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Abstract From the optimization point of view, a di�culty with parallel MRI with simul-
taneous coil sensitivity estimation is the multiplicative nature of the non-linear forward
operator: the image being reconstructed and the coil sensitivities compete against each
other, causing the optimization process to be very sensitive to small perturbations. This can,
to some extent, be avoided by regularizing the unknown in a suitably “orthogonal” fashion.
In this paper, we introduce such a regularization based on spherical function bases. To
perform this regularization, we represent e�cient recurrence formulas for spherical Bessel
functions and associated Legendre functions. Numerically, we study the solution of the
model with non-linear ADMM. We perform various numerical simulations to demonstrate
the e�cacy of the proposed model in parallel MRI reconstruction.
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1 introduction

1.1 parallel magnetic resonance imaging

Parallel magnetic resonance imaging (p-MRI) increases acquisition speed by simultaneously
using multiple radio frequency (RF) detector coils. This helps avoid some of the time-consuming
phase-encoding steps in the MRI process. Although less k-space data is received for each coil,
this is compensated by data being available from multiple coils. The �rst approach to p-MRI
was based on an arrangement of J surface coils around the object for MR imaging, one for
each k-space line to be acquired [28]. The p-MRI method to achieve routine use was sensitivity
encoding, SENSE [44, 46]. In this approach, a discrete Fourier transform is used to reconstruct
an aliased image for each element in the array. Then the full full-of-view image is generated
from the individual sets of images.

Generally, the MRI signal acquired by receiver coil j is given by

(1.1) sj (®k) =

∫
u(®x)c j (®x)exp(i®k · ®x)d ®x , j = 1, 2, . . . , J .
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Here u is the excited proton density function, c j the sensitivity pro�le of the jth coil at ®x , and ®k
is the chosen k-space trajectory. In discrete form (1.1) can be written

(1.2) sj (km ,kn) =
N∑

m=1

N∑
n=1

u(m,n)c j (m,n)exp(ikmm)exp(iknn), j = 1, 2, . . . , J .

If the coil sensitivity pro�les c j (m,n), j = 1, 2, . . . , J , are known, the system of equations (1.2)
can be numerically inverted foru with relative ease [24, 52]. An early direct method to invert (1.2)
is to decouple the system of equations in image space under regular sub-sampled pattern like
SENSE [36, 45, 46]. Another direct approach is to approximate a sparse inverse by using the coil
data in k-space as in SMASH [51] and g-SMASH [11]. SMASH is a partial p-MRI method using
multiple coils to speedup acquisition in the course of imaging. Whereas g-SMATH is generalized
SMASH method that reconstructs image with the coil data in k-space. However, the MRI signal
equation will be increasingly ill-conditioned when the acceleration factor becomes large. The
acceleration factor is the ratio of the amount of k-space data required for a fully sampled image
to the amount collected in accelerated acquisition. When ill-conditioned, the inversion of the
linear system (1.2) will lead to the ampli�cation of noise present in the MRI signal sl . Therefore
regularization methods are required to improve reconstruction quality. Historically employed
regularization methods include the truncated singular value decomposition (TSVD) and damped
least-squares (DLS) [37].

If the coil sensitivities are not known, it is common to acquire sensitivity information by using
a calibration step [23]. For example, the coil sensitivity pro�les can be obtained directly from the
reference lines in autocalibrating SENSE [41]. The GRAPPA method [22] is the most widely used
autocalibrating technique in the determination of coil sensitivities. The coils sensitivities are
generally determined from the center of the k-space rather than using all available information.
Due to small errors, this leads to residual aliasing artifacts in the reconstruction because.
Nonlinear inversion with the joint the estimation of the coil sensitivities c j and the determination
of the proton density image u, can improve reconstruction quality [5, 52, 53, 59].

1.2 nonlinear inversion for p-mri

Parallel MR imaging can be formulated as a nonlinear inverse problem with a nonlinear forward
operator F, which maps the proton density u and the coil sensitivities c = (c j , c2, . . . , c J )

T to
the measured k-space data д as

(1.3) F(u, c) :=
(
PF (u · c1), PF (u · c2), . . . , PF (u · c J )

)T
= д.

Here P is the binary sub-sampling mask, F is the discrete 2D Fourier transform, and д =
(д1,д2, . . . ,дJ )

T the acquired k-space measurements for J receiver coils. As shown in [34, 52],
the problem (1.3) can be solved by the iteratively regularized Gauss-Newton (IRGN) method
[4, 9, 19, 26]. The discrepancy principle is used to obtain a suitable level of regularization. In
[35] the authors furthermore expanded IRGN method with variational regularization terms to
improve reconstruction quality. The method works as follows. Writing v = (u, c1, c2, . . . , c J )

T ,
and starting from an initial guess v0, we solve on each step for 4v from the linearised problem

(1.4) min
4v

1
2


F′(vk )4v +F(vk ) − д

2

2 +
αk
2 Rc (c

k + 4c) + βkRu (u
k + 4u).
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Then we update vk+1 := vk + 4v . Here Rc (c) is a regularization functional for penalizing
the high Fourier coe�cients of the coils c j , j = 1, 2, . . . , J , and Ru regularizes the image. The
regularization parameters αk and βk are updated by the formulas αk+1 := qααk and βk+1 := qββk
with 0 < qα ,qβ < 1. More details can be found in [35].

There are many options for the regularisers Ru and Rc in the inverse problems literature. The
most basic regularization is the simple L2 penalty Ru (u) =

1
2 ‖u‖

2
2 . This is used in [34, 35, 52].

Another conventional choice for the image u is Ru (u) = TV (u), the Total Variation [12, 25, 39,
49, 63, 64]. The are two common variants of the total variation, dependent on the choice of
pointwise norm used. Restricting ourselves to the �nite-dimensional setting, with the two-norm
we obtain the isotropic total variation

TVI (u) =
N∑

m=1

N∑
n=1

√
|∇1u(m,n)|2 + |∇2u(m,n)|2,

while with the 1-norm we obtain the computationally easier but anisotropic total variation

TVl1(u) =
N∑

m=1

N∑
n=1
|∇1u(m,n)| + |∇2u(m,n)|.

In both cases we have used the forward-di�erences

∇1u(m,n) =

{
u(m + 1,n) − u(m,n), m < N

0, m = N ,
∇2u(m,n) =

{
u(m,n + 1) − u(m,n), n < N

0 n = N .

If the penalty parameter βk becomes large, TV regularization will generate staircasing artefacts.
This can be avoided through the use of second-order Total Generalized Variation (TGV) [10, 33,
56].

