (We will return to the general case after introducing the Mordukhovich criterion.)

40



5 Graphical derivatives and coderivatives

Recall how the subdi�erential of a convex function f can be de�ned in terms of normal or tangent

cones to the epigraph. This idea forms the basis of di�erentiating general set-valued maps F : Rn ⇒
Rm

, where instead of taking the tangent or normal cone at (x , f (x)) to epi f , we can do this at any

point (x ,y) for y ∈ F (x). Since we are generally not in the nice convex setting—even for a convex

function f ‚ Graph ∂ f is not convex unless f is linear—there are however some complications, which

result in various de�nitions.

5.1 Tangent and normal cones

Our �rst type of tangent cone is based on roughly the same limiting process on di�erence quotients,

as the de�nition of directional derivatives.

Definition 5.1. A vector z ∈ Rk
is tangent to a set A ⊂ Rk

at x ∈ Rk
, if

z = lim

i→∞

x i − x

τ i
, for some A 3 x i → x , τ i ↘ 0.

The set TA(x) of all such z is the tangent cone or contingent cone.

In other words

TA(x) = lim sup

τ↘0

A − x

τ
.

Thus the tangent cone consists of all possible limits of the “blown up” sets Aτ := (A− x)/τ for τ ↘ 0.

The tangent cone is closely related to the Fréchet normal cone, which is based on the same limiting

process as the Fréchet subdi�erential in (2.1).

Definition 5.2. A vector z ∈ Rk
is a Fréchet normal to a set A ⊂ Rk

at x ∈ Rk
if,

lim sup

A3x ′→x

〈z,x ′ − x〉

‖x ′ − x ‖
≤ 0.

The set N̂A(x) of all such z is the Fréchet normal cone.

One di�culty with the Fréchet normal cone is that it is not outer semicontinuous. By taking all

outer limits, we obtain a more “regular” normal cone.

Definition 5.3. The normal cone of a set A ⊂ Rk
at x ∈ Rk

is the set

NA(x) := lim sup

A3x ′→x
N̂A(x

′).

Remark 5.1. Despite NA obtained by the regularisation of N̂A, the latter is sometimes in the literature

called the regular normal cone. We stick to the convention of calling it the Fréchet normal cone, and

NA simply the normal cone.

This normal cone is closely related to a another type of tangent cone, smaller than TA(x).

Definition 5.4. The regular (or Clarke) tangent cone of a set A ⊂ Rk
at x ∈ Rk

is the set

T̂A(x) := lim inf

A3x ′→x,
τ↘0

A − x ′

τ
.
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A

x

(a) TA(x)

A

x

(b) T̂A(x)

A

x

(c) N̂A(x) = {0}

A

x

(d) NA(x)

Figure 5.1: Illustration of the di�erent normal and tangent cones at a non-regular point of a set A.

The dot indicates the base point x . The thick arrows and dark grey areas the directions

included in the cones.

We will later see that for closed A, in fact, T̂A(x) = lim infA3x ′→x TA(x
′).

Exercise(Light) 5.1. Compute all the di�erent tangent and normal cones at all points x ∈ A ⊂ R2 for
A = [0, 1]2, A = B(0, 1), and A = [0, 1]2 \ [1/2, 1]2. How about the tangent and normal cones to ∂A for
each of these sets?

We illustrate the di�erences of the di�erent tangent and normal cones in Figure 5.1. The next

proposition lists some of their most basic properties.

Proposition 5.1. Let A ⊂ Rk . Then at every x ∈ Rk , each of the sets TA(x), T̂A(x), NA(x), and N̂A(x) is
a closed cone. The sets N̂A(x) and T̂A(x) are moreover convex.

Proof. By the de�nition of N̂A(x), if z belongs to this set, then any multiple of z also belongs. Thus

N̂A(x) is a cone. Let then zi ∈ N̂A(x) converge to some z ∈ Rk
. Let A 3 x j → x . Then, for any i ∈ N,

we have

〈z,x j − x〉

‖x j − x ‖
≤
〈zi ,x j − x〉

‖x j − x ‖
+ ‖zi − z‖.

Thus

lim sup

j→∞

〈z,x j − x〉

‖x j − x ‖
≤ ‖zi − z‖.

Since i ∈ N was arbitrary, and zi → z, we see that z ∈ N̂A(x), and may conclude that N̂A(x) is

closed. Let then z̄, z̃ ∈ N̂A(x). To show convexity, since N̂A(x) is a cone, it su�ces to show that

z := z̄ + z̃ ∈ N̂A(x). We have

〈z,x j − x〉

‖x j − x ‖
=
〈z̄,x j − x〉

‖x j − x ‖
+
〈̃z,x j − x〉

‖x j − x ‖
.

This immediately allows us to deduce z ∈ N̂A(x), and conclude the convexity of this normal cone.

The set NA(x) is a closed cone as the outer limit of the (closed) cones N̂A(x
i ) as x i → x .

Similarly, we see that TA(x) is closed as the outer limit of the sets Aτ := (A − x)/τ , as τ ↘ 0;

see Exercise 4.1. To see that it is a cone, suppose z ∈ TA(x). Then there exists a sequence zi ∈ Aτ i ,
with τ i ↘ 0 and zi → z as i → ∞. Now, for any λ > 0 holds λzi ∈ Aτ i /λ , so clearly λz ∈
lim supi→∞Aτ i /λ ⊂ TA(x). This proves that TA(x) is a cone.

