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non-planar sensing skins for structural health
monitoring based on electrical resistance

tomography

Jyrki Jauhiainen∗ Mohammad Pour-Ghaz† Tuomo Valkonen‡ Aku Seppänen§

Abstract Electrical resistance tomography (ERT) -based distributed surface sensing systems,
or sensing skins, o�er alternative sensing techniques for structural health monitoring, providing
capabilities for distributed sensing of, for example, damage, strain and temperature. Currently,
however, the computational techniques utilized for sensing skins are limited to planar surfaces. In
this paper, to overcome this limitation, we generalize the ERT-based surface sensing to non-planar
surfaces covering arbitrarily shaped three-dimensional structures; We construct a framework in
which we reformulate the image reconstruction problem of ERT using techniques of Riemannian
geometry, and solve the resulting problem numerically. We test this framework in series of nu-
merical and experimental studies. The results demonstrate that the feasibility of the proposed
formulation and the applicability of ERT-based sensing skins for non-planar geometries.

1 introduction

A component of SHM is a sensor network consisting of variety of sensors utilizing a variety of
techniques, that continuously monitors the condition of the infrastructure [45]. While the sensing
techniques have advanced signi�cantly over the past twenty years, utilization of SHM to real-life
infrastructure is still relatively rare. Many factors contribute to the slow adaptation of SHM for
infrastructure, including the high cost of implementing and maintaining, as well as di�culty of the
interpretation of measurements. The interpretation of the measurements is especially challenging
when a large number of discrete sensors are used without the utilization of a model-based interpretation
approach. Distributed sensors and sensing systems may o�er an alternative that at times can be more
cost e�ective. Especially, distributed sensors that are model-based and provide direct visualization of
the data can overcome many of the limitations of discrete sensors. An example of such system is an
electrical resistance tomography (ERT) -based sensing skin [8].

ERT based sensing skin is a distributed surface sensing system that uses a layer of electrically
conductive material (such as colloidal metallic paint [8, 9] or carbon nanotube �lm [25, 24]) which is
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applied to a surface of a structure. Also, a set of electrodes are placed on the surface, and based on
multiple electric current/potential excitations and measurements from the electrodes, the spatially
distributed electrical conductivity of the sensing layer is reconstructed. The surface coating material is
designed so that the changes in its electrical conductivity give information on physical or chemical
conditions of the underlying structure.

One application of ERT-based sensing skins is damage detection: [25, 24, 8, 9] Cracking of the
structure surface breaks also the sensor layer, decreasing the conductivity of the layer material locally.
The ERT reconstruction, that represents the electrical conductivity of the layer, thus reveals the crack
pattern on the surface. ERT based sensing skins have also been developed for detection of pressure
changes [6], strains [25, 36], pH changes [14], chloride ions [31], and temperature distributions [27].

In the above cited papers, ERT-based sensing skins were applied to planar geometry only. In many
applications, however, the structures of interest have a complex three-dimensional geometry, and the
surface to be monitored is non-planar; examples of such target structures are pipelines, pumps and
pressure vessels.

In addition to SHM, ERT-based sensing systems have been applied to robotics, where the sensing
skin is used for detecting and localizing touch via pressure sensing [1, 2, 46]. In publication [32], an
ERT-based touch sensor made of conductive fabric was wound around an arti�cial arm. The winding
did not cause wrinkles to the fabric, but since the fabric was bent, the geometry was non-planar.
The computational model used in the study, however, assumed a planar geometry. Although earlier
studies have indicated that at least certain sensing skin materials are very sensitive to stretching and
bending [1, 2], neglecting these e�ects by the use of planar approximation did not cause signi�cant
reconstruction artifacts in [32]. Nevertheless. it is not guaranteed that the planar approximation works
with all materials, especially when aiming at quantitative imaging [9]. Even more importantly, in
many potential SHM applications, the planar approximation of the sensor is impossible, because of the
nontrivial topology of the surface. This is the case for example with all the geometries considered in
the numerical and experimental studies of this paper (Figure 1).

Another application, very similar to SHM with sensing skin is the use of ERT with self-sensing
materials [36, 38]. Recently, ERT imaging was applied to self-sensing composite tubes for damage
detection, and the structure was non-planar [41]. In this case, the 3D structure of the target material
was modeled as in other 3D ERT applications [42, 3, 26]. While in the self-sensing applications, the
structures – and thus also sensors – are inherently three-dimensional, in sensing skin applications the
thickness of a sensor is several orders of magnitudes lower than its other dimensions. Clearly, this
type of sensor can be modeled as a surface in three-dimensional space, and a full three-dimensional
model would be unnecessarily complicated, making the computations more complex and more prone
to numerical errors.

In this paper, we formulate the problem of imaging a thin, electrically conductive surface material
– sensing skin – applied on an arbitrarily shaped three-dimensional object by modeling it as a two-
dimensional surface in the three-dimensional space, or, mathematically as a manifold. The mathematical
framework of the formulation is referred to as di�erential geometry. The technical details are in
Appendix a. The focus of the journal paper is in the numerical and experimental evaluation of this
approach. In numerical and experimental studies, we evaluate the approach in cases of three non-
planar geometries. In these studies, we consider two target applications; crack detection and imaging
of di�usive processes (such as heat conduction on solid materials).

2 non-planar ert imaging

In ERT imaging, the conductivity of the target is reconstructed from the voltage and current data
obtained through a set of electrodes placed on the surface of the target. Typically, the target is treated
as a three-dimensional or as a planar two-dimensional domain. However, in order to reconstruct the
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conductivity of an arbitrary shaped sensing skin, we consider the target as an arbitrary surface in
three-dimensions.

In this section, we �rst write a model that describes the ERT measurements given the surface
conductivity; this is referred to as the forward model of ERT, and it is approximated numerically
using the �nite element method (FEM). The inverse problem of ERT is to reconstruct the conductivity
given the current/potential measurements. The inverse problem is ill-posed in the sense that the
"conventional" solutions to this problem are non-unique and extremely intolerant to measurement
noise and modelling errors. For this reason, the solutions of the inverse problem require a priori

information on the conductivity, or regularization of the problem [16]. In this paper, we formulate the
inverse problem as a regularized least-squares problem, where the data �delity term utilizes the FEM
approximation of the forward model.

2.1 modeling of measurements

Consider a measurement setup in which the measurement data is obtained by sequentially setting
each electrode to a known potential, grounding others, and measuring the electric current caused by
potential di�erence. We note that many of the existing ERT measurement systems operate the other
way round – using current excitations and potential measurements. However, for a such system, the
formulation of both the forward and inverse problem are analogous with the formulation written in
this section. The choice of using potential excitations and current measurements is made, because the
commercial measurement device employed for the experiments (Section 4) uses this procedure.

The above described measurement setting constitutes the following forward problem: solve the
electric current �?

:
(f) through each electrode : , given the spatially distributed conductivity f (G) (where

G = (G1, G2, G3) is the spatial variable) and a set of electric potentials* ?

:
corresponding to an excitation

? . We model this relation using the complete electrode model (CEM) [5] which consist of a partial
di�erential equation and a set of boundary conditions,

∇ · (f (G)∇D? (G)) = 0 G ∈ ",(2.1a)
D? (G) + Z:f 〈∇D? (G), =̂〉 = * ?