For the regularization term Rc (c), one choice from [4, 9, 19, 26] is to take Rc (c) = ‖w · F c ‖22 ,
where w is an weighting operator that penalizes high Fourier coe�cients. It is well known that
coil sensitivities are generally rather smooth functions that vary only slowly and do not have
sharp edges. This supports the use of quadratic regularization of the gradients the Tikhonov-
regularized model in [7]. Speci�cally, instead of the iteratively regularized IRGN approach (1.4),
the authors directly solve for v̂ = (û, ĉ1, ĉ2, . . . , ĉ J ) the variational model

(1.5) min
v=(u,c1,c2, ...,c J )T

1
2

J∑
j=1



PF (G(v))j − дj

2
2 + α0Ru (u) + Rc (c),

where G(v) = (uc1,uc2, . . . ,uc J )
T , Ru (u) = TVI (u), and Rc (c) =

∑J
j=1 α j ‖∇c j ‖2,2.

1.3 contributions

From the optimization point of view, a di�culty with both models (1.4) and (1.5) is the multi-
plicative nature of G(v). It can cause u and c j to compete against each other. Therefore, besides
physical considerations, one goal in the design of the regularisers Ru and Rc would be to try
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to make u and c j in some vague sense “orthogonal”, to avoid this competition. One approach
to such vague orthogonality is to force u piecewise constant and c j smooth. This is roughly
performed by the TV and H 1 regularisers in [7]. Another approach is for u and c j have very
di�erent sparsity structure. This is what we will do in this paper.

Speci�cally, we will assume that the coil sensitivities can be sparsely represented in a spherical
function basis { f +l }, which we introduce in detail in Section 2. Then, with c j =

∑L
l=1 a

(j)
l f +l , we

will in the variational model (1.5) promote sparsity by taking

(1.6) Rc (c) = αRa(a) for Ra(a) =

J∑
j=1

L∑
l=1
|a(j)l |.

Therefore, we consider the model

(1.7) min
v=(u,a)

1
2

J∑
j=1



PF (G(v))j − дj

2
2 + α0Ru (u) + αRa(a),

for an appropriate de�nition of G that we provide in Section 4.
In order to make this model practical, we propose in Section 3 an e�cient approach to compute

the spherical basis functions based on spherical Bessel functions of the �rst kind and spherical
harmonics. For the computation of spherical Bessel functions, we develop recurrence formulas.
Based on the recurrence formula, all other spherical Bessel functions are e�ciently calculated
via the �rst two Bessel functions. For the computation of the spherical harmonics, we also
provide a means to e�ciently compute the associated Legendre functions by establishing in
Section 3 a recurrence formula with only four terms. In Section 4 we then present a numerical
method for (1.5) with (1.6), based on the alternating direction method of multipliers (ADMM),
and study the practical reconstruction performance in Section 5.

2 spherical basis function representation of coil sensitivities

According to the principle of reciprocity [27, 29, 30, 62], the coil sensitivity maps can be evaluated
from transmit radio frequency �eld pro�les B+1 . We therefore start by brie�y introducing the
theory of B+1 �elds. Let ω, µ,σ , and ε denote the Larmour frequency, the magnetic permeability,
the conductivity, and the dielectric permittivity of the material, respectively. The radio frequency
(RF) �eld is denoted by ®B(®r ) = (Bx (®r ),By (®r ),Bz (®r ))T with ®B(®r ) ∈ �3 and ®r ∈ �3. In the positively
rotating frame given in [27, 30, 50], the transmit RF �eld is

B+1 (®r ) ≡
Bx (®r ) + iBy (®r )

2 .

For the detailed introduction of positively rotating frame, see [27]. These �elds an be approxi-
mated [18, 32, 43, 58] by

(2.1) B+1 (®r ) ≈
L∑
l=1

al f
+
l (®r ),
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where f +l (®r ) are the spherical basis functions, L is a small natural number and al are complex
coe�cients. The overall magnetic �eld ®B can be reduced to the Helmholtz equation [13]

(2.2) ∇2 ®B(®r ) + ζ 2 ®B(®r ) = 0, where ζ 2 = εµω2 − iσωµ .

In spherical coordinates (ρ,θ ,ϕ), the equation (2.2) has the solution [31]

Bx (®r ) =
∞∑
n=0

n∑
m=−n

αmn f mn (®r ), By (®r ) =
∞∑
n=0

n∑
m=−n

βmn f mn (®r ), Bz (®r ) =
∞∑
n=0

n∑
m=−n

γmn f mn (®r ),(2.3)

where f mn are so-called spherical functions. They can be written

(2.4) f mn (ρ,θ ,ϕ) ≡ jn(ζ ρ)Y
m
n (θ ,ϕ),

where jn is the spherical Bessel function of the �rst kind of order n, and Ym
n is the spherical

harmonic of order n and degree m. The spherical functions form a basis for the B+1 �elds by
setting

f +l (ρ,θ ,ϕ) = f mn (ρ,θ ,ϕ) with l = n2 + n +m + 1, |m | ≤ n and 0 ≤ n ≤ ñ.

When signals or objects of approximately spherical shape are considered, fast convergence is
expected, so the complex coe�cients αmn , βmn , and γmn in (2.3) should be negligible for n > ñ
with ñ being a small natural number. We can therefore also expect fast convergence for the
spherical function approximation of the B+1 �eld, and by extension the coil sensitivities.

3 efficient computation of the spherical basis functions

Our task in the present section is develop e�cient recurrence formulas for the computation of
the spherical basis functions (2.4). As discussed, this will be based on formulas for the Bessel
functions and spherical harmonics.

3.1 a recurrence relation for the spherical bessel functions

Following [1], we now develop a recurrence formula for the spherical Bessel functions jn . We
start by recalling that the Bessel function of the �rst kind, for arbitrary order α ∈ �, is de�ned
as

Jα (x) =
∞∑
s=0

(−1)s
s!Γ(s + α + 1)!

(
x

2

)α+2s
.

Since the Γ satis�es Γ(n) = (n − 1)! for integral n ≥ 0 we can in particular write

Jn(x) =
∞∑
s=0

(−1)s
s!(n + s)!

(
x

2

)n+2s
.

To compute Jn for negative integers, we can use the relationship

J−n(x) = (−1)n Jn(x).
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In addition, we have the recurrence relationship [1]

(3.1) Jn−1(x) + Jn+1(x) =
2n
x
Jn(x).

We now �nally de�ne the spherical Bessel function

jn(x) =

√
π

2x Jn+1/2(x).

From the recurrence relation (3.1) for the Bessel functions Jn , we then obtain

jn−1(x) + jn+1(x) =
2n + 1
x

jn(x).

This can more conveniently be rewritten

(3.2) jn+1(x) =
2n + 1
x

jn(x) − jn−1(x).

