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predictive online optimisation with applications
to optical flow

Tuomo Valkonen∗

Abstract Online optimisation revolves around new data being introduced into a problem while
it is still being solved; think of deep learning as more training samples become available. We adapt
the idea to dynamic inverse problems such as video processing with optical �ow. We introduce
a corresponding predictive online primal-dual proximal splitting method. The video frames now
exactly correspond to the algorithm iterations. A user-prescribed predictor describes the evolution
of the primal variable. To prove convergence we need a predictor for the dual variable based on
(proximal) gradient �ow. This a�ects the model that the method asymptotically minimises. We
show that for inverse problems the e�ect is, essentially, to construct a new dynamic regulariser
based on in�mal convolution of the static regularisers with the temporal coupling. We �nish by
demonstrating excellent real-time performance of our method in computational image stabilisation
and convergence in terms of regularisation theory.

1 introduction

On Hilbert spaces -: and .: , (: ∈ ℕ), consider the formal problem

(1.1) min
G 1,G2,...

∞∑
:=1

�: (G: ) +�: ( :G: ) s.t. G:+1 = �̄: (G: ),

where �: : -: → ℝ and �: : .: → ℝ are convex, proper, and lower semicontinuous,  : ∈ L(-: ;.: )
is linear and bounded, and the temporal coupling operators �̄: : -: → -:+1. One may think of
min(�: +�: ◦  : ) as a problem we want to solve on each time instant : , knowing that the solutions
of these problems are coupled via the environment acting through �̄: . For example, �̄: can describe
the true movement of objects in a scene, that we cannot control, and do not necessarily know. This
problem is clearly challenging; even its solutions are generally well-de�ned only asymptotically.

Instead of trying to solve (1.1) exactly, what if we take only one step of an optimisation algorithm on
each partial problem

(1.2) min
G: ∈-:

�: (G: ) := �: (G: ) +�: ( :G: ),

and use an approximation �: : -: → -:+1, called the predictor, of the unknown �̄: to transfer iterates
between the steps? Can we obtain convergence in an asymptotic sense, and to what? We set out to
study these questions, in particular to develop a predictive “online” primal-dual method.
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Our simple model problem is image sequence denoising: we are given noisy images {1: }:∈ℕ in
the space1 - = !2(Ω) on the two-dimensional domain Ω ⊂ ℝ2, and bijective displacement �elds
E: : Ω → Ω such that the images roughly satisfy the optical �ow constraint 1:+1 ≈ �: (1: ) for
�: (G) := G ◦ E: . For an introduction to optical �ow, we refer to [5]. The static problem (1.2) is the
isotropic total variation denoising

(1.3) min
G ∈-

1
2 ‖G − 1

: ‖2- + U ‖�G ‖M,

where U > 0 is a regularisation parameter and� a measure-valued di�erential operator. In the dynamic
case we would like the approximate solutions {G: }:∈ℕ to also satisfy G:+1 ≈ �: (G: ). In principle, we
could for the �rst # frames for some penalisation parameter V > 0 solve

min
G 1,...,G# +1∈-

#∑
:=0

(
1
2 ‖G

: − 1: ‖2- + U ‖�G: ‖M +
V

2 ‖G
:+1 −�: (G: )‖2-

)
,

or a version that linearises�: . However, when the number of frames # is high, these problems become
numerically increasingly challenging. Also, if we want to solve the problem for # + 1 frames, we
may need to do the same amount of work again, depending on how well our algorithm can “restart”.
Primal-dual methods in particular tend to be very sensitive to initialisation.

An alternative is to try to solve the problem in an “online” fashion, building the gradually changing
data into the algorithm design [38]. We refer to [19, 6, 25] for introductions and further references
to online methods in machine learning. Online Newton methods have also been studied for smooth
PDE-constrained optimisation [8, 17]. Our approach has more in common with machine learning
and nonsmooth optimisation. From this point of view, basic online methods seek a low regret for a
dynamic solution sequence compared to a �xed solution. With the notation G 1:# := (G 1, . . . , G# ), for
any comparison set � ⊂ - , where we expect the true solution to lie, we de�ne the regret as

regret� (G 1:# ) := sup
Ḡ ∈�

#∑
:=1

(
�: (G: ) − �: (Ḡ)

)
.

This does not model the temporal nature of our problem, so in [18] dynamic regret is introduced. For a
comparison set B1:# ⊂

∏#
:=1-: of potential true solutions, it reads

(1.4) dynamic_regretB1:# (G 1:# ) := sup
Ḡ 1:# ∈B1:#

#∑
:=1

(
�: (G: ) − �: (Ḡ: )

)
.

For example, we can take

(1.5) B1:# = {(Ḡ 1, . . . , Ḡ# ) | Ḡ0 ∈ B0, Ḡ
:+1 = �̄: (Ḡ: ), : = 0, . . . , # − 1}

for some B0 ⊂ -0, where we expect the initial true Ḡ0 to lie, and the true temporal coupling operators
�̄: : -: → -:+1. For the optical �ow problem, (1.5) would read

B1:# = {(Ḡ0 ◦ Ē1, . . . , Ḡ
0 ◦ Ē1 ◦ · · · ◦ Ē# ) | Ḡ0 ∈ B0}

1The total variation term in (1.3) in principle requires G ∈ BV(Ω), the space of functions of bounded variation on Ω. This
is not a Hilbert space, but merely a Banach space, where our overall setup (1.1) does not to apply. However, due to the
weak(-∗) lower semicontinuity of convex functionals, any minimiser of (1.3) necessarily lies in !2 (Ω) ∩ BV(Ω), so we are
justi�ed in working in the Hilbert space - = !2 (Ω), and seeing BV(Ω) as a constraint imposed by the total variation
term.
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for some true displacement �elds Ē: and a set B0 containing the initial non-corrupted frame Ḡ0. Thus
B1:# consists of all potential “true” frames Ḡ 1, . . . , Ḡ# generated from all potential initial Ḡ0 by the
true displacement �elds. When the dynamic regret (1.4) is below zero, the algorithmic iterates G 1:# �t
the data and total variation regularisation of (1.3) better than all Ḡ 1:# ∈ B1:# , but may not satisfy the
constraint G 1:# = (G0 ◦ E1, . . . , G

0 ◦ E1 ◦ · · · ◦ E# ) for any displacement �elds E: . Speci�c algorithms may
additionally seek to approximately satisfy this constraint for some measured or estimated displacement
�elds E: .

The idea now would be to obtain a low dynamic regret by some strategy. One possibility is what we
already mentioned: take one step of an optimisation method towards a minimiser of each �: , and then
use �: to predict an approximate solution for the next problem. Repeat. In this approach, data frames
exactly correspond to algorithm iterations. The strategy of very inexact solutions is motivated by the
fact that neural networks can be e�ective—not get stuck in local optima—because subproblems are not
solved exactly [9]. A di�erent type of applications with only intermittent sampling is studied in [2, 27]

In Section 2 we we prove low dynamic regret for predictive forward-backward splitting, in line with
the literature [18, 36]. This serves to introduce concepts and ideas for our main interest: primal-dual
methods. Indeed, forward-backward splitting is poorly applicable to (1.3): the proximal step is just as
expensive as the original problem. It is more e�ective on the dual problem, however, we are given
a primal predictor �: . Moreover, purely dual formulations are not feasible for deblurring and more
complex inverse problems. A solution is to work with primal-dual formulations of the static problems
(1.2),

(1.6) min
G ∈-:

max
H∈.:

�: (G) + 〈 :G, H〉 −�∗: (H) .

Here �∗
:

is the Fenchel conjugate of�: . A popular method for this type of problems is the primal-dual
proximal splitting (PDPS) of Chambolle and Pock [11]. We refer to [31] for an overview of variants,
alternatives, and extensions to non-convex problems.

main contributions

We develop in Section 4 a predictive online PDPS for (1.1). For the primal variable we use the user-
prescribed predictor �: : -: → -:+1, but for the dual variable the regret theory imposes a more
technical predictor. This forms the main challenge of our work. To prepare for this, we introduce in
Section 3 appropriate partial primal gap functionals to replace the dynamic regret (1.4), not applicable
to primal-dual methods.

We �nish in Section 5 with computational image stabilisation based on optical �ow and online
optimisation. We obtain real-time performance and show convergence of the algorithmic solutions in
terms of regularisation theory [15] as the noise level decreases. Before this we introduce notation.

notation

We write G=:< := (G=, . . . , G<) with = ≤ <, and G=:∞ := (G=, G=+1, . . .). We slice a set B ⊂ ∏∞
:=0-:

as B=:< := {G=:< | G0:∞ ∈ B} and B= := B=:= . We write L(- ;. ) for the set of bounded linear
operators between (Hilbert) spaces - and . , and Id ∈ L(- ;- ) for the identity operator. We write
〈G, H〉" := 〈"G, H〉 for " ∈ L(- ;- ) and, if " is positive semi-de�nite, also ‖G ‖" :=

√
〈G, G〉" .

We write " ≥ 0 if " is positive semide�nite and " ' # if 〈"G, G〉 = 〈#G, G〉 for all G .
For any � ⊂ - and G ∈ - we set 〈�, G〉 := {〈I, G〉 | I ∈ �}. We write X� for the {0,∞}-valued

indicator function of �. For any � ⊂ ℝ (in particular � = 〈�, G〉), we use the notation � ≥ 0 to mean
that C ≥ 0 for all C ∈ �.

For � : - → (−∞,∞], we write dom � := {G ∈ - | � (G) < ∞} for the e�ective domain. With
ℝ := [∞,∞] the set of extended reals, we call � : - → ℝ proper if � > −∞ and dom � ≠ ∅. Let
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then � be convex. We write m� (G) for the subdi�erential at G and (for additionally proper and lower
semicontinuous � )

prox� (G) := arg min
G̃ ∈-

� (G̃) + 1
2 ‖G̃ − G ‖

2 = (Id+m� )−1(G)

for the proximal map. We recall that � is strongly subdi�erentiable at G with the factor W > 0 if

� (G̃) − � (G) ≥ 〈I, G̃ − G〉 + W2 ‖G̃ − G ‖
2 for all I ∈ m� (G) and G̃ ∈ - .

In Hilbert spaces this is equivalent to strong convexity with the same factor.
Finally, for 5 ∈ !@ (Ω;ℝ=), we write ‖ 5 ‖?,@ :=

b ↦→ ‖ 5 (b)‖?!@ (Ω) .
2 predictive online forward-backward splitting

We review predictive online forward-backward splitting (POFB) for (1.1) with  : = Id. This is useful to
explain online methods in general and to motivate our proofs and the dual comparison sequence for
the online PDPS. We recall that given a step length parameter g > 0, forward-backward splitting for
min[� +�] iterates

G:+1 := proxg� (G: − g∇� (G: )) .

