
Optimisation for
computer vision and data science

Lecture notes

Tuomo Valkonen

tuomov@iki.fi

Last updated May 16, 2017



�is work is licensed under a Creative Commons A�ribution-NonCommercial-ShareAlike 3.0 License.

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_GB


Contents

1 Introduction 4
1.1 Applications in image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Regularisation of inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Applications in data science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Segmentation and computer vision . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 About the course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Convex subdi�erentials 12
2.1 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Properties of (convex) functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Subdi�erentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 E�ective domains and relative interiors . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 (?) Properties of the subdi�erential as a set-valued map . . . . . . . . . . . . . . . . 18

2.7 (?) Directional di�erentials and support functions . . . . . . . . . . . . . . . . . . . 19

2.8 Subdi�erential calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Characterisation of minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Strong convexity and smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Convex conjugates and duality 27
3.1 Convex conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Fenchel–Rockafellar duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Saddle-point problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Non-smooth optimisation methods 34
4.1 Surrogate objectives and gradient descent . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Fixed point theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Variational inclusions and the proximal point method . . . . . . . . . . . . . . . . . 36

4.4 Forward–backward spli�ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 (?) Douglas–Rachford spli�ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 �e Chambolle–Pock method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Practical segmentation 44
5.1 Convex relaxation of the Mumford–Shah problem . . . . . . . . . . . . . . . . . . . 44

5.2 Dictionary learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 48

3



1 Introduction

We recall from basic optimisation courses and textbooks (e.g., [1]), that if f : Rn → R is di�erentiable,

and x̂ is a minimiser of f ,

f (x̂ ) = min

x ∈Rn
f (x ), (1.1)

then

∇f (x ) = 0. (1.2)

If f is convex, the condition (1.2) is even su�cient to ensure (1.1). But what if f is non-smooth, such

as when

f (x ) = |x |, (x ∈ R)?

It is clear that x̂ = 0 is a minimiser of this function, but at the same time ∇f (0) does not exist. In

Chapter 2, we will look at ways to de�ne a set-valued subgradient ∂ f (0), which satis�es 0 ∈ ∂ f (0).
In the present chapter, we look at examples that demonstrate why di�erentiation of non-smooth

functions is important.

We begin with a very simple example problem that, while not useful by itself, forms a part of many

algorithms, and sheds light on how our later examples also behave.

Example 1.1 (So� thresholding). Consider the simple problem

min

x ∈Rn

1

2

‖z − x ‖2
2
+ λ‖x ‖2,

where the parameter λ > 0, data z ∈ Rn
, and the term ‖x ‖2 is non-smooth. As we will later

learn how to derive, the solution is

x̂ =



0, ‖z‖2 ≤ λ,

z (1 − λ/‖z‖2), ‖z‖2 > λ.

�us the minimisation procedure can be used to remove noise from z: anything below amplitude

λ is considered noise.

1.1 Applications in image processing

Non-smooth optimisation problems can be found in various �elds. An important application area is

image processing. We consider images as n1 × n2 pixels grids, mapping these grids for simplicity of

overall treatment into vectors of length n1n2. �us the pixel at the two-dimensional index (i, j ) is the

element ui+n1 (j−1) of the vector u, as illustrated in Figure 1.1. Here i ∈ {1, . . . ,n1} and j ∈ {1, . . . ,n2}.

i

j 7→

k = i + n1(j − 1)

Figure 1.1: Mapping of an n1 × n2 pixel grid into a vector of length n1n2.
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1 Introduction

(a) Noisy image (b) Denoised image

Figure 1.2: Demonstration of image denoising with total variation regularisation (1.3). Note how

the leaf edges are preserved by the denoising procedure. �is is an important feature of

total variation type approaches.

�e most prototypical image processing problem is denoising. A seminal approach to denoising

is the total variation (TV) regularisation

min

x ∈Rn
1
n

2

1

2

‖z − x ‖2 + α ‖D̃x ‖2,1. (1.3)

�e �rst term in (1.3), the �delity term, measures the distance of our solution x to the noisy image

z. �e second regularisation term tells us that the solution should be pre�y. �e regularisation
parameter α > 0 balances between these two goals.

�e matrix D̃ transforms the image in such a way that the unwanted image features are penalised.

In TV regularisation, we in particular take

D̃ =

(
D̃x

D̃y

)
∈ R2n1n2×n1n2

(1.4a)

as a discrete approximation of the image gradient. A common choice is forward di�erences with

Neumann boundary conditions (roughly meaning zero gradient on the boundary). �is may be

wri�en

[D̃xx]i+n1 (j−1) =



xi+1+n1 (j−1) − xi+n1 (j−1), 1 ≤ i < n1, 1 ≤ j ≤ n2

0, i = n1, 1 ≤ j ≤ n2

[D̃yx]i+n1 (j−1) =



xi+n1 j − xi+n1 (j−1), 1 ≤ i ≤ n1, 1 ≤ j < n2

0, 1 ≤ i ≤ n2, j = n2.

�e matrix D̃x calculates the di�erence in all neighbouring pixel intensities in the x-direction, and

D̃y in the y-direction, with zero-di�erence extension over the image boundary. �is is illustrated in

Figure 1.3.

One alternative to TV-regularisation would be to replace D̃ in (1.3) by a Wavelet transformation

W . �is has its own advantages and disadvantages.

We also use the 1-2 combination norm

‖д‖2,1 :=

n1n2∑
k=1

√
д2

k + д
2

n1n2+k
,
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1 Introduction

(a) Image f (b) D̃x f (c) D̃y f

(a)

(b)

(c)

(d) �e images (a)–(c) ordered as vectors, cf. Figure 1.1.

Figure 1.3: Illustration of the discrete gradient D̃ on a 24 × 24 pixel geometric object. In the source

image f , the values are black=1, white=0. In the gradient images, red=+1, blue=-1, and

white=0. In (a)–(c) the images are displayed with the natural two-dimensional ordering

of the pixels, while in (d) we plot them in the vectorised order illustrated in Figure 1.1,

which is how our constructed D̃ matrix expects the images.

where we take the image-wide 1-norm over the �eld of 2-norms of the pixelwise gradient approx-

imations. Observe—just try to di�erentiate!—that this norm is non-smooth: it does not have a

conventional gradient if д2

k + д
2

n1n2+k
= 0. If we replaced ‖D̃x ‖2,1 by the squared norm ‖D̃x ‖2

2,1, we

could make the problem smooth. However, the special properties of the image-wide one-norm are

important for edge preservation in image processing.

Observe now how the problem (1.3) generalises Example 1.1. In the end, TV-regularisation

penalises non-zero image gradients—in fact simillarly to Example 1.1, it tries to remove any small

image gradients, and prefers all non-zero gradients to be concentrated on a small number of pixels.

It therefore prefers images with large �at-coloured areas.

1.2 Regularisation of inverse problems

Various other image processing problems besides denoising can be constructed by replacing the �rst

term in (1.3) by one involving a matrix T ∈ Rm×n1n2
. �at is, we consider the problem

min

x ∈Rn
1
n

2

1

2

‖z −Tx ‖2 + α ‖D̃x ‖2,1. (1.5)

�e �rst term models the operator equation

Tx + ν = z,

for our known data z, noise ν , and unknown image x . Trying to solve this equation for x is an

inverse problem. In general, such problems are ill-posed, and we cannot expect to have a unique

solution, or a solution at all. In order to impose well-posedness, we introduce a regulariser R that

models our prior assumptions on a good solution u, as well as a �delity functional F that models the

noise ν . �e choice of R is speci�c to the problem at hand; a prototypical choice in image processing

is the total variation R (x ) = ‖D̃x ‖2,1 that we already have seen. More recent research has focused

on higher-order [2] and curvature-based [3] extensions, as well as non-convex regularisers [4].

If we know a noise level σ , we may then try to solve the problem

min

x
R (x ) subject to F (Tx − z) ≤ σ . (1.6)

6



1 Introduction

O�en the noise level is not known. Moreover, (1.6) can be numerically very di�cult. It is therefore

more common to solve the Tikhonov regularised problem

min

u
F (Tx − z) + αR (x ), (1.7)

for a suitable regularisation parameter α . Clearly, our image reconstruction problem (1.5) is an

instance of (1.7). We refer to [5] the student interested in reading on more about inverse problems

theory, and the role α and σ play especially in their limit.

As we have seen, in image processing, for denoising T = I is the identity. For deblurring, T
can be a convolution operation, Tx = ρ ∗ x for a suitable blur or convolution kernel ρ. For sub-

sampled reconstruction from Fourier samples, as is the case with magnetic resonance imaging (MRI)

reconstructions, T = SF for S ∈ {0, 1}k×n1n2
a sub-sampling matrix (k � n1n2, and every row of S

sums to 1), and F ∈ Cn1n2×n1n2
the discrete Fourier transform (DFT) matrix. In two dimensions, this

can be wri�en

[F x]k+n1 (`−1) =

n1∑
i=1

n2∑
j=1

e−2π i(ki+`j )xi+n1 (j−1), (k = 1, . . . ,n1; ` = 1, . . . ,n2).

Here the complex imaginary unit i =
√
−1.

If simply T = S for a sub-sampling matrix, then we are talking about inpainting. �is might be

used, for example, to hide hairs and scratches in old photographs or �lms. For a detailed treatment

of various image processing tasks, see, for example [6, 7].

1.3 Applications in data science

Problems of similar structure as (1.7) can be found in statistics and machine learning. Various

problems therein can be formulated as instances of empirical risk minimisation

min

x ∈Rm
д(x ) +

1

n

n∑
i=1

ϕi (a
T
i x ) (1.8)

where aTi x is a linear predictor, ϕi a convex loss function, and д again a regulariser. Here we

brie�y consider a few examples, and refer to [8] a more in-depth look.
1

Example 1.2 (Support vector machines). If ai ∈ R
m

for i = 1, . . . ,n is a feature vector associated

to a label bi = ±1, and we set ϕi (z) = max{0, 1 − biz} to be the hinge loss, and д(x ) = λ
2
‖x ‖2

2

for a parameter λ > 0, then (1.8) becomes a linear support vector machine (SVM)

min

x ∈Rm

λ

2

‖x ‖2
2
+

n∑
i=1

max{0, 1 − bia
T
i x}. (1.9)

�e variable bi = ±1 is known as the label or class of the data ai . �e solution x determines a

linear classi�er as

classx (a) :=




1, aTx > 0,

−1, aTx < 0,

undetermined, aTx = 0.

In other words, and as illustrated in Figure 1.4a, x determines the hyperplane that separates the

two classes,

Hx := {y ∈ Rm | xTy = 0}.
1
See also http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote10.html for a list of

several di�erent models.
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1 Introduction

�� �� ��

��

��

(a) �e hyperplane H1 does not separate the

two classes. H2 does, but only with a

small margin. �e hyperplane H3 sepa-

rates them with the optimum margin.

(b) �e margin of the SVM is the dis-

tance 2/‖x ‖ between the dashed

lines. �e data vectors touching the

margin are the support vectors.

Figure 1.4: Illustrations of linear support vector machines.

(a) is due to user ZackWeinberg on Wikipedia, licensed under Creative Commons BY-SA-3.0. It can be found at https:
//commons.wikimedia.org/wiki/File:Svm separating hyperplanes (SVG).svg.
(b) is based on an image due to user Peter Buch on Wikipedia, and in the public domain. �e original can be found at
https://commons.wikimedia.org/wiki/File:Svm max sep hyperplane with margin.png.

�e job of the problem (1.9) is to �nd the best linear classi�er x as determined by the regulariser

and the loss function. �e loss function does not penalise x if 1 − bia
T
i x ≤ 0, which can be

expanded as




1 ≤ aTi x , if bi = 1,

aTi x ≤ −1, if bi = −1.

Observing that the orthogonal distance of ai from Hx is |aTi x |/‖x ‖, we therefore see that the

i:th loss function does not penalise x if ai gets the correct classi�cation and is further than the

margin 1/‖x ‖ from Hx . �is is illustrated in Figure 1.4b.

In the problem (1.9), the regulariser д(x ) = λ‖x ‖2
2
/2 a�empts to minimise the margin, while

the combination of the loss functions and linear predictors a�empts to reduce mis-classi�cations,

and do correct classi�cation with a wide margin. Large λ will yield small x and consequently a

wide margin and small penalisation of mis-classi�cations. �e wide margin can cause correct

classi�cations to also be penalised if they’re too close to being mis-classi�ed. Small λ will yield

large x and consequently a narrow margin and large penalisation of mis-classi�cations. Indeed,

the SVM allows mis-classi�cation of outliers and otherwise unseparable data through the loss

function approach instead of strict constraints.

Remark 1.1 (A�inely separable data and multiple classes). �e basic SVM only supports the two

classes ±1 separated by Hx . Multi-class classi�cation has to be done by, e.g., pairwise separation of

each class, and a voting mechanism between the di�erent classi�cations. Also, the general approach

described here only allows hyperplanes Hx containing the origin—so cannot separate classes that

are not separated by such hyperplanes—but if we li� the problem into a higher-dimensional space by

replacing ai by a′i = (ai , 1), it is easy to support a�ne separating hyperplanes.

Example 1.3 (Non-linear SVM). Non-linear support vector machines basically amount to trans-

forming the data x into a higher-dimensional space, and then applying the basic linear support

vector machine. We refer to [8, 9] for more details and examples of these kernel methods.
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1 Introduction

Here we just observe the general idea. Speci�cally, one takes a kernel κ, such as the radial

basis function (RBF) kernel

κ (ai ,aj ) := exp(−‖ai − aj ‖
2/(2σ ))

for some σ > 0. �en one constructs the matrix

K :=
*..
,

κ (a1,a1) · · · κ (a1,an )
...

. . .
...

κ (an ,a1) · · · κ (an ,an )

+//
-
.

Decomposing K = UTΛU for a diagonal matrix Λ of eigenvectors, and an orthonormal matrix

U = (u1, . . . ,un ) of eigenvectors, one then de�nes

ãi := Λ1/2ui ∈ R
n .

