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PREFACE

One of the major applications of classical analysis is optimization or the search for minima
(or maxima) of a given function; this search may be motivated by the function directly
representing an outcome of which lower values are desirable (say, the total cost of an
economic production plan) or by the minimizing property indirectly being an essential
characterization of a point of interest (say, a physical state as the minimizer of an en-
ergy functional, or the solution of an inverse or imaging problem as the minimizer of a
regularization functional). In particular, analytical concepts are crucial in every stage of
the treatment of optimization problems: continuity properties for showing existence of
solutions (that the minimal value is actually attained in a feasible point), first derivatives for
intrinsic characterizations of solutions (via Fermat principles or optimality conditions) and
for the numerical solution via steepest descent or gradient methods, and second derivatives
for the numerical solution via Newton methods and for deriving stability results, e.g, with
respect to computational errors (via implicit function theorems).

However, there are many practically relevant functions that are not differentiable, such
as the absolute value or maximum function. The goal of nonsmooth analysis is therefore
to find generalized derivative concepts that on the one hand allow the above sketched
approach for such functions and on the other hand admit a sufficiently rich calculus to give
explicit derivatives for a sufficiently large class of functions. In this book, we specifically
aim at treating problems of the form

(P) min
𝑥∈𝐶

1
𝑝
∥𝑆 (𝑥) − 𝑧∥𝑝

𝑌
+ 𝛼
𝑞
∥𝑥 ∥𝑞

𝑋

for a closed convex constraint or feasible set𝐶 ⊂ 𝑋 , a (possibly nonlinear but differentiable)
operator 𝑆 : 𝑋 → 𝑌 , 𝛼 ≥ 0 and 𝑝, 𝑞 ∈ [1,∞) (in particular, 𝑝 = 1 and/or 𝑞 = 1). Such
problems are ubiquitous in inverse problems, imaging, and optimal control of differential
equations. Hence, we consider optimization in infinite-dimensional function spaces; i.e.,
we are looking for functions as minimizers. The main benefit (beyond the frequently
cleaner notation) is that the developed algorithms become discretization independent: they
can be applied to any (reasonable) finite-dimensional approximation, and the details – in
particular, the fineness – of the approximation do not influence the convergence behavior
of the algorithms. A special role will be played throughout the book by integral functionals
and superposition operators that act pointwise on functions, since these allow transferring
the often more explicit finite-dimensional calculus to the infinite-dimensional setting.
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preface

Nonsmooth analysis and optimization in finite dimensions has a long history; we re-
fer here only to the classical textbooks [Boyd and Vandenberghe, 2004; Hiriart-Urruty
and Lemaréchal, 1993a,b; Mäkelä and Neittaanmäki, 1992; Rockafellar and Wets, 1998;
Ruszczyǹski, 2006] as well as the recent [Bagirov et al., 2014; Beck, 2017; Cui and Pang,
2021; Nesterov, 2018; Royset and Wets, 2021]. There also exists a large body of literature
on specific nonsmooth optimization problems, in particular ones involving variational
inequalities and equilibrium constraints; see, e.g., [Facchinei and Pang, 2003a,b; Outrata
et al., 1998]. In contrast, the infinite-dimensional setting is still being actively developed,
with monographs and textbooks focusing on either theory [Barbu and Precupanu, 2012;
Clarke, 2013, 1990; Dontchev, 2021; Ioffe, 2017; Mordukhovich, 2006, 2018; Penot, 2013;
Schirotzek, 2007; Zălinescu, 2002] or algorithms [Ito and Kunisch, 2008; Ulbrich, 2011].
Two exceptions are [Bauschke and Combettes, 2017] and [Peypouquet, 2015], the former
containing an impressively comprehensive and integrated treatment of convex analysis
and proximal point methods in Hilbert spaces, and the latter giving an equally impres-
sively concise introduction to these topics in normed vector spaces. As this book neared
completion, [Bauschke and Moursi, 2023] was published, which serves as a very gentle
introduction to convex optimization and first-order methods in Hilbert spaces as treated
in [Bauschke and Combettes, 2017]. The aim of this book is thus to draw together results
scattered throughout the literature in order to give a unified presentation of theory – both
convex and nonconvex – and algorithms – both first- and second-order – in Banach spaces
that is suitable for an advanced class on mathematical optimization. In order to do this, we
focus on optimization of nonsmooth functionals rather than nonsmooth constraints; in
particular, we do not treat optimization with complementarity or equilibrium constraints,
which still see significant active development in infinite dimensions. We also restrict the
treatment to the two classes of

i) convex functions and

ii) locally Lipschitz continuous functions,

which together cover a wide spectrum of applications. In particular, the first class will lead
us to generalized gradient methods, while the second class are the basis for generalized
Newton methods. These methods are chosen since they have become increasingly popular
in recent years and fit particularly well within the integrated approach of this book. On
the other hand, this focus leads us to omit other, more classical, methods and in particular
bundle methods, which have very recently seen developments in Hilbert spaces. Here, too,
we can only refer to the research literature as well as to the classical books cited above for
finite-dimensional treatments. Regarding generalized derivatives of set-valued mappings
required for the mentioned stability results, we similarly do not aim for a (possibly fuzzy)
general theory and instead restrict ourselves to situations where a regularity condition
(one out of the veritable zoo of conditions found in the literature) holds that allows deriving
exact results that still apply to problems of the form (P). The general theory can be found
in, e.g., [Aubin and Frankowska, 1990; Mordukhovich, 2006, 2018; Rockafellar and Wets,
1998] (to which this book is, among other things, intended as a gentle introduction).
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The book is intended for students and researchers with a solid background in analysis and
linear algebra and an interest in the mathematical foundations of nonsmooth optimization.
Since we deal with infinite-dimensional spaces, some knowledge of functional analysis
is assumed, but the necessary background will be summarized in Chapter 1. Similarly,
Chapter 2 collects needed fundamental results from the calculus of variations, including the
direct method for existence of minimizers and the related notion of lower semicontinuity as
well as differential calculus in Banach spaces, where the results on pointwise superposition
operators on Lebesgue spaces require elementary (Lebesgue) measure and integration
theory. Basic familiarity with classical nonlinear optimization is helpful but not necessary.

In Part II we then start our study of convex optimization problems. After introducing convex
functionals and their basic properties in Chapter 3, we define our first generalized derivative
in Chapter 4: the convex subdifferential, which is no longer a single unique derivative but
consists of a set of equally admissible subderivatives. Nevertheless, we obtain a useful
corresponding Fermat principle as well as calculus rules. A particularly useful calculus
rule in convex optimization is Fenchel duality, which assigns to any optimization problem
a dual problem that can help treating the original primal problem; this is the content of
Chapter 5. We change our viewpoint in Chapter 6 slightly to study the subdifferential as a
set-valued monotone operator, which leads us to the corresponding resolvent or proximal
point mapping, which will later become the basis of all algorithms. The following Chapter 7
discusses the relation between convexity and smoothness of primal and dual problem and
introduces the Moreau–Yosida regularization, which has better properties in both regards
that can be used to accelerate the convergence of algorithms. We turn to these in Chapter 8,
where we start by deriving a number of popular first-order methods including forward-
backward splitting and primal-dual proximal splitting (also known as the Chambolle–Pock
method). Their convergence under rather general assumptions is then shown in Chapter 9.
If additional convexity properties hold, we can even show convergence rates for the iterates
using a general testing approach; this is carried out in Chapter 10. Otherwise we either
have to restrict ourselves to more abstract criticality measures as in Chapter 11 or modify
the algorithms to include over-relaxation or inertia as in Chapter 12. One philosophy we
here wish to pass to the reader is that the development of optimization methods consists,
firstly, in suitable reformulation of the problem; secondly, in the preconditioning of the
raw optimality conditions; and, thirdly, in testing with appropriate operators whether this
yields fast convergence.

We leave the convex world in Part III. For locally Lipschitz continuous functions, we
introduce the Clarke subdifferential in Chapter 13 and derive calculus rules. Not only is
this useful for obtaining a Fermat principle for problems of the form (P), it is also the basis
for defining a further generalized derivative that can be used in place of the Hessian in a
generalized Newton method. This Newton derivative and the corresponding semismooth
Newton method is studied in Chapter 14. We also derive and analyze a variant of the primal-
dual proximal splitting method suitable for (P) in Chapter 15. We end this part with a short
outlook Chapters 16 and 17 to further subdifferential concepts that can lead to sharper

viii



preface

optimality conditions but in general admit a weaker calculus; we will look at some of these
in detail in the next part.

To derive stability properties of minimization problems, we need to study the sensitivity of
subdifferentials to perturbations and hence generalized derivative concepts for set-valued
mappings; this is the goal of Part IV. The construction of the generalized derivatives is
geometric, based on tangent and normal cones introduced in Chapter 18. From these, we
obtain Fréchet and limiting (co)derivatives in Chapter 20 and derive calculus rules for
them in Chapters 22 to 25. In particular, we show how to lift the (more extensive) finite-
dimensional theory to the special case of pointwise-defined sets and mappings operators
on Lebesgue spaces in Chapters 19 and 21. We then address second-order conditions for
nonsmooth nonconvex optimization problems in Chapter 26. In Chapter 27, we use these
derivatives to characterize Lipschitz-like properties of set-valued mappings, which then are
used to obtain the desired stability properties in Chapter 28. We also show in Chapter 29
that these regularity properties imply faster convergence of first-order methods.

Finally, Part V illustrates how these results apply to concrete optimization problems arising
in inverse problems and mathematical imaging (Chapters 30 to 32) and in optimal control
(Chapters 33 and 34), where we freely admit that the selection of examples is subjective and
driven by the authors’ interests. These chapters are accompanied by Julia implementations
[Clason and Valkonen, 2023] of the discussed algorithms, which can be used to recreate
the presented numerical results.

This book can serve as a textbook for several different classes:

(i) an introductory course on convex optimization based on Chapters 3 to 10 (excluding
Section 3.3 and results on superposition operators) and adding Chapters 11, 12, and 15
as time permits;

(ii) an intermediate course on nonsmooth optimization based on Chapters 3 to 9 (includ-
ing Section 3.3 and results on superposition operators) together with Chapters 13, 14,
16, and 17;

(iii) an intermediate course on nonsmooth analysis based on Chapters 3 to 6 together
with Chapter 13 and Chapters 16 to 20, adding Chapters 22 to 21 as time permits;

(iv) an advanced course on set-valued analysis based on Chapters 16 to 29.

This book is based in part on such graduate lectures given by the first author in 2014 (in
slightly different form) and 2016–2017 at the University of Duisburg-Essen and by the
second author at the University of Cambridge in 2015 and Escuela Politécnica Nacional
in Quito in 2020. Shorter seminars were also delivered at the University of Jyväskylä and
the Escuela Politécnica Nacional in 2017. Part IV of the book was also used in a course
on variational analysis at the EPN in 2019. Parts of the book were also taught by both
authors at the Winter School “Modern Methods in Nonsmooth Optimization” organized
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by Christian Kanzow and Daniel Wachsmuth at the University of Würzburg in February
2018, for which the notes were further adapted and extended. As such, much (but not
all) of this material is classical. In particular, Chapters 3 to 7 as well as Chapter 13 are
based on [Attouch et al., 2014; Barbu and Precupanu, 2012; Bauschke and Combettes, 2017;
Brokate, 2014; Clarke, 2013; Schirotzek, 2007], Chapter 14 is based on [Ito and Kunisch,
2008; Schiela, 2008; Ulbrich, 2002], Chapter 16 is extracted from [Mordukhovich, 2006],
and Chapters 18 to 25 are adapted from [Mordukhovich, 2006; Rockafellar and Wets, 1998].
Parts of Chapter 17 are adapted from [Ioffe, 2017], and other parts are original work. On
the other hand, Chapters 8 to 12 as well as Chapters 15, 21, and 29 are adapted from [Clason
et al., 2019; Valkonen, 2020b, 2021c], [Clason and Valkonen, 2017b], and [Valkonen, 2021c],
respectively.

Finally,we would like to thank Sebastian Angerhausen,Andreas Habring, Fernando Jimenez
Torres, Heikki von Koch, Anton Schiela, Ensio Suonperä, Diego Vargas Jaramillo, Bjørn
Jensen, Daniel Wachsmuth, and in particular Gerd Wachsmuth for carefully reading parts
of the manuscript, finding mistakes and bits that could be expressed more clearly, and
making helpful suggestions. All remaining errors are of course our own.

Essen/Graz and Quito/Helsinki, March 2024
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BACKGROUND
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1 FUNCTIONAL ANALYSIS

Functional analysis is the study of infinite-dimensional vector spaces and of the operators
acting between them, and has since its foundations in the beginning of the 20th century
grown into the lingua franca of modern applied mathematics. In this chapter we collect
the basic concepts and results (and, more importantly, fix notations) from linear functional
analysis that will be used throughout the rest of the book. For details and proofs, the reader
is referred to the standard literature, e.g., [Alt, 2016; Brezis, 2010; Rynne and Youngson,
2008], or to [Clason, 2020a].

1.1 normed vector spaces

In the following, 𝑋 will denote a real vector space. A mapping ∥ · ∥ : 𝑋 → ℝ+ ≔ [0,∞) is
called a norm (on 𝑋 ), if for all 𝑥 ∈ 𝑋 there holds

(i) ∥𝜆𝑥 ∥ = |𝜆 |∥𝑥 ∥ for all 𝜆 ∈ ℝ;

(ii) ∥𝑥 + 𝑦 ∥ ≤ ∥𝑥 ∥ + ∥𝑦 ∥ for all 𝑦 ∈ 𝑋 ;
(iii) ∥𝑥 ∥ = 0 if and only if 𝑥 = 0 ∈ 𝑋 .

Example 1.1. (i) The following mappings define norms on 𝑋 = ℝ𝑁 :

∥𝑥 ∥𝑝 =
(
𝑁∑︁
𝑖=1

|𝑥𝑖 |𝑝
) 1/𝑝

, 1 ≤ 𝑝 < ∞,

∥𝑥 ∥∞ = max
𝑖=1,...,𝑁

|𝑥𝑖 |.

(ii) The following mappings define norms on 𝑋 = ℓ𝑝 (the space of real-valued se-
quences for which these terms are finite):

∥𝑥 ∥𝑝 =
( ∞∑︁
𝑖=1

|𝑥𝑖 |𝑝
) 1/𝑝

, 1 ≤ 𝑝 < ∞,

∥𝑥 ∥∞ = sup
𝑖=1,...,∞

|𝑥𝑖 |.

2



1 functional analysis

(iii) The following mappings define norms on 𝑋 = 𝐿𝑝 (Ω) (the space of real-valued
measurable functions on the domain Ω ⊂ ℝ𝑑 for which these terms are finite):

∥𝑢∥𝐿𝑝 =
(∫

Ω
|𝑢 (𝑥) |𝑝

) 1/𝑝
, 1 ≤ 𝑝 < ∞,

∥𝑢∥𝐿∞ = ess sup
𝑥∈Ω

|𝑢 (𝑥) |,

where ess sup stands for the essential supremum; for details on these definitions,
see, e.g., [Alt, 2016].

(iv) The following mapping defines a norm on 𝑋 = 𝐶 (Ω) (the space of continuous
functions on Ω):

∥𝑢∥𝐶 = sup
𝑥∈Ω

|𝑢 (𝑥) |.

An analogous norm is defined on 𝑋 = 𝐶0(Ω) (the space of continuous functions
on Ω with compact support), if the supremum is taken only over the space of
continuous functions on Ω with compact support), if the supremum is taken only
over 𝑥 ∈ Ω.

