
arxiv: 2412.12944
date: 2024-12-17 (revised 2025-03-17)

page 1 of 34

online optimisation for dynamic electrical
impedance tomography

Neil Dizon∗ Jyrki Jauhiainen† Tuomo Valkonen‡

Abstract Online optimisation studies the convergence of optimisation methods as the data

embedded in the problem changes. Based on this idea, we propose a primal dual online method

for nonlinear time-discrete inverse problems. We analyse the method through regret theory and

demonstrate its performance in real-time monitoring of moving bodies in a fluid with Electrical

Impedance Tomography (EIT). To do so, we also prove the second-order differentiability of the

Complete Electrode Model (CEM) solution operator on 𝐿∞.

1 introduction

Electrical impedance tomography (EIT) is an imaging technique for inferring the electrical conductivity

distribution within a body through boundary currents and potentials. While measurements in EIT

can be performed in real time, reconstructing images from the data is computationally intensive.

This challenge is critical in applications such as real-time monitoring of industrial processes, where

immediate feedback is essential – for instance, in detecting blockages or leaks in pipelines.

Traditionally, inverse problems, including those arising in EIT, have been studied in a static context,

where robust theoretical foundations and solution methods are available. However, the need for real-

time reconstructions in dynamic settings has grown significantly [31, 19, 21, 6, 32]. Addressing this

demand requires novel approaches capable of efficiently processing large data sets and capturing

time-dependent changes in the imaged domain.

To this end, we introduce online optimization methods tailored to time-discrete nonlinear inverse

problems, formulated as the conceptual problem

(1.1) min

(𝑥0,𝑥 1,𝑥2,...) ∈X

∞∑︁
𝑘=0

𝐽𝑘 (𝑥𝑘 )

for a set X ⊂ ∏∞
𝑘=0

𝑋𝑘 that encodes the temporal couplings between the frame-wise variables 𝑥𝑘 over

time index 𝑘 . With Tikhonov-type regularization, the frame-wise objective can be expressed as

(1.2) 𝐽𝑘 (𝑥) := 𝐸 (𝐴𝑘 (𝑥) − 𝑏𝑘 ) + 𝑅(𝑥),

where 𝑅 is a regularization term, 𝐴𝑘 a nonlinear forward operator, 𝑏𝑘 the measurement data, and the

data fidelity 𝐸 models noise.
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In this work, we focus on EIT process monitoring using isotropic total variation regularization,

𝑅(𝑥) = 𝛼 ∥𝐷𝑥 ∥2,1. Here𝐴𝑘 represents the solution operator for the complete electrode model (CEM) [10].

For given electrode potentials, it maps the electrical conductivity 𝑥 on a domain Ω ⊂ ℝ𝑛
to boundary

current measurements. The temporal couplings encoded by X arise from a partial differential equation

(PDE) that models matter movement within the body. For simplicity in our numerical demonstrations,

we employ the incompressible transport equation, though more sophisticated models, such as the

Navier–Stokes equations, could be applied.

The problem (1.1) is formal: we cannot in practise solve an optimisation problem for an unbounded

time segment. At each instant𝑁 ,we can access atmost the initial segment {(𝐴𝑘 , 𝑏𝑘 )}𝑁𝑘=0
of forward oper-

ators and data. It is conceivable to solve the corresponding finite horizon problemsmin𝑥0:𝑁 ∈X0:𝑁

∑𝑁
𝑘=0

𝐽𝑘 (𝑥𝑘 )
where we use the slicing notation

(1.3) 𝑥0:𝑁 = (𝑥0, . . . , 𝑥𝑁 ) and X0:𝑁 := {𝑥0:𝑁 | (𝑥0, 𝑥 1, . . .) ∈ X}.

However, even this is numerically unwieldy for large𝑁 , and hardly real-timewith standard optimisation

methods. In practise, in a long monitoring process, both CPU and memory requirements would also

force us to work with a short time window of data.

Online optimisation [48] attempts to solve (1.1) in real time. The idea in most methods is to take a

single step of a standard optimisation method for min 𝐽𝑘 at each index 𝑘 . For introductions we refer

to [18, 5, 35, 37]. Basic online optimisation methods take X in (1.1) to constrain 𝑥0 = 𝑥 1 = 𝑥2 = . . .,

i.e., do not consider problems that evolve over time, only data that arrives gradually. Dynamic online

optimisation methods [17, 42, 47, 8, 45, 34, 39, 3, 46, 7, 9] typically intersperse optimisation steps

with prediction steps for some prediction operators𝑊𝑘 that attempt to model more general temporal

constraint sets X subject to available, possibly noisy and corrupted, information. In particular, a

dynamic online forward-backward (a.k.a. proximal gradient) method for (1.1)&(1.2) iterates

(1.4) 𝑥𝑘 := prox𝜏𝑅 (𝑥𝑘 − 𝜏∇𝐴𝑘 (𝑥𝑘 )∗(𝐴𝑘 (𝑥𝑘 ) − 𝑏𝑘 )) with the predictions 𝑥𝑘+1
:=𝑊𝑘 (𝑥𝑘 ).

Most earlier works on dynamic online optimisation concentrate on such forward-backward methods.

They have limited applicability to inverse problems with total variation regularisation 𝑅 = ∥∇ ·

∥2,1, as the proximal operator prox𝜏𝑅 (𝑥) := arg min𝑧
1

2
∥𝑧 − 𝑥 ∥2 + 𝜏𝑅(𝑧) is expensive to calculate: it

corresponds to total variation denoising. Therefore, we developed in [42, 14] primal-dual dynamic

online optimisation methods for (1.1) with a linear 𝐴𝑘 in (1.2). The initial theory in [42] imposed severe

restrictions on the dual component of the predictor. These were relaxed in [14], where several improved

dual predictors were developed, for the primal predictor based on optical flow.

The main results of [42] could also only be interpreted through regularisation theory, as the regret

that we were able to prove was non-symmetric. Indeed, convergence results are rarely available for

online optimisation methods. Instead, one attempts to bound the regret of past updates with respect to

all information available up to an instant 𝑁 . For (1.4), one can bound the dynamic regret [17]

dynreg(𝑥0:𝑁 ) = sup

𝑥0:𝑁 ∈X0:𝑁

𝑁∑︁
𝑘=0

(
𝐽𝑘 (𝑥𝑘 ) − 𝐽𝑘 (𝑥𝑘 )

)
.

This may be negative, if the comparison set X0:𝑁 does not include all the possible “paths” 𝑥𝑘 :𝑁
that the

iterates generated by the algorithm may take. For the primal-dual method of [42], the result was even

weaker: we could only bound

sup

𝑥0:𝑁 ∈X0:𝑁

(
𝐽0:𝑁 (𝑥0:𝑁 ) −

𝑁∑︁
𝑘=0

𝐽𝑘 (𝑥𝑘 )
)
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for a temporal infimal convolution 𝐽0:𝑁 between the comparison set and the framewise objectives. In

[14], at the cost of having to reduce the size of the comparison set, we managed to symmetrise these

results to a bound on

˚𝐽0:𝑁 (𝑥0:𝑁 ) − sup

𝑥0:𝑁 ∈X0:𝑁

˚𝐽0:𝑁 (𝑥0:𝑁 )

for a different temporal (sub-)infimal convolution
˚𝐽0:𝑁 .

The theory in [14] was still for convex functions. In Section 2, we will

(a) extend the primal-dual method of [14] to non-convex objectives, including (1.1)&(1.2) with non-linear

forward operators 𝐴𝑘 , and

(b) allow for inexact gradients, in particular, inexact 𝐴𝑘 and its Jacobian.

The non-convexity adds significant new technical challenges to the proof. The inexact computations

help to reduce the high expense of solving PDEs and can, fortunately, be incorporated with much less

effort. While we do not yet treat interweaved PDE solvers as [27] did for static problems, that is our

ultimate goal. Instead, we do delayed, intermittent solves of the PDEs “in the background” to obtain

real-time performance. To prove that the EIT problem satisfies the conditions of the online method, in

Section 3,

(c) we will prove the second-order differentiability of the CEM solution operator for 𝐿∞ conductivies.

In the final Section 4, we evaluate the proposed method numerically on (nearly) real-time EIT

reconstruction. Our approach to EIT process monitoring differs from the recent work in [2], where the

authors achieved real-time performance using extensive multithreading and code optimisation with

the D-bar method [33, 36]. In contrast, our online method attains real-time performance thanks to

the inherently light computational cost of iterations of our algorithm, albeit dependent on meticulous

predictor design. Finally, our optimisation-based approach is not the only possibility treat dynamic

inverse problems in an online fashion. Especially if uncertainty quantification is required, full Bayesian

modelling can be used with numerical techniques such as non-linear Kalman filters and Markov-Chain

Monte Carlo [30, 16, 1]. Except in the simplest fully Gaussian cases (which would exclude a total

variation prior), this can, however, come with much higher computational resource demands and

complexity.

Additional notation In the slicing notation (1.3), we allow 𝑁 =∞ with 𝑥𝑘 :∞ = (𝑥𝑘 , 𝑥𝑘+1, . . .) and also

set X𝑘 := X𝑘 :𝑘 . We write 𝕃(𝑋 ;𝑌 ) for the space of bounded linear operators between normed spaces 𝑋

and 𝑌 , and Id ∈ 𝕃(𝑋 ;𝑋 ) for the identity operator. The block-diagonal operator consisting of𝑀 and Γ
reads diag

(
𝑀, Γ

)
. When 𝑋 is Hilbert, we abbreviate ⟨𝑥, 𝑦⟩𝑀 = ⟨𝑀𝑥, 𝑦⟩ for𝑀 ∈ 𝕃(𝑋 ;𝑋 ). The notation

⟦𝑥⟧2

𝑀
mimics norm notation when 𝑀 may not be positive semi-definite. If it is, written 𝑀 ≥ 0, we

set ∥𝑥 ∥𝑀 :=
√︁
⟨𝑥, 𝑥⟩𝑀 . For a Borel 𝑔 : ℝ𝑛 ⊃ Ω → ℝ𝑛

, we set ∥𝑔∥2,1 :=
∫
Ω
∥𝑔(𝜉)∥2 𝑑𝜉 . Applied to the

gradient of a differentiable function, this produces the isotropic total variation.

For 𝐴 ⊂ 𝑋 and 𝑥 ∈ 𝑋 , we write ⟨𝐴, 𝑥⟩ = {⟨𝑧, 𝑥⟩ | 𝑧 ∈ 𝐴}. For any 𝐵 ⊂ ℝ (especially 𝐵 = ⟨𝐴, 𝑥⟩),
𝐵 ≥ 0 means 𝑡 ≥ 0 for all 𝑡 ∈ 𝐵. For a convex function 𝐹 : 𝑋 → ℝ, 𝜕𝐹 denotes the subdifferential, and

𝐹 ∗ the Fenchel conjugate. The {0,∞}-valued indicator function of 𝐴 is written 𝛿𝐴. We refer to [12] for

more details on convex analysis.

2 online primal-dual proximal splitting for nonconvex problems

We consider the conceptual problem

(2.1) min

(𝑥0,𝑥 1,𝑥2,...) ∈X

∞∑︁
𝑘=0

𝐹𝑘 (𝑥𝑘 ) + 𝐸𝑘 (𝑥𝑘 ) +𝐺𝑘 (𝐾𝑘𝑥𝑘 ),
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Algorithm 1 Nonconvex predictive online primal-dual proximal splitting (POPD-N).

Require: For all 𝑘 ∈ ℕ, on Hilbert spaces 𝑋𝑘 and 𝑌𝑘 , convex, proper, lower semi-continuous 𝐸𝑘+1 :

𝑋𝑘+1 → ℝ, 𝐹𝑘+1 : 𝑋𝑘+1 → ℝ and 𝐺∗
𝑘+1

: 𝑌𝑘+1 → ℝ, primal-dual predictor 𝑃𝑘 : 𝑋𝑘 × 𝑌𝑘 →
𝑋𝑘+1 × 𝑌𝑘+1, and 𝐾𝑘+1 ∈ 𝕃(𝑋𝑘+1;𝑌𝑘+1). Estimates ∇̃𝐸𝑘+1(𝑥𝑘+1) of the gradients ∇𝐸𝑘+1(𝑥𝑘+1). Step
length parameters 𝜏𝑘+1, 𝜎𝑘+1 > 0.

1: Pick initial iterates 𝑥0 ∈ 𝑋0 and 𝑦
0 ∈ 𝑌0.

2: for 𝑘 ∈ ℕ do
3: (𝑥𝑘+1, 𝑦𝑘+1) := 𝑃𝑘 (𝑥𝑘 , 𝑦𝑘 ) ⇝ prediction step

4: 𝑥𝑘+1
:= prox𝜏𝑘+1𝐹𝑘+1

(𝑥𝑘+1 − 𝜏𝑘+1∇̃𝐸𝑘+1(𝑥𝑘+1) − 𝜏𝑘+1𝐾
∗
𝑘+1
𝑦𝑘+1) ⇝ primal step

5: 𝑦𝑘+1
:= prox𝜎𝑘+1𝐺

∗
𝑘+1

(𝑦𝑘+1 + 𝜎𝑘+1𝐾𝑘+1(2𝑥𝑘+1 − 𝑥𝑘+1)) ⇝ dual step

6: end for

where𝐺𝑘 and 𝐹𝑘 are convex and possibly nonsmooth, but 𝐸𝑘 is smooth but possibly nonconvex. The

operator 𝐾𝑘 is linear and bounded. The primal comparison set X encodes temporal couplings between

the framewise variables 𝑥𝑘 . This clearly includes (1.1)&(1.2), with non-linear forward-operators 𝐴𝑘

accommodated by setting 𝐸𝑘 (𝑥) = 𝐸 (𝐴𝑘 (𝑥) − 𝑏𝑘 ).
We present in Algorithm 1 our proposed primal-dual online method for (2.1). It involves the Fenchel

conjugate𝐺∗
𝑘
of𝐺𝑘 and a dual variable 𝑦

𝑘
introduced through writing𝐺𝑘 (𝐾𝑥) = sup𝑦 ⟨𝐾𝑘𝑥, 𝑦⟩ −𝐺∗

𝑘
(𝑦),

as well as the predictor 𝑃𝑘 and the predictions

(𝑥𝑘+1, 𝑦𝑘+1) := 𝑃𝑘 (𝑥𝑘 , 𝑦𝑘 ) .

We have also replaced ∇𝐸𝑘 (𝑥𝑘 ) by an estimate ∇̃𝐸𝑘 (𝑥𝑘 ). This allows for the inexact computation of

𝐴𝑘 and ∇𝐴𝑘 , as discussed in the Introduction.

To derive the algorithm, note that a single term in (2.1) is minimised when we solve

(2.2) min

𝑥
max

𝑦
𝐹𝑘 (𝑥) + 𝐸𝑘 (𝑥) + ⟨𝐾𝑘𝑥, 𝑦⟩ −𝐺∗

𝑘
(𝑦) .

Taking forward-backward steps alternatingly with respect to 𝑥 and 𝑦 , we obtain the primal step of

the algorithm, as well as the dual step subject to a small modification. The predictor transfers iterates

generated this way between time frames and spaces.

In Section 2.1, we provide essential definitions and outline the formal assumptions needed to prove

regret bounds for the method in the subsequent Section 2.2.

2.1 assumptions

Write 𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘 ). Then 𝑢0:∞
generated by Algorithm 1 from an initial 𝑢0

, lies in

𝑈0:∞ := (𝑋0 × 𝑌0) × (𝑋1 × 𝑌1) × (𝑋2 × 𝑌2) · · · .

Since Algorithm 1 involves the dual variable 𝑦𝑘 , we need to expand the set X ⊂ 𝑋0:∞ of primal

comparison sequences in (2.1) to U ⊂ 𝑈0:∞. We then define the sets of primal and dual comparison

sequences by projection as

X :=
{
𝑥0:∞ ∈ 𝑋0:∞ | (𝑥0:∞, 𝑦0:∞) ∈ U

}
and Y :=

{
𝑦0:∞ ∈ 𝑌0:∞ | (𝑥0:∞, 𝑦0:∞) ∈ U

}
.

To algorithmically track sequences in these sets, we need the primal-dual predictor 𝑃𝑘 . We next

formalise this predictor, the comparison sequences, and the functions of (2.1).

Assumption 2.1 (Basic structural assumptions). Given 𝑁 ∈ ℕ, on Hilbert spaces 𝑋𝑘 and 𝑌𝑘 , (0 ≤ 𝑘 ≤ 𝑁 ),

we are provided with:

Dizon, Jauhiainen, Valkonen Online optimisation for dynamic EIT

https://arxiv.org/abs/2412.12944


arxiv: 2412.12944, 2024-12-17 (revised 2025-03-17) page 5 of 34

(i) For all 0 ≤ 𝑘 ≤ 𝑁 , convex, proper, and lower semi-continuous 𝐹𝑘 : 𝑋𝑘 → ℝ, and 𝐺∗
𝑘

: 𝑌𝑘 → ℝ

(with respective strong convexity factors 𝛾𝑘 ≥ 0 and 𝜌𝑘 ≥ 0), as well as 𝐾𝑘 ∈ 𝕃(𝑋𝑘 ;𝑌𝑘 ), and a

possibly non-convex but finite-valued 𝐸𝑘 : 𝑋𝑘 → ℝ.

(ii) A bounded set U0:𝑁 ⊂ 𝑈0:𝑁 of primal-dual comparison sequences.

(iii) Primal-dual predictors 𝑃𝑘 : 𝑋𝑘 × 𝑌𝑘 → 𝑋𝑘+1 × 𝑌𝑘+1.

Example 2.2 (Primal-dual predictors). In the numerical experiments of Section 4, for the primal variable

𝑥 , we will use the incompressible flow predictor𝑊𝑘 : 𝑋𝑘 → 𝑋𝑘+1,𝑊𝑘 (𝑥𝑘 ) : 𝜉 ↦→ 𝑥𝑘 (𝜉 + ℎ𝑘 (𝜉)), where
ℎ𝑘 (𝜉) is the predicted displacement at 𝜉 ∈ Ω between the frames 𝑘 and 𝑘 + 1. For the dual variable

𝑦 , we use two different predictions: The first one, 𝑇 1

𝑘
: 𝑌𝑘 → 𝑌𝑘+1, seeks to maintain ⟨∇𝜉𝑥

𝑘+1, 𝑦𝑘+1⟩ =
⟨∇𝜉𝑥

𝑘 , 𝑦𝑘⟩. This is beneficial for preserving total variation [14]: With 𝐺𝑘 (𝑧) = 𝛼 ∥𝑧∥2,1, at a solution

(𝑥𝑘 , 𝑦𝑘 ) to (2.2), we have ⟨∇𝜉𝑥
𝑘 , 𝑦𝑘⟩ = 𝛼 ∥∇𝜉𝑥

𝑘 ∥2,1. The second one, 𝑇 2

𝑘
: 𝑌𝑘 → 𝑌𝑘+1, is defined by the

affine update 𝑦𝑘+1 = 𝑦𝑘 + 𝑐∇𝜉𝑥
𝑘+1

. The spatial parameter 𝑐 is designed to promote sparsity in desired

areas. We take 𝑐 to be inversely proportional to the magnitude of the flow ℎ𝑘 , meaning that sparsity is

promoted in areas with less inter-frame movement.