Finally, T̂A(x) is a closed set as an inner limit, cf. Exercise 4.1, and seen to be a cone analogously to

the proof forTA(x). To see that it is convex, take z̄, z̃ ∈ T̂A(X ). Since T̂A(x) is a cone, we need to show

that z := z̄ + z̃ ∈ T̂A(x). By the de�nition of T̂A(x), we therefore have to show that for any sequence

τ i ↘ 0 and x i → x , there exist zi ∈ (A − x i )/τ i such that zi → z. Since z̄ ∈ T̂A(x), by the de�nition

of T̂A(x) again, we can �nd points w̄ i ∈ A with (w̄ i − x i )/τ i → z̄. This implies w̄ i → x . Thus, since

z̃ ∈ T̂A(x), we can �nd w̃ i ∈ A such that (w̃ i − w̄ i )/τ i → z̃. Now

w̃ i − x i

τ i
=
w̃ i − w̄ i

τ i
+
w̄ i − x i

τ i
→ z̄ + z̃ = z.
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5 Graphical derivatives and coderivatives

x

xi

z̃

z̄
wi

w̃i

z̃ + z̄

Figure 5.2: Illustration of the “bridging” argument in the proof of Proposition 5.1. As x i converges

to x , the dashed arrows converge to the solid arrows, while the dotted arrow converges

to the dash-dotted one, which depicts the point z̃ + z̄ we are trying to prove to belong to

T̂A(x).

Thus z ∈ T̂A(x), so the cone of regular tangents is convex. Observe how we have used the varying

base point in the de�nition of T̂A(x) to “bridge” between the two tangent cones. This is illustrated in

Figure 5.2. �

Exercise(Light) 5.2. Show that the map x 7→ NA(x) is outer semicontinuous.

To prove further relationships of the di�erent cones, we need the following lemma on projections.

Lemma 5.1. Let A ⊂ Rk be closed, and for x ∈ Rk ‚ de�ne the (possibly multi-valued) projection

PA(x) := arg min

x ′∈A
‖x ′ − x ‖.

Then, any x̄ ∈ PA(x) satis�es
x ∈ x̄ + N̂A(x̄).

Proof. Since A is closed, a solution x̄ ∈ PA(x) exists. We claim that x − x̄ ∈ NA(x̄). Indeed, for any

other x ′ ∈ A, we have

‖x − x̄ ‖2 ≤ ‖x − x ′‖2,

which, after reorganisation, is to say that

〈x − x̄ ,x ′ − x̄〉 ≤ 〈x ′ − x ,x ′ − x̄〉.

This implies

lim

A3x ′→x
〈x − x̄ ,

x ′ − x̄

‖x ′ − x̄ ‖
〉 ≤ lim

A3x ′→x
〈x ′ − x ,

x ′ − x̄

‖x ′ − x̄ ‖
〉 ≤ lim

A3x ′→x
‖x − x ′‖ = 0.

Thus x − x̄ ∈ N̂A(x̄). �

Remark 5.2. We have PA = proxδA for δA the indicator function of A.

Remark 5.3. Let ϵ > 0, and suppose x̄ ∈ ∂B(x , ϵ) ∩A, with intB(x , ϵ) ∩A = ∅. It is not di�cult to

see that this is equivalent to x̄ ∈ PA(x). Consequently x − x̄ ∈ N̂A(x̄) ⊂ NA(x̄). We will frequently

use this property, illustrated in Figure 5.3, in the proof of Proposition 5.2 below.

We also need the following notion.
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x

x̄

B(x , ϵ)

Figure 5.3: Illustration of Remark 5.3 and

Lemma 5.1. Only the boundary of

the ballB(x , ϵ) intersects A at x̄ , so

the vector x − x̄ is normal to A at x̄ .

A

A◦
0

Figure 5.4: The polar cone is the normal cone

at zero, of the smallest cone con-

taining A.

Definition 5.5. For a set A ⊂ Rk
, we de�ne the polar cone as

A◦ := {v ∈ Rk | 〈v, z〉 ≤ 0 for all z ∈ A}.

The polar cone is illustrated in Figure 5.4.

Exercise* 5.3. For a set A, show that A◦ is closed and convex, and that A ⊂ A◦◦. Also show that if K is a
closed and convex cone, then K = K◦◦.

Proposition 5.2. We have the inclusions

T̂A(x) ⊂ TA(x), (5.1)

N̂A(x) ⊂ NA(x), (5.2)

and the relationship
N̂A(x) = TA(x)

◦
(5.3)

If A is locally closed at x , then also
T̂A(x) = NA(x)

◦. (5.4)

Proof. If we �x the base point x ′ as x in the de�nition of T̂A(x), the tangent inclusion (5.1) is clear

from the de�nition ofTA(x) as an outer limit, and of T̂A(x) as an an inner limit. The normal inclusion

(5.2) likewise follows from the de�nition of NA(x) as the outer limit of N̂A(x
′).

To see the relationship (5.3) between Frechét normals and tangents, take �rst z ∈ TA(x), and

w ∈ N̂A(x). Then there exist τ i ↘ 0, and A 3 x i → x such that (x i − x)/τ i → z. Since x i ,x ∈ A, we

have

〈z,w〉 = lim sup

i→∞
〈x i − x ,w〉/τ i ≤ 0.

Since this holds for every z ∈ TA(x), we see that w ∈ TA(x)
◦
. This shows N̂A(x) ⊂ TA(x)

◦
. To prove

the inclusion in the other direction, we take w < N̂A(x). Then there must exist A 3 x i → x with

lim

i→∞

〈w,x i − x〉

‖x i − x ‖
> 0.

Taking zi := (x i −x)/‖x i −x ‖, and passing to a subsequence, we may assume that zi → z for some z.

Necessarily z ∈ TA(x) by the de�nition of the latter. However 〈z,w〉 > 0, so w < TA(x)
◦
. This shows

TA(x)
◦ ⊂ N̂A(x), concluding the proof of (5.3).

For the relationship (5.4) between regular normals and tangents, we need to work quite a bit. First

of all, we show that

T̂A(x) ⊂ K := lim inf

A3x ′→x
TA(x

′). (5.5)
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Indeed, if z < K , then there exists ϵ > 0 and a sequence x i → x such that

inf

zi ∈TA(x i )



zi − z

 ≥ 2ϵ .