If ∥ · ∥ is a norm on 𝑋 , the tuple (𝑋, ∥ · ∥) is called a normed vector space, and one frequently
denotes this by writing ∥ · ∥𝑋 . If the norm is canonical (as in Example 1.1 (ii)–(iv)), it is often
omitted, and one speaks simply of “the normed vector space 𝑋 ”.

Two norms ∥ · ∥1, ∥ · ∥2 are called equivalent on 𝑋 , if there are constants 𝑐1, 𝑐2 > 0 such
that

𝑐1∥𝑥 ∥2 ≤ ∥𝑥 ∥1 ≤ 𝑐2∥𝑥 ∥2 for all 𝑥 ∈ 𝑋 .
If 𝑋 is finite-dimensional, all norms on 𝑋 are equivalent. However, the corresponding con-
stants 𝑐1 and 𝑐2 may depend on the dimension 𝑁 of 𝑋 ; avoiding such dimension-dependent
constants is one of the main reasons to consider optimization in infinite-dimensional
spaces.

If (𝑋, ∥ · ∥𝑋 ) and (𝑌, ∥ · ∥𝑌 ) are normed vector spaces with 𝑋 ⊂ 𝑌 , we call 𝑋 continuously
embedded in 𝑌 , denoted by 𝑋 ↩→ 𝑌 , if there exists a 𝐶 > 0 with

∥𝑥 ∥𝑌 ≤ 𝐶 ∥𝑥 ∥𝑋 for all 𝑥 ∈ 𝑋 .
For example, if Ω ⊂ ℝ𝑑 is a bounded domain, 𝐿𝑞 (Ω) ↩→ 𝐿𝑝 (Ω) for every 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞.

A norm directly induces a notion of convergence, the so-called strong convergence. A
sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 converges (strongly in 𝑋 ) to a 𝑥 ∈ 𝑋 , denoted by 𝑥𝑛 → 𝑥 , if

lim
𝑛→∞ ∥𝑥𝑛 − 𝑥 ∥𝑋 = 0.

A set𝑈 ⊂ 𝑋 is called

3



1 functional analysis

• closed, if for every convergent sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑈 the limit 𝑥 ∈ 𝑋 is an element
of𝑈 as well;

• compact, if every sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑈 contains a convergent subsequence {𝑥𝑛𝑘 }𝑘∈ℕ
with limit 𝑥 ∈ 𝑈 .

A mapping 𝐹 : 𝑋 → 𝑌 is continuous if and only if 𝑥𝑛 → 𝑥 implies 𝐹 (𝑥𝑛) → 𝐹 (𝑥). If 𝑥𝑛 → 𝑥

and 𝐹 (𝑥𝑛) → 𝑦 imply that 𝐹 (𝑥) = 𝑦 (i.e., graph 𝐹 ⊂ 𝑋 × 𝑌 is a closed set), we say that 𝐹
has closed graph.

Further we define for later use for 𝑥 ∈ 𝑋 and 𝑟 > 0

• the open ball 𝕆(𝑥, 𝑟 ) ≔ {𝑧 ∈ 𝑋 | ∥𝑥 − 𝑧∥𝑋 < 𝑟 } and
• the closed ball 𝔹(𝑥, 𝑟 ) ≔ {𝑧 ∈ 𝑋 | ∥𝑥 − 𝑧∥𝑋 ≤ 𝑟 }.

The closed ball around 0 ∈ 𝑋 with radius 1 is also referred to as the unit ball 𝔹𝑋 . A set
𝑈 ⊂ 𝑋 is called

• open, if for all 𝑥 ∈ 𝑈 there exists an 𝑟 > 0 with𝕆(𝑥, 𝑟 ) ⊂ 𝑈 (i.e., all 𝑥 ∈ 𝑈 are interior
points of𝑈 );

• bounded, if it is contained in 𝔹(0, 𝑟 ) for a 𝑟 > 0;

• convex, if for any 𝑥, 𝑦 ∈ 𝑈 and 𝜆 ∈ [0, 1] also 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑈 .

In normed vector spaces it always holds that the complement of an open set is closed and
vice versa (i.e., the closed sets in the sense of topology are exactly the (sequentially) closed
set as defined above). The definition of a norm directly implies that both open and closed
balls are convex.

For arbitrary 𝑈 , we denote by cl𝑈 the closure of 𝑈 , defined as the smallest closed set that
contains𝑈 (which coincides with the set of all limit points of convergent sequences in𝑈 );
we write int𝑈 for the interior of𝑈 , which is the largest open set contained in𝑈 ; and we
write bd𝑈 ≔ cl𝑈 \ int𝑈 for the boundary of𝑈 . Finally, we write co𝑈 for the convex hull
of𝑈 , defined as the smallest convex set that contains𝑈 .

A normed vector space 𝑋 is called complete if every Cauchy sequence in 𝑋 is convergent;
in this case,𝑋 is called a Banach space. All spaces in Example 1.1 are Banach spaces. Convex
subsets of Banach spaces have the following useful property which derives from the Baire
Theorem.

Lemma 1.2. Let 𝑋 be a Banach space and𝑈 ⊂ 𝑋 be closed and convex. Then

int𝑈 = {𝑥 ∈ 𝑈 | for all ℎ ∈ 𝑋 there is a 𝛿 > 0 with 𝑥 + 𝑡ℎ ∈ 𝑈 for all 𝑡 ∈ [0, 𝛿]} .

4



1 functional analysis

The set on the right-hand side is called algebraic interior or core. For this reason, Lemma 1.2
is sometimes referred to as the “core-int Lemma”. Note that the inclusion “⊂” always holds
in normed vector spaces due to the definition of interior points via open balls.

We now consider mappings between normed vector spaces. In the following, let (𝑋, ∥ · ∥𝑋 )
and (𝑌, ∥ · ∥𝑌 ) be normed vector spaces,𝑈 ⊂ 𝑋 , and 𝐹 : 𝑈 → 𝑌 be a mapping. We denote
by

• ker 𝐹 ≔ {𝑥 ∈ 𝑈 | 𝐹 (𝑥) = 0} the kernel or null space of 𝐹 ;
• ran 𝐹 ≔ {𝐹 (𝑥) ∈ 𝑌 | 𝑥 ∈ 𝑈 } the range of 𝐹 ;
• graph 𝐹 ≔ {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑦 = 𝐹 (𝑥)} the graph of 𝐹 .

We call 𝐹 : 𝑈 → 𝑌

• continuous at 𝑥 ∈ 𝑈 , if for all 𝜀 > 0 there exists a 𝛿 > 0 with

∥𝐹 (𝑥) − 𝐹 (𝑧)∥𝑌 ≤ 𝜀 for all 𝑧 ∈ 𝕆(𝑥, 𝛿) ∩𝑈 ;

• Lipschitz continuous, if there exists an 𝐿 > 0 (called Lipschitz constant) with

∥𝐹 (𝑥1) − 𝐹 (𝑥2)∥𝑌 ≤ 𝐿∥𝑥1 − 𝑥2∥𝑋 for all 𝑥1, 𝑥2 ∈ 𝑈 .

• locally Lipschitz continuous at 𝑥 ∈ 𝑈 , if there exists a 𝛿 > 0 and a 𝐿 = 𝐿(𝑥, 𝛿) > 0
with

∥𝐹 (𝑥) − 𝐹 (𝑥)∥𝑌 ≤ 𝐿∥𝑥 − 𝑥 ∥𝑋 for all 𝑥 ∈ 𝕆(𝑥, 𝛿) ∩𝑈 ;

• locally Lipschitz continuous near 𝑥 ∈ 𝑈 , if there exists a 𝛿 > 0 and a 𝐿 = 𝐿(𝑥, 𝛿) > 0
with

∥𝐹 (𝑥1) − 𝐹 (𝑥2)∥𝑌 ≤ 𝐿∥𝑥1 − 𝑥2∥𝑋 for all 𝑥1, 𝑥2 ∈ 𝕆(𝑥, 𝛿) ∩𝑈 .
We will refer to the 𝕆(𝑥, 𝛿) as the Lipschitz neighborhood of 𝑥 (for 𝐹 ). If 𝐹 is locally
Lipschitz continuous near every 𝑥 ∈ 𝑈 , we call 𝐹 locally Lipschitz continuous on 𝑈 .

If 𝑇 : 𝑋 → 𝑌 is linear, continuity is equivalent to the existence of a constant 𝐶 > 0 with

∥𝑇𝑥 ∥𝑌 ≤ 𝐶 ∥𝑥 ∥𝑋 for all 𝑥 ∈ 𝑋 .

For this reason, continuous linear mappings are called bounded; one speaks of a bounded
linear operator. The space 𝕃(𝑋 ;𝑌 ) of bounded linear operators is itself a normed vector
space if endowed with the operator norm

∥𝑇 ∥𝕃(𝑋 ;𝑌 ) = sup
𝑥∈𝑋\{0}

∥𝑇𝑥 ∥𝑌
∥𝑥 ∥𝑋 = sup

∥𝑥 ∥𝑋=1
∥𝑇𝑥 ∥𝑌 = sup

∥𝑥 ∥𝑋≤1
∥𝑇𝑥 ∥𝑌
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(which is equal to the smallest possible constant 𝐶 in the definition of continuity). If
(𝑌, ∥ · ∥𝑌 ) is a Banach space, then so is (𝕃(𝑋 ;𝑌 ), ∥ · ∥𝕃(𝑋 ;𝑌 )).
Finally, if 𝑇 ∈ 𝕃(𝑋 ;𝑌 ) is bijective, the inverse 𝑇 −1 : 𝑌 → 𝑋 is continuous if and only if
there exists a 𝑐 > 0 with

𝑐 ∥𝑥 ∥𝑋 ≤ ∥𝑇𝑥 ∥𝑌 for all 𝑥 ∈ 𝑋 .
In this case, ∥𝑇 −1∥𝕃(𝑌 ;𝑋 ) = 𝑐−1 for the largest possible choice of 𝑐 .

1.2 dual spaces, separation, and weak convergence

Of particular importance to us is the special case 𝕃(𝑋 ;𝑌 ) for 𝑌 = ℝ, the space of bounded
linear functionals on 𝑋 . In this case, 𝑋 ∗ ≔ 𝕃(𝑋 ;ℝ) is called the dual space (or just dual) of
𝑋 . For 𝑥∗ ∈ 𝑋 ∗ and 𝑥 ∈ 𝑋 , we set

⟨𝑥∗, 𝑥⟩𝑋 ≔ 𝑥∗(𝑥) ∈ ℝ.

This duality pairing indicates that we can also interpret it as 𝑥 acting on 𝑥∗, which will
become important later. The definition of the operator norm immediately implies that

(1.1) ⟨𝑥∗, 𝑥⟩𝑋 ≤ ∥𝑥∗∥𝑋 ∗ ∥𝑥 ∥𝑋 for all 𝑥 ∈ 𝑋, 𝑥∗ ∈ 𝑋 ∗.

In many cases, the dual of a Banach space can be identified with another known Banach
space.

Example 1.3. (i) (ℝ𝑁 , ∥ · ∥𝑝)∗ � (ℝ𝑁 , ∥ · ∥𝑞) with 𝑝−1 +𝑞−1 = 1, where we set 0−1 = ∞
and ∞−1 = 0. The duality pairing is given by

⟨𝑥∗, 𝑥⟩𝑝 =
𝑁∑︁
𝑖=1

𝑥∗𝑖 𝑥𝑖 .

(ii) (ℓ𝑝)∗ � (ℓ𝑞) for 1 < 𝑝 < ∞. The duality pairing is given by

⟨𝑥∗, 𝑥⟩𝑝 =
∞∑︁
𝑖=1

𝑥∗𝑖 𝑥𝑖 .

Furthermore, (ℓ1)∗ = ℓ∞, but (ℓ∞)∗ is not a sequence space.
(iii) Analogously, 𝐿𝑝 (Ω)∗ � 𝐿𝑞 (Ω) with 𝑝−1 + 𝑞−1 = 1 for 1 < 𝑝 < ∞. The duality

pairing is given by
⟨𝑢∗, 𝑢⟩𝑝 =

∫
Ω
𝑢∗(𝑥)𝑢 (𝑥) 𝑑𝑥.

Furthermore, 𝐿1(Ω)∗ � 𝐿∞(Ω), but 𝐿∞(Ω)∗ is not a function space.
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(iv) 𝐶0(Ω)∗ � M(Ω), the space of Radon measure; it contains among others the
Lebesguemeasure as well as Diracmeasures 𝛿𝑥 for𝑥 ∈ Ω, defined via 𝛿𝑥 (𝑢) = 𝑢 (𝑥)
for 𝑢 ∈ 𝐶0(Ω). The duality pairing is given by

⟨𝑢∗, 𝑢⟩𝐶 =
∫
Ω
𝑢 (𝑥) 𝑑𝑢∗.

A central result on dual spaces is the Hahn–Banach Theorem, which comes in both an
algebraic and a geometric version.

Theorem 1.4 (Hahn–Banach, algebraic). Let 𝑋 be a normed vector space and 𝑥 ∈ 𝑋 \ {0}.
Then there exists a 𝑥∗ ∈ 𝑋 ∗ with

∥𝑥∗∥𝑋 ∗ = 1 and ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 .

Theorem 1.5 (Hahn–Banach, geometric). Let 𝑋 be a normed vector space and 𝐴, 𝐵 ⊂ 𝑋 be
convex, nonempty, and disjoint.

(i) If 𝐴 is open, there exists an 𝑥∗ ∈ 𝑋 ∗ and a 𝜆 ∈ ℝ with

⟨𝑥∗, 𝑥1⟩𝑋 < 𝜆 ≤ ⟨𝑥∗, 𝑥2⟩𝑋 for all 𝑥1 ∈ 𝐴, 𝑥2 ∈ 𝐵.

(ii) If 𝐴 is closed and 𝐵 is compact, there exists an 𝑥∗ ∈ 𝑋 ∗ and a 𝜆 ∈ ℝ with

⟨𝑥∗, 𝑥1⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥2⟩𝑋 for all 𝑥1 ∈ 𝐴, 𝑥2 ∈ 𝐵.

Particularly the geometric version – also referred to as separation theorems – is of crucial
importance in convex analysis. We will also require their following variant, which is known
as Eidelheit Theorem.

Corollary 1.6. Let 𝑋 be a normed vector space and 𝐴, 𝐵 ⊂ 𝑋 be convex and nonempty. If the
interior int𝐴 of 𝐴 is nonempty and disjoint with 𝐵, there exists an 𝑥∗ ∈ 𝑋 ∗ \ {0} and a 𝜆 ∈ ℝ

with
⟨𝑥∗, 𝑥1⟩𝑋 ≤ 𝜆 ≤ ⟨𝑥∗, 𝑥2⟩𝑋 for all 𝑥1 ∈ 𝐴, 𝑥2 ∈ 𝐵.