Necessary first-order optimality conditions for the static problem min 𝐹𝑘 +𝐸𝑘 +𝐺𝑘 ◦𝐾𝑘 , equivalently
(2.2), can be expressed with the general notation 𝑢 = (𝑥, 𝑦) as [12, 11]

(2.3) 0 ∈ 𝐻𝑘 (𝑢𝑘 ) for 𝐻𝑘 (𝑢) :=

(
𝜕𝐹𝑘 (𝑥) + ∇𝐸𝑘 (𝑥) + 𝐾∗

𝑘
𝑦

𝜕𝐺∗
𝑘
(𝑦) − 𝐾𝑘𝑥

)
,

Likewise, Algorithm 1 reads in implicit as iteratively solving for 𝑢𝑘 the inclusion

0 ∈ 𝐻𝑘 (𝑢𝑘 ) +𝑀𝑘 (𝑢𝑘 − 𝑢̆𝑘 ),(2.4)

where

𝐻𝑘 (𝑢) :=

(
𝜕𝐹𝑘 (𝑥) + ∇̃𝐸𝑘 (𝑥𝑘 ) + 𝐾∗

𝑘
𝑦

𝜕𝐺∗
𝑘
(𝑦) − 𝐾𝑘𝑥

)
and 𝑀𝑘 =

(
𝜏−1

𝑘
Id −𝐾∗

𝑘

−𝐾𝑘 𝜎−1

𝑘
Id

)
.(2.5)

By avoiding explicit proximal maps, this formulation facilitates convergence analysis [40] and, by

extension, regret analysis.

Since we will be taking forward steps with respect to 𝐸𝑘 , we will require it to be smooth in an

appropriate sense. The next assumption introduces a global online version of the three-point smoothness

inequality; for the corresponding static inequality, see [41, Appendix B] and [12] for exact gradients,

and [15] for inexact gradients based on single-loop splitting methods. For EIT with exact forward

operator computations, we reformulate the condition in terms of the PDE itself in Section 3, with some

technical results relegated to Appendix b.1. The assumption also introduces compatibility conditions

on the step length parameters 𝜏𝑘 and 𝜎𝑘 from Algorithm 1, and so-called testing parameters that encode

both primal and dual convergence rates; see [41, 12]. In this paper, while providing a general theory,

we will only apply unaccelerated methods with constant step length and testing parameters.

Assumption 2.3 (Global three-point growth and smoothness inequality). Given 𝑁 ∈ ℕ, Assumption 2.1

holds, and for some 𝛾𝐸,𝑘 , 𝜆𝐸,𝑘 ≥ 0, and an error 𝑒𝑘 ≥ 0, for all 1 ≤ 𝑘 ≤ 𝑁 :

(i) 𝐸𝑘 satisfies for all 𝑥𝑘 ∈ X𝑘 and 𝑥 ∈ 𝑋𝑘 the “erroneous” three-point smoothness

⟨∇̃𝐸𝑘 (𝑥𝑘 ), 𝑥 − 𝑥𝑘⟩ ≥ 𝐸𝑘 (𝑥) − 𝐸𝑘 (𝑥𝑘 ) +
𝛾𝐸,𝑘

2

∥𝑥 − 𝑥𝑘 ∥2 −
𝜆𝐸,𝑘

2

∥𝑥 − 𝑥𝑘 ∥2 − 𝑒𝑘 .

(ii) We are given step length and testing parameters 𝜏𝑘 , 𝜎𝑘 > 0 and 𝜂𝑘 , 𝜑𝑘 ,𝜓𝑘 > 0 with

𝜂𝑘 = 𝜑𝑘𝜏𝑘 =𝜓𝑘𝜎𝑘 , (primal-dual coupling)(2.6a)

1 > 𝜆𝐸,𝑘𝜏𝑘 + 𝜏𝑘𝜎𝑘 ∥𝐾𝑘 ∥2
(metric positivity).(2.6b)
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Example 2.4. For an unaccelerated method, we take 𝜏𝑘 ≡ 𝜏 and 𝜎𝑘 ≡ 𝜎 for some 𝜏, 𝜎 > 0, along with

𝜂𝑘 ≡ 𝜏 , 𝜑𝑘 ≡ 1 and 𝜓𝑘 ≡ 𝜏
𝜎
. For accelerated choices for standard (non-online) primal-dual proximal

splitting under strong convexity, see [41, 12].

The next assumption presents a local version of the previous global assumption. In what follows,

we will assume either of these assumptions to hold.

Assumption 2.5 (Local three-point growth and smoothness inequality). Given 𝑁 ∈ ℕ, Assumption 2.1

holds, and for all 1 ≤ 𝑘 ≤ 𝑁 :

(i) 𝐸𝑘 satisfies for some 𝛾𝐸,𝑘 ∈ ℝ, ¯𝜆𝐸,𝑘 ≥ 0, and 𝑒𝑘 ≥ 0, for any 𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘 ) ∈ 𝐻−1

𝑘
(0), and for all

𝑥 ∈ 𝑋𝑘 the “erroneous” three-point monotonicity-like property

⟨∇̃𝐸𝑘 (𝑥𝑘 ) − ∇𝐸𝑘 (𝑥𝑘 ), 𝑥 − 𝑥𝑘⟩ ≥ 𝛾𝐸,𝑘 ∥𝑥 − 𝑥𝑘 ∥2 − ¯𝜆𝐸,𝑘 ∥𝑥 − 𝑥𝑘 ∥2 − 𝑒𝑘 .

(ii) 𝐸𝑘 satisfies for some factors 𝜆𝐸,𝑘 ≥ 0 and 𝛾𝐸,𝑘 ≥ 𝛾𝐸,𝑘 ≥ 0, errors 𝑒𝑘 , 𝑒𝑘 ≥ 0, and a radius 𝛿 > 0,

for all 𝑥𝑘 ∈ X𝑘 ∩ 𝐵(𝑥𝑘 , 𝛿) and 𝑥 ∈ 𝐵(𝑥𝑘 , 𝛿), the inequality

⟨∇̃𝐸𝑘 (𝑥𝑘 ), 𝑥 − 𝑥𝑘⟩ ≥ 𝐸𝑘 (𝑥) − 𝐸𝑘 (𝑥𝑘 ) +
𝛾𝐸,𝑘

2

∥𝑥 − 𝑥𝑘 ∥2 −
𝜆𝐸,𝑘

2

∥𝑥 − 𝑥𝑘 ∥2 − 𝑒𝑘 ,

as well as, for any 𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘 ) ∈ 𝐻−1

𝑘
(0) ∩ 𝐵(𝑥𝑘 , 𝛿) × 𝑌𝑘 and 𝑥 ∈ 𝐵(𝑥𝑘 , 𝛿) that

⟨∇̃𝐸𝑘 (𝑥𝑘 ) − ∇𝐸𝑘 (𝑥𝑘 ), 𝑥 − 𝑥𝑘⟩ ≥ 𝛾𝐸,𝑘 ∥𝑥 − 𝑥𝑘 ∥2 − ˆ𝜆𝐸,𝑘 ∥𝑥 − 𝑥𝑘 ∥2 − 𝑒𝑘 .

(iii) We are given step length and testing parameters 𝜏𝑘 , 𝜎𝑘 > 0 and 𝜂𝑘 , 𝜑𝑘 ,𝜓𝑘 > 0 as well as a

𝜅𝑘 ∈ (0, 1) with

𝜂𝑘 = 𝜑𝑘𝜏𝑘 =𝜓𝑘𝜎𝑘 , and(2.7a)

1 ≥ max

{
𝜆𝐸,𝑘 ,−2(𝛾𝑘 + 𝛾𝐸,𝑘 ),

2

1 − 𝜅𝑘
¯𝜆𝐸,𝑘 ,

2

1 − 𝜅𝑘
ˆ𝜆𝐸,𝑘

}
𝜏𝑘 + 𝜏𝑘𝜎𝑘 ∥𝐾𝑘 ∥2.(2.7b)

Assumption 2.5 (i) is global, while (ii) is local. The former is completely analogous to the second

part of the latter, however, the factor 𝛾𝐸,𝑘 is allowed to be negative.

To use the local version of the three-point growth and smoothness inequality, we need additional as-

sumptions on the comparison sequences. Before stating these assumptions, we formalise the predictors

𝑃𝑘 of Algorithm 1. To do so, we introduce

Γ𝑘 := diag

(
(𝛾𝑘 + 𝛾𝐸,𝑘 ) Id, 𝜌𝑘 Id

)
and Ω𝑘 := diag

(
𝜆𝐸,𝑘 Id, 0

)
.

For use with Assumption 2.5 (i) and the first part of (ii), we also define

Γ̄𝑘 := 2 diag

(
(𝛾𝑘 + 𝛾𝐸,𝑘 ) Id, 𝜌𝑘 Id

)
, Ω̄𝑘 := 2 diag

(
¯𝜆𝐸,𝑘 Id, 0

)
,

Γ̂𝑘 := 2 diag

(
(𝛾𝑘 + 𝛾𝐸,𝑘 ) Id, 𝜌𝑘 Id

)
, and Ω̂𝑘 := 2 diag

(
ˆ𝜆𝐸,𝑘 Id, 0

)
.

The first part of the next assumption ensures that the set of comparison sequences is large enough

to have primal-dual critical points of the static objectives in its proximity. The second part is a more

technical condition on the uniformity of bounds. To state the assumption, recalling that 𝑢̆𝑘+1
:= 𝑃𝑘 (𝑢𝑘 ),

we define the prediction errors

(2.8) 𝜀
†
𝑘+1

(𝑢𝑘 , 𝑢𝑘 :𝑘+1) :=
1

2

⟦𝑢̆𝑘+1 − 𝑢𝑘+1⟧2

𝜂𝑘+1𝑀𝑘+1

− 1

2

⟦𝑢𝑘 − 𝑢𝑘⟧2

𝜂𝑘 (𝑀𝑘+Γ𝑘 ) for all 𝑢𝑘 :𝑘+1 ∈ U𝑘 :𝑘+1.

They measure the difference of deviation from a chosen comparison sequence between the current

iterate and its prediction. Since 𝑢𝑘 is always the algorithm-generated iterate, when 𝑢𝑘 :𝑘+1
is clear from

the context, we write for brevity 𝜀
†
𝑘+1

:= 𝜀
†
𝑘+1

(𝑢𝑘 , 𝑢𝑘 :𝑘+1). For brevity, we also write

𝐻0:𝑁 (𝑢0:𝑁 ) := 𝐻0(𝑢0) × · · · × 𝐻𝑁 (𝑢𝑁 ) ⊂ 𝑈0:𝑁 .
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Assumption 2.6 (Critical point proximity). Let 𝑁 ∈ ℕ be given, and Assumption 2.5 to be assumed

(instead of Assumption 2.3). Then:

(i) For some 𝑟𝑘 > 0, (1 ≤ 𝑘 ≤ 𝑁 ), we have

U1:𝑁 ⊂
{
𝑢1:𝑁 ∈ 𝑈1:𝑁

��
inf𝑢̂1:𝑁 ∈𝐻 −1

1:𝑁
(0) ∥𝑢𝑘 − 𝑢𝑘 ∥𝑀𝑘+Γ̂𝑘 ≤ 𝑟𝑘 for 1 ≤ 𝑘 ≤ 𝑁

}
.

(ii) For some 𝜉𝑘 ,Δ > 0 as well as
˜𝛿 ∈ (0, 𝛿), (1 ≤ 𝑘 ≤ 𝑁 ), for

𝜃𝑘 = 𝜑𝑘 (1 + 2𝜏𝑘 min{𝛾𝑘 + 𝛾𝐸,𝑘 , ¯𝜆𝐸,𝑘 } − 𝜏𝑘𝜎𝑘 ∥𝐾𝑘 ∥2) > 0

(where the positivity is a consequence of (2.7b)) for all 𝑢0:𝑁 ∈ U0:𝑁

0 < 𝑑𝑁 (𝑢0:𝑁 ) := inf

0≤𝑛≤𝑁

(
𝜃𝑛+1(𝛿 − ˜𝛿)2

𝜉𝑛+1

− 1 + Δ

𝜉𝑛+1

𝜂𝑛+1𝑟
2

𝑛+1

− 2𝜀
†
𝑛+1

−
𝑛∑︁
𝑘=1

(
1 + Δ

2𝜅𝑘
𝜂𝑘𝑟

2

𝑘
+ 𝜀†

𝑘
+ 𝜂𝑘𝑒𝑘

))(2.9a)

as well as

(2 − 𝜅𝑘 ) (𝜉−1

𝑘
+ 1) (𝛿 − ˜𝛿)2 + 2𝜃−1

𝑘
𝜂𝑘𝑒𝑘 ≤ ˜𝛿2.(2.9b)

Remark 2.7. Wemust have 𝜃𝑛+1(𝛿 − ˜𝛿)2 ≥ (1+Δ)𝜂𝑛+1𝑟
2

𝑛+1
and 2𝜃−1

𝑘
𝜂𝑘𝑒𝑘 ≤ ˜𝛿2

for (2.9) to hold. Therefore,

given these bounds, the optimal choice of 𝜉𝑘 is to solve it from (2.9b) as an equality, and insert the

result into (2.9a).

Remark 2.8. Similarly to 𝜃𝑘 , also 𝑟𝑘 depends on the testing parameter 𝜑𝑘 , so its mere increase is not

sufficient to satisfy 𝑑𝑁 (𝑢0:𝑁 ) > 0. For constant step lengths, 𝜑𝑘 ≡ 1, 𝜂𝑘 ≡ 𝜏 , and 𝜉𝑘 ≡ 𝜅𝑘 ≡ 𝜅 , provided
that 𝛾𝑛+1 + 𝛾𝐸,𝑛+1 ≥ 0 for all 1 ≤ 𝑛 ≤ 𝑁 , taking and ensuring

¯𝜃𝑁 := 1 − 𝜏𝜎 sup

1≤𝑘≤𝑁
∥𝐾𝑘 ∥2 > 0,

(2.9) hold when

¯𝜃𝑁 (𝛿 − ˜𝛿)2 >

𝑁+1∑︁
𝑘=1

(
(1 + Δ)𝜏𝑟 2

𝑘
+ 2𝜅𝜀

†
𝑘
+ 𝜏𝜅𝑒𝑘

)
and

(2 − 𝜅) (𝜅−1 + 1) (𝛿 − ˜𝛿)2 + 2
¯𝜃−1

𝑁 𝜏𝑒𝑘 ≤ ˜𝛿2.

That is, we can satisfy the conditions by taking 𝜏 and 𝜏𝜎 small enough,
˜𝛿 < 𝛿 large enough, given that

the prediction errors 𝜀
†
𝑘
have small sums compared to the radius 𝛿 > 0. However, large critical point

proximities 𝑟𝑘 and gradient errors 𝑒𝑘 and 𝑒𝑘 can be compensated for by small step lengths, as long as

their sums are bounded.

2.2 regret analysis

We now analyse the regret of Algorithm 1. The main work is with the local Assumption 2.5 for the

nonconvex function 𝐸𝑘 . Readers only interested in the global Assumption 2.3, or the general ideas,

may skip Lemmas 2.10 and 2.11.

We first verify the positive semi-definiteness of operators central to our analysis.

Lemma 2.9. Let 𝑁 ≥ 1 and suppose Assumption 2.1 holds for any 0 ≤ 𝑘 ≤ 𝑁 and 𝑢1:𝑁
generated by

Algorithm 1 for an initial 𝑢0 ∈ 𝑋0 × 𝑌0. Then the following statements hold:

(i) The operators Γ𝑘 , Γ̂𝑘 , Ω𝑘 , and Ω̂𝑘 are positive semi-definite.

(ii) If Assumption 2.3 holds, then𝑀𝑘 and𝑀𝑘 − Ω𝑘 are positive semi-definite.
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(iii) If Assumption 2.5 holds, then𝑀𝑘 and𝑀𝑘 − Ω𝑘 are positive semi-definite, as well as

(1 − 𝜅𝑘 )𝑀𝑘 ≥ Ω̄𝑘 , 𝜂𝑘 (𝑀𝑘 + Ω̄𝑘 ) ≥ diag

(
𝜃𝑘 Id, 0

)
, Γ̂𝑘 ≥ 2Γ𝑘 ,

(1 − 𝜅𝑘 )𝑀𝑘 ≥ Ω̂𝑘 , 𝜂𝑘 (𝑀𝑘 + Γ̄𝑘 ) ≥ diag

(
𝜃𝑘 Id, 0

)
for 𝜃𝑘 = 𝜑𝑘 (1 + 2𝜏𝑘 min{𝛾𝑘 + 𝛾𝐸,𝑘 , ¯𝜆𝐸,𝑘 } − 𝜏𝑘𝜎𝑘 ∥𝐾𝑘 ∥2) > 0 as in Assumption 2.6.

Proof. The positive semi-definiteness of Γ𝑘 , Γ̂𝑘 , Ω𝑘 , and Ω̂𝑘 follows from 𝛾𝑘 , 𝜌𝑘 , 𝜆𝐸,𝑘 , 𝛾𝐸,𝑘 , 𝛾𝐸,𝑘 ,
ˆ𝜆𝐸,𝑘 ≥ 0.

This establishes (i).

For (ii), using Assumption 2.3 and Young’s inequality, we have

𝜂𝑘 (𝑀𝑘 − Ω𝑘 ) = 𝜂𝑘
(
(𝜏−1

𝑘
− 𝜆𝐸,𝑘 ) Id −𝐾∗

𝑘

−𝐾𝑘 𝜎−1

𝑘
Id

)
≥ 𝜑𝑘

(
Id−𝜏𝑘𝜆𝐸,𝑘 − 𝜏𝑘𝜎𝑘𝐾∗

𝑘
𝐾𝑘 0

0 0

)
.

Thus, (2.6b) establishes the positive semi-definiteness of𝑀𝑘 and𝑀𝑘 − Ω𝑘 .

Finally, for (iii), using (2.7b) in Assumption 2.5, and Young’s inequality, we estimate

(1 − 𝜅𝑘 )𝑀𝑘 − Ω̄𝑘 = (1 − 𝜅𝑘 )
((
𝜏−1

𝑘
− 2

¯𝜆𝐸,𝑘
1−𝜅𝑘

)
Id −𝐾∗

𝑘

−𝐾𝑘
(
𝜎−1

𝑘
+ 2𝜌𝑘

1−𝜅𝑘
)

Id

)
≥ (1 − 𝜅𝑘 )

((
𝜏−1

𝑘
− 2

¯𝜆𝐸,𝑘
1−𝜅𝑘

)
Id−𝜎𝑘𝐾∗

𝑘
𝐾𝑘 0

0 0

)
≥ 0,

which also shows that𝑀𝑘 ≥ 0. Likewise, we show (1 − 𝜅𝑘 )𝑀𝑘 ≥ Ω̂𝑘 . Moreover,

𝜂𝑘 (𝑀𝑘 + Γ̄𝑘 ) = 𝜂𝑘
©­«
(
𝜏−1

𝑘
+ 2(𝛾𝑘 + 𝛾𝐸,𝑘 )

)
Id −𝐾∗

𝑘

−𝐾𝑘
(
𝜎−1

𝑘
+ 2𝜌𝑘

)
Id

ª®¬
≥ 𝜑𝑘

( (
1 + 2𝜏𝑘 (𝛾𝑘 + 𝛾𝐸,𝑘 )

)
Id−𝜏𝑘𝜎𝑘𝐾∗

𝑘
𝐾𝑘 0

0 0

)
≥

(
𝜃𝑘 Id 0

0 0

)
.

The claim regarding 𝜂𝑘 (𝑀𝑘 + Ω̄𝑘 ) follows by a similar argument, as does the positive semi-definiteness

of𝑀𝑘 − Ω𝑘 . Finally, Γ̂𝑘 − 2Γ𝑘 = diag

(
(𝛾𝐸,𝑘 −𝛾𝐸,𝑘 ) Id, 0

)
by the definitions of Γ𝑘 and Γ̂𝑘 . Since 𝛾𝐸,𝑘 ≥ 𝛾𝐸,𝑘

by Assumption 2.5 (ii), this proves Γ̂𝑘 ≥ 2Γ𝑘 . □

Lemma 2.9 justifies the norm notation ∥ · ∥𝑀 for𝑀 =𝑀𝑘 , 𝑀𝑘 + Γ𝑘 , 𝑀𝑘 − Ω𝑘 . Now, using the critical

point proximity Assumption 2.6 and the global Lipschitz-like bound of Assumption 2.5 (i), and assuming

sufficient proximity of the previous iterate 𝑢𝑘−1
to the corresponding time index of a comparison

sequence, the next “a priori” lemma shows that the current primal iterate 𝑥𝑘 is in the ball where the

local three-point inequalities of Assumption 2.5 (ii) hold. The “a posteriori” lemma that follows, will

then show that, in fact, 𝑥𝑘 is also in the proximity of a comparison sequence. An inductive argument

will then easily establish regret estimates as in the convex case [14].