We present a predictive online version in Algorithm 2.1. To study it, we work with:
Assumption 2.1. For all : ≥ 1: �: ,�: : -: → ℝ are convex, proper, and lower semicontinuous on a
Hilbert space -: . ∇�: exists and is !: -Lipschitz. We write �: := �: +�: and W�: , W�:

≥ 0 for the factors
of (strong) subdi�erentiability of �: and�: . We suppose for some step length parameters g: > 0 and
some Z: ∈ (0, 1] that

(2.1) 0 ≤ W: :=
{
W�:
+ W�: − g:Z −1

:
!2
:
, W�: > 0,

W�:
, W�: = 0 in which case we require g:!: ≤ Z: .

We are also given predictors �: : -: → -:+1 and a bounded comparison set B ⊂ ∏∞
:=0-: of

potential true solutions. They satisfy for some (Lipschitz-like) factor Λ: and prediction error Y:+1 the
prediction bound

(2.2) 1
2 ‖�: (G

: ) − Ḡ:+1‖2 ≤ Λ:
2 ‖G

: − Ḡ: ‖2 + Y:+1 (Ḡ0:∞ ∈ B, : ∈ ℕ).

Remark 2.2. Typically B is given as in (1.5) by some true (unknown) temporal coupling operators
�̄: : -: → -:+1 that the (known) predictors �: approximate. Then (2.2) reads

1
2 ‖�: (G

: ) − �̄: (Ḡ: )‖2 ≤
Λ:
2 ‖G

: − Ḡ: ‖2 + Y:+1.

If we knew that �̄: = �: , and the operator were Lipschitz, we could take Λ: as the Lipschitz factor and
the prediction error Y:+1 = 0. Typically, however, we would not know the true temporal coupling—or
would know it only up to measurement noise—so need the prediction errors to model this lack of
knowledge or noise.

We need to develop regret theory for Algorithm 2.1. We recall the following smoothness three-point
inequalities found in, e.g., [30, Appendix B] and [14, Chapter 7].

T. Valkonen Predictive online optimisation
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Algorithm 2.1 Predictive online forward-backward splitting (POFB)
Require: For all : ∈ ℕ, on Hilbert spaces -: , a primal predictor �: : -: → -:+1 and convex, proper,

lower semicontinuous �:+1,�:+1 : -:+1 → ℝ such that �:+1 has Lipschitz gradient. Step length
parameters g:+1 > 0.

1: Pick an initial iterate G0 ∈ -0.
2: for : ∈ ℕ do
3: I:+1 := �: (G: ) ⊲ prediction
4: G:+1 := proxg:+1�:+1 (I:+1 − g:+1∇�:+1(I:+1)) ⊲ forward-backward step
5: end for

Lemma 2.3. Suppose � : - → ℝ is convex, proper, and lower semicontinuous, and has !-Lipschitz gradient.
Then

〈∇� (I), G − Ḡ〉 ≥ � (G) − � (Ḡ) − !2 ‖G − I‖
2 (Ḡ, I, G ∈ - ) .(2.3)

If � is, moreover, W-strongly convex, then for any V > 0,

〈∇� (I), G − Ḡ〉 ≥ � (G) − � (Ḡ) + W − V!
2

2 ‖G − Ḡ ‖2 − 1
2V ‖G − I‖

2 (Ḡ, I, G ∈ - ) .(2.4)

Lemma 2.4. Suppose Assumption 2.1 holds. Then, for any : ∈ ℕ,

〈m�: (G: ) + ∇�: (I: ), G: − Ḡ:〉 ≥ �: (G: ) − �: (Ḡ: ) +
W:
2 ‖G

: − Ḡ: ‖2 − Z:
2g:
‖G: − I: ‖2.

Proof. If W�: = 0, (2.3) in Lemma 2.3 with the (strong) subdi�erentiability of �: yield

〈m�: (G: ) + ∇�: (I: ), G: − Ḡ:〉 ≥ �: (G: ) − �: (Ḡ: ) +
W�:

2 ‖G
: − Ḡ: ‖2 − !:2 ‖G

: − I: ‖2.

Due to (2.1) and Assumption 2.1 ensuring g:!: ≤ Z: , this gives the claim in the case W�: = 0.
If W�: > 0, by (2.4) for V = Z −1

:
g: and the (strong) subdi�erentiability of �: ,

〈m�: (G: ) + ∇�: (I: ), G: − Ḡ:〉 ≥ �: (G: ) − �: (Ḡ: )

+ W�:
+ W�: − Z −1

:
g:!

2
:

2 ‖G: − Ḡ: ‖2 − Z:
2g:
‖G: − I: ‖2.

This gives the claim by the case W�: > 0 of (2.1). �

We now have the tools to study regret. The sets B1:# in the following results would typically be given
by (1.5) through some true temporal coupling operators �̄: : -: → -:+1. The “testing parameters” i:
can be used to derive regret rates from the regularity of the problem. We explain them in the corollary
and remark to follow.
Theorem 2.5. Suppose Assumption 2.1 holds and some testing parameters {i: }:∈ℕ ⊂ ℝ satisfy i:+1 ≤
i: (1 + W:g: )Λ−1

:
for all : = 0, . . . , # − 1. Let G 1:# generated by Algorithm 2.1 for an G0 ∈ -0. Then

(2.5) sup
Ḡ 1:# ∈B1:#

#∑
:=1

i:g: [�: (G: ) − �: (Ḡ: )] +
#−1∑
:=0

i:+1(1 − Z:+1)
2 ‖G:+1 −�: (G: )‖2

≤ sup
Ḡ0∈B0

i0(1 + W0g0)
2 ‖G0 − Ḡ0‖2 +

#∑
:=1

Y:i: .

T. Valkonen Predictive online optimisation
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Proof. We can write Algorithm 2.1 implicitly as

(2.6) 0 ∈ g: [m�: (G: ) + ∇�: (I: )] + (G: − I: ) (: = 1, . . . , # )

where I:+1 := �: (G: ) for : = 0, . . . , # − 1. Following the testing methodology of [30, 14], we take any
Ḡ: ∈ -: and apply the linear “testing operator” i: 〈 · , G: − Ḡ:〉 to both sides of (2.6). Following with
Lemma 2.4, this yields

(2.7) 0 ≥ i: 〈G: − I: , G: − Ḡ:〉 +
i:W:g:

2 ‖G: − Ḡ: ‖2 − i:2 ‖G
: − I: ‖2 + G: (: = 1, . . . , # )

for
G: := i:g: [�: (G: ) − �: (Ḡ: )] +

i: (1 − Z: )
2 ‖G: − I: ‖2.

We recall the Pythagoras’ identity or three-point formula

(2.8) 〈G: − I: , G: − Ḡ:〉 = 1
2 ‖G

: − I: ‖2 − 1
2 ‖I

: − Ḡ: ‖2 + 1
2 ‖G

: − Ḡ: ‖2.

Hence (2.7) yields

i:
2 ‖I

: − Ḡ: ‖2 ≥ i: (1 + g:W: )2 ‖G: − Ḡ: ‖2 + G: (: = 1, . . . , # ).

Now taking Ḡ 1:# ∈ B1:# and using the prediction bound (2.2) followed by i:+1Λ: ≤ i: (1 + W:g: ), we
obtain

i: (1 + W:g: )
2 ‖G: − Ḡ: ‖2 + i:+1Y:+1 ≥

i:+1(1 + W:+1g:+1)
2 ‖G:+1 − Ḡ:+1‖2 + G:+1 (: = 0, . . . , # − 1) .

Now we just sum over : = 0, . . . , # − 1 and take the supremum over Ḡ 1:# ∈ B1:# . �

The next corollary, obtained with i: ≡ 1 and constant g: ≡ g , is similar to [18, Theorem 4] in the case
1 +W:g ≥ Λ: , i.e., when any available strong convexity balances the non-expansivity-like Λ: > 1 in the
prediction bound (2.2). Often in the online optimisation literature, regret� (G 1, . . . , G# ) ≤ �√# . The
growing regret bound can arise from violating this step length condition or from the penalties

∑#
:=1 Y:

in the prediction bound (2.2). For our purposes, bounding the regret in terms of the initialisation and
the prediction bounds is enough.
Corollary 2.6. Suppose Assumption 2.1 holds with g: ≡ g and 1 + W:g ≥ Λ: for all : = 0, . . . , # − 1. Let
G 1:# generated by Algorithm 2.1 for an initial G0 ∈ - . Then

dynamic_regretB1:# (G 1, . . . , G# ) +
#−1∑
:=0

1 − Z:+1
2g ‖G:+1 −�: (G: )‖2 ≤ sup

Ḡ0∈B0

‖G0 − Ḡ0‖2
2g (1 + W0g)−1 +

#∑
:=1

Y:
g
.

Remark 2.7 (Weighted dynamic regret). Suppose 1 + W:g: > Λ: . Then {i: }:∈ℕ can increase while
satisfying i:+1 ≤ i: (1 + W:g: )Λ−1

:
. If inf: g: > 0, then (2.5) places more importance on �: for large : :

we regret early iterates less than recent. If 1+W:g:
Λ:
≥ 2 > 1 and i: = 2:i0, this growth in importance is

exponential, comparable to linear convergence on static problems; cf. [30]. With �:+1 ≡ 0 it is even
possible to take g:→∞ and obtain superexponential growth (superlinear convergence).

If, on the other hand 1 + W:g: < Λ: , then the condition i:+1 ≤ i: (1 + W:g: )Λ−1
:

forces {i: }:∈ℕ to
be decreasing. We therefore regret bad early iterates more than the recent. In the context of static
optimisation problems, we are in the region of non-convergence or at most slow sub-$ (1/# ) rates.

T. Valkonen Predictive online optimisation
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3 partial gap functionals

We start our development of a primal-dual method by deriving meaningful measures of regret. We
cannot in general obtain estimates on conventional duality gaps or on iterates, so need alternative
criteria. Throughout this section � : - → ℝ and� : . → ℝ are convex, proper, and lower semicontin-
uous, and  ∈ L(- ;. ) on Hilbert spaces - and . . We write L(G, H) := � (G) + 〈 G, H〉 −�∗(H) for the
corresponding Lagrangian. We recall that the �rst-order primal-dual optimality conditions for

min
G ∈-

� (G) +� ( G) equiv. min
G ∈-

max
H∈.
L(G, H)

are
− Ĥ ∈ m� (Ĝ) and  ∗Ĝ ∈ m�∗(Ĥ).(3.1)

We call such a pair (Ĝ, Ĥ) a critical point.

3.1 common gap functionals

By the Fenchel–Young inequality applied to ) (G, H) := � (G) +�∗(H), the duality gap

G(G, H) := [� (G) +� ( G)] + [� ∗(− ∗H) +�∗(H)] ≥ 0,

and is zero if and only if (3.1) holds. We can expand

G(G, H) = sup
(Ḡ,H̄) ∈-×.

(L(G, H̄) − L(Ḡ, H)) .

This motivates the Lagrangian duality gap

GL (G, H ; Ḡ, H̄) := L(G, H̄) − L(Ḡ, H) .
It is non-negative if (Ḡ, H̄) is a critical point, but may be zero even if (G, H) is not.