Proof. Theorem 1.5 (i) yields the existence of 𝑥∗ and 𝜆 satisfying the claim for all 𝑥1 ∈ int𝐴;
this inequality is even strict, which also implies 𝑥∗ ≠ 0. It thus remains to show that the
first inequality also holds for the remaining 𝑥1 ∈ 𝐴 \ int𝐴. Since int𝐴 is nonempty, there
exists an 𝑥0 ∈ int𝐴, i.e., there is an 𝑟 > 0 with 𝕆(𝑥0, 𝑟 ) ⊂ 𝐴. The convexity of 𝐴 then
implies that 𝑡𝑥 + (1 − 𝑡)𝑥1 ∈ 𝐴 for all 𝑥 ∈ 𝕆(𝑥0, 𝑟 ) and 𝑡 ∈ [0, 1]. Hence,

𝑡𝕆(𝑥0, 𝑟 ) + (1 − 𝑡)𝑥 = 𝕆(𝑡𝑥0 + (1 − 𝑡)𝑥1, 𝑡𝑟 ) ⊂ 𝐴,
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and in particular 𝑧 (𝑡) ≔ 𝑡𝑥0 + (1 − 𝑡)𝑥1 ∈ int𝐴 for all 𝑡 ∈ (0, 1).
We can thus find a sequence {𝑧𝑛}𝑛∈ℕ ⊂ int𝐴 (e.g., 𝑧𝑛 = 𝑧 (𝑛−1)) with 𝑧𝑛 → 𝑥1. Due to the
continuity of 𝑥∗ ∈ 𝑋 ∗ = 𝕃(𝑋 ;ℝ) we can thus pass to the limit 𝑛 → ∞ and obtain

⟨𝑥∗, 𝑥1⟩𝑋 = lim
𝑛→∞⟨𝑥

∗, 𝑧𝑛⟩𝑋 ≤ 𝜆. □

This can be used to characterize a normed vector space by its dual. For example, a direct
consequence of Theorem 1.4 is that the norm on a Banach space can be expressed as an
operator norm.

Corollary 1.7. Let 𝑋 be a Banach space. Then for all 𝑥 ∈ 𝑋 ,

∥𝑥 ∥𝑋 = sup
∥𝑥∗∥𝑋∗≤1

|⟨𝑥∗, 𝑥⟩𝑋 |,

and the supremum is attained.

A vector 𝑥 ∈ 𝑋 can therefore be considered as a linear and, by (1.1), bounded functional on
𝑋 ∗, i.e., as an element of the bidual 𝑋 ∗∗ ≔ (𝑋 ∗)∗. The embedding 𝑋 ↩→ 𝑋 ∗∗ is realized by
the canonical injection

(1.2) 𝐽 : 𝑋 → 𝑋 ∗∗, ⟨𝐽𝑥, 𝑥∗⟩𝑋 ∗ ≔ ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥∗ ∈ 𝑋 ∗.

Clearly, 𝐽 is linear; Theorem 1.4 furthermore implies that ∥ 𝐽𝑥 ∥𝑋 ∗∗ = ∥𝑥 ∥𝑋 . If the canonical
injection is surjective and we can thus identify 𝑋 ∗∗ with 𝑋 , the space 𝑋 is called reflexive.
All finite-dimensional spaces are reflexive, as are Example 1.1 (ii) and (iii) for 1 < 𝑝 < ∞;
however, ℓ1, ℓ∞ as well as 𝐿1(Ω), 𝐿∞(Ω) and 𝐶 (Ω) are not reflexive. In general, a normed
vector space is reflexive if and only if its dual space is reflexive.

The following consequence of the separation Theorem 1.5 will be of crucial importance in
Part IV. For a set 𝐴 ⊂ 𝑋 , we define the polar cone

𝐴◦ ≔ {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, 𝑥⟩𝑋 ≤ 0 for all 𝑥 ∈ 𝐴} ,

cf. Figure 1.1. Similarly, we define for 𝐵 ⊂ 𝑋 ∗ the prepolar cone

𝐵◦ ≔ {𝑥 ∈ 𝑋 | ⟨𝑥∗, 𝑥⟩𝑋 ≤ 0 for all 𝑥∗ ∈ 𝐵} .

The bipolar cone of 𝐴 ⊂ 𝑋 is then defined as

𝐴◦◦ ≔ (𝐴◦)◦ ⊂ 𝑋 .

(If 𝑋 is reflexive, 𝐴◦◦ = (𝐴◦)◦.) For the following statement about polar cones, recall that a
set 𝐶 ⊂ 𝑋 is called a cone if 𝑥 ∈ 𝐶 and 𝜆 > 0 implies that 𝜆𝑥 ∈ 𝐶 (such that (pre-, bi-)polar
cones are indeed cones).
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𝐴

𝐴◦
0

Figure 1.1: The polar cone 𝐴◦ is the normal cone at zero to the smallest cone containing 𝐴.

Theorem 1.8 (bipolar theorem). Let 𝑋 be a normed vector space and 𝐴 ⊂ 𝑋 . Then
(i) 𝐴◦ is closed and convex;

(ii) 𝐴 ⊂ 𝐴◦◦;

(iii) if 𝐴 ⊂ 𝐵, then 𝐵◦ ⊂ 𝐴◦;

(iv) if 𝐶 is a closed and convex cone with 0 ∈ 𝐶 , then 𝐶 = 𝐶◦◦.

Proof. (i): This follows directly from the definition and the continuity of the duality pairing.

(ii): Let 𝑥 ∈ 𝐴 be arbitrary. Then by definition of the polar cone, every 𝑥∗ ∈ 𝐴◦ satisfies

⟨𝑥∗, 𝑥⟩𝑋 ≤ 0,

i.e., 𝑥 ∈ (𝐴◦)◦ = 𝐴◦◦.

(iii): This is immediate from the definition.

(iv): By (ii), we only need to prove𝐶◦◦ ⊂ 𝐶 which we do by contradiction. Assume therefore
that there exists 𝑥 ∈ 𝐶◦◦ \ {0} with 𝑥 ∉ 𝐶 . Applying Theorem 1.5 (ii) to the nonempty
(due to (ii)) closed, and convex set 𝐶◦◦ and the disjoint compact convex set {𝑥}, we obtain
𝑥∗ ∈ 𝑋 ∗ \ {0} and 𝜆 ∈ ℝ such that

(1.3) ⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝐶.

Since𝐶 is a cone, the first inequality must also hold for 𝑡𝑥 ∈ 𝐶 for every 𝑡 > 0. This implies
that

⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝑡−1𝜆 → 0 for 𝑡 → ∞,
i.e., ⟨𝑥∗, 𝑥⟩𝑋 ≤ 0 for all 𝑥 ∈ 𝐶 must hold, i.e., 𝑥∗ ∈ 𝐶◦. On the other hand, if 𝜆 < 0, we obtain
by the same argument that

⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝑡−1𝜆 → −∞ for 𝑡 → 0,
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which cannot hold. Hence, we can take 𝜆 = 0 in (1.3). Together, we obtain from 𝑥 ∈ 𝐶◦◦ the
contradiction

0 < ⟨𝑥∗, 𝑥⟩𝑋 ≤ 0. □

The duality pairing induces further notions of convergence.

(i) A sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 converges weakly (in 𝑋 ) to 𝑥 ∈ 𝑋 , denoted by 𝑥𝑛 ⇀ 𝑥 , if

⟨𝑥∗, 𝑥𝑛⟩𝑋 → ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥∗ ∈ 𝑋 ∗.

(ii) A sequence {𝑥∗𝑛}𝑛∈ℕ ⊂ 𝑋 ∗ converges weakly-∗ (in𝑋 ∗) to 𝑥∗ ∈ 𝑋 ∗, denoted by 𝑥∗𝑛 ∗⇀ 𝑥∗,
if

⟨𝑥∗𝑛, 𝑥⟩𝑋 → ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝑋 .

Weak convergence generalizes the concept of componentwise convergence in ℝ𝑁 , which –
as can be seen from the proof of the Heine–Borel Theorem – is the appropriate concept
in the context of compactness. Strong convergence in 𝑋 implies weak convergence by
continuity of the duality pairing; in the same way, strong convergence in𝑋 ∗ implies weak-∗
convergence. If 𝑋 is reflexive, weak and weak-∗ convergence (both in 𝑋 = 𝑋 ∗∗) coincide.
In finite-dimensional spaces, all convergence notions coincide.

Weakly convergent sequences are always bounded; if 𝑋 is a Banach space, so are weakly-∗
convergent sequences. If 𝑥𝑛 → 𝑥 and 𝑥∗𝑛 ∗⇀ 𝑥∗ or 𝑥𝑛 ⇀ 𝑥 and 𝑥∗𝑛 → 𝑥∗, then ⟨𝑥∗𝑛, 𝑥𝑛⟩𝑋 →
⟨𝑥∗, 𝑥⟩𝑋 . However, the duality pairing of weak(-∗) convergent sequences does not converge
in general.

As for strong convergence, one defines weak(-∗) continuity and closedness of mappings
as well as weak(-∗) closedness and compactness of sets. The last property is of fundamen-
tal importance in optimization; its characterization is therefore a central result of this
chapter.

Theorem 1.9 (Eberlein–S̆mulyan). If 𝑋 is a normed vector space, then 𝔹𝑋 is weakly compact
if and only if 𝑋 is reflexive.

Hence in a reflexive space, all bounded sequences contain a weakly (but in general not
strongly) convergent subsequence. Note that weak closedness is a stronger claim than
closedness, since the property has to hold for more sequences. For convex sets, however,
both concepts coincide.

Lemma 1.10. Let 𝑋 be a normed vector space and𝑈 ⊂ 𝑋 be convex. Then𝑈 is weakly closed
if and only if𝑈 is closed.
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Proof. Weakly closed sets are always closed since a convergent sequence is also weakly
convergent. Let now𝑈 ⊂ 𝑋 be convex closed and nonempty (otherwise nothing has to be
shown) and consider a sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑈 with 𝑥𝑛 ⇀ 𝑥 ∈ 𝑋 . Assume that 𝑥 ∈ 𝑋 \𝑈 .
Then the sets 𝑈 and {𝑥} satisfy the premise of Theorem 1.5 (ii); we thus find an 𝑥∗ ∈ 𝑋 ∗

and a 𝜆 ∈ ℝ with
⟨𝑥∗, 𝑥𝑛⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑛 ∈ ℕ.

Passing to the limit 𝑛 → ∞ in the first inequality yields the contradiction

⟨𝑥∗, 𝑥⟩𝑋 < ⟨𝑥∗, 𝑥⟩𝑋 . □

If 𝑋 is not reflexive (e.g., 𝑋 = 𝐿∞(Ω)), we have to turn to weak-∗ convergence.

Theorem 1.11 (Banach–Alaoglu). If 𝑋 is a separable normed vector space (i.e., contains a
countable dense subset), then 𝔹𝑋 ∗ is weakly-∗ compact.

By the Weierstraß Approximation Theorem, both 𝐶 (Ω) and 𝐿𝑝 (Ω) for 1 ≤ 𝑝 < ∞ are
separable; also, ℓ𝑝 is separable for 1 ≤ 𝑝 < ∞. Hence, bounded and weakly-∗ closed balls in
ℓ∞, 𝐿∞(Ω), andM(Ω) are weakly-∗ compact. However, these spaces themselves are not
separable.

We also have the following straightforward improvement of Theorem 1.8 (i).

Lemma 1.12. Let𝑋 be a separable normed vector space and𝐴 ⊂ 𝑋 . Then𝐴◦ is weakly-∗ closed
and convex.

Note, however, that arbitrary closed convex sets in nonreflexive spaces do not have to be
weakly-∗ closed.
Finally, we will also need the following “weak-∗” separation theorem, whose proof is
analogous to the proof of Theorem 1.5 (using the fact that the linear weakly-∗ continuous
functionals are exactly those of the form 𝑥∗ ↦→ ⟨𝑥∗, 𝑥⟩𝑋 for some 𝑥 ∈ 𝑋 ); see also [Rudin,
2021, Theorem 3.4(b)].

Theorem 1.13. Let 𝑋 be a normed vector space and 𝐴 ⊂ 𝑋 ∗ be a nonempty, convex, and
weakly-∗ closed subset and 𝑥∗ ∈ 𝑋 ∗ \𝐴. Then there exist an 𝑥 ∈ 𝑋 and a 𝜆 ∈ ℝ with

⟨𝑧∗, 𝑥⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑧∗ ∈ 𝐴.

Since a normed vector space is characterized by its dual, this is also the case for linear
operators acting on this space. For any 𝑇 ∈ 𝕃(𝑋 ;𝑌 ), the adjoint operator 𝑇 ∗ ∈ 𝕃(𝑌 ∗;𝑋 ∗) is
defined via

⟨𝑇 ∗𝑦∗, 𝑥⟩𝑋 = ⟨𝑦∗,𝑇𝑥⟩𝑌 for all 𝑥 ∈ 𝑋, 𝑦∗ ∈ 𝑌 ∗.

It always holds that ∥𝑇 ∗∥𝕃(𝑌 ∗;𝑋 ∗) = ∥𝑇 ∥𝕃(𝑋 ;𝑌 ) . Furthermore, the continuity of𝑇 implies that
𝑇 ∗ is weakly-∗ continuous (and 𝑇 weakly continuous).
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1.3 hilbert spaces

Especially strong duality properties hold in Hilbert spaces. A mapping (· | ·) : 𝑋 × 𝑋 → ℝ

on a vector space 𝑋 over ℝ is called inner product, if

(i) (𝛼𝑥 + 𝛽𝑦 | 𝑧) = 𝛼 (𝑥 | 𝑧) + 𝛽 (𝑦 | 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼, 𝛽 ∈ ℝ;

(ii) (𝑥 | 𝑦) = (𝑦 | 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 ;
(iii) (𝑥 | 𝑥) ≥ 0 for all 𝑥 ∈ 𝑋 with equality if and only if 𝑥 = 0.

An inner product induces a norm

∥𝑥 ∥𝑋 ≔
√︁
(𝑥 | 𝑥)𝑋 ,

which satisfies the Cauchy–Schwarz inequality

(𝑥 | 𝑦)𝑋 ≤ ∥𝑥 ∥𝑋 ∥𝑦 ∥𝑋 .

If𝑋 is complete with respect to the induced norm (i.e., if (𝑋, ∥ · ∥𝑋 ) is a Banach space), then
𝑋 is called a Hilbert space; if the inner product is canonical, it is frequently omitted, and the
Hilbert space is simply denoted by 𝑋 . The spaces in Example 1.3 (i)–(iii) for 𝑝 = 2(= 𝑞) are
all Hilbert spaces, where the inner product coincides with the duality pairing and induces
the canonical norm.

Directly from the definition of the induced norm we obtain the binomial expansion

(1.4) ∥𝑥 + 𝑦 ∥2
𝑋 = ∥𝑥 ∥2

𝑋 + 2(𝑥 | 𝑦)𝑋 + ∥𝑦 ∥2
𝑋 ,

which in turn can be used to verify the three-point identity

(1.5) (𝑥 − 𝑦 | 𝑥 − 𝑧)𝑋 =
1
2 ∥𝑥 − 𝑦 ∥2

𝑋 − 1
2 ∥𝑦 − 𝑧∥2

𝑋 + 1
2 ∥𝑥 − 𝑧∥2

𝑋 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

(This can be seen as a generalization of the classical Pythagorean theorem in plane geome-
try.)

The relevant point in our context is that the dual of a Hilbert space 𝑋 can be identified
with 𝑋 itself.

Theorem 1.14 (Fréchet–Riesz). Let 𝑋 be a Hilbert space. Then for each 𝑥∗ ∈ 𝑋 ∗ there exists a
unique 𝑧𝑥∗ ∈ 𝑋 with ∥𝑥∗∥𝑋 ∗ = ∥𝑧𝑥∗ ∥𝑋 and

⟨𝑥∗, 𝑥⟩𝑋 = (𝑥 | 𝑧𝑥∗)𝑋 for all 𝑥 ∈ 𝑋 .