This implies

lim

τ↘0

inf

x̃ ∈A





 x̃ − x iτ
− z





 ≥ 2ϵ .

In other words, we can �nd τ i > 0, with τ i ↘ 0, satisfying for each i ∈ N the inequality

inf

x̃ ∈A





 x̃ i − x iτ i
− z





 ≥ ϵ .
This says exactly that z < T̂A(x). Therefore (5.5) holds.

Now, to see that T̂A(x) ⊂ NA(x)
◦
, we take w ∈ NA(x) and z ∈ T̂A(x). This gives by the de�nition

of NA(x), a sequence x i → x and w i → w with w i ∈ N̂A(x
i ). By (5.5), we can for each i ∈ N �nd

zi ∈ TA(x
i ) with zi → z. Now the polarity relationship (5.3) gives

〈w, z〉 = lim

i→∞
〈w i , zi 〉 ≤ 0.

Therefore T̂A(x) ⊂ NA(x)
◦
,

In the other direction, let us take z < T̂A(x). Then we need to show that z < NA(x)
◦
, or that there

exists w ∈ NA(x) such that 〈z,w〉 > 0. By De�nition 5.4, z < T̂A(x) means the existence of ϵ > 0,

x i → x , and τ i ↘ 0 such that

inf

x ′∈A





x ′ − x iτ i
− z





 > ϵ, (i ∈ N).
With

dA(x
′) := min

x ′′∈A
‖x ′ − x ′′‖,

this says

dA(x
i + τ iz) ≥ τ iϵ . (5.6)

Since A is locally closed, choosing i large enough that τ i is small enough that we may assume A
closed. Lemma 5.1 then gives a vector zi such that

PA(x
i + τ iz) = x i + zi ∈ A, and τ iz − zi ∈ N̂A(x

i + zi ) ⊂ NA(x
i + zi ).

Let us set

w i
:=

τ iz − zi

‖τ iz − zi ‖
∈ N̂A(x

i + zi ),

as well as ϵ i := ‖τ iz − zi ‖ ≥ ϵ . We claim that we can take 〈z,w i 〉 ≥ ϵ i . Suppose this does not hold.

By Remark 5.3, we have

A ∩ intB(x i + τ iz, ϵ i ) = ∅ and x i + zi ∈ A ∩ ∂B(x i + τ iz, ϵ i ).

Therefore 〈z,w i 〉 ≥ ϵ i means that x i + zi = x i + τ iz − ϵ iw i ∈ L(τ i ;x i , ϵ i ) for

L(τ ;x i , ϵ i ) := {x i + τ (z − ϵ iv/τ i ) ∈ Rn | ‖v ‖ = 1, 〈z,v〉 ≥ ϵ i }

the “leading arc” of the ball

U (τ ;x i , ϵ i ) := B(x i + τz,τϵ i/τ i ).

The leading arc is illustrated by the thick line in Figure 5.5a.
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We claim that the leading arc L(τ i ;x i , ϵ i ) is the only part of U (τ i ;x i , ϵ i ) covered by the balls

U (τ ;x i , ϵ i ) for τ ∈ [0,τ i ). Indeed, the point x ′ := x i + τ i (z − ϵ iv/τ i ) ∈ ∂U (τ i ;x i , ϵ i ) satis�es

x ′ ∈ U (τ ;x i , ϵ i ) for τ < τ i when

‖x ′ − (x i + τz)‖ ≤ ϵ iτ/τ i .

In other words

‖(τ i − τ )z − ϵ iv ‖ ≤ ϵ iτ/τ i .

Squaring and taking ‖v ‖ = 1 as in the de�nition of the leading arc, we may rewrite this as

〈z,v〉 ≥
(ϵ i )2(τ i + τ ) + (τ i − τ )(τ i ‖z‖)2

2τ iϵ i
.

The right hand side is minimised in the limit τ = τ i , goving condition 〈z,v〉 ≥ ϵ i . So we have

proved our claim that L(τ i ;x i , ϵ i ) is the only part of U (τ i ;x i , ϵ i ) covered by the balls U (τ ;x i , ϵ i )) for

τ ∈ [0,τ i ). The union of all these balls is illustrated by ice cream cone structure in Figure 5.5a.

Now, if 〈z,w i 〉 < ϵ i , we have x i + zi < L(τ i ;x i , ϵ i ). Therefore, by the above covering property, we

may decrease τ until there exists a point x i+z̃i ∈ L(τ ;x i , ϵ i ), while maintainingA∩intU (τ ;x i , ϵ i ) = ∅.
Indeed, since smaller balls corresponding to smaller τ only cover the leading arc of the boundary of

the bigger balls,U (̃τ i ;x i , ϵ i ) for decreasing τ will �rst intersect A on L(̃τ i ;x i , ϵ i ) for some τ̃ i ∈ [0,τ i ).
Now, if τ̃ i > 0, by Remark 5.3, we have

w̃ :=
τ̃ iz − z̃i

‖τ̃ iz − z̃i ‖
∈ N̂A(x

i + z̃), (5.7)

and, by the de�nition of L(̃τ i ;x i , ϵ i ), also 〈w̃ i , z〉 ≥ ϵ i . Replacing zi by z̃i , we may therefore assume

that 〈w i , z〉 ≥ ϵ i .
If τ̃ i = 0, the �rst point of contact between A and the balls U (τ ;x i , ϵ i ) for τ ≥ 0 was x i itself. In

this case, we proceed to alter x i as in Figure 5.5b. Speci�cally, we replace x i by x̄ i := x i − δ iz for

some small δ i ↘ 0. This is doable while maintaining intU (τ i ; x̄ i , ϵ ′) ∩A = ∅, when we also replace

ϵ i by some �xed ϵ ′ < ϵ guaranteeing U (τ i ; x̄ i , ϵ ′) ⊂ U (τ i ; x̄ i , ϵ i ). It may be that x̄ i < A, but this is

inconsequential. The important fact of this modi�cation is that now τ̃ i > 0, because for some τ̂ i > 0

holds x i ∈ U (τ̂ i ; x̄ i , ϵ ′). If τ̃ i > τ̂ i , then we have again found our z̃i and w̃ i ∈ N̂A(x̄
i + z̃i ) as in (5.7).