Since the Lagrangian duality gap is a relatively weak measure of optimality, and the true duality
gap may not converge (fast), we de�ne for bounded � ⊂ - × . the partial duality gap

G� (G, H) := sup
(Ḡ,H̄) ∈�

[L(G, H̄) − L(Ḡ, H)] .

This is non-negative if � contains a critical point and equals the true duality gap G if � = - × . . The
partial gap converges ergodically for the basic unaccelerated PDPS [11].

3.2 partial primal gaps

If we are not interested in the dual variable, we can de�ne the partial primal gap

(3.2) Ĝ� (G) := sup
(Ḡ,H̄) ∈�

inf
H∈.
GL (G, H ; Ḡ, H̄) .

We now try to interpret it.
Lemma 3.1. Let � : - → ℝ and� : . → ℝ be convex, proper, and lower semicontinuous, and ∈ L(- ;. ).
Pick � ⊂ - × . . Then

Ĝ� (G) = [� + �̆ ◦  ] (G) − inf
(Ḡ,H̄) ∈�

[� +� ◦  ] (Ḡ)(3.3)

for

�̆ (H ′) := sup
Ḡ ∈-,H̄∈.

(〈H ′, H̄〉 −�∗(H̄) − �� (Ḡ, H̄)) − � ∗� (0, 0) and(3.4)

�� (G̃, H̃) := � (G̃) +� ( G̃) + X� (G̃, H̃) .

T. Valkonen Predictive online optimisation
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Proof. We have

inf
H∈.
GL (G, H ; Ḡ, H̄) = L(G, H̄) − sup

H∈.
L(Ḡ, H)

= � (G) + 〈 G, H̄〉 −�∗(H̄) − [� +� ◦  ] (Ḡ) .
Thus

Ĝ� (G) = � (G) + sup
Ḡ ∈-,H̄∈.

(〈 G, H̄〉 −�∗(H̄) − [� +� ◦  ] (Ḡ) − X� (Ḡ, H̄))

= � (G) + sup
Ḡ ∈-,H̄∈.

(〈 G, H̄〉 −�∗(H̄) − �� (Ḡ, H̄)) = � (G) + �̆ ( G) + � ∗� (0, 0) .

Since � ∗� (0, 0) = − inf (Ḡ,H̄) ∈� [� +� ◦  ] (Ḡ), this establishes the claim. �

Example 3.2. If � = �- ×. for some �- ⊂ - , then �� (G, H) does not depend on H so that we obtain
�̆ = � . Thus the partial primal gap reduces to a standard di�erence of function values,

Ĝ�-×. (G) = [� +� ◦  ] (G) − inf
Ḡ ∈�-
[� +� ◦  ] (Ḡ) .

If now �- contains a minimiser of � +� ◦  , this di�erence is non-negative.

This example gives an indication towards the meaningfulness of the partial primal gap. In particular,
if we take a smaller set � than in the example, we can expect Ĝ� (G) to attain smaller values. It may be
negative even if �- contains a minimiser of � +� ◦  . This is akin to the regret functionals from the
Introduction. Indeed, we will use the partial primal gap as the basis for a marginalised primal regret
that “fails to regret” what � + �̆ ◦  ≤ � +� ◦  cannot measure.

In the applications of Section 5,� (H1, . . . , H# ) = ∑#
:=1 U ‖�H: ‖M , compare (1.3), and � is a primal-

dual extension U1:# of B1:# from (1.5). The construction of �̆ convolves the static total variation
regulariser � with the temporally coupled objective �U1:# . The e�ect is to produce a new dynamic
regulariser, alternative to [21, 35, 24, 23, 12, 26, 34]. The following instructive proposition elucidates
how this works in general. However, the convexity assumption on � is not satis�ed byU1:# . We write
� � �̃ for the in�mal convolution of �, �̃ : - → ℝ.
Proposition 3.3. Suppose � is closed, convex, and nonempty, and both � and �� are coercive. Then

�̆ (H ′) = inf
H̃∈.

(
� (H ′ − H̃) + � ∗� (0, H̃) − � ∗� (0, 0)

)
.

Proof. We recall that (� � �̃)∗ = �∗ + �̃∗ for proper �, �̃ : - → ℝ [3, Proposition 13.21]. The in�mal
convolution � � �̃ is convex, proper, and lower semicontinuous when � and �̃ also are, � is coercive,
and �̃ is bounded from below [3, Propositions 12.14]. Since then (� � �̃)∗∗ = � � �̃, we obtain � � �̃ =
(�∗ + �̃∗)∗.

By the convexity of �, �� = � ∗∗� . The coercivity of �� implies that � ∗� is bounded from below.2 Since
� is coercive, taking � (G, H) = � (H) + X {0} (G) and �̃ = � ∗� , we get

�̆ (H ′) = sup
G̃ ∈-,H̃∈.

(〈H ′, H̃〉 −�∗(H̃) − � ∗∗� (G̃, H̃)) − � ∗� (0, 0)
= ( [(G̃, H̃) ↦→ �∗(H̃)]∗ � � ∗�) (0, H ′) − � ∗� (0, 0)
= ( [(G̃, H̃) ↦→ � (H̃) + X {0} (G̃)] � � ∗�) (0, H ′) − � ∗� (0, 0)
= inf
H̃∈.

(
� (H ′ − H̃) + � ∗� (0, H̃) − � ∗� (0, 0)

)
. �

2Any coercive, convex, proper, lower semicontinuous function � : - → ℝ has a minimiser Ĝ . By the Fermat principle
0 ∈ m� (Ĝ). Thus Ĝ ∈ m�∗ (0), which says exactly that �∗ ≥ �∗ (0).

T. Valkonen Predictive online optimisation
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Example 3.4. Take� = �-×�. for some convex and closed�- ⊂ - and�. ⊂ . . Then Proposition 3.3
gives �̆ (H ′) = (� �X∗�. ) (H ′).

In particular, let� = U ‖ · ‖. for someU > 0 and�. = �(Ĥ, d) := {H ∈ . | ‖H−Ĥ ‖. ≤ d} for some
“expected solution” Ĥ and “con�dence” d > 0. Then �̆ (H ′) = (�∗ + X�. )∗(H ′) = X∗� (0,U)∩� (Ĥ,d) (H ′).
If ‖Ĥ ‖. = U and d < U , this means that �̆ will not penalise points H ′ =  G with 〈H ′, Ĥ〉 ≤ 0. We
might interpret this as follows: since we are highly con�dent (small d) that  G ∝ Ĥ for an optimal
G , we are not even interested in studying dual variables that point in the opposite direction. If  
were additionally a (discretised) gradient operator, as for total variation regularisation, roughly
speaking this would say that we are not interested in studying gradients that point away from the
expected gradient.

More generally, we can construct an in�mal convolution lower bound with respect to the set of
primal-dual minimisers of �� . The coercivity assumption in the next lemma is ful�lled for � the squared
distance or � bounded, both of which will be the case for the optical �ow example.
Proposition 3.5. Let � : - → ℝ and � : . → ℝ be convex, proper, and lower semicontinuous, and
 ∈ L(- ;. ). Pick a closed subset � ⊂ - ×. and suppose �� constructed from these components is coercive.
Let

�̂ := {(Ḡ, H̄) ∈ � | �� (Ḡ, H̄) = inf ��} and �̂. := {Ĥ | (Ĝ, Ĥ) ∈ �̂}.
Then �̆ de�ned in (3.4) satis�es �̆ ≥ (�∗ + X�̂. )∗.

Proof. Since �� is coercive, lower semicontinuous, and bounded from below, �̂ is non-empty. Since
inf �� = −� ∗� (0, 0), we calculate

�̆ (H ′) ≥ sup
(Ĝ,Ĥ) ∈�̂

(〈H ′, Ĥ〉 −�∗(Ĥ) − �� (Ĝ, Ĥ)) − � ∗� (0, 0)

= sup
Ĥ∈�̂.

(〈H ′, Ĥ〉 −�∗(Ĥ)) = (�∗ + X�̂. )∗(H ′). �

Remark 3.6. If �̂. is convex, then X�̂. = f∗
�̂.

for the support function f�̂. . As this is convex, and lower
semicontinuous, we get that �̆ ≥ � �f�̂. .

We always have �̆ ≤ � since −� ∗� (0, 0) ≤ �� (Ḡ, H̄). The following establishes a lower bound on �̆ in
the our typical case of interest, with � a seminorm. It does not help interpret �̆ , but will be su�cient
for developing regularisation theory in Section 5.
Lemma 3.7. Let � : - → ℝ be convex, proper, and lower semicontinuous, and let � = X∗�. be the support
function of a closed convex set �. ⊂ . . Pick � ⊂ - ×�. . Then �̆ as de�ned in (3.4) satis�es �̆ ≥ −� (− · ).
Proof. (Ḡ, H̄) ∈ dom � implies H̄ ∈ �. , hence �∗(H̄) = X�. (H̄) = 0. Thus

�̆ (H ′) = sup
Ḡ ∈-,H̄∈.

(〈H ′, H̄〉 − �� (Ḡ, H̄)) − � ∗� (0, 0)

≥ inf
(Ḡ,H̄) ∈�

〈H ′, H̄〉 + sup
Ḡ ∈-,H̄∈.

(−�� (Ḡ, H̄)) − � ∗� (0, 0)

≥ inf
H̄∈�.
〈H ′, H̄〉 = −X∗�. (−H ′) = −� (−H ′). �

4 predictive online primal-dual proximal splitting

We now develop for (1.1) a predictive online version of the primal-dual proximal splitting (PDPS) of
[11]. The structure is presented in Algorithm 4.1; our remaining work here consists of developing rules

T. Valkonen Predictive online optimisation
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Algorithm 4.1 Predictive online primal-dual proximal splitting (POPD)
Require: For all : ∈ ℕ, on Hilbert spaces -: and .: , convex, proper, lower semicontinuous �:+1 :

-:+1 → ℝ and �∗
:+1, �̃

∗
:+1 : .:+1 → ℝ, predictors �: : -: → -:+1 and �: : .: → .:+1, and

 :+1 ∈ L(-:+1;.:+1). Step length parameters g:+1, f:+1, f̃:+1 > 0.
1: Pick initial iterates G0 ∈ -0 and H0 ∈ .0.
2: for : ∈ ℕ do
3: b:+1 := �: (G: ) ⊲ primal prediction
4: h:+1 := proxf̃:+1�̃∗:+1 (�: (H

: ) + f̃:+1 :+1b:+1) ⊲ dual prediction
5: G:+1 := proxg:+1�:+1 (b:+1 − g:+1 ∗:+1h:+1) ⊲ primal step
6: H:+1 := proxf:+1�∗:+1 (h

:+1 + f:+1 :+1(2G:+1 − b:+1)) ⊲ dual step
7: end for

for the step length parameters g:+1, f:+1, and f̃:+1 such that a low regret, for a suitable form of regret,
is obtained. Algorithm 4.1 consists of primal and dual steps (Lines 5 and 6) that are analogous to the
standard PDPS. Those are preceded by primal and dual prediction steps (Lines 3 and 4). The primal
prediction is basic, based on the user-prescribed predictor�: , but the dual prediction is somewhat more
involved, imposed by a our regret theory. In particular, it involves the somewhat arbitrary functions
�̃:+1.