12



1 functional analysis

The element 𝑧𝑥∗ is called Riesz representation of 𝑥∗. The (linear) mapping 𝐽𝑋 : 𝑋 ∗ → 𝑋 ,
𝑥∗ ↦→ 𝑧𝑥∗ , is called Riesz isomorphism, and can be used to show that every Hilbert space is
reflexive.

Theorem 1.14 allows to use the inner product instead of the duality pairing in Hilbert spaces.
For example, a sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 converges weakly to 𝑥 ∈ 𝑋 if and only if

(𝑥𝑛 | 𝑧)𝑋 → (𝑥 | 𝑧)𝑋 for all 𝑧 ∈ 𝑋 .

This implies that if 𝑥𝑛 ⇀ 𝑥 and in addition ∥𝑥𝑛∥𝑋 → ∥𝑥 ∥𝑋 (in which case we say that 𝑥𝑛
strictly converges to 𝑥 ),

(1.6) ∥𝑥𝑛 − 𝑥 ∥2
𝑋 = ∥𝑥𝑛∥2

𝑋 − 2(𝑥𝑛 | 𝑥)𝑋 + ∥𝑥 ∥2
𝑋 → 0,

i.e.,𝑥𝑛 → 𝑥 . A normed vector space in which strict convergence implies strong convergence
is said to have the Radon–Riesz property.

Similar statements hold for linear operators on Hilbert spaces. For a linear operator 𝑇 ∈
𝕃(𝑋 ;𝑌 ) between Hilbert spaces 𝑋 and 𝑌 , the Hilbert space adjoint operator 𝑇★ ∈ 𝕃(𝑌 ;𝑋 ) is
defined via

(𝑇★𝑦 | 𝑥)𝑋 = (𝑇𝑥 | 𝑦)𝑌 for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 .
If 𝑇★ = 𝑇 , the operator 𝑇 is called self-adjoint. A self-adjoint operator is called positive
definite, if there exists a 𝑐 > 0 such that

(𝑇𝑥 | 𝑥)𝑋 ≥ 𝑐 ∥𝑥 ∥2
𝑋 for all 𝑥 ∈ 𝑋 .

In this case, 𝑇 has a bounded inverse 𝑇 −1 with ∥𝑇 −1∥𝕃(𝑋 ;𝑋 ) ≤ 𝑐−1. We will also use the
notation 𝑆 ≥ 𝑇 for two operators 𝑆,𝑇 : 𝑋 → 𝑋 if

(𝑆𝑥 | 𝑥)𝑋 ≥ (𝑇𝑥 | 𝑥)𝑋 for all 𝑥 ∈ 𝑋 .

Hence 𝑇 is positive definite if and only if 𝑇 ≥ 𝑐Id for some 𝑐 > 0; if 𝑇 ≥ 0, we say that 𝑇 is
merely positive semi-definite.

The Hilbert space adjoint is related to the (Banach space) adjoint via 𝑇★ = 𝐽𝑋𝑇 ∗𝐽−1
𝑌
. If the

context is obvious, we will not distinguish the two in notation. Similarly, we will also – by
a moderate abuse of notation – use angled brackets to denote inner products in Hilbert
spaces except where we need to refer to both at the same time (which will rarely be the
case, and the danger of confusing inner products with elements of a product space is much
greater).
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2 CALCULUS OF VARIATIONS

We first consider the question of the existence of solutions to optimization problems of the
form

min
𝑥∈𝑈

𝐹 (𝑥)
for a (nonlinear) functional 𝐹 : 𝑈 → ℝ and a subset 𝑈 of a Banach space 𝑋 . Answering
such questions is one of the goals of the calculus of variations.

Note that we don’t require 𝐹 to be defined on all of 𝑋 ; this is important for example when
𝐹 involves the solution of a nonlinear partial differential equation which may only exist if
𝑥 is sufficiently small. For the purposes of existence of a minimizer, however, we do not
need to distinguish whether 𝑈 represents such a domain of definition or an additional
constraint in the optimization problem. In both cases, we can get rid of the constraint by
extending 𝐹 to all of 𝑋 with the value ∞ by setting

𝐹 : 𝑋 → ℝ ≔ ℝ ∪ {∞}, 𝐹 (𝑥) =
{
𝐹 (𝑥) if 𝑥 ∈ 𝑈 ,
∞ if 𝑥 ∈ 𝑋 \𝑈 .

We extend the usual arithmetic on ℝ to ℝ by letting 𝑡 < ∞ and 𝑡 + ∞ = ∞ for all 𝑡 ∈ ℝ;
subtraction and multiplication of negative numbers with ∞ and in particular 𝐹 (𝑥) = −∞
is not allowed, however. Thus if there is any 𝑥 ∈ 𝑈 at all, a minimizer 𝑥 of 𝐹 necessarily
must lie in𝑈 and coincide with a minimizer of 𝐹 over𝑈 .

2.1 the direct method

Our goal now is to find conditions under which a functional 𝐹 : 𝑋 → ℝ attains a (real-
valued) minimum over 𝑋 . First, there clearly must exist a point with finite value. We call
the set on which 𝐹 is finite the effective domain

dom 𝐹 ≔ {𝑥 ∈ 𝑋 | 𝐹 (𝑥) < ∞} .

If dom 𝐹 ≠ ∅, the functional 𝐹 is called proper .

14



2 calculus of variations

𝑥

𝐹1(𝑥)
𝑥𝑛

𝐹1(𝑥𝑛)

(a) 𝐹1 is lower semicontinuous at 𝑥

𝑥

𝐹2(𝑥)

𝑥𝑛

𝐹2(𝑥𝑛)

(b) 𝐹2 is not lower semicontinuous at 𝑥

Figure 2.1: Illustration of lower semicontinuity: two functions 𝐹1, 𝐹2 : ℝ → ℝ and a se-
quence {𝑥𝑛}𝑛∈ℕ realizing their (identical) limes inferior.

Next, we require a form of continuity to prevent the function from “jumping over” possible
minima. We call 𝐹 lower semicontinuous in 𝑥 ∈ 𝑋 if

𝐹 (𝑥) ≤ lim inf
𝑛→∞ 𝐹 (𝑥𝑛) for every {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 with 𝑥𝑛 → 𝑥,

see Figure 2.1, where 𝐹2 is an example for a function that is not lower semicontinuous
and does not attain a minimum. Analogously, we define weakly(-∗) lower semicontinuous
functionals via weakly(-∗) convergent sequences.
Finally, we need to prevent the function from having a “minimum at infinity”. Here we
use the following property: We call 𝐹 coercive if for every sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 with
∥𝑥𝑛∥𝑋 → ∞ we also have 𝐹 (𝑥𝑛) → ∞.

We now have everything at hand to prove the central existence result in the calculus of
variations. The strategy for its proof is known as the direct method.1

Theorem 2.1. Let 𝑋 be a reflexive Banach space and 𝐹 : 𝑋 → ℝ be proper, coercive, and
weakly lower semicontinuous. Then the minimization problem

min
𝑥∈𝑋

𝐹 (𝑥)

has a solution 𝑥 ∈ dom 𝐹 .

Proof. The proof can be separated into three steps.

1This strategy is applied so often in the literature that one usually just writes “Existence of a minimizer
follows from the direct method.” or even just “Existence follows from standard arguments.” The basic
idea goes back to Hilbert; the version based on lower semicontinuity which we use here is due to Leonida
Tonelli (1885–1946), who through it had a lasting influence on the modern calculus of variations.
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2 calculus of variations

(i) Pick a minimizing sequence.

Since 𝐹 is proper, there exists an 𝑀 ≔ inf𝑥∈𝑋 𝐹 (𝑥) < ∞ (although 𝑀 = −∞ is not
excluded so far). We can thus find a sequence {𝑦𝑛}𝑛∈ℕ ⊂ ran 𝐹 \ {∞} ⊂ ℝ with
𝑦𝑛 → 𝑀 , i.e., there exists a sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 with

𝐹 (𝑥𝑛) → 𝑀 = inf
𝑥∈𝑋

𝐹 (𝑥).

Such a sequence is called minimizing sequence. Note that from the convergence of
{𝐹 (𝑥𝑛)}𝑛∈ℕ we cannot conclude the convergence of {𝑥𝑛}𝑛∈ℕ (yet).

(ii) Show that the minimizing sequence contains a weakly convergent subsequence.

Assume to the contrary that {𝑥𝑛}𝑛∈ℕ is unbounded, i.e., that ∥𝑥𝑛∥𝑋 → ∞ for 𝑛 → ∞.
The coercivity of 𝐹 then implies that 𝐹 (𝑥𝑛) → ∞ as well, in contradiction to 𝐹 (𝑥𝑛) →
𝑀 < ∞ by definition of the minimizing sequence. Hence, the sequence is bounded, i.e.,
there is an 𝑀 > 0 with ∥𝑥𝑛∥𝑋 ≤ 𝑀 for all 𝑛 ∈ ℕ. In particular, {𝑥𝑛}𝑛∈ℕ ⊂ 𝔹(0, 𝑀).
The Eberlein–S̆mulyan Theorem 1.9 therefore implies the existence of a weakly
converging subsequence {𝑥𝑛𝑘 }𝑘∈ℕ with limit 𝑥 ∈ 𝑋 . (This limit is a candidate for the
minimizer.)

(iii) Show that its limit is a minimizer.

From the definition of the minimizing sequence, we also have 𝐹 (𝑥𝑛𝑘 ) → 𝑀 for
𝑘 → ∞. Together with the weak lower semicontinuity of 𝐹 and the definition of the
infimum we thus obtain

inf
𝑥∈𝑋

𝐹 (𝑥) ≤ 𝐹 (𝑥) ≤ lim inf
𝑘→∞

𝐹 (𝑥𝑛𝑘 ) = 𝑀 = inf
𝑥∈𝑋

𝐹 (𝑥) < ∞.

This implies that 𝑥 ∈ dom 𝐹 and that inf𝑥∈𝑋 𝐹 (𝑥) = 𝐹 (𝑥) > −∞. Hence, the infimum
is attained in 𝑥 which is therefore the desired minimizer. □

Remark 2.2. If 𝑋 is not reflexive but the dual of a separable Banach space, we can argue analogously
for weakly-∗ lower semicontinuous functionals using the Banach–Alaoglu Theorem 1.11

Note how the topology on 𝑋 used in the proof is restricted in step (ii) and (iii): Step (ii)
profits from a coarse topology (in which more sequences are convergent), while step (iii)
profits from a fine topology (the fewer sequences are convergent, the easier it is to satisfy
the lim inf conditions). Since in the cases of interest to us no more than boundedness of a
minimizing sequence can be expected, we cannot use a finer than the weak topology. We
thus have to ask whether a sufficiently large class of (interesting) functionals are weakly
lower semicontinuous.

A first example is the class of bounded linear functionals: For any 𝑥∗ ∈ 𝑋 ∗, the functional

𝐹 : 𝑋 → ℝ, 𝑥 ↦→ ⟨𝑥∗, 𝑥⟩𝑋 ,
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2 calculus of variations

is weakly continuous by definition of weak convergence and hence a fortiori weakly lower
semicontinuous. Another advantage of (weak) lower semicontinuity is that it is preserved
under certain operations.

Lemma 2.3. Let𝑋 and𝑌 be Banach spaces and 𝐹 : 𝑋 → ℝ be weakly(-∗) lower semicontinuous.
Then the following functionals are weakly(-∗) lower semicontinuous as well:

(i) 𝛼𝐹 for all 𝛼 ≥ 0;

(ii) 𝐹 +𝐺 for 𝐺 : 𝑋 → ℝ weakly(-∗) lower semicontinuous;

(iii) 𝜑 ◦ 𝐹 for 𝜑 : ℝ → ℝ lower semicontinuous and monotonically increasing.

(iv) 𝐹 ◦ Φ for Φ : 𝑌 → 𝑋 weakly(-∗) continuous, i.e., 𝑦𝑛 ⇀(∗) 𝑦 implies Φ(𝑦𝑛) ⇀(∗) Φ(𝑦);
(v) 𝑥 ↦→ sup𝑖∈𝐼 𝐹𝑖 (𝑥) with 𝐹𝑖 : 𝑋 → ℝ weakly(-∗) lower semicontinuous for all 𝑖 ∈ 𝐼 and

an arbitrary set 𝐼 .

Note that (v) does not hold for continuous functions.

Proof. We only show the claim for the case of weak lower semicontinuity; the statements
for weak-∗ lower semicontinuity follow by the same arguments.

Statements (i) and (ii) follow directly from the properties of the limes inferior.

For statement (iii), it first follows from the monotonicity of 𝜑 and the weak lower semicon-
tinuity of 𝐹 that 𝑥𝑛 ⇀ 𝑥 implies

𝜑 (𝐹 (𝑥)) ≤ 𝜑 (lim inf
𝑛→∞ 𝐹 (𝑥𝑛)) .

It remains to show that the right-hand side can be bounded by lim inf𝑛→∞ 𝜑 (𝐹 (𝑥𝑛)).
For that purpose, we consider the subsequence {𝜑 (𝐹 (𝑥𝑛𝑘 )}𝑘∈ℕ which realizes the lim inf ,
i.e., for which lim inf𝑛→∞ 𝜑 (𝐹 (𝑥𝑛)) = lim𝑘→∞ 𝜑 (𝐹 (𝑥𝑛𝑘 )). By passing to a further subse-
quence which we index by 𝑘′ for simplicity, we can also obtain that lim inf𝑘→∞ 𝐹 (𝑥𝑛𝑘 ) =
lim𝑘 ′→∞ 𝐹 (𝑥𝑛𝑘′ ). Since the lim inf restricted to a subsequence can never be smaller than
that of the full sequence, the monotonicity of𝜑 together with its weak lower semicontinuity
now implies that

𝜑 (lim inf
𝑛→∞ 𝐹 (𝑥𝑛)) ≤ 𝜑 ( lim

𝑘 ′→∞
𝐹 (𝑥𝑛𝑘′ )) ≤ lim inf

𝑘 ′→∞
𝜑 (𝐹 (𝑥𝑛𝑘′ )) = lim inf

𝑛→∞ 𝜑 (𝐹 (𝑥𝑛)),

where we have used in the last step that a subsequence of a convergent sequence has the
same limit (which coincides with the lim inf).

Statement (iv) follows directly from the weak continuity of Φ, as 𝑦𝑛 ⇀ 𝑦 implies that
𝑥𝑛 ≔ Φ(𝑦𝑛) ⇀ Φ(𝑦) =: 𝑥 , and the lower semicontinuity of 𝐹 yields

𝐹 (Φ(𝑦)) ≤ lim inf
𝑛→∞ 𝐹 (Φ(𝑦𝑛)) .
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2 calculus of variations

Finally, let {𝑥𝑛}𝑛∈ℕ be a weakly converging sequence with limit 𝑥 ∈ 𝑋 . Then the definition
of the supremum implies that

𝐹 𝑗 (𝑥) ≤ lim inf
𝑛→∞ 𝐹 𝑗 (𝑥𝑛) ≤ lim inf

𝑛→∞ sup
𝑖∈𝐼

𝐹𝑖 (𝑥𝑛) for all 𝑗 ∈ 𝐼 .

Taking the supremum over all 𝑗 ∈ 𝐼 on both sides yields statement (v). □

Corollary 2.4. If 𝑋 is a Banach space, then the norm ∥ · ∥𝑋 is proper, coercive, and weakly
lower semicontinuous. Similarly, the dual norm ∥ · ∥𝑋 ∗ is proper, coercive, and weakly-∗ lower
semicontinuous.