:
G ∈ m"4: ,(2.1b) ∫

m"4:

f 〈∇D? (G), =̂〉 3(̃ = −�?
:
,(2.1c)

f 〈∇D? (G), =̂〉 = 0 G ∈ m" \
!⋃
:=1

m"4: ,(2.1d)

where " ⊂ ℝ3 is a surface with boundary m" , m"4: is the part of the m" representing the edge of the
:’th electrode, Z: is contact resistance, −=̂ is an inward unit normal of m" (i.e. a vector tangent to " ,
pointing inwards), and ! is the number of electrodes. In addition, the currents �?

:
are required to satisfy

Kirchho�’s law
∑!
:=1 �

?

:
= 0. We write 3(̃ for the in�nitesimal length elements of the one-dimensional

boundary m"4: .
By calling " a surface, we mean that we can parametrize G = (q 1(H1, H2), q2(H1, H2), q3(H1, H2))

locally for some (H1, H2) ∈ * ⊂ ℝ2 and some G ∈ + ⊂ " . This means that the functions and di�erential
operators in (2.1) are two-dimensional, and can be formally de�ned through Riemannian geometry.

Formally, we equip manifold M with a Riemannian metric 6. Metric 6 de�nes a product on tangent
vectors analogous to a dot product in vector spaces (see Figure 1) and it consequently de�nes the
divergence and the gradient operators;

(2.2) ∇ · 5 =
1√
|6|

2∑
8=1

m8

(√
|6|5 8

)
and ∇ 5̂ =

2∑
8=1

2∑
9=1
68 9 m9 5̂ m8 ,
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Figure 1: An illustration of how the shortest path between two points in the non-planar two-dimensional
model di�ers from the shortest path between these points in the three-dimensional model.
Essentially the Riemannian metric determines how the distance is de�ned in the domain.

where 5 : " → ℝ2 (e.g. 5 = f∇D? ), 5̂ : " → ℝ (e.g. 5̂ = D? ). The maps m8 generalize directional
derivatives to " ; technically m8 : � (") → � ("), where � (") is a collection of di�erentiable functions
on " and 8 = 1, 2, form a local basis for the tangent plane. In this basis, |6 | is the determinant of the
matrix formed from the components of 6. Furthermore, 3(̃ in (2.1) is the Riemannian volume measure
of a curve (length in ℝ3) in (m",6l ). Since in practice, M is an embbed manifold, we de�ne 6 as the
pullback of the standard dot product in ℝ3 to " and 6l as the pullback of 6 to m" [21, 17].

2.2 variational form and numerical approximation of the forward model

We approximate (2.1) with a Galerkin �nite element method, as described in detail in the technical
Appendix a. Indeed, by introducing test function (E,+ ), we can write (2.1) in a variational form

(2.3)

∫
"

f 〈∇E,∇D?〉63( +
!∑
:

1
Z:

∫
m"4:

D?E −
!∑
:

1
Z:

∫
m"4:

D?+:3(̃

−
!∑
:

∫
m"4:

f 〈∇D? (G), =̂〉6l+:3(̃ =

!∑
:

1
Z:

∫
m"4:

*: (E −+: )3(̃ .

We write 3( for the in�nitesimal area elements of the two-dimensional surface " . Notation-wise, the
variational form (2.3) is almost the same as the one written for the 3D electrical [43]. However, the
functions in (2.3) are de�ned on only the surface " ⊂ ℝ3, the di�erential operators according (2.2),
and inner products are de�ned with respect to the Riemannian metrics 6 and 6l .

Furthermore, by approximating D? =
∑#
9 D

?

9
E 9 and �?

:
as �?

:
= (∑!−1

9 �̃ 9= 9 ): , where E 9 is piecewise
linear and = 9 ∈ '! such that the �rst component of = 9 is always 1 and the 9 + 1 component is −1 and
other indices are zero, (2.3) admits the matrix form

(2.4)
[
�1 0
�2 �3

] [
sD
s�

]
=

[
*̃1
*̃2

]
,

where the matrices

(�1)8, 9 =
∫
"

f 〈∇E8 ,∇E 9 〉63( +
!∑
:

1
Z:

∫
m"4:

E 9E83(̃,

(�2)8, 9 = 1
Z8+1

∫
m"48+1

E 93(̃ − 1
Z1

∫
m"41

E 93(̃,

(�3)8, 9 =
{
2, 8 = 9

1, otherwise
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and the vectors (sD)8 = D?8 , (*̃1)8 =
∑!
:
*:

Z:

∫
m"4:

E83(̃ , (s� )8 = �̃8 , and (*̃2)8 = −
∑!
:

1
Z:

∫
m"4:

*: (=8):3(̃ .

2.3 inverse imaging problem

We can now concatenate the simulated measurements to form a vector � (f) = (� 11 (f), ..., �== (f))) .
Further, we denote the vector containing the corresponding measured data by �" .

The typical approach to solve the inverse problem of EIT is to solve a conductivity that minimizes
the sum of a so-called data term, 1

2 ‖!(� (f) − �
" )‖2, and a regularization functional � (f). In sensing

skin applications, however, we may improve the reconstruction quality by utilizing measurements
�"ref , measured from an initial stage where the sensing skin is intact [9], to compute a homogeneous
estimate fref for the initial (background) conductivity of the sensing skin;

(2.5) fref := arg min
f ∈ℝ+

1
2 ‖� (f) − �

"
ref‖

2.

Based on this estimate, we compute a discrepancy term n := �"ref − � (fref) which gives an approximation
of the modeling error caused by neglecting the inhomogeneity of the background conductivity of the
sensing skin. To compensate for the modeling error in the reconstruction of the conductivity f in the
subsequent stages, we add this term into the model � (f) [9], and reconstruct the conductivity f as a
solution of a minimization problem

(2.6) f̂ := argmin
f ∈+

1
2 ‖!(� (f) − �

" + n)‖2 + � (f),

where + = {5 (G) ∈ �# (") | fmin ≤ 5 (G) ≤ fmax, ∀G ∈ "}, �# (") is a �nite dimensional function
space on" , and ! is a matrix for which !)! is so-called data precision matrix. The matrix !)! accounts
for the magnitude of noise in the measurements. Furthermore, the lower constraint fmin > 0 comes
from the natural, physics-based limit for the positivity of the conductivity and the upper constraint
fmax restricts the conductivity from above whenever the maximum conductivity is known. In cases
where the maximum conductivity is unknown, we set fmax to an arbitrary large number.

Note that the regularization function � (f) in (2.6) is chosen depending on the information that is
available about the conductivity prior to the measurements. In the numerical and experimental cases
of the following sections, we consider two choices of regularization functionals. We note, however,
that the non-planar ERT scheme proposed in this paper is not restricted to any particular choices of
regularization. Although the above modeling error correction method based on the discrepancy term n

is highly approximative, it has shown to be useful in several cases with real data [9], and is thus used
also in this paper. A more advanced formulation of the inverse problem for detecting complex crack
patterns in the presence of inhomogeneous background was proposed in [33]. We note that, if needed,
this computational method would also be directly applicable to the non-planar ERT model described
above.