4.1 assumptions and definitions

To develop the regret theory, with the general notation D = (G, H), D: = (G: , H: ), etc., we work with
the following setup:
Assumption 4.1. For all : ≥ 1, on Hilbert spaces -: and .: , we assume to be given:

(i) convex, proper, and lower semicontinuous functions �: : -: → ℝ and �∗
:

: .: → ℝ, as well as
 : ∈ L(-: ;.: ).

(ii) Primal and dual step length parameters g: , f: > 0.
(iii) Primal and dual predictors �: : -: → -:+1 and �: : .: → .:+1.
(iv) Some d̃:+1-strongly convex, proper, and lower semicontinuous �̃∗

:+1 : .:+1 → ℝ and parameters
f̃:+1 > 0.

Further, we assume:
(v) to be given a bounded set of primal-dual comparison sequences

U ⊂
{
D̄0:∞ ∈ ∏∞

:=0-: × .:
����� H̄:+1 = proxf̃:+1�̃∗:+1 (H̃

:+1 + f̃:+1 :+1Ḡ:+1)
for some H̃:+1 =: H̃:+1(D̄:+1) ∈ .:+1, ∀: ≥ 0

}
with which we de�ne the set of primal comparison sequences as

B := {Ḡ0:∞ | D̄0:∞ ∈ U}.

(vi) for some (Lipschitz-like) factors Λ: ,Θ: > 0 and prediction penalties Y:+1, Ỹ:+1 ∈ ℝ the primal and
dual prediction bounds

1
2 ‖�: (G

: ) − Ḡ:+1‖2-:+1 ≤
Λ:
2 ‖G

: − Ḡ: ‖2-:
+ Y:+1 and(4.1a)

1
2 ‖�: (H

: ) − H̃:+1‖2.:+1 ≤
Θ:
2 ‖H

: − H̄: ‖2.: + Ỹ:+1 (D̄0:∞ ∈ U, : ∈ ℕ),(4.1b)

whereU and H̃:+1 are as in (v), and (G: , H: ) are generated by Algorithm 4.1.

T. Valkonen Predictive online optimisation
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Remark 4.2. Assumption 4.1 (v) and (vi) are not directly needed for formulating Algorithm 4.1. They
are needed to develop the regret theory. The Lipschitz-like constants Λ: and Θ: will, however, appear
in the step length rules that we develop.

In a typical case Ḡ:+1 = �̄: (Ḡ: ) and H̃:+1 = �̄: (H̄: ) for some true (unknown) temporal coupling
operators �̄: and �̄: that the (known) predictors �: and �: approximate. Then (4.1) reads

1
2 ‖�: (G

: ) − �̄: (Ḡ: )‖2-:+1 ≤
Λ:
2 ‖G

: − Ḡ: ‖2-:
+ Y:+1 and

1
2 ‖�: (H

: ) − �̄: (H̄: )‖2.:+1 ≤
Θ:
2 ‖H

: − H̄: ‖2.: + Ỹ:+1 (: ∈ ℕ)

where the comparison points Ḡ: and H̄: are given through the recurrences Ḡ:+1 = �: (Ḡ: ) and H̄:+1 =
proxf̃:+1�̃∗:+1 (�: (H̄

: ) +f̃:+1 :+1Ḡ:+1). It may be easiest to omit the recurrences and prove the inequalities
for any comparison points Ḡ: and H̄: . If we had�: = �̄: and�: = �̄: , and these operators were Lipschitz,
we could take Λ: andΘ: as the corresponding Lipschitz factors and the prediction errors Y:+1 = Ỹ:+1 = 0.
Typically we would not know the true temporal coupling—or would know it only up to measurement
noise—so need the prediction errors to model this lack of knowledge or noise.

Example 4.3. We can always take, and in practise take, �̃∗
:+1 = �

∗
:+1 +

d̃:+1
2 ‖ · ‖2.:+1 .

We now de�ne for all : ≥ 1 the monotone operator3 �: : -: × .: ⇒ -: × .: and the linear
preconditioned ": ∈ L(-: × .: ;-: × .: ) as

(4.2) �: (D) :=
(
m�: (G) +  ∗:H
m�∗

:
(H) −  :G

)
and ": :=

(
g−1
:

Id − ∗
:

− : f−1
:

Id

)
.

Then 0 ∈ �: (D̂: ) encodes the primal-dual optimality conditions (3.1) for the static problem (1.6) while
Algorithm 4.1 can be written in implicit form as

(4.3) 0 ∈ �: (D: ) +": (D: − I: ) (: ≥ 1)
for

(4.4) I:+1 := (b:+1, h:+1) := (: (D: ), (: (D) :=
(

�: (G)
proxf̃:+1�̃∗:+1 (�: (H) + f̃:+1 :+1�: (G))

)
(: ≥ 0) .

We now derive regret estimates based on the partial primal gaps of Section 3.

4.2 a general regret estimate

We need the following strong non-expansivity from the dual predictor. The result is standard, but
di�cult to �nd explicitly stated in the literature for W > 0:
Lemma 4.4. On a Hilbert space - , suppose � : - → ℝ is convex, proper, and W-strongly subdi�erentiable.
Then prox� is (1 + W)-strongly non-expansive:

(1 + W)‖ prox� (G) − prox� (G̃)‖2- ≤ 〈prox� (G) − prox� (G̃), G − G̃〉 (G, G̃ ∈ - ) .
Proof. Let H := prox� (G). By de�nition, H + @ = G and H̃ + @̃ = G̃ for some @ ∈ m� (H) and @̃ ∈ m� (H̃).
Since m� is W-strongly monotone, 〈@ − @̃, H − H̃〉 ≥ W ‖H − H̃ ‖2. Thus

(1 + W)‖H − H̃ ‖2 = 〈H − H̃, G − G̃ − (@ − @̃)〉 + W ‖H − H̃ ‖2 ≤ 〈H − H̃, G − G̃〉. �

3The double arrow signi�es that the map is set-valued.
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The next lemma derives basic step length conditions, which we will further develop in Section 4.3,
from basic properties of the linear preconditioner ": and an overall primal-dual prediction bound
analogous to (4.1). The “testing” parameters i: ,k: , [: > 0 model the respective primal, dual, and
joint (e.g., gap) convergence or regret rates. They are coupled via (4.5a) to the step length parameters.
Any one of these parameters is super�uous given the others, but all are included for notational and
conceptual convenience. The testing parameters are not directly required in Algorithm 2.1, but will
serve to study “regret rates”.
Lemma 4.5. Suppose Assumption 4.1 holds. Fix : ∈ ℕ and assume for some ^ ∈ (0, 1) and testing
parameters [: , i: ,k: > 0, the step length conditions

[: = i:g: = k:f: , (primal-dual coupling)(4.5a)

d̃:+1 ≥
Θ:[:+1f̃−2

:+1
2^ (1 + f:d: )k:

+ 1
2f:+1

− f̃−1
:+1, (proximal predictor restriction)(4.5b)

i: (1 + W:g: ) ≥ i:+1Λ: +
i:g:f: ‖ : ‖2
(1 − ^) (1 + f:d: )

, (primal metric update) and(4.5c)

1 ≥ g:f: ‖ : ‖2 (metric positivity).(4.5d)

Let

(4.6) Γ: := [:
(
W: Id 2 ∗

:
−2 : d: Id

)
.

Then [:": is self-adjoint and positive semide�nite, [:": + Γ: is positive semide�nite, and we have the
overall prediction bound

(4.7) 1
2 ‖I

:+1 − Ḡ:+1‖2[:+1":+1 ≤
1
2 ‖G

: − Ḡ: ‖2[:":+Γ: +i:+1Y:+1 +
^ (1 + f:d: )k:

2Θ:
Ỹ:+1 (: = 0, . . . , # − 1) .

Proof. Using (4.5a) and Young’s inequality, we expand and estimate

(4.8) [:": =

(
i: Id −[: ∗:
−[: : k: Id

)
≥

(
i: Id−[2

:
k−1
:
 ∗
:
 : 0

0 0

)
.

Thus [:": is self-adjoint due to (4.5a) and positive semide�nite due to (4.5d) and (4.5a). It follows,
using Young’s inequality, that

(4.9) [:": + Γ: '
(
i: (1 + W:g: ) Id −[: ∗:
−[: : k: (1 + d:f: ) Id

)
≥

(
i: (1 + W:g: ) Id− [2

:

k: (1+d:f: ) 
∗
:
 : 0

0 0

)
.

Thus [:": + Γ: is positive semide�nite by (4.5c) and (4.5a).
We still need to prove (4.7). Writing (b:+1, h:+1) := I:+1 = (: (D: ), we have

(4.10) 1
2 ‖I

:+1 − D̄:+1‖2[:+1":+1 =
i:+1

2 ‖�: (G
: ) − Ḡ:+1‖2 + k:+12 ‖h

:+1 − H̄:+1‖2

− [:+1〈 :+1(b:+1 − Ḡ:+1), h:+1 − H̄:+1〉

as well as

(4.11) 1
2 ‖D

: − D̄: ‖2[:":+Γ: =
i: (1 + W:g: )

2 ‖G: − Ḡ: ‖2 + k: (1 + d:f: )2 ‖H: − H̄: ‖2

− [: 〈 : (G: − Ḡ: ), H: − H̄:〉.
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Since �̃:+1 is (d̃:+1-strongly) convex, by Lemma 4.4, (4.4), and Assumption 4.1, (v)

(1 + f̃:+1d̃:+1)‖h:+1 − H̄:+1‖2 ≤ 〈h:+1 − H̄:+1, �: (H: ) − H̃:+1 + f̃:+1 :+1(b:+1 − Ḡ:+1)〉.

By (4.5a) and (4.5b),

−[:+1f̃−1
:+1(1 + f̃:+1d̃:+1) +

Θ:[
2
:+1f̃

−2
:+1

2^ (1 + f:d: )k:
≤ −k:+12 .

Consequently, also using (4.5a), (4.1b), and Young’s inequality, we obtain

−[:+1〈 :+1(b:+1 − Ḡ:+1), h:+1 − H̄:+1〉
= −[:+1f̃−1

:+1〈�: (H: ) − H̃:+1 + f̃:+1 :+1(b:+1 − Ḡ:+1), h:+1 − H̄:+1〉
+ [:+1f̃−1

:+1〈�: (H: ) − H̃:+1, h:+1 − H̄:+1〉
≤ −[:+1f̃−1

:+1(1 + f̃:+1d̃:+1)‖h:+1 − H̄:+1‖2 + [:+1f̃−1
:+1〈�: (H: ) − H̃:+1, h:+1 − H̄:+1〉

≤ −k:+12 ‖h
:+1 − H̄:+1‖2 + ^ (1 + f:d: )k:2Θ:

‖�: (H: ) − H̃:+1‖2.

≤ −k:+12 ‖h
:+1 − H̄:+1‖2 + ^ (1 + f:d: )k:2Θ:

(
Θ:
2 ‖H

: − H̄: ‖2 + Ỹ:+1
)
.