Lemma 2.10 (A priori estimate). Let 𝑁 ≥ 1 and suppose Assumptions 2.1, 2.5 and 2.6 hold, and that 𝑢1:𝑁

and 𝑢̆1:𝑁
are generated by Algorithm 1 for an initial 𝑢0 ∈ 𝑋0 × 𝑌0. Further, let 𝑢

0:𝑁 ∈ U0:𝑁 and Δ > 0,

and for a 1 ≤ 𝑘 ≤ 𝑁 , suppose that

(2.10) ∥𝑢𝑘−1 − 𝑢𝑘−1∥2

𝜂𝑘−1 (𝑀𝑘−1+Γ𝑘−1 ) ≤
𝜃𝑘 (𝛿 − ˜𝛿)2

𝜉𝑘
− 1 + Δ

𝜉𝑘
𝜂𝑘𝑟

2

𝑘
− 2𝜀

†
𝑘

for the prediction error 𝜀
†
𝑘
= 𝜀

†
𝑘
(𝑢𝑘−1, 𝑢𝑘−1:𝑘 ) of (2.8), the constants 𝑐𝑘 , 𝜅𝑘 , 𝜃𝑘 , 𝜉𝑘 , 𝑟𝑘 , ˜𝛿 and radius 𝛿 > 0 of

Assumptions 2.5 and 2.6. Then there exists 𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘 ) ∈ 𝐻−1

𝑘
(0) with

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Γ̂𝑘
≤ (1 + Δ)𝑟 2

𝑘
,(2.11)
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as well as

∥𝑥𝑘 − 𝑥𝑘 ∥ < 𝛿, ∥𝑥𝑘 − 𝑥𝑘 ∥ < 𝛿, ∥𝑥𝑘 − 𝑥𝑘 ∥ < 𝛿, and ∥𝑥𝑘 − 𝑥𝑘 ∥ < 𝛿.(2.12)

Proof. By Assumption 2.6 (i), (2.11) holds for some 𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘 ) ∈ 𝐻−1

𝑘
(0). By the definition of 𝐻𝑘 , we

have 𝑞𝑘 := −∇𝐸𝑘 (𝑥𝑘 ) −𝐾∗
𝑘
𝑦𝑘 ∈ 𝜕𝐹𝑘 (𝑥𝑘 ) and 𝑝𝑘 := 𝐾𝑘𝑥

𝑘 ∈ 𝜕𝐺∗
𝑘
(𝑦𝑘 ). Now Cauchy-Schwartz inequality,

Young’s inequality and the (strong) monotonicity of 𝜕𝐹𝑘 and 𝜕𝐺∗
𝑘
together with the erroneous three-

point monotonicity-like property of 𝐸𝑘 and ∇̃𝐸𝑘 in Assumption 2.5 (i) yield

⟨𝐻𝑘 (𝑥𝑘 , 𝑦𝑘 ), 𝑢𝑘 − 𝑢𝑘⟩ = ⟨𝜕𝐹𝑘 (𝑥𝑘 ) − 𝑞𝑘 , 𝑥𝑘 − 𝑥𝑘⟩ + ⟨𝜕𝐺∗
𝑘
(𝑦𝑘 ) − 𝑝𝑘 , 𝑦𝑘 − 𝑦𝑘⟩

+ ⟨∇̃𝐸𝑘 (𝑥𝑘 ) − ∇𝐸𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩
+ ⟨𝐾∗

𝑘
(𝑦𝑘 − 𝑦𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩ − ⟨𝐾𝑘 (𝑥𝑘 − 𝑥𝑘 ), 𝑦𝑘 − 𝑦𝑘⟩

≥ (𝛾𝑘 + 𝛾𝐸,𝑘 )∥𝑥𝑘 − 𝑥𝑘 ∥2 + 𝜌𝑘 ∥𝑦𝑘 − 𝑦𝑘 ∥2 − ¯𝜆𝐸,𝑘 ∥𝑥𝑘 − 𝑥𝑘 ∥2 − 𝑒𝑘

=
1

2

⟦𝑢𝑘 − 𝑢𝑘⟧2

Γ̄𝑘
− 1

2

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

Ω̄𝑘
− 𝑒𝑘 .

Applying here (2.4) and the Pythagoras’ identity

⟨𝑢𝑘 − 𝑢̆𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘
=

1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝑀𝑘
+ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘
− 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝑀𝑘
,

we get

1

2

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Ω̄𝑘
≥ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Γ̄𝑘
+ 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝑀𝑘
− 𝑒𝑘 .(2.13)

The operators𝑀𝑘 ,𝑀𝑘 + Γ̄𝑘 , and𝑀𝑘 + Ω̄𝑘 are positive semi-definite by Lemma 2.9.

Since 𝜉𝑘 > 0 by Assumption 2.6 (ii), Young’s inequality gives

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Ω̄𝑘
≤ (1 + 𝜉𝑘 )∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Ω̄𝑘
+ (1 + 𝜉−1

𝑘
)∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Ω̄𝑘
.

By Lemma 2.9,𝑀𝑘 + Ω̄𝑘 ≤ (2 − 𝜅𝑘 )𝑀𝑘 . By the definition of the prediction errors in (2.8)

1

2

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝜂𝑘𝑀𝑘
≤ 1

2

∥𝑢𝑘−1 − 𝑢𝑘−1∥2

𝜂𝑘−1 (𝑀𝑘−1+Γ𝑘−1 ) + 𝜀
†
𝑘

Using the above inequalities and Γ𝑘 ≥ 0 from Lemma 2.9, we thus obtain

1

2

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (𝑀𝑘+Ω̄𝑘 )
≤ (2 − 𝜅𝑘 ) (1 + 𝜉𝑘 )

2

(
∥𝑢𝑘−1 − 𝑢𝑘−1∥2

𝜂𝑘−1 (𝑀𝑘−1+Γ𝑘−1 ) + 2𝜀
†
𝑘
+ 𝜉−1

𝑘
∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘𝑀𝑘

)
.

We multiply (2.13) by 𝜂𝑘 and use it on the left hand side. Then we use (2.10) and (2.11) on the right hand

side. This yields

1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (𝑀𝑘+Γ̄𝑘 )
+ 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝜂𝑘𝑀𝑘
≤ 1

2

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (𝑀𝑘+Ω̄𝑘 )
≤ 1

2

𝛼𝑘𝜃𝑘(2.14)

for 𝛼𝑘 := (2 − 𝜅𝑘 ) (𝜉−1

𝑘
+ 1) (𝛿 − ˜𝛿)2 + 2𝜃−1

𝑘
𝜂𝑘𝑒𝑘 . By Assumption 2.6 (ii), we have 𝛼𝑘 ≤ ˜𝛿2 < 𝛿2

. Thus

Lemma 2.9 and (2.14) show

𝛿2𝜃𝑘 ≥ 𝛼𝑘𝜃𝑘 ≥ ∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (𝑀𝑘+Ω̄𝑘 )
≥ 𝜃𝑘 ∥𝑥𝑘 − 𝑥𝑘 ∥2

as well as(2.15)

𝛿2𝜃𝑘 ≥ 𝛼𝑘𝜃𝑘 ≥ ∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (𝑀𝑘+Γ̄𝑘 )
≥ 𝜃𝑘 ∥𝑥𝑘 − 𝑥𝑘 ∥2.

This shows the first and second parts of of (2.12).
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By Lemma 2.9 and (2.10), we have ∥𝑢∥2

𝜂𝑘𝑀𝑘
≥ 𝜃𝑘 ∥𝑥 ∥2

, Γ̂𝑘 ≥ 0, and 𝜂𝑘𝑟
2

𝑘
< (1 + Δ)𝜂𝑘𝑟 2

𝑘
< 𝜃𝑘 (𝛿 − ˜𝛿)2

.

Thus using Assumption 2.5 (i), we establish

𝜃𝑘 ∥𝑥𝑘 − 𝑥𝑘 ∥2 ≤ ∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘𝑀𝑘
≤ ∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (𝑀𝑘+Γ̂𝑘 )
≤ 𝜂𝑘𝑟 2

𝑘
< 𝜃𝑘 (𝛿 − ˜𝛿)2.

Hence ∥𝑥𝑘 − 𝑥𝑘 ∥ ≤ 𝛿 − ˜𝛿 . By Assumption 2.6 (ii), 𝛼𝑘 < ˜𝛿2
. Minding (2.15), it follows that

∥𝑥𝑘 − 𝑥𝑘 ∥ ≤ ∥𝑥𝑘 − 𝑥𝑘 ∥ + ∥𝑥𝑘 − 𝑥𝑘 ∥ ≤ √
𝛼𝑘 + 𝛿 − ˜𝛿 < 𝛿,

and completely analogously ∥𝑥𝑘 − 𝑥𝑘 ∥ < 𝛿 , proving last two inequalities of (2.12). □

Now that we know that the curent primal iterate belongs to a ball where the estimates of Assump-

tion 2.5 (ii) hold, we can continue with the aforementioned a posteriori estimate.

Lemma 2.11 (A posteriori estimate). Let 𝑁 ≥ 1 and suppose Assumptions 2.1, 2.5 and 2.6 hold,𝑢0:𝑁 ∈ U0:𝑁 .

Let 𝑢1:𝑁
and 𝑢̆1:𝑁

be generated by Algorithm 1 for an initial 𝑢0 ∈ 𝑋0 × 𝑌0 satisfying for 𝑑𝑁 given in

Assumption 2.6 the local initialisation condition

(2.16)

1

2

∥𝑢0 − 𝑢0∥2

𝜂0 (𝑀0+Γ0 ) ≤ 𝑑𝑁 (𝑢0:𝑁 ).

Then for all 1 ≤ 𝑛 ≤ 𝑁 , the three-point smoothness and growth inequality

(2.17) 𝐸𝑛 (𝑥𝑛) − 𝐸𝑛 (𝑥𝑛) +
𝛾𝐸,𝑘

2

∥𝑥𝑛 − 𝑥𝑛 ∥2 −
𝜆𝐸,𝑘

2

∥𝑥𝑛 − 𝑥𝑛 ∥2 ≤ ⟨∇̃𝐸𝑛 (𝑥𝑛), 𝑥𝑛 − 𝑥𝑛⟩ + 𝑒𝑘

holds, as does the tracking inequality

(2.18)

1

2

∥𝑢𝑛 − 𝑢𝑛 ∥2

𝜂𝑛 (𝑀𝑛+Γ𝑛 ) <
1

2

∥𝑢0 − 𝑢0∥2

𝜂0 (𝑀0+Γ0 ) +
𝑛∑︁
𝑘=1

(
𝜀
†
𝑘
+ 1

𝜅𝑘
𝑟 2

𝑘

)
.

Proof. The estimate (2.17) follows directly from Assumption 2.5 if we show that the iterates and

predictions 𝑥𝑘 , 𝑥𝑘 ∈ 𝐵(𝑥𝑘 , 𝛿). This follows from Lemma 2.10, if we prove its assumptions, i.e., (2.10) for

all 1 ≤ 𝑘 ≤ 𝑁 . We do this by induction, and in the course of it, also prove (2.18). That is, we prove by

induction, for all 1 ≤ 𝑛 ≤ 𝑁 that

(2.19)

1

2

∥𝑢𝑘−1 − 𝑢𝑘−1∥2

𝜂𝑘−1 (𝑀𝑘−1+Γ𝑘−1 ) ≤
𝜃𝑘 (𝛿 − ˜𝛿)2

𝜉𝑘
− 1 + Δ

𝜉𝑘
𝜂𝑘𝑟

2

𝑘
− 2𝜀

†
𝑘

for all 1 ≤ 𝑘 ≤ 𝑛.

The inductive basis, i.e., (2.19) for for 𝑛 = 1, follows directly from (2.16) and the definition of 𝑑𝑁 in

Assumption 2.6. For the inductive step, suppose that (2.19) holds for some 1 ≤ 𝑛 < 𝑁 . We will prove

that the same holds for 𝑛 + 1. Towards this end, let 𝑘 = 1, . . . , 𝑛 be arbitrary. The inductive assumption

(2.19) directly proves the assumption (2.10) of Lemma 2.10 up to 𝑘 = 𝑛. By the lemma, 𝑥𝑘 , 𝑥𝑘 ∈ 𝐵(𝑥𝑘 , 𝛿)
for some 𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘 ) ∈ 𝐻−1

𝑘
(0), so the latter inequality of Assumption 2.5 (ii) gives

⟨∇̃𝐸𝑘 (𝑥𝑘 ) − ∇𝐸𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩ ≥ 𝛾𝐸,𝑘 ∥𝑥𝑘 − 𝑥𝑘 ∥2 − ˆ𝜆𝐸,𝑘 ∥𝑥𝑘 − 𝑥𝑘 ∥2 − 𝑒𝑘 .

Recall the expression for 𝐻𝑘 from (2.5) and 𝐻𝑘 from (2.3). Since 0 ∈ 𝐻𝑘 (𝑥𝑘 , 𝑦𝑘 ), we have 𝑞𝑘 :=

−∇𝐸𝑘 (𝑥𝑘 ) − 𝐾∗
𝑘
𝑦𝑘 ∈ 𝜕𝐹𝑘 (𝑥𝑘 ) and 𝑝𝑘 := 𝐾𝑘𝑥

𝑘 ∈ 𝜕𝐺∗
𝑘
(𝑦𝑘 ). These together with the above three-point

inequality and the (strong) monotonicity of 𝜕𝐹𝑘 and 𝜕𝐺∗
𝑘
yield

(2.20) ⟨𝐻𝑘 (𝑥𝑘 , 𝑦𝑘 ), 𝑢𝑘 − 𝑢𝑘⟩ = ⟨𝜕𝐹𝑘 (𝑥𝑘 ) − 𝑞𝑘 , 𝑥𝑘 − 𝑥𝑘⟩ + ⟨∇̃𝐸𝑘 (𝑥𝑘 ) − ∇𝐸𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩
+ ⟨𝜕𝐺∗

𝑘
(𝑦𝑘 ) − 𝑝𝑘 , 𝑦𝑘 − 𝑦𝑘⟩

+ ⟨𝐾∗
𝑘
(𝑦𝑘 − 𝑦𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩ − ⟨𝐾𝑘 (𝑥𝑘 − 𝑥𝑘 ), 𝑦𝑘 − 𝑦𝑘⟩

≥
(
𝛾𝑘 + 𝛾𝐸,𝑘

)
∥𝑥𝑘 − 𝑥𝑘 ∥2 + 𝜌𝑘 ∥𝑦𝑘 − 𝑦𝑘 ∥2 − ˆ𝜆𝐸,𝑘 ∥𝑥𝑘 − 𝑥𝑘 ∥2 − 𝑒𝑘

=
1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

Γ̂𝑘
− 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

Ω̂𝑘
− 𝑒𝑘 .
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Applying the linear “testing operator” ⟨ · , 𝑢𝑘 − 𝑢𝑘⟩ to both sides of (2.4) then yields

0 ≥ ⟨𝑢𝑘 − 𝑢̆𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘
+ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

Γ̂𝑘
− 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

Ω̂𝑘
− 𝑒𝑘 .

Since𝑀𝑘 is positive semi-definite by Lemma 2.9, as are𝑀𝑘+ Γ̂𝑘 and𝑀𝑘− Ω̂𝑘 , they all induce semi-norms.

Similarly to the proof of Lemma 2.10, the Pythagoras’ identity yields

1

2

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝑀𝑘
≥ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Γ̂𝑘
+ 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝑀𝑘−Ω̂𝑘
− 𝑒𝑘

Using here the Pythagoras’ identitities

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Γ̂𝑘
= ∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Γ̂𝑘
+ ∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Γ̂𝑘
+ 2⟨𝑢𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘+Γ̂𝑘 and

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝑀𝑘
= ∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝑀𝑘
+ ∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘
+ 2⟨𝑢̆𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘

,

we obtain

1

2

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝑀𝑘
+ ⟨𝑢̆𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘

+ 𝑒𝑘

≥ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝑀𝑘+Γ̂𝑘
+ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

Γ̂𝑘
+ 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝑀𝑘−Ω̂𝑘
+ ⟨𝑢𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘+Γ̂𝑘 .

Splitting ⟨𝑢̆𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘
− ⟨𝑢𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘

= ⟨𝑢̆𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘
, multiplying by 𝜂𝑘 , using

the definition (2.8) of the prediction errors, and rearranging, we obtain

(2.21)

1

2

∥𝑢𝑘−1 − 𝑢𝑘−1∥2

𝜂𝑘−1 (𝑀𝑘−1+Γ𝑘−1 ) + (𝜀†
𝑘
+ 𝜂𝑘𝑒𝑘 ) + ⟨𝑢̆𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝜂𝑘𝑀𝑘

≥ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (𝑀𝑘+Γ̂𝑘 )
+ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 Γ̂𝑘
+ 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝜂𝑘 (𝑀𝑘−Ω̂𝑘 )
+ ⟨𝑢𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝜂𝑘 Γ̂𝑘 .

Summing both sides of (2.21) over 𝑘 = 1, . . . , 𝑛, telescoping, and rearranging gives

1

2

∥𝑢0 − 𝑢0∥2

𝜂0 (𝑀0+Γ0 ) +
𝑛∑︁
𝑘=1

(
(𝜀†
𝑘
+ 𝜂𝑘𝑒𝑘 ) +𝐴𝑘

)
≥ 1

2

∥𝑢𝑛 − 𝑢𝑛 ∥2

𝜂𝑛 (𝑀𝑛+Γ̂𝑛 )
,(2.22)

for

𝐴𝑘 := ⟨𝑢̆𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝜂𝑘𝑀𝑘
− ⟨𝑢𝑘 − 𝑢𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝜂𝑘 Γ̂𝑘

− 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 Γ̂𝑘
− 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (Γ̂𝑘−Γ𝑘 )
− 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝜂𝑘 (𝑀𝑘−Ω̂𝑘 )
,

where we used the notation ∥ · ∥ Γ̂𝑘−Γ𝑘 since Lemma 2.9 guarantees Γ̂𝑘 ≥ Γ𝑘 + Γ̂𝑘/2 ≥ Γ𝑘 and both

operators are by definition self-adjoint. Using the first of these inequalities,𝑀𝑘 − Ω̂𝑘 ≥ 𝜅𝑘𝑀𝑘 (which

also holds by Lemma 2.9), and 0 < 𝜅𝑘 < 1, applying of Young’s inequality twice, and rearranging, gives

𝐴𝑘 ≤ 𝜅𝑘

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝜂𝑘𝑀𝑘
+ 1

2𝜅𝑘
∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘𝑀𝑘
+ 1

4

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 Γ̂𝑘
+ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 Γ̂𝑘

− 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (Γ̂𝑘−Γ𝑘 )
− 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝜂𝑘 (𝑀𝑘−Ω̂𝑘 )

≤ 1

2𝜅𝑘
∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (𝑀𝑘+Γ̂𝑘 )
≤ 1 + Δ

2𝜅𝑘
𝜂𝑘𝑟

2

𝑘
.

In the final step we have used (2.11) from Lemma 2.10. Inserting this result in (2.22) and using Γ𝑁 ≤ Γ̂𝑁
from Lemma 2.9, we obtain

1

2

∥𝑢𝑛 − 𝑢𝑛 ∥2

𝜂𝑛 (𝑀𝑛+Γ𝑛 ) ≤
1

2

∥𝑢0 − 𝑢0∥2

𝜂0 (𝑀0+Γ0 ) +
𝑛∑︁
𝑘=1

(
𝜀
†
𝑘
+ 𝜂𝑘𝑒𝑘 +

1 + Δ

2𝜅𝑘
𝜂𝑘𝑟

2

𝑘

)
.
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Since Δ < 1, this directly proves the tracking estimate (2.18). Using the assumed (2.16), with the

definition of 𝑑𝑁 from Assumption 2.6, we also obtain (2.19) for 𝑘 = 𝑛 + 1, finishing the induction step.