This is a three-term recurrence relation, so if j0 and j1 are known, then any higher-order jn can
be computed from (3.2).

To compute j0, we recall that Legendre’s duplication formula for the Γ function states

Γ(1 + z)Γ(z + 1
2 ) = 2−2z√πΓ(2z + 1).

For integral z therefore
z!(z + 1

2 )! = 2−2z−1√π (2z + 1)!.

Consequently

(3.3) jn(x) = 2nxn
∞∑
s=0

(−1)s (s + n)!
s!(2s + 2n + 1)!x

2s .

When n = 0, we �nd from (3.3) that

(3.4) j0(x) =
∞∑
s=0

(−1)s
(2s + 1)!x

2s =
sinx
x
.

To compute j1, we set

nn(x) = (−1)n+1
√

π

2x J−n−1/2(x), and h(1)n (x) = jn(x) + inn(x).

In [1] it is shown

h(1)n (x) = (−i)
n+1e

ix

x

n∑
s=0

is

s!(2x)s
(n + s)!
(n − s)! ,
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Table 1: The �rst spherical Bessel functions
n jn(x)

n = 0 j0(x) =
sin x
x

n = 1 j1(x) = −
cos x
x +

sin x
x 2

n = 2 j2(x) =

(
− 1

x +
3
x 3

)
sinx − 3

x 2 cosx

n = 3 j3(x) =

(
− 15

x 4 −
6
x 2

)
sinx +

(
1
x −

15
x 3

)
cosx

which for n = 1 gives

h(1)1 (x) = eix
(
−

1
x
−

i

x2

)
.

As the real part of h(1)1 (x), we then obtain for j1(x) the expression

(3.5) j1(x) =
sinx
x2 −

cosx
x
.

Based on the recurrence (3.2) and the expressions (3.4) and (3.5) for j0 and j1, we can now
compute any higher-order jn . We list the �rst few in Table 1.

3.2 efficient computation of the associated legendre functions

The spherical harmonics Ym
n are de�ned in spherical coordinates as [1]

(3.6) Ym
n (θ ,ϕ) ≡ (−1)m

√
2n + 1

4π
(n −m)!
(n +m)!P

m
n (cosθ )eimϕ , 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π ,

where the associated Legendre function

(3.7) Pmn (x) = (1 − x2)m/2
dm

dxm
Pn(x), 0 ≤ m ≤ n,

and Pn(x) are the nth-order Legendre polynomials. They are de�ned as

(3.8) Pn(x) =

bn/2c∑
k=0
(−1)k (2n − 2k)!

2nk!(n − k)!(n − 2k)!x
n−2k

with bn/2c = n/2 for n even, (n − 1)/2 for n odd. In particular, it is easy to see that

P0(x) = 1 and P1(x) = x .

For −n ≤ m < 0, using Leibniz’ di�erentiation formula, we can �nd that Pmn (x) and P−mn (x)
are related by [1]

(3.9) P−mn (x) = (−1)m (n −m)!
(n +m)!P

m
n (x).
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For |m | > n, Pmn (x) = 0.
From (3.7), we have

P0
n(x) = Pn(x).

Thus P0
0 (x) = P0(x) = 1, P0

1 (x) = P1(x) = x , P 1
1 (x) = (1 − x2)1/2 d

dx P1(x) = (1 − x2)1/2. By (3.9), we
obtain P−1

1 (x) = −
1
2 (1 − x

2)1/2. For the sake of the convenience of developing the recurrence
relation to �nd all the Pmn e�ectively, we put P−1

1 , P
0
0 , P

0
1 , P

1
1 together as

P0
0 (x) = 1, P−1

1 (x) = −
1
2 (1 − x

2)1/2, P0
1 (x) = x , P 1

1 (x) = (1 − x2)1/2.(3.10)

Let us de�ne the polynomials Pms+m(x) = Pms+m(x)(1 − x2)−m/2, m ≥ 0. Then the generating
function [1, (12.83)]

д̄m(x , t) ≡
(2m)!

2mm!(1 − 2tx + t2)m+1/2 =
∞∑
s=0
Pms+m(x)t

s .

Furthermore, following [1, §12.5], we have the recursion

Pms+m(x) = 2xPms+m−1(x) − P
m
s+m−2(x) + (2m − 1)Pm−1

s+m−1(x).

Therefore

Pms+m(x) = (1 − x2)m/2Pms+m(x)

= (1 − x2)m/2
(
2xPms+m−1(x) − P

m
s+m−2(x) + (2m + 1)Pm−1

s+m−1(x)
)

= 2(1 − x2)m/2xPms+m−1(x) − (1 − x2)m/2Pms+m−2(x)

+ (2m − 1)(1 − x2)m/2Pm−1
s+m−1(x)

= 2(1 − x2)m/2x(1 − x2)−m/2Pms−1+m(x) − (1 − x2)m/2(1 − x2)−m/2Pms−2+m(x)

+ (2m − 1)(1 − x2)m/2(1 − x2)−(m−1)/2Pm−1
s+m−1(x)

= 2xPms+m−1(x) − P
m
s+m−2(x) + (2m − 1)(1 − x2)1/2Pm−1

s+m−1(x).

That is

(3.11) Pms+m(x) = 2xPms+m−1(x) − P
m
s+m−2(x) + (2m − 1)(1 − x2)1/2Pm−1

s+m−1(x).

Now, for m ≥ 0, using (3.11), we can compute e�ectively all the Pmn (x) by starting with (3.10).
Form < 0, we can then use (3.9). We list the �rst few Legendre functions are listed in Table 2.
Recalling (3.6), we are in particular interested int the case x = cosθ , which we also list.

Using the recurrence (3.11) for Pmn (cosθ ), and the explicit solutions in Table 2, we now easily
�nd all the spherical harmonics Ym

n (θ ,ϕ) by the formula (3.6). Table 3 shows some of the
low-order ones.
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Table 2: First few associated Legendre functions as functions of x and of x = cosθ .
Pmn fn. of x fn. of θ Pmn fn. of x fn. of θ
P0

0 (x) 1 1 P−1
1 (x) −

1
2 (1 − x

2)1/2 − 1
2 sinθ

P0
1 (x) x cosθ P 1

1 (x) (1 − x2)1/2 sinθ
P−2

2 (x)
1
8 (1 − x

2) 1
8 sin2 θ P−1

2 (x) −
1
2x(1 − x

2)1/2 − 1
2 cosθ sinθ

P0
2 (x)