This time, 〈w̃ i , z〉 ≥ ϵ ′, which is enough.

If we can �nd a subsequence of indices i ∈ N, unrelabelled, such that we never go all the way to

the case τ̃ i = τ̂ i , then we have discovered a sequence of vectors w i ∈ N̂A(x
i + zi ), with x i + zi → x ,

as well as ‖w i ‖ = 1 and 〈w i , z〉 ≥ ϵ ′. By going to a further subsequence we can assume that

w i → w ∈ NA(x). But then 〈w, z〉 ≥ ϵ ′ > 0. This says that z < NA(x)
◦
. Therefore T̂A(x) ⊃ NA(x)

◦
.

If, on the other hand, only the case τ̃ i = τ̂ i occurs in�nitely often, we proceed as follows. We

deduce by referral to Remark 5.3 that x i is a closest point in A to x̄ i + τ̂ z = x i + (τ̂ − δ i )z. Therefore

z ∈ NA(x
i ). Since this happens for all large enough i ∈ N, we �nd that in the limit z ∈ NA(x). But

then most de�nitely z < NA(x)
◦
. This shows that again T̂A(x) ⊃ NA(x)

◦
. �

Corollary 5.1. Let A ⊂ Rk be locally closed at x . Then

T̂A(x) = lim inf

A3x ′→x
TA(x).

Proof. We have already proved one direction of the claim in (5.5). For the other direction, we note

that by Proposition 5.2, using the local closedness in its application, we have to prove

NA(x)
◦ ⊃ K := lim inf

A3x ′→x
TA(x). (5.8)

So suppose z < NA(x)
◦
. Then there exists w ∈ NA(x) satisfying 〈z,w〉 > 0. We have again

w = limi→∞w
i

for some x i → x and w i ∈ N̂A(x
i ). But if z ∈ K , we can �nd zi ∈ TA(x

i ) with

zi → z. By the tangent-normal polarity (5.3), we then obtain 〈z,w〉 = limi→∞〈z
i ,w i 〉 ≤ 0, which is a

contradiction. Therefore z < K , so (5.8) holds, �nishing the proof of the claim. �
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x

xixi + zi
xi + z̃

xi + τ iz

xi + τ̃ zwi

w̃

(a) Illustration of the τ i reduction argument. Replacement of τ i and zi by τ̃ and z̃, hence w i
by w̃ , ensures

〈z,w i 〉 ≥ ϵ . The thick line indicates the “leading arc” Li (τ i ).

xxi

x̄i

xi + τ iz

(b) Alteration of the base point x i to x̄ i , in case τ̃ cannot be found in (a).

Figure 5.5: Illustrations for the proof of T̂A(x) ⊃ NA(x)
◦

in Proposition 5.2.
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Theorem 5.1. At any point x where A ⊂ Rk is locally closed, the following conditions are equivalent,
and when they hold, we say that A is regular at x .

(i) NA(x) = N̂A(x).

(ii) TA(x) = T̂A(x).

Proof. Suppose (i) holds. Then by Exercise 5.3, and Proposition 5.2 holds

TA(x) ⊂ TA(x)
◦◦ = N̂A(x)

◦ = NA(x)
◦ = T̂A(x) ⊂ TA(x)

This shows (ii). The other direction is completely analogous, exchanging the roles of “N ” and “T ”. �

Corollary 5.2. If A is locally closed and regular at x , then bothTA(x) and NA(x) are convex and polar to
each other,

NA(x) = TA(x)
◦, TA(x) = NA(x)

◦.

Theorem 5.2. Every convex set A ⊂ Rk is regular at every point x ∈ Rk .

Proof. We have already seen that

N̂A(x) = ∂FδA(x) = ∂δA(x),

and that the convex subdi�erential is outer semicontinuous. Thus

NA(x) := lim sup

x ′→x
N̂A(x

′) ⊂ N̂A(x) ⊂ NA(x).

This proves NA(x) = N̂A(x), that is, A is regular at x . �

5.2 Derivatives and coderivatives

We are �nally ready to di�erentiate set-valued mappings. Although there’s a multitude di�erent

de�nitions, they are actually pretty straightforward now with the preparations of the previous

section.

Definition 5.1. Let F : Rn ⇒ Rm
, and take x ∈ Rn

, y ∈ Rm
. We then de�ne

(i) The Fréchet coderivative of F at x for y as the map D̂∗F (x |y) : Rm ⇒ Rn
given by

D̂∗F (x |y)(∆y) := {∆x | (∆x ,−∆y) ∈ N̂Graph F (x ,y)}.

(ii) The coderivative of F at x for y as the map D∗F (x |y) : Rm ⇒ Rn
given by

D∗F (x |y)(∆y) := {∆x | (∆x ,−∆y) ∈ NGraph F (x ,y)}.

(iii) The regular derivative of F at x for y as the map D̂F (x |y) : Rn ⇒ Rm
given by

D̂F (x |y)(∆x) := {∆y | (∆x ,∆y) ∈ T̂Graph F (x ,y)}.

(iv) The graphical derivative of F at x for y as as the map DF (x |y) : Rn ⇒ Rm
given by

DF (x |y)(∆x) := {∆y | (∆x ,∆y) ∈ TGraph F (x ,y)}.

Regarding the minus sign in the de�nitions of the coderivatives, recall that (∇f (x),−1) is normal

to epi f for a smooth function f ; see also Figure 5.6. Also observe how the coderivatives operate

from Rm
to Rn

, while the derivatives operate from Rn
to Rm

. We illustrate the di�erent graphical

derivatives and coderivatives on ∂δ[−1,1] in Figure 5.7.
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F

∆x

∆y = ∇f (x)∆x

−∆y′ = −∆x/∇f (x)

TGraph F

NGraph F

Figure 5.6: Illustration, why the coderivatives negate ∆y in comparison to the normal cone.