As mentioned in the beginning of the proof, it now follows from Lemma 2.10 that 𝑥𝑘 , 𝑥𝑘 ∈ 𝐵(𝑥𝑘 , 𝛿) for
all 1 ≤ 𝑘 ≤ 𝑁 , so that (2.17) follows from Assumption 2.5 (ii). □

With this, we are now ready to show the main theorems. For brevity, we define the initialisation

and cumulative prediction and gradient error

𝑒Σ𝑁 (𝑢0:𝑁−1, 𝑢0:𝑁 ) :=

𝑁−1∑︁
𝑘=0

(
𝜀
†
𝑘+1

(𝑢𝑘 , 𝑢𝑘 :𝑘+1) + 𝜂𝑘+1𝑒𝑘+1

)
(2.23)

and the Lagrangian duality gap

G𝐻
𝑘
(𝑢,𝑢) :=

(
[𝐹𝑘 + 𝐸𝑘 ] (𝑥) + ⟨𝐾𝑘𝑥, 𝑦⟩ −𝐺∗

𝑘
(𝑦)

)
−

(
[𝐹𝑘 + 𝐸𝑘 ] (𝑥) + ⟨𝐾∗

𝑘
𝑦, 𝑥⟩ −𝐺∗

𝑘
(𝑦)

)
.

The next theorem shows that the sum of the Lagrangian duality gaps is bounded by the initialisation

and the cumulative prediction error.

Theorem 2.12. Let 𝑁 ≥ 1 and suppose Assumption 2.1 holds for 𝑢1:𝑁
generated by Algorithm 1 for an initial

𝑢0 ∈ 𝑋0 × 𝑌0. Let 𝑢
0:𝑁 ∈ U0:𝑁

, and suppose that either

(i) The global Assumption 2.3 holds, or

(ii) The local Assumptions 2.5 and 2.6 hold, and, for 𝑑𝑁 given in Assumption 2.6, we have the local

initialisation bound

(2.24)

1

2

∥𝑢0 − 𝑢0∥2

𝜂0 (𝑀0+Γ0 ) ≤ 𝑑𝑁 (𝑢0:𝑁 ) .

Then𝑀𝑘 + Γ𝑘 and𝑀𝑘 − Ω𝑘 are positive semi-definite and with 𝑢̆𝑘 := 𝑃𝑘 (𝑢𝑘−1),

𝑁∑︁
𝑘=1

(
G𝐻
𝑘
(𝑢𝑘 , 𝑢𝑘 ) + 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝜂𝑘 (𝑀𝑘−Ω𝑘 )

)
≤ 1

2

∥𝑢0 − 𝑢0∥2

𝜂0 (𝑀0+Γ0 ) + 𝑒
Σ
𝑁 (𝑢0:𝑁−1, 𝑢0:𝑁 ) .

Proof. Lemma 2.9 proves the positive semi-definiteness of 𝜂𝑘𝑀𝑘 and 𝜂𝑘 (𝑀𝑘 − Ω𝑘 ). Consequently, also
𝜂𝑘𝑀𝑘 + Γ𝑘 is positive semi-definite.

Fix, for now, 𝑘 ∈ {1, . . . , 𝑁 − 1}. Recall the expression for 𝐻𝑘 from (2.5). In the case (ii), conditions of

Lemma 2.11 hold, so we have that

(2.25) ⟨∇̃𝐸𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩ ≥ 𝐸𝑘 (𝑥𝑘 ) − 𝐸𝑘 (𝑥𝑘 ) −
𝜆𝐸,𝑘

2

∥𝑥𝑘 − 𝑥𝑘 ∥2 +
𝛾𝐸,𝑘

2

∥𝑥𝑘 − 𝑥𝑘 ∥2 − 𝑒𝑘 ,

whenever 𝑥𝑘 is a component of 𝑢1:𝑁 = ((𝑥 1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 )) ∈ U1:𝑁 . The (strong) convexity of 𝐹𝑘
and 𝐺∗

𝑘
with (2.25) yield

⟨𝐻𝑘 (𝑥𝑘 , 𝑦𝑘 ), 𝑢𝑘 − 𝑢𝑘⟩ = ⟨𝜕𝐹𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩ + ⟨∇̃𝐸𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩
+ ⟨𝜕𝐺∗

𝑘
(𝑦𝑘 ), 𝑦𝑘 − 𝑦𝑘⟩ + ⟨𝐾∗

𝑘
𝑦𝑘 , 𝑥𝑘 − 𝑥𝑘⟩ − ⟨𝐾𝑘𝑥𝑘 , 𝑦𝑘 − 𝑦𝑘⟩

≥
(
𝐹𝑘 (𝑥𝑘 ) − 𝐹𝑘 (𝑥𝑘 ) +

𝛾𝑘 + 𝛾𝐸,𝑘
2

∥𝑥𝑘 − 𝑥𝑘 ∥2

)
+

(
𝐸𝑘 (𝑥𝑘 ) − 𝐸𝑘 (𝑥𝑘 ) −

𝜆𝐸,𝑘

2

∥𝑥𝑘 − 𝑥𝑘 ∥2

)
+

(
𝐺∗
𝑘
(𝑦𝑘 ) −𝐺∗

𝑘
(𝑦𝑘 ) + 𝜌𝑘

2

∥𝑦𝑘 − 𝑦𝑘 ∥2

)
− ⟨𝐾∗

𝑘
𝑦𝑘 , 𝑥𝑘⟩ + ⟨𝐾𝑘𝑥𝑘 , 𝑦𝑘⟩ − 𝑒𝑘

=
1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

Γ𝑘
+ G𝐻

𝑘
(𝑥𝑘 , 𝑢𝑘 ) − 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

Ω𝑘
− 𝑒𝑘 .

(2.26)

The case (i) assumes (2.25) directly, thus (2.26) holds globally.
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In both cases, for all 𝑘 = 1, . . . , 𝑁 , we apply the linear “testing operator” ⟨ · , 𝑢𝑘 −𝑢𝑘⟩ to both sides of

(2.4). This followed by (2.26) yields

𝑒𝑘 ≥ ⟨𝑢𝑘 − 𝑢̆𝑘 , 𝑢𝑘 − 𝑢𝑘⟩𝑀𝑘
+ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

Γ𝑘
+ G𝐻

𝑘
(𝑢𝑘 , 𝑢𝑘 ) − 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

Ω𝑘
.

Multiplying this by 𝜂𝑘 , using the Pythagoras’ identity to convert the inner product into norms, then

continuing with the definition (2.8) of the prediction errors, we obtain

1

2

∥𝑢𝑘−1 − 𝑢𝑘−1∥2

𝜂𝑘−1 (𝑀𝑘−1+Γ𝑘−1 ) + 𝜀
†
𝑘
(𝑢𝑘−1:𝑘 ) + 𝜂𝑘𝑒𝑘 ≥ 1

2

∥𝑢̆𝑘 − 𝑢𝑘 ∥2

𝜂𝑘𝑀𝑘
+ 𝜂𝑘𝑒𝑘

≥ 1

2

∥𝑢𝑘 − 𝑢𝑘 ∥2

𝜂𝑘 (𝑀𝑘+Γ𝑘 ) + 𝜂𝑘G
𝐻
𝑘
(𝑢𝑘 , 𝑢𝑘 ) + 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝜂𝑘 (𝑀𝑘−Ω𝑘 ) .

Summing over 𝑘 = 1, . . . , 𝑁 gives

1

2

∥𝑢0 − 𝑢0∥2

𝜂0 (𝑀0+Γ0 ) + 𝑒
Σ
𝑁 (𝑢0:𝑁−1, 𝑢0:𝑁 ) ≥ 1

2

∥𝑢𝑁 − 𝑢𝑁 ∥2

𝜂𝑁 (𝑀𝑁 +Γ𝑁 )

+
𝑁∑︁
𝑘=1

(
𝜂𝑘G𝐻

𝑘
(𝑢𝑘 , 𝑢𝑘 ) + 1

2

∥𝑢𝑘 − 𝑢̆𝑘 ∥2

𝜂𝑘 (𝑀𝑘−Ω𝑘 )

)
.

Since
1

2
∥𝑢𝑁 − 𝑢𝑁 ∥2

𝜂𝑁𝑀𝑁 +Γ𝑁 ≥ 0, the claim follows. □

The next corollary derives function value estimates from the preceding gap estimates. Its proof is

exactly as the proof of [14, Theorem 2.6]. The estimates are with respect to

𝐺1:𝑁 (𝑧1:𝑁 ) :=

𝑁∑︁
𝑘=1

sup

𝑦̃𝑘 ∈Y𝑘

[
⟨𝑧𝑘 , 𝑦̃1:𝑁 ⟩ − 𝜂𝑘𝐺∗

𝑘
(𝑦̃𝑘 )

]
in place of 𝐺1:𝑁 (𝑦1:𝑁 ) :=

𝑁∑︁
𝑘=1

𝜂𝑘𝐺𝑘 (𝑦𝑘 ),

We also denote

𝑄1:𝑁 (𝑥 1:𝑁 ) :=

𝑁∑︁
𝑘=1

𝜂𝑘 [𝐹𝑘 + 𝐸𝑘 ] (𝑥𝑘 ), 𝐾1:𝑁𝑥
1:𝑁

:= (𝜂1𝐾1𝑥
1, . . . , 𝜂𝑁𝐾𝑁𝑥

𝑁 ).

If the dual comparison sets Y1:𝑁 were convex, then, recalling the formula (𝑓1 + 𝑓2)∗ = 𝑓 ∗
1
□ 𝑓 ∗

2
for

infimal convolutions (denoted □) of convex functions 𝑓1 and 𝑓2, we would have
˚𝐺1:𝑁 = 𝐺1:𝑁 □𝛿∗Y1:𝑁

.

In general,
˚𝐺1:𝑁 ≤ 𝐺1:𝑁 □𝛿∗Y1:𝑁

. That is,
˚𝐺1:𝑁 is a “sub-infimal” convolution of 𝐺1:𝑁 and the temporal

coupling. As𝐺𝑘 ◦𝐾𝑘 is typically a total variation type regularisation functional, ˚𝐺1:𝑁 ◦𝐾1:𝑁 becomes a

spatiotemporal regulariser with aspects of spatial total variation, and the temporal properties of the

problem at hand.

Corollary 2.13. Suppose that the assumptions of Theorem 2.12 hold, with the initialisation bound (2.24) for

all 𝑢0:𝑁 ∈ U0:𝑁
in the local convergence case (ii). Then

[𝑄1:𝑁 (𝑥 1:𝑁 ) + ˚𝐺1:𝑁 (𝐾1:𝑁𝑥
1:𝑁 )] − sup

𝑥 1:𝑁 ∈X1:𝑁

[𝑄1:𝑁 (𝑥 1:𝑁 ) + ˚𝐺1:𝑁 (𝐾1:𝑁𝑥
1:𝑁 )]

≤ sup

𝑢0:𝑁 ∈U0:𝑁

(
1

2

∥𝑢0 − 𝑢0∥2

𝜂0𝑀0+Γ0

+ 𝑐𝑁 (𝑥 1:𝑁 , 𝑦1:𝑁 ) + 𝑒Σ𝑁 (𝑢0:𝑁−1, 𝑢0:𝑁 )
)
,

where 𝑒Σ
𝑁
(𝑢0:𝑁−1, 𝑢0:𝑁 ) is given by (2.23), and the comparison set solution discrepancy

𝑐𝑁 (𝑥 1:𝑁 , 𝑦1:𝑁 ) := inf

𝑦̃1:𝑁 ∈Y1:𝑁

⟨𝐾1:𝑁𝑥
1:𝑁 , 𝑦1:𝑁 − 𝑦̃1:𝑁 ⟩ +𝐺∗

1:𝑁 (𝑦̃1:𝑁 ) −𝐺∗
1:𝑁 (𝑦1:𝑁 ) .
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Proof. The claim follows from Theorem 2.12, by the exact same proof as that of [14, Theorem 2.6], with

𝑒Σ
𝑁
(𝑢0:𝑁−1, 𝑢0:𝑁 ) in place of 𝑒𝑁 (𝑢0:𝑁−1, 𝑢0:𝑁 ) of the latter. □

Remark 2.14 (Comparison set solution discrepancy). According to [14, Remark 2.7 and Section 3], 𝑐𝑁 ≤ 0

when𝐺𝑘 ◦𝐾𝑘 = 𝛼 ∥∇ · ∥2,1 is the total variation, the dual initialisation achieves the total variation (i.e.,

⟨𝑦0, 𝑥0⟩ = 𝛼 ∥∇𝑥0∥2,1 with ∥𝑦0∥2,∞ ≤ 𝛼), and the dual predictor is total variation preserving. Examples

of total variation preserving predictors are provided in [14].

3 the online eit problem

We now treat the online EIT problem, which we describe in Section 3.1. To apply Theorem 3.6, we

need to prove the smoothness inequalities of Assumptions 2.3 and 2.5. Based on auxiliary results from

Appendix a, we do this in Section 3.3 after first proving the necessary second-order differentiability of

the CEM solution operator in Section 3.2.

3.1 problem description

To model the dynamic EIT problem as the optimisation problem (2.1), we now take

(3.1) 𝐸𝑘 (𝑥) :=
1

2

𝑁2∑︁
𝑗=1

∥Σ−1/2(𝐼 (𝑥,𝑈 𝑗,𝑘 ) −ℐ
𝑗,𝑘 )∥2

2
,

𝐹𝑘 (𝑥) := 𝛿 [𝑥𝑚,𝑥𝑀 ] (𝑥), and 𝐺𝑘 (𝐾𝑘𝑥) := 𝛼 ∥𝑥 ∥2,1,

where Σ−1/2 ∈ ℝ(𝑁1−1)×(𝑁1−1)
is a data precision matrix, modelling noise characteristics, and 𝛼 > 0

is the regularisation parameter. The conductivity 𝑥 is bounded between 0 < 𝑥𝑚 < 𝑥𝑀 . The term

ℐ
𝑗,𝑘 ∈ ℝ𝑁1

is a vector of measurements corresponding to the electrode potentials𝑈 𝑗,𝑘 ∈ ℝ𝑁1
at time

instance 𝑘 . The currents 𝐼
𝑗,𝑘

𝑖
:= 𝐼𝑖 (𝑥,𝑈 𝑗,𝑘 ) for 𝑖 = 1, . . . , 𝑁1 are obtained by solving (𝑢 𝑗,𝑘 , 𝐼1, . . . , 𝐼𝑁1

)
from weak versions of the Complete Eletrode Model (CEM) equations

∇𝜉 · (𝑥𝑘 (𝜉)∇𝜉𝑢
𝑗,𝑘 (𝜉)) = 0 for 𝜉 ∈ Ω,(3.2a)

𝑢 𝑗,𝑘 (𝜉) + 𝜁𝑖𝑥𝑘 (𝜉)∇𝜉𝑢
𝑗,𝑘 (𝜉) · 𝜈 (𝜉) =𝑈 𝑗,𝑘

𝑖
for 𝜉 ∈ 𝜕Ω𝑒𝑖 , 𝑖 = 1, . . . , 𝑁1,(3.2b)

𝑥𝑘 (𝜉)∇𝜉𝑢
𝑗,𝑘 (𝜉) · 𝜈 (𝜉) = 0 for 𝜉 ∈ 𝜕Ω \ (𝜕Ω𝑒1

∪ . . . ∪ 𝜕Ω𝑒𝑁
1

),(3.2c) ∫
𝜕Ω𝑒𝑖

𝑥𝑘 (𝜉)∇𝜉𝑢
𝑗,𝑘 (𝜉) · 𝜈 (𝜉) d𝑠 = −𝐼 𝑗,𝑘

𝑖
for 𝑖 = 1, . . . , 𝑁1,(3.2d)

where𝑢 𝑗,𝑘
is the inner potential and 𝜁𝑖 is the contact impedance between the electrode 𝑖 and the medium

inside the domain Ω ⊂ ℝ𝑑
. We focus on this “potential-to-current” model, as it aligns with state-of-

the-art EIT measurement devices [23]. This model was originally introduced in [43], and subsequently

used in e.g. [44, 24, 23]. The conventional “current-to-potential” model solves the potentials given the

electric currents.

We assume that 𝑥 ∈ 𝐿∞(Ω) for a bounded Lipschitz domain
1 Ω ⊂ ℝ𝑛

. Given the discretisation of

𝑥 in the numerical experiments of Section 4, the results of this section remain compatible with the

theory of Section 2. For a given 𝑥 , we write

𝑤𝑥 = (𝑣𝑥 ,𝑉𝑥 ) ∈ H := 𝐻 1(Ω) ⊕ ℝ𝑁1
(3.3)

1
The domain Ω is unrelated to the operator Ω̄𝑘 of Section 2.
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for the electrical potential and electrode currents (𝑢, 𝐼 ) that solve (3.2) weakly, i.e.,

𝐵𝑥 (𝑤𝑥 ,𝑤) = 𝐿(𝑤) for all 𝑤 = (𝑣,𝑉 ) ∈ H .(3.4)

where the bilinear form 𝐵𝑥 reads

𝐵𝑥 (𝑤𝑥 ,𝑤) =
∫
Ω
𝑥∇𝜉𝑣𝑥 · ∇𝜉𝑣 d𝜉 +

𝑁1∑︁
𝑖=1

1

𝜁𝑖

∫
𝜕Ω𝑒𝑖

𝑣𝑥 (𝑣 −𝑉𝑖) d𝑠 +
𝑁1∑︁
𝑖=1

(𝑉𝑥 )𝑖𝑉𝑖 ,

and the linear form 𝐿 is

𝐿(𝑤) =
𝑁1∑︁
𝑖=1

1

𝜁𝑖

∫
𝜕Ω𝑒𝑖

𝑈𝑖 (𝑣 −𝑉𝑖) d𝑠 .

We equipH with the norm

∥𝑤 ∥2

H := ∥𝑣 ∥2

𝐻 1
+ ∥𝑉 ∥2

2
for 𝑤 ∈ H .(3.5)

3.2 differentiability of the eit solution operator

The problem (3.4) is well-posed [38]: see the “potential-to-current” model in [25]. The first order

differentiability of the reversed “current-to-potential” model has, moreover, been extensively discussed

in earlier works, e.g., [28, 13]. We will prove the first order differentiability of the solution operator

of the potential-to-current model. This, to our knowledge, has not been previously proven. We then

show the Lipschitz boundedness of this derivative and use it to prove second order differentiability in

𝐿∞. This has only been shown in the finite dimensional case for the current-to-potential model.

For notational clarity, we write 𝑤 ′
𝑥, · , i.e., ℎ ↦→ 𝑤 ′

𝑥,ℎ
for the (Fréchet) derivative of 𝑥 ↦→ 𝑤𝑥 at

𝑥 ∈ 𝐿∞(Ω), when it exists. The notation for 𝑣𝑥 is analogous. Thus,ℎ ↦→ 𝑤 ′
𝑥,ℎ

∈ 𝕃(𝐿∞(Ω);H). Likewise,
𝑤 ′′
𝑥, · , · , i.e., (ℎ1, ℎ2) ↦→ 𝑤 ′′

𝑥,ℎ1,ℎ2

is the second (Fréchet) derivative of 𝑥 ↦→ 𝑤𝑥 at 𝑥 , when it exists. For

clarity, we write ∇𝜉𝑤𝑥 for the weak gradient of𝑤𝑥 , and ∇𝜉𝑤
′
𝑥,ℎ

for ∇𝜉 [𝜉 ↦→ 𝑤 ′
𝑥,ℎ

(𝜉)], i.e., ∇𝜉 is always

a (spatial) gradient with respect to 𝜉 ∈ Ω. Given 𝑥 ∈ [𝑥𝑚, 𝑥𝑀 ], a.e., and that the domain Ω is Lipschitz,

the solutions𝑤𝑥 : 𝑋 → H are continuous in 𝐿𝑝 for any 𝑝 ≥ 1 [26, Remark 2.8]. Moreover, under the

domain scaling condition 𝜁 −1

𝑘
|𝜕Ω𝑒𝑘 | ≤ 1, we have

𝐶1𝐵𝑥 (𝑤,𝑤) ≥ ∥𝑤 ∥2

H for all 𝑤 ∈ H and(3.6)

∥𝑤𝑥 ∥H ≤ 𝐶2∥𝑈 ∥2 for any 𝑥 ∈ [𝑥𝑚, 𝑥𝑀 ] .(3.7)

For solutions𝑤𝑥 ∈ H to (3.4), the scaling condition 𝜁 −1

𝑘
|𝜕Ω𝑒𝑘 | ≤ 1 can be removed (see [26, Lemma 2.6

and Theorem 2.7]), and the coefficients then have values

𝐶1 = 2𝐶Ω (Λmin{1, 𝑥𝑚})−1
and 𝐶2 =

√
2𝐶1 for 𝐶Ω = (𝜁𝑚/𝑒𝑀 )− 𝑁 −2

𝑁 −1

with 𝜁𝑚 = min𝑘 𝜁𝑘 and 𝑒𝑀 = max𝑘 |𝜕Ω𝑒𝑘 |.2 Throughout, we work with:

Assumption 3.1. 0 < 𝑥𝑚 < 𝑥𝑀 < ∞ and Ω ⊂ ℝ𝑑
is a Lipschitz domain.