If n �m (where ai ∈ R
m ), one now replaces ai in the SVM (1.9) by ãi . Essentially this replaces

ai by its similarity to the rest of the data, as measured by the kernel κ, and then decomposed

into similarity features by the eigen-decomposition. In the exponential RBF, the parameter σ
controls how wide is the window (a�er a fashion) around ai , that aj is considered similar to ai .

Example 1.4 (Non-linear SVM numerical example). If a1 = (1, 1)T , a2 = (−1, 0)T , and a3 =

(0,−1)T , with σ = 1 we get ã1 ≈ (0, 0.7, 0.8)T , ã2 ≈ (0.8,−0.2,−0.2)T , and ã3 ≈ (0.2, 0.7, 0.8)T .

If now b1 = 1 and b2,b3 = −1, then clearly ã1 is separable from ã2 and ã3 by the �rst coordinate.

Example 1.5 (Lasso). Let ai a data vector associated with a dependent variable or measurement

bi ∈ R. Basic linear regression seeks the least squares solution x to the typically over-determined

problem

aTi x = bi , (i = 1, . . . ,n). (1.10)

In other words, one solves the least squares problem

min

x ∈Rm

1

n

n∑
i=1

1

2

‖bi − a
T
i x ‖

2

2
.

Sometimes, one wants x to be sparse—to have many zero elements, and few non-zero elements—

to �nd the most important coordinates to describe the relationships in the data {(ai ,bi )}. For

example ai might be the a�ributes (genre, length, etc.) of a �lm, and bi its rating. �e sparse x
would then tell the most relevant a�ributes for the rating, and their relative weighting. To do

such sparse or regularised regression, let us in (1.8) set ϕi (z) =
1

2
‖z − bi ‖

2

2
and д(x ) = λ‖x ‖1.

�en we obtain the so-called Lasso

min

x ∈Rm

1

n

n∑
i=1

1

2

‖bi − a
T
i x ‖

2

2
+ λ‖x ‖1

To explain the data, the one-norm regularisation term in Lasso causes it to automatically select

more relevant features from the data, ignoring irrelevant ones.
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1 Introduction

Example 1.6 (Lasso numerical example). Suppose aT
1
= (1, 0) and b1 = 1, as well as aT

2
= (0, 1)

and b2 = 0.5. For example, b1 could be the rating of a meal based on �avour alone, and b2 based

on appearance alone.

�e system (1.10) is fully determined and gives x = (1, 0.5)T . �is gives the weighting for

�avour and appearance in the rating of the meal.

From the Lasso, if 2λ < 0.5, we get x = (1 − 2λ, 0.5 − 2λ)T , but if 2λ ∈ [0.5, 1], we get

x = (1 − 2λ, 0)T . In other words, the �rst component of x is more important in determining

the data than the second component. In our meal interpretation, �avour is more important

than appearance, although its weighting gets discounted by λ. (Remember how in Example 1.1

everything gets shrunk by λ.)

1.4 Segmentation and computer vision

Let us return to image processing, and the Tikhonov-regularised inverse problems framework (1.7).

Suppose the image pixels Ω = {1, . . . ,n1} × {1, . . . ,n2} naturally divide into two subsets mutually

disjoint subsets Ω1 and Ω0. �at is, Ω1 ∩ Ω0 = ∅, and Ω1 ∪ Ω0 = Ω. Speci�cally, we are interested in

the case that Ω1 is a foreground object, and Ω0 is the image background. In fact, we want to discover

Ω1. One way to do this is to set for some parameter θ > 0 as the regulariser

R (x ) = MSθ (x ) :=
1

2

‖D̃x |Ω0‖
2

2
+

1

2

‖D̃x |Ω1‖
2

2
+ θ · length(Γ),

where Γ is the boundary of Ω1, and the restriction

[D̃x |Ωk ]j :=



[D̃x]j , the calculation of [D̃x]j in (1.4) only involves pixels within Ωk ,

0, otherwise.

In other words, the �rst two terms of R only penalise the image gradients within Ω0 and Ω1, ignoring

any crossings over the boundary Γ. We only penalise the object boundary Γ by its length, not how

much the intensity of the image u jumps over Γ.

MSθ is known as the Mumford–Shah regulariser. �e corresponding denoising-type problem

min

x ∈Rn
1
n

2,Γ

1

2

‖z − x ‖2 + αMSθ (x ) (1.11)

is known as the Mumford–Shah image segmentation problem. Segmentation of images forms the

basis of computer vision, which might be described as the pipeline
2

1. Segment. �rough solution of the Mumford–Shah problem or otherwise, discover the objects

in an image. In the simplest case, split the image into foreground Ω1 and background Ω0.

2. Classify. �rough a classi�er, such as the SVM that we already studied, or a neural network,

classify the discovered objects. Again, in the simplest case, classify the contents or shape of

the image region Ω1.

3. Track. When a sequence of images is available, track the movement of the discovered objects.

4. Control. Adapt the movement of a robot or other autonomous gadget to the discovered

changes or state of surroundings.

In this course, we concentrate on the computational tools needed to realise the �rst two steps:

optimisation algorithms for non-smooth problems, and tricks to obtain tractable optimisation
problems. Indeed, the Mumford–Shah problem is computationally very di�cult, as it is both non-

convex and non-smooth. We will return to ways to deal with the non-convexity in our �nal Chapter 5.

First we have to deal with non-smoothness.

2
For an excellent overview, see also the annotated slides of Andrew Blake’s Gibbs lecture at http://www.ams.org/

meetings/lectures/BlakeGibbsLecture.pdf
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1 Introduction

1.5 About the course

As we have already seen, modern approaches to image processing, machine learning, and various big

data applications, almost invariably involve the solution of non-smooth optimisation problems. �e

main part of this course studies two (and a half) tricks to deal with the non-smoothness. �ese

are: spli�ing methods and duality, as well as saddle point problems closely related to the la�er. �ese

tricks are the topics of the respective Chapters 3 and 4. Before this, we however start in Chapter 2

with the necessary basic convex analysis, including the convex subdi�erential. A�er this main part,

in Chapter 5 we return to practical segmentation approaches based on the Mumford–Shah problem,

and indeed introduce a further bag of tricks to deal non-convexity. Sections and proofs marked

with a star (?) are additional material not covered in the lectures due to time constraints. Exercises

marked with a star (?) are more challenging ones than the rest.

Basic convex analysis, with which we start, may be studied from [10] and [11]. �e in�nite-

dimensional case is treated in the classic [12], and more comprehensively in [13]. For brushing up on

basics of numerical optimisation of smooth functions, we point to [1]—such background is however

not strictly necessary. All that is required is knowledge of undergraduate calculus and linear algebra,

as well as elementary geometry. For more background on data science and machine learning, we

refer to [8], while for image processing we recommend [6].
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2 Convex subdi�erentials

2.1 Convex sets

We know intuitively what a convex set is: one can see from any point in the set, to any other point

in the set. �is is illustrated in Fig. 2.1a, and is also the proper de�nition of a convex set.

Definition 2.1. A subset C ⊂ Rn
is convex if

λx + (1 − λ)y ∈ C, whenever x ,y ∈ C, λ ∈ [0, 1].

Exercise (Light) 2.1. Verify carefully that the following sets are convex:

(i) �e open ball intB(x ,α ) ∈ Rn and the closed ball B(x ,α ).

(ii) �e set
∏n

i=1
[ai ,bi ] ∈ R

n for ai ≤ bi , (i = 1, . . . ,n).

(iii) �e intersection C ∩ D of convex sets C and D.

(iv) �e image AC of any convex set C ∈ Rm under linear transformation by matrix A ∈ Rn×m .

2.2 Convex functions

One way to de�ne a convex function is that the epigraph epi f is convex; cf. Figure 2.1b.

Definition 2.2. Let R := [−∞,∞] denote the extended real numbers. �e epigraph of a function

f : Rn → R is the set

epi f := {(x , t ) ∈ Rn ×R | t ≥ f (x ), x ∈ Rn}.
We however provide a more explicit de�nition:

Definition 2.3. We say that f : Rn → R is convex if

f (λx + (1 − λ)y ) ≤ λf (x ) + (1 − λ) f (y ), (x ,y ∈ Rn
; λ ∈ [0, 1]).

x

y

(a) If x ,y ∈ C for a convex setC , the

entire line segment between the

points belongs to C .

f

epi f

(b) �e line segment with start

points within the epigraph of a

convex function f , belongs com-

pletely to the epigraph.

Figure 2.1: Illustrations of convex sets and functions

12



2 Convex subdi�erentials

Example 2.1. Any norm is convex, indeed ‖λx + (1 − λ)y ‖ ≤ λ‖x ‖ + (1 − λ)‖y ‖.

For our application purposes, the next exercise covers the most interesting types of convex

functions.

Exercise 2.2. Show that the following functions are convex:

(i) Any linear function x 7→ 〈x ,a〉 for some a ∈ Rn .

(ii) Any linear combination
∑n

i=1
αi fi of convex functions fi with αi ≥ 0.

(iii) x 7→ f (Ax ), if A ∈ Rn×m is a matrix, and f : Rn → R convex.

(iv) t 7→ |t |p for t ∈ R is convex for p ≥ 1.

(v) t 7→ − log t if t ≥ 0 and∞ otherwise.

Hint: For the last two examples, try to write the epigraph as the intersection of a�ne half-spaces
Ax := {(z,v ) | v − f (z) ≥ f ′(x ) (z − x )}.

Example 2.2. For a set C ⊂ Rn
, we de�ne the indicator function

δC (x ) :=



0, x ∈ C,

∞, x < C .

�en C is convex if and only if δC is convex.

Exercise (Light) 2.3. For a convex function f : Rn → R, show that the sub-level sets

levc f := {x ∈ Rn | f (x ) ≤ c}
are convex for any c ∈ R.

Exercise 2.4. Show that f : Ω → R is a convex function if and only if epi f is a convex set,
cf. Figure 2.1b.

2.3 Properties of (convex) functions

Frequently, we will be making some additional assumptions about our convex function f .

Definition 2.4. Let f : Rn → R. We then say that

(i) f is proper, if f (x ) < ∞ for some x ∈ Rn
, and f (x ) > −∞ for all x ∈ Rn

.

(ii) f is lower semicontinuous at x if for any sequence {x i}∞i=1
⊂ Rn

, with x i → x holds

f (x ) ≤ lim inf

i→∞
f (x i ).

(iii) f is lower semicontinuous, if it is lower semicontinuous at every x ∈ Rn
.

13



2 Convex subdi�erentials

Exercise 2.5. Show that epi f is closed if and only if f is lower semicontinuous, and that cl epi f is
convex for convex f .

�is exercise motivates the following de�nition.

Definition 2.5. �e closure or lower semicontinuous envelope of f : Rn → R is the function

cl f : Rn → R de�ned by

epi(cl f ) = cl(epi f ).

All of these properties are important for optimisation problems, as evidence by the next proposition.

Proposition 2.1. Let f : Rn → R be proper and lower semicontinuous, andC ⊂ Rn closed and bounded.
�en there exists x̂ ∈ C such that

f (x̂ ) = inf

x ∈C
f (x ),

and this value is �nite.

Proof. Let

M := inf

x ∈C
f (x ).

Suppose M = −∞. �en there exists a sequence {x i}∞i=1
⊂ C with f (x i ) ≤ −i for each i ∈ N. Since C

is closed and bounded, we can �nd a limit point x ∈ C of a subsequence. By lower semicontinuity of

f , then

f (x ) ≤ lim

i→∞
(−i ) = −∞.

�is is in contradiction to f being proper.

So M > −∞. Since f is proper, there exists a point x ′ ∈ Rn
such that f (x ′) < ∞. �erefore also

M < ∞.

So M is �nite. We may then take a minimising sequence {x i}∞i=1
⊂ C , such that

f (x i ) ≤ M + 1/i .

Again, we may �nd a limit point x of a subsequence, and see by lower semicontinuity that f (x ) = M .

We have found our x̂ = x . �

Alternative proof. �e set Ẽ := epi f ∩ (C × R) is closed. Since f is proper, we may �nd a point

x with f (x ) < ∞. If we let E := Ẽ ∩ ([−∞, f (x )] × R), then E is non-empty, because f is proper.

Now taking zi := (x i , f (x i )) ∈ Ẽ for a minimising sequence (which eventually and w.log satis�es

f (x i ) ≤ f (x ), we either �nd that f (x i ) ↘ −∞, a contradiction, or may switch to a compact subset

of E, where a subsequence of zi converges. �

Remark 2.1. Note that we did not yet use convexity for the previous proposition.

2.4 Subdi�erentials

Let f : Rn → R be Fréchet-di�erentiable at x ∈ R. �at is, the gradient ∇f (x ) := z exists, de�ned by

lim

h→0

f (x + h) − f (x ) − 〈z,h〉

‖h‖
= 0. (2.1)

Note that this can also be wri�en

lim

h→0

1

‖h‖

〈(
x + h

f (x + h)

)
−

(
x

f (x )

)
,

(
z
−1

)〉
= 0.

�e vector (z,−1) is therefore a (Fréchet-)normal to epi f ; see Figure 2.2.

It follows from (2.1) that

lim

h→0

f (x + h) − f (x ) − 〈z,h〉

‖h‖
≥ 0. (2.2)

14



2 Convex subdi�erentials

epi f

(0,−1)

(a) Epigraph of f (x ) = |x | with a

supporting hyperplane and nor-

mal vector at (0, 0).

epi f

(z,−1)

(b) An alternative supporting hy-

perplane and normal vector at

(0, 0).

Figure 2.2: Epigraphs, supporting hyperplanes, and their normal vectors (z,−1). �e supporting hy-

perplane in (a) together with the orthogonal vector, correspond to optimality conditions.

Definition 2.6. Let f : Rn → R. If z satis�es (2.2), we say that z is a Fréchet subgradient of f at x .

We denote the set of all Fréchet subgradients of f at x by ∂F f (x ).

If f is convex, we have the following simple characterisation.