3 numerical simulation studies

We evaluate the proposed ERT imaging scheme with numerical simulation studies using two non-planar
geometries; one resembles a pipe segment (�rst column in Figure 2) and one resembles a pressure
vessel (second column in Figure 2). The �gures also illustrate the locations of the electrodes. We note
that majority of them are internal electrodes, in the sense that they are surrounded by the sensing
skin. Such a setting is chosen in order to improve the sensitivity of ERT measurements; the use of
internal electrodes improves the quality of ERT reconstructions from the case where all electrodes are
in the perimeter of the sensing skin even in planar geometries [28] – in non-planar imaging the e�ect
is presumably even stronger. Furthermore, we consider two target applications; crack detection and
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Figure 2: Geometries of the sensing skins used in the numerical simulation studies (left and middle
column) and in experimental study (right column). The surface triangulations correspond to
the �nite element meshes used in the respective image reconstructions. The square shaped
non-triangulated patches of the surface represent the electrodes for the electrical measure-
ments.

imaging of di�usive processes (such as distributed temperature sensing [27] or strain measurement
[37, 39]).

Both geometries are used to study crack detection (Cases 1 and 2). In each geometry, we consider
�ve stages of cracking. In the �rst stage, stage 0, the sensing skin is intact and the conductivity is
homogeneous. Measurements simulated in this stage are used as the reference measurements �"ref
and utilized for computing the homogeneous background estimate (2.5). In the subsequent stages,
to simulate evolving crack pattern, we lower the conductivity at the locations that correspond to
the cracks. The di�usive process imaging is studied in Case 3, where the geometry is same as in
Case 1. Here, the conductivity distribution is spatially smooth, and it evolves in the di�usive manner,
mimicking an application where the surface temperature distribution is monitored using a sensing
skin.

3.1 specification of geometries and simulation of data

The �rst column in Figure 2 shows the pipe segment geometry. The radius of the pipe segment is 0.100
m and it consists of three 0.100 m long straight cylindrical sections connected by two curved sections
that both turn 90 degrees to from an "S"-shaped geometry. The three straight sections each have eight
symmetrically placed electrodes on them and the two curved sections both have four electrodes on
their convex side. These electrodes are square-shaped with 0.010 m side length.

The second column in Figure 2 shows the geometry of a pressure vessel. The diameter of the pressure
vessel is 1 m and the length of the cylindrical middle section is 1.500 m. The radius of curvature for
the spherical top section is 2.125 m. Furthermore, the chamber has 3 cylindrical extensions. One of
the extensions is attached to the top section of the chamber. The radius of this extension is 0.300 m.
The other two extensions are attached on the cylindrical section. The radius of the larger horizontal
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extension is 0.250 m and the radius of the smaller diagonal extension is 0.200 m. On each extension, 8
electrodes are placed radially. Furthermore, the cylindrical section of the chamber has four layers of
radially placed electrodes. The topmost and bottommost layers have 14 electrodes each, and the two
layers in between have 7 and 6 electrodes. The total number of electrodes is 65. The inner electrodes
on the main chamber are square-shaped with side length of 0.050 m. The other are rectangular with
side lengths of 0.050 m and 0.025 m.

The FE mesh that we use in the data simulation for the pipe segment geometry has 92578 nodes
and 184057 elements, and the FE mesh for the pressure vessel has 491679 nodes and 980160 elements.
In each simulation, we initially set the surface conductivity to f (G) = 1 S and use it to generate the
reference measurements (stage 0). Subsequently, we generate measurements from 4 stages of varying
conductivities, each stage being a continuation of the previous one (stages 1-4). When simulating cracks
(Cases 1 and 2), stages 1-4 consists of spatially narrow areas of low conductivity, f (Gcrack) = 10−7 S (top
rows in Figures 3 and 4). When simulating the spatially smooth distribution (Case 3), the minimum
conductivity is set to 0.89 S in a single point on the curved surface, and it gradually increases to
background value 1 S as function of space. To mimic the di�usive process, the size of the area with
lowered conductivity is increased between consecutive stages from 1 to 4 (top row in Figure 5).

3.2 image reconstruction

We reconstruct the conductivity by solving the minimization problem of (2.6). In the crack detection
problems in Cases 1 and 2, we utilize total variation (TV) regularization [29]

� (f) = )+ (f) .

TV regularization penalizes the magnitude of the spatial gradient of f in !1 norm and is often suitable
for cases where the conductivity features sharp edges on relatively homogeneous background. TV
regularization is shown to be feasible in ERT based crack detection [9].

In Case 3, we utilize Gaussian smoothness regularization

� (f) = ‖'Γ (f − fref)‖2,

where 'Γ is given by 'Γ = Γ−1/2, Γ8, 9 = 04−
‖G8−G 9 ‖2

212 [23], G8 , G 9 ∈ ℝ3 are the locations of the nodes 8 and
9 in the FE mesh, 0 = 100 and 1 = 0.075. This is often a feasible choice of regularization functional in
cases of di�usive phenomena, because it promotes spatial smoothness of the conductivity distribution.

In all the studies, the matrix ! is diagonal with [!]8,8 = 1000 and the minimum conductivity is
fmin = 10−4 S. In addition, we compute a homogeneous estimate fref using the measurements �"ref at the
reference stage (stage 0). We use this estimate to compute the approximation error term n = �"ref−� (fref)
as described in Section 2.3. In Cases 1 and 2, we also use the homogeneous estimate as the maximum
constraint fmax = fref, which encompasses the idea that the cracks can never increase the conductivity
of the conductive layer [9]. In Case 3, we set fmax = ∞, that is, the conductivity distribution is not
constrained from above. The meshes used in the image reconstruction are sparser than those used
when simulating the data. For example, the mesh for the pipe segment has 10358 nodes and 20389
elements while the mesh for the pressure vessel mesh has 20565 nodes and 40532 elements.

To solve the minimzation problem (2.6), we utilize the recently published iterative Relaxed Inexact
Gauss-Newton (RIPGN) algorithm [15]. RIPGN is a Gauss-Newton variant; it linearizes the non-linear
operator � (f) of (2.6) at each iterate, �nds an approximate solution to the associated proximal problem
using primal dual proximal splitting (the algorithm of Chambolle and Pock [4]), and interpolates
between this solution and the one computed at the previous iteration step. After computing each
iterate, we check the convergence of the algorithm by comparing the value of the objective function in
(2.6) at the current iterate to the value objective function at the previous iterates. Furthermore, we
limit the maximum amount of computed iterations to 30.
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Figure 3: Case 1: True conductivity distribution of the sensing sensing skin (top row) and the ERT-based
reconstructions of the conductivity (bottom row) corresponding to four stages of cracking.

The reason for applying the RIPGN method to optimization in this paper is that it was shown
to shown to be very e�ective both in 3D and planar 2D ERT [15]. We note, however, that standard
Gauss-Newton and Newton methods based on smoothing the minimum and maximum constraints
and the TV functional [9, 7] could be utilized as well. All the code used in the study was written in
Julia (1.3.1). Computations were done on AMD Ryzen 9 3950X CPU with 64 GB of RAM (DDR4, 3800
MHz, CL15). Parts of the RIPGN algorithm utilize CUDA code. CUDA code was run on Nvidia RTX
2080 Ti GPU.

3.3 results and discussion

3.3.1 case 1: crack detection in pipeline

The results of Case 1 are illustrated in Figure 3. The top row shows the (true) simulated conductivity,
and the reconstructed conductivity is depicted in the bottom row. Each column corresponds to a
di�erent cracking stage.

In the �rst stage (Figure 3, column 1), a crack forms at the middle section of the pipe segment. The
reconstruction captures the shape of this crack quite accurately and only a small artifact is visible near
the crack. The conductivity value at the crack is 10−4 S, which equals to fmin.