The next corollary is a simple application of this and the earlier results of [26].

Corollary 3.2. Let Assumption 3.1 hold. Then for 𝐶3 :=𝐶1𝐶2∥𝑈 ∥2 we have

∥𝑤𝑥2
−𝑤𝑥1

∥H ≤ 𝐶3∥𝑥2 − 𝑥1∥∞ for all 𝑥1, 𝑥2 ∈ [𝑥𝑚, 𝑥𝑀 ] .

2
We know that Λ is a finite positive constant but the exact value is unknown. For more details, see [38, Lemma 3.2] for

current-to-potential model and potential-to-current model [24, Lemma 2].
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Proof. Using Hölder inequality, (3.6) and (3.7), recalling that we write 𝑤𝑥1
= (𝑣𝑥1

,𝑉𝑥1
) and 𝑤𝑥2

=

(𝑣𝑥2
,𝑉𝑥2

), we estimate

∥𝑤𝑥2
−𝑤𝑥1

∥2

H ≤ 𝐶1𝐵𝑥1
(𝑤𝑥2

−𝑤𝑥1
,𝑤𝑥2

−𝑤𝑥1
) ≤ 𝐶1

∫
Ω
(𝑥1 − 𝑥2) (∇𝜉𝑣𝑥2

· ∇𝜉 (𝑣𝑥2
− 𝑣𝑥1

)) d𝜉

≤ 𝐶1∥𝑥1 − 𝑥2∥∞∥𝑤𝑥2
∥H ∥𝑤𝑥2

−𝑤𝑥1
∥H ≤ 𝐶1𝐶2∥𝑈 ∥2∥𝑥2 − 𝑥1∥∞∥𝑤𝑥2

−𝑤𝑥1
∥H .

For a detailed derivation of the second inequality, see [26, equation (20)]) □

As promised, we can now show first-order differentiability in 𝐿∞(Ω).
Lemma 3.3. Let Assumption 3.1 hold. Then the solution map 𝑥 ↦→ 𝑤𝑥 : 𝐿∞(Ω) → H of (3.4) is

Fréchet differentiable at any 𝑥 ∈ [𝑥𝑚, 𝑥𝑀 ] with the Fréchet derivative at 𝑥 , i.e., the map (ℎ ↦→ 𝑤 ′
𝑥,ℎ

) ∈
𝕃(𝐿∞(Ω);H) norm-bounded by 𝐶3 =𝐶1𝐶2∥𝑈 ∥2 and satisfying

𝐵𝑥 (𝑤 ′
𝑥,ℎ
,𝑤) = −

∫
Ω
ℎ∇𝜉𝑣𝑥 · ∇𝜉𝑣 d𝜉(3.8)

and

∥𝑤𝑥+ℎ −𝑤𝑥 −𝑤 ′
𝑥,ℎ

∥H ≤ 𝐶1𝐶3∥ℎ∥2

∞ for all ℎ ∈ 𝐿∞(Ω) and𝑤 = (𝑣,𝑉 ) ∈ H .

Proof. Suppose that𝑤𝑥 is a solution to (3.4) with 𝑥 . Now, with respect to𝑤 = (𝑣,𝑉 ), the left-hand side
of (3.8) is coercive by (3.6) and the right-hand side is clearly linear and bounded. Thus the Lax-Milgram

theorem establishes the existence of𝑤 ′
𝑥,ℎ

. We will show that the mapping ℎ ↦→ 𝑤 ′
𝑥,ℎ

is bounded and

linear with respect to ℎ, and then proceed to confirm that it is, indeed, the Fréchet derivative, i.e., that

(3.9) lim

∥ℎ∥∞→0

∥𝑤𝑥0+ℎ −𝑤𝑥0
−𝑤 ′

𝑥1,ℎ
∥H

∥ℎ∥𝐿∞ (Ω)
= 0.

To see linearity, take 𝑎, 𝑏 ∈ ℝ and notice from (3.8) that, due to the linearity of the right-hand side

with respect to ℎ, both𝑤 ′
𝑥,𝑎ℎ1+𝑏ℎ2

and 𝑎𝑤 ′
𝑥,ℎ1

+ 𝑏𝑤 ′
𝑥,ℎ2

solve (3.8). Hence, due the well-posedness (3.8),

𝑤 ′
𝑥,𝑎ℎ1+𝑏ℎ2

,𝑤 and 𝑎𝑤 ′
𝑥,ℎ1

+ 𝑏𝑤 ′
𝑥,ℎ2

must be equal.

To show boundedness, we observe that by the Hölder inequality and (3.6)–(3.8),

(3.10) ∥𝑤 ′
𝑥,ℎ

∥2

H ≤ 𝐶1 |𝐵𝑥 (𝑤 ′
𝑥,ℎ
,𝑤 ′

𝑥,ℎ
) | =

����∫
Ω
ℎ∇𝜉𝑣𝑥 · ∇𝜉𝑤

′
𝑥,ℎ

d𝜉

���� ≤ 𝐶1𝐶2∥𝑈 ∥2∥ℎ∥∞∥𝑤 ′
𝑥,ℎ

∥H .

Finally, to confirm (3.9), suppose that ∥ℎ∥∞ ≤ 𝑥𝑚/2. This ensures that the solution𝑤𝑥+ℎ to (3.4) at

𝑥 + ℎ exists since 0 < 𝑥𝑚/2 ≤ 𝑥 + ℎ ≤ 𝑥𝑀 + 𝑥𝑚/2. By (3.6)

(3.11) ∥𝑤𝑥+ℎ −𝑤𝑥 −𝑤 ′
𝑥,ℎ

∥2

H ≤ 𝐶1𝐵𝑥 (𝑤𝑥+ℎ −𝑤𝑥 −𝑤 ′
𝑥,ℎ
,𝑤𝑥+ℎ −𝑤𝑥 −𝑤 ′

𝑥,ℎ
).

Moreover, for any𝑤 ∈ H ,

𝐵𝑥 (𝑤𝑥+ℎ −𝑤𝑥 ,𝑤) = 𝐵𝑥 (𝑤𝑥+ℎ,𝑤) − 𝐵𝑥 (𝑤𝑥 ,𝑤) = 𝐵𝑥 (𝑤𝑥+ℎ,𝑤) − 𝐿(𝑤)

= 𝐵𝑥 (𝑤𝑥+ℎ,𝑤) − 𝐵𝑥+ℎ (𝑤𝑥+ℎ,𝑤) = −
∫
Ω
ℎ∇𝜉𝑣𝑥+ℎ · ∇𝜉𝑣 d𝜉,

hence

𝐵𝑥 (𝑤𝑥+ℎ −𝑤𝑥 −𝑤 ′
𝑥,ℎ
,𝑤) = 𝐵𝑥 (𝑤𝑥+ℎ −𝑤𝑥 ,𝑤) − 𝐵𝑥 (𝑤 ′

𝑥,ℎ
,𝑤) = −

∫
Ω
ℎ∇𝜉 (𝑣𝑥+ℎ − 𝑣𝑥 ) · ∇𝜉𝑣 d𝜉 .
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Taking𝑤 =𝑤𝑥+ℎ −𝑤𝑥 −𝑤 ′
𝑥,ℎ

and using Corollary 3.2 we thus estimate

(3.12) 𝐵𝑥 (𝑤,𝑤) = −
∫
Ω
ℎ∇𝜉 (𝑣𝑥+ℎ − 𝑣𝑥 ) · ∇𝜉 (𝑣𝑥+ℎ − 𝑣𝑥 − 𝑣 ′𝑥,ℎ) d𝜉

≤ ∥ℎ∥∞
����∫

Ω
∇𝜉 (𝑣𝑥+ℎ − 𝑣𝑥 ) · ∇𝜉 (𝑣𝑥+ℎ − 𝑣𝑥 − 𝑣 ′𝑥,ℎ) d𝜉

����
≤ ∥ℎ∥∞∥𝑤𝑥+ℎ −𝑤𝑥 ∥H ∥𝑤𝑥+ℎ −𝑤𝑥 −𝑤 ′

𝑥,ℎ
∥H

≤ ∥ℎ∥∞𝐶3∥ℎ∥∞∥𝑤𝑥+ℎ −𝑤𝑥 −𝑤 ′
𝑥,ℎ

∥H .

Combining (3.11) and (3.12) yields ∥𝑤𝑥+ℎ −𝑤𝑥 −𝑤 ′
𝑥,ℎ

∥H ≤ 𝐶1𝐶3∥ℎ∥2

∞, which proves (3.9). □

The following lemma shows that the Fréchet derivative of the solution map is Lipschitz. This will be

needed to show the second-order differentiability.

Lemma 3.4. Let Assumption 3.1 hold. Then, for any given ℎ ∈ 𝐿∞(Ω), the map 𝑥 ↦→ 𝑤 ′
𝑥,ℎ

: 𝐿∞(Ω) → H
is Lipschitz with constant 2𝐶1𝐶3∥ℎ∥∞, that is

∥𝑤 ′
𝑥1,ℎ

−𝑤 ′
𝑥2,ℎ

∥H ≤ 2𝐶1𝐶3∥ℎ∥∞∥𝑥2 − 𝑥1∥∞ for all 𝑥1, 𝑥2 ∈ [𝑥𝑚, 𝑥𝑀 ] .

Proof. For any𝑤1,𝑤2 ∈ H we have

(3.13) 𝐵𝑥1
(𝑤1,𝑤2) = 𝐵𝑥2

(𝑤1,𝑤2) +
∫
Ω
(𝑥1 − 𝑥2)∇𝜉𝑣1 · ∇𝜉𝑣2 d𝜉 .

Furthermore, by Lemma 3.3,𝑤 ′
𝑥1,ℎ

and𝑤 ′
𝑥2,ℎ

satisfy

𝐵𝑥1
(𝑤 ′

𝑥1,ℎ
,𝑤) = −

∫
Ω
ℎ∇𝜉𝑣𝑥1

· ∇𝜉𝑣 d𝜉 and 𝐵𝑥2
(𝑤 ′

𝑥2,ℎ
,𝑤) = −

∫
Ω
ℎ∇𝜉𝑣𝑥2

· ∇𝜉𝑣 d𝜉

for any𝑤 ∈ H . Using these and (3.13) yields

𝐴 := 𝐵𝑥1
(𝑤 ′

𝑥1,ℎ
−𝑤 ′

𝑥2,ℎ
,𝑤 ′

𝑥1,ℎ
−𝑤 ′

𝑥2,ℎ
)

= 𝐵𝑥1
(𝑤 ′

𝑥1,ℎ
,𝑤 ′

𝑥1,ℎ
−𝑤 ′

𝑥2,ℎ
) − 𝐵𝑥2

(𝑤 ′
𝑥2,ℎ

,𝑤 ′
𝑥1,ℎ

−𝑤 ′
𝑥2,ℎ

)

−
∫
Ω
(𝑥1 − 𝑥2)∇𝜉𝑣

′
𝑥2,ℎ

· ∇𝜉 (𝑣 ′𝑥1,ℎ
− 𝑣 ′

𝑥2,ℎ
) d𝜉

=

∫
Ω
[ℎ∇𝜉 (𝑣𝑥2

− 𝑣𝑥1
) + (𝑥2 − 𝑥1)∇𝜉𝑣

′
𝑥2,ℎ

] · ∇𝜉 (𝑣 ′𝑥1,ℎ
− 𝑣 ′

𝑥2,ℎ
) d𝜉

≤
(
∥ℎ∇𝜉 (𝑣𝑥2

− 𝑣𝑥1
)∥2 + ∥(𝑥2 − 𝑥1)∇𝜉𝑣

′
𝑥2,ℎ

∥2

)
∥∇𝜉 (𝑣 ′𝑥1,ℎ

− 𝑣 ′
𝑥2,ℎ

)∥2.

Using the Cauchy-Schwartz inequality and ∥∇𝜉𝑣 ∥2 ≤ ∥𝑤 ∥H (see (3.5)) again followed by Corollary 3.2

and ∥𝑤 ′(𝑥2)∥H ≤ 𝐶3∥ℎ∥∞∥𝑈 ∥2 allows us to continue

(3.14)

𝐴 ≤ ∥ℎ∥∞∥𝑤𝑥2
−𝑤𝑥1

∥H ∥𝑤 ′
𝑥1,ℎ

−𝑤 ′
𝑥1,ℎ

∥H + ∥𝑥2 − 𝑥1∥∞∥𝑤 ′
𝑥2,ℎ

∥∥𝑤 ′
𝑥2,ℎ

−𝑤 ′
𝑥1,ℎ

∥H
≤ ∥ℎ∥∞𝐶3∥𝑥2 − 𝑥1∥∞∥𝑤 ′

𝑥1,ℎ
−𝑤 ′

𝑥1,ℎ
∥H + ∥𝑥2 − 𝑥1∥∞𝐶3∥ℎ∥∞∥𝑤 ′

𝑥1,ℎ
−𝑤 ′

𝑥1,ℎ
∥H .

Finally, (3.6) and (3.14) establish

∥𝑤 ′
𝑥1,ℎ

−𝑤 ′
𝑥2,ℎ

∥2

H ≤ 𝐶1𝐵𝑥1
(𝑤 ′

𝑥1,ℎ
−𝑤 ′

𝑥2,ℎ
,𝑤 ′

𝑥1,ℎ
−𝑤 ′

𝑥2,ℎ
)

≤ 2𝐶1𝐶3∥ℎ∥∞∥𝑥2 − 𝑥1∥∞∥𝑤 ′
𝑥1,ℎ

−𝑤 ′
𝑥2,ℎ

∥H .

Dividing by ∥𝑤 ′
𝑥1,ℎ

−𝑤 ′
𝑥2,ℎ

∥H establishes the claimed Lipschitz constant. □
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The next lemma confirms the second-order differentiability of the solution mapping.

Lemma 3.5. Let Assumption 3.1 hold and 𝑥 ∈ [𝑥𝑚, 𝑥𝑀 ]. Then ℎ1 ↦→ 𝑤 ′
𝑥,ℎ1

: 𝐿∞(Ω) → H is Fréchet

differentiable at all ℎ1 ∈ 𝐿∞(Ω), the Fréchet derivative ℎ2 → 𝑣 ′′
𝑥,ℎ1,ℎ2

is norm-bounded in 𝕃(𝐿∞(Ω) ×
𝐿∞(Ω);H) by 𝐶4 = 2𝐶1𝐶3∥𝑈 ∥2, and satisfies the linear equation

(3.15) 𝐵𝑥 (𝑤 ′′
𝑥,ℎ1,ℎ2

,𝑤) = −
(∫

Ω
ℎ1∇𝜉𝑣

′
𝑥,ℎ2

· ∇𝜉𝑣 d𝜉 +
∫
Ω
ℎ2∇𝜉𝑣

′
𝑥,ℎ1

· ∇𝜉𝑣 d𝜉

)
for all ℎ2 ∈ 𝐿∞(Ω) and𝑤 = (𝑣,𝑉 ) ∈ H .

Proof. The right-hand side of (3.15) is linear and bounded with respect to𝑤 . Hence by the Lax-Milgram

theorem there exists a solution𝑤 ′′
𝑥,ℎ1,ℎ2

to (3.15). Wewill show thatℎ2 ↦→ 𝑤 ′′
𝑥,ℎ1,ℎ2

is the Fréchet derivative

of ℎ1 ↦→ 𝑤 ′
𝑥,ℎ1

. To see that the former is a candidate for the Fréchet derivative, we first establish the

boundedness and the bilinearity of (ℎ1, ℎ2) ↦→ 𝑤 ′′
𝑥,ℎ1,ℎ2

. Indeed, due to (3.6) and (3.15),

∥𝑤 ′′
𝑥,ℎ1,ℎ2

∥2

H ≤ 𝐶1𝐵𝑥 (𝑤 ′′
𝑥,ℎ1,ℎ2

,𝑤 ′′
𝑥,ℎ1,ℎ2

)

≤ 𝐶1

(����∫
Ω
ℎ1∇𝜉𝑣

′
𝑥,ℎ2

· ∇𝜉𝑣
′′
𝑥,ℎ1,ℎ2

d𝜉

���� + ����∫
Ω
ℎ2∇𝜉𝑣

′
𝑥,ℎ1

· ∇𝜉𝑣
′′
𝑥,ℎ1,ℎ2

d𝜉

����)
≤ 𝐶1

(
∥ℎ1∥∞∥𝑤 ′

𝑥,ℎ2

∥H + ∥ℎ2∥∞∥𝑤 ′
𝑥,ℎ1

∥H
)
∥𝑤 ′′

𝑥,ℎ1,ℎ2

∥H
≤ 2𝐶1𝐶3∥𝑈 ∥2∥ℎ1∥∞∥ℎ2∥∞∥𝑤 ′′

𝑥,ℎ1,ℎ2

∥H .

Clearly then ∥𝑤 ′′
𝑥,ℎ1,ℎ2

∥H ≤ 2𝐶1𝐶3∥𝑈 ∥2∥ℎ1∥∞∥ℎ2∥∞.
To see bilinearity, first observe that the first integral left-hand side of (3.15) is linear with respect

to ℎ1 and the second integral is linear with respect to ℎ2. Then take ℎ2 = 𝑎𝑓 + 𝑏𝑔, for 𝑎, 𝑏 ∈ ℝ and

𝑓 , 𝑔 ∈ 𝐿∞(Ω). Since ℎ ↦→ 𝑣 ′
𝑥,ℎ

is linear, we have∫
Ω
ℎ1∇𝜉𝑣

′
𝑥,𝑎𝑓 +𝑏𝑔 · ∇𝜉𝑣 d𝜉 =

∫
Ω
ℎ1∇𝜉 (𝑎𝑣 ′𝑥,𝑓 + 𝑏𝑣

′
𝑥,𝑔) · ∇𝜉𝑣 d𝜉

=

∫
Ω
ℎ1(𝑎∇𝜉𝑣

′
𝑥,𝑓

· ∇𝜉𝑣) d𝜉 +
∫
Ω
ℎ1(𝑏∇𝜉𝑣

′
𝑥,𝑔 · ∇𝜉𝑣) d𝜉,

This show sthe linearity of the first term with respect to ℎ2. The same reasoning shows the linearity of

the second term with respect to ℎ1, confirming the bilinearity of the both terms. Arguing similarly to

Lemma 3.3, we conclude that (ℎ1, ℎ2) ↦→ 𝑤 ′′
𝑥,ℎ1,ℎ2

is bilinear.