Applying this and (4.1a) in (4.10), we obtain for ?:+1 := i:+1Y:+1 + ^ (1+f:d: )k:2Θ:
Ỹ:+1 that

(4.12) 1
2 ‖I

:+1 − D̄:+1‖2[:+1":+1 ≤
i:+1Λ:

2 ‖G: − Ḡ: ‖2 + ^ (1 + f:d: )k:2 ‖H: − H̄: ‖2 + ?:+1.

We also have by Young’s inequality

[: 〈 : (G: − Ḡ: ), H: − H̄:〉

≤ [2
:

2(1 − ^) (1 + f:d: )k:
‖ : (G: − Ḡ: )‖2 +

(1 − ^) (1 + f:d: )k:
2 ‖H: − H̄: ‖2.

Hence (4.11) gives

(4.13) − 1
2 ‖D

: − D̄: ‖2[:":+Γ: ≤
(

[2
:
‖ : ‖2

2(1 − ^) (1 + f:d: )k:
− i: (1 + W:g: )2

)
‖G: − Ḡ: ‖2

− ^ (1 + f:d: )k:2 ‖H: − H̄: ‖2.

Combined, (4.12) and (4.13) show that

1
2 ‖I

:+1 − D̄:+1‖2[:+1":+1 −
1
2 ‖D

: − D̄: ‖2[:":+Γ: ≤ i:+1Y:+1 + ?:+1

+
(
i:+1Λ:

2 + [2
:
‖ : ‖2

2(1 − ^) (1 + f:d: )k:
− i: (1 + W:g: )2

)
‖G: − Ḡ: ‖2.

From here (4.5c) shows (4.7). �

To state the �nal regret estimate, for brevity we de�ne

�1:# (G 1:# ) :=
#−1∑
:=0

[:�:+1(G:+1), �1:# (H1:# ) :=
#−1∑
:=0

[:�:+1([−1
: H

:+1), and

 1:#G
1:# := ([0 1G

1, . . . , [#−1 #G
# ) .
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We recall the comparison setsU and B and from Assumption 4.1 and the slicing notationU=:< and
B=:< form Section 1. With these we also de�ne

(4.14) �̆1:# (H ′1:# ) = sup
Ḡ 1:# ,H̄1:#

(
〈H ′1:# , H̄1:# 〉 −�∗1:# (H̄1:# ) − �U1:# (Ḡ 1:# , H̄1:# )

)
− � ∗U1:#

(0, 0)

with the supremum running over Ḡ 1:# ∈ -1 × · · · × -# and H̄1:# ∈ .1 × · · · × .# and

�U1:# (G̃ 1:# , H̃1:# ) := [�1:# +�1:# ◦  1:# ] (G̃ 1:# ) + XU1:# (G̃ 1:# , H̃1:# ) .
Observe that �∗1:# (H1:# ) = ∑#−1

:=0 [:�
∗
:+1(H:+1) and

(4.15) [�1:# +�1:# ◦  1:# ] (G 1:# ) =
#−1∑
:=0

[: [�:+1 +�:+1 ◦  :+1] (G:+1) .

After the next main regret estimate, we comment upon its assumptions and claim.
Theorem 4.6. Suppose Assumption 4.1 and the step length bounds (4.5) hold for D1:# generated by Algo-
rithm 4.1 for an initial D0 ∈ -0 × .0. Then

[�1:# + �̆1:# ◦  1:# ] (G 1:# ) − inf
Ḡ 1:# ∈B1:#

[�1:# +�1:# ◦  1:# ] (Ḡ 1:# ) +
#−1∑
:=0

‖D:+1 − (: (D: )‖2[:+1":+1

2

≤ 4# := sup
D̄0∈U0

1
2ÈD

0 − D̄0É2
[0"0+Γ0

+
#−1∑
:=0

(
Y:+1i:+1 +

^ (1 + f:d: )k:
2Θ:

Ỹ:+1

)
.

Proof. For brevity, and to not abuse norm notation when Γ: is not positive semi-de�nite, we write
ÈGÉ2

Γ:
:= 〈G, G〉Γ: . By Lemma 4.5, [:": and [:": + Γ: are positive semi-de�nite, so we may use the

norm notation with them. For �: de�ned (4.2) and Γ: and [: in (4.6), the (strong) convexity of �: and
�∗
:

yield

〈�: (D: ), D: − D̄:〉[: ≥
1
2ÈD

: − D̄:É2
Γ:
+ G�: (: = 1, . . . , # )(4.16)

for
G�:+1 := [: [�:+1(G:+1) − �:+1(D̄:+1) +�∗:+1(H:+1) −�∗:+1(H̄:+1)

− 〈 ∗:+1H:+1, D̄:+1〉 + 〈 :+1G:+1, H̄:+1〉] .
(4.17)

Following the testing methodology of [30, 14], we pick any D̄: ∈ -: × .: and apply the linear “testing
operator” 〈 · , D: − D̄:〉[: to both sides of (4.3). This followed by (4.16) yields

0 ≥ 〈D: − I: , D: − D̄:〉[:":
+ 1

2ÈD
: − D̄:É2

Γ:
+ G�: (: = 1, . . . , # ).

Pythagoras’ identity (2.8) for the inner product and norm with respect to the operator [:": now yields

1
2 ‖I

: − D̄: ‖2[:":
≥ 1

2 ‖D
: − D̄: ‖2[:":+Γ: + G�: +

1
2 ‖D

: − I: ‖2[:":
(: = 1, . . . , # ) .

We now take D̄0:# ∈ U0:# and apply the prediction bound (4.7) from Lemma 4.5 to obtain

1
2 ‖D

: − D̄: ‖2[:":+Γ: +
(
i:+1Y:+1 +

^ (1 + f:d: )k:
2Θ:

Ỹ:+1

)
≥ 1

2 ‖D
:+1 − D̄:+1‖2[:+1":+1+Γ:+1 + G�:+1 +

1
2 ‖D

: − I: ‖2[:":
(: = 1, . . . , # − 1) .
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Summing over such : and taking the supremum over D̄0:# ∈ U0:# , we get

sup
D̄0:# ∈U0:#

#−1∑
:=0

(
G�:+1 +

1
2 ‖D

:+1 − I:+1‖2[:+1":+1

)
≤ 4# .

By Lemma 3.1 applied to  =  1:# , � = �1:# and �∗ = �∗1:# and (4.17) we obtain

sup
D̄1:# ∈U1:#

#−1∑
:=0
G�:+1 ≥ [�1:# + �̆1:# ◦  1:# ] (G 1:# ) − inf

Ḡ 1:# ∈B1:#
[�1:# +�1:# ◦  1:# ] (Ḡ 1:# ) .

Since I:+1 := (: (D: ) by (4.4), these two inequalities together verify the claim. �

Remark 4.7 (Satisfying the conditions). Assumption 4.1 is structural. Aside from �̃:+1, everything in it
depends on the application problem and the predictors we can design for it. The function �̃:+1 can
be taken as in Example 4.3. The step length bounds (4.5) can be satis�ed via the choices in the next
Section 4.3.
Remark 4.8 (Interpretation of the dual comparison sequence). Let H̃:+1 = �̄: (H̄: ) for a dual temporal
coupling operator �̄: . Then the de�nition ofU in Assumption 4.1 (v) updates the dual comparison
variable as

(4.18) H̄:+1 := proxf̃:+1�̃∗:+1 (�̄: (H̄
: ) + f̃ :+1Ḡ:+1)

This amounts to the POFB of Section 2 applied with the predictor �̄: and the step length parameter
g:+1 = f̃:+1 to the formal problem

min
H1,H2,...

∞∑
:=1

�̃∗: (H: ) − 〈 : Ḡ: , H:〉, H:+1 = �̄: (H: )

An “optimal” Ĥ: , achieving infH �̃∗: (H) − 〈 : Ḡ: , H〉, would give

[�: + �̃: ◦  : ] (Ḡ: ) = �: (Ḡ: ) + 〈 : Ḡ: , Ĥ:〉 − �̃∗: (Ĥ: ) .
This is approximated by H̄:+1 generated by (4.18), better as f̃:→∞. In the setting of Example 4.3, if
also d̃:→ 0, then we get closer to calculating [�: +�: ◦  : ] (Ḡ: ).

4.3 specific step length choices

We now develop explicit step length rules that satisfy the step length conditions (4.5), and then interpret
Theorem 4.6 for them. The proof of the next lemma is immediate:
Lemma 4.9. The right hand side of (4.5b) is minimised by f̃:+1 =

Θ:[:+1
^ (1+f:d: )k: . With this choice (4.5b) reads

2[:+1d̃:+1 ≥ k:+1 − ^Θ−1
:
(1 + f:d: )k: .

The following examples use Lemma 4.9:

Example 4.10 (Constant step length and testing parameters). In Algorithm 4.1, take as the step
length parameters g: ≡ g , f: ≡ f , and f̃:+1 = Θ:f

^ (1+fd: ) for some constant g, f > 0 and ^ ∈ (0, 1)
satisfying for the strong convexity factors W: , d: , d̃:+1 and the Lipschitz-like factors Θ: , Λ: from
Assumption 4.1 the inequalities

(4.19) d̃:+1 ≥
1

2f

(
1 − ^ (1 + fd: )

Θ:

)
, 1 + W:g ≥ Λ: +

gf ‖ : ‖2
(1 − ^) (1 + fd: )

, and 1 ≥ gf ‖ : ‖2.

(By Example 4.3, we may simply de�ne d̃:+1 through the �rst expression if we choose to take
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�̃∗
:+1 = �

∗
:+1 +

d̃:+1
2 ‖ · ‖2.:+1 .) Then (4.5) holds for the testing parameters [: ≡ g , i: ≡ 1, andk: ≡ g

f .
In this case, Theorem 4.6 shows for an initialisation-dependent constant �0 that

[�1:# + �̆1:# ◦ 1:# ] (G 1:# ) − inf
Ḡ 1:# ∈B1:#

[�1:# +�1:# ◦ 1:# ] (Ḡ 1:# ) ≤ �0 +
#−1∑
:=0

(
Y:+1 +

^ (1 + fd: )g
2Θ:f

Ỹ:+1

)
.

Suppose sup: d: ≤ d and inf: Θ: ≥ Θ for some d,Θ > 0 (such as when d: and Θ: are constant in
:). Minding the sum expression (4.15), where now [: = g , for a constant � > 0, we get

1
#
[�1:# +�̆1:# ◦ 1:# ] (G 1:# ) − inf

Ḡ 1:# ∈B1:#

g

#

#−1∑
:=0
[�:+1 +�:+1 ◦ :+1] (Ḡ:+1) ≤

�0 +�
∑#−1
:=0 (Y:+1 + Ỹ:+1)
#

.