Lemma 2.1. If f is convex, (2.2) is equivalent to

f (x + h) − f (x ) ≥ 〈z,h〉, (h ∈ Rm ). (2.3)

Proof. Indeed, (2.3) implies

lim

h→0

f (x + h) − f (x ) − 〈z,h〉 ≥ 0,

which implies (2.2).

On the other hand, if (2.3) does not hold, then

f (x + h) − f (x ) ≤ 〈z,h〉 − ϵ

for some h ∈ Rn \ {0} and ϵ > 0. For any i ∈ N it follows

f (x + h/2i ) − f (x ) = f ((x + h)/2i + (1 − 1/2i )x ) − f (x )

≤ (1/2i ) f (x + h) − (1/2i ) f (x ) ≤ 〈z,h/2i 〉 − ϵ/2i .

�erefore, se�ing hi := h/2i , we have

lim

i→∞

f (x + hi ) − f (x ) − 〈z,hi 〉

‖hi ‖
≤ lim

i→∞

−ϵ/2i

‖h‖/2i
= −ϵ/‖h‖.

�is violates (2.2). �

�is motivates the following de�nition.

Definition 2.7. Let f : Rn → R be convex, and x ∈ Rn
. If z ∈ Rn

satis�es

f (x ′) − f (x ) ≥ 〈z,x ′ − x〉, for all x ′ ∈ Rn , (2.4)

we say that z is a (convex) subgradient of f at x . We denote the set of all convex subgradients of

f at x by ∂ f (x ).

15



2 Convex subdi�erentials

Geometrically, we already know that (z,−1) for any z ∈ ∂ f (x ) is normal to a supporting tangent

hyperplane

H = {(x ′, f (x ) + 〈z,x ′ − x〉) ∈ Rn+1 | x ′ ∈ Rn}
of epi f at (x , f (x )); see Figure 2.2b. �erefore the entire set ∂ f (x ) provides a collection of such.

Moreover, each hyperplane supports the whole function globally, not just locally, in the sense that

epi f stays on one side of H .

Corollary 2.1. Suppose f : Rn → R is convex and Fréchet-di�erentiable at x . �en ∂ f (x ) = {∇f (x )}.

Proof. �e inclusion ∇f (x ) ∈ ∂ f (x ) is immediate from Lemma 2.1 because (2.2) holds. For the

inclusion ∂ f (x ) ⊂ {∇f (x )}, suppose z , ∇f (x ) ∈ ∂ f (x ). We can write z = ∇f (x ) +d for d , 0. For

any hi := d/i , we have hi → 0 as i → ∞, as well as

lim

i→∞

f (x + hi ) − f (x ) − 〈z,hi 〉

‖hi ‖
= lim

i→∞

〈d,hi 〉

‖hi ‖
= −‖d ‖.

�is is in contradiction to (2.2). �erefore, by Lemma 2.1, z < ∂ f (x ). It follows ∂ f (x ) = {∇f (x )}. �

Example 2.3. Let f (x ) = 1

2
‖z−x ‖2

2
for some z ∈ Rn

. �en f is di�erentiable with ∇f (x ) = x −z.

By Corollary 2.1 thus ∂ f (x ) = {x − z}.

Example 2.4. Let f (x ) = |x | for x ∈ R. �en

∂ f (x ) =




{1}, x > 0,

{−1}, x < 0,

[−1, 1], x = 0.

�is is illustrated in Figure 2.3.

f

(д,−1)

(a) ∂ f (x ) = {sgnx} at x , 0

f

(д,−1)

(b) ∂ f (x ) = [−1, 1] at x = 0

Figure 2.3: Subdi�erentials of f (x ) = |x |.

Example 2.5. Let C ⊂ Rn
be a convex set. �en the subdi�erential of the indicator function δC

is the normal cone

∂δC (x ) = NC (x ) := {z ∈ Rn | 〈x ′ − x , z〉 ≤ 0 for all x ′ ∈ C}.
We illustrate this in Figure 2.4.
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C

NC (x1)
NC (x2)

Figure 2.4: Normal cones of f = δC at two points x1 and x2.

Exercise 2.6. What is the subdi�erential of ‖x ‖2 on Rn?

2.5 E�ective domains and relative interiors

For convex sets, a relative de�nition of the interior is o�en useful.

Definition 2.8. For a convex set C ⊂ Rn
, we de�ne the relative interior riC as the interior of C

relative to the smallest a�ne subspace V ⊃ C .

If the usual interior intA , ∅, then riA = intA. �is is the most common case, and in the

applications that we consider in this course, only this case will occur. �e next examples however

illustrate the idea of the relative interior. �e linear constraint in Example 2.7 is a very typical case

when the relative interior can be needed.

Example 2.6. Let C = {c} for some c ∈ Rn
. �en, as a a singleton, as 0-dimensional convex set,

C itself is the smallest a�ne subspace containing C . �us riC = C .

Example 2.7. Let A ∈ Rk×m
, and b ∈ Rm

. Set C := {x ∈ Rm | Ax = b}. �en C is a convex set,

indeed itself an a�ne subspace of Rm
. �us riC = C .

Example 2.8. For vectors a,b ∈ Rn
, de�ne the line segment

C := {λa + (1 − λ)b | 0 ≤ λ ≤ 1}.
�is is a one-dimensional set with

riC = {λa + (1 − λ)b | 0 < λ < 1}.
Definition 2.9. For a proper function f : Rn → R, we de�ne the e�ective domain

dom f := {x ∈ Rn | f (x ) < ∞}.
Lemma 2.2. Let C ⊂ Rn be a non-empty convex set. �en riC is non-empty.

17
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Proof. Let V be the smallest a�ne subspace containing C . (Such a V is unique and exists, since the

intersection of two distinct a�ne subspace V and V ′ is still an a�ne subspace of lower dimension.)

Let k be the dimension of V . �en C contains at least k linearly independent vectors xk . Otherwise

the dimension k ofV would not be minimal. As a convex setC ⊃ {∑k
j=1

λkxk |
∑k

j=1
λk = 1, λk ≥ 0}.

But then riC = intV C ⊃ ∆ := {∑k
j=1

λkxk |
∑k

j=1
λk = 1, 1 > λk > 0}, where intV C denotes the

interior of C a subset of V . Clearly the set ∆ is non-empty. �

Proposition 2.2. Let f : Rn → R be convex and proper. �en ri dom f , ∅.

Proof. Since f is proper, dom f is non-empty. �

Exercise (?) 2.7. Show that a convex function f : Rn → R is continuous on ri dom f . Conclude
that cl f = f on ri dom f , and that

ri(epi f ) = {(x , t ) ∈ Rn+1 | x ∈ ri(dom f ), t > f (x )}.

2.6 (?) Properties of the subdi�erential as a set-valued map

�e subdi�erential ∂ f : Rn ⇒ Rn
is an example of a set-valued map: for each x ∈ Rn

, the

value is a subset of Rn
, ∂ f (x ) ⊂ Rn

. For general set-valued functions the equivalent concept of

subdi�erentiability is given by the next de�nition.

Definition 2.10. A set-valued function A : Rn ⇒ Rn
is monotone if

〈A(x ′) −A(x ),x ′ − x〉 ≥ 0, (x ′,x ∈ Rn ).

(�is inequality is to be understood in the sense

〈y ′ − y ,x −′ x〉 ≥ 0, (x ′,x ∈ Rn
; y ′ ∈ A(x ′), y ∈ A(x ))

)
.

Exercise 2.8. Let f : Rn → R be convex. Show that ∂ f is monotone.

Exercise (?) 2.9. Show that ∂ f is, in fact, maximal monotone. �is means that there is no
monotone operator A : Rn ⇒ Rn such that GraphA ⊃ Graph ∂ f . Hint: Observe that any z ∈ Rn

can be wri�en as z = x + y for x ∈ Rn and y ∈ ∂ f (x ) for some convex function f .

We want to build some calculus rules for the convex subdi�erential. For that, we need some

additional results and concepts.

Proposition 2.3. Let f : Rn → R be convex, proper, and lower semicontinuous. �en the sub-di�erential
mapping ∂ f is outer semicontinuous, meaning that for any sequence x i → x , and zi ∈ ∂ f (x i ), any
limit z of a converging subsequence of {zi}, satis�es z ∈ ∂ f (x ). We denote

lim sup

i→∞
∂ f (x i ) ⊂ ∂ f (x ).

Moreover ∂ f (x ) is a closed set at each x ∈ Rn .

18
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Proof. Assume, without loss of generality, that {zi} converges to z. Choose arbitrary x ′ ∈ Rn
. We

have by De�nition 2.7 that

f (x ′) ≥ f (x i ) − 〈zi ,x ′ − x i 〉, (i ∈ N).

�e map (z̃, x̃ ) 7→ 〈̃z,x ′ − x̃〉 is continuous, and by assumption f is lower semicontinuous. �erefore

f (x ′) ≥ lim inf

i→∞

(
f (x i ) − 〈zi ,x ′ − x i 〉

)
≥ f (x ) − 〈z,x ′ − x〉.

Since this holds for any x ′ ∈ Rn
, we have proved that z ∈ ∂ f (x ).

Finally, the closedness of ∂ f (x ) is immediate from the de�nition, or choosing x i = x above. �

2.7 (?) Directional di�erentials and support functions

Definition 2.11. For f : Rn → R, we de�ne the directional di�erential at x ∈ Rn
in the direction

h ∈ Rn
by

f ′(x ;h) := lim

t↘0

f (x + th) − f (x )

t
. (2.5)

Lemma 2.3. Let f : Rn → R be convex and proper, and x ∈ dom f . �en

∂ f (x ) = {z ∈ Rn | 〈z,h〉 ≤ f ′(x ;h) ∀h ∈ Rn}, (2.6)

and
cl(h 7→ f ′(x ;h)) = sup

z∈∂f (x )
〈z,h〉. (2.7)

If x ∈ ri dom f , moreover
f ′(x ;h) = sup

z∈∂f (x )
〈z,h〉. (2.8)

Proof. Observe that

f ′(x ;h) = inf

t>0

f (x + th) − f (x )

t
. (2.9)

Indeed, for any 0 < s < t by convexity

s

t
f (x + th) +

t − s

t
f (x ) ≥ f (x + sh).

�is gives

f (x + th) − f (x ) ≥
t

s

(
f (x + sh) − f (x )

)
.

�erefore, the sequence s 7→
f (x+sh)−f (x )

s is monotonically increasing, proving (2.9).

If we de�ne

A := {z ∈ Rn | 〈z,h〉 ≤ f ′(x ;h) for all h ∈ Rn},
then (2.9) and (2.4) show that A = ∂ f (x ). �is proves (2.6). Observe also from the continuity of

h 7→ 〈z,h〉 that A is closed (this also follows from Proposition 2.3), and that

A = {z ∈ Rn | 〈z,h〉 ≤ cl[f ′(x ; · )](h) for all h ∈ Rn}. (2.10)

De�ning the support function of the closed convex set A,

σA (h) := sup

z∈A
〈z,h〉,

we �nd that σA is proper, lower semicontinuous, and sublinear,

σA (s1h1 + s2h2) ≤ s1σA (h1) + s2σA (h2), (h1,h2 ∈ R
n

; s1, s2 ≥ 0).
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(a) For the two-norm, ∂‖0‖2 is

the unit circle.

(b) For the one-norm, ∂‖0‖1 is

the rectangle [−1, 1]
2
.

(c) For the∞-norm, ∂‖0‖1 is the

diamond.

Figure 2.5: Some support functions on R2
and their corresponding convex sets.

Also f ′(x ; · ) is proper and sublinear (although possibly not lower semicontinuous). Proving this

is the content of Exercise 2.10. It follows easily that cl[f ′(x ; · )] is proper, sublinear, and lower

semicontinuous. Since by (2.10), A is the maximal convex set A′ satisfying σA′ ≤ cl[f ′(x ; · )], the

next therefore lemma shows that σA = cl[f ′(x ; · )].
Finally, if x ∈ ri dom f , we have cl[f ′(x ; · )] = f ′(x ; · ) by the lower semicontinuity of f on

ri dom f (Exercise 2.7). �is shows (2.8). �

Exercise 2.10. For a convex proper function f : Rn → R, prove that f ′(x ; · ) is proper and sublinear
at x ∈ dom f .

Lemma 2.4. Let σ : Rn → R be proper, lower semicontinuous, and sub-linear. �en σ is the support
function of the convex set

∂σ (0) = {z ∈ Rn | 〈z,h〉 ≤ σ (h) for all h ∈ Rn}. (2.11)

�at is
σ = σ∂σ (0),

Further, σA is sub-linear for any convex set A.

Some very common support functions σ and corresponding “dual balls” ∂σ (0) are depicted in

Figure 2.5.

Proof. A sub-linear function is convex. For any convex function f , we have

f (x ) = sup

x ′∈Rn, z∈∂f (x ′)
f (x ′) + 〈z,x − x ′〉. (2.12)

Indeed, by the de�nition of the subdi�erential, ≥ holds here, while choosing x ′ = x gives equality.

Since a sub-linear function is positively homogeneous, meaning

σ (λx ) = λσ (x ) for λ > 0,

we have

∂σ (λx ) = ∂σ (x ), for all x , 0, λ > 0. (2.13)

By the outer semicontinuity of ∂σ (Proposition 2.3), le�ing λ ↘ 0, we see that

∂σ (x ) ⊂ ∂σ (0), for any x ∈ Rn .

Let x ′ ∈ Rn
, and z ∈ ∂σ (x ′). �en, since z ∈ ∂σ (λx ′), we get

0 = σ (λx ′) − σ (x ′) ≥ 〈z, λx ′ − x ′〉 ≥ σ (λx ′) − σ (x ′).
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�us, for any λ > 0 and x ∈ Rn
, we have

σ (x ′) + 〈z,x − x ′〉 = σ (λx ′) + 〈z,x − λx ′〉.

Le�ing λ ↘ 0, we have

σ (x ′) + 〈z,x − x ′〉 = 〈z,x〉.