Finally, we confirm that ℎ2 ↦→ 𝑤 ′′
𝑥,ℎ1,ℎ2

is the Fréchet derivative of ℎ1 ↦→ 𝑤 ′
𝑥,ℎ1

. Let ∥ℎ2∥∞ ≤ 𝑥𝑚/2

and ℎ1 ∈ 𝐿∞(Ω). Then

(3.16) 𝐵𝑥 (𝑤 ′
𝑥+ℎ2,ℎ1

−𝑤 ′
𝑥,ℎ1

−𝑤 ′′
𝑥,ℎ1,ℎ2

,𝑤)
= 𝐵𝑥 (𝑤 ′

𝑥+ℎ2,ℎ1

,𝑤) − 𝐵𝑥 (𝑤 ′
𝑥,ℎ1

,𝑤) − 𝐵𝑥 (𝑤 ′′
𝑥,ℎ1,ℎ2

,𝑤)

= 𝐵𝑥+ℎ2
(𝑤 ′

𝑥+ℎ2,ℎ1

,𝑤) − 𝐵𝑥 (𝑤 ′
𝑥,ℎ1

,𝑤) −
∫
Ω
ℎ2∇𝜉𝑣

′
𝑥+ℎ2,ℎ1

· ∇𝜉𝑣 d𝜉 − 𝐵𝑥 (𝑤 ′′
𝑥,ℎ1,ℎ2

,𝑤)

= −
∫
Ω
ℎ1∇𝜉 (𝑣𝑥+ℎ2

− 𝑣𝑥 ) · ∇𝜉𝑣 d𝜉 −
∫
Ω
ℎ2∇𝜉𝑣

′
𝑥+ℎ2,ℎ1

· ∇𝜉𝑣 d𝜉 − 𝐵𝑥 (𝑤 ′′
𝑥,ℎ1,ℎ2

,𝑤)

= −
∫
Ω
ℎ1∇𝜉 (𝑣𝑥+ℎ2

− 𝑣𝑥 − 𝑣 ′𝑥,ℎ2

) · ∇𝜉𝑣 d𝜉 −
∫
Ω
ℎ2∇𝜉 (𝑣 ′𝑥+ℎ2,ℎ1

− 𝑣 ′
𝑥,ℎ1

) · ∇𝜉𝑣 d𝜉,

where on the fourth line we used Lemma 3.3 on the first two bilinear terms, and on the last line we

used (3.15). Observe for any𝑤1 = (𝑣1,𝑉1),𝑤2 = (𝑣2,𝑉2) ∈ H that∫
Ω
ℎ∇𝜉𝑣1 · ∇𝜉𝑣2 d𝜉 ≤ ∥ℎ∥∞∥∇𝜉𝑣1∥2∥∇𝜉𝑣2∥2 ≤ ∥ℎ∥∞∥𝑤1∥H ∥𝑤2∥H .
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Using this, (3.6) and (3.16) with 𝑤 = 𝑤 ′
𝑥+ℎ2,ℎ1

−𝑤 ′
𝑥,ℎ1

−𝑤 ′′
𝑥,ℎ1,ℎ2

, as well as the triangle inequality, we

obtain

(3.17) ∥𝑤 ′
𝑥+ℎ2,ℎ1

−𝑤 ′
𝑥,ℎ1

−𝑤 ′′
𝑥,ℎ1,ℎ2

∥2

H

≤ 𝐶1 |𝐵𝑥 (𝑤 ′
𝑥+ℎ2,ℎ1

−𝑤 ′
𝑥,ℎ1

−𝑤 ′′
𝑥,ℎ1,ℎ2

,𝑤 ′
𝑥+ℎ2,ℎ1

−𝑤 ′
𝑥,ℎ1

−𝑤 ′′
𝑥,ℎ1,ℎ2

) |

≤ 𝐶1

(����∫
Ω
ℎ1∇𝜉 (𝑣𝑥+ℎ2

− 𝑣𝑥 − 𝑣 ′𝑥,ℎ2

) · ∇𝜉 (𝑣 ′𝑥+ℎ2,ℎ1

− 𝑣 ′
𝑥,ℎ1

− 𝑣 ′′
𝑥,ℎ1,ℎ2

) d𝜉
����

+
����∫

Ω
ℎ2∇𝜉 (𝑣 ′𝑥+ℎ2,ℎ1

− 𝑣 ′
𝑥,ℎ1

) · ∇𝜉 (𝑣 ′𝑥+ℎ2,ℎ1

− 𝑣 ′
𝑥,ℎ1

− 𝑣 ′′
𝑥,ℎ1,ℎ2

) d𝜉
����)

≤ 𝐶1

(
∥ℎ1∥∞∥𝑤𝑥+ℎ2

−𝑤𝑥 −𝑤 ′
𝑥,ℎ2

∥H + ∥ℎ2∥∞∥𝑤 ′
𝑥+ℎ2,ℎ1

−𝑤 ′
𝑥,ℎ1

∥H
)

· ∥𝑤 ′
𝑥+ℎ2,ℎ1

−𝑤 ′
𝑥,ℎ1

−𝑤 ′′
𝑥,ℎ1,ℎ2

∥H .

By Lemmas 3.3 and 3.4, we have, respectively

∥𝑤𝑥+ℎ2
−𝑤𝑥 −𝑤 ′

𝑥,ℎ2

∥H ≤ 𝐶1𝐶3∥ℎ2∥2

∞ and ∥𝑤 ′
𝑥,ℎ1

−𝑤 ′
𝑥+ℎ2,ℎ1

∥H ≤ 2𝐶1𝐶3∥ℎ1∥∞∥ℎ2∥∞.

Dividing (3.17) by ∥𝑤 ′
𝑥+ℎ2,ℎ1

−𝑤 ′
𝑥,ℎ1

−𝑤 ′′
𝑥,ℎ1,ℎ2

∥H and using these estimates establishes

∥𝑤 ′
𝑥+ℎ2,ℎ1

−𝑤 ′
𝑥,ℎ1

−𝑤 ′′
𝑥,ℎ1,ℎ2

∥H ≤ 𝐶2

1
𝐶3(1 + 2∥ℎ1∥∞)∥ℎ1∥∞∥ℎ2∥2

∞.

Dividing by ∥ℎ2∥∞ and letting ∥ℎ2∥∞→ 0 shows second-order Fréchet differentiability. □

3.3 three-point inequalities

Next, we discuss how Assumption 2.5 can be satisfied. We assume that X𝑘 is a finite dimensional space,

as will be the case in the numerical realisation of the next section, so that the results of Section 3.2

are compatible with the results of Section 2. We write𝑤𝑥 (𝑈 𝑗,𝑘 ) for the interior potential–electrode
current tuples (3.3) corresponding to multiple electrode potentials 𝑈 𝑗,𝑘

and the conductivity 𝑥 . Define

𝑆 : 𝐿∞(Ω) → 𝑅𝑁1𝑁2
, by

(3.18) 𝑆 (𝑥) = (𝑆1(𝑥), . . . , 𝑆𝑁1
(𝑥)) for 𝑆𝑘 (𝑥) =

(
Σ−1/2𝑃𝑤𝑥 (𝑈 1,𝑘 ), . . . , Σ−1/2𝑃𝑤𝑥 (𝑈 𝑁2,𝑘 )

)
,

where 𝑃 is a projection fromH to ℝ𝑁1
that extracts the electrode currents, i.e., 𝑃𝑤𝑥 (𝑈 𝑗,𝑘 ) = 𝐼 𝑗,𝑘 . Then

Lemmas 3.3 and 3.5 show that 𝑆 ′ and 𝑆 ′′ are norm-bounded by

(3.19) 𝑆 ′
max

:= 𝑁2𝐶1𝐶2 max

𝑗,𝑘
∥𝑈 𝑗,𝑘 ∥2∥Σ−1/2∥2 and 𝑆

′′
max

:= 2𝑁2𝐶
2

1
𝐶2

2
max

𝑗,𝑘
∥𝑈 𝑗,𝑘 ∥2

2
∥Σ−1/2∥2.

Writing I𝑘
for the measurement vector corresponding to (3.18)

3
, 𝐸𝑘 of (3.1) then reads

(3.20) 𝐸𝑘 (𝑥) :=
1

2

∥𝑆𝑘 (𝑥) − I𝑘 ∥2.

We define
¯𝐵𝑥𝑤 as the Riesz representation of 𝐵𝑥 (𝑤, · ). Then, minding (3.6),

¯𝐵𝑥 ∈ 𝕃(H ;H) is
invertible with eigenvalues bounded from below by𝐶−1

1
. Also write 𝑙𝑥,ℎ ∈ H for the Riesz representation

of the right hand side of (3.8) as a functional of𝑤 : ⟨𝑙𝑥,ℎ,𝑤⟩ = −
∫
Ω
ℎ∇𝜉𝑣𝑥 ·∇𝜉𝑣 d𝜉 for any𝑤 = (𝑣,𝑉 ) ∈ H .

Note that here 𝑣𝑥 is a component of the solution𝑤𝑥 = (𝑣𝑥 ,𝑊𝑥 ) ∈ H . Then, by Lemma 3.3,
¯𝐵𝑥𝑤

′
𝑥,ℎ

= 𝑙𝑥,ℎ .

3
The entries of I𝑘

are also multiples of Σ−1/2
.
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By the invertibility of 𝐵𝑥 , we can write𝑤 ′
𝑥,ℎ

= 𝐵−1

𝑥 𝑙𝑥,ℎ . Also write 𝑙𝑥,ℎ = 𝐿𝑥ℎ, where 𝐿 ∈ 𝕃(𝐿𝑝 (Ω);H),
with 1 < 𝑝 < ∞. It follows that

∥Σ−1/2𝑃𝑤 ′
𝑥,ℎ

∥2 = ⟨Σ−1𝑃∗𝐵−1

𝑥 𝑙𝑥,ℎ, 𝑃𝐵
−1

𝑥 𝑙𝑥,ℎ⟩ = ⟨𝐿∗𝑥𝐵−∗
𝑥 𝑃∗Σ−1𝑃𝐵−1

𝑥 𝐿𝑥ℎ,ℎ⟩.

Writing𝑤 ′
𝑥,ℎ

(𝑈 𝑗,𝑘 ) for the differential of𝑤𝑥 (𝑈 𝑗,𝑘 ) in the direction ℎ from 𝑥 , and 𝐿
𝑗,𝑘
𝑥 for 𝐿𝑥 correspond-

ing to𝑤𝑥 (𝑈 𝑗,𝑘 ) = (𝑣𝑥 (𝑈 𝑗,𝑘 ),𝑉𝑥 (𝑈 𝑗,𝑘 )), we thus get

∥𝑆 ′
𝑘
(𝑥, ℎ)∥2

ℝ𝑁
1
𝑁

2

=

𝑁2∑︁
𝑗=1

∥Σ−1/2𝑃𝑤 ′
𝑥,ℎ

(𝑈 𝑗,𝑘 )∥2

ℝ𝑁
1

= ⟨𝐴𝑘ℎ,ℎ⟩

for

𝐴𝑘 :=

𝑁2∑︁
𝑗=1

(𝐿 𝑗,𝑘𝑥 )∗ ¯𝐵−∗
𝑥 𝑃∗Σ−1𝑃 ¯𝐵−1

𝑥 𝐿
𝑗,𝑘
𝑥 .

The next proof relies on a lower bound on 𝐴𝑘 to model the idea that for a potential measurement

setup𝑈 𝑗,𝑘
, ( 𝑗 = 1, . . . , 𝑁2), some electrode, indexed by 𝑖 = 1, . . . , 𝑁1, should react to a change ℎ in the

conductivity 𝑥 . If 𝑥 and ℎ are discretised to a finite grid of 𝑛 nodes, then it seems reasonable that this

can be achieved as long as 𝑁1𝑁2 > 𝑛. If the latter does not hold, the condition could still be achieved

at specific 𝑥 or for specific directions ℎ. Practically, for the condition to hold, the comparison point

𝑥𝑘 (e.g., ground-truth) data fit ∥𝑆𝑘 (𝑥𝑘 ) − 𝑏𝑘 ∥ has to be good enough, i.e., for the noise level to be low

enough, and the radius 𝛿 > where we seek to satisfy Assumption 2.5, has to be small enough. This

radius affects the closeness requirement of the initial iterate to 𝑥0
through Assumption 2.6 and (2.24).

Theorem 3.6. Let Assumption 3.1 hold and X𝑘 be finite dimensional. Define 𝐸𝑘 by (3.20), and suppose

𝑥𝑘 ∈ X𝑘 ∩ 𝐵(𝑥𝑘 , 𝛿), 𝑥𝑘 ∈ 𝐵(𝑥𝑘 , 𝛿), and 𝑥 ∈ 𝐵(𝑥𝑘 , 𝛿) for a 𝛿 > 0, and

𝐴𝑘 ≥ max{𝑐1, 𝑐2} Id(3.21)

for

𝑐1 := 4𝜃 + 𝑆 ′′
max

(4∥𝑆𝑘 (𝑥𝑘 ) − 𝑏𝑘 ∥𝑅𝑁
1
𝑁

2
+ (1 +

√
2 + 2𝑆 ′′

max
)𝛿2) and

𝑐2 := 2𝜃 + 2𝑆 ′′
max

((
𝛿

8

+ 𝑆 ′
max

)
𝛿 + ∥𝑆𝑘 (𝑥𝑘 ) − 𝑏𝑘 ∥𝑅𝑁

1
𝑁

2

)
.

Then Assumption 2.5 (i) and (ii) hold with 𝛾𝐸,𝑘 = 4𝜃 , 𝛾𝐸,𝑘 = 3𝜃 ,𝑒𝑘 = 𝑒𝑘 = 0, and

𝜆𝐸,𝑘 = 2
ˆ𝜆𝐸,𝑘 = 𝑆 ′′

max

(
𝑆 ′

max
𝛿 + 3∥𝑆𝑘 (𝑥𝑘 ) − 𝑏𝑘 ∥𝑅𝑁

1
𝑁

2
+ 𝛿2𝑆 ′′

max

2

)
+

(
2 +

√
2

)
(𝑆 ′

max
)2.

Proof. Since 𝑆𝑘 is twice differentiable, the bounds (3.19) on ∥𝑆 ′∥ and ∥𝑆 ′′∥ guarantee Assumption a.1.

By the preceding discussion, (3.21) guarantees

∥𝑆 ′
𝑘
(𝑥𝑘 ) (𝑥 − 𝑥𝑘 )∥2

𝑍𝑘
≥ max{𝑐1, 𝑐2}∥𝑥 − 𝑥𝑘 ∥2

𝑋𝑘

Now Corollary a.5 with 𝜀 = 2𝜀 = 2𝜃 and 𝛽 = 1 − 2
−1/2

shows for 𝐷 = 1

2
𝜆𝐸,𝑘 = ˆ𝜆𝐸,𝑘 that

⟨∇𝐸𝑘 (𝑥𝑘 ), 𝑥 − 𝑥𝑘⟩𝑋𝑘
≥ 𝐸𝑘 (𝑥) − 𝐸𝑘 (𝑥𝑘 ) + 2𝜃 ∥𝑥 − 𝑥𝑘 ∥2

𝑋𝑘
− 𝐷 ∥𝑥 − 𝑥𝑘 ∥2

𝑋𝑘

and

⟨∇𝐸 (𝑥𝑘 ) − ∇𝐸 (𝑥𝑘 ), 𝑥 − 𝑥𝑘⟩𝑋𝑘
≥ 3𝜃 ∥𝑥 − 𝑥𝑘 ∥2

𝑋𝑘
− 𝐷 ∥𝑥 − 𝑥𝑘 ∥2

𝑋𝑘
. □

Since we enforce 𝑥 ∈ [𝑥𝑚, 𝑥𝑀 ], a.e., the previous theorem can also be used to prove the global

Assumption 2.3 by taking 𝛿 large enough.
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4 numerical experiments

Wenumerically assess Algorithm 1 in dynamic EIT imaging of a solid objectmoving in a fluid assumed to

follow the incompressible constant-density transport equation. Our evaluation extends to scenarios that

challenge the constant speed and incompressibility assumptions. We evaluate several dual predictors,

and compare the results against static reconstructions with the Relaxed Inexact Gauss–Newton method

(RIPGN) [23]. Our software implementation is available on Zenodo [22].

4.1 test scenarios

The test scenarios take place in a disk-shaped domain denoted by Ω. We use 𝑁1 = 16 evenly placed

boundary electrodes. We set the electrode potentials 𝑈 𝑗,𝑘
so that an electrode 𝑗 is set to a potential

𝑈
𝑗,𝑘

𝑗
= 1 V while all others are grounded, 𝑈

𝑗,𝑘

𝑖
= 0V for 𝑖 ≠ 𝑗 . This pattern repeats for all electrodes,

leading to 𝑁2 = 16 sets of electrode potentials. To mimic the typical EIT measurements, we exclude the

currents at the excited electrode 𝑗 from both measurements and the forward operator, as these currents

are often not measured by EIT devices. Thus, each time instance 𝑘 yields a total of (𝑁1 − 1)𝑁2 = 240

measurements.

The four experiments are as follows:

Baseline Features an inclusion moving at constant speed on a homogeneous background. Serves as a

validation scenario to ensure the algorithm works as expected.

Circular Motion Features an inclusion following a circular motion path, challenging the constant

movement assumption.

Halting Motion Features an inclusion that comes to a halt at frames 1000 and 2000, further chal-

lenging the constant movement assumption.

Disappearing Inclusions Features two inclusionsmoving in circular path. First inclusions disappears

at frame 500 and the second at frame 1000. Both reappear at frame 1500. This case challenges

the incompressibility assumption.

The Baseline experiment has 400 time frames, while the other three have 2000. The background

conductivity is 𝑥bg = 1 S and all inclusions are resistive with 𝑥incl = 10
−4

S.

We simulate the measurement data by approximating (3.2) with the Galerkin finite element method

(FEM). We use piecewise linear basis. The simulation mesh has 5039 nodes and 9852 elements. Each

simulated measurementℐ
𝑗,𝑘

𝑖
has added Gaussian noise with standard deviation std = 10

−4 |ℐ 𝑗,𝑘

𝑖
|, in

the standard range of EIT. For the specifics of how to solve (3.2) and its Fréchet derivative with FEM,

see [23].

4.2 numerical setup

Recall the definition of 𝐸𝑘 from (3.1). The currents 𝑆𝑘 : 𝑋𝑘 × ℝ𝑁1 → ℝ𝑁1𝑁2
in 𝐸𝑘 are obtained by

approximating the potential functions 𝑢 𝑗,𝑘
in (3.2) through FEM, using piecewise linear basis functions.

The conductivity 𝑥 is also represented in the same basis. To prevent the ‘inverse crime’ [29], we use a

less dense mesh for the forward problem than we used for simulation, featuring 2917 nodes and 5430

mesh elements.

4.2.1 background processing

Note that the computation of 𝑆𝑘 (𝑥𝑘 ) and ∇𝑆𝑘 (𝑥𝑘 ) is highly resource-intensive. To optimise the com-

putational speed of Algorithm 1, we implement the following background processing strategy: we

Dizon, Jauhiainen, Valkonen Online optimisation for dynamic EIT

https://arxiv.org/abs/2412.12944


arxiv: 2412.12944, 2024-12-17 (revised 2025-03-17) page 22 of 34

approximate ∇𝑆𝑘 (𝑥𝑘 ) by ∇𝑆𝑘 (𝑥), initially 𝑥 = 𝑥0
. We then approximate 𝑆𝑘 (𝑥𝑘 ) by a first-order Taylor

expansion around 𝑥 . In the background, we compute 𝑆𝑘 (𝑥) and ∇𝑆𝑘 (𝑥), at a linearisation point 𝑥 = 𝑥 𝑗
.

After completing these background computations, we update 𝑥 = 𝑥 as well as 𝑥 = 𝑥𝑘 for the current

iterate, and start computing new values of the operators in the background. In Appendix b.1 we show

that the background processing scheme satisfies Assumption 2.5.

4.2.2 predictors

We construct the primal component of the predictor 𝑃𝑘 by assuming constant velocity and incompress-

ibility in the moving objects. Denoting by ℎ𝑘 (𝜉) ∈ ℝ2
the displacement at 𝜉 ∈ Ω between frames 𝑘

and 𝑘 − 1, we define the primal prediction referred to as Flow, as 𝑥𝑘+1(𝜉) =𝑊𝑘𝑥
𝑘 (𝜉) := 𝑥𝑘 (𝜉 + ℎ𝑘 (𝜉)).