Proof. Coercivity and dom ∥ · ∥𝑋 = 𝑋 follow directly from the definition. Weak lower
semicontinuity follows from Lemma 2.3 (v) and Corollary 1.7 since

∥𝑥 ∥𝑋 = sup
∥𝑥∗∥𝑋∗≤1

|⟨𝑥∗, 𝑥⟩𝑋 |.

The claim for ∥ · ∥𝑋 ∗ follows analogously using the definition of the operator norm in place
of Corollary 1.7. □

Another frequently occurring functional is the indicator function2 of a set 𝑈 ⊂ 𝑋 , defined
as

𝛿𝑈 (𝑥) =
{

0 𝑥 ∈ 𝑈 ,
∞ 𝑥 ∈ 𝑋 \𝑈 .

The purpose of this definition is of course to write the minimization of a functional 𝐹 :
𝑋 → ℝ (i.e., defined on all of 𝑋 ) under the additional constraint 𝑥 ∈ 𝑈 to the minimization
of 𝐹 ≔ 𝐹 +𝛿𝑈 over𝑋 . The following result is therefore important for showing the existence
of such a constrained minimizer.

Lemma 2.5. Let 𝑋 be a Banach space and𝑈 ⊂ 𝑋 . Then 𝛿𝑈 : 𝑋 → ℝ is

(i) proper if𝑈 is nonempty;

(ii) weakly lower semicontinuous if𝑈 is convex and closed;

(iii) coercive if𝑈 is bounded.

Proof. Statement (i) is clear. For (ii), consider a weakly converging sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋
with limit 𝑥 ∈ 𝑋 . If 𝑥 ∈ 𝑈 , then 𝛿𝑈 ≥ 0 immediately yields

𝛿𝑈 (𝑥) = 0 ≤ lim inf
𝑛→∞ 𝛿𝑈 (𝑥𝑛).

2not to be confused with the characteristic function 𝟙𝑈 with 𝟙𝑈 (𝑥) = 1 for 𝑥 ∈ 𝑈 and 0 else
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2 calculus of variations

Let now 𝑥 ∉ 𝑈 . Since 𝑈 is convex and closed and hence by Lemma 1.10 also weakly closed,
there must be a 𝑁 ∈ ℕ with 𝑥𝑛 ∉ 𝑈 for all 𝑛 ≥ 𝑁 (otherwise we could – by passing to a
subsequence if necessary – construct a sequence with 𝑥𝑛 ⇀ 𝑥 ∈ 𝑈 , in contradiction to the
assumption). Thus, 𝛿𝑈 (𝑥𝑛) = ∞ for all 𝑛 ≥ 𝑁 , and therefore

𝛿𝑈 (𝑥) = ∞ = lim inf
𝑛→∞ 𝛿𝑈 (𝑥𝑛).

For (iii), let𝑈 be bounded, i.e., there exist an𝑀 > 0 with𝑈 ⊂ 𝔹(0, 𝑀). If ∥𝑥𝑛∥𝑋 → ∞, then
there exists an 𝑁 ∈ ℕ with ∥𝑥𝑛∥𝑋 > 𝑀 for all 𝑛 ≥ 𝑁 , and thus 𝑥𝑛 ∉ 𝔹(0, 𝑀) ⊃ 𝑈 for all
𝑛 ≥ 𝑁 . Hence, 𝛿𝑈 (𝑥𝑛) → ∞ as well. □

2.2 differential calculus in normed vector spaces

To characterize minimizers of functionals on infinite-dimensional spaces using the Fermat
principle, we transfer the classical derivative concepts to normed vector spaces.

Let 𝑋 and 𝑌 be normed vector spaces, 𝐹 : 𝑋 → 𝑌 be a mapping, and 𝑥, ℎ ∈ 𝑋 be given.

• If the one-sided limit

𝐹 ′(𝑥 ;ℎ) ≔ lim
𝑡→ 0

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

∈ 𝑌

(where 𝑡→ 0 denotes the limit for arbitrary positive decreasing null sequences) exists,
it is called the directional derivative of 𝐹 in 𝑥 in direction ℎ.

• If 𝐹 ′(𝑥 ;ℎ) exists for all ℎ ∈ 𝑋 and

𝐷𝐹 (𝑥) : 𝑋 → 𝑌, ℎ ↦→ 𝐹 ′(𝑥 ;ℎ)

defines a bounded linear operator, we call 𝐹 Gâteaux differentiable (at 𝑥 ) and𝐷𝐹 (𝑥) ∈
𝕃(𝑋 ;𝑌 ) its Gâteaux derivative.

• If additionally
lim

∥ℎ∥𝑋→0

∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐷𝐹 (𝑥)ℎ∥𝑌
∥ℎ∥𝑋 = 0,

then 𝐹 is called Fréchet differentiable (in 𝑥 ) and 𝐹 ′(𝑥) ≔ 𝐷𝐹 (𝑥) ∈ 𝕃(𝑋 ;𝑌 ) its Fréchet
derivative.

• If additionally the mapping 𝐹 ′ : 𝑋 → 𝕃(𝑋 ;𝑌 ) is (Lipschitz) continuous, we call 𝐹
(Lipschitz) continuously differentiable.
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2 calculus of variations

The difference between Gâteaux and Fréchet differentiable lies in the approximation error
of 𝐹 near 𝑥 by 𝐹 (𝑥) + 𝐷𝐹 (𝑥)ℎ: While it only has to be bounded in ∥ℎ∥𝑋 – i.e., linear in
∥ℎ∥𝑋 – for a Gâteaux differentiable function, it has to be superlinear in ∥ℎ∥𝑋 if 𝐹 is Fréchet
differentiable. (For a fixed directionℎ, this is of course also the case forGâteaux differentiable
functions; Fréchet differentiability thus additionally requires a uniformity in ℎ.) We also
point out that continuous differentiability always entails Fréchet differentiability.

Remark 2.6. Sometimes a weaker notion than continuous differentiability is used. A mapping
𝐹 : 𝑋 → 𝑌 is called strictly differentiable in 𝑥 if

(2.1) lim
𝑦→𝑥

∥ℎ∥𝑋→0

∥𝐹 (𝑦 + ℎ) − 𝐹 (𝑦) − 𝐹 ′(𝑥)ℎ∥𝑌
∥ℎ∥𝑋 = 0.

The benefit of this definition over that of continuous differentiability is that the limit process is now
in the function 𝐹 rather than the derivative 𝐹 ′; strict differentiability can therefore hold if every
neighborhood of 𝑥 contains points where 𝐹 is not differentiable. However, if 𝐹 is differentiable
everywhere in a neighborhood of 𝑥 , then 𝐹 is strictly differentiable if and only if 𝐹 ′ is continuous;
see [Dontchev and Rockafellar, 2014, Proposition 1D.7]. Although many results of Chapters 13 to 25
actually hold under the weaker assumption of strict differentiability, we will therefore work only
with the more standard notion of continuous differentiability.

If 𝐹 is Gâteaux differentiable, the Gâteaux derivative can be computed via

𝐷𝐹 (𝑥)ℎ =
(
𝑑
𝑑𝑡
𝐹 (𝑥 + 𝑡ℎ)

) ���
𝑡=0
.

Bounded linear operators 𝐹 ∈ 𝕃(𝑋 ;𝑌 ) are obviously Fréchet differentiable with derivative
𝐹 ′(𝑥) = 𝐹 ∈ 𝕃(𝑋 ;𝑌 ) for all 𝑥 ∈ 𝑋 . Further derivatives can be obtained through the usual
calculus, whose proof in normed vector spaces is exactly as in ℝ𝑁 . As an example, we
prove a chain rule.

Theorem 2.7. Let 𝑋 , 𝑌 , and 𝑍 be normed vector spaces, and let 𝐹 : 𝑋 → 𝑌 be Fréchet
differentiable at 𝑥 ∈ 𝑋 and𝐺 : 𝑌 → 𝑍 be Fréchet differentiable at 𝑦 ≔ 𝐹 (𝑥) ∈ 𝑌 . Then𝐺 ◦ 𝐹
is Fréchet differentiable at 𝑥 and

(𝐺 ◦ 𝐹 )′(𝑥) = 𝐺′(𝐹 (𝑥))𝐹 ′(𝑥).

Proof. For ℎ ∈ 𝑋 with 𝑥 + ℎ ∈ dom 𝐹 we have

(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) = 𝐺 (𝐹 (𝑥 + ℎ)) −𝐺 (𝐹 (𝑥)) = 𝐺 (𝑦 + 𝑔) −𝐺 (𝑦)

with 𝑔 ≔ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥). The Fréchet differentiability of 𝐺 thus implies that

∥(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) −𝐺′(𝑦)𝑔∥𝑍 = 𝑟1(∥𝑔∥𝑌 )
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with 𝑟1(𝑡)/𝑡 → 0 for 𝑡 → 0. The Fréchet differentiability of 𝐹 further implies

∥𝑔 − 𝐹 ′(𝑥)ℎ∥𝑌 = 𝑟2(∥ℎ∥𝑋 )

with 𝑟2(𝑡)/𝑡 → 0 for 𝑡 → 0. In particular,

(2.2) ∥𝑔∥𝑌 ≤ ∥𝐹 ′(𝑥)ℎ∥𝑌 + 𝑟2(∥ℎ∥𝑋 ).

Hence, with 𝑐 ≔ ∥𝐺′(𝐹 (𝑥))∥𝕃(𝑌 ;𝑍 ) we have

∥(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) −𝐺′(𝐹 (𝑥))𝐹 ′(𝑥)ℎ∥𝑍 ≤ 𝑟1(∥𝑔∥𝑌 ) + 𝑐 𝑟2(∥ℎ∥𝑋 ).

If ∥ℎ∥𝑋 → 0, we obtain from (2.2) and 𝐹 ′(𝑥) ∈ 𝕃(𝑋 ;𝑌 ) that ∥𝑔∥𝑌 → 0 as well, and the
claim follows. □

A similar rule for Gâteaux derivatives does not hold, however.

Of special importance in Part IV will be the following inverse function theorem, whose
proof can be found, e.g., in [Renardy and Rogers, 2004, Theorem 10.4].

Theorem 2.8 (inverse function theorem). Let 𝐹 : 𝑋 → 𝑌 be a continuously differentiable
mapping between the Banach spaces 𝑋 and 𝑌 and 𝑥 ∈ 𝑋 . If 𝐹 ′(𝑥) : 𝑋 → 𝑌 is bijective,
then there exists an open set 𝑉 ⊂ 𝑌 with 𝐹 (𝑥) ∈ 𝑉 such that 𝐹−1 : 𝑉 → 𝑋 exists and is
continuously differentiable.

Of particular relevance in optimization is of course the special case 𝐹 : 𝑋 → ℝ, where
𝐷𝐹 (𝑥) ∈ 𝕃(𝑋 ;ℝ) = 𝑋 ∗ (if the Gâteaux derivative exists). Following the usual notation
from Section 1.2, we will then write 𝐹 ′(𝑥 ;ℎ) = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 for the directional derivative in
direction ℎ ∈ 𝑋 . Our first result is the classical Fermat principle characterizing minimizers
of a differentiable functions.

Theorem 2.9 (Fermat principle). Let 𝐹 : 𝑋 → ℝ be Gâteaux differentiable and 𝑥 ∈ 𝑋 be a
local minimizer of 𝐹 . Then 𝐷𝐹 (𝑥) = 0, i.e.,

⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 = 0 for all ℎ ∈ 𝑋 .

Proof. Let ℎ ∈ 𝑋 be arbitrary. Since 𝑥 is a local minimizer, the core–int Lemma 1.2 implies
that there exists an 𝜀 > 0 such that 𝐹 (𝑥) ≤ 𝐹 (𝑥 + 𝑡ℎ) for all 𝑡 ∈ (0, 𝜀), i.e.,

(2.3) 0 ≤ 𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

→ 𝐹 ′(𝑥 ;ℎ) = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 for 𝑡 → 0,

where we have used the Gâteaux differentiability and hence directional differentiability of
𝐹 . Since the right-hand side is linear in ℎ, the same argument for −ℎ yields ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 ≤ 0
and therefore the claim. □
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We will also need the following version of the mean value theorem.

Theorem 2.10. Let 𝐹 : 𝑋 → ℝ be Fréchet differentiable. Then for all 𝑥, ℎ ∈ 𝑋 ,

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) =
∫ 1

0
⟨𝐹 ′(𝑥 + 𝑡ℎ), ℎ⟩𝑋 𝑑𝑡 .

Proof. Consider the scalar function

𝑓 : [0, 1] → ℝ, 𝑡 ↦→ 𝐹 (𝑥 + 𝑡ℎ).
From Theorem 2.7 we obtain that 𝑓 (as a composition of mappings on normed vector
spaces) is differentiable with

𝑓 ′(𝑡) = ⟨𝐹 ′(𝑥 + 𝑡ℎ), ℎ⟩𝑋 ,
and the fundamental theorem of calculus in ℝ yields that

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) = 𝑓 (1) − 𝑓 (0) =
∫ 1

0
𝑓 ′(𝑡) 𝑑𝑡 =

∫ 1

0
⟨𝐹 ′(𝑥 + 𝑡ℎ), ℎ⟩𝑋 𝑑𝑡 . □

As in classical analysis, this result is useful for relating local and pointwise properties of
smooth functions. A typical example is the following lemma.

Lemma 2.11. Let 𝐹 : 𝑋 → 𝑌 be continuously Fréchet differentiable in a neighborhood 𝑈 of
𝑥 ∈ 𝑋 . Then 𝐹 is locally Lipschitz continuous near 𝑥 ∈ 𝑈 .

Proof. Since 𝐹 ′ : 𝑈 → 𝕃(𝑋 ;𝑌 ) is continuous in 𝑈 , there exists a 𝛿 > 0 with ∥𝐹 ′(𝑧) −
𝐹 ′(𝑥)∥𝕃(𝑋 ;𝑌 ) ≤ 1 and hence ∥𝐹 ′(𝑧)∥𝕃(𝑋 ;𝑌 ) ≤ 1 + ∥𝐹 ′(𝑥)∥𝕃(𝑋 ;𝑌 ) for all 𝑧 ∈ 𝔹(𝑥, 𝛿) ⊂ 𝑈 . For
any 𝑥1, 𝑥2 ∈ 𝔹(𝑥, 𝛿) we also have 𝑥2 + 𝑡 (𝑥1 − 𝑥2) ∈ 𝔹(𝑥, 𝛿) for all 𝑡 ∈ [0, 1] (since balls in
normed vector spaces are convex), and hence Theorem 2.10 implies that

∥𝐹 (𝑥1) − 𝐹 (𝑥2)∥𝑌 ≤
∫ 1

0
∥𝐹 ′(𝑥2 + 𝑡 (𝑥1 − 𝑥2))∥𝕃(𝑋 ;𝑌 ) ∥𝑥1 − 𝑥2∥𝑋 𝑑𝑡

≤ (1 + ∥𝐹 ′(𝑥)∥𝕃(𝑋 ;𝑌 ))∥𝑥1 − 𝑥2∥𝑋 ,
and thus local Lipschitz continuity near 𝑥 with constant 𝐿 = 1

2 (1 + ∥𝐹 ′(𝑥)∥𝕃(𝑋 ;𝑌 )). □

Note that since the Gâteaux derivative of 𝐹 : 𝑋 → ℝ is an element of𝑋 ∗, it cannot be added
to elements in 𝑋 (as required for, e.g., a steepest descent method). However, in Hilbert
spaces (and in particular in ℝ𝑁 ), we can use the Fréchet–Riesz Theorem 1.14 to identify
𝐷𝐹 (𝑥) ∈ 𝑋 ∗ with an element ∇𝐹 (𝑥) ∈ 𝑋 , called the gradient of 𝐹 at 𝑥 , in a canonical way
via

⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 = (∇𝐹 (𝑥) | ℎ)𝑋 for all ℎ ∈ 𝑋 .
We illustrate this with a simple example.
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Example 2.12. Let 𝐹 (𝑥) = 1
2 ∥𝑥 ∥2

𝑋
= 1

2 (𝑥 | 𝑥)𝑋 . Then we have for all 𝑥, ℎ ∈ 𝑋 that

𝐹 ′(𝑥 ;ℎ) = lim
𝑡→ 0

1
2 (𝑥 + 𝑡ℎ | 𝑥 + 𝑡ℎ)𝑋 − 1

2 (𝑥 | 𝑥)𝑋
𝑡

= (𝑥 | ℎ)𝑋 = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 ,

since the inner product is linear in ℎ for fixed 𝑥 . Hence, the squared norm is Gâteaux
differentiable at every 𝑥 ∈ 𝑋 with derivative 𝐷𝐹 (𝑥) = ℎ ↦→ (𝑥 | ℎ)𝑋 ∈ 𝑋 ∗; it is even
Fréchet differentiable since

lim
∥ℎ∥𝑋→0

�� 1
2 ∥𝑥 + ℎ∥2

𝑋
− 1

2 ∥𝑥 ∥2
𝑋
− (𝑥, ℎ)𝑋

��
∥ℎ∥𝑋 = lim

∥ℎ∥𝑋→0

1
2 ∥ℎ∥𝑋 = 0.