3
2x

2 − 1
2

3
2 cos2 θ − 1

2 P 1
2(x) 3x(1 − x2)1/2 3 cosθ sinθ

P2
2 (x) 3(1 − x2) 3 sin2 θ P−3

3 (x) −
1

48 (1 − x
2)3/2 − 1

48 sin3 θ
P−2

3 (x)
1
8x(1 − x

2) 1
8 cosθ sin2 θ P−1

3 (x) −
1
8 (5x

2 − 1)(1 − x2)1/2 1
8 (5 cos2 θ − 1) sinθ

P0
3 (x)

1
2x(5x

2 − 3) 1
2 cosθ (5 cos2 θ − 3) P 1

3(x)
3
2 (5x

2 − 1)(1 − x2)1/2 3
2 (5 cos2 θ − 1) sinθ

P2
3 (x) 15x(1 − x2) 15 cosθ sin2 θ P3

3 (x) 15(1 − x2)3/2 15 sin3 θ

Table 3: Some low-order spherical harmonics

Y 0
0 (θ ,ϕ) =

1√
4π Y−1

1 (θ ,ϕ) =
√

3
8π sinθe−iϕ

Y 0
1 (θ ,ϕ) =

√
3

4π cosθ Y 1
1 (θ ,ϕ) = −

√
3

8π sinθeiϕ

Y−2
2 (θ ,ϕ) =

√
15

32π sin2 θe−2iϕ Y−1
2 (θ ,ϕ) =

√
15
8π sinθ cosθe−iϕ

Y 0
2 (θ ,ϕ) =

√
5

4π

(
3
2 cos2 θ − 1

2

)
Y 1

2(θ ,ϕ) = −
√

5
24π 3 sinθ cosθeiϕ

Y 2
2 (θ ,ϕ) =

√
15

32π sin2 θei2ϕ Y−3
3 (θ ,ϕ) =

√
35

64π sin3 θe−i3ϕ

Y−2
3 (θ ,ϕ) =

√
105
32π cosθ sin2 θe−i2ϕ Y−1

3 (θ ,ϕ) =
√

21
64π (5 cos2 θ − 1) sinθe−iϕ

Y 0
3 (θ ,ϕ) =

√
7

16π cosθ (5 cos2 θ − 3) Y 1
3 (θ ,ϕ) = −

√
21

64π (5 cos2 θ − 1) sinθeiϕ

Y 2
3 (θ ,ϕ) =

√
105
32π cosθ sin2 θei2ϕ Y 3

3 (θ ,ϕ) = −
√

35
64π sin3 θei3ϕ

3.3 a method to compute the spherical basis functions

We recall te presentation of f +l and the presentation (2.4) of f mn . Because l = n2 + n +m + 1 and
|m | ≤ n, we �nd that l is bounded by l (n)max = (n+1)2 forn. From f +l (ρ,θ ,ϕ) = f mn (ρ,θ ,ϕ), we easily
get for the low-order functions the relantionships in Table 4. Using f mn (ρ,θ ,ϕ) = jn(ζ ρ)Y

m
n (θ ,ϕ),

we then obtain the basis functions f +l . Table 5 lists some f +l corresponding to low-order n.
From the above analysis, we �nd that if jn and Pmn are given only for n = 0, 1, then rather

than directly evaluating the series (3.3) and (3.8), we can quickly �nd all the basis functions
f +l from (3.2) and (3.11). Starting with j0(ζ ρ) =

sin(ζ ρ)
ζ ρ , j1(ζ ρ) = sin(ζ ρ)

(ζ ρ)2 −
cos(ζ ρ)
ζ ρ , P0

0 (cosθ ) = 1,
P−1

1 (cosθ ) = − 1
2 sinθ , P0

1 (cosθ ) = cosθ , P 1
1 (cosθ ) = sinθ , we can compute all the f +l with

|m | ≤ n, l = 1, 2, . . . , l (n)max. The numerical computation is outlined in Algorithm 1. In its practical
application, the radius ρ, the polar angle θ and the azimuth angle ϕ are computed by Cartesian
coordinates (x ,y, z), which are as follows:

ρi, j =
√
x2
i + y

2
j + z

2
0,

θi, j = arccos( z0
ρi, j
),
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Table 4: The relationship between f +l and f mn
n f mn f +l (l (n)max)

n = 0 f 0
0 f +1 (lmax = (0 + 1)2 = 1)

n = 1 f −1
1 , f

0
1 , f

1
1 f +2 , f

+
3 , f

+
4 (l

(n)
max = (1 + 1)2 = 4)

n = 2 f −2
2 , f

−1
2 , f

0
2 , f

1
2 , f

2
2 f +5 , f

+
6 , f

+
7 , f

+
8 , f

+
9 (l

(n)
max = (2 + 1)2 = 9)

n = 3 f −3
3 , f

−2
3 , f

−1
3 , f

0
3 , f

1
3 , f

2
3 , f

3
3 f +10 , f

+
11 , f

+
12 , f

+
13 , f

+
14 , f

+
15 , f

+
16 (l

(n)
max = (3 + 1)2 = 16)

...
...

...

Table 5: The the basis functions f +l corresponding to order n
n f +l
n = 0 f +1 = j0(ζ ρ)Y

0
0 (θ ,ϕ)

n = 1 f +2 = j1(ζ ρ)Y
−1
1 (θ ,ϕ), f

+
3 = j1(ζ ρ)Y

0
1 (θ ,ϕ), f

+
4 = j1(ζ ρ)Y

1
1 (θ ,ϕ)

n = 2 f +5 = j2(ζ ρ)Y
−2
2 (θ ,ϕ), f

+
6 = j2(ζ ρ)Y

−1
2 (θ ,ϕ), f

+
7 = j2(ζ ρ)Y

0
2 (θ ,ϕ),

f +8 = j2(ζ ρ)Y
1
2(θ ,ϕ), f

+
9 = j2(ζ ρ)Y

2
2 (θ ,ϕ)

n = 3 f +10 = j3(ζ ρ)Y
−3
3 (θ ,ϕ), f

+
11 = j3(ζ ρ)Y

−2
3 (θ ,ϕ), f

+
12 = j3(ζ ρ)Y

−1
3 (θ ,ϕ),

f +13 = j3(ζ ρ)Y
0
3 (θ ,ϕ), f

+
14 = j3(ζ ρ)Y

1
3 (θ ,ϕ), f

+
15 = j3(ζ ρ)Y

2
3 (θ ,ϕ),

f +16 = j3(ζ ρ)Y
3
3 (θ ,ϕ)

...
...

ϕi, j = arctan(
yj

xi
),

where z0 is �xed, xi ,yj are discrete results of x ,y , i, j = 1, 2, . . . ,N . Hence(
f +l

)
i, j = jn(ζ ρi, j )Y

m
n (θi, j ,ϕi, j ) with l = n2 + n +m + 1, |m | ≤ n.