Since ℎ𝑘 represents the estimated displacement between the current and previous frames and is used

to predict the next frame, this effectively assumes a constant velocity between frames.

We estimate displacement ℎ𝑘 from the incompressible transport equation

(4.1)

𝜕𝑥𝑘

𝜕𝑡
− ∇𝜉𝑥

𝑘 · 𝑣 = 0.

Here, 𝑣 = (𝑣1, 𝑣2) ∈ ℝ2
represents the velocity responsible for the time-dependent displacement ℎ at

time 𝑡 . Using a fixed time step of Δ𝑡 = 1, we approximate
𝜕𝑥𝑘

𝜕𝑡
as (𝑥𝑘 − 𝑥𝑘−1)/Δ𝑡 = 𝑥𝑘 − 𝑥𝑘−1

. This leads

us to a problem akin to optical flow, where the solution for 𝑣 is subject to non-uniqueness due to the

aperture problem [4]. Similar to the well-established Horn-Schunck method [20], we approximate the

solution of (4.1) by

(4.2) 𝑣𝑘 = arg min

𝑣

1

2





 𝜕𝑥𝑘𝜕𝑡 − ∇𝜉𝑥
𝑘−1 · 𝑣





2

+ 𝛽1

2

(
∥∇𝜉𝑣1∥2 + ∥∇𝜉𝑣2∥2

)
+ 𝛽2

2

∥𝑣 ∥2.

Here, ∇𝜉 denotes the spatial gradient operator, and 𝛽1 and 𝛽2 are positive regularisation parameters.

The components 𝑣𝑘
1
and 𝑣𝑘

2
share the same piecewise linear basis as the conductivity 𝑥𝑘 , and the

displacement ℎ𝑘 corresponds to 𝑣𝑘 due to the chosen time step. To expedite the algorithm, we only

update ℎ𝑘 every fourth iteration.

For the dual variable, we consider two distinct predictors: Greedy preserves ⟨∇𝜉𝑥
𝑘+1, 𝑦𝑘+1⟩ =

⟨∇𝜉𝑥
𝑘 , 𝑦𝑘⟩ element-wise, while Affine sets 𝑦𝑘+1

:= 𝑦𝑘 + 𝑐∇𝜉𝑥
𝑘+1

. Through the choice of 𝑐 > 0, it

seeks to promote sparsity in regions where we expect constant values, as discussed in Example 2.2. To

bound the prediction component of the error 𝑒Σ
𝑁
(𝑢0:𝑁−1, 𝑢0:𝑁 ) in Corollary 2.13 for these predictors,

see [14, Lemma 3.11 and Lemma 3.13]. The gradient estimate error we treat in Appendix b.1. We also

perform experiments with the Identity predictor𝑊𝑘 = Id and 𝑇𝑘 = Id.

We evaluate the algorithm across four predictor configurations. No Prediction is fully uninformed

having identity predictors for both primal and dual variables. Primal Only uses incompressible flow

prediction for the primal combined with uninformed identity prediction for the dual. The remaining

two configurations feature the incompressible flow prediction for the primal, accompanied by either

Greedy or Affine dual prediction.

Note that only the Baseline experiment fully satisfies the constant velocity assumption. Additionally,

the fourth test scenario violates the incompressibility assumption. However, we expect the algorithm

to perform correctly, as the optimisation steps should compensate for small errors introduced in the

prediction step. Furthermore, 𝑣 is only an approximate solution to (4.1), meaning some degree of

compression may still be present.

4.2.3 algorithm parameters

In all experiments, we use the following parameters:
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Table 1: Average relative errors and confidence intervals (CI). The latter are calculated using Student’s

𝑡-distribution with the relative errors for each iteration from 1 to 500 as samples.

Baseline
Average RE

Predictor iter 1 iter 50 95% CI

Affine 9.56 9.0725 9.0311 - 9.1139

Greedy 10.7881 10.4691 10.3895 - 10.5487

No predict 14.4899 14.4774 14.4204 - 14.5344

Primal only 10.844 10.53 10.4523 - 10.6077

Circular motion
Average RE

Predictor iter 1 iter 50 95% CI

Affine 9.0218 8.8642 8.8424 - 8.886

Greedy 10.5676 10.4494 10.4213 - 10.4775

No predict 14.4643 14.4275 14.3768 - 14.4782

Primal only 10.632 10.5153 10.4868 - 10.5438

Halting motion
Average RE

Predictor iter 1 iter 50 95% CI

Affine 9.1663 8.9985 8.9651 - 9.0319

Greedy 10.3048 10.1686 10.1416 - 10.1956

No predict 14.7439 14.7116 14.6822 - 14.741

Primal only 10.2875 10.1508 10.124 - 10.1776

Halting motion
Average RE

Predictor iter 1 iter 50 95% CI

Affine 11.1383 10.8471 10.6356 - 11.0586

Greedy 11.5483 11.2712 11.0304 - 11.512

No predict 15.1044 14.8975 14.5571 - 15.2379

Primal only 11.7061 11.4329 11.1949 - 11.6709

No prediction Primal Only Greedy Affine
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Figure 1: Iteration-wise relative objective values and iterate errors in Baseline experiment.

Main problem parameters We set Σ−1/2 = 200 Id, 𝛼 = 0.5, 𝑥𝑚 = 10
−5
, and 𝑥𝑀 = 10

5
. We do not use

the knowledge of the precise noise statistics or the conductivity range.

Step length parameters We take constant 𝜏𝑘 ≡ 𝜏 := 0.85∥Σ−1/2∇𝐼 (𝑥) (Σ−1/2∇𝐼 (𝑥))∗∥−1
and 𝜎𝑘 ≡

𝜎 := 1.

Incompressible flow parameters We set 𝛽1 = 10
−3

and 𝛽2 = 10
−5
.

Affine predictor parameters To promote gradient sparsity in calm areas, we take 𝑐 := 10 max𝜉 {0, 1−
10

−12 |ℎ𝑘 |−1}2
for ℎ𝑘 the estimated displacement.

The step length parameter choices are discussed in detail in Appendix b.2.

4.3 results

The Baseline experiment features an inclusion moving at constant speed. Figure 1 shows the relative

objective values and iterate errors

𝐽𝑘
rel

:=
𝐽𝑘 (𝑥𝑘 )
𝐽𝑘 (𝑥0) and 𝑒𝑘

rel
:=

∥𝑥𝑘 − 𝑥𝑘
true

∥
∥𝑥𝑘

true
∥

where 𝑥𝑘
true

is the ground-truth for iteration 𝑘 with the tested predictor configurations. No Predic-

tion performs the worst and Affine predictor the best. Primal Only and Greedy perform similarly,

outperforming No Prediction but falling behind Affine. This is also confirmed by Table 1.
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Figure 2: Iteration-wise objective value and relative error in Circular Motion experiment.
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(b) Circular Motion experiment

Figure 3: A selection of reconstructed frames in Baseline and Circular Motion experiments.

Reconstructions in Figure 3a confirm what we observed in Figure 1 and Table 1. The incompress-

ible Affine predictor produces slightly sharper reconstructions than other Flow predictors, with No

prediction yielding the blurriest results.

In the Circular Motion experiment, an inclusion moves in a circular trajectory. By Figures 2 and 3b

and Table 1, Affine again provides the sharpest reconstructions and lowest objective values, while No

Prediction performs the worst.

Figure 4 compares the true target, a static solution using RIPGN, and online reconstruction with

Affine at frame 500. The static reconstruction is sharper but significantly slower, taking 71.9 seconds,

whereas online reconstruction with Algorithm 1 captures essential features in just 12.1 milliseconds.

The third experiment involves a halting inclusion. By Figures 5 and 7a and Table 1, the reconstruction

quality, the relative objective values and iterate errors align with previous experiments. Notably, as

objects slow down, especiallywithNo Prediction, reconstructions improve. This aligns with expectations,

as, aside from the noise, the data is static, where identity prediction is optimal.

The final experiment features two inclusions vanishing at different frames (500 and 1000) and
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Figure 4: Circular Motion experiment. Comparison of the reconstruction quality. Left: true target.

Middle: static reconstruction with RIPGN. Right: online reconstruction with Algorithm 1 and

Affine prediction.

No prediction Primal Only Greedy Affine

0 500 1 000 1 500 2 000

10
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0

(a) Relative objective value

0 500 1 000 1 500 2 000

0.1

0.15

(b) Relative error to ground-truth

Figure 5: Iteration-wise objective value and relative error in Halting Motion experiment.

reappearing at frame 1500. Table 1 and Figure 6 show similar results to the previous cases, although by

average relative error, the differences between Affine and No Prediction and Primal Only are smaller.

However, Figure 6 reveals abrupt spikes in the objective value and in the relative error when objects

disappear, followed by subsequent decreases as reconstructions exhibit fewer edges, resulting in lower

total variation penalties. No Prediction dominates when both inclusions disappear since, aside from the

noise, the data is completely static. By Figure 7b, the reconstructions accurately capture the process of

inclusions disappearing and reappearing.

5 conclusions

Online optimisation offers a real-time option for solving sequential optimisation problems. While its

application in dynamic inverse problems remains relatively rare, we introduced a predictive online

primal-dual proximal splittingmethod tailored for objective functions with non-smooth and non-convex

components.

We established a regret bound for this method and we comprehensively evaluated the method in

dynamic EIT. Through numerical evaluations using incompressible constant flow-based predictors, we

have demonstrated a substantial enhancement in reconstruction quality when compared to uninformed

predictions, even in cases where the assumptions of constancy and incompressibility were violated.

Remarkably, this improvementwas achievedwhilemaintainingminimal computational times, averaging

just around 12 milliseconds.

It is worth noting that, in our experiments, the online reconstruction quality, albeit slightly inferior,

remained competitive with significantly slower and computationally more costly static reconstructions.

We anticipate further enhancements in the computational speed of our algorithm through optimised

numerical implementations, promising even more efficient and effective solutions in the future.
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Figure 6: Iteration-wise objective value and relative error for Disappearing Inclusions.
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(a) Halting Motion experiment
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(b) Disappearing Inclusions experiment

Figure 7: A selection of reconstructed frames inHaltingMotion andDisappearing Inclusions experiments.
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appendix a the data fitting term and its properties

In this appendix, we prove Corollary a.5 on smoothness inequalities for

𝐸𝑘 (𝑥) :=
1

2

∥𝑆𝑘 (𝑥) − 𝑏𝑘 ∥2

𝑍𝑘
,

required in the proof of Theorem 3.6. We assume:

Assumption a.1. Let 𝑆𝑘 : 𝑋𝑘 ↦→ 𝑍𝑘 be twice Fréchet differentiable between the Hilbert spaces 𝑋𝑘 and

𝑍𝑘 , and suppose 𝑆 ′
𝑘
(𝑥) ∈ 𝕃(𝑋𝑘 ;𝑍𝑘 ) and 𝑆 ′′𝑘 (𝑥) ∈ 𝕃(𝑋𝑘 × 𝑋𝑘 ;𝑍𝑘 ) satisfy

∥𝑆 ′
𝑘
(𝑥) (𝑦 − 𝑥)∥𝑍𝑘

≤ 𝑆 ′
max

∥𝑦 − 𝑥 ∥𝑋𝑘
and

∥𝑆 ′′
𝑘
(𝑥) (𝑦 − 𝑥, 𝑧 − 𝑥)∥𝑍𝑘

≤ 𝑆 ′′
max

∥𝑦 − 𝑥 ∥𝑋𝑘
∥𝑧 − 𝑥 ∥𝑋𝑘

for all 𝑥, 𝑦, 𝑧 ∈ 𝐵(𝑥, 𝛿),

For brevity, in the proofs, we drop the time index 𝑘 as it bears no impact on our analysis. We also

abbreviate 𝑆 ′𝑧 (ℎ) := 𝑆 ′(𝑧) (ℎ) and 𝑅(𝑥) = 𝑆𝑘 (𝑥) − 𝑏𝑘 . Then 𝐸 (𝑥) = 1

2
∥𝑅(𝑥)∥2

, keeping in mind that

𝑆 ′
𝑘
= 𝑅′ and 𝑆 ′′

𝑘
= 𝑅′′. We start with an auxiliary lemma.
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Lemma a.2. Suppose that Assumption a.1 holds for some 𝑥 ∈ 𝑋𝑘 and 𝛿 > 0, and that 𝑥, 𝑧 ∈ 𝐵(𝑥, 𝛿). Then,
𝑐 = 𝑧 + 𝑡 (𝑥 − 𝑧) and some 𝑡 ∈ [0, 1],

⟨∇𝐸𝑘 (𝑧), 𝑧 − 𝑥⟩𝑋𝑘
= 𝐸𝑘 (𝑧) − 𝐸𝑘 (𝑥) +

1

2

∥𝑆 ′
𝑘
(𝑧) (𝑥 − 𝑧)∥2

𝑍𝑘
− 1

8

∥𝑆 ′′
𝑘
(𝑐) (𝑥 − 𝑧, 𝑥 − 𝑧)∥2

𝑍𝑘

+ 1

2

⟨𝑆 ′′
𝑘
(𝑐) (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑆𝑘 (𝑥) − 𝑏𝑘⟩𝑍𝑘

.

Proof. Since 𝑆𝑘 and therefore 𝑅 is twice differentiable, Taylor expansion gives for 𝑐 := 𝑥 + 𝑡 (𝑧 − 𝑥) and
some 𝑡 ∈ [0, 1] that

(a.1) 𝑅(𝑥) = 𝑅(𝑧) + 𝑅′𝑧 (𝑥 − 𝑧) + 1

2

𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧).

Expanding 𝐸 (𝑥) − 𝐸 (𝑧) and using (a.1) and ⟨∇𝐸 (𝑧), 𝑥 − 𝑧⟩ = ⟨𝑅′𝑧 (𝑥 − 𝑧), 𝑅(𝑧)⟩ then yields

(a.2) 𝐸 (𝑥) − 𝐸 (𝑧) = 1

2

(
∥𝑅(𝑥)∥2 − ∥𝑅(𝑧)∥2

)
=

1

2

⟨𝑅(𝑥) − 𝑅(𝑧), 𝑅(𝑥) + 𝑅(𝑧)⟩

=
1

2

⟨𝑅(𝑧) + 𝑅′𝑧 (𝑥 − 𝑧) + 1

2

𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧) − 𝑅(𝑧), 𝑅(𝑥) + 𝑅(𝑧)⟩ = 1

2

⟨∇𝐸 (𝑧), 𝑥 − 𝑧⟩ +𝐴,

where an application of (a.1) establishes

(a.3) 𝐴 :=
1

2

(〈
𝑅′𝑧 (𝑥 − 𝑧) + 1

2

𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑥)
〉
+ 1

2

〈
𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑧)

〉)
=

1

2

〈
𝑅′𝑧 (𝑥 − 𝑧) + 1

2

𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑧) + 𝑅′𝑧 (𝑥 − 𝑧) + 1

2

𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧)
〉

+ 1

4

⟨𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑧)⟩ = 1

2

⟨∇𝐸 (𝑧), 𝑥 − 𝑧⟩ + 1

2

∥𝑅′𝑧 (𝑥 − 𝑧)∥2 + 𝐵.

Here again, an application of (a.1), gives

(a.4) 𝐵 :=
1

8

∥𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧)∥2 + 1

2

⟨𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑧) + 𝑅′𝑧 (𝑥 − 𝑧)⟩

= − 1

8

∥𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧)∥2 + 1

2

⟨𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑥)⟩.

By combining (a.2)–(a.4), we obtain the claim. □

With the help of Lemma a.2, we next derive a lower bound for ⟨∇𝐸𝑘 (𝑧), 𝑥 − 𝑥⟩𝑋𝑘
.

Lemma a.3. Suppose that Assumption a.1 holds for some 𝑥 ∈ 𝑋𝑘 and 𝛿 > 0. Then

⟨∇𝐸𝑘 (𝑧), 𝑥 − 𝑥⟩𝑋𝑘
≥ 𝐸𝑘 (𝑥) − 𝐸𝑘 (𝑥) +

1 − 𝛽
2

∥𝑆 ′
𝑘
(𝑧) (𝑥 − 𝑥)∥2

𝑍𝑘
− 1

2𝛽
∥𝑆 ′

𝑘
(𝑧) (𝑥 − 𝑧)∥2

𝑍𝑘

− 𝐴

2

∥𝑥 − 𝑥 ∥2

𝑋𝑘
− 𝐵

2

∥𝑥 − 𝑧∥2

𝑋𝑘

for all 𝑥, 𝑧 ∈ 𝐵(𝑥, 𝛿), where for any 𝛽 > 0,

𝐴 := 𝑆 ′′
max

(
2∥𝑆𝑘 (𝑥) − 𝑏𝑘 ∥𝑍𝑘

+ 𝛿2𝑆 ′′
max

/2

)
and

𝐵 := 𝑆 ′′
max

(
𝑆 ′

max
𝛿 + 3∥𝑆𝑘 (𝑥) − 𝑏𝑘 ∥𝑍𝑘

+ 𝛿2𝑆 ′′
max

/2

)
.(a.5)

Proof. Since 𝑥, 𝑧, 𝑥 ∈ 𝐵(𝑥, 𝛿), applying Lemma a.2 twice establishes for some 𝑡1, 𝑡2 ∈ [0, 1] and 𝑏 :=

𝑧 + 𝑡1(𝑥 − 𝑧) and 𝑐 := 𝑧 + 𝑡2(𝑥 − 𝑧) the identity

(a.6) ⟨∇𝐸 (𝑧), 𝑥 − 𝑥⟩ = ⟨∇𝐸 (𝑧), 𝑥 − 𝑧⟩ + ⟨∇𝐸 (𝑧), 𝑧 − 𝑥⟩

= 𝐸 (𝑥) − 𝐸 (𝑥) + 1

2

∥𝑅′𝑧 (𝑥 − 𝑧)∥2 − 1

8

∥𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧)∥2 + 1

2

⟨𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑥)⟩

− 1

2

∥𝑅′𝑧 (𝑥 − 𝑧)∥2 + 1

8

∥𝑅′′
𝑏
(𝑥 − 𝑧, 𝑥 − 𝑧)∥2 − 1

2

⟨𝑅′′
𝑏
(𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑥)⟩.
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Next, we estimate the 𝑥 − 𝑧 terms with similar 𝑥 − 𝑥 and 𝑥 − 𝑧 terms. First, let us inspect the term

∥𝑅′𝑧 (𝑥 − 𝑧)∥2
. By Young’s inequality and the linearity of 𝑅′,

(a.7)

1

2

∥𝑅′𝑧 (𝑥 − 𝑧)∥2 =
1

2

∥𝑅′𝑧 (𝑥 − 𝑥) − 𝑅′𝑧 (𝑧 − 𝑥)∥2 ≥ 1 − 𝛽
2

∥𝑅′𝑧 (𝑥 − 𝑥)∥2 + 1 − 𝛽−1

2

∥𝑅′𝑧 (𝑧 − 𝑥)∥2.

Next,we inspect the term ∥𝑅′′𝑐 (𝑥−𝑧, 𝑥−𝑧)∥2
. 𝑅 is bilinear and bounded by𝑅′′

max
= 𝑆 ′′

max
byAssumption a.1,

thus Young’s inequality, and 𝑧 ∈ 𝐵(𝑥, 𝛿) gives

(a.8) ∥𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧)∥2 ≤ 2∥𝑅′′𝑐 (𝑥 − 𝑥, 𝑥 − 𝑧)∥2 + 2∥𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧)∥2

≤ 2(𝑅′′
max

)2∥𝑥 − 𝑥 ∥2𝛿2 + 2(𝑅′′
max

)2∥𝑥 − 𝑧∥2𝛿2.