The gradient ∇𝐹 (𝑥) ∈ 𝑋 by definition is given by

(∇𝐹 (𝑥) | ℎ)𝑋 = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 = (𝑥 | ℎ)𝑋 for all ℎ ∈ 𝑋,

i.e., ∇𝐹 (𝑥) = 𝑥 .

The following example demonstrates how the gradient (in contrast to the derivative)
depends on the inner product on 𝑋 – which may be different from the inner product
inducing the squared norm.

Example 2.13. Let𝑀 ∈ 𝕃(𝑋 ;𝑋 ) be self-adjoint and positive definite (and thus continu-
ously invertible). Then (𝑥 | 𝑦)𝑍 ≔ (𝑀𝑥 | 𝑦)𝑋 also defines an inner product on the vector
space 𝑋 and induces an (equivalent) norm ∥𝑥 ∥𝑍 ≔ (𝑥 | 𝑥)1/2

𝑍
on 𝑋 . Hence (𝑋, (· | ·)𝑍 )

is a Hilbert space as well, which we will denote by 𝑍 . Consider now the functional
𝐹 : 𝑍 → ℝ with 𝐹 (𝑥) ≔ 1

2 ∥𝑥 ∥2
𝑋
(which is well-defined since ∥ · ∥𝑋 is also an equivalent

norm on 𝑍 ). Then, the derivative 𝐷𝐹 (𝑥) ∈ 𝑍 ∗ is still given by ⟨𝐷𝐹 (𝑥), ℎ⟩𝑍 = (𝑥 | ℎ)𝑋
for all ℎ ∈ 𝑍 (or, equivalently, for all ℎ ∈ 𝑋 since we defined 𝑍 via the same vector
space). However, ∇𝐹 (𝑥) ∈ 𝑍 is now characterized by

(𝑥 | ℎ)𝑋 = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑍 = (∇𝐹 (𝑥) | ℎ)𝑍 = (𝑀∇𝐹 (𝑥) | ℎ)𝑋 for all ℎ ∈ 𝑍,

i.e., ∇𝐹 (𝑥) = 𝑀−1𝑥 ≠ ∇𝐹 (𝑥).

(The situation is even more delicate if𝑀 is only positive definite on a subspace, as in the
case of 𝑋 = 𝐿2(Ω) and 𝑍 = 𝐻 1(Ω).)

2.3 superposition operators

A special class of operators on function spaces arise from pointwise application of a real-
valued function, e.g.,𝑢 (𝑥) ↦→ sin(𝑢 (𝑥)). We thus consider for 𝑓 : Ω×ℝ → ℝ with Ω ⊂ ℝ𝑑
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open and bounded as well as 𝑝, 𝑞 ∈ [1,∞] the corresponding superposition or Nemytskii
operator

(2.4) 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω), [𝐹 (𝑢)] (𝑥) = 𝑓 (𝑥,𝑢 (𝑥)) for almost every 𝑥 ∈ Ω.

For this operator to be well-defined requires certain restrictions on 𝑓 . We call 𝑓 : Ω×ℝ → ℝ

a Carathéodory function if

(i) for all 𝑧 ∈ ℝ, the mapping 𝑥 ↦→ 𝑓 (𝑥, 𝑧) is measurable;

(ii) for almost every 𝑥 ∈ Ω, the mapping 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is continuous.
We additionally require the following growth condition: For given 𝑝, 𝑞 ∈ [1,∞) there exist
𝑎 ∈ 𝐿𝑞 (Ω) and 𝑏 ∈ 𝐿∞(Ω) with

(2.5) |𝑓 (𝑥, 𝑧) | ≤ 𝑎(𝑥) + 𝑏 (𝑥) |𝑧 |𝑝/𝑞 .

Under these conditions, 𝐹 is well-defined and even continuous.

Theorem 2.14. If the Carathéodory function 𝑓 : Ω × ℝ → ℝ satisfies the growth condition
(2.5) for 𝑝, 𝑞 ∈ [1,∞), then the superposition operator 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω) defined via (2.4) is
continuous.

Proof. We sketch the essential steps; a complete proof can be found in, e.g., [Appell and
Zabrejko, 1990, Theorems 3.1, 3.7]. First, one shows for given 𝑢 ∈ 𝐿𝑝 (Ω) the measurability
of 𝐹 (𝑢) using the Carathéodory properties. It then follows from (2.5) and the triangle
inequality that

∥𝐹 (𝑢)∥𝐿𝑞 ≤ ∥𝑎∥𝐿𝑞 + ∥𝑏∥𝐿∞ ∥|𝑢 |𝑝/𝑞 ∥𝐿𝑞 = ∥𝑎∥𝐿𝑞 + ∥𝑏∥𝐿∞ ∥𝑢∥𝑝/𝑞𝐿𝑝
< ∞,

i.e., 𝐹 (𝑢) ∈ 𝐿𝑞 (Ω).
To show continuity, we consider a sequence {𝑢𝑛}𝑛∈ℕ ⊂ 𝐿𝑝 (Ω) with 𝑢𝑛 → 𝑢 ∈ 𝐿𝑝 (Ω). Then
there exists a subsequence, again denoted by {𝑢𝑛}𝑛∈ℕ, that converges pointwise almost
everywhere in Ω, as well as a 𝑣 ∈ 𝐿𝑝 (Ω) with |𝑢𝑛 (𝑥) | ≤ |𝑣 (𝑥) | + |𝑢1(𝑥) | =: 𝑔(𝑥) for all
𝑛 ∈ ℕ and almost every 𝑥 ∈ Ω (see, e.g., [Alt, 2016, Lemma 3.22 as well as (3-14) in the proof
of Theorem 3.17]). The continuity of 𝑧 ↦→ 𝑓 (𝑥, 𝑧) then implies 𝐹 (𝑢𝑛) → 𝐹 (𝑢) pointwise
almost everywhere as well as

| [𝐹 (𝑢𝑛)] (𝑥) | ≤ 𝑎(𝑥) + 𝑏 (𝑥) |𝑢𝑛 (𝑥) |𝑝/𝑞 ≤ 𝑎(𝑥) + 𝑏 (𝑥) |𝑔(𝑥) |𝑝/𝑞 for almost every 𝑥 ∈ Ω.

Since 𝑔 ∈ 𝐿𝑝 (Ω), the right-hand side defines a function in 𝐿𝑞 (Ω), and we can apply
Lebesgue’s dominated convergence theorem to deduce that 𝐹 (𝑢𝑛) → 𝐹 (𝑢) in 𝐿𝑞 (Ω). As
this argument can be applied to any subsequence, the whole sequence must converge to
𝐹 (𝑢), which yields the claimed continuity. □
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In fact, the growth condition (2.5) is also necessary for continuity; see [Appell and Zabrejko,
1990, Theorem 3.2]. In addition, it is straightforward to show that for 𝑝 = 𝑞 = ∞, the
growth condition (2.5) (with 𝑝/𝑞 ≔ 0 in this case) implies that 𝐹 is even locally Lipschitz
continuous.

Similarly, one would like to show that differentiability of 𝑓 implies differentiability of the
corresponding superposition operator 𝐹 , ideally with “pointwise” derivative [𝐹 ′(𝑢)ℎ] (𝑥) =
𝑓 ′(𝑢 (𝑥))ℎ(𝑥) (compare Example 1.3 (iii)). However, this does not hold in general; for ex-
ample, the superposition operator defined by 𝑓 (𝑥, 𝑧) = sin(𝑧) is not differentiable at 𝑢 = 0
for 1 ≤ 𝑝 = 𝑞 < ∞. The reason is that for a Fréchet differentiable superposition operator
𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω) and a direction ℎ ∈ 𝐿𝑝 (Ω), the pointwise(!) product 𝐹 ′(𝑢)ℎ has to be
in 𝐿𝑞 (Ω). This leads to additional conditions on the superposition operator 𝐹 ′ defined by
𝑓 ′, which is known as two-norm discrepancy.

Theorem 2.15. Let 𝑓 : Ω × ℝ → ℝ be a Carathéodory function that satisfies the growth
condition (2.5) for 1 ≤ 𝑞 < 𝑝 < ∞. If the partial derivative 𝑓 ′𝑧 is a Carathéodory function
as well and satisfies (2.5) for 𝑝′ = 𝑝 − 𝑞, the superposition operator 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω) is
continuously Fréchet differentiable, and its derivative in 𝑢 ∈ 𝐿𝑝 (Ω) in direction ℎ ∈ 𝐿𝑝 (Ω) is
given by

[𝐹 ′(𝑢)ℎ] (𝑥) = 𝑓 ′𝑧 (𝑥,𝑢 (𝑥))ℎ(𝑥) for almost every 𝑥 ∈ Ω.

Proof. Theorem 2.14 yields that for 𝑟 ≔ 𝑝𝑞

𝑝−𝑞 (i.e.,
𝑟
𝑝
= 𝑞

𝑝′ ), the superposition operator

𝐺 : 𝐿𝑝 (Ω) → 𝐿𝑟 (Ω), [𝐺 (𝑢)] (𝑥) = 𝑓 ′𝑧 (𝑥,𝑢 (𝑥)) for almost every 𝑥 ∈ Ω,

is well-defined and continuous. The Hölder inequality further implies that for any 𝑢 ∈
𝐿𝑝 (Ω),

(2.6) ∥𝐺 (𝑢)ℎ∥𝐿𝑞 ≤ ∥𝐺 (𝑢)∥𝐿𝑟 ∥ℎ∥𝐿𝑝 for all ℎ ∈ 𝐿𝑝 (Ω),

i.e., the pointwise multiplication ℎ ↦→ 𝐺 (𝑢)ℎ defines a bounded linear operator 𝐷𝐹 (𝑢) :
𝐿𝑝 (Ω) → 𝐿𝑞 (Ω).
Let now ℎ ∈ 𝐿𝑝 (Ω) be arbitrary. Since 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is continuously differentiable by
assumption, the classical mean value theorem together with the properties of the integral
(in particular, monotonicity, Jensen’s inequality on [0, 1], and Fubini’s theorem) and (2.6)
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implies that
∥𝐹 (𝑢 + ℎ) − 𝐹 (𝑢) − 𝐷𝐹 (𝑢)ℎ∥𝐿𝑞

=

(∫
Ω
|𝑓 (𝑥,𝑢 (𝑥) + ℎ(𝑥)) − 𝑓 (𝑥,𝑢 (𝑥)) − 𝑓 ′𝑧 (𝑥,𝑢 (𝑥))ℎ(𝑥) |𝑞 𝑑𝑥

) 1
𝑞

=

(∫
Ω

����∫ 1

0
𝑓 ′𝑧 (𝑥,𝑢 (𝑥) + 𝑡ℎ(𝑥))ℎ(𝑥) 𝑑𝑡 − 𝑓 ′𝑧 (𝑥,𝑢 (𝑥))ℎ(𝑥)

����𝑞 𝑑𝑥) 1
𝑞

≤
(∫ 1

0

∫
Ω

�� (𝑓 ′𝑧 (𝑥,𝑢 (𝑥) + 𝑡ℎ(𝑥)) − 𝑓 ′𝑧 (𝑥,𝑢 (𝑥))) ℎ(𝑥)��𝑞 𝑑𝑥 𝑑𝑡 ) 1
𝑞

=
∫ 1

0
∥(𝐺 (𝑢 + 𝑡ℎ) −𝐺 (𝑢))ℎ∥𝐿𝑞 𝑑𝑡

≤
∫ 1

0
∥𝐺 (𝑢 + 𝑡ℎ) −𝐺 (𝑢)∥𝐿𝑟 𝑑𝑡 ∥ℎ∥𝐿𝑝 .

Due to the continuity of 𝐺 : 𝐿𝑝 (Ω) → 𝐿𝑟 (Ω), the integrand tends to zero uniformly in
[0, 1] for ∥ℎ∥𝐿𝑝 → 0, and hence 𝐹 is by definition Fréchet differentiable with derivative
𝐹 ′(𝑢) = 𝐷𝐹 (𝑢) (whose continuity we have already shown). □

In fact, this result is sharp: except for the case 𝑝 = 𝑞 = ∞, no superposition operator is
differentiable from 𝐿𝑝 (Ω) to 𝐿𝑝 (Ω) (unless it is affine-linear); see, e.g., [Appell and Zabrejko,
1990, Theorem 3.12].

2.4 variational principles

As the example 𝑓 (𝑡) = 1/𝑡 on {𝑡 ∈ ℝ : 𝑡 ≥ 1} shows, the coercivity requirement in
Theorem 2.1 is necessary to obtain minimizers even if the functional is bounded from below.
However, sometimes one does not need an exact minimizer and is satisfied with “almost
minimizers”. Variational principles state that such almost minimizers can be obtained as
minimizers of a perturbed functional and even give a precise relation between the size of
the perturbation needed in terms of the desired distance from the infimum.

The most well-known variational principle is Ekeland’s variational principle, which holds
in general complete metric spaces but which we here state in Banach spaces for the sake
of notation. In the statement of the following theorem, note that we do not assume the
functional to be weakly lower semicontinuous.

Theorem 2.16 (Ekeland’s variational principle). Let 𝑋 be a Banach space and 𝐹 : 𝑋 → ℝ be
proper, lower semicontinuous, and bounded from below. Let 𝜀 > 0 and 𝑧𝜀 ∈ 𝑋 be such that

𝐹 (𝑧𝜀) < inf
𝑥∈𝑋

𝐹 (𝑥) + 𝜀.

Then for any 𝜆 > 0, there exists an 𝑥𝜆 ∈ 𝑋 with
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(i) ∥𝑥𝜆 − 𝑧𝜀 ∥𝑋 ≤ 𝜆,

(ii) 𝐹 (𝑥𝜆) + 𝜀
𝜆
∥𝑥𝜆 − 𝑧𝜀 ∥𝑋 ≤ 𝐹 (𝑧𝜀),

(iii) 𝐹 (𝑥𝜆) < 𝐹 (𝑥) + 𝜀
𝜆
∥𝑥 − 𝑥𝜆∥𝑋 for all 𝑥 ∈ 𝑋 \ {𝑥𝜆}.