The B+1 �eld approximation (2.1) can be expressed in matrix-vector form B+1 ≈ FA, where for
` = l (ñ)max we have

F =

©­­­­­­­­­­­­­­­­­­­­«

(f +1 )1,1 (f +2 )1,1 · · · (f +
`
)1,1

(f +1 )2,1 (f +2 )2,1 · · · (f +
`
)2,1

...
...
. . .

...
(f +1 )N ,1 (f +2 )N ,1 · · · (f +` )N ,1
(f +1 )1,2 (f +2 )1,2 · · · (f +

`
)1,2

(f +1 )2,2 (f +2 )2,2 · · · (f +
`
)2,2

...
...
. . .

...
(f +1 )N ,2 (f +2 )N ,2 · · · (f +` )N ,2

...
...
. . .

...
(f +1 )1,N (f +2 )1,N · · · (f +

`
)1,N

(f +1 )2,N (f +2 )2,N · · · (f +
`
)2,N

...
...
. . .

...
(f +1 )N ,N (f +2 )N ,N · · · (f +

`
)N ,N

ª®®®®®®®®®®®®®®®®®®®®¬

, and A =

©­­­­«
a1
a2
...

al (ñ)max

ª®®®®¬
.
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Algorithm 1 The computation for the basis functions f +l

Given ω, µ,σ , ε , ρ,θ , ϕ and ñ.
Calculate ζ =

√
εµω2 − iσωµ.

Initialize j0(ζ ρ) =
sin(ζ ρ)
ζ ρ , j1(ζ ρ) = sin(ζ ρ)

(ζ ρ)2 −
cos(ζ ρ)
ζ ρ ,

P0
0 (cosθ ) = 1, P−1

1 (cosθ ) = − 1
2 sinθ ,

P0
1 (cosθ ) = cosθ , P 1

1 (cosθ ) = sinθ
Y 0

0 (θ ,ϕ) =
1√
4π , Y−1

1 (θ ,ϕ) =
√

3
8π sinθe−iϕ ,

Y 0
1 (θ ,ϕ) =

√
3

4π cosθ , Y 1
1 (θ ,ϕ) = −

√
3

8π sinθeiϕ .
Compute f +1 = j0(ζ ρ)Y

0
0 (θ ,ϕ), f +2 = j1(ζ ρ)Y

−1
1 (θ ,ϕ),

f +3 = j1(ζ ρ)Y
0
1 (θ ,ϕ), f

+
4 = j1(ζ ρ)Y

1
1 (θ ,ϕ).

For n = 2 : ñ
• calculate jn(ζ ρ) and Pmn (cosθ ) using (3.2) and (3.11), respectively.
• calculate Ym

n (θ ,ϕ) with (3.6).
• calculate f +l = jn(ζ ρ)Y

m
n (θ ,ϕ) with |m | ≤ n and l = n2 + n +m + 1.

End
Return { f +l | l = 1, 2, . . . , l (ñ)max}.

4 the new regularization model and its numerical realization

We now present in detail our spherical function based regularization model for p-MRI recon-
struction, as well as a method for its numerical realization.

4.1 regularization by sparse presentation in spherical basis

Replacing the coil sensitivities c j and their regularization Rc in the model (1.5) by the spherical
functions representation

∑l (ñ)max
l=1 a

(j)
l f +l , j = 1, 2, . . . , J , and Ra(a) = α

∑J
j=1

∑l (ñ)max
l=1 |a

(j)
l |, respectively,

we obtain the model (1.7), that is

(4.1) min
v=(u ;a)

1
2

J∑
j=1



PF (G(v))j − дj

2
2 + α0Ru (u) + αRa(a),

where

(4.2) G(v) =

(
u

l (ñ)max∑
l=1

a(1)l f +l ,u

l (ñ)max∑
l=1

a(2)l f +l , . . . ,u

l (ñ)max∑
l=1

a(J )l f +l

)T
, Ra(a) =

J∑
j=1

l (ñ)max∑
l=1

��a(j)l ��,
and

(4.3) a =

(
a(1)1 ,a

(1)
2 , . . . ,a

(1)
l (ñ)max
,a(2)1 ,a

(2)
2 , . . . ,a

(2)
l (ñ)max
, . . . ,a(J )1 ,a

(J )
2 , . . . ,a

(J )

l (ñ)max

)T
∈ �J l

(ñ)
max .

For the image u, we use the same isotropic total variation regularization Ru (u) = TVI (u) as in
the model (1.5) from [7], while our Ra yields a di�erent regularization Rc for the coil sensitivities.
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The complex numbers a(j)l are the coe�cients corresponding to the spherical function repre-
sentation. The spherical basis functions are smooth enough to mainly encode low-frequency
information for low l , so should not pick up important image features. Apart from this, we will
not need to store the coil sensitives, which are themselves relatively high-dimensional images,
or di�erentiate and perform their updates in a numerical optimization algorithm, as would
be the case with the mode (1.7) in [7]. Instead we work with the relatively low-dimensional a.
Thus the updated model can be expected to be e�ective for parallel MRI reconstruction. We will
validate this with the numerical experiments in Section 5, but now we need to construct the
optimization algorithm to solve the model (4.1), that is (1.7).

4.2 the admm for convex problems

We now start building a method for solving variational problems of type (1.7), i.e., (4.1). Note that
due to the structure of G, these problems are non-convex. We therefore follow the non-linear
ADMM approach of [7], itself motivated by the non-linear primal–dual hybrid gradient method
(modi�ed; PDHGM) of [14, 54]. Here we simplify the derivations from [7] to our speci�c problem
form, and squared Hilbert space distances in place of the general Bregman distances employed
in [7].

To motivate the algorithm that we will use, we start by considering convex problems

(4.4) inf
v ∈V
{E(v) + F (Bv)},

where E : V −→ ] − ∞,+∞] and F : H −→ ] − ∞,+∞] are two proper lower semi-continuous
convex functions, B is a linear operator from V into H , and V and H are the real Hilbert spaces
equipped with the inner products 〈·, ·〉V and 〈·, ·〉H . The augmented dual problem for (4.4) is

(4.5) sup
µ
φδ (µ) := inf

v ∈V

{
E(v) + inf

q∈H

(
F (q) + 〈µ,Bv − q〉H +

δ

2 ‖ Bv − q ‖
2
H

)}
.

where, δ > 0, and φδ : H −→ [−∞,+∞[. We can solve (4.4) and the dual (4.5) by �nding on
V × H × H a saddle point of the augmented Lagrangian function de�ned by

(4.6) Lδ (v,q, µ) = F (q) + E(v) + 〈µ,Bv − q〉H +
δ

2 ‖ Bv − q ‖
2
H .