In the second stage (Figure 3, column 2), two new cracks appear in the pipe segment, on the side
opposite to the crack in stage 1. The reconstruction shows these cracks clearly: The locations and
lengths of the cracks are somewhat correct. The orientation of the upper crack is slightly biased, but
this bias is insigni�cant from practical point of view.

In the third stage (Figure 3, column 3) the �rst crack (state 1) is lengthened upwards and further
extended to two branches, forming a "Y"-shaped crack. The reconstructed surface conductivity traces
the "Y"-shape of the crack well. The junction of the branches is slightly dislocated, but the size of the
crack is again well recovered. In the �nal stage (Figure 3, column 4) the two small cracks of stage 2 are
inter-connected, forming a single crack extending from top to the mid section of the pipe segment.
Again, the crack is well tracked by the ERT reconstruction, yet a couple of very small defects appear
next to it. Note that the cracks in the reconstructed conductivity are thicker than the simulated ones
since the inversion mesh is sparser.
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Figure 4: Case 2: True conductivity distribution of the sensing sensing skin (top row) and the ERT-based
reconstructions of the conductivity (bottom row) corresponding to four stages of cracking.

3.3.2 case 2: crack detection in pressure vessel

Figure 4 shows the simulated and reconstructed conductivity in each cracking stage in Case 2 where
the geometry corresponds to a part of a pressure vessel.

The reconstructions in Case 2 trace the evolution of the crack pattern well. In all stages of cracking,
the reconstruction quality is similar to that in Case 1, although a few more de�ciencies are present. This
small reduction in quality compared to Case 1 is, however, expected. The surface area of the pressure
vessel is thirteen times larger than the surface area of the pipe segment in Case 1 and the geometry is
far more complex. Overall, the results of Case 2 further con�rm the feasibility of the non-planar 2D
ERT to crack detection applications.

3.3.3 case 3: imaging of diffusive phenomena on surface

Figure 5 shows the true conductivity and the reconstruction on each stage in Case 3. In �rst stage
(Figure 5, column 1), a spatially smooth region of low conductivity appears at the middle section of the
pipe segment. In the subsequent stages (Figure 5, columns 2-4), the surface area of this region increases
and the value within the region decreases further. Each reconstruction re�ects the corresponding
stage clearly and the de�ciencies in these reconstructions are apparent only at the last two stages.
These de�ciencies, however, look similar to what is observed in 3D and planar 2D ERT studies [23],
and seem to be related to the type of regularization that is used. The simulation clearly demonstrates
that ERT imaging of di�usive phenomena is achievable also in non-planar geometry. In �rst stage
(the �st column in Figure 5), a spatially smooth region of low conductivity appears at the middle
section of the pipe segment. In the subsequent stages (columns 2-3 in Figure 5), the surface area of this
region increases and the value within the region decreases further. Each reconstruction re�ects the
corresponding stage clearly and the de�ciencies in these reconstructions are apparent only at the last
two stages. These de�ciencies, however, look similar to what is observed in 3D and planar 2D ERT
studies [23], and seem to be related to the type of regularization that is used. The simulation clearly
demonstrates that ERT imaging of di�usive phenomena is achievable also in non-planar geometry.
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Figure 5: Case 3: True conductivity distribution of the sensing sensing skin (top row) and the ERT-based
reconstructions of the conductivity (bottom row) corresponding to four stages of cracking.

4 experimental study

4.1 experimental setup and image reconstruction

For the experimental validation of the non-planar sensing skin, we used a setup where the outer
surface of a hollow plastic cube was covered with conductive paint. We refer to the experimental
test case as Case 4. The paint was a 1:10 mixture of graphite powder (manufactured by Cretacolor,
www.cretacolor.com) and black coating paint (RUBBERcomp, manufactured by Maston, www.maston.fi).
Side length of the cube was 0.200 m and bottom of the cube was open (last column in Figure 2). Each
side of the cube had eight electrodes. On the vertical sides, �ve of these electrodes were inner electrodes,
and the remaining three were shared with the adjacent sides. On the top side, this con�guration was
four and four. In total, the number of electrodes was 32. The electrodes were square-shaped, and the
side length of an electrode was 0.012 m. The electrodes shared by two cube sides were bent along the
edges.

We measured the reference data in the initial stage in which the sensing skin was intact. Subse-
quently, we simulated the cracking of the underlying structure by cutting the surface of the paint layer
with a knife. We generated four di�erent stages of cracking and carried out the ERT measurements
corresponding to each of these stages. The same approach to "physically simulating" di�erent stages of
cracking has been used previously in cases on planar geometries, e.g, in [9, 31]. Based on these studies,
the quality of ERT reconstructions is similar in cases where a sensing skin is damaged with knife and
where real crack patterns of the same complexity are monitored on the surface of a, e.g., a concrete
beam.

We measured the data with an ERT device manufactured by Rocsole Ltd. (www.rocsole.com). This
ERT device samples the currents with 1 MHz frequency, and computes the current amplitudes from
the samples using discrete Fourier transform. The device outputs the amplitudes for the excitation
potentials and for the measured electric currents. The device selects the amplitude for the excitation
potentials automatically. Furthermore, we used the 39 kHz excitation frequency, and to reduce the
measurement noise, the current amplitudes that we used in the reconstructions were one-minute time
averages.

Similarly to Cases 1 and 2, we use TV regularization to for the crack reconstructions (see Section 3.2).
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Figure 6: Case 4: Photographs of the sensing skin applied on the cubic object in the experimental study
(top row) and the respective ERT-reconstructions (bottom row). The photos and reconstruc-
tions correspond to four stages of cracking; in the photographs, the cracks at each stage are
highlighted with light teal color and the cracks if the previous stages are darkened.

Furthermore, the parameters are the same in the numerical cases. Figure 2c shows the FE mesh used
in the inversion. This mesh has 12278 nodes and 23965 elements.

4.2 results and discussion of the experimental study

The top row in Figure 6 shows a photo of the sensing skin at each stage and the bottom row shows
the corresponding reconstructions (Case 4). We highlight the crack made at each stage with light teal
color and the cracks made at the previous stages are darkened; the cracks are very thin (less than 1
mm in thickness) and would otherwise be indistinguishable from the background.

In the �rst stage (Figure 6, column 1), we created a diagonal crack on one the vertical sides of the
cube. Reconstruction shows this crack accurately, although a small gap is visible in the reconstruction;
the actual crack is fully connected. In the second stage (Figure 6, column 2), we extended the �rst crack
so that it reaches the top side of the cube. The reconstruction shows the location and size of this crack
quite accurately, although the curved extension of the crack is wider than the initial crack at stage 1.

In the third stage (Figure 6, column 3), we created an additional crack on the adjacent side of the
cube. This crack is clearly visible in the reconstruction. In the �nal stage (Figure 6, column 4), we
extended the crack made on the third stage so that it reaches through the top side to the adjacent
side. This extended crack is correctly located by ERT, although the reconstruction shows a blocky
area in the corner of the cube. This reconstruction artifact is an expected one, since the electrodes are
quite far from the cube corners, and therefore the ERT measurements are less sensitive to conductivity
variations in these areas. Note also that the cracks in the reconstructed conductivities are thicker than
the actual cracks made on the physical sensing skin. This is, again, partly caused by the sparsity of the
�nite element mesh, and partly a result of limited sensitivity of ERT to thickness of the cracks [9].