Proof. The proof proceeds similarly to that of Theorem 2.1: We construct an “almost mini-
mizing” sequence, show that it converges, and verify that the limit has the desired properties.
Here we proceed inductively. First, set 𝑥0 ≔ 𝑧𝜀 . For given 𝑥𝑛 , define now

𝑆𝑛 ≔
{
𝑥 ∈ 𝑋

��� 𝐹 (𝑥) + 𝜀
𝜆
∥𝑥 − 𝑥𝑛∥𝑋 ≤ 𝐹 (𝑥𝑛)

}
.

Since 𝑥𝑛 ∈ 𝑆𝑛 , this set is nonempty. We can thus choose 𝑥𝑛+1 ∈ 𝑆𝑛 such that

(2.7) 𝐹 (𝑥𝑛+1) ≤ 1
2𝐹 (𝑥𝑛) +

1
2 inf
𝑥∈𝑆𝑛

𝐹 (𝑥),

which is possible because either the right-hand side equals 𝐹 (𝑥𝑛) (in which case we choose
𝑥𝑛+1 = 𝑥𝑛) or is strictly greater, in which case there must exist such an 𝑥𝑛+1 by the properties
of the infimum. By construction, the sequence {𝐹 (𝑥𝑛)}𝑛∈ℕ is thus decreasing as well as
bounded from below and therefore convergent. Using the triangle inequality, the fact that
𝑥𝑛+1 ∈ 𝑆𝑛 , and the telescoping sum, we also obtain that for any𝑚 ≥ 𝑛 ∈ ℕ,

(2.8) 𝜀

𝜆
∥𝑥𝑛 − 𝑥𝑚∥𝑋 ≤

𝑚−1∑︁
𝑗=𝑛

𝜀

𝜆
∥𝑥 𝑗 − 𝑥 𝑗+1∥𝑋 ≤ 𝐹 (𝑥𝑛) − 𝐹 (𝑥𝑚).

Hence, {𝑥𝑛}𝑛∈ℕ is a Cauchy sequence since {𝐹 (𝑥𝑛)}𝑛∈ℕ is one and hence converges to some
𝑥𝜆 ∈ 𝑋 since 𝑋 is complete.

We now show that this limit has the claimed properties. We begin with (ii), for which we
use the fact that both 𝐹 and the norm in 𝑋 are lower semicontinuous and hence obtain
from (2.8) by taking𝑚 → ∞ that

(2.9) 𝜀

𝜆
∥𝑥𝑛 − 𝑥𝜆∥𝑋 + 𝐹 (𝑥𝜆) ≤ lim sup

𝑚→∞
𝜀

𝜆
∥𝑥𝑛 − 𝑥𝑚∥𝑋 + 𝐹 (𝑥𝑚) ≤ 𝐹 (𝑥𝑛) for any 𝑛 ≥ 0.

Choosing in particular 𝑛 = 0 such that 𝑥0 = 𝑧𝜀 yields (ii).

Furthermore, by definition of 𝑧𝜀 , this implies that
𝜀

𝜆
∥𝑧𝜀 − 𝑥𝜆∥𝑋 ≤ 𝐹 (𝑧𝜀) − 𝐹 (𝑥𝜆) ≤ 𝐹 (𝑧𝜀) − inf

𝑥∈𝑋
𝐹 (𝑥) < 𝜀

and hence (i).

Assume now that (iii) does not hold, i.e., that there exists an 𝑥 ∈ 𝑋 \ {𝑥𝜆} such that

(2.10) 𝐹 (𝑥) ≤ 𝐹 (𝑥𝜆) −
𝜀

𝜆
∥𝑥 − 𝑥𝜆∥𝑋 < 𝐹 (𝑥𝜆).

27
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Estimating 𝐹 (𝑥𝜆) using (2.9) and then using the productive zero together with the triangle
inequality, we obtain from the first inequality that for all 𝑛 ∈ ℕ,

𝐹 (𝑥) ≤ 𝐹 (𝑥𝑛) − 𝜀

𝜆
∥𝑥𝑛 − 𝑥𝜆∥𝑋 − 𝜀

𝜆
∥𝑥 − 𝑥𝜆∥𝑋 ≤ 𝐹 (𝑥𝑛) − 𝜀

𝜆
∥𝑥𝑛 − 𝑥 ∥𝑋 .

Hence, 𝑥 ∈ 𝑆𝑛 for all 𝑛 ∈ ℕ. From (2.7), we then deduce that

2𝐹 (𝑥𝑛+1) − 𝐹 (𝑥𝑛) ≤ 𝐹 (𝑥) for all 𝑛 ∈ ℕ.

The convergence of {𝐹 (𝑥𝑛)}𝑛∈ℕ together with (2.10) and the lower semicontinuity of 𝐹 thus
yields the contradiction

lim
𝑛→∞ 𝐹 (𝑥𝑛) ≤ 𝐹 (𝑥) < 𝐹 (𝑥𝜆) ≤ lim

𝑛→∞ 𝐹 (𝑥𝑛). □

Ekeland’s variational principle has the disadvantage that even for differentiable 𝐹 , the
perturbed function that is minimized by 𝑥𝜆 is inherently nonsmooth. This is different for
smooth variational principles such as the following one due to Borwein and Preiss [Borwein
and Preiss, 1987].

Theorem 2.17 (Borwein–Preiss variational principle). Let𝑋 be a Banach space and 𝐹 : 𝑋 → ℝ

be proper, lower semicontinuous, and bounded from below. Let 𝜀 > 0 and 𝑧𝜀 ∈ 𝑋 be such that

𝐹 (𝑧𝜀) < inf
𝑥∈𝑋

𝐹 (𝑥) + 𝜀.

Then for any 𝜆 > 0 and 𝑝 ≥ 1, there exists

• a sequence {𝑥𝑛}𝑛∈ℕ0 ⊂ 𝑋 with 𝑥0 = 𝑧𝜀 converging strongly to some 𝑥𝜆 ∈ 𝑋 and

• a sequence {𝜇𝑛}𝑛∈ℕ0 ⊂ (0,∞) with ∑∞
𝑛=0 𝜇𝑛 = 1

such that

(i) ∥𝑥𝜆 − 𝑥𝑛∥𝑋 ≤ 𝜆 for all 𝑛 ∈ ℕ ∪ {0},
(ii) 𝐹 (𝑥𝜆) + 𝜀

𝜆𝑝
∑∞
𝑛=0 𝜇𝑛∥𝑥𝜆 − 𝑥𝑛∥𝑝𝑋 ≤ 𝐹 (𝑧𝜀),

(iii) 𝐹 (𝑥𝜆) + 𝜀
𝜆𝑝

∑∞
𝑛=0 𝜇𝑛∥𝑥𝜆 − 𝑥𝑛∥𝑝𝑋 ≤ 𝐹 (𝑥) + 𝜀

𝜆𝑝
∑∞
𝑛=0 𝜇𝑛∥𝑥 − 𝑥𝑛∥𝑝𝑋 for all 𝑥 ∈ 𝑋 .

Proof. We proceed similarly to the proof of Theorem 2.16 by induction. First, we chose
constants 𝛾, 𝜂, 𝜇, 𝜃 > 0 such that

• 𝐹 (𝑧𝜀) − inf𝑥∈𝑋 𝐹 (𝑥) < 𝜂 < 𝛾 < 𝜀,

• 𝜇 < 1 − 𝛾

𝜀
,

• 𝜃 < 𝜇

(
1 −

(
𝜂

𝛾

) 1/𝑝 )𝑝
.
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Let now 𝑥0 ≔ 𝑧𝜀 and 𝐹0 ≔ 𝐹 and set 𝛿 := (1 − 𝜇) 𝜀
𝜆𝑝

> 0. We then define

𝐹1(𝑥) := 𝐹0(𝑥) + 𝛿𝜇∥𝑥 − 𝑥0∥𝑝𝑋 for all 𝑥 ∈ 𝑋 .

By construction, we then have

inf
𝑥∈𝑋

𝐹1(𝑥) ≤ 𝐹1(𝑥0) = 𝐹0(𝑥0),

and thus we can find, by the same argument as for (2.7), an 𝑥1 ∈ 𝑋 with

𝐹1(𝑥1) ≤ 𝜃𝐹0(𝑥0) + (1 − 𝜃 ) inf
𝑥∈𝑋

𝐹1(𝑥).

Continuing in this manner, we obtain sequences {𝑥𝑛}𝑛∈ℕ and {𝐹𝑛}𝑛∈ℕ with

(2.11) 𝐹𝑛+1(𝑥) = 𝐹𝑛 (𝑥) + 𝛿𝜇𝑛∥𝑥 − 𝑥𝑛∥𝑝𝑋
and

(2.12) 𝐹𝑛+1(𝑥𝑛+1) ≤ 𝜃𝐹𝑛 (𝑥𝑛) + (1 − 𝜃 ) inf
𝑥∈𝑋

𝐹 (𝑥).

Set now 𝑠𝑛 ≔ inf𝑥∈𝑋 𝐹𝑛 (𝑥) and 𝑎𝑛 ≔ 𝐹𝑛 (𝑥𝑛). Then (2.11) implies that {𝑠𝑛}𝑛≥0 is monoton-
ically increasing, while (2.12) implies that {𝑎𝑛}𝑛≥0 is monotonically decreasing. We thus
have

(2.13) 𝑠𝑛 ≤ 𝑠𝑛+1 ≤ 𝑎𝑛+1 ≤ 𝜃𝑎𝑛 + (1 − 𝜃 )𝑠𝑛+1 ≤ 𝑎𝑛,

which can be rearranged to show for all 𝑛 ≥ 0 that

(2.14) 𝑎𝑛+1 − 𝑠𝑛+1 ≤ 𝜃𝑎𝑛 + (1 − 𝜃 )𝑠𝑛+1 − 𝑠𝑛+1 = 𝜃 (𝑎𝑛 − 𝑠𝑛+1) ≤ 𝜃 (𝑎𝑛 − 𝑠𝑛) ≤ 𝜃𝑛 (𝑎0 − 𝑠0).

This together with the monotonicity of the two sequences and the boundedness of 𝐹 from
below shows that lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ 𝑠𝑛 ∈ ℝ. We now use (2.11) in (2.13) to obtain that

𝑎𝑛 ≥ 𝑎𝑛+1 = 𝐹𝑛 (𝑥𝑛) + 𝛿𝜇𝑛∥𝑥𝑛+1 − 𝑥𝑛∥𝑝𝑋 ≥ 𝑠𝑛 + 𝛿𝜇𝑛∥𝑥𝑛+1 − 𝑥𝑛∥𝑝𝑋 ,

which together with (2.14) and the choice of 𝜂 yields

𝛿𝜇𝑛∥𝑥𝑛+1 − 𝑥𝑛∥𝑝𝑋 ≤ 𝑎𝑛 − 𝑠𝑛 ≤ 𝜃𝑛 (𝑎0 − 𝑠0) < 𝜂𝜃𝑛 .

The choice of 𝜃 and 𝜇 now ensure that 0 < 𝜃
𝜇
< 1, which implies that

(2.15) ∥𝑥𝑚 − 𝑥𝑛∥𝑋 ≤
𝑚−𝑛−1∑︁
𝑘=𝑛

∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 ≤
(𝜂
𝛿

) 1/𝑝 𝑚−𝑛−1∑︁
𝑘=𝑛

(
𝜃

𝜇

)𝑘/𝑝
≤

(𝜂
𝛿

) 1/𝑝 (
𝜃

𝜇

)𝑛/𝑝 (
1 −

(
𝜃

𝜇

) 1/𝑝)−1

for all𝑚,𝑛 ≥ 0
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using the partial geometric series

𝑚−𝑛−1∑︁
𝑘=𝑛

𝛼𝑘 =
𝑚−𝑛−1∑︁
𝑘=0

𝛼𝑘 −
𝑛−1∑︁
𝑘=0

𝛼𝑘 =
1 − 𝛼𝑚−𝑛

1 − 𝛼 − 1 − 𝛼𝑛
1 − 𝛼 <

𝛼𝑛

1 − 𝛼

valid for any 𝛼 ∈ (0, 1). Hence {𝑥𝑛}𝑛 ∈ ℕ is a Cauchy sequence which therefore converges
to some 𝑥𝜆 ∈ 𝑋 . Setting 𝜇𝑛 ≔ 𝜇𝑛 (1 − 𝜇) > 0, we also have ∑∞

𝑛=0 𝜇𝑛 = 1 by the choice of
𝜇 < 1. Furthermore, the definition of 𝜇𝑛 and 𝛿 implies for all 𝑥 ∈ 𝑋 that

(2.16) 𝐹 (𝑥) + 𝜀

𝜆𝑝

∞∑︁
𝑘=0

𝜇𝑘 ∥𝑥 − 𝑥𝑘 ∥𝑝𝑋 = lim
𝑛→∞ 𝐹 (𝑥) +

𝑛∑︁
𝑘=0

𝛿𝜇𝑘 ∥𝑥 − 𝑥𝑘 ∥𝑝𝑋 = lim
𝑛→∞ 𝐹𝑛 (𝑥).

It remains to verify the claims on 𝑥𝜆 . First, (2.15) together with the choice of 𝜃 and 𝛿 implies
for all 𝑛,𝑚 ≥ 0 that

∥𝑥𝑚 − 𝑥𝑛∥𝑋 ≤
(𝜂
𝛿

) 1/𝑝 (
𝜂

𝛾

)−1/𝑝
=

(𝛾
𝛿

) 1/𝑝
<

( 𝜀
𝛿

) 1/𝑝
(1 − 𝜇)1/𝑝 = 𝜆.

Letting𝑚 → ∞ for fixed 𝑛 ∈ ℕ ∪ {0} now shows (i).

Second, by (2.11) and the definition of 𝛿 , we have

𝐹 (𝑥𝑛) + 𝜀

𝜆𝑝

∞∑︁
𝑘=0

𝜇𝑘 ∥𝑥𝑛 − 𝑥𝑘 ∥𝑝𝑋 = 𝐹𝑛 (𝑥𝑛) + 𝜀

𝜆𝑝

∞∑︁
𝑘=𝑛+1

𝜇𝑘 ∥𝑥𝑛 − 𝑥𝑘 ∥𝑝𝑋 ≤ 𝑎𝑛 + 𝜀
∞∑︁

𝑘=𝑛+1
𝜇𝑘 ,

where the inequality follows from (i). The lower semicontinuity of 𝐹 and of the norm thus
yield

(2.17) 𝐹 (𝑥𝜆) +
𝜀

𝜆𝑝

∞∑︁
𝑘=0

𝜇𝑘 ∥𝑥𝜆 − 𝑥𝑘 ∥𝑝𝑋 ≤ lim
𝑛→∞𝑎𝑛 ≤ 𝑎0 = 𝐹 (𝑧𝜀)

since {𝑎𝑛}𝑛≥0 is monotonically decreasing. This shows (ii).