�us by (2.13), we have

σ (x ) = sup

x ′∈Rn, z∈∂σ (x ′)
(σ (x ′) + 〈z,x − x ′〉)

= sup

x ′∈Rn, z∈∂σ (x ′)
〈z,x〉

= sup

z∈∂σ (0)
〈z,x〉.

�is proves (2.11).

Finally, that σA is sub-linear for any convex set A, follows immediately from the de�nition. �

Lemma 2.5. Let f : Rn → R be a proper convex function. �en

(i) ∂ f (x ) = ∅ for every x < dom f .

(ii) ∂ f (x ) , ∅ for every x ∈ ri dom f .

Proof. �e �rst claim is clear from the de�nition of the subdi�erential: if x < dom f , (2.4) gives the

condition

f (x ′) −∞ ≥ 〈z,x ′ − x〉, (x ′ ∈ Rn ),

which cannot hold.

For the second claim, let y ∈ dom f , and x ∈ ri dom f . If we cannot choose y distinct from x , then

ri dom f = dom f = {x̄} for some x̄ ∈ Rn
. �is by the properness of f means that for some constant

c ∈ R holds

f (x ) =



c, x = x̄ ,

∞ otherwise.

But, as is easily veri�ed, ∂ f (x̄ ) = Rn
. �us (ii) holds in this degenerate case.

For the rest, we may thus assume y distinct from x . With h := y − x , writing x as the convex

combination

x =
t

1 + t
y +

1

1 + t
(x − th),

we then deduce

1

1 + t
f (x − th) − f (x ) ≥ −

t

1 + t
f (y ).

�us

f (x − th) − f (x ) ≥ t ( f (x ) − f (y )).

In consequence

f ′(x ;−h) ≥ f (x ) − f (y ) = C ′ > −∞.

By Lemma 2.3 we observe that ∂ f (x ) has to be non-empty. �

Remark 2.2. In the context of the proof, it can be that f ′(x ;h) = −∞. Consider, for example,

f (x ) =




∞, x < 0

1, x = 0,

0, x > 0.

With x = 0, any y > 0, and h = y − x > 0, we have f ′(x ;h) = −∞. �e crucial bit is that

f ′(x ;−h) > −∞; in this example f ′(x ;−h) = ∞. �is example illustrates how convex functions with

non-full domain can exhibit somewhat strange behaviour.
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2.8 Subdi�erential calculus

Theorem 2.1. Suppose f ,д : Rn → R are convex and proper. �en at any point x ∈ dom( f +д) one has

∂( f + д) (x ) ⊃ ∂ f (x ) + ∂д(x ).

If ri dom f ∩ ri domд , ∅, then this holds as an equality.

Proof (?). Take �rst z ∈ ∂ f (x ), andw ∈ ∂д(x ). �en (2.4) immediately shows that z+w ∈ ∂( f +д) (x ).
�is shows the claimed inclusion.

To prove the equality under the additional assumption, we note from Lemma 2.5 for each q =
f ,д, f + д that ∂q(x ) is non-empty. By Lemma 2.3 this implies

q′(x ;h) > −∞

for any h. Since q′(x ; 0) = 0, we �nd that q′(x ; · ) is proper. Hence we can sum f ′(x ; · ) and д′(x ; · ).
Now

lim sup

t↘0

( f + д) (x + th) − ( f + д) (x )

t
≤ lim sup

t↘0

f (x + th) − f (x )

t
+ lim sup

t↘0

д(x + th) − д(x )

t
.

Also

inf

t>0

f (x + th) − f (x )

t
+ inf

t>0

д(x + th) − д(x )

t
≤ inf

t>0

( f + д) (x + th) − ( f + д) (x )

t
.

Recalling the equivalence (2.9), and the de�nition (2.5), therefore

( f + д)′(x ;h) = f ′(x ;h) + д′(x ;h). (2.14)

�is would be enough for the application of the formulas provided by Lemma 2.3, if we had x ∈
ri dom f ∩ ri domд ∩ ri dom( f + д). In general, without requiring this condition, using that q′(x ; · )
is proper for q = f ,д, f + д, (2.14) implies

lim inf

h′→h
( f + д)′(x ;h′) = lim inf

h′→h
f ′(x ;h′) + lim inf

h′→h
д′(x ;h′).

�at is

cl[( f + д)′(x ; · )] = cl[f ′(x ; · )] + cl[д′(x ; · )].

(Note that taking the closure here is only e�ective if x is not in the relative interior of the domain of

one of the functions.) Lemma 2.3 therefore gives

sup

q∈∂(f +д) (x )
〈h,q〉 = sup

z∈∂f (x )
〈h, z〉 + sup

w ∈∂д (x )
〈h,w〉

= sup

q∈∂f (x )+∂д (x )
〈h,q〉.

(2.15)

Since this holds for every h ∈ Rn
, and both ∂( f + д) (x ) and ∂ f (x ) + ∂д(x ) are closed convex sets,

we conclude equivalence. Indeed, if there was a point z ∈
(
∂ f (x ) + ∂д(x )

)
\ ∂( f + д) (x ), it would

be at a positive distance from ∂( f + д) (x ), and yield a contradiction to the statement (2.15) on the

support functions of these sets. �

�e condition ri dom f ∩ ri domд , ∅, when applied to f = δC and д = δD , is a form of constraint
quali�cation that the reader may be familiar with from basic optimisation courses.

Example 2.9. �e equality ∂( f + д) (x ) = ∂ f (x ) + ∂д(x ) does not always holds without the

condition ri dom f ∩ ri domд , ∅. Take, for example, e = (1, 0) ∈ R2
and set f = δB(−e,1) , and

д = δB(e,1) . �en f + д = δ{0}; see Figure 2.6. Recalling Example 2.5, clearly ∂( f + д) (0) =
N{0} (0) = R2

, while ∂ f (0) = NB(−e,1) (0) = NB(0,1) (e ) = [0,∞)e , and ∂д(0) = NB(e,1) (0) =
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2 Convex subdi�erentials

NB(0,1) (−e ) = −[0,∞)e . �us, in contradiction to summability, we obtain

∂ f (0) + ∂д(0) = Re ( R2 = ∂( f + д) (0).

f д = δ{0}

Figure 2.6: Non-summability of the subdi�erential in Example 2.9.

Exercise 2.11. Let A ∈ Rn×m , and f : Rn → R be convex. Show that ∂( f ◦A) (x ) ⊃ AT [∂ f ](Ax )
with equality if R (A) ∩ ri dom f , ∅.

2.9 Characterisation of minima

We now concentrate on convex f : Rn → R. How can we characterise minima of such functions?

Going back to (2.4), we see that if z = 0, we have

f (x ′) − f (x ) ≥ 0, for all x ′ ∈ Rn .

�is means exactly that x is a minimiser. Since this works both ways, we obtain the following.

Theorem 2.2. Let f : Rn → R by convex. �en x ∈ Rn is a minimiser of f ,

f (x ) = min

x ′∈Rn
f (x ′),

if and only if
0 ∈ ∂ f (x ). (2.16)

Example 2.10 (Derivation of so� thresholding solution). Recall from Example 1.1 the problem

min

x ∈Rn

1

2

‖z − x ‖2
2
+ λ‖x ‖2, (2.17)

whose solution we claimed to equal

x̂ =



0, ‖z‖2 ≤ λ,

z (1 − λ/‖z‖2), ‖z‖2 > λ.
(2.18)

Se�ing f (x ) = 1

2
‖z − x ‖2

2
and д(x ) = λ‖x ‖2, we deduce that the conditions of the sum rule

�eorem 2.1 are satis�ed. �erefore, by �eorem 2.2, x̂ is a solution to (2.17) if and only if

0 ∈ ∂ f (x̂ ) + ∂д(x̂ ). �is can be also wri�en as

z ∈ x̂ +



B(0, λ), x̂ = 0,

λ x̂
‖x̂ ‖2
, x̂ , 0.

Since in the second case clearly z ∝ x̂ , so that x̂/‖x̂ ‖2 = z = /‖z‖2, we easily obtain (2.18).
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2 Convex subdi�erentials

Example 2.11 (Karush–Kuhn–Tucker conditions). Let C ⊂ Rn
be a convex set, and f : Rn → R

convex and di�erentiable. �en, by �eorem 2.1 and Example 2.5, we have

x̂ ∈ arg min

x ∈C
f (x )

if and only if

0 ∈ ∇f (x̂ ) + NC (x̂ ).

In particular, let

C = {x ∈ Rn | д(x ) ≤ 0},
for some convex, di�erentiable, constraint function д satisfying

inf

x ∈Rn
д(x ) < 0. (2.19)

�en, as we will shortly see

NC (x ) =




∅, д(x ) > 0,

{0}, д(x ) < 0,

[0,∞)∇д(x ), д(x ) = 0.

(2.20)

�erefore, we recover the usual Karush–Kuhn–Tucker conditions

∇f (x̂ ) + λ∇д(x̂ ) = 0 with λ ≥ 0, λд(x̂ ) = 0, д(x̂ ) ≤ 0.

(?) To see the expression (2.20), we �rst of all recall that if x < C = domδC , then NC (x ) =
∂δC (x ) is empty. Otherwise, z ∈ NC (x ) for x ∈ C is de�ned by

0 ≥ 〈z,x ′ − x〉, (for all x ′, д(x ′) ≤ 0). (2.21)

If д(x ) < 0, we can �nd δ > 0 such that д(x ′) < 0 for ‖x ′ − x ‖ < δ . �erefore, we see that the

only possibility is z = 0, that is, NC (x ) = {0}. �e case д(x ) = 0 remains. Since д is continuous

and (2.19) holds, we deduce

C = cl{x ′ ∈ Rn | д(x ′) < 0}.
By convexity of д, if д(x ′) < 0, then д(λx ′ + (1 − λ)д(x ) ≤ λд(x ′) < 0 for any λ ∈ (0, 1). We

now note from (2.9) that д(x ′) < 0 if and only if x ′ = x + λh for some λ > 0 and h ∈ Rn
with

д′(x ;h) < 0. �erefore

C = cl{x + λh | λ > 0, h ∈ Rn , д′(x ;h) < 0}
= cl{x + λh | λ > 0, h ∈ Rn , cl[д′(x ; · )](h) ≤ 0}.

Since the the normal cone of an open set agrees with the normal cone of the closure, we deduce

that z ∈ NC (x ) if and only if

0 ≥ 〈z,h〉, (for all h, cl[д′(x ; · )](h) ≤ 0).

By Lemma 2.3, this is the same as

0 ≥ 〈z,h〉, (for all h, 〈∇д(x ),h〉 ≤ 0).

�is shows that z = λ∇д(x ) for some λ ≥ 0.
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2 Convex subdi�erentials

2.10 Strong convexity and smoothness

Definition 2.12. Let f : Rn → R be convex. We say that f is

(i) strictly convex if (2.4) holds strictly, that is

f (x ′) − f (x ) > 〈z,x ′ − x〉, (x ′ , x ∈ Rn
; z ∈ ∂ f (x )).

(ii) γ -strongly-convex for γ > 0 if

f (x ′) − f (x ) ≥ 〈z,x ′ − x〉 +
γ

2

‖x ′ − x ‖2, (x ′,x ∈ Rn
; z ∈ ∂ f (x )).

Obviously, strong convexity implies strict convexity.

Lemma 2.6. Suppose f : Rn → R is strictly convex. �en it has at most one minimiser.

Proof. Let x̂ be a minimiser. By �eorem 2.2, 0 ∈ ∂ f (x̂ ). By strict convexity then

f (x ′) > f (x ), (x ′ ∈ Rn ). �

Definition 2.13. Let f : Rn → R be convex. We say that f is L-smooth if it is di�erentiable and

f (x ′) ≤ f (x ) + 〈∇f (x ),x ′ − x〉 +
L

2

‖x ′ − x ‖2, (x ′,x ∈ Rn ). (2.22)

One could, in principle, not require di�erentiability in De�nition 2.13, and replace ∇f by ∂ f in

(2.22). Exercise 2.13 shows that this would lead nowhere.

For the next chapter, on optimisation methods, the following consequence is important. It intro-

duces a stronger version of monotonicity of ∇f .

Lemma 2.7. Let f : Rn → R be convex and L-smooth. �en ∇f is L−1-co-coercive, that is

L−1‖∇f (x ) − ∇f (y )‖2 ≤ 〈∇f (x ) − ∇f (y ),x − y〉, (x ,y ∈ Rn ). (2.23)

Proof. We have

f (x ′) ≤ f (x ) + 〈∇f (x ),x ′ − x〉 +
L

2

‖x ′ − x ‖2. (2.24)

�us, adding 〈∇f (y ),x − x ′〉 on both sides, we get

f (x ′) − 〈∇f (y ),x ′〉 ≤ f (x ) − 〈∇f (y ),x〉 − 〈∇f (x ) − ∇f (y ),x ′ − x〉 +
L

2

‖x ′ − x ‖2.

�e le� hand side is minimised by x ′ = y . Using x ′ = x + L−1 (∇f (x ) − ∇f (y )) on the right-hand

side gives

f (y ) − 〈∇f (y ),y〉 ≤ f (x ) − 〈∇f (y ),x〉 −
1

2L
‖∇f (x ) − ∇f (y )‖2.

A fully analogous argument, starting from (2.24) with roles of x and y exchanged, gives

f (x ) − 〈∇f (x ),x〉 ≤ f (y ) − 〈∇f (x ),y〉 −
1

2L
‖∇f (x ) − ∇f (y )‖2.

Summing these two estimates, we obtain (2.23). �

Exercise 2.12. Show that f (x ) := 1

2
‖z − x ‖2 is 1-smooth.
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2 Convex subdi�erentials

Exercise 2.13. Show that the following are equivalent:

(i) L-smoothness of f ,

(ii) L−1-co-coercivity of ∇f .

(iii) Lipschitz continuity of ∇f with factor L.
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3 Convex conjugates and duality

3.1 Convex conjugate

Convex conjugates provide a powerful tool for transforming di�cult optimisation problems into

more tractable ones. We start with the de�nition, examples, and some basic properties.