5 conclusions

One goal of the structural health monitoring research is to develop cost-e�ective sensor technologies.
ERT based sensing skins have been proposed as a cost-e�ective distributed surface sensing systems
for SHM. In the previous studies, the sensing skins sensors have been planar. To extend the usability
of the ERT-based sensing skin to more complex structures it is necessary consider non-planar sensing
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Figure 7: Manifold " is described locally on ) by di�eomorphism �@ . At point G , the tangents m1 and
m2 set the basis for the tangent plane )G" .

skins and computational models.
In this paper, we formulated the computational model for ERT in the case of non-planar surface

sensing. We gave a brief outline of the numerical scheme to reconstruct the non-planar surface
conductivity of the sensing skin. In this scheme, we modelled the relationship between the measured
electric currents and the known electric potentials on a surface of an arbitrary object in 3D, and we
used this model to formulate a minimization problem that yields the conductivity as the solution.
Furthermore, we studied the feasibility of the scheme with three sets of numerical simulations and one
set of experimental data.

In the synthetic cases, we acquired highly accurate reconstructions, and we observed only minor
artifacts in the reconstructed conductivity. These artifacts were similar to what has been observed in
previous planar sensing skins studies. With the measurement data, the reconstruction quality was
slightly worse than in synthetic cases but su�cient for most practical applications. Furthermore, we
noted that the reconstructions from the measurement data could be improved, for example, by using a
model for inhomogeneous background conductivity or by using a di�erent electrode arrangement.

Overall, the reformulation of ERT imaging problem by using non-planar surface model proved
to be viable; we did not observe any loss of reconstruction quality that could be related to non-
planarity of the sensing skins. We conclude that with the proposed approach, ERT-based sensing skin
is viable in monitoring complicated non-planar surfaces. In the future, non-planar sensing skins should
allow monitoring of complex industrial structures such as those in aerospace, civil and mechanical
engineering.

appendix a implementation details

Similarly to Euclidean spaces [43], we derive a �nite element (FE) approximation for (2.1). Although
(2.1) looks identical to the Euclidean counterpart, the de�nitions of the operators in (2.1) are more
involved, containing calculations based on the Riemannian metric 6.

The FE approximation relies on the weak formulation of (2.1). The well-posedness of this weak
formulation has been previously shown for (D? ,* ?) (i.e. the potential measurement setup) [34] in
Euclidean spaces, however for (D? , �?) (i.e. the current measurement setup), no previous work exists;
we will show the well-posedness of the weak formulation for (D? , �?) in the manifold setting, which
also extends to the Euclidean setting.

Initially, we take6 as an arbitrary metric on" . However, to see how to compute the FE approximation
through integration in ℝ2, we need to �x6. In this case, to properly account for the shape of" in ℝ3, we
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take6 as the metric induced on" by the natural metric onℝ3 [22, 20]. Namely, for tangentsF1,F2 on the
tangent plane)G" at a point G (illustrated in Figure 7), it is de�ned by 6(F1,F2) := 6̃(3q (F1), 3q (F2)),
where q : " → ℝ3 is the inclusion map q (G) := G and 6̃ = (3G 1)2 + (3G2)2 + (3G3)2 is the Euclidean
metric in ℝ3.

The solutions (D? , �?) of (2.1) comprise a twice continuously di�erentiable functionD? ∈ �2 := �2(")
and a vector �? ∈ ℝ! with components �?

:
, : = 1, . . . , !. We denote (D? , �?) ∈ �2 := �2(") ⊕ ℝ! . We

will show that the �nite element approximation of (2.1), however, satis�es the weak formulation,

(a.1) �((D? , �?), (E,+ )) = !((E,+ )), ∀(E,+ ) ∈ �,
where � is bilinear and ! is linear. The space

� := � 1(") ⊕ ℝ!,

where � 1(") is a Hilbert space of twice weakly di�erentiable functions. We de�ne it as the completion
of �∞(") with respect to the norm ‖ · ‖� 1 (") [11, Chapter 10]. It corresponds to the common space
� 1(Ω) also used with planar CEM [34]. The natural norm for this space is [34, 10, 11]

(a.2) ‖(E,+ )‖2� = ‖E ‖2
� 1 (") + ‖+ ‖

2
ℝ! ,

where the inner products inducing the individual norms are

〈D, E〉� 1 (") =

∫
"

DE3( +
∫
"

〈∇D,∇E〉63( and 〈* ,+ 〉ℝ! =

!∑
:=1

*:+: .

In the following lemmas, we assume that the model (2.1) has at least two electrodes, i.e. ! ≥ 2.
Lemma a.1. Suppose that Z: > 0 is constant on m"4: ∀: , the part of m" corresponding to electrode : . Then

the PDE (2.1) admits a weak formulation (a.1), where the bilinear operator � : � ×� → ℝ and the linear

operator ! : � → ℝ are given by

�((D? , �?), (E,+ )) =
∫
"

f 〈∇E,∇D?〉63( +
!∑
:

1
Z:

∫
m"4:

D?E3(̃ −
!∑
:

1
Z:

∫
m"4:

D?+:3(̃ +
!∑
:

�
?

:
+:

and

!(E,+ ) =
!∑
:

1
Z:

∫
m"4:

*: (E −+: )3(̃ .

Proof. Suppose that (D? , �?) solves (2.1). We need to show that it solves (a.1). So let (E,+ ) ∈ � be
arbitrary. We de�ne - := f∇D? . Applying

∫
"
·E3( to (2.1a) we get

(a.3) −
∫
"

E∇ · (f∇D?)3( = −
∫
"

E∇ · -3( = 0,

where3( is the Riemannian volume corresponding to the metric6 on" . Denoting by3(̃ the Riemannian
volume on m" , using the product rule, the divergence theorem on Riemannian manifolds [44, Appendix
A], and (2.1b) to replace f 〈∇D? , =̂〉6l , we obtain

(a.4) 0 =

∫
"

E∇ · -3( =

∫
"

〈∇E, - 〉63( −
∫
m"

E 〈-, =̂〉6l 3(̃

=

∫
"

〈∇E, f∇D?〉63( −
∫
m"

E 〈f∇D? , =̂〉6l 3(̃

=

∫
"

f 〈∇E,∇D?〉63( −
!∑
:

∫
m"4:

Ef 〈∇D? , =̂〉6l 3(̃

=

∫
"

f 〈∇E,∇D?〉63( −
!∑
:

∫
m"4:

E (* ?

:
− D?)/Z: 3(̃ .
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The equations (2.1b) and (2.1c) both hold for each : = 1, . . . , ! and de�ne the vectors * ? , �? ∈ ℝ! . By
multiplying each component * ?

:
of * ? by +:/Z: , where +: is a component of a test vector + ∈ ℝ! ,

integrating over m"4: , and summing over : = 1, . . . , !, we get

(a.5)
!∑
:

∫
m"4:

D? (G)+:/Z:+̃ +
∫
m"4:

f 〈∇D? (G), =̂〉6l+:+̃ −
∫
m"4:

*
?

:
+:/Z:3(̃ = 0.

Since +: is constant on m"4: ,
∫
m"4:

f 〈∇D? (G), =̂〉6l+:3(̃ =
∫
m"4:

f 〈∇D? (G), =̂〉6l3(̃+: = −�?
:
+: . Sub-

tracting (a.5) from (a.4) and plugging in �?
:

gives

0 − 0 =

∫
"

f 〈∇E,∇D?〉63( −
!∑
:

∫
m"4:

E (* ?