(a) D(∂ f ) (b) D̂(∂ f ) (c) D̂∗(∂ f ) (d) D∗(∂ f )

Figure 5.7: Illustration of the di�erent graphical derivatives and coderivatives for ∂ f with f = δ[−1,1].

The dashed line is Graph ∂ f . The dots indicate the base points (x ,y) where D(∂ f )(x |y)
is calculated, and the thick arrows and grey areas the directions of (∆x ,∆y) relative to

the base point. ((∆x ,−∆y) for the coderivatives.) Observe that there is no graphical

regularity at (x ,y) = (−1, 0), and, analogously, (x ,y) = (1, 0). Everywhere else, ∂ f is

graphically regular.

Exercise(Light) 5.4. Show that

∆y ∈ DF (x |y)(∆x) ⇐⇒ ∆x ∈ DF−1(y |x)(∆y),

and analogously for D̂∗, D̂, and D∗. What can you say about other basic relationships that the di�erent
graphical derivatives and coderivatives have?

The following result is immediate from Theorem 5.1.

Theorem 5.1. If Graph F is closed at (x ,y), the following conditions are equivalent, and when they hold,
we say that F is graphically regular at x for y .

(i) D∗F (x |y) = D̂∗F (x |y).

(ii) DF (x |y) = D̂F (x |y).

We will generally only work with graphically regular maps. Then, with the help of the upper and

lower adjoints of a set-valued function H : Rn ⇒ Rm
, de�ned as

H ◦+(y) := {x | 〈x ,x ′〉 ≤ 〈y ,y ′〉 when y ′ ∈ H (x ′)},

and

H ◦−(y) := {x | 〈x ,x ′〉 ≥ 〈y ,y ′〉 when y ′ ∈ H (x ′)},

Proposition 5.2 gives the following.
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Corollary 5.1. We have the relationships

D̂∗F (x |y) = DF (x |y)◦+ (5.1)

If Graph F is locally closed at (x ,y), then also

D̂F (x |y) = D∗F (x |y)◦−. (5.2)

Proof. By de�nition

DF (x |y)(∆x) := {∆y | (∆x ,∆y) ∈ TGraph F (x ,y)},

and

D̂∗F (x |y)(∆y) := {∆x | (∆x ,−∆y) ∈ N̂Graph F (x ,y)}.

Using (5.3) from Proposition 5.2 We thus calculate

∆x ∈ DF (x |y)◦+(∆y) ⇐⇒ 〈∆x ,∆x ′〉 ≤ 〈∆y ,∆y ′〉 when ∆y ′ ∈ DF (x |y)(∆x ′)

⇐⇒ 〈∆x ,∆x ′〉 + 〈−∆y,∆y ′〉 ≤ 0 when (∆x ′,∆y ′) ∈ TGraph F (x ,y)

⇐⇒ (∆x ,−∆y) ∈ TGraph F (x ,y)
◦

⇐⇒ (∆x ,−∆y) ∈ N̂Graph F (x ,y)

⇐⇒ ∆x ∈ D̂∗F (x |y)(∆y).

This proves (5.1). The expression (5.2) is calculated completely analogously using (5.4). Going back

from the coderivatives involving a negated ∆y in the relation to normal cones, we now need the

lower adjoint instead of the upper adjoint in the other direction. �

Exercise(Light) 5.5. Write down the upper and lower adjoints for a linear map H : Rn → Rm .

Exercise 5.6. Let F : Rn → Rm be single-valued and di�erentiable. Show with y = F (x) that

DF (x |y)(∆x) = ∇F (x)∆x and D̂∗F (x |y)(∆y) = [∇F (x)]∗∆y .

(Here [∇F (x)]∗ stands for the adjoint of ∇F (x) as a linear operator; a reader unfamiliar with functional
analysis may consider it a matrix transpose.) Also show that if F is graphically regular at (x ,y), if it is
strictly di�erentiable at x , meaning that there exists L ∈ Rm×n such that

lim

h→0,x ′→x

F (x +′ h) − F (x ′) − Lx

‖h‖
= 0.

What does this mean for linear F?

Exercise 5.7. Let f (x) = |x | on R. Calculate the derivatives and coderivatives of ∂ f . When is ∂ f
graphically regular?

5.3 Basic calculus

What is the coderivative of the a sumH = F +G of set-valued maps F : Rn ⇒ Rm
andG : Rn ⇒ Rm

?

How about a composition F ◦ J for J : Rk ⇒ Rn
? Generally, such results are very limited, and the

most we can derive are the coderivative inclusions

D∗H (x |y) ⊂
⋃

y=y1+y2,
y1∈F (x ),
y2∈G(x )

D∗F (x |y1) + D
∗G(x |y2),
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and

D∗(F ◦ J )(x |y) ⊂
⋃

w ∈J (x )∩F−1(y )

D∗ J (x |w) ◦ D∗F (w |y),

with the inclusions in terms of graphs.

We will not go into these general results in detail. Instead, in this course, we concentrate on prac-

tically useful cases, where we do have sharp results. These generally involve sums and compositions

with single-valued and a�ne mappings. Also recall that we are mainly interested in the cases F = ∂ f .

In particular, if д(x) = ‖Tx − f ‖2/2, then G = ∂д is the a�ne mapping G(x) = T ∗(Tx − f ), and

∇G = T ∗T . This allows f to be non-smooth when calculating a second-order graphical di�erential

for the sum f + д. For a similarly exact theory in the in�nite-dimensional space L2(Ω), see [22].