Definition 3.1. Let f : Rn → R be a general, possibly non-convex function. We then de�ne the

(convex) conjugate
f ∗ (y ) := sup

x ∈Rn
(〈x ,y〉 − f (x )) .

We also denote the second conjugate f ∗∗ := ( f ∗)∗.

Example 3.1. Let z ∈ R, and set f (z) = |z |. �en

f ∗ (y ) = max

y ∈R
(zy − |z |) = δ[−1,1] (y ).

We can also write

f (z) = max

y ∈[−1,1]

zy = max

y ∈R
zy − f ∗ (y ) for f ∗ (y ) = δ[−1,1].

�erefore f ∗∗ = f . �is is a general property of convex, proper, and lower semicontinuous, as

we will see in �eorem 3.1 below.

Example 3.2. Let z ∈ R2M
for some M , and recall our 2-1 norm

f (z) = ‖z‖2,1 =
M∑
k=1

√
z2

k + z
2

M+k ,

from the total variation denoising (1.3). Similarly to Example 3.1, we can then compute

f ∗ (y ) =



0, maxk=1, ...,M |y
2

k + y
2

M+k | ≤ 1,

∞, otherwise

�is is the indicator function of the product of pixelwise (index k) two-dimensional unit balls.

We may again verify f ∗∗ = f , as

f (z) =
M∑
k=1

max{zkyk + zM+kyM+k | |y2

k + y
2

M+k | ≤ 1} = max

y ∈R2M
〈y , z〉 − f ∗ (y ).

�is is almost the most important example of conjugacy for our needs.

Example 3.3 (?). �e support function σA equals δ ∗A for any set A ⊂ Rn
. In �eorem 3.1 below

we will see that ifA , ∅ is convex and closed, then the opposite also holds, δA = σ
∗
A. In particular,

the norms in Figure 2.5 are in one-to-one correspondence with the corresponding unit balls
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3 Convex conjugates and duality

Bq = ∂‖ · ‖p (0) also through δBq = (‖ · ‖p )
∗

for q the conjugate exponent of p. �is is de�ned

through 1/p + 1/q = 1.

Exercise 3.1. What are the conjugate functions of

(i) д(x ) = ‖z − x ‖2
2
/2, (x ∈ Rn)?

(ii) ϕ (t ) = max{0, 1 − bt}, (t ∈ R)?

Do д∗∗ = д and ϕ∗∗ = ϕ hold?

�e next exercise and proposition list some basic properties of f ∗ for arbitrary f .

Exercise 3.2. Show that the function f ∗ is convex and lower semicontinuous for any f : Rn → R.
Also show that f ∗ is proper if f is proper, lower semicontinuous, and level-bounded. �e la�er
means that all of the level sets levc f are bounded.

Lemma 3.1. Let f : Rn → R. �en

(i) f ≥ f ∗∗.

(ii) (Fenchel–Young) f (x ) + f ∗ (y ) ≥ 〈x ,y〉 for all x ,y ∈ Rn .

Proof. We �rst of all note that by de�nition of f ∗ holds

f ∗ (y ) ≥ 〈y,x〉 − f (x ), (y ,x ∈ Rn ). (3.1)

Since f is proper, we cannot have f (x ) = −∞, so simple rearrangements quickly yield (ii).

To prove (i), we note that if f ∗∗ (x ) < ∞, then for every ϵ > 0 we can �nd y with

f ∗∗ (x ) ≤ 〈x ,y〉 − f ∗ (y ) + ϵ .

Combining this with (3.1) yields

f ∗∗ (x ) ≤ f (x ) + ϵ .

Since ϵ > 0 was arbitrary, we get f ∗∗ ≤ f .

If f ∗∗ (x ) = ∞, we can likewise for any k ≥ 0 �nd y such that

f ∗∗ (x ) ≥ 〈x ,y〉 − f ∗ (y ) ≥ k .

�is shows for any x ′ ∈ Rn
that

〈x ,y〉 −
(
〈x ′,y〉 − f (x ′)

)
≥ k .

Choosing x ′ = x shows that f (x ) ≥ k . Since k ≥ 0 was arbitrary, f (x ) = ∞. �is �nishes the proof

of (i). �

For convex f , we have the following stronger relationships.

Theorem 3.1. Let f : Rn → R be convex, proper, and lower semicontinuous. �en

(i) (Fenchel–Moreau) f = f ∗∗.

(ii) f (x ) + f ∗ (y ) = 〈x ,y〉 if and only if y ∈ ∂ f (x ).

(iii) y ∈ ∂ f (x ) if and only if x ∈ ∂ f ∗ (y ).
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Proof. We already know from Lemma 3.1(i) that f ≥ f ∗∗. If f ∗∗ (x ) = ∞, then this already shows

that f (x ) = f ∗∗ (x ). We may therefore suppose that f ∗∗ (x ) < ∞. By Exercise 3.2, we know that

f ∗∗ is proper, so also f ∗∗ (x ) > −∞. If there exists some y ∈ ∂ f (x ) , ∅, then by �eorem 2.2,

f ∗ (y ) = 〈y ,x〉 − f (x ). �is shows that

f ∗∗ (x ) ≥ 〈x ,y〉 − f ∗ (y ) ≥ f (x ).

�is establishes that f ∗∗ = f on dom ∂ f := {x ∈ Rn | ∂ f (x ) , ∅}.

We then observe that

y ∈ ∂ f (x ) =⇒ x ∈ ∂ f ∗ (y ). (3.2)

Indeed, suppose y ∈ ∂ f (x ). By �eorem 2.2, this holds if and only if

f ∗ (y ) = 〈y ,x〉 − f (x ). (3.3)

In particular, (ii) holds. By Lemma 3.1(ii), moreover

f (x ) + f ∗ (y ′) ≥ 〈x ,y ′〉. (3.4)

�e inequality (3.4) and equality (3.3) imply

f ∗ (y ′) − f ∗ (y ) ≥ 〈y ′ − y ,x〉.

�us x ∈ ∂ f ∗ (y ), so (3.2) holds.

�e same argument naturally also establishes

x ∈ ∂ f ∗ (y ) =⇒ y ∈ ∂ f ∗∗ (x ). (3.5)

�us ∂ f ∗∗ (x ) ⊃ ∂ f (x ) for all x ∈ Rn
. With this, (2.12), and the fact that f = f ∗∗ on dom ∂ f that we

have proven above, we deduce

f (x ) = sup

x ′∈Rn, y ∈∂f (x ′)
f (x ′) + 〈y,x − x ′〉

= sup

x ′∈dom ∂f , y ∈∂f (x ′)
f (x ′) + 〈y,x − x ′〉

≤ sup

x ′∈dom ∂f , y ∈∂f ∗∗ (x ′)
f ∗∗ (x ′) + 〈y,x − x ′〉 = f ∗∗ (x ).

�is proves (i). To prove (iii), we simply use (i) in (3.5), and combine this with (3.2). �

3.2 Fenchel–Rockafellar duality

�e next theorem provides a very useful duality correspondence.

Theorem 3.2 (Fenchel–Rockafellar “lite”). Let f : Rm → R and д : Rn → R be convex, proper, and
lower semicontinuous, and K ∈ Rm×n . �en we have weak duality

inf

x ∈Rn
(д(x ) + f (Kx )) + inf

y ∈Rm

(
д∗ (−KTy ) + f ∗ (y )

)
≥ 0. (3.6)

Suppose
K (ri domд) ∩ int dom f , ∅, (3.7)

and that x 7→ д(x ) + f (Kx ) has a minimiser x̂ . �en we have strong duality

min

x ∈Rn
(д(x ) + f (Kx )) + min

y ∈Rm

(
д∗ (−KTy ) + f ∗ (y )

)
= 0. (3.8)
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Proof. For any x ∈ Rn
and y ∈ Rm

, we have by Lemma 3.1(ii) that

д(x ) + д∗ (−KTy ) ≥ −〈x ,KTy〉 and f (Kx ) + f ∗ (y ) ≥ 〈Kx ,y〉. (3.9)

Summing these expressions shows (3.6).

To show (3.8), it su�ces that both inequalities in (3.9) hold as equalities for some x = x̂ and

y = ŷ .By �eorem 3.1(ii) this is the case if and only if

− KT ŷ ∈ ∂д(x̂ ), and ŷ ∈ ∂ f (Kx̂ ). (3.10)

To prove (3.10). Here we use our assumption of the existence of a minimiser x̂ of x 7→ д(x )+ f (Kx ).
By �eorem 2.2 and �eorem 2.1, whose conditions are veri�ed by (3.7), this satis�es

0 ∈ ∂д(x̂ ) + ∂( f ◦ K ) (x̂ ).

�e condition (3.7) also implies R (K ) ∩ ri dom f , ∅ by (3.7). Exercise 2.11 therefore shows that

∂( f ◦ K ) (x̂ ) = KT ∂ f (Kx̂ ). �us there exists ŷ ∈ ∂ f (Kx̂ ) such that 0 ∈ ∂д(x̂ ) + KT ŷ . In other words,

(3.10) holds. �is �nishes the proof of (3.8) and strong duality. �

Remark 3.1. �e conditionK (ri domд)∩int dom f , ∅ is enough for strong duality, without requiring

the existence of a minimiser, albeit with the �rst “min” remaining an “inf” in (3.8). Even more relaxed

conditions exist [14]. We stick to our stronger requirements, as the relaxed ones demand a li�le bit

more machinery than we have time for, and in practise we are interested in the case when (3.10) is

satis�ed.

Remark 3.2. Note that (3.10) holding implies that x̂ is the minimiser required for the theorem.

Moreover, under (3.10), it is not necessary to assume (3.7), which was only used to prove (3.10).

Due to the relationships (3.6) and (3.8), we call

min

y ∈Rm
д∗ (−KTy ) + f ∗ (y ) (D)

the dual problem of the primal problem

min

x ∈Rn
д(x ) + f (Kx ). (P)

We denote by

G (x ,y ) := д(x ) + f (Kx ) + д∗ (−KTy ) + f ∗ (y ) ≥ 0

the duality gap. It is only zero when x solves (P), and y solves (D). Hence G (x ,y ) ≤ ϵ for a suitable

solution quality ϵ > 0 forms a good stopping criterion, independent of any knowledge of the optimal

solution, for primal-dual algorithms that simultaneously look for primal and dual solutions x̂ and

ŷ .

Corollary 3.1 (Primal–dual optimality conditions). Suppose (3.7) holds. �en the next conditions are
equivalent:

(i) x̂ ∈ Rn and ŷ ∈ Rm achieve the minima in (3.8),

(ii) G (x̂ , ŷ ) = 0, and

(iii) (3.10) holds, i.e., −KT ŷ ∈ д(x̂ ) and ŷ ∈ f ∗ (Kx̂ ),

(iv) −KT ŷ ∈ д(x̂ ) and Kx̂ ∈ ∂ f ∗ (ŷ ).

�e conditions (iv) will in particular be practical for the algorithms that we develop in Chapter 4.
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Proof. �e equivalence of (i) and (ii) is clear from �eorem 3.2, while the equivalence of (iv) to (iii) is

immediate from �eorem 3.1(iii).

To �nish the proof, it is thus enough to show that (i) is equivalent to (iii). We have already seen in

the proof of �eorem 3.2 that of a solution (x̂ , ŷ ) of (3.10), the primal solution x̂ is exactly a minimiser

of the primal problem. We now note that (3.10) can using �eorem 3.1(iii) be rewri�en

x̂ ∈ д∗ (−KT ŷ ) and Kx̂ ∈ ∂ f ∗ (ŷ ). (3.11)

�is is to say that 0 ∈ −K∂д∗ (−KT ŷ ) + ∂ f ∗ (ŷ ). In other words, from Exercise 2.11, we have

0 ∈ ∂(д∗ ◦ (−KT )) (ŷ ) + ∂ f ∗ (ŷ ). By �eorem 2.2 and �eorem 2.1, ŷ is therefore a minimiser of the

dual problem. �us (i) is equivalent to (iii). �

Remark 3.3. To recover a solution x̂ to the primal problem (P) from a solution ŷ the dual problem

(D), observe from (3.10) that −KT ŷ ∈ ∂д(x̂ ). If, for example, д(x ) = 1

2
‖z − x ‖2, then we can solve

x̂ = z − KT ŷ . Alternatively, if we can e�ciently compute д∗, we can use (3.11) to recover x̂ from ŷ .

Example 3.4 (Dual of so� thresholding). Recall the so�-thresholding problem of Example 1.1.

�ere K = I , д(x ) = 1

2
‖z − x ‖2, and f (x ) = ‖x ‖2. We can derive д∗ (y ) = 1

2
‖z + y ‖2 − 1

2
‖z‖2, and

f ∗ (y ) = δB(0,λ) . �erefore, we obtain the dual problem

min

y ∈Rm

1

2

‖z + y ‖2 + δB(0,λ) (y ) −
1

2

‖z‖2.

For the purposes of computing a minimiser to this dual problem, we can ignore the constant

term
1

2
‖z‖2. Following Remark 3.3, if we have a solution ŷ to the dual problem, we obtain a

primal solution x̂ = z − ŷ .

Example 3.5 (Duals of empirical risk minimisation problems). Consider the empirical risk

minimisation problem (1.8), that is

min

x ∈Rm
д(x ) +

1

n

n∑
i=1

ϕi (a
T
i x ). (3.12)

We can also write this as

min

x ∈Rm
д(x ) + ϕ (ATx ) for A :=

(
a1 . . . an

)
∈ Rm×n

and ϕ (z) :=
1

n

n∑
i=1

ϕi (zi ).

�e dual problem is

min

y ∈Rn
д∗ (−Ay ) + ϕ∗ (y ).

Observing that (nд)∗ (z) = nд∗ (z/n), we can also write this as

min

y ∈Rn
nд∗ (−n−1Ay ) +

n∑
i=1

ϕ∗i (yi ).