:
− D?)/Z: 3(̃

−
(
!∑
:

∫
m"4:

D? (G)+:/Z: −* ?

:
+:/Z:3(̃ − �?:+:

)
=

∫
"

f 〈∇E,∇D?〉63( +
!∑
:

(∫
m"4:

D? (E −+: )/Z: +*: (+: − E)/Z:3(̃ + �?:+:

)
.

Finally, since assume Z: is constant, by subtracting
∑!
:

∫
m"4:

*: (+: − E)/Z:3(̃ we get (a.1). �

The next lemma shows that the weak formulation (a.1) is well-posed, meaning that the solution
(D? , �?) exists and is unique, and � is continuous, leading eventually to the invertibility of the linear
system of the FE approximation. For the simplicity, we assume that the boundary m" of " is �∞.
However, the arguments that we use in the following proofs should extend to domains with boundaries
of lesser smoothness.

Now, if we were solving for (D? ,* ?) instead of (D? , �?), we could follow the treatment in [34] by
replacing relevant theorems on Sobolev spaces by their (compact Riemannian) manifold counterparts.
However, no well-posedness proof for the weak formulation of (D? , �?) exists. To prove the well-
posedness for (D? , �?), we show that the conditions of the Banach-Nesča-Babuška theorem (BNB)
hold for � and that � is continuous. The Euclidean case will follow as long as the domain for D? (G) is
bounded.
Lemma a.2. Suppose that 0 < f< ≤ f (G) ≤ f" < ∞ is integrable on compact connected Riemannian

manifold (",6) and with a �∞ boundary m" . Then (a.1) is well-posed.

Proof. For the proof, to avoid confusion between variables and not carry the index ? , we write (F,, )
in place of (D? , �?). According to BNB [13, Theorem A.4 (Appendix)] (See also [30, Theorem 1]), since
� is a re�exive Banach space [12, Proposition 2.1] (Note that � also a Hilbert space [11, Proposition
2.1]), there exists a unique solution (F,, ) ∈ � to the problem (a.1) if

sup
(E,+ ) ∈�

�((F,, ), (E,+ ))
‖(E,+ )‖�

≥ V ‖(F,, )‖� for some V > 0 and if(a.6a)

(∀(F,, ) ∈ �, �((F,, ), (E,+ )) = 0) ⇒ ((E,+ ) = 0) .(a.6b)

First, however, similarly to [34], we will show that

‖(E,+ )‖2∗ :=
∫
"

〈∇E,∇E〉63( + ‖E ‖2m"4
+ ‖+ ‖2

ℝ! ,
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where ‖E ‖2
m"4

:=
∑!
:

∫
m"4:

E23+̃ , is a norm equivalent to (a.2), i.e. there exists constants _,Λ > 0 such
that

(a.7) Λ‖(E,+ )‖∗ ≥ ‖(E,+ )‖� ≥ _‖(E,+ )‖∗ ∀(E,+ ) ∈ �.

To see that the �rst inequality of (a.7) holds, by the continuous embedding � 1/2(m") ⊂ !2(m")
[40, De�nition 1.4, Chapter 4] for some �1,�2 > 0,

‖E ‖2m"4
≤ ‖E ‖2

!2 (m") ≤ �1‖E ‖2� 1/2 (m") ≤ �2‖E ‖2� 1 (") .

Since 〈∇E,∇E〉6 ≥ 0, we thus obtain for some Λ > 0 that ‖(E,+ )‖2∗ ≤ Λ2(‖E ‖2
� 1 (") + ‖+ ‖

2
ℝ! ) = Λ2‖E ‖2

�
.

To verify the second inequality of (a.7), assume that the claim is not true. Then we can take a sequence
{(E=,+=)}∞==1 ∈ � , so that ‖(E=,+=)‖� = 1 and ‖(E=,+=)‖∗ < 1/=. Now, according to the compact
embedding theorem on Sobolev spaces on manifolds [40, Proposition 4.4, Chapter 4], E= contains a
converging subsequence E=8 → E ∈ !2("), =8 > =8−1, and E ∈ !2("). Since 1

=8
> ‖(E=8 ,+=8 )‖∗, we

have that

(a.8)
1
=2
8

>

∫
"

〈∇E=8 ,∇E=8 〉63(,
1
=8

> ‖E=8 ‖m"4
, and

1
=8

> ‖+=8 ‖ℝ! .

The �rst inequality implies that E=8 forms a converging sequence in� 1(")which satis�es
∫
"
〈∇E=8 ,∇E=8 〉63( →

0. Applying Poincaré [11, Theorem 2.10] and Hölder inequalities1 shows for constants 21 ∈ ℝ and 22 > 0
that

‖E=8 − 21‖2!1 (") ≤ 22‖∇E
=8 ‖2

!1 (") ≤ 22‖∇E
=8 ‖2

!2 (") ‖1‖
2
!2 (") → 0,

meaning that E=8 converges to the constant 21 in !1("). Further, since E=8 → E ∈ !2("), using Hölder’s
inequality again shows that ‖E=8 − E ‖!1 (") ≤ ‖E=8 − E ‖!2 (") ‖1‖!2 (") → 0, meaning that E=8 also
converges to the same E in !1("), con�rming that indeed E = 21, i.e. E is constant almost everywhere.
Now, since E is a.e. constant and E |m" ∈ !2(m"), the second inequality in (a.8) implies that E=8 → 0,
i.e. 21 = 0. The �nal inequality in (a.8) implies that +=8 → 0, i.e. + = 0. Since E=8 → 0 and +=8 → 0,
‖(E=8 ,+=8 )‖� → 0, which is a contradiction, since ‖(E=8 ,+=8 )‖� = 1.

To see that (a.6a) holds, start by denoting B: =
∫
m"4:

13(̃ , 0 := max
{
Z −11 , Z

−1
2 , . . . , B

2
1 Z
−1
1 , B

2
2Z
−1
2 , . . .

}
,

and 2 := 0min
{
1/0, f<, Z −11 , Z

−1
2 , . . .

}
. If (F,, ) = (0, 0), then (a.6a) clearly holds. If (F,, ) ≠ (0, 0),

then pick a function (Ê, +̂ ) ∈ � that satis�es Ê = 20F and +̂: =,: + 1
Z:

∫
m"4:

F3+̃ .

Plugging (Ẽ, +̃ ) into (a.1) and simplifying gives

�((F,, ), (Ê, +̂ )) = 20
∫
"

f 〈∇F,∇F〉63( +
!∑
:

20
Z:

∫
m"4:

F23(̃ −
!∑
:

(
1
Z:

∫
m"4:

F3(̃

)2
+

!∑
:

, 2
:

≥ 20
∫
"

f 〈∇F,∇F〉63( +
!∑
:

20
Z:

∫
m"4:

F23(̃ −
!∑
:

0
Z:

∫
m"4:

F23(̃ +
!∑
:

, 2
:

≥ 2
(∫
"

〈∇F,∇F〉63( +
!∑
:

∫
m"4:

F23(̃ +
!∑
:

, 2
:

)
= 2 ‖(F,, )‖2∗

1Follows directly from Young’s inequality.
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Denoting 1 := 2max
{
1, 202, |41 |2Z −21 , |42 |2Z −22 , . . .