Theorem 5.1 (Addition of a single-valued di�erentiable map). Let H = F +G for F : Rm ⇒ Rn , and a
di�erentiable single-valued function G : Rm → Rn . With y −G(x) ∈ F (x), we have

DH (x |y)(∆x) = DF (x |y −G(x))(∆x) + ∇G(x)∆x . (5.1)

Proof. Observe that, applying the de�nition of TGraph F , for any set-valued map F , we may write

DF (x |y)(∆x) = lim sup

τ↘0

∆x ′→∆x

F (x + τ∆x ′) − y

τ
. (5.2)

Indeed

(∆x ,∆y) ∈ lim sup

τ↘0

Graph F − (x ,y)

τ

if and only if there exist τ i ↘ 0 and x i such that

∆x = lim

i→∞

x i − x

τ i
,

and

∆y ∈ lim sup

i→∞

F (x i ) − y

τ i
.

The former forces x i = x − τ i∆x i for ∆x i → ∆x , so the latter gives (5.2).

Returning to (5.1), we just use (5.2) to compute

∆y ∈ DH (x |y)(∆x) ⇐⇒ ∆y = lim

i→∞

y i − y

τ i
(for some τ i ↘ 0, y i ∈ H (x + τ i∆x i ))

⇐⇒ ∆y = lim

i→∞

ỹ i +G(x + τ i∆x i ) − y

τ i
(. . . for some ỹ i ∈ F (x + τ i∆x i ))

⇐⇒ ∆y = lim

i→∞

ỹ i − (y −G(x))

τ i
+ ∇G(x)∆x

⇐⇒ ∆y − ∇G(x)∆x ∈ DF (x |y −G(x))(∆x). �

Exercise 5.8 (Outer composition with a linear map). Let F : Rn ⇒ Rm be a set-valued map, and
A : Rm → Rk a linear map satisfying

Az = 0 =⇒ z = 0. (5.3)

Show that
D(A ◦ F )(x |y)(∆x) =

⋃
z :Az=y

ADF (x |z)(∆x). (5.4)

Remark 5.1. Note that (5.3) implies that for each y there is a unique z satisfying Az = y . Therefore

the union in (5.4) can be avoided.
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Theorem 5.2 (Inner composition with a linear map). Let F : Rn ⇒ Rm be a set-valued map, and
A : Rk → Rn a linear map satisfying

AT z = 0 =⇒ z = 0. (5.5)

Then
D(F ◦A)(x |y)(∆x) = DF (Ax |y)(A∆x).

Remark 5.2. The above result can be extended to more general single-valued maps under graphical

regularity [4].

Proof. Let us set z := Ax and ∆z := A∆x . We use the expression (5.2) to derive

∆y ∈ D(F ◦A)(x |y)(∆x)

⇐⇒ ∆y = lim

i→∞

y i − y

τ i
(for some τ i ↘ 0, ∆x i → ∆x , y i ∈ F (Ax + τ iA∆x i ))

⇐⇒ ∆y = lim

i→∞

y i − y

τ i
(. . . for ∆zi := A∆x i ,y i ∈ F (z + τ i∆zi ))

⇐⇒ ∆y = lim

i→∞

y i − y

τ i
(for some ∆zi → ∆z,y i ∈ F (z + τ i∆zi ))

⇐⇒ ∆y ∈ DF (z |y)(∆z).

In the semi�nal step we have used the fact that the range of A is full, which is equivalent to the

condition (5.5). This implies that every ∆zi satis�es ∆zi = ∆x i for some ∆x i . �

Corollary 5.1. Let f (x) = f0(Ax) for some convex function f0 and linear map A satisfying (5.5) and
R(A) ∩ ri dom f0 , ∅. Then

D(∂ f )(x |y)(∆x) =
⋃

z :AT z=y

ATD(∂ f0)(Ax |z)(A∆x).

5.4 The Mordukhovich criterion

We �nally have all the tools necessary to express the following simple criterion for the Aubin property

to be satis�ed.

Theorem 5.1. Let F : Rn ⇒ Rm . Suppose Graph F is locally closed at (x ,y) and

D∗F (x |y)(0) = {0}. (5.1)

Then F has the Aubin property at x for y with

lip F (x |y) = |D∗F (x |y)|+, (5.2)

where the outer norm
|H |+ := sup

‖w ‖≤1

sup

z∈H (w )
‖z‖.

We illustrate the outer norm in Figure 5.8. Of particular intrest to us is the H whose graph is a

cone in Figure 5.8b. As we recall from Proposition 5.1 and De�nition 5.1, GraphD∗F (x |y) and is a

cone related to NGraph F (x ,y). For cones, we see that the outer norm is, in a sense, the normalised

maximum opening of the cone away from the line z = 0.

Using De�nition 5.1 and the fact that we only care about the magnitudes of the vectors ∆x and

∆y , not their exact directions, we may write

|D∗F (x |y)|+ = sup{‖∆x ‖ | (∆x ,−∆y) ∈ NGraph F (x ,y), ‖∆y ‖ ≤ 1}

= sup{‖∆x ‖ | (∆x ,∆y) ∈ NGraph F (x ,y), ‖∆y ‖ ≤ 1}.

With this in mind, using the examples from Figure 4.4, we illustrate in Figure 5.9 how the outer norm

of the coderivative relates to the Aubin property.

52



5 Graphical derivatives and coderivatives

H

0

[−1, 1]

(w, z)

0

(a) A general function

H

0

[−1, 1]

(w, z)

0

(b) GraphH is a cone

Figure 5.8: Points (w, z) achieving the supremum in the expression of the outer norm |H |+.

F

(a) Property is satis�ed

F

(b) Property is not satis�ed

Figure 5.9: Illustration of outer norm |D∗F (x |y)|+ = sup{‖∆x ‖ | (∆x ,∆y) ∈ NGraph F (x ,y), ‖∆y ‖ ≤
1}. The arrows illustrate the directions contained in the normal cone. In (a), ∆y ∈ [0,∞),
but ∆x = 0, so |D∗F (x |y)|+ = 0, and the Aubin property is satis�ed. In (b), we can for

∆y = 0 take any ∆x ∈ (−∞, 0], so |D∗F (x |y)|+ = ∞, and the Aubin property is not

satis�ed.