Exact interpretation requires being able to calculate �̆1:# , however we can make a rough interpre-
tation. We distinguish two cases:

(a) If
∑∞
:=0(Y:+1 + Ỹ:+1) < ∞, then the left hand side converges below zero as # →∞. Roughly,

subject to how well we can measure with �̆1:# in place of �1:# , this says that asymptotically
G 1:# are at least as good solutions of the averaged problem infG 1:#

g
#

∑#−1
:=0 [�:+1 + �:+1 ◦

 :+1] (G:+1) as the best constrained Ḡ 1:# ∈ B1:# .

(b) If 1
#

∑#−1
:=0 (Y:+1 + Ỹ:+1) ≤ X for some constant X > 0, then, again subject to how well we can

measure with �̆1:# in place of �1:# , this says that asymptotically G 1:# stays “within average
noise level” X of the best Ḡ 1:# ∈ B1:# .

The bounds on the the prediction errors Y:+1 and Ỹ:+1 can be interpreted as the noise level of the
“measurements” �: and �: of the true temporal coupling operators �̄: and �̄: either vanishing or
staying bounded (on average). In the optical �ow example, to be further studied in Section 5, this
means that the noise level of the displacement �eld measurements has to vanish or stay bounded
(on average).

Example 4.11 (Everything constant). In particular, in Example 4.10, if the strong convexity and
Lipshitz-like parameters are constant, d̃:+1 ≡ d̃ , W: ≡ W , and Θ: ≡ Θ, and Λ: ≡ Λ, with no dual
strong convexity, d: = 0, and we take f̃:+1 ≡ f̃ = Θf

^ , then (4.19), hence (4.5), hold if

d̃ ≥ 1 − ^Θ−1

2f , 1 + Wg ≥ Λ + gf ‖ : ‖
2

1 − ^ , and 1 ≥ gf ‖ : ‖2.

Examples 4.10 and 4.11 give no growth for the testing parameters i: ,k: , and [: . We now look at one
case when this is possible and what happens then.

Example 4.12 (Exponential testing parameters with constant step lengths). In Algorithm 4.1, take
g: ≡ g , f:+1 ≡ f , as well as f̃:+1 = ^−1Θ:f for some constant g, f > 0 satisfying for the strong
convexity factors W: , d: , d̃:+1 and the Lipschitz-like factors Θ: , Λ: from Assumption 4.1, for some
^ ∈ (0, 1) the inequalities

d̃:+1 ≥
1 − ^Θ−1

:

2f , 1 + W:g ≥
gf ‖ : ‖2

(1 − ^) (1 + d:f)
+ (1 + d:f)Λ: , and 1 ≥ gf ‖ : ‖2.

Then (4.5) holds with [: = i:g , i:+1 = i: (1 + d:f), andk: = g
fi: . In this case Theorem 4.6 shows
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for some initialisation-dependent constant �0 that

[�1:# + �̆1:# ◦  1:# ] (G 1:# ) − inf
Ḡ 1:# ∈B1:#

[�1:# +�1:# ◦  1:# ] (Ḡ 1:# )

≤ �0 +
#−1∑
:=0

i:

(
Y:+1(1 + W:g) +

^ (1 + fd: )g
2Θ:f

Ỹ:+1

)
.

Suppose for simplicity that sup: d: ≤ d , sup: W: ≤ W , and inf: Θ: ≥ Θ for some d,W,Θ > 0 (such
as when d: , W: , and Θ: are constant in :). Then, minding the sum expression (4.15), where now
[: = gi: , this gives for a constant � > 0 the result

[�1:# + �̆1:# ◦  1:# ] (G 1:# )
g
∑#−1
:=0 i:

− inf
Ḡ 1:# ∈B1:#

∑#−1
:=0 i: [�:+1 +�:+1 ◦  :+1] (Ḡ:+1)∑#−1

:=0 i:

≤ �0 +�
∑#−1
:=0 i: (Y:+1 + Ỹ:+1)∑#−1

:=0 i:
.

Exact interpretation requires being able to calculate �̆1:# , however, as in Example 4.10, we can
roughly interpret two cases:

(a) If lim#→∞
∑#−1
:=0 i: (Y:+1 + Ỹ:+1) /

∑#−1
:=0 i: = 0, the left hand side converges below zero as

# →∞. Roughly, subject to how well we can measure with �̆1:# in place of �1:# , this says
that asymptotically G 1:# are at least as good solutions of the weighted-averaged problem
infG 1:#

1∑#−1
:=0 i:

∑#−1
:=0 i: [�:+1 +�:+1 ◦  :+1] (G:+1) as the best constrained Ḡ 1:# ∈ B1:# .

(b) If sup#
∑#−1
:=0 i: (Y:+1 + Ỹ:+1) /

∑#−1
:=0 i: ≤ X for a constant X , then, subject to how well we can

measure with �̆1:# in place of �1:# , this says that asymptotically G 1:# stay “within weighted-
average noise level” X of the best Ḡ 1:# ∈ B1:# .

Since i:+1 = i: (1 + d:f) is increasing, later iterates are weighted more. If inf: d: > 0, then i:
grows exponentially, so the later iterates have exponentially more importance. Thus we can make
worse measurements of the early data frames without signi�cantly a�ecting the quality of the later
iterates. If Y:+1 and Ỹ:+1 are noise levels of the measurements �: and �: of some true temporal
coupling operators �̄: and �̄: , the noise levels have to converge to zero for (a) or stay bounded for
(b).

5 optical flow

We now apply the previous sections to optical �ow. For numerical accuracy, we use the more fun-
damental displacement �eld model instead of the linearised PDE model (transport equation). For
simplicity, and to keep the static problems convex, we concentrate on constant-in-space (but not
time) displacement �elds. This makes our work applicable to computational image stabilisation (shake
reduction) in still or video cameras, compare [28, 37], based on rapid successions of very noisy images.
We start in Section 5.1 with a known displacement �eld—as could be estimated using acceleration
sensors on cameras. Afterwards in Section 5.2 we include the estimation of the displacement �eld into
our model.
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5.1 known displacement field

Denoting by X > 0 the noise level, we start by assuming to be given in each frame, i.e., on each
iteration, a noisy measurement 1:

X
∈ - of a true image 1̄: ∈ - and a noisy measurement E:

X
∈ +

of a true displacement �eld Ē: ∈ + . We assume the measured displacement �elds E:
X

bijective. The
�nite-dimensional subspaces - ⊂ !2(Ω), . ⊂ !2(Ω;ℝ2), and + ⊂ !2(Ω; Ω) ∩�2(Ω; Ω) on a domain
Ω ⊂ ℝ2 we equip with the !2-norm. We write (1.3) in min-max form with

(5.1a) �X: (G) := 1
2 ‖1

:
X − G ‖2- , (�U: )∗(H) := XU� (H), and  : = �,

for � the product of pointwise unit balls and � : - → !2(Ω) a discretised di�erential operator. For the
primal and dual predictors we take

(5.1b) �X: (G) := G ◦ E:X and �X: (H) := H ◦ E:X ,

In the dual predictor of the POPD, we take �̃∗
:
= (�U

:
)∗ + d̃:

2 ‖ · ‖2!2 (Ω) following Example 4.3. Thus �̃∗
:

is the Fenchel conjugate of the Huber/Moreau–Yosida-regularised 1-norm.

regarding the regret and regularisation theory

Let the true displacement �elds Ē: ∈ � 1(ℝ2;ℝ2), (: ∈ ℕ), and letU0 ⊂ - × . be bounded. To satisfy
Assumption 4.1 (v), we take for some " > 0,

(5.2a) U :=
{
D̄0:∞

����� D̄0 ∈ U0, Ḡ
:+1 = Ḡ: ◦ Ē: , Ḡ: ∈ � 1(ℝ2), H̄: ∈ � 1(ℝ2;ℝ2), ‖∇H̄: ‖22,∞ ≤ ",

‖∇Ḡ: ‖22,∞ ≤ ", H̄:+1 = proxf̃:+1�̃∗:+1 (H̄
: ◦ Ē: + f̃:+1 :+1Ḡ:+1), ∀: ≥ 0

}
as the comparison set. With a slight abuse of notation we also writeU for the corresponding set with
the domain of each D̄: restricted to Ω. We assume that the ground-truth images

(5.2b) 1̄0:∞ ∈ B := {Ḡ0:∞ | D̄0:∞ ∈ U}.

Because the iterates H: are in a �nite-dimensional subspace, bounding ‖∇H̄: ‖22,∞ is no di�culty.
To satisfy (4.1a), we need to �nd factors ΛX

:
≥ 0 and penalties YX

:+1 ∈ ℝ such that

(5.3) 1
2 ‖G

:
X ◦ E:X − Ḡ: ◦ Ē: ‖2- ≤

ΛX
:

2 ‖G
:
X − Ḡ: ‖2- + YX:+1 (Ḡ: ∈ B: ) .

The satisfaction of (4.1b) is handled analogously. If we had no displacement �eld measurement error,
i.e., E:

X
= Ē: , we could by the area formula take ΛX

:
= maxb ∈Ω | det∇(E:

X
)−1(b) | and YX

:+1 = 0. Otherwise
we need the more elaborate estimate of the next lemma.
Lemma 5.1. Let Ē ∈ � 1(ℝ2;ℝ2) and Ḡ ∈ � 1(Ω) with ‖∇Ḡ ‖22,∞ ≤ " for some" > 0. LetV ⊂ � 1(Ω; Ω)
be a set of bijective displacement �elds satisfying

(5.4) ΛV := sup
E∈V, b ∈Ω

| det∇E−1(b) | < ∞.

Then for any G ∈ !2(Ω), E ∈ V , and Λ > ΛV ,

1
2 ‖G ◦ E − Ḡ ◦ Ē ‖

2
!2 (Ω) ≤

Λ

2 ‖G − Ḡ ‖
2
!2 (Ω) +

ΛV (4Λ − 3ΛV)
8(Λ − ΛV) " ‖E − Ē ‖2!2 (Ω;ℝ2) .
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Proof. By the area formula and Young’s inequality, for any C > 0,∫
Ω
|G (E) − Ḡ (Ē) |2 3b ≤

∫
Ω

(
1 + C

2
) |G (E (b)) − Ḡ (E (b)) |2 + (

1 + 1
2C

) |Ḡ (E (b)) − Ḡ (Ē (b)) |2 3b
=

(
1 + C

2
) ∫

Ω
|G (b) − Ḡ (b) |2 | det∇E−1(b) | 3b + (

1 + 1
2C

) ∫
Ω
|Ḡ (E) − Ḡ (Ē) |2 3b .

Using (5.4) and that Ḡ is
√
"-Lipschitz, it follows

‖G ◦ E − Ḡ ◦ Ē ‖2!2 (Ω) ≤
(
1 + C

2
)
ΛV ‖G − Ḡ ‖2!2 (Ω) +

(
1 + 1

2C
)
" ‖E − Ē ‖2!2 (Ω;ℝ2) .

Taking C = 2(Λ/ΛV − 1) yields the claim. �

We need the primal iterates to stay bounded. For this we use the next lemma:
Lemma 5.2. Compute G:

X
and h:

X
by Algorithm 4.1 for (5.1a) with �xed X > 0 and g: ≡ g > 0. Suppose

g ≤ (2−Λ)�−Y
U2 ‖� ‖2 and ‖b:

X
− 1:

X
‖2 ≤ �Λ + Y for some �,Λ, Y > 0. Then ‖G:

X
− 1:

X
‖2 ≤ � .