}
,

‖(Ê, +̂ )‖2∗ ≤ 402(
∫
"

〈∇F,∇F〉63( + ‖F ‖2m"4
) +

∑
:

2(, 2
:
+ ( 1

Z:

∫
m"4:

E3G)2)

≤ 402(
∫
"

〈∇F,∇F〉63( + ‖F ‖2m"4
) +

∑
:

(2, 2
:
+ 2B2

:

Z 2
:

∫
m"4:

E23G)

≤ 21 (
∫
"

〈∇F,∇F〉63( + ‖F ‖2m"4
+, 2

ℝ! ) = 21‖(F,, )‖2∗ .

Now since sup
(E,+ ) ∈�

�((F,, ), (E,+ ))/‖(E,+ )‖� ≥ �((F,, ), (Ê, +̂ ))/‖(Ê, +̂ )‖� , we have that

sup
(E,+ ) ∈�

�((F,, ), (E,+ ))/‖(E,+ )‖� ≥
2

Λ
‖(F,, )‖2∗/‖(Ê, +̂ )‖∗

≥ 2

Λ
‖(F,, )‖2∗/(

√
21‖(F,, )‖∗) =

2
√
21Λ
‖(F,, )‖∗ ≥

2
√
21Λ2

‖(F,, )‖� .

To see that (a.6b) holds, assume the contrary, i.e. there exists a (E,+ ) ≠ 0 so that �((F,, ), (E,+ )) = 0
holds for all (F,, ). If + = 0 choose (F,, ) = (E, 0). If + ≠ 0 choose (F,, ) = (0,+ ). Both scenarios
show that �((F,, ), (E,+ )) ≠ 0 with the chosen (F,, ), i.e. that �((F,, ), (E,+ )) = 0 does not hold
for all (F,, ), which is a contradiction, meaning that the condition must hold.

Finally, to see that � is continuous, i.e. �((F,, ), (E,+ )) ≤ C‖(F,, )‖� ‖(E,+ )‖� for some C > 0,
observe that

−
!∑
:

1
Z:

∫
m"4:

F+:3(̃ ≤
!∑
:

����� 1
Z:

∫
m"4:

F+:3(̃

����� ≤ 0‖F ‖m"4
‖+ ‖ℝ! ≤ 0‖(F,, )‖∗‖(E,+ )‖∗.

Denoting 2̃ := max{1, f" , Z −11 , Z
−1
2 , . . . }, clearly,

�((F,, ), (E,+ )) ≤ 2̃ ‖(F,, )‖∗‖(E,+ )‖∗ −
!∑
:

1
Z:

∫
m"4:

F+:3(̃

≤ (2̃ + 0)‖(F,, )‖∗‖(E,+ )‖∗ ≤ (2̃ + 0)_−2‖(F,, )‖� ‖(E,+ )‖� .

This �nishes the proof. �

For the next lemma, we will replace D? and �?
:

by their �nite element approximations D? =
∑#
9 D

?

9
E 9

and �? =
∑!−1
9=1 (�̃ 9= 9 ), where we allow E 9 to be an arbitrary FE basis function. For �? ∈ ℝ! , we �x basis

vectors = 9 ∈ ℝ! so that we can utilize Kirchho�’s law to eliminate one of the components: we choose
vectors = 9 ∈ ℝ! such that the components of = 9 are (= 9 )1 = 1, (= 9 ) 9+1 = −1, and otherwise (= 9 ): = 0.
This �xes the value of the �?1 so that �?1 = −∑!

8=2 �
?

8
. Indeed, due to the Kirchho�’ law, we only have

! − 1 unknown currents. Note also that = 9 no longer appear in the lemma, since the value is easy to
determine.
Lemma a.3. Replace � by a �nite dimensional subspace

�# = span{(E1, 0), . . . , (E# , 0), (0, =1), . . . , (0, =!−1)}.

Then (a.1) admits the presentation �\ = s* , where � ∈ ℝ (#+!−1)×(#+!−1) with

� =

[
�1 0
�2 �3,

]
(�1)8, 9 =

∫
"

f 〈∇E8 ,∇E 9 〉63( +
!∑
:

1
Z:

∫
m"4:

E 9E83(̃,
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(�2)8, 9 = 1
Z8+1

∫
m"48+1

E 93(̃ − 1
Z1

∫
m"41

E 93(̃, (�3)8, 9 =
{
2, 8 = 9

1, otherwise

and s* ∈ ℝ#+!−1

( s* )8 =

∑!
:
*:

Z:

∫
m"4:

E83(̃, 8 ≤ #
*8+1
Z8+1

∫
m"48+1

13(̃ − *1
Z1

∫
m"41

13(̃, otherwise.

The vector \ = (sD? ,s�?), where (sD?)8 = D
?

8
, (s�?)8 = �̃

?

8
contains the coe�cients of the �nite element

approximations for D? and �
?

:
. Furthermore, the problem is well-posed, Galerkin orthogonality holds and

for the exact solution (D̂? , �̂?) and some constant C > 0 we have

(a.9) ‖(D̂? − D? , �̂? − �?)‖� ≤ C inf
(E,+ ) ∈�#

‖(D̂? − E, �̂? −+ ?)‖� .

Proof. Since � is continuous and since BNB holds for �, by applying the Cea’s lemma [18, Lemma 1],
we see that the problem is well-posed also in �# and the Galerkin orthogonality and the solution (a.9)
hold for (D? , �?).

Plugging in the expression for D? gives # equations corresponding to each (E,+ ) = (E8 , 0):∫
"

f 〈∇E8 ,∇
#∑
9

D
?

9
E 9 〉63( +

!∑
:

1
Z:

∫
m"4:

#∑
9

D
?

9
E 9E83(̃

=

#∑
9

D
?

9

(∫
"

f 〈∇E8 ,∇E 9 〉63( +
!∑
:

1
Z:

∫
m"4:

E 9E83(̃

)
=

!∑
:

1
Z:

∫
m"4:

*:E83(̃,

which can be written with the matrix �1 and vectors sD and ( s*1)8 =
∑!
:
*:

Z:

∫
m"4:

E83(̃ as �1sD = s*1.

Further, plugging in �?
:
=

∑!−1
9=1 (�̃ 9= 9 ): and (E,+ ) = (0, =8) gives additional ! − 1 equations:

−
!∑
:

1
Z:

∫
m"4:

#∑
9

D
?

9
E 9=83(̃ +

!∑
:

�
?

:
+: = −

!∑
:

1
Z:

∫
m"4:

#∑
9

D
?

9
E 9=83(̃ +

!∑
:

(
!−1∑
9

�̃ 9= 9 ): (=8):

=

#∑
9

D
?

9

(
1
Z8+1

∫
m"48+1

E 93(̃ − 1
Z1

∫
m"41

E 93(̃

)
+
!−1∑
9

�̃ 9

!∑
:

(= 9 ): (=8): = −
!∑
:

1
Z:

∫
m"4:

*: (=8):3(̃,

which can be expressed with �2, �2, sD, s*1, s� , and ( s*2)8 = −
∑!
:

1
Z:

∫
m"4:

*: (=8):3(̃ =
*8+1
Z8+1

∫
m"48+1

13(̃ −
*1
Z1

∫
m"41

13(̃ as �2sD = s*1 and �3s� = s*2. Finally, by combining the results we have

(a.10)
[
�1 0
�2 �3

] [
sD
s�

]
=

[
s*1
s*2

]
.

This �nishes the proof. �

appendix a.1 computing the finite element approximation

In Lemma a.3, we derived the matrix presentation of the FE approximation. This matrix form, however,
is abstract in the sense that the integrals are still presented in " and m" .