Corollary 5.1 (Inverse function theorem). Let F : Rm → Rk , (k ≤ m), be single-valued and di�eren-
tiable. Let x ∈ Rm . If the Jacobian at x satis�es

∇F (x)T z = 0 =⇒ z = 0, (5.3)

then there exist ` > 0 and ρ > 0, and for all y ′ ∈ B(F (x), ρ) a single-valued selection J (y ′) ∈ F−1(y ′),
satisfying

‖x − J (y ′)‖ ≤ `‖F (x) − y ′‖. (5.4)

Proof. We let y := F (x). Since F is continuous, its graph is closed. Since D∗F−1(y |x) = [D∗F (x |y)]−1
,

cf. Exercise 5.4, the condition (5.1), applied to the inverse, can also be written

D∗F (x |y)(z) = 0 =⇒ z = 0.

For single-valued F , this is exactly (5.3), as we can see from Exercise 5.6. The conditions of Theorem

5.1 are therefore satis�ed for F−1
. Consequently the latter satis�es the Aubin property at y = F (x) for

x . (In other words, F is metrically regular at x for y .) By Proposition 4.1, this can be written simply

as the existence for any `′ > lip F−1(y |x) of ρ,δ > 0 such that

inf

x ′′∈F−1(y ′)
‖x ′ − x ′′‖ ≤ `′‖F (x ′) − y ′‖, (x ′ ∈ B(x ,δ ),y ′ ∈ B(y , ρ)).

Taking x ′ = x , we have in particular

inf

x ′′∈F−1(y ′)
‖x − x ′′‖ ≤ `′‖F (x) − y ′‖, (y ′ ∈ B(F (x), ρ)).

The in�mum might not be reached, but choosing ` > `′, we can for y ′ ∈ B(F (x), ρ) �nd x ′′ = J (y ′) ∈
F−1(y ′) satisfying

‖x − x ′′‖ ≤ `‖F (x) − y ′‖.

This is exactly (5.4). �
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5.5 Application to sensitivity analysis

The following proposition applied to F (x ,p) = ∂x f (x ;p) provides a general tool for analysing the

stability of solution maps.

Proposition 5.1. Let F : Rn ×Rm → Rk , and de�ne the implicit mapping

S(p) := {x ∈ Rn | 0 ∈ F (x ,p)}.

Then S has the Aubin property at p̄ for x̄ ∈ S(p̄) if

(0,∆p) ∈ D∗F (x̄ , p̄ |0)(∆u) =⇒ ∆u = 0,∆p = 0. (5.1)

Proof. Let us de�ne the map

Q(u,p) := {x ∈ Rn | u ∈ F (x ,p)}.

Then S(p) = Q(0,p). Moreover, the Aubin property of Q at (0, p̄) for x̄ will imply the Aubin property

of S at p̄ for x̄ by simple limitation of x ,x ′ in (4.1) to the subspace {0} ×Rm
.

For Q to have the Aubin property at (0, p̄) for x̄ , the Mordukhovich criterion, Theorem 5.1 requires

D∗Q(0, p̄ |x̄)(0) = {0},

which is to say that

(∆u,∆p, 0) ∈ NGraphQ (0, p̄, x̄) =⇒ ∆u = 0, ∆p = 0. (5.2)

Now

GraphQ = {(u,p,x) | u ∈ F (x ,p)} = P Graph F ,

for the permutation P(x ,p,u) := (u,p,x). Therefore also NGraphQ (u,p,x) = PNGraph F (P(u,p,x)). In

particular, (5.2) becomes

(0,∆p,∆u) ∈ NGraph F (x̄ , p̄, 0) =⇒ ∆u = 0, ∆p = 0. (5.3)

This is exactly (5.1). �

Remark 5.1. Proposition 5.1 is related to the classical implicit function theorem. If F is graphically

regular at (x̄ , p̄, 0), it also possible derive formulas for DS , such as

DS(p̄ |x̄)(∆p) = {∆x ∈ Rn | DF (x̄ , p̄ |0)(∆x ,∆p) 3 0}.

For details we refer to [4, Theorem 9.56 & Proposition 8.41]. Using Lemma ??, we can then de�ne a

more wieldy expression for the graphical modulus, namely

lip S(p̄ |x̄) = sup

‖w ‖≤1

sup{‖z‖ | 〈z,∆p〉 + 〈w,∆x〉 ≤ 0 when ∆x ∈ DS(p̄ |x̄)(∆p)}

= sup

‖w ‖≤1

sup{‖z‖ | 〈z,∆p〉 + 〈w,∆x〉 ≤ 0 when DF (x̄ , p̄ |0)(∆x ,∆p) 3 0}.

This can be further estimated similarly to Corollary ??.
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5.6 Tilt-stability revisited

Let us recall the tilt-stability of Section 4.3. Namely, we studied

f (x ;p) = д(x) − 〈p,x〉,

for some д : Rn → R, and a tilt parameter p. Then the stability of the solution map

S(p) = {x ∈ Rn | p ∈ ∂д(x)} = (∂д)−1(p)

was reduced to the metric regularity of ∂д. We now have a criterion to study it. Indeed, by Corollary

??, we have the estimate

lip [∂д]−1(p |x) ≤ sup{‖z‖ | 〈z,∆p〉 ≤ ‖∆x ‖ when ∆p ∈ D[∂д](x |p)(∆x)}. (5.1)

This can also be deduced from Remark 5.1 applied to F (x ,p) := ∂д(x) − p. To estimate the modulus

of metric regularity of ∂д, we just need to calculate the graphical “second derivative” of д.