(You can easily observe that since each ϕi only depends on zi , the conjugate of

∑
i ϕi is the sum

of the conjugates ϕ∗i acting on yi .)
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3 Convex conjugates and duality

Example 3.6 (Dual of linear SVM). Continuing from Example 3.5, for the linear SVM,

д(x ) =
λ

2

‖x ‖2, and ϕi (t ) := max{0, 1 − bit}.
�ese have the conjugates

д∗ (z) =
1

2λ
‖z‖2, and ϕ∗i (yi ) :=




yi/b, yi ∈ [−bi , 0],

∞, otherwise,

where we denote [−bi , 0] := [0,−bi ] if bi < 0. Expanded, the dual form of the SVM therefore is

min

y ∈
∏n
i=1

[−bi ,0]

1

2λn
yTATAy +

n∑
i=1

yi/bi . (3.13)

In this dual formulation, the non-smooth function ϕ∗ therefore nicely splits into componentwise

functions, with the “mixing” of the di�erent coordinates of yi by A moved into the smooth

part д∗ (−Ay ). �is dual form of the problem will be easy to solve with the forward–backward

spli�ing method that we introduce in the next section, while the original form is less trivial.

Example 3.7 (Dual of nonlinear SVM). Continuing from Example 3.6, for the nonlinear SVM

of Example 1.3, ATA is a matrix of entries ãTi ãj = κ (ai ,aj ). �e high dimensionality of the

transformed problem therefore disappears in the dual formulation. In this way, the dual form

(3.13) forms the computationally tractable basis of non-linear support vector machines.

Exercise 3.3. What is the dual problem of the Lasso? Is this likely to be useful? How about TV
denoising?

3.3 Saddle-point problems

One way to derive primal-dual algorithms—algorithms that simultaneously look for a primal solution

x̂ and a dual solution ŷ—is to work saddle point problems.

Generally, for arbitrary L : Rn ×Rm → R holds

sup

y
inf

x
L(x ,y ) ≤ inf

x
sup

y
L(x ,y ). (3.14)

Indeed, clearly supy L(x̃ ,y ) ≥ supy infx L(x ,y ) for any x̃ . Taking the in�mum over x̃ proves (3.14).

A saddle point (x̂ , ŷ ) satis�es L(x̂ ,y ) ≤ L(x̂ , ŷ ) ≤ L(x , ŷ ) for all x and y . �en

inf

x
sup

y
L(x ,y ) ≤ sup

y
L(x̂ ,y ) = L(x̂ , ŷ ), and sup

y
inf

x
L(x ,y ) ≥ inf

x
L(x , ŷ ) = L(x̂ , ŷ ).

�erefore, if a saddle point exists, clearly

inf

x
sup

y
L(x ,y ) = sup

y
inf

x
L(x ,y ) = L(x̂ , ŷ ).

In this case, since a point achieving the inf-sup value exists, we can write

inf

x
sup

y
L(x ,y ) = min

x
max

y
L(x ,y ).
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3 Convex conjugates and duality

Proposition 3.1. Let f : Rm → R and д : Rn → R be convex, proper, and lower semicontinuous, and
K ∈ Rm×n . Let L be the Lagrangian

L(x ,y ) := д(x ) + 〈y,Kx〉 − f ∗ (y ).

�en a solution (x̂ , ŷ ) to the primal–dual optimality conditions (3.10) is a saddle point of L and vice
versa.

Proof. By Corollary 3.1(iv), (3.10) hold if and only if minx L(x , ŷ ) is solved by x = x̂ , and maxy L(x̂ ,y )
is solved by y = ŷ . �is says exactly that L(x̂ ,y ) ≤ L(x̂ , ŷ ) and L(x̂ , ŷ ) ≤ L(x , ŷ ) for all x and y . But

this again is equivalent to saying that (x̂ , ŷ ) is a saddle point of L. �

�ese considerations lead us to consider the speci�c saddle point problem

min

x ∈Rn
max

y ∈Rm
д(x ) + 〈y ,Kx〉 − f ∗ (y ). (S)

Under the conditions of �eorem 3.2, this problem can be derived from (P) by writing f (Kx ) =
supy

(
〈y ,Kx〉 − f ∗ (y )

)
.

Example 3.8. Continuing from Example 3.6, using the conjugate expression from Exercise 3.1,

we can rewrite (3.12) for the SVM as

min

x ∈Rm
max

y ∈Rn

λ

2

‖x ‖2
2
+

n∑
i=1

1

n
yia

T
i x −

1

n
ϕ∗i (y

i ).

With

д(x ) :=
λ

2

‖x ‖2
2
, f̃ ∗ (y ) :=

1

n

n∑
i=1

(
δ[−bi ,0] (yi ) + yi/bi

)
, and K := AT /n,

we obtain the standard-form saddle-point problem

min

x ∈Rm
max

y ∈Rn
д(x ) + 〈Kx ,y〉 − f̃ ∗ (y ).

Exercise 3.4. What is the saddle point problem of TV denoising?
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4 Non-smooth optimisation methods

4.1 Surrogate objectives and gradient descent

Let f : Rn → R be convex and di�erentiable. We want to �nd a point x̂ such that

f (x̂ ) = min

x ∈Rn
f (x ). (P)

As we have learned, this is of course characterised by

∇f (x̂ ) = 0.

�is system is, however, in most interesting cases di�cult to solve analytically. So let us try to

derive numerical methods. One way of deriving numerical methods is to replace the original di�cult

objective with a simpler one whose minimisation provides improvement to the original objective.

Definition 4.1. A function f̃x̄ : Rn → R is a surrogate objective for f : Rn → R at x̄ if f̃x̄ ≥ f , and

f̃x̄ (x̄ ) = f (x̄ ).

Starting with a point x0
, we would then minimise f̃x 0 to obtain a new point x i+1

. �rough the

properties of the surrogate objective, this will not increase the value of f . Hopefully it will provide

signi�cant improvement! �en we repeat the process, minimising f̃x 1 , and so on.

What options are there for surrogate objectives, and which would be a good one? If f is di�eren-

tiable, one possibility is

min

x ∈Rn
f̃x̄ (x ) := f (x̄ ) + 〈∇f (x̄ ),x − x̄〉 +

1

2τ
‖x − x̄ ‖2. (4.1)

Here τ > 0 is a suitable factor. In general f (x̄ ) = f̃x̄ (x̄ ). If f is L-smooth per De�nition 2.13, and

Lτ ≤ 1, then also f ≤ f̃i . �erefore, in this case, f̃x̄ is a valid surrogate objective, and minimising f̃x̄
will provide improvement to f as well.

�e optimality condition 0 ∈ ∂ f̃x i (x ) becomes

∇f (x i ) + τ−1 (x − x i ) = 0. (4.2)

�is holds if x i = x̂ by taking also x = x̂ . �erefore, there is a direct correspondence between the

solutions of the surrogate objective and the original. If x i , x̂ , solving (4.2) for x = x i+1
, we get the

rule

x i+1 = x i − τ∇f (x i ). (GD)

�is is known as the gradient descent method. In this context the quadratic term in (4.1) can be

seen as a step length condition.

Will sequentially minimising f̃x i provide su�cient decrease in f such that we obtain convergence

of {x i} to a minimiser x̂ of f ? �is is what we study next.

4.2 Fixed point theorems

Convergence of optimisation methods can o�en by proved through various �xed point theorems

applied to the operator T : x i 7→ x i+1
, mapping one iterate to the next one. We will in particular use

the following result from [15].
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4 Non-smooth optimisation methods

Theorem 4.1 (Browder fixed point theorem, version 1). Let T : Rn → Rn be �rmly non-expansive,
that is

‖T (x ) −T (y )‖2 ≤ 〈T (x ) −T (y ),x − y〉, (x ,y ∈ Rn ).

Suppose T admits some �xed point x∗ = T (x∗). �en, for any starting point x0 ∈ Rn , the iteration
sequence x i+1

:= T (x i ) satis�es x i → x̃ for some �xed point x̃ = T (x̃ ).

Remark 4.1. Firm non-expansivity is the co-coercivity of (2.23) with constant L = 1.

� above variant of Browder’s �xed point theorem follows from a more general one for averaging

operators.

Definition 4.2. A map T : Rn → Rn
is non-expansive, if

‖T (x ) −T (y )‖ ≤ ‖x − y ‖, (x ,y ∈ Rn ).

It is α-averaging, if T = (1 − α )I + α J for some non-expansive J : Rn → Rn
, and α ∈ (0, 1).

Theorem 4.2 (Browder fixed point theorem, version 2). Let T : Rn → Rn be averaging, and suppose
T admits some �xed point x∗ = T (x∗). �en, for any starting point x0 ∈ Rn , the iteration sequence
x i+1

:= T (x i ) satis�es x i → x̃ for some �xed point x̃ = T (x̃ ).

�eorem 4.1 now follows from �eorem 4.2 and the following lemma.

Lemma 4.1. T : Rn → Rn is �rmly non-expansive if and only if it is (1/2)-averaging.

Proof. Suppose T is (1/2)-averaging. �en T = (I + J )/2 for some non-expansive J . We compute

‖T (x ) −T (y )‖2 =
1

4

(
‖ J (x ) − J (y )‖2 + 2〈J (x ) − J (y ),x − y〉 + ‖x − y ‖2

)
≤

1

2

(
〈J (x ) − J (y ),x − y〉 + ‖x − y ‖2

)
= 〈T (x ) −T (y ),x − y〉.

�us T is �rmly non-expansive.

Suppose then that T is �rmly non-expansive. If we show that J := 2T − I is non-expansive, it

follows that T is (1/2)-averaging. �is is established by the simple calculations

‖ J (x ) − J (y )‖2 = 4‖T (x ) −T (y )‖2 − 4〈T (x ) −T (y ),x − y〉 + ‖x − y ‖2

≤ ‖x − y ‖2.

�is completes the proof. �

Browder’s �xed point theorem is a practical improvement over the classical Banach �xed point
theorem.

Theorem 4.3 (Banach fixed point theorem). Let T : Rn → Rn be a contraction mapping, that is for
some κ ∈ [0, 1) holds

‖T (x ) −T (y )‖ ≤ κ‖x − y ‖, (x ,y ∈ Rn ). (4.3)

�en T admits a unique �xed point x∗ = T (x∗). �is can be moreover discovered as the limit of the
iteration sequence x i+1

:= T (x i ) for any starting point x0.

Note that �rm non-expansivity implies non-expansivity, that is (4.3) with κ = 1, motivating the

choice of the term. While non-expansivity is enough to show the existence of a �xed point of T in

some cases (T maps a bounded convex setC into itself [16]), it is not enough to show the convergence

of the sequence x i+1
:= T (x i ) to a �xed point. So we need one of the stronger conditions: �rm

non-expansivity, the averaging property, or contractivity with κ < 1.
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4 Non-smooth optimisation methods

Theorem 4.4. Suppose f : Rn → R is convex and L-smooth. If the step length τ ≤ L−1, then, for any
starting point x0 ∈ Rn , the iterates {x i}∞i=0

of the gradient descent method (GD) converge to a minimiser
x̂ of f .

Proof. By Lemma 2.7, we have

L−1‖∇f (x ) − ∇f (y )‖2 ≤ 〈∇f (x ) − ∇f (y ),x − y〉, (x ,y ∈ Rn ). (4.4)

�e iteration (GD) may be wri�en in terms of the operator

T (x ) := x − τ∇f (x ).

Now

‖T (x ) −T (y )‖2 = 〈T (x ) −T (y ),x − y〉 − τ 〈T (x ) −T (y ),∇f (x ) − ∇f (y )〉

= 〈T (x ) −T (y ),x − y〉 + τ 2‖∇f (x ) − ∇f (y )‖2 − τ 〈∇f (x ) − ∇f (y ),x − y〉

≤ 〈T (x ) −T (y ),x − y〉.

In the �nal step we have used (4.4) and τ ≤ L−1
. �us T is �rmly non-expansive. �eorem 4.1 now

proves the claim. �

4.3 Variational inclusions and the proximal point method

�e gradient descent method is very basic, but o�en not very good. In particular, subgradient

extensions of (GD) can have very slow convergence. �erefore we need alternative methods.

We now allow for general (possibly non-di�erentiable) convex functions f : Rn → R, and replace

the surrogate objective in (4.1) by another surrogate

min

x ∈Rn
¯fx̄ (x ) := f (x ) +

1

2τ
‖x − x̄ ‖2. (4.5)

In other words, we remove the linearisation, and try to minimise f directly with a step length

condition. Again
¯fx̄ (x̄ ) = f (x̄ ), and clearly fx̄ ≥ f . �erefore

¯fx̄ is a valid surrogate objective for f
at x̄ . �is time the optimality conditions for x minimising

¯fx i are

0 ∈ ∂ f (x ) + τ−1 (x − x i ). (4.6)

If x i = x̂ for x̂ a minimiser of the original objective f , then (4.6) is solved by x = x̂ , so again there is

a direct correspondence between the solutions of the surrogate objective and the original.

�e method based on solving (4.6) resp. (4.5) is known as the proximal point method. �e step

is the backward step, or the implicit step, since we cannot in general derive an explicit solution

x = x i+1
, and try to go “back to x i from x i+1

”. However o�en, and especially in context of spli�ing
algorithms, (4.6) is easy to solve. We will get back to this. By contrast, the gradient descent step (GD)

is also known as the forward step or the explicit step, because we calculate ∇f (x i ) already at the

current iterate, going “forward” from it.

Re-ordering as

x i ∈ τ ∂ f (x i+1) + x i+1,

the iteration resulting from the condition (4.6) may also be wri�en as

x i+1
:= (I + τ ∂ f )−1 (x i ), (PP)

where the proximal mapping
proxτ ∂f := (I + τ ∂ f )−1
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4 Non-smooth optimisation methods

is the inverse of the set-valued map A := I + τ ∂ f , de�ned simply as

A−1y := {x | y ∈ Ax}.
(�us y ∈ Ax ⇐⇒ x ∈ A−1y .) As is evident from the expression

proxτ ∂f (x ) = arg min

x ′
f (x ′) +

1

2τ
‖x ′ − x ‖2, (4.7)

the proximal mapping is, in fact, single-valued.