To proceed further, we consider speci�c maps to the manifold " . We de�ne the elementary triangle
by ) :=

{
H ∈ ℝ2 | H1, H2 ≥ 0, H1 + H2 ≤ 1

}
and denote the boundary segments of this triangle by

m1) :=
{
H ∈ ) | H2 = 0

}
, m2) := {H ∈ ) | H1 = 0

}
, and m3) :=

{
H ∈ ) | H1 = H2

}
. Further, we assume

that there exists a triangulation of " , meaning that:
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• There are domains �@ (in practice "geodesic triangles", compare Figure 7), such that " = �1 ∪
�1... ∪ � .

• For each @ there exists an orientation preserving di�eomorphism �@ () ) = �@ (i.e. �@ : ) → �@
and �−1@ : �@ → ) are di�erentiable bijections and the Jacobian determinant of �@ is positive).
Intuitively, this means that ) can be morphed smoothly to �@ and �@ back to ) through �@ and
�−1@ , so that the right-hand (or left-hand) rule is preserved.

• The subdomains �@ and �A for @ ≠ A and the subdomains �@ (mU) ) ⊂ m" and �A (mV) ) ⊂ m" for
(@, U) ≠ (A, V) may only intersect at the boundaries.

• For each electrode 4: some collection B: of A and V corresponds to the boundary segment of 4: ,
i.e. m"4: =

⋃
(A,V) ∈B:

�A (mV) ).

In addition, we need a presentation for the metric 6 on ) . Recall that 6 has the speci�c form
6(F1,F2) = 6̃(3q (F1), 3q (F2)). Clearly, this metric has a matrix presentation 6 = �)@ �@ [35, Chapter 5]
on ) , where �@ is the Jacobian matrix of �@ . Similarly, if WU (C) is a curve that maps [0, 1] to one of the
boundaries mU) , then 6l (F) = 6(3WU (F)) has a presentation 6l = �@

)
WU
�@WU in [0, 1], where �@WU is the

Jacobian of �@ (WU (C)).
Now we derive the exact forms for the integrals of (a.3) in terms of ) and the interval [0, 1]. The

next lemma combined with Lemma a.3 �nally allows us to calculate the matrices and vectors of the FE
system that determines � (f) in (2.6). The RIPGN algorithm [15] utilizes these vectors and matrices to
solve (2.6).
Lemma a.4. Assume that there exists a triangulation {�@} of " . The integrals in Lemma a.3 have the

following presentations;∫
"

f 〈∇E8 ,∇E 9 〉63( =
∑
@

∫
)

f (�@ (H)) (∇HE8 (�@ (H))))6−1(∇HE 9 (�@ (H)))
√
|6|3H13H2,

!∑
:

1
Z:

∫
m"4:

E 9E83(̃ =

!∑
:

∑
(@,U) ∈I (8, 9,:)

*:

Z:

∫ 1

0
E 9 (�@ (WU (C)))E8 (�@ (WU (C)))

√
6l3C,

*:

Z:

∫
m"4:

E 93(̃ =
∑

(@,U) ∈I ( 9,:)

*:

Z:

∫ 1

0
E 9 (�@ (WU (C)))

√
6l3C,

and

*:

Z:

∫
m"4:

13(̃ =
∑

(@,U) ∈I (:)

*:

Z:

∫ 1

0

√
6l3C,

where 6−1 is a matrix representing the coe�cients of 68 9 , ∇H 5 is the gradient of 5 with respect to the

variable H ∈ ) ⊂ ℝ2
, and

I(8, 9, :) :=
{
(@, U) | m�@ (mU) ) is under an electrode : , E8 (�@ (mU) )) ≠ {0}, and E 9 (�@ (mU) )) ≠ {0}.

}
,

I(8, :) :=
{
(@, U) | m�@ (mU) ) is under an electrode : and E8 (�@ (mU) )) ≠ {0}.

}
, and

I(:) :=
{
(@, U) | m�@ (mU) ) is under an electrode : .

}
.

Proof. Since) and m) are compact, �@ are di�eomophic, m"4: =
⋃
(A,V) ∈B: �A (mV) ) and" = �1∪�1...∪

� , where @ ≠ A and (@, U) ≠ (A, V) only intersect at their boundaries, the conditions of [20, Proposition
10.21] are met for " and for each m"4: , and the integrals of (a.1) de�ned in " and in m"4: can be
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expressed as sums of Riemannian integrals in ℝ or ℝ2 over the sets ) and m) , i.e., for 5 : " → ℝ and
5̃ : m"4: → ℝ, i.e. ∫

"

5 3( =
∑
@

∫
)

� ∗@ (5 3() =
∑
@

∫
)

(5 ◦ �@)
√
|6|3H and

∫
m"4:

5̃ 3(̃ =
∑

(A,V) ∈B:

∫
mV)

� ∗A ( 5̃ 3+̃ ) =
∑

(A,V) ∈B:

∫
mV)

( 5̃ ◦ �A )
√
|6l |3H̃

where H ∈ ) and H̃ ∈ mV) [19, Proposition 11.25, Proposition 15.31, and page 402].
Since 68 9 are the indices of the inverse of the matrix representing 6 [19, Page 342], ∇5 = 6−1∇H 5 in

) . Furthermore, we denote H := (H1, H2) ∈ ) and 3H := 3H13H2. Now∫
"

f 〈∇E8 ,∇E 9 〉63( =
∑
@

∫
)

f (�@ (H))〈∇E8 (�@ (H)),∇E 9 (�@ (H))〉
√
|6|3H

=
∑
@

∫
)

f (�@ (H)) (6−1∇HE8 (�@ (H))))6(6−1∇HE 9 (�@ (H)))
√
|6|3H

=
∑
@

∫
)

f (�@ (H)) (∇HE8 (�@ (H))))6−1(∇HE 9 (�@ (H)))
√
|6|3H,

since 6 (and 6−1) is symmetric.
Since m"4: = ∪A,V�A (mV) ) for some B: , and since �A (mV) ) may only intersect at a single point, the

boundary integrals in Lemma a.3 can be mapped to the interval [0, 1] by composing the appropriate �A
with one of the curves, W1(C) = (C, 0), W2(C) = (0, C), or W3(C) = (C, 1 − C), depending on which segments
of mV) constitute to m"4: under �A . On these boundaries, we may write 3+̃ =

√
|6l |3C . Now, since the

boundary integrals in Lemma a.3 comprise only terms that correspond to an electrode 4: , and since
these terms are zero if either a E8 or a E 9 in the term is identically zero on m"4: , we are left with I as
de�ned in the statement of the lemma. As an example

!∑
:

1
Z:

∫
m"4:

E 9E83(̃ =

!∑
:

∑
(@,U) ∈B:

∫
mU)

*:

Z:
E 9 (�@ (H̃))E8 (�@ (H̃))

√
6l3H̃

=

!∑
:

∑
(@,U) ∈B:

∫ 1

0

*:

Z:
E 9 (�@ (WU (C)))E8 (�@ (WU (C)))

√
6l3C .

Now
∫ 1
0
*:

Z:
E 9 (�@ (WU (C)))E8 (�@ (WU (C)))

√
6l3C = 0 if either E8 (�@ (W (C))) ≡ 0 or E 9 (�@ (W (C))) ≡ 0, mean-

ing that we can replace (@, U) ∈ B: with (@, U) ∈ I(8, 9, :).
�
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