Let us study this for Lasso-type problems, only analysing the stability with respect to the dependent

variables or measurementsbi . We do not analyse stability with respect to the features {ai }
n
i=1

, encoded

into the matrix

A =
©­­«
aT

1

...

aTn

ª®®¬ ∈ Rn×m .

In principle this can, however, be done through Proposition 5.1.

Now

д(x) =
1

2

‖b −Ax ‖2
2
+ λψ (x)

forψ (x) = ‖x ‖1. Of course, Theorem 2.1 gives

∂д(x) = AT (Ax − b) + λ∂ψ (x).

Since the �rst part of ∂д(x) is single-valued linear, using Theorem 5.1, and Exercise 5.8 on the linear

map q 7→ λq, we deduce for any p ∈ ∂д(x) that

D[∂д](x |p)(∆x) = ATA∆x + D[λ∂ψ ](x |p −AT (Ax − b))(∆x)

= ATA∆x + λD[∂ψ ](x |λ−1(p −AT (Ax − b)))(∆x)
(5.2)

For tilt-stability, we only need to consider p = 0 and an optimal solution x̂ to 0 ∈ ∂д(x̂). We therefore

set

p̃ := −λ−1AT (Ax̂ − b).

For Lasso, in Exercise 5.7, we have already calculated the graphical derivative of ∂ψ ; namely

∂ψ (x̂) =
m∏
i=1

{
sgn x̂i , x̂i , 0

[−1, 1], x̂i = 0.

Recalling the expressions for D[∂ψ ] and D̂[∂ψ ] from Exercise 5.7, we see that graphical regularity

corresponds to the strict complementarity condition

either x̂i , 0 or |p̃i | < 1, (i = 1, . . . ,n). (5.3)

This says that graphical regularity fails if x̂i = 0 and [AT (Ax̂ − b)]i = ±λ. This means that the

optimality condition 0 ∈ ∂д(x̂) is not satis�ed “strictly” at a point of non-smoothness, because at the

coordinate i it becomes

[AT (Ax̂ − b)]i ∈ [−λ∂ψ (x̂)]i = [−λ, λ].
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The only way to satisfy the optimality condition p ∈ ∂д(x) for small p , 0 might therefore be to

make x̂i = 0 an active variable xi , 0. This might directly give xi a large value.

If (5.3) however holds, then

D̂[∂ψ ](x̂ |p̃)(∆x) = D[∂ψ ](x̂ |p̃)(∆x) =
n∏
i=1


{0}, x̂i , 0, p̃i = sgn x̂i ,

R, x̂i = 0, |p̃i | < 1,∆x = 0

∅, otherwise.

Therefore, if

I := {i ∈ {1, . . . ,n} | x̂i = 0}

is the set of “inactive” indices, and we set

V =
n∏
i=1

{
R, i < I,

{0}, i ∈ I,

then referring back to (5.2) we obtain

D[∂д](x̂ |0)(∆x) =

{
ATA∆x +V⊥, ∆x ∈ V ,

∅, ∆x < V .

Note how λ disappears fro the expression, as V and V⊥ are, as subspaces, invariant with respect to

multiplication by λ. Using this in (5.1), we obtain

lip [∂д]−1(0|x̂) ≤ sup{‖z‖ | 〈z,ATA∆x +V⊥〉 ≤ ‖∆x ‖ when ∆x ∈ V }

= sup{‖z‖ | z ∈ V , 〈z,ATA∆x〉 ≤ ‖∆x ‖ when ∆x ∈ V }

= sup{‖PV z‖ | 〈z, P
T
VA

TAPV∆x〉 ≤ ‖∆x ‖ for all ∆x}

= sup{‖PV z‖ | ‖PVA
TAPV z‖ ≤ 1}.

Here PV denotes the orthogonal projection into V . This says that for S to be tilt-stable, the matrix

PVA
TAPV has to be non-singular on the subspace V . In other words, if

A =
(
ã1 . . . , ãn

)
for some column vectors ãi ∈ R

m
corresponding to di�erent features (not to be confused with the

sample-speci�c feature vectors aj ), if the complement Ic = {i1, . . . , ik }, and we build

AIc :=
(
ãi1 . . . ãik

)
∈ Rn×k ,

then the matrix

AT
IcAIc

corresponding to the “active features” x̂i , 0 has to be non-singular. The inverse of its smallest

eigenvalue will be lip [∂д]−1(0|x̂). Thus the Lasso is stable with respect to the dependent variables bi ,
as long there are at least as much of them as active features x , that is n ≥ k , and the corresponding

feature-speci�c measurement vectors ãi1 , . . . ãik are linearly independent. In our Exercise 3.4 on

wine quality, the Lasso is stable with respect to the rankings of the wines, as long as the found

two most signi�cant features provide two linearly independent vectors of measurements of the

di�erent physicochemical properties. Linear independence here an be seen as the properties of the

wine actually being descriptive of the classi�cations; the Lasso in this case may be unstable if the

discovered properties were not truly descriptive of the classi�cations, while it is stable if they are.
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5 Graphical derivatives and coderivatives

Remark 5.1. Similar techniques can be used to study other problems. In case of total variation

image reconstruction the general structure is the same as above, exceptψ will involve the gradient

operator ∇d . This signi�cantly complicates the analysis, which is, in fact, more easily performed

for the saddle point problem (3.4) and the corresponding variational inclusion 0 ∈ H (x ,y) for H the

monotone operator in (3.5). This will not generally be stable, unless we introduce Moreau–Yosida

regularisation—often known in image processing as Huber regularisation—replacing at each pixel i
the function fi (д) = ‖д‖ by the “smooth around zero” function

fi,τ (д) := min

д′
fi (д

′) +
1

2τ
‖д′ − д‖2.

This corresponds to replacing in the saddle point formulation f ∗i by

f ∗i,τ (y) = f ∗i (y) +
τ

2

‖y ‖2.

The squared norm adds a level of strong convexity, which is helpful for stability.
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