Remark 4.2. Let fτ := minx ′ f (x
′) + 1

2τ ‖x
′ − x ‖2. �is is known as the Moreau–Yosida regularisa-

tion of f —a type of smoothing. In this way, the proximal step also corresponds to solving a sequence

of smoothed problems.

Example 4.1. Let f (x ) = ‖z − x ‖2
2
/2 for some z ∈ Rn

. By (4.7), we have x ′ = proxτ ∂f (x ) if and

only if x ∈ τ ∂ f (x ′) + x ′. �is gives the requirement x = τ (x ′ − z) + x ′. Consequently

proxτ ∂f (x ) =
x + τz

1 + τ
.

Example 4.2. Let f (x ) = δ[−1,1] on R. �en by (4.7), x ′ = proxτ ∂f (x ) if and only if x ∈
τN[−1,1] (x

′) + x ′. Since z ∈ NC (x
′) implies τz ∈ NC (x

′) for any convex set C and τ > 0, this is

to say x ∈ x ′ + N[−1,1] (x
′). Since

N[−1,1] (x
′) =




[0,∞), x ′ = 1,

{0}, x ′ ∈ (−1, 1),

(−∞, 0], x ′ = 1,

∅, otherwise,

it is not di�cult to verify that

x ′ = x ·min{1, 1/|x |} =



1, x > 1,

x , x ∈ [−1, 1],

−1, x < −1.

In other words, the proximal mapping is the (Euclidean) projection of x to [−1, 1]. �is is true

in the general case f (x ) = δC , as is already evident from (4.7).

Exercise 4.1. Calculate proxτ ∂f on Rn for

(i) f (x ) = δαB (x ), where B is the unit ball and α > 0.

(ii) f (x ) = α ‖x ‖2.

Hint: For (ii) you may �nd the next Exercise 4.2 useful.

Exercise 4.2. Suppose the convex function f (x ) = supy ∈Rm (〈y ,x〉 − f ∗ (y )) for another proper
convex lower semicontinuous function f ∗. Prove Moreau’s identity

y = proxτ ∂f ∗ (y ) + τ proxτ −1∂f (τ
−1y ). (4.8)
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Hint: Use �eorem 3.1.

�e proximal point method (PP) readily generalises to solving for monotone operators A : Rn ⇒
Rn

the monotone variational inclusion

0 ∈ A(x ). (MVI)

�e method is simply

x i+1
:= proxτA (x

i ) = (I + τA)−1 (x i ). (MPP)

Theorem 4.5. Let A : Rn ⇒ Rn be monotone, and suppose there exists a solution x̂ to (MVI). �en for
any starting point x0 ∈ Rn , and any τ > 0, the iterates {x i}∞i=0

of the proximal point method (MPP)

converge to a solution of (MVI).

Proof. We again use the Browder �xed point theorem, writing the iteration (MPP) in terms of the

mapping T := proxτA. We have

Tx ∈ x − τA(Tx ).

�us

‖Tx −Ty ‖2 ∈ 〈Tx −Ty ,x − y〉 − τ 〈Tx −Ty ,A(Tx ) −A(Ty )〉 ≤ 〈Tx −Ty,x − y〉.

In the la�er step we have used the Cauchy–Schwarz inequality and the monotonicity of A. �us T is

non-expansive, and the rest follows from �eorem 4.1. �

Corollary 4.1. Suppose f : Rn → R is convex and proper, and there exists a solution x̂ to (P). �en
for any starting point x0 ∈ Rn , and any τ > 0, the iterates {x i}∞i=0

of the proximal point method (PP)

converge to a solution x̂ of (P).

4.4 Forward–backward spli�ing

Let us consider the minimisation of the composite objective

min

x ∈Rn
h(x ) := д(x ) + f (x ), (4.9)

where д is smooth, but f possibly non-smooth. By �eorem 2.1, we may write the optimality

conditions as

0 ∈ ∇д(x ) + ∂ f (x ).

We can rewrite this as

τ−1x − ∇д(x ) ∈ τ−1x + ∂ f (x ),

or

x = (I + τ ∂ f )−1 (x − τ∇д(x )).

�is gives the iteration

x i+1 = proxτ ∂f (x
i − τ∇д(x i )). (FB)

In other words, we do a gradient/forward step with respect to д, and a proximal/backward step with

respect to f . �e resulting method is known as forward–backward splitting. Particular instances

include the so-called iterative so�-thresholding (IST) algorithm for Lasso, with proxτ ∂ | · | known

as the iterative so�-thresholding operator.

Exercise 4.3. When does the method (FB) converge to a solution of (4.9)? Hint: You will need to
use the second version of Browder’s �xed point theorem.
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Example 4.3 (Forward–backward spli�ing for the SVM). We recall from Example 3.6 the dual

form of the (linear) SVM, namely

min

y ∈Rn
д(y ) + f (y ), д(y ) :=

1

2λn
yTATAy , f (y ) :=

n∑
j=1

fj (yj ), fj (yj ) := δ[−bj ,0] (yj ) + yj/bj ,

where we recall that [−bj , 0] := [0,bj ] ifbj < 0. To use the forward–backward spli�ing algorithm,

we need to compute y ′ := proxτ ∂f (ỹ ). Clearly this splits as y ′j = proxτ ∂fj (ỹj ). From (4.7), we

deduce that y ′j ∈ [−bj , 0] has to satisfy

0 ∈ y ′j − ỹj + τb
−1

j +




{0}, y ′j ∈ (−bj , 0),

[0,∞), y ′j = max{0,−bj},
(−∞, 0], y ′j = min{0,−bj}.

Proceeding as in Example 4.2, we see that y ′j is the projection of ỹj − τb
−1

j to [−bj , 0]. �is can

be wri�en

y ′j = proxτ ∂fj (ỹj ) =



max{−bj ,min{ỹj − τb−1

j , 0}}, bj > 0,

max{0,min{ỹj − τb−1

j ,−bj}}, bj < 0

Consequently the forward–backward spli�ing algorithm (FB), namely y i+1
:= proxτ ∂f (y

i −

τ∇д(y i )), can with b−1 = (b−1

1
, . . . ,b−1

n ) be wri�en

ȳ i+1
:= y i − τ

(
1

λn
ATAy i + b−1

)
,

y i+1

j :=



max{−bj ,min{ȳ i+1

j , 0}}, bj > 0,

max{0,min{ȳ i+1

j ,−bj}}, bj < 0,
for each j = 1, . . . ,n.

Recall that in a non-linear SVM, the matrixATA is replaced by the matrixK with entries κ (ai ,aj ).

Exercise 4.4. Implement (FB) for the Lasso problem of Example 1.5. With your implementation,
�nd the two most relevant physicochemical a�ributes for the quality of Portuguese vinho verde,
according to the Wine �ality data set from the UCI machine learning repository at http://
archive.ics.uci.edu/ml/datasets/Wine+Quality. Note: you will need to choose a stopping
criterion for the algorithm. For the purposes of this exercise, it is su�cient to take a �xed number of
iterations, let’s say 1000.

Exercise (Light) 4.5. Express forward–backward spli�ing in terms of a surrogate objective.

Exercise 4.6. �e total variation denoising problem (1.3) may be wri�en in a dual form (cf. Chapter
3)

min

ϕ∈R2n
1
n

2

1

2

‖z − D̃Tϕ‖2, s.t.
√
ϕ2

k + ϕ
2

n1n2+k
≤ α ∀k = 1, . . . ,n1n2.

Implement (FB) for this problem. Recall from Remark 3.3 that the solution of the original primal
problem, the desired image, is x̂ = z − D̃T ˆϕ for ˆϕ the solution of the dual problem.
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4.5 (?) Douglas–Rachford spli�ing

Let A : Rn ⇒ Rn
be a general (set-valued) monotone operator, and B : Rn → Rn

a single-valued

monotone operator. Completely analogously to (4.9) and (FB), we can derive for the inclusion

B (x ) +A(x ) 3 0 (4.10)

the iteration

x i+1 ∈ proxτA (x
i − τB (x i )).

However, this is not a very exactly de�ned method, as B (x i ) can be set-valued, and therefore there

can be many possibilities for x i+1
.

So, let us try to derive an improved method for (4.10). �is will of course give an algorithm for

(4.9) as well, through the choice A = ∂ f and B = ∂д. Picking λ > 0, let us set z ∈ (I + λB) (x ). �en

proxλB (z) = x . Multiplying (4.10) by λ, and inserting this, we obtain

z + λA(proxλB (z)) 3 proxλB (z).

�is reorganises into

proxλB (z) + λA(proxλB (z)) ∈ (2 proxλB −I ) (z),

and further into

proxλB (z) = proxλA ((2 proxλB −I ) (z)).

�is gives the �xed point equation

z = proxλA ((2 proxλB −I ) (z)) + (I − proxλB ) (z).

Consequently, we derive the algorithm

zi+1
:= proxλA ((2 proxλB −I ) (z

i )) + (I − proxλB ) (z
i ). (4.11)

Note that this is for the transformed variable z, not our variable of interest x . To get a useful result,

a�er the �nal step i , we therefore need to set

x i+1
:= proxλB (z

i ). (4.12)

Performing this at each step, and employing the result in (4.11), we may divide the algorithm into

two distinct steps that are called the Douglas–Rachford splitting algorithm

x i+1
:= proxλB (z

i ), (DRS-0)

zi+1
:= zi + proxλA (2x

i+1 − zi ) − x i+1. (DRS-1)

Theorem 4.6 ([17, 18]). Let A,B : Rn ⇒ Rn be maximal monotone operators, and suppose there exists
a solution x̂ to 0 ∈ A(x̂ ) + B (x̂ ). �en, for any λ > 0, and any starting point z0, the iterates {x i}∞i=1

of
the method (DRS-0)–(DRS-1) converge to a point x̃ satisfying 0 ∈ A(x̃ ) + B (x̃ ).

In particular, since the convex subdi�erential can be shown to be a maximal monotone operator,

we have the following.

Corollary 4.2. Let f ,д : Rn → R be convex, and suppose there exists a solution to the composite
minimisation problem (4.9). �en, for any λ > 0, and any starting point z0, the iterates {x i}∞i=1

of the
method

x i+1
:= proxλ∂д (z

i ), (DRS’-0)

zi+1
:= zi + proxλ∂f (2x

i+1 − zi ) − x i+1
(DRS’-1)

converge to a solution of (4.9).
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4 Non-smooth optimisation methods

Exercise 4.7. Implement the Douglas–Rachford spli�ing algorithm for dual form of total variation
denoising, described in Exercise 4.6. How does the performance compare to basic forward–backward
spli�ing?
Note: You will need to invert I + D̃T D̃. For small images, you can simply employ sparse matrices
and the slash operator in Matlab, but for bigger images it is bene�cial use Fourier transform
techniques, familiar from basic numerical analysis courses.

Remark 4.3. �e Douglas–Rachford spli�ing method (DRS-0)–(DRS-1), when applied to the oper-

ators A := ∂[д∗ (−KT · )], and B := ∂ f ∗, is also known as the Alternating Direction Method of
Multipliers (ADMM) for the solution of

min

x ∈Rn
д(x ) + f (Kx ), (4.13)

In Exercise 4.7 we have, in fact, already implemented the ADMM for the TV denoising problem (1.3).

Since a solution of (4.13) corresponds the condition 0 ∈ H (x ,y ) for H as in (4.15), we have therefore

�nally, through spli�ing, found a practical variant for solving the la�er problem.

4.6 The Chambolle–Pock method

Let us return to the saddle point problems of Chapter 3. �at is, let us try to solve

min

x
max

y
д(x ) + 〈Kx ,y〉 − f ∗ (y ), (4.14)

for some convex and proper д : Rn → R, and f ∗ : Rm → R, and some matrix K ∈ Rm×n
. As we

have seen in Chapter 3, the optimality conditions for this system are

−KT ŷ ∈ ∂д(x̂ ), and Kx̂ ∈ ∂ f ∗ (ŷ ).

�is may be encoded as 0 ∈ H (x ,y ) in terms of the monotone operator

H (x ,y ) :=

(
∂д(x ) + KTy
∂ f ∗ (y ) − Kx

)
. (4.15)

In principle, we may therefore apply (MPP) to solve the saddle point problem (4.14). In practise

we however need to work a li�le bit more, as the step (MPP) can rarely be given an explicit, easily

solvable form.

However, there is a very e�ective primal–dual method for (4.14), that can be obtained from (MPP)

with a small change. Let us �rst write out the algorithm, known as the Chambolle–Pock method,

in explicit form. For parameters τ ,σ > 0, the primal variable x , and the dual variable y , we speci�cally

iterate

x i+1
:= (I + τ ∂д)−1 (x i − τKTy i ), (CP-0)

x̄ i+1
:= 2x i+1 − x i , (CP-1)

y i+1
:= (I + σ∂ f ∗)−1 (y i + σKx̄ i+1). (CP-2)

�e step (CP-0) is simply a proximal step for x in (4.14), keeping y = y i �xed. �e step (CP-2) is

likewise a proximal step for y in (4.14), keeping x �xed, not to x i or x i+1
but to the inertial variable

x̄ i+1
de�ned in (CP-1). �is may be visualised as a “heavy ball” version of x i+1

that has enough inertia

to not get stuck in small bumps in the landscape.

With the general notation

u = (x ,y ),
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4 Non-smooth optimisation methods

the steps (CP-0)–(CP-2) may also be wri�en in the preconditioned proximal point form

H (ui+1) +M (ui+1 − ui ) 3 0, (4.16)

for the monotone operator H as in (4.15), and the preconditioning matrix

M :=

(
I/τ −KT

−K I/σ

)
.

�rough the replacement of I by M in the basic proximal point iterationui+1
:= (I +H )−1 (ui ), we thus

have in (CP-0)–(CP-1) a proximal point method for which the steps can o�en be solved explicitly.

Theorem 4.7. Let f : Rn → R and д : Rm → R be convex, proper, and lower semicontinuous, and
K ∈ Rm×n . Choose τ ,σ > 0 such that τσ ‖K ‖2 < 1. Let u∗ = (x∗,y∗) be a cluster point of the sequence
of iterates {ui} generated by (CP-0)–(CP-2) for any starting point u0 = (x0,y0). �en u∗ is a saddle
point of (4.14).