Finally, let us inspect the term ⟨𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑥)⟩ − ⟨𝑅′′
𝑏
(𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑥)⟩. Notice that by mean

value theorem 𝑅(𝑥) = 𝑅(𝑥) +𝑅′𝑎 (𝑥 −𝑥) for 𝑎 = 𝑥 +𝑡3(𝑥 −𝑥) with some 𝑡3 ∈ [0, 1]. Using this, bilinearity
and symmetricity of 𝑅′′, boundedness of 𝑅′ and 𝑅′′, Cauchy-Schwartz and Young’s inequalities, and

𝑥 ∈ 𝐵(𝑥, 𝛿) we obtain

(a.9) ⟨𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑥)⟩ − ⟨𝑅′′
𝑏
(𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑥)⟩

= ⟨𝑅′′𝑐 (𝑥 − 𝑥, 𝑥 − 𝑥), 𝑅(𝑥)⟩ − ⟨𝑅′′
𝑏
(𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅′𝑎 (𝑥 − 𝑥)⟩

+ ⟨𝑅′′𝑐 (𝑥 − 𝑧, 𝑥 − 𝑧) − 𝑅′′
𝑏
(𝑥 − 𝑧, 𝑥 − 𝑧), 𝑅(𝑥)⟩ + 2⟨𝑅′′𝑐 (𝑥 − 𝑥, 𝑥 − 𝑧), 𝑅(𝑥)⟩

≥ −𝑆 ′′
max

∥𝑅(𝑥)∥∥𝑥 − 𝑥 ∥2 − 𝑆 ′′
max

𝑆 ′
max

𝛿 ∥𝑥 − 𝑧∥2 − 2𝑆 ′′
max

∥𝑅(𝑥)∥∥𝑥 − 𝑧∥2

− 2𝑆 ′′
max

∥𝑅(𝑥)∥∥𝑥 − 𝑥 ∥∥𝑥 − 𝑧∥
≥ −𝑆 ′′

max

(
2∥𝑅(𝑥)∥∥𝑥 − 𝑥 ∥2 +

(
3∥𝑅(𝑥)∥ + 𝑆 ′

max
𝛿
)
∥𝑥 − 𝑧∥2

)
.

Finally, applying the above estimates (a.7)–(a.9) to (a.6) shows that

⟨∇𝐸 (𝑧), 𝑥 − 𝑥⟩ ≥ 𝐸 (𝑥) − 𝐸 (𝑥) + 1 − 𝛽
2

∥𝑅′𝑧 (𝑥 − 𝑥)∥2 − 1

2𝛽
∥𝑅′𝑧 (𝑧 − 𝑥)∥2 − 𝑆 ′′

max
∥𝑅(𝑥)∥∥𝑥 − 𝑥 ∥2

−
𝑆 ′′

max
(𝑆 ′

max
𝛿 + 3∥𝑅(𝑥)∥)
2

∥𝑥 − 𝑧∥2 −
𝛿2(𝑅′′

max
)2

4

(
∥𝑥 − 𝑥 ∥2 + ∥𝑥 − 𝑧∥2

)
. □

The next corollary transfers 𝑆 ′
𝑘
(𝑧) to 𝑆 ′

𝑘
(𝑥) in one of the terms.

Corollary a.4. Suppose Assumption a.1 holds for some 𝑥 ∈ 𝑋𝑘 and 𝛿 > 0. Then

⟨∇𝐸𝑘 (𝑧), 𝑥 − 𝑥⟩𝑋𝑘
≥ 𝐸𝑘 (𝑥) − 𝐸𝑘 (𝑥) +

(1 − 𝛽)2

2

∥𝑆 ′
𝑘
(𝑥) (𝑥 − 𝑥)∥2

𝑍𝑘
− 1

2𝛽
∥𝑆 ′

𝑘
(𝑧) (𝑥 − 𝑧)∥2

𝑍𝑘

− 𝐶
2

∥𝑥 − 𝑥 ∥2

𝑋𝑘
− 𝐵

2

∥𝑥 − 𝑧∥2

𝑋𝑘
,

for all 𝑥, 𝑧 ∈ 𝐵(𝑥, 𝛿), where, for any 1 > 𝛽 > 0, 𝐵 is given in (a.5), and

(a.10) 𝐶 := 𝐴 + 𝑆 ′′
max

𝛽−1(𝛽 − 1)2𝛿2 = 𝑆 ′′
max

(
2∥𝑆𝑘 (𝑥) − 𝑏𝑘 ∥𝑍𝑘

+ 𝛿2𝑆 ′′
max

/2 + 𝛽−1(𝛽 − 1)2𝛿2
)
.

Proof. With fixed ℎ, 𝑅′𝑧 (ℎ) is continuously differentiable by Assumption a.1. Thus, by the main value

theorem, for 𝑎 = 𝑥 + 𝑡1(𝑥 − 𝑥) with some 𝑡1 ∈ [0, 1], we have

𝑅′𝑧 (𝑥 − 𝑥) = 𝑅′(𝑧) (𝑥 − 𝑥) = 𝑅′(𝑥) (𝑥 − 𝑥) + 𝑅′′(𝑎) (𝑥 − 𝑥, 𝑧 − 𝑥)(a.11)

= 𝑅′𝑥 (𝑥 − 𝑥) + 𝑅′′𝑎 (𝑥 − 𝑥, 𝑧 − 𝑥) .

Since 𝛽 > 0, (a.11), 𝑧 ∈ 𝐵(𝑥, 𝛿), Young’s inequality and the boundedness of 𝑅′′ (due to boundedness of

𝑆 ′′ in Assumption a.1) show that

∥𝑅𝑧 (𝑥 − 𝑥)∥2 = ∥𝑅′𝑥 (𝑥 − 𝑥)∥2 + ∥𝑅′′𝑎 (𝑥 − 𝑥, 𝑧 − 𝑥)∥2 + 2⟨𝑅′𝑥 (𝑧 − 𝑥), 𝑅′′𝑎 (𝑥 − 𝑥, 𝑧 − 𝑥)⟩
≥ (1 − 𝛽)∥𝑅′𝑥 (𝑥 − 𝑥)∥2 − (𝛽−1 − 1)∥𝑅′′𝑎 (𝑥 − 𝑥, 𝑧 − 𝑥)∥2

≥ (1 − 𝛽)∥𝑅′𝑥 (𝑥 − 𝑥)∥2 − (𝛽−1 − 1)𝑆 ′′
max

𝛿2∥𝑥 − 𝑥 ∥2.

Since (1 − 𝛽) (𝛽−1 − 1) = (𝛽 − 1)2/𝛽 , using this and Lemma a.3 yields the claim. □
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Finally, we state conditions that guarantee the growth estimates of Assumptions 2.3 and 2.5 for 𝐸.

Essentially, 𝑆 ′(𝑥)∗𝑆 ′(𝑥) has to be sufficiently elliptic.

Corollary a.5. Suppose that Assumption a.1 holds for some 𝑥 ∈ 𝑋𝑘 and 𝛿 > 0. Let 𝑥, 𝑧 ∈ 𝐵(𝑥, 𝛿), and
suppose some 1 > 𝛽 > 0 and some 𝜀 ∈ ℝ that

∥𝑆 ′
𝑘
(𝑥) (𝑥 − 𝑥)∥2

𝑍𝑘
≥ 𝐶 + 2𝜀

(1 − 𝛽)2
∥𝑥 − 𝑥 ∥2

𝑋𝑘
(a.12)

for 𝐶 defined in (a.10). Then, for 𝐵 defined in (a.5) and 𝐷 := 1

2
𝐵 + 1

2𝛽
(𝑆 ′

max
)2
,

⟨∇𝐸𝑘 (𝑧), 𝑥 − 𝑥⟩𝑋𝑘
≥ 𝐸𝑘 (𝑥) − 𝐸𝑘 (𝑥) + 𝜀∥𝑥 − 𝑥 ∥2

𝑋𝑘
− 𝐷 ∥𝑥 − 𝑧∥2

𝑋𝑘
(a.13)

Additionally, if for some 𝜀 ∈ ℝ also

∥𝑆 ′
𝑘
(𝑥) (𝑥 − 𝑥)∥2

𝑍𝑘
≥ 2

(
𝜀 + 𝑆 ′′

max

((𝛿
8

+ 𝑆 ′
max

)
𝛿 + ∥𝑆𝑘 (𝑥) − 𝑏𝑘 ∥𝑍𝑘

))
∥𝑥 − 𝑥 ∥2

𝑋𝑘
,(a.14)

then

⟨∇𝐸 (𝑧) − ∇𝐸 (𝑥), 𝑥 − 𝑥⟩𝑋𝑘
≥ (𝜀 + 𝜀)∥𝑥 − 𝑥 ∥2

𝑋𝑘
− 𝐷 ∥𝑥 − 𝑧∥2

𝑋𝑘
.(a.15)

Proof. The boundedness of 𝑅′, Corollary a.4, and (a.12) yield

𝐸 (𝑥) − 𝐸 (𝑥) + ⟨∇𝐸 (𝑧), 𝑥 − 𝑥⟩ ≥ (1 − 𝛽)2

2

∥𝑅𝑥 (𝑥 − 𝑥)∥2 − 1

2𝛽
∥𝑅′(𝑧) (𝑥 − 𝑧)∥2

− 𝐶
2

∥𝑥 − 𝑥 ∥2 − 𝐵

2

∥𝑥 − 𝑧∥2

≥ 𝜀∥𝑥 − 𝑥 ∥2 − 1

2𝛽
(𝑆 ′

max
)2∥𝑥 − 𝑧∥2 −

(
𝐷 − 1

2𝛽
(𝑆 ′

max
)2

)
∥𝑥 − 𝑧∥2

= 𝜀∥𝑥 − 𝑥 ∥2 − 𝐷 ∥𝑥 − 𝑧∥2.

This gives (a.13). Subtracting ⟨∇𝐸 (𝑥), 𝑥 − 𝑥⟩ from both sides, we further obtain

(a.16) ⟨∇𝐸 (𝑧) − ∇𝐸 (𝑥), 𝑥 − 𝑥⟩ ≥ 𝐸 (𝑥) − 𝐸 (𝑥) + 𝜀∥𝑥 − 𝑥 ∥2 − 𝐷 ∥𝑥 − 𝑧∥2 − ⟨∇𝐸 (𝑥), 𝑥 − 𝑥⟩.

Recall that by the mean value theorem 𝑅(𝑥) = 𝑅(𝑥) + 𝑅′𝑎 (𝑥 − 𝑥). Thus

∥𝑅(𝑥)∥ = ∥𝑅(𝑥) − 𝑅(𝑥) + 𝑅(𝑥)∥ ≤ ∥𝑅′𝑎 (𝑥 − 𝑥)∥ + ∥𝑅(𝑥)∥ ≤ 𝑆 ′
max

∥𝑥 − 𝑥 ∥ + ∥𝑅(𝑥)∥.

This, Lemma a.2 with 𝑧 = 𝑥 , 𝑥 ∈ 𝐵(𝑥, 𝛿), and (a.14) give

𝐸 (𝑥) − 𝐸 (𝑥) − ⟨∇𝐸 (𝑥), 𝑥 − 𝑥⟩ = 1

2

∥𝑅′𝑥 (𝑥 − 𝑥)∥2 − 1

8

∥𝑅′′𝑎 (𝑥 − 𝑥, 𝑥 − 𝑥)∥2 + ⟨𝑅′′𝑎 (𝑥 − 𝑥, 𝑥 − 𝑥), 𝑅(𝑥)⟩

≥ 1

2

∥𝑅′𝑥 (𝑥 − 𝑥)∥2 −
𝑆 ′′

max

8

∥𝑥 − 𝑥 ∥4 − 𝑆 ′′
max

∥𝑅(𝑥)∥∥𝑥 − 𝑥 ∥2

≥ 1

2

∥𝑅′𝑥 (𝑥 − 𝑥)∥2 − 𝑆 ′′
max

(
𝛿2

8

+ 𝑆 ′
max

𝛿 + ∥𝑅(𝑥)∥
)
∥𝑥 − 𝑥 ∥2 ≥ 𝜀∥𝑥 − 𝑥 ∥2.

Plugging this into (a.16) yields (a.15) □

appendix b implementation details

We now elaborate on the background gradient approximation scheme and the step length parameters

choices used in the numerical experiments.
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appendix b.1 background solution of pdes

Formally, the gradient of the approximation scheme of Section 4.2.1 takes

∇̃𝐸 (𝑥𝑘 ) := ∇𝑆 𝑗 (𝑥 𝑗 )∗
(
𝑆 𝑗 (𝑥 𝑗 ) − 𝑏𝑘

)
,

for some past time index 0 ≤ 𝑗 ≤ 𝑘 . As we keep the excitation potentials fixed at every frame,𝑈 𝑘 =𝑈 𝑗

for any 𝑗, 𝑘 ≥ 0, hence 𝐼𝑘 (𝑥) = 𝐼 𝑗 (𝑥) and ∇ ˜𝑆𝑘 (𝑥) = Σ−1/2∇ ˜𝐼𝑘 (𝑥) = Σ−1/2∇𝐼 𝑗 (𝑥) = ∇ ˜𝑆 𝑗 (𝑥) for all 𝑥 ,
meaning that 𝑆𝑘 = 𝑆 𝑗 .

Lemma b.1. Suppose 0 < 𝑥𝑚 < 𝑥𝑀 < ∞, X𝑘 is finite dimensional, and that Ω ⊂ ℝ𝑑
is a Lipschitz domain.

Further, define 𝐸𝑘 by (3.20), and suppose that 𝑆𝑘 = 𝑆 𝑗 and 𝑌𝑘 = 𝑌𝑗 for any 𝑘, 𝑗 ∈ ℕ, and that 𝐸𝑘 , 𝑥
𝑘
, and

𝑥𝑘 satisfy the assumptions of Theorem 3.6. Then 𝐸𝑘 (𝑥) and ∇̃𝐸 (𝑥𝑘 ) satisfy Assumption 2.5 with error

terms

𝑒𝑘 = 𝑒𝑘 = 𝑒𝑘 = (𝑆 ′
max

)2(𝑆max + ∥𝑏𝑘 ∥𝑌𝑘 )𝛿 ∥𝑥 𝑗 − 𝑥𝑘 ∥𝑋𝑘
.

Proof. Since 𝑆𝑘 is differentiable by Lemma 3.3, so is 𝐸𝑘 . Let 𝑥 = 𝑥 𝑗
for some 𝑗 ≤ 𝑘 . Since 𝑆𝑘 = 𝑆 𝑗 and

𝑌𝑘 = 𝑌𝑘 ,

⟨∇𝐸 𝑗 (𝑥 𝑗 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋 𝑗
= ⟨𝑆 ′𝑗 (𝑥 𝑗 ) (𝑥𝑘 − 𝑥𝑘 ), 𝑆 𝑗 (𝑥 𝑗 ) − 𝑏𝑘⟩𝑌𝑗

= ⟨𝑆 ′
𝑘
(𝑥 𝑗 ) (𝑥𝑘 − 𝑥𝑘 ), 𝑆𝑘 (𝑥 𝑗 ) − 𝑏𝑘⟩𝑌𝑘 = ⟨∇𝐸𝑘 (𝑥 𝑗 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋𝑘

.

Thus for a 𝑧 ∈ ¯𝐵(𝑥𝑘 , ∥𝑥 𝑗 − 𝑥𝑘 ∥), by the mean value theorem,

⟨∇𝐸𝑘 (𝑥 𝑗 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋𝑘
= ⟨∇𝐸𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋𝑘

+ ⟨∇𝐸′
𝑘
(𝑧) (𝑥 𝑗 − 𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋𝑘

.

Since 𝑥𝑘 ∈ 𝐵(𝑥𝑘 , 𝛿),

⟨∇𝐸′
𝑘
(𝑧) (𝑥 𝑗 − 𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋𝑘

= ⟨𝑆 ′′
𝑘
(𝑧) (𝑥𝑘 − 𝑥𝑘 ) (𝑥 𝑗 − 𝑥𝑘 ), 𝑆𝑘 (𝑧) − 𝑏𝑘⟩𝑌𝑘

+ ⟨𝑆 ′
𝑘
(𝑧) (𝑥𝑘 − 𝑥𝑘 ), 𝑆 ′

𝑘
(𝑧) (𝑥 𝑗 − 𝑥𝑘 )⟩𝑌𝑘

≤ 𝑆 ′′
max

(𝑆max + ∥𝑏𝑘 ∥𝑌𝑘 )∥𝑥𝑘 − 𝑥𝑘 ∥𝑋𝑘
∥𝑥 𝑗 − 𝑥𝑘 ∥𝑋𝑘

+ (𝑆 ′
max

)2∥𝑥𝑘 − 𝑥𝑘 ∥𝑋𝑘
∥𝑥 𝑗 − 𝑥𝑘 ∥𝑋𝑘

≤ 𝑆 ′′
max

(𝑆max + ∥𝑏𝑘 ∥𝑌𝑘 )𝛿 ∥𝑥 𝑗 − 𝑥𝑘 ∥𝑋𝑘
+ (𝑆 ′

max
)2𝛿 ∥𝑥 𝑗 − 𝑥𝑘 ∥𝑋𝑘

=: 𝑒𝑘

Now given that 𝑆𝑘 satisfies the assumptions of Theorem 3.6, we have

𝐸𝑘 (𝑥𝑘 ) − 𝐸𝑘 (𝑥𝑘 ) + 𝜃 ∥𝑥𝑘 − 𝑥𝑘 ∥2

𝑋 − 𝐷 ∥𝑥𝑘 − 𝑥𝑘 ∥2

𝑋 ≤ ⟨∇𝐸𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋𝑘

= ⟨∇𝐸𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋𝑘
+ ⟨∇𝐸′

𝑘
(𝑧) (𝑥 𝑗 − 𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋𝑘

≤ ⟨∇𝐸𝑘 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘⟩𝑋𝑘
+ 𝑒𝑘 .

Thus Assumption 2.5 holds as claimed. □

The error term 𝑒𝑘 (and likewise 𝑒𝑘 and 𝑒𝑘 ) depends on the measurements 𝑏𝑘 and on the linearisation

lag through the term 𝑥𝑘 − 𝑥𝑘 . The exact values of 𝑆 ′
max

and 𝑆 ′′
max

are given in Section 3.3 and it is easily

verified from (3.7) and (3.20) that 𝑆max = 𝑁2∥Σ−1/2∥2 max𝑗,𝑘 (𝐶2∥𝑈 𝑗,𝑘 ∥2 + ∥I 𝑗,𝑘 ∥2).

appendix b.2 step length parameter choice

The reasoning behind the choice of 𝜏 and 𝜎 is as follows: We set 𝜅𝑘 ≡ 𝜅 := 0.15 and assume that
1

2
𝜆𝐸,𝑘 ,

¯𝜆𝐸,𝑘 , and
ˆ𝜆𝐸,𝑘 are all bounded by 𝐿∇𝐸 , where 𝐿∇𝐸 satisfies 𝐿∇𝐸 ≤ 1

2
∥Σ−1/2∇𝐼 (𝑥) (Σ−1/2∇𝐼 (𝑥))∗∥. This

norm is computationally efficient, with a manageable size of 240 × 240. Under these assumptions, the

first term in (2.7b) becomes

0.85 > max

{
𝜆𝐸,𝑘 ,−2(𝛾𝑘 + 𝛾𝐸,𝑘 ),

2

1 − 𝜅𝑘
¯𝜆𝐸,𝑘 ,

2

1 − 𝜅𝑘
ˆ𝜆𝐸,𝑘

}
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From numerical experiments, we determined that ∥𝐾𝑘 ∥ ≈ 16 · 10
−6

and that, in all cases, 2𝐿∇𝐸 ≤ 10
4
.

Consequently, the choice of 𝜏 and 𝜎 ensures that 0.85 · 10
4 · 16 · 10

−6 < 0.15, satisfying the condition in

(2.7b).

The approximation of 𝜆𝐸,𝑘 ,
¯𝜆𝐸,𝑘 , and

ˆ𝜆𝐸,𝑘 is heuristic, derived from the convex static case where all

these terms would equal 𝐿∇𝐸 . Numerically, we observed that the algorithm typically diverged when

𝜅 < 0.15, indicating the reasonability of the approximation.
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