Theorem 4.1. If {u,p, λ} is a saddle-point ofLδ (v,q, µ) onV ×H ×H for δ > 0, thenu is a solution
of (4.4), and we have p = Bu.

Proof. The proof is a direct consequence of Theorem 2.1 in Chapter III [21]. �

In view of Theorem 4.1, in order to calculate the saddle-points of Lδ (v,q, µ) on V × H × H ,
we employ an algorithm of the Uzawa type: given λ0 ∈ H , determine {uk+1,pk+1} from

(4.7) min
{v,q }∈V×H

Lδ (v,q, λ
k ),

and then update

(4.8) λk+1 = λk + δ (Buk+1 − pk+1).
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For more details we refer to [2]. The direct solution to (4.7) is due to the coupling of v and q. For
this reason, we are led to the Alternating Direction Method of Multipliers (ADMM) algorithm
introduced in [2] to solve (4.7). This algorithm approximates the pair (uk+1,pk+1) for (4.7) via
decoupled minimization over v and q as

uk+1 ∈ argmin
v ∈V

Lδ (v,p
k , λk ), pk+1 ∈ argmin

q∈H
Lδ (u

k+1,q, λk ).(4.9)

The ADMM algorithm for (4.4), described by (4.6), (4.8), and (4.9), can thus be summarized

uk+1 ∈ argmin
v ∈V

F (pk ) + E(v) + 〈λk ,Bv − pk 〉H +
δ

2 ‖ Bv − p
k ‖2H ,(4.10a)

pk+1 ∈ argmin
q∈H

F (q) + E(uk+1) + 〈λk ,Buk − q〉H +
δ

2 ‖ Bu
k − q ‖2H ,(4.10b)

λk+1 = λk + δ (Buk+1 − pk+1).

4.3 proximal minimization

When V and H are �n , the sub-problems (4.10a) and (4.10b) can be solved by the proximal
minimization algorithm that we now describe. Let us consider the convex problem

(4.11) min
x ∈�n

W (x),

whereW : �n →] −∞,+∞] is a proper, lower semi-continuous convex function. The Moreau–
Yosida envelope ofW (x) is de�ned as

Wρ (x) = inf
y ∈�n

{
W (y) +

1
2ρ ‖x − y ‖

2
}
.

As proved in [42],Wρ (x) is convex and di�erentiable, and has the same set of minimizers, and
the same optimal value, asW . This leads to the proximal minimization algorithm proposed by
Martinet in [40]. Namely, we solve (4.11) by iterating

(4.12) xk+1 = argmin
x ∈�n

{
W (x) +

1
2ρk+1

‖x − xk ‖2
}
,

where the initial point x0 ∈ �n , {ρk }∞k=1 is a sequence of positive numbers. The convergence
of this algorithm has been proved by Rockafellar in [47, 48]. For more discussion on proximal
methods, see [15, 38, 55].

4.4 preconditioned proximal minimization

Following the ideas given in [60], we can improve the performance of the proximal minimization
method (4.12) by preconditioning. Speci�cally, we pick some positive de�nite symmetric matrix
Q , and replace (4.12) by

xk+1 = argmin
x ∈�n

{
W (x) + ρ−1

k+1


x − xk

2

Q

}
.
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Here we de�ne ‖ x − xk ‖Q :=
√
〈Q(x − xk ),x − xk 〉. Thus, picking Qk

v and Qk
q positive semi-

de�nite, and incorporating the corresponding Moreau–Yosida regularization into (4.10), we
obtain the preconditioned ADMM (cf. [20, 61])

uk+1 = argmin
v ∈�n

F (pk ) + E(v) + 〈λk ,Bv − pk 〉 +
δ

2


Bv − pk

2

+ ρ−1
k+1



v − uk

2
Qk
v
,

pk+1 = argmin
q∈�n

F (q) + E(uk+1) + 〈λk ,Buk+1 − q〉 +
δ

2


Buk+1 − q



2
+ ρ−1

k+1


q − pk

2

Qk
q
,

λk+1 = λk + δ (Buk+1 − pk+1).

4.5 a computational method for the proposed model

In order to cast the model (1.7) in the preconditioned ADMM framework, let us �rst study the
augmented Lagrangian for (1.7). For v = (u;a)T , we de�ne

B(v) :=
(
G(v),∇u,a

)
,

whereG and a are as in (4.2) and (4.3), respectively. We represent the image as a vector u ∈ �N 2 ,
and write ∇u = (∇1u;∇2u) ∈ �

2N 2 . with E = 0 and

F (B(v)) =
1
2

J∑
j=1



PF (G(v))j − дj

2
2 + α0Ru (u) + αRa(a),

the problem (1.7) has the form (4.4) except for B being nonlinear operator. It follows from the
above analysis and the preceding sections that an augmented Lagrangian naturally associated
with the problem (1.7) is given by

Lδ (v,q, µ) = F (q) + (µ,B(v) − q) +
δ

2


B(v) − q

2

.

By analogue, following [7], we extend the preconditioned ADMM (4.13) to non-linear B as

uk+1 = argmin
v

F (pk ) + 〈λk ,B(v) − pk 〉 +
δ

2


B(v) − pk

2

+ ρ−1
k+1



v − uk

2
Qk
v
,(4.14a)

pk+1 = argmin
q

F (q) + 〈λk ,B(uk+1) − q〉 +
δ

2


B(uk+1) − q



2
+ ρ−1

k+1


q − pk

2

Qk
q
,(4.14b)

λk+1 = λk + δ (B(uk+1) − pk+1).(4.14c)

For our speci�c problem, the minimizations are over v ∈ �N 2+J ∗l (ñ)max , and q ∈ �J ∗N
2+2∗N 2+J ∗l (ñ)max .