Proof. We drop the indexing by X as it is �xed. The dual prediction of Algorithm 4.1 guarantees
‖h: ‖2,∞ ≤ U . The primal step is

(5.5) G: := arg min
G
‖G − b: − g�h: ‖2 + g ‖G − 1: ‖2.

The optimality conditions are 0 = G: − b: + g�h: + g (G: − 1: ). Thus g ‖G: − 1: ‖ = ‖G: − b: + g�h: ‖.
By (5.5), comparing to G = b: , we get

2‖G: − 1: ‖2 ≤ g ‖�h: ‖2 + ‖b: − 1: ‖2 ≤ gU2‖� ‖2 +�Λ + Y.

Thus ‖G: − 1: ‖2 ≤ � when g is as stated. �

We may now prove convergence to the true data as the displacement �eld measurement error Y→ 0
along with the noise in the data 1:

X
.

Theorem 5.3. For all : ∈ ℕ, X > 0, and some U = U (X)→ 0 as X→ 0, assume the setup of (5.1) and (5.2)
with E:

X
∈ V for a setV ⊂ + of bijective displacement �elds such that ΛV < 2. With 1̄0:∞ ∈ B, assume:

(I) sup:∈ℕ ‖1:X − 1̄: ‖!2 (Ω) → 0 and sup:∈ℕ ‖E:X − Ē: ‖!2 (Ω;ℝ2) → 0 as X→ 0.
(II) For some Λ: ,Θ: ≡ Λ > ΛV , the step length parameters are as in Example 4.10, independent of X

and : .

For an initial D0 = D0
X
, for all X > 0, generate D1:∞

X
by Algorithm 4.1. Then there exist #̄ (X) ∈ ℕ such that:

(a) limX→ 0 sup# ≥#̄ (X) 1
#

∑#
:=1 ‖G:X − 1̄: ‖2!2 (Ω) = 0, and

(b) provided gf ‖� ‖2 < 1, moreover, limX→ 0 sup# ≥#̄ (X) 1
2#

∑#−1
:=0 ‖G:+1X

− G:
X
◦ E:

X
‖2
!2 (Ω) = 0.

Proof. We �rst show the boundedness of {G:
X
}:∈ℕ,X ∈(0,X̄) for some X̄ > 0. By (I), sup:∈ℕ ‖1:X − 1̄: ‖- =:

X1 → 0 and sup:∈ℕ ‖E:X − Ē: ‖!2 (Ω;ℝ2) =: XE → 0 as X→ 0. We have 1̄:+1 = 1̄: ◦ Ē: and b:+1
X

= G:
X
◦ E:

X
.

Using Young’s inequality twice for any V > 0 and Lemma 5.1 for any Λ′ > ΛV ,

‖b:+1X − 1:+1X ‖2!2 (Ω) ≤ (1 + V)‖G:X ◦ E:X − 1̄: ◦ Ē: ‖2!2 (Ω) + (1 + V−1)‖1:+1X − 1̄: ◦ Ē: ‖2!2 (Ω)
≤ Λ′(1 + V)‖G:X − 1̄: ‖2!2 (Ω) + (1 + V−1)X2

1 + (1 + V) ΛV (4Λ
′−3ΛV )

8(Λ′−ΛV ) "X2
E

≤ Λ′(1 + V)2‖G:X − 1:X ‖2!2 (Ω) + (1 + V−1) (Λ′(1 + V) + 1) X2
1 + (1 + V) ΛV (4Λ

′−3ΛV )
8(Λ′−ΛV ) "X2

E .
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Taking V > 0, Λ′ > ΛV small enough, we obtain for any Λ ∈ (ΛV, 2) that ‖b:+1
X
− 1:+1

X
‖2 ≤ Λ‖G:

X
−

1:
X
‖2 + YX for some YX→ 0 as X→ 0. By Lemma 5.2, now sup: ‖G:X − 1:X ‖2 ≤ � for any � ≥ ‖G0 − 10

X
‖2

with g ≤ (2−Λ)�−YX
U2 ‖� ‖2 . This holds for� large and X ∈ (0, X̄) for small X̄ > 0. Thus sup:∈ℕ,X ∈(0,X̄) ‖G:X ‖ < ∞.

Fix now X ∈ (0, X̄) and # ≥ 1. By Lemma 5.1 and (II), the prediction bounds (4.1) hold for all : ∈ ℕ
with Λ: = Θ: ≡ Λ and

(5.6) Y:+1 = Ỹ:+1 = YX:+1 := ΛV (4Λ: − 3ΛV)
8(Λ: − ΛV)

" ‖E:X − Ē: ‖2!2 (Ω;ℝ2) ≤
ΛV (4Λ − 3ΛV)

8(Λ − ΛV) "XE .

The rest of Assumption 4.1 holds by the construction in (5.1) and (5.2) while (4.5) holds by (II) and
Example 4.10. By (4.8) and Example 4.10, also /:": ≥

(
1−gf ‖� ‖2 0

0 0

)
≥ 0. Therefore, by Theorem 4.6,

for some constant � > 0 (dependent on the initialisation, supX ∈(0,X̄) XE , Θ: ≡ Λ, and d: ≡ 0 as well as
i: ≡ 1 andk: ≡ g

f as in Example 4.10), we have with the notation �1:# etc. from Theorem 4.6 that

1
#
[�X1:# + �̆U (X)1:# ◦  1:# ] (G 1:#

X ) −
1
#

inf
Ḡ 1:# ∈B1:#

[�X1:# +�U (X)1:# ◦  1:# ] (Ḡ 1:# )

+
#−1∑
:=0

1 − gf ‖� ‖
2# ‖G:+1X − G:X ◦ E:X ‖2 ≤

�

#
.

By Lemma 3.7, the de�ning (5.1), and the just proved boundedness of the iterates,

�̆U (X)1:# ( 1:#G
1:#
X ) ≥ −�U (X)1:# (− 1:#G

1:#
X ) = −

#∑
:=1

U (X)‖�G:X ‖� ≥ −U (X)#� ′

for some constant � ′ > 0. Since B is bounded (by the boundedness ofU0 and �nite-dimensionality),
also [�U (X)1:# ◦  1:# ] (Ḡ 1:# ) ≤ U�̄ ′ for some �̄ ′ > 0. Hence, for some � ′′ > 0 we get for all Ḡ 1:# ∈ B1:#
that

#∑
:=1

(
g
�X
:
(G:
X
) − �X

:
(Ḡ: )

#
+ 1 − gf ‖� ‖

2# ‖G:+1X − G:X ◦ E:X ‖2
)
≤ U (X)� ′′ + �

#
.

Due to (5.2b), this says for all X ∈ (0, X̄) and # ≥ 1 that
#∑
:=1

(
g

2# ‖1
:
X − G: ‖2 +

1 − gf ‖� ‖
2# ‖G:+1X − G:X ◦ E:X ‖2

)
≤

#∑
:=1

g

2# ‖1
:
X − 1̄: ‖2 + U (X)� ′′ +

�

#
.

Since U (X)→ 0 and (I) guarantees sup:∈ℕ ‖1:X − 1̄: ‖!2 (Ω) → 0 as X→ 0, the right hand side can be made
smaller than X by taking # ≥ # (X) large enough. The claim (b) immediately follows while (a) follows
after further referral to (I). �

numerical setup

We perform our experiments on a simple square image as well as the lighthouse image from the free
Kodak image suite [16]; this is in Figure 1 along with a noisy version and comparison single-frame total
variation reconstruction. The original size is 768×512 pixels. For our experiments, we pick a 300 × 200
subimage moving according to Brownian motion of standard deviation 2. Thus the displacement �elds
Ē: (b) = b−D̄: with D̄: ∈ ℝ2 are constant in space. To the subimage we add 50% Gaussian noise (standard
deviation 0.5 with original intensities in [0, 1]). To construct the measured displacements available to
the algorithm we add 5% Gaussian noise (standard deviation 0.05‖D̄: ‖) to the true displacements.4

4Then (5.4) gives ΛV = 1. Constant true displacements are allowed by Lemma 5.1, but constant measurements not. If
‖G − Ḡ ‖2

!2 (Ω+� (0, ‖D ‖)) ≤ � ‖G − Ḡ ‖2!2 (Ω) then Lemma 5.1 and Theorem 5.3 extend to Λ > �ΛV . In practise, to compute
G ◦ E , we extrapolate G outside Ω such that Neumann boundary conditions are satis�ed.
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(a) Original (b) Data: noise level 0.5 (c) Recon.: noise level 0.5, U = 1

Figure 1: Test image, added noise, and stationary reconstruction for comparison.

We take the regularisation parameter U = 1. The corresponding full-image total variation recon-
struction is in Figure 1c. To parametrise the POPD (Algorithm 4.1) we

– Fix the primal step length parameter g = 0.01 as well as Λ = Θ = 1 and ^ = 0.9.
– Take the primal strong convexity factor W = 1 and generally the dual factor d = 0.
– Take f̃ , maximalf , and minimal d̃:+1 ≡ d̃ according to Example 4.10. Here we estimate ‖ : ‖ ≤

√
8

for forward-di�erences discretisation of  : = � with cell width ℎ = 1 [10].
Although �∗

:+1 is not strongly convex, we also experiment taking a “phantom” d = 100. This can
in principle be justi�ed via local strong convexity or strong metric subregularity at a solution. We
brie�y indicate how this works in Appendix a. The e�ect in practise is to increase the dual step length
parameter f . We always take zero as the initial iterate (primal and dual).

We implemented our algorithms in Julia 1.3 [7], and performed our experiments on a mid-2014
MacBook Pro with 16GB RAM and two CPU cores. Our implementation uses a maximum of four
computational threads (two cores with hyperthreading) in those parts of the code where this appears
advantageous. The data generation runs in its own thread. The implementation is available on Zenodo
[32].

numerical results

We display the reconstructions in Figures 2 to 4 and the performance (function value, PSNR, and SSIM)
in Figures 6a, 7a and 8a. The reconstructions are for the frames/iterations 30, 50, 100, 300, 500, 1000,
and 3000 whereas the performance plots display all 10000 iterations at a resolution of 100 iterations
after the �rst 100 iterations. The right-most column of the reconstruction �gures displays the true
cumulative displacement �eld up to the corresponding data frame (indicated in the bottom-left corner).
The darker line is sampled at the same resolution as the performance plots whereas the lighter line
is sampled at every iteration. Regarding real-time computability, averaged over the 10000 iterations,
every iteration takes ∼6.5ms, which is to say the POPD can process 154 frames per second.