Proof. A saddle point û satis�es 0 ∈ H (û). �erefore

〈H (ui+1) − H (û),ui+1 − û〉 ≥ 0.

�us (4.16) gives

〈M (ui+1 − ui ),ui+1 − û〉 ≤ 0. (4.17)

With the notation ‖x ‖M :=
√
〈Mx ,x〉, we have

〈M (ui+1 − ui ),ui+1 − û〉 =
1

2

‖ui+1 − ui ‖2M −
1

2

‖ui − û‖2M +
1

2

‖ui+1 − û‖2M .

Now (4.17) shows that

1

2

‖ui+1 − û‖2M +
1

2

‖ui+1 − ui ‖2M ≤
1

2

‖ui − û‖2M . (4.18)

Summing (4.18) over i = 0, . . . ,N − 1 shows that

1

2

‖uN − û‖2M +
N−1∑
i=0

1

2

‖ui+1 − ui ‖2M ≤
1

2

‖u0 − û‖2M . (4.19)

Now, the condition τσ ‖K ‖2 < 1 ensures that ‖u‖2M ≥ θ ‖u‖
2

for some θ > 0. �erefore (4.19) shows

that ‖ui+1 − ui ‖ → 0, and that {ui}i ∈N is bounded. �erefore, every subsequence {ui j }j ∈N has a

further subsequence that converges to some point u∗ satisfying 0 ∈ H (u∗). In particular, every cluster

point is a saddle point. �

Exercise 4.8. Using Opial’s lemma below, show that there is, in fact, only one cluster point. Show,
therefore, that the whole sequence of iterates converges to a saddle point.

Opial’s lemma: Let C ⊂ Rn be closed and convex, and {ui}i ∈N ⊂ Rn . If the following conditions
hold, then ui ⇀ u∗ for some u∗ ∈ C :

(i) i 7→ ‖ui − u∗‖M is non-increasing for all u∗ ∈ C .

(ii) All limit points of {ui}i ∈N belong to C .
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4 Non-smooth optimisation methods

Example 4.4 (Dualisation trick for hard-to-invert forward operators). As we have seen in

Example 4.1, the proximal mapping of д(x ) = ‖z − x ‖2
2
/2 is easy to calculate. But what about

д(x ) = ‖z −Ax ‖2
2
/2 for some A ∈ Rk×n

and z ∈ Rk
? Unless A is unitary (i.e., ATA = I , such as a

Fourier transform), the computation of proxτ ∂f will generally require a costly matrix inversion.

However, we can also use the dualisation trick

д(x ) = sup

λ∈Rk
〈Ax − z, λ〉 −

1

2

‖λ‖2,

and replace the saddle point problem

min

x
max

y
д(x ) + 〈Kx ,y〉 − f ∗ (y )

by

min

x
max

ỹ
д̃(x ) + 〈K̃x , ỹ〉 − f̃ ∗ (ỹ ),

where ỹ = (y , λ) and the mappings

д̃(x ) = 0, f̃ ∗ (ỹ ) = f ∗ (y ) +
1

2

‖λ‖2 + 〈z, λ〉, and K̃x = (Kx ,Ax ).

Exercise 4.9. Implement the Chambolle–Pock method for total variation denoising, described in
Exercise 4.6. What is the e�ect of the choice of τ and σ? How does the performance compare to
forward–backward spli�ing?

Remark 4.4. Various further spli�ing algorithms exist in the literature, many of which are closely

linked to each other. �e Chambolle–Pock method and forward–backward spli�ing can also be

accelerated, to obtain fast convergence rates on strongly convex problems [19–21]. �ere also exist

stochastic variants of all our algorithms, which allow very large problems—Big Data problems—to be

split on computing clusters with reduced communication needs; see, e.g., [22, 23].
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5 Practical segmentation

We recall the Mumford–Shah image segmentation problem (1.11), wri�en as

min

x ∈Rn
1
n

2,Γ

1

2

‖z − x ‖2 + αMSθ (x , Γ) (5.1)

for the regulariser

MSθ (x , Γ) :=
1

2

‖D̃x |Ω0‖
2

2
+

1

2

‖D̃x |Ω1‖
2

2
+ θ · length(Γ),

with Γ the boundary of foreground image region Ω1 ⊂ Ω, and Ω0 = Ω \ Ω1 the background image

region within our image domain

Ω = {1, . . . ,n1} × {1, . . . ,n2} ∼ {1, . . . ,n1n2}.
(We equate these two and one-dimensional ways to index the image domain, cf. Figure 1.1.) �is

problem is di�cult to solve. Especially the length-term is highly non-convex.

�e length of the boundary is, of course, not clearly de�ned for discrete pixelised images. For our

purposes, we set

length(Γ) := ‖D̃ϕΩ1
‖2,1,

where the vector presentation ϕΩ1
∈ Rn1n2

of Ω1 is given by the components

ϕΩ1, j :=



1, pixel j is contained in Ω1,

0, pixel j is not contained in Ω1.
(5.2)

Recalling Figure 1.3, we see that this gives a reasonable de�nition of the length. Indeed, through

limiting arguments, we can see our de�nition to be be�er than counting the length of the geometric

boundary of the pixels as squares, cf. [24].

5.1 Convex relaxation of the Mumford–Shah problem

An idea to simplify (5.1) is to �rst of all replace the foreground region Ω1 by a “li�ing” ϕ ∈ {0, 1}n1n2
.

We then de�ne

Ω1 := {j ∈ Ω | ϕ j = 1}, and Ω0 := {j ∈ Ω | ϕ j = 0}.
Because [D̃x |Ω1]j only depends on pixels in Ω1, and [D̃x |Ω0]j only depends on pixels in Ω0, we may

then write

1

2

‖D̃x |Ω1‖
2

2
=

1

2

∑
j ∈Ω

ϕ j ‖[D̃x |Ω1]j ‖
2

2
, and

1

2

‖D̃x |Ω0‖
2

2
=

1

2

∑
j ∈Ω

(1 − ϕ j )‖[D̃x |Ω0]j ‖
2

2
.

Equivalently to (5.1), we may therefore solve

min

x ∈Rn
1
n

2,ϕ∈{0,1}n1
n

2

1

2

‖z − x ‖2 + αM̃Sθ (x ,ϕ) (5.3)

for the regulariser

M̃Sθ (x ,ϕ) :=
1

2

∑
j ∈Ω

ϕ j ‖[D̃x |Ω0]j ‖
2

2
+

∑
j ∈Ω

(1 − ϕ j )‖[D̃x |Ω1]j ‖
2

2
+ θ ‖D̃ϕ‖2,1,
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5 Practical segmentation

If we assume x to be a constant c1 on the foreground Ω1, and a constant c0 on the background

Ω0 := Ω \ Ω1, we can write

x = xϕ := c0 + (c1 − c0)ϕ

as well as

M̃Sθ (xϕ ,ϕ) = θ ‖D̃ϕ‖2,1.

In fact, let us de�ne regulariser

CVθ (ϕ) = θ ‖D̃ϕ‖2,1 +
∑
j ∈Ω

ϕ j . (5.4)

�e additional last term here is simply area(Ω1), so penalises large foreground objects. All of these

changes applied to (5.3) yields the problem

min

c0,c1∈R;ϕ∈{0,1}n1
n

2

1

2

‖z − xϕ ‖
2 + αCVθ (ϕ). (5.5)

We can also expand

1

2

‖z − xϕ ‖
2 =

1

2

∑
j ∈Ω

(zj − c0)
2ϕ j +

1

2

∑
j ∈Ω

(zj − c1)
2 (1 − ϕ j )

=
1

2

∑
j ∈Ω

(
(zj − c0)

2 − (zj − c1)
2

)
ϕ j +

1

2

∑
j ∈Ω

(zj − c1)
2

= 〈r ,ϕ〉 +
1

2

∑
j ∈Ω

(zj − c1)
2,

(5.6)

where r ∈ Rn1n2
has components de�ned by

r j :=
1

2

(
(zj − c0)

2 − (zj − c1)
2

)
.

�us the segmentation problem (5.5) can with (5.6) be equivalently presented as

min

c0,c1∈R;ϕ∈{0,1}n1
n

2

〈r ,ϕ〉 + αθ ‖D̃ϕ‖2,1 + α
∑
j ∈Ω

ϕ j +
1

2

∑
j ∈Ω

(zj − c1)
2. (5.7)

�e problem (5.7) is still non-convex and non-smooth. To simplify it further, we �rst of all observe

that by taking the �rst-order optimality conditions of (5.8) with respect to c0 and c1, we can solve

explicitly

c1 =

∑
j ∈Ω zjϕ j∑
j ∈Ω ϕ j

and c0 =

∑
j ∈Ω zj (1 − ϕ j )∑
j ∈Ω (1 − ϕ j )

�us c1 is the average of z on Ω0, and c0 is the average of z on Ω1. Making �xed a priori guesses

about the average intensities c0 and c1 �xed, we can convert (5.7) to

min

ϕ∈{0,1}n1
n

2

〈r + α ,ϕ〉 + αθ ‖D̃ϕ‖2,1. (5.8)

�is is still highly non-convex due to the constraint ϕ ∈ {0, 1}n1n2
. Observe that so far, the only real

transformative change we have made to (1.11) is the assumption of the constant known intensities

c0 and c1. We now make the bigger change of relaxing ϕ ∈ [0, 1]
n1n2

. We then obtain the convex

problem

min

ϕ∈Rn
1
n

2

〈r + α ,ϕ〉 + δ[0,1]
n

1
n

2 (ϕ) + αθ ‖D̃ϕ‖2,1. (5.9)

�is is the improved formulation of Chan–Vese segmentation [25] derived in [26]. Generally, this

type of approaches that li� a set to an indicator vector, and then relax the zero–one constraints on

the vector, are known as level-set methods.
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5 Practical segmentation

(a) Image (b) Chan–Vese segmentation (c) Intensity thresholding

Figure 5.1: Demonstration of Chan–Vese segmentation versus simple intensity thresholding (select

as Ω1 those pixels with high enough intensity). �e Chan–Vese segmentation has much

smoother boundaries and is lacking speckle-like artefacts.

Our algorithms from Chapter 4, in particular Chambolle–Pock, are applicable to (5.9). As a solution

foreground object we can take

Ω1 := {j ∈ Ω | ϕ j > 1/2}.
�is is compared against simple intensity thresholding in Figure 5.1. Although not perfect, it provides

a much smoother uniform segmentation than intensity thresholding. It does, however select also

objects other than the camera man of interest. �is is because (5.9) is a global segmentation model.

Only single objects of interest demand local segmentation. Models based on (5.8) are discussed,

for example, in [27].

Remark 5.1 (Alternative relaxation approaches). �ere are other, more general, convex relaxation

approaches for segmentation approaches that work slightly di�erently to the one presented here.

�e fundamental idea is, however, the same: li� the problem to a higher-dimensional space. Here,

we replace the set Ω1, which can be seen as an element of {0, 1}n1n2
by the vector ϕ ∈ Rn1n2

. In the

alternative approaches, we work with u a function of bounded variation (see [28]). In that space,

u can encode Γ as a jump in the function. �en we li� u to a measure, and discretise this measure in

such a way that any non-convexity is hidden into pre-computable values in the discretisation [29].

Exercise 5.1. Implement the Chambolle–Pock algorithm for (5.9). Test it on some images with clear
foreground objects, adjusting the foreground and background intensities c0 and c1 as well as the
segmentation parameters θ and α by educated guesses to yield a good result.
Hint: Similarly to TV denoising, convert the term αθ ‖D̃v ‖2,1 into maxy 〈v, D̃y〉 − F

∗ (y ) for a dual
variable y and a suitable constraint modelled by F ∗.

5.2 Dictionary learning

Regularisers do not have to be entirely analytically constructed. �ey model prior information of a

good solution, and therefore constructing them from data provides a good alternative. In particular,

for segmentation, we might want to construct the regularisers from known poses of a known object

that we want to detect. �us the task of deciding a regularisers becomes a task of machine learning.

One simple and for segmentation proven approach is principal component analysis, PCA [30, 31].

So let ϕ1, . . . ,ϕN ∈ [0, 1]
n1n2

be a our sample or “training” shapes on the domain Ω, de�ned using

the level set approach (5.2). Let µ := 1

N
∑N

i=1
ϕN be the average shape. We can also arrange the shapes

into a matrix

M = (ϕ1 − µ, . . . ,ϕn − µ ).
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5 Practical segmentation

Singular value decomposition then gives A = (a1, . . . ,aN ), where the an are orthonormal column

vectors, and D = diag(d1, . . . ,dN ) such that ADAT = 1

NMMT
. We assume without loss of generality

that d1 ≥ d2 ≥ . . . ≥ dN . We then denote the �rst n � N columns of A by An = (a1, . . . ,an ), and set

Dn := diag(d1, . . . ,dn ). �ese will be our “dictionary” of “shape variations”.

We then replace (5.4) by

R (ϕ) =
1

2

‖D1/2

n ATn (ϕ − µ )‖
2

2
+ δR (An )+µ (ϕ) =

n∑
j=1

dj 〈aj ,ϕ − µ〉
2 + δR (An )+µ (ϕ),

�e indicator function merely means that

ϕ ∈


ϕβ := µ +Anβ = µ +

n∑
i=1

βiai

������
β ∈ Rn



. (5.10)

�e vector β is our coe�cient vector for constructing ϕ out of the dictionary of shape variations.

Given the presentation (5.10), we get

R (ϕ) =
n∑
j=1

dj ‖aj ‖
2βj =

1

2

〈Dnβ, β〉.

�us it makes sense to look for β instead of ϕ, and solve

min

β ∈Rn

1

2

‖z − xϕβ ‖
2 +

1

2

〈Dnβ, β〉. (5.11)

Following Section 5.1, we convert this into

min

β ∈Rn
〈r , µ +Anβ〉 +

1

2

〈Dnβ, β〉.

�is is again a very simple convex problem.
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