To make the proximal minimizations (4.14a) and (4.14b) easier, we linearise the operator B.
Let F̃1(v) = B(v) − pk and F̃2(q) = B(uk+1) − q. Since these functions are smooth,

F̃1(v) ≈ F̃1(u
k ) + F̃1

′
(uk )(v − uk ), and F̃2(q) ≈ F̃2(p

k ) + F̃2
′
(pk )(v − pk ),(4.15)
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Algorithm 2 Linearised preconditioned ADMM for (1.7)
Initialization u0, p0, λ0 and δ .
Set λ̄0 = µ0.
while "stopping criterion is not satis�ed" do
Jkv = F̃1

′
(uk )

Choose τ kv such that τ kv δ < 1
‖ J kv ‖2

Compute uk+1 by (4.17)
Compute Jkq by Jkq = F̃2

′
(pk )

Choose τ kq such that τ kq δ < 1
‖ J kq ‖2

Compute pk+1 by (4.18)
Compute λk+1 by (4.14c)
Compute λ̄k+1 = 2λk+1 − λk

end while
Return uk , pk , λk and λ̄k

where F̃1
′
(uk ) and F̃2

′
(pk ) are the Fréchet derivative of F̃1 at uk and F̃2 at pk . For the sake of

clarity, we set Jkv := F̃1
′
(uk ), Jkq := F̃2

′
(pk ), rkv := F̃1

′
(uk )uk − F̃1(u

k ) and rkq := F̃2
′
(pk )pk − F̃2(p

k ).
Using (4.15), (4.14a), and (4.14b) are replaced by

uk+1 = argmin
v
〈λk , Jkqv〉 +

δ

2


Jkqv − rkv 

2

+ ρ−1
k+1



v − uk

2
Qk
v
,(4.16a)

pk+1 = argmin
q

F (q) + 〈λk , Jkqv〉 +
δ

2


Jkqv − rkv 

2

+ ρ−1
k+1



q − pk

2
Qk
q
,(4.16b)

where still v ∈ �N 2+J ∗l (ñ)max , and q ∈ �J ∗N
2+2∗N 2+J ∗l (ñ)max .

In order to simplify the linearisation (4.16a) and (4.16b), we will seek Qk
v and Qk

q by Jkv and Jkq .
For τ kv δ < 1

‖ J kv ‖2
and τ kq δ < 1

‖ J kq ‖2
, we speci�cally letQk

v := τ kv I −δ Jkv
∗
Jkv andQk

q := τ kq I −δ Jkq
∗
Jkq .

We also set λ̄k := 2λk − λk−1 and ρk+1 = 2. It follows easily from (4.16a) and (4.16b)

uk+1 = uk − τ kv J
k
v
∗
λ̄k ,(4.17)

pk+1 =

(
I + τ kq ∂F

)−1 (
pk − τ kq J

k
q
∗
(
λk + δ

(
B(uk+1) − pk

)))
.(4.18)

Finally, (4.17), (4.18) and (4.14c) yields Algorithm 2 for the solution of (1.7). Its convergence is
studied in [7] based on the results of [54].

5 numerical experiments

We now study the reconstruction performance of (1.7) in comparison to the model (1.5) from [7].
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5.1 technical details

In the numerical simulations, we introduce regularization parameters α j into the �delity term
1
2
∑J

j=1


PF (G(v))j − дj

2

2 in the model (1.7). With this, the objective functional becomes

F (Bv) =
1
2

J∑
j=1

α j


PF (G(v))j − дj

2

2 + α0Ru (u) + αRa(a)

=
1
2

J∑
j=1

α j


PF (G(v))j − дj

2

2 + α0TVI (u) + α
J∑
j=1

l (ñ)max∑
l=1

��a(j)l ��.
We decompose F (Bv) into Fj (v) =

1
2α j



PF (G(v))j − дj

2
2 for j = 1, 2, . . . , J , as well as F J+1(u) =

α0TVI (u), and F J+2(a) = α
∑J

j=1
∑l (ñ)max
l=1

��a(j)l ��. That is F =
∑J

j=1 Fj + F J+1 + F J+2 =
∑J+2

j=1 Fj . We
compute the corresponding resolvents explicitly as(

I + τ kq ∂Fj

)−1
(x) = F −1

(
Fx j + α jτ

k
q P

Tдj

1 + α jτ kq diag(PT P)

)
, j = 1, 2, . . . , J ,(

I + τ kq ∂F J+1

)−1
(x) =

x J+1

TVI
(
x J+1

) max
(
TVI

(
x J+1

)
− α0τ

k
q , 0

)
,(

I + τ kq ∂F J+1

)−1
(x) =

(x J+2)i��(x J+2)i
�� max

(
|(x J+2)i | − ατ

k
q , 0

)
, i = 1, 2, . . . , J ∗ l (ñ)max.

5.2 experimental setup

Our numerical experiments are based on the synthetic brain phantom from [3, 8], depicted in
Section 5.2 and of dimension 190 × 190. It contains several tissues, such as cerebrospinal �uid
(CSF), gray matter (GM), white matter (WM) and cortical bone. In the numerical simulations, we
set the number of coils J = 8. For the generation of k-space measurement data дj , j = 1, 2, . . . , J ,
we use the approach of [7]. We generate 8 coil sensitivity maps, based on a measurement of a
water bottle with an 8-channel head coil array. These measurements are in Figure 6. We then
multiply the brain phantom with each of these coil sensitivity maps separately, and convert
the result to k-space data with the Fourier transform. Then we apply the 25% subsampling
mask shown in Section 5.2. Finally, we add Gaussian noise with standard deviation σ̃ to the
sub-sampled data.

We also demonstrate the robustness of the proposed approach in the p-MRI reconstruction
by perturbing the coil sensitivity maps obtained from the water bottle. This is done by adding
the 1st spherical basis function multiplied by factor γ = 4 to the water bottle measurements.
The resulting maps are shown in Figure 12.

In numerical experiments, for the number of spherical basis functions “levels”, we choose
either ñ = 2 or ñ = 5. So the number of spherical basis functions is either l (ñ)max = 9 or l (ñ)max = 36.
In the Cartesian coordinate system, we set z0 = 0.5, and x ,y in MATLAB are discretised by

2 ∗ step ∗ (1 : 190)
190 − 10,
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(a) Brain phantom (b) k-space sampling mask

Figure 1: (a) shows the brain phantom described in Section 5.2. (b) shows the spiral-shaped 25%
k-space sub-sampling mask.

where step = 10. We plot in Figure 2 the �rst 36 spherical basis functions corresponding to
ñ = 5. For ñ = 2 only the 9 �rst are used.

5.3 quality measures and parameter selection

All algorithms have been implemented in MATLAB, and the test hardware is an Intel Core
i7-6700 HQ CPU 2.60GHz with 8GB RAM. We evaluate the results of the proposed approach
in terms of the peak signal-to-noise (PSNR) that is available in the image processing toolbox
in MATLAB and the Structural SIMilarity (SSIM) given in [57]. In the computation of the
spherical basis function f +l , we use the Larmour frequency ω = 42.58. The conductivity σ and
the dielectric permittivity ε are the optimal (σ , ε) for the heterogeneous model in [50] with
σ = 0.6, ε = 50. The magnetic permeability for water is µ = 1.2566 × 10−6.

5.4 numerical reconstructions and comparison between (1.7) and (1.5)
We perform experiments with the noise level σ̃ = 0.05. We initialize the Algorithm 2 with
u0 = 0 ∈ �N 2 , a0 = (1, . . . , 1) ∈ �J l

(n)
max , and take as step lengths τ kv = 1/8, τ kq = 23, and δ = 1/24

and the remaining v0, λ0, λ̄0 are all also initialized to zero in the two algorithms. For numerical
reconstruction corresponding to (1.5), we use the codes from [7], available from [6].