The performance plots show convergence of the function value to a stable value, not necessarily a
minimum, within 100 iterations. Likewise the SSIM and PSNR reach a relatively stable and acceptable
value by 100 iterations. Visually, we have decent tracking of movement, but we need the large d-value
to get a noticeable cartoon-like “total variation e�ect”. In the last frame of Figure 2 we can see the e�ect
of the algorithm not being able to track a sudden large displacement fast enough, hence producing
some motion blur. The 100 iterations, that were needed to reach a stable function value, SSIM, or
PSNR, appear to be mainly needed to reach the correct contrast level: recall that we initialise with
zero. We tested initialising the primal variable with the noisy data: the algorithm then needed a similar
number of iterations to reduce the noise. A smarter initialisation might help reduce the 100-iteration
”initialisation window”.

For comparison, we have included POFB reconstruction (Algorithm 2.1) in Figure 5. We use the step
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length parameter g = 0.01 for the POFB itself. We take 10 iterations of FISTA [4] with step length
parameter g̃ = 1/‖ ‖2 to approximately solve the proximal step. By the performance measures the
results are comparable to the POPD. Visually they are similar to the high-d POPD. The algorithm
is, however, quite a bit slower: ∼21.2ms/frame or 47 frames per second. Solving the proximal step
accurately would further slow it down.

5.2 unknown displacement field

When the displacement �eld E: is completely unknown, we need to estimate it from data. For some
�: : + → ℝ we do this through

(5.7) min
G ∈-, E∈+

1
2 ‖1: − G ‖

2
- + U ‖�G ‖ + �: (E)

We drop the indexing by the noise level X > 0 as we will not be studying regularisation properties.
Ideally we would take �: (E) as \

2 ‖1:+1 − 1: ◦ E ‖2- , plus regularisation terms. However, the resulting
problem would be highly nonconvex. A second idea is to use a Horn–Schunck [20] type penalty on
linearised optical �ow5, taking for some parameters \, _1, _2 > 0,

(5.8) �: (E) =
\

2 ‖1:+1 − 1: + 〈〈Id − E,∇1:〉〉‖
2
- +

_1
2 ‖ Id−E ‖22 +

_2
2 ‖∇E ‖

2
2,

where the pointwise inner product 〈〈0, 1〉〉(b) := 〈0(b), 1 (b)〉. We regularise the displacement �eld E to
both be close to identity (no displacement) and to be smooth in space.6

The choice (5.8) is, however, very inaccurate in practise. We therefore, �rstly, introduce a time-step
parameter ) and a convolution kernel r to counteract noise in the data. Secondly, we average the
Horn–Schunck term over a window of = frames. For iteration : , the last frame is

] (:) := max{1, : + 1 − (= − 1)} and its true length =: := : + 1 − (] (:) − 1) .
With 9 ∈ {] (:), . . . , : + 1}, we write E:9 ∈ + for the displacement of 1 9 from 1] (:)−1 as estimated on
iteration : . Then the displacement of 1 9+1 from 1 9 is (E:9 )−1 ◦ E:9+1. We take �: : +=:+1 → ℝ,

(5.9) �: (E:] (:) ::+1) := 1
=:

:∑
9=] (:)−1

(\
2 ‖r ∗ (1

9+1 − 1 9 )/) + 〈〈Id−(E:9 )−1 ◦ E:9+1,∇(r ∗ 1 9 )〉〉‖2-

+ _1
2 ‖ Id−(E:9 )−1 ◦ E:9+1‖22 +

_2
2 ‖∇E

:
9 ‖22

)
.

Although not given as a parameter, we use E:
] (:)−1 = 0.

We predict the primal variables using

�: (G, E:] (:) ::+1) :=
{
(G ◦ (E:

:
)−1 ◦ E:

:+1, E
:
1 , . . . , E

:
:+1, 0), : < =,

(G ◦ (E:
:
)−1 ◦ E:

:+1, (E:] (:) )−1 ◦ E:
] (:+1) , . . . , (E:] (:) )−1 ◦ E:

:+1, 0), : ≥ =,

and the dual variables using
�: (H) := H ◦ (E:: )−1 ◦ E::+1

5To obtain the linearised optical �ow model, we start with 1:+1 (b) = 1: (E: (b)) holding for all b ∈ Ω and a su�ciently
smooth image 1: . By Taylor expansion 1: (E: (b)) ≈ 1: (b) + 〈∇1: (b), E: (b) − b〉. Thus 0 = 1:+1 (b) − 1: (E: (b)) ≈
1:+1 (b) − 1: (b) + 〈∇1: (b), b − E: (b)〉.

6Indeed, in linearised optical �ow the displacement �eld cannot in general be discontinuous. See [29, 13] for approaches
designed to avoid this restriction.
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Hence we a) propagate the image G and the dual variable using the estimated displacement of the next
frame from the current frame, b) update the displacement estimates to be with respect to the start
] (: + 1) of the new =-frame window, and c) predict the displacement between the next two frames to be
zero. The latter is consistent with the zero-mean Brownian motion used in our numerical experiments.

We write the problem (5.7) with �: given by (5.9) in the form (1.6) by taking

�: (G, E:] (:) ::+1) := 1
2 ‖1

: − G ‖2+ + �: (E:] (:) ::+1),  : (G, E:] (:) ::+1) := �G, and �∗: (H) := XU� (H).

We split proxg�: into individual updates with respect to G and E:
] (:) ::+1. If the displacement �elds are

constant in space, E:9 (b) = b −D:9 withD:9 ∈ ℝ2, the compositions (E:
] (:) )−1 ◦E:9 ≡ D:] (:) −D:9 , and proxg�:

reduces to an easily solvable chain of 2 × 2 quadratic optimisation problems.
The Horn–Schunck linearisation of the optical �ow only converges to the true optical �ow as we

increase the temporal resolution. Therefore, an equivalent of the regularisation theory of Theorem 5.3
for the present model would require increasing the temporal resolution as X→ 0 and # →∞. As the
analysis is somewhat involved, we have decided not to pursue such estimates. It is, however, not
di�cult to extend the prediction bounds of Lemma 5.1.

numerical setup and results

For our numerical experiments we use generally the same setup as in Section 5.1 except we reduce the
noise level in the image to 30% and correspondingly take U = 0.2. For our new parameters we take
_1 = 1 and \ = (300 · 200) · 1003 with constant-in-space displacement �elds, so that _2 is irrelevant in
(5.9). For the displacement estimation we use a window of = = 100 previous frames. For the smoothing
kernel r in the Horn–Schunck term of (5.9) we take a normalised Gaussian of standard deviation 3
pixels in a window of 11 × 11 pixels. We also take the time step parameter ) = 0.5 for the lighthouse
and ) = 1 for the square test image. Our Julia implementation is available on Zenodo [32].

The reconstructions and estimated displacements are in Figures 9 to 11 and the performance plots
(function value, PSNR, SSIM) in Figures 6b, 7b and 8b. Regarding real-time computability, the POPD
requires 20.8ms/iteration, that is, can process 48 frames per second.

The function values take a long time to decrease. The PSNR and SSIM, however, again reach an
acceptable and somewhat stable value after 100–200 iterations. Visually, the results are somewhat more
blurred than with the approximately known displacement in Section 5.1, and even with d = 100 the
cartoon-like total variation e�ect remains small. Nevertheless, the reconstructions are visually pleasing
and the displacement is estimated to an acceptable accuracy. This did, however, require adapting
the time-step parameter ) to the test case. Improving the optical �ow model to not require such an
extraneous parameter is something for future research: we believe that the present results already
demonstrate that online optimisation is a worthy approach to dynamic imaging.

6 conclusion

With the goal of solving—for now relatively simple—imaging problems “online”, in real-time, we
incorporated predictors into the forward-backward and primal-dual proximal splitting methods. For
the predictive online forward-backward method (POFB) a reasonable notion of “dynamic regret”
stays bounded, and can even converge below zero. Using regularisation theory we, moreover, proved
convergence to a ground-truth as the level of corruption in the problem data vanishes. Hence the
method forms an appropriate regulariser.

We do not, yet, understand the predictive online primal-dual method (POPD) as well. While we have
shown analogous results, including convergence as the data improves, the form of “regret” we were
able to employ still requires study and interpretation. This notwithstanding, our numerical results on
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optical �ow are encouraging. More research is needed to understand the parametrisation and improved
predictors needed to make the total variation e�ect prominent.

appendix a local strong convexity

We establish local strong convexity of the indicator function of the ball. This has been shown in [1] to
be equivalent to the strong metric subregularity of the subdi�erential. For related characterisations, see
also [33] and regarding total variation [22, appendix].
Lemma a.1. With � : - → ℝ, � = Xcl� (0,U) on a Hilbert space- , suppose G ∈ m�(0, U) and 0 ≠ G∗ ∈ m� (G).
Then

� (G ′) − � (G) ≥ 〈G∗, G ′ − G〉 + W2 ‖G
′ − G ‖2 (G ′ ∈ *G )

for

*G =

{
-, 0 ≤ WU ≤ ‖G∗‖,
[cl�(0, U)]2 ∪ cl�(G, U), UW > ‖G∗‖.

Proof. Observe that G∗ = _G for _ := ‖G∗‖/U . If G ′ ∉ cl�(0, U), there is nothing to prove. So take
G ′ ∈ cl�(0, U). Then we need 0 ≥ _〈G, G ′ − G〉 + W2 ‖G ′ − G ‖2. Since ‖G ‖ = U , this says

(a.1)
(
_ − W2

)
U2 ≥ W2 ‖G

′‖2 + (_ − W) 〈G, G ′〉.

Suppose W ≤ _, which is the �rst case of *G . Then (a.1) is seen to hold by application of Young’s
inequality on the inner product term, followed by ‖G ′‖ ≤ U .

If on the other hand, W > _, which is the second case of*G , we take G ′ ∈ cl�(G, U) ∩ cl�(0, U). This
implies 〈G ′, G〉 ≥ 1

2 ‖G ′‖2. Since _ − W < 0, this and ‖G ′‖ ≤ U prove (a.1). �
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Figure 2: Square, POPD, approximately known displacement, d = 0.
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Figure 3: Lighthouse, POPD, approximately known displacement, d = 0.
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Figure 4: Lighthouse, POPD, approximately known displacement, d = 100.
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Figure 5: Lighthouse, POFB, approximately known displacement.
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Figure 6: Iteration-wise objective values.

1 10 100 1 000 10 000

10

20

30

40

(a) Approximately known displacement

1 10 100 1 000 10 000

10

20

30

40

(b) Unknown displacement

Figure 7: Iteration-wise PSNR. The dashed lines indicate the PSNR for the noisy data corresponding to
the experiment of the solid line of the same colour. Legend in Figure 6a.
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Figure 8: Iteration-wise SSIM. The dashed lines indicate the SSIM for the noisy data corresponding to
the experiment of the solid line of the same colour. Legend in Figure 6a.
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Figure 9: Square, POPD, unknown displacement, d = 0. The blue line in (c) indicates the estimated
displacement �eld.
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Figure 10: Lighthouse, POPD, unknown displacement, d = 0. The blue line in (c) indicates the estimated
displacement �eld.
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Figure 11: Lighthouse, POPD, unknown displacement, d = 100. The blue line in (c) indicates the
estimated displacement �eld.
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