We take as regularization parameters α j = 0.4018, (j = 1, . . . , J ), α0 = 0.0062 and α = 0.2149.
We perform a �xed number of iterations of Algorithm 2. With ñ = 2, i.e., lmax = 9, stopping
after 1000, 1200, and 1500 iterations, the reconstruction results for the model (1.7) are shown
in Figure 3. We also perform the numerical simulations with ñ = 5, and the same number of
iterations 1000, 1200, and 1500. The reconstruction results for the model (1.7) are shown in
Figure 4, and for the model (1.5) in Figure 5. In Table 6 we report the PNSR and SSIM [57] values.
From these results we can observe that the reconstruction quality of the model (1.7) is much
better than the model (1.5) when iterations are 1000, 1200, and 1500. The reconstruction results
can be further improved due to the regularization parameters α not being optimally chosen; for
a truly fair comparison of the potential of the two models distinct, parameter learning strategies

17



Figure 2: The 36 �rst spherical basis functions corresponding to ñ = 5. For ñ = 2 only the 9 �rst
are used.

should be used [16, 17]. What we can with reasonable con�dence say based on our experiments
here is that the non-linear ADMM converges faster for the model (1.7) than for (1.5). This is
important in practical applications.

We also report the absolute values of the coe�cients a(j)l in Table 7 when the stopping number
of iterations is 1500 for ñ = 2. Similarly, Table 8 shows the absolute values for the resulted
coe�cients a(j)l for ñ = 5 when we stop at 1500 iterations. While for ñ = 2 the last rows of the
coe�cient pyramid for each coil still have high coe�cient values, for ñ = 5 the coe�cients on
the last row have decayed to below 1% of the main coe�cient on the �rst row; often 0.1% or less.
This supports our starting intuition that a sparse approximation of the coil sensitivities with
relatively few coe�cients is su�cient for a high-quality reconstruction.

Using the discovered coe�cients a(j)l , and the known spherical basis functions, we can recon-
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(a) 1200 iterations (b) 1500 iterations (c) 1800 iterations

Figure 3: Reconstructed brain slice using (1.7) and ñ = 2.

(a) 1200 iterations (b) 1500 iterations (c) 1800 iterations

Figure 4: Reconstructed brain slice using (1.7) and ñ = 5.

struct the approximation of the coil sensitivities c j . These are in Figure 7 and Figure 8 for ñ = 2
and ñ = 5 with 1500 iterations. In order to do the further comparison between (1.7) and (1.5), we
also give the approximation of c j with 1500 iterations for (1.5) in Figure 9. The PSNR and SSIM
values for reconstruction of coils using (1.7) and (1.5) for 1500 iterations are reported in Table 9.
Visually, the coil sensitivities constructed with our model (1.5) are signi�cantly smoother than
those constructed with the model (1.7), and indeed appear to very well approximate the “true”
coil sensitivities in Figure 6.

To test robustness, we show in Figures 10 and 11 for ñ = 2 and ñ = 5, respectively, the
reconstructions results for the alternative coil sensitivity maps in Figure 12. The number of
iterations is 1500. The PSNR and SSIM values are reported in Table 10. Comparing to Figures 3
and 4 and Table 6, we can see that the results remain stable under this perturbation of coil
sensitivities, being virtually identical. By contrast, the reconstructed coil sensitivities in Figures 13
and 14 have changed, corresponding to the change in true coil sensitivities.
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(a) 1200 iterations (b) 1500 iterations (c) 1800 iterations

Figure 5: Reconstructed brain slice using (1.5).

Table 6: Reconstruction quality comparison between (1.7) with ñ = 2, 5 and (1.5).
Method stopping itr. k PSNR(dB) SSIM

1200 25.2750 0.9996
using (1.7) with ñ = 2 1500 25.6878 0.9997

1800 25.1069 0.9996
1200 26.0725 0.9997

using (1.7) with ñ = 5 1500 25.5883 0.9997
1800 25.8730 0.9997
1200 24.7173 0.9996

using (1.5) 1500 24.1524 0.9996
1800 23.6702 0.9995

6 conclusions

In this paper, we have established a new model for parallel MRI reconstruction based on sparse
regularization of coil sensitivities in spherical basis function bases. We have developed e�cient
recurrence formulas for the computation of these functions. We have then applied the non-
linear ADMM from [7] to numerically solve our model (1.7). By numerical reconstructions and
comparison between (1.7) and (1.5), we think that the reconstruction quality for proposed model
(1.7) is better than the model (1.5). In additional, the reconstruction for our model (1.7) for the
alternative coils sensitivity maps is very robust. That has an important signi�cance in practical
applications. In the future, we will study the optimal choice among the regularization parameters
α j , α0, and α to improve reconstruction quality furthermore via parameter learning strategies
in [16, 17].
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Table 7: The absolute values of coe�cients of f +l with ñ = 2 for 1500 iterations. j is the ordinal
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Table 9: Reconstruction quality comparison between (1.7) with ñ = 2, 5 and (1.5) for 1500 itera-
tions.

Method coil No. PSNR(dB) SSIM
coil 1 8.5038 0.9864
coil 2 8.9329 0.9878
coil 3 8.9895 0.9873
coil 4 10.7526 0.9918

using (1.7) with ñ = 2 coil 5 10.2633 0.9900
coil 6 10.6595 0.9917
coil 7 9.0644 0.9869
coil 8 11.2573 0.9929
coil 1 7.2807 0.9849
coil 2 8.2247 0.9878
coil 3 7.4537 0.9850
coil 4 9.3979 0.9903

using (1.7) with ñ = 5 coil 5 9.1837 0.9891
coil 6 10.3233 0.9919
coil 7 8.5967 0.9876
coil 8 10.1097 0.9920
coil 1 5.9826 0.9759
coil 2 5.9328 0.9754
coil 3 5.9124 0.9748
coil 4 6.3114 0.9779

using (1.5) coil 5 6.1844 0.9762
coil 6 6.1754 0.9765
coil 7 6.3423 0.9772
coil 8 6.4319 0.9774

Table 10: The PSNR and SSIM values for reconstruction with alternative coil sensitivities using
(1.7) with ñ = 2 and ñ = 5

Method stopping itr. k PSNR(dB) SSIM
1200 27.0202 0.9998

using (1.7) with ñ = 2 1500 24.2239 0.9995
1800 24.9633 0.9996
1200 30.8382 0.9999

using (1.7) with ñ = 5 1500 30.7620 0.9999
1800 30.6448 0.9999
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