Finally, (2.16) and the definition of 𝑠𝑛 imply for all 𝑥 ∈ 𝑋 that

𝐹 (𝑥) + 𝜀

𝜆𝑝

∞∑︁
𝑘=0

𝜇𝑘 ∥𝑥 − 𝑥𝑘 ∥𝑝𝑋 = lim
𝑛→∞ 𝐹𝑛 (𝑥) ≥ lim

𝑛→∞ 𝑠𝑛 = lim
𝑛→∞𝑎𝑛,

which together with (2.17) yields (iii). □

The Borwein–Preiss variational principle therefore guarantees a smooth perturbation
if, e.g., 𝑋 is a Hilbert space and 𝑝 = 2. Further smooth variational principles that allow
for more general smooth perturbations such as the Deville–Godefroy–Zizler variational
principle can be found in, e.g., [Borwein and Zhu, 2005; Schirotzek, 2007].
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3 CONVEX FUNCTIONS

Now that we know from the direct method of the calculus of variations when a functional
𝐹 : 𝑋 → ℝ ≔ ℝ ∪ {∞} admits a minimizer 𝑥 ∈ 𝑋 , our next goal is to characterize such
minimizers using optimality conditions, i.e., without comparing its function value to that at
every other point. If 𝐹 is differentiable at𝑋 , the classical optimality condition is by Fermat’s
principle, 𝐹 ′(𝑥) = 0, and we can use calculus rules to evaluate this derivative in order to
make this condition as explicit as possible. We wish to extend this as far as possible to
nonsmooth 𝐹 , i.e., not classically (Fréchet or Gâteaux) differentiable, is nonsmooth. Clearly,
not being differentiable is not much to work with, so we have to assume other properties
instead. One possibility is to replace the local property of differentiability with the global
property of convexity. As we will see in this and the following chapters, this property will
allow us to recover a satisfying calculus for a class of relevant nonsmooth functionals. We
begin in this chapter with deriving several fundamental properties of convex functions
relevant for optimization, while the corresponding Fermat principle and calculus rules are
the topic of the next Chapter 4.

Throughout this and the following chapters, 𝑋 will be a normed vector space unless noted
otherwise.

3.1 definition and basic properties

A functional 𝐹 : 𝑋 → ℝ is called convex if for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0, 1], it holds that
(3.1) 𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦)
(where the function value∞ is allowed on both sides). If for all 𝑥, 𝑦 ∈ dom 𝐹 with 𝑥 ≠ 𝑦

and all 𝜆 ∈ (0, 1) we even have

𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) < 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦),
we call 𝐹 strictly convex.

As illustrated in Figure 3.1, an alternative characterization of the convexity of a functional
𝐹 : 𝑋 → ℝ is based on its epigraph

epi 𝐹 ≔ {(𝑥, 𝑡) ∈ 𝑋 ×ℝ | 𝐹 (𝑥) ≤ 𝑡} .
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3 convex functions

𝑥

𝑦

(a) a convex set 𝐶
𝐹

epi 𝐹

(b) the (convex) epigraph of a
convex function

Figure 3.1: Illustration of a convex set and of the characterization of a convex function in
terms of the convexity of its epigraph: all line segments between two points of
corresponding set are completely contained in that set.

Lemma 3.1. Let 𝐹 : 𝑋 → ℝ. Then epi 𝐹 is

(i) nonempty if and only if 𝐹 is proper;

(ii) convex if and only if 𝐹 is convex;

(iii) (weakly) closed if and only if 𝐹 is (weakly) lower semicontinuous.1

Proof. Statement (i) follows directly from the definition: 𝐹 is proper if and only if there
exists an 𝑥 ∈ 𝑋 and a 𝑡 ∈ ℝ with 𝐹 (𝑥) ≤ 𝑡 < ∞, i.e., (𝑥, 𝑡) ∈ epi 𝐹 .

For (ii), let 𝐹 be convex and (𝑥, 𝑟 ), (𝑦, 𝑠) ∈ epi 𝐹 be given. For any 𝜆 ∈ [0, 1], the definition
(3.1) then implies that

𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦) ≤ 𝜆𝑟 + (1 − 𝜆)𝑠,
i.e., that

𝜆(𝑥, 𝑟 ) + (1 − 𝜆) (𝑦, 𝑠) = (𝜆𝑥 + (1 − 𝜆)𝑦, 𝜆𝑟 + (1 − 𝜆)𝑠) ∈ epi 𝐹,
and hence epi 𝐹 is convex. Let conversely epi 𝐹 be convex and 𝑥, 𝑦 ∈ 𝑋 be arbitrary,
where we can assume that 𝐹 (𝑥) < ∞ and 𝐹 (𝑦) < ∞ (otherwise (3.1) is trivially satisfied).
We clearly have (𝑥, 𝐹 (𝑥)), (𝑦, 𝐹 (𝑦)) ∈ epi 𝐹 . The convexity of epi 𝐹 then implies for all
𝜆 ∈ [0, 1] that

(𝜆𝑥 + (1 − 𝜆)𝑦, 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦)) = 𝜆(𝑥, 𝐹 (𝑥)) + (1 − 𝜆) (𝑦, 𝐹 (𝑦)) ∈ epi 𝐹,

and hence by definition of epi 𝐹 that (3.1) holds.

Finally, we show (iii): Let first 𝐹 be lower semicontinuous, and let {(𝑥𝑛, 𝑡𝑛)}𝑛∈ℕ ⊂ epi 𝐹 be
an arbitrary sequence with (𝑥𝑛, 𝑡𝑛) → (𝑥, 𝑡) ∈ 𝑋 ×ℝ. Then we have that

𝐹 (𝑥) ≤ lim inf
𝑛→∞ 𝐹 (𝑥𝑛) ≤ lim sup

𝑛→∞
𝑡𝑛 = 𝑡,

1For that reason, some authors use the term closed also to refer to lower semicontinuous functionals. We
will stick with the latter, much less ambiguous, term throughout the following.
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i.e., (𝑥, 𝑡) ∈ epi 𝐹 . Let conversely epi 𝐹 be closed and assume that 𝐹 is proper (otherwise
the claim holds trivially) and not lower semicontinuous. Then there exists a sequence
{𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 with 𝑥𝑛 → 𝑥 ∈ 𝑋 and

𝐹 (𝑥) > lim inf
𝑛→∞ 𝐹 (𝑥𝑛) =: 𝑀 ∈ [−∞,∞) .

We now distinguish two cases.

a) 𝑥 ∈ dom 𝐹 : In this case, we can select a subsequence, again denoted by {𝑥𝑛}𝑛∈ℕ, such
that there exists an 𝜀 > 0 with 𝐹 (𝑥𝑛) ≤ 𝐹 (𝑥) −𝜀 and thus (𝑥𝑛, 𝐹 (𝑥) −𝜀) ∈ epi 𝐹 for all
𝑛 ∈ ℕ. From 𝑥𝑛 → 𝑥 and the closedness of epi 𝐹 , we deduce that (𝑥, 𝐹 (𝑥) − 𝜀) ∈ epi 𝐹
and hence 𝐹 (𝑥) ≤ 𝐹 (𝑥) − 𝜀, contradicting 𝜀 > 0.

b) 𝑥 ∉ dom 𝐹 : In this case, we can argue similarly using 𝐹 (𝑥𝑛) ≤ 𝑀 + 𝜀 for𝑀 > −∞ or
𝐹 (𝑥𝑛) ≤ 𝜀 for𝑀 = −∞ to obtain a contradiction with 𝐹 (𝑥) = ∞.

The equivalence of weak lower semicontinuity and weak closedness follows in exactly the
same way. □

Note that (𝑥, 𝑡) ∈ epi 𝐹 implies that 𝑥 ∈ dom 𝐹 ; hence the effective domain of a proper,
convex, and lower semicontinuous functional is always nonempty, convex, and closed as
well. Also, together with Lemma 1.10 we immediately obtain

Corollary 3.2. Let 𝐹 : 𝑋 → ℝ be convex. Then 𝐹 is weakly lower semicontinuous if and only
𝐹 is lower semicontinuous.

Also useful for the study of a functional 𝐹 : 𝑋 → ℝ are the corresponding sublevel sets

sub𝑡 𝐹 ≔ {𝑥 ∈ 𝑋 | 𝐹 (𝑥) ≤ 𝑡} , 𝑡 ∈ ℝ,

for which one shows as in Lemma 3.1 the following properties.

Lemma 3.3. Let 𝐹 : 𝑋 → ℝ.

(i) If 𝐹 is convex, sub𝑡 𝐹 is convex for all 𝑡 ∈ ℝ (but the converse does not hold).

(ii) 𝐹 is (weakly) lower semicontinuous if and only if sub𝑡 𝐹 is (weakly) closed for all 𝑡 ∈ ℝ.

Directly from the definition we obtain the convexity of

(i) continuous affine functionals of the form 𝑥 ↦→ ⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 for fixed 𝑥∗ ∈ 𝑋 ∗ and
𝛼 ∈ ℝ;

(ii) the norm ∥ · ∥𝑋 in a normed vector space 𝑋 ;

(iii) the indicator function 𝛿𝐶 for a convex set 𝐶 .
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If 𝑋 is a Hilbert space, 𝐹 (𝑥) = ∥𝑥 ∥2
𝑋
is even strictly convex: For 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 and

any 𝜆 ∈ (0, 1),

∥𝜆𝑥 + (1 − 𝜆)𝑦 ∥2
𝑋 = (𝜆𝑥 + (1 − 𝜆)𝑦 | 𝜆𝑥 + (1 − 𝜆)𝑦)𝑋
= 𝜆2(𝑥 | 𝑥)𝑋 + 2𝜆(1 − 𝜆) (𝑥 | 𝑦)𝑋 + (1 − 𝜆)2(𝑦 | 𝑦)𝑋
= 𝜆

(
𝜆(𝑥 | 𝑥)𝑋 − (1 − 𝜆) (𝑥 − 𝑦 | 𝑥)𝑋 + (1 − 𝜆) (𝑦 | 𝑦)𝑋

)
+ (1 − 𝜆)

(
𝜆(𝑥 | 𝑥)𝑋 + 𝜆(𝑥 − 𝑦 | 𝑦)𝑋 + (1 − 𝜆) (𝑦 | 𝑦)𝑋

)
= (𝜆 + (1 − 𝜆))

(
𝜆(𝑥 | 𝑥)𝑋 + (1 − 𝜆) (𝑦 | 𝑦)𝑋

)
− 𝜆(1 − 𝜆) (𝑥 − 𝑦 | 𝑥 − 𝑦)𝑋

= 𝜆∥𝑥 ∥2
𝑋 + (1 − 𝜆)∥𝑦 ∥2

𝑋 − 𝜆(1 − 𝜆)∥𝑥 − 𝑦 ∥2
𝑋

< 𝜆∥𝑥 ∥2
𝑋 + (1 − 𝜆)∥𝑦 ∥2

𝑋 .

Further examples can be constructed as in Lemma 2.3 through the following operations.

Lemma 3.4. Let 𝑋 and 𝑌 be normed vector spaces and let 𝐹 : 𝑋 → ℝ be convex. Then the
following functionals are convex as well:

(i) 𝛼𝐹 for all 𝛼 ≥ 0;

(ii) 𝐹 +𝐺 for 𝐺 : 𝑋 → ℝ convex (strictly if 𝐹 or 𝐺 is strictly convex);

(iii) 𝜑 ◦ 𝐹 for 𝜑 : ℝ → ℝ convex and increasing;

(iv) 𝐹 ◦ 𝐾 for 𝐾 : 𝑌 → 𝑋 linear;

(v) 𝑥 ↦→ sup𝑖∈𝐼 𝐹𝑖 (𝑥) with 𝐹𝑖 : 𝑋 → ℝ convex for an arbitrary set 𝐼 .

Lemma 3.4 (v) in particular implies that the pointwise supremum of continuous affine
functionals is always convex. In fact, any convex functional can be written in this way. To
show this, we define for a proper functional 𝐹 : 𝑋 → ℝ the convex envelope

𝐹 Γ (𝑥) ≔ sup {𝑎(𝑥) | 𝑎 continuous affine with 𝑎(𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ 𝑋 } .

Note that 𝐹 Γ : 𝑋 → [−∞,∞] without further assumptions of 𝐹 .

Lemma 3.5. Let 𝐹 : 𝑋 → ℝ be proper. Then 𝐹 is convex and lower semicontinuous if and only
if 𝐹 = 𝐹 Γ .

Proof. Since affine functionals are convex, Lemma 3.4 (v) and Lemma 2.3 (v) imply that
𝐹 = 𝐹 Γ is always convex and lower semicontinuous.
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Let now 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous. It is clear from the
definition of 𝐹 Γ as a pointwise supremum that 𝐹 Γ ≤ 𝐹 always holds. Assume therefore that
𝐹 Γ < 𝐹 . Then there exists an 𝑥0 ∈ 𝑋 and a 𝜆 ∈ ℝ with

𝐹 Γ (𝑥0) < 𝜆 < 𝐹 (𝑥0).
We now use the Hahn–Banach separation theorem to construct a continuous affine func-
tional 𝑎 with 𝑎 ≤ 𝐹 but 𝑎(𝑥0) > 𝜆 > 𝐹 Γ (𝑥0), which would contradict the definition of 𝐹 Γ .
Since 𝐹 is proper, convex, and lower semicontinuous, epi 𝐹 is nonempty, convex, and closed
by Lemma 3.1. Furthermore, {(𝑥0, 𝜆)} is compact and, as 𝜆 < 𝐹 (𝑥0), disjoint with epi 𝐹 .
Theorem 1.5 (ii) hence yields a 𝑧∗ ∈ (𝑋 ×ℝ)∗ and an 𝛼 ∈ ℝ with

⟨𝑧∗, (𝑥, 𝑡)⟩𝑋×ℝ ≤ 𝛼 < ⟨𝑧∗, (𝑥0, 𝜆)⟩𝑋×ℝ for all (𝑥, 𝑡) ∈ epi 𝐹 .

We now define an 𝑥∗ ∈ 𝑋 ∗ via ⟨𝑥∗, 𝑥⟩𝑋 = ⟨𝑧∗, (𝑥, 0)⟩𝑋×ℝ for all 𝑥 ∈ 𝑋 and set 𝑠 ≔
⟨𝑧∗, (0, 1)⟩𝑋×ℝ ∈ ℝ. Then ⟨𝑧∗, (𝑥, 𝑡)⟩𝑋×ℝ = ⟨𝑥∗, 𝑥⟩𝑋 + 𝑠𝑡 and hence

(3.2) ⟨𝑥∗, 𝑥⟩𝑋 + 𝑠𝑡 ≤ 𝛼 < ⟨𝑥∗, 𝑥0⟩𝑋 + 𝑠𝜆 for all (𝑥, 𝑡) ∈ epi 𝐹 .

Now for (𝑥, 𝑡) ∈ epi 𝐹 we also have (𝑥, 𝑡 ′) ∈ epi 𝐹 for all 𝑡 ′ > 𝑡 , and the first inequality in
(3.2) implies that for all sufficiently large 𝑡 ′ > 0,

𝑠 ≤ 𝛼 − ⟨𝑥∗, 𝑥⟩𝑋
𝑡 ′

→ 0 for 𝑡 ′ → ∞.
Hence 𝑠 ≤ 0. We continue with a case distinction.

(i) 𝑠 < 0: We set
𝑎 : 𝑋 → ℝ, 𝑥 ↦→ 𝛼 − ⟨𝑥∗, 𝑥⟩𝑋

𝑠
,

which is continuous affine. Furthermore, using the “productive zero” (i.e., adding
and subtracting the same term) in the first inequality in (3.2) for (𝑥, 𝐹 (𝑥)) ∈ epi 𝐹
implies (noting 𝑠 < 0!) that

𝑎(𝑥) = 1
𝑠
(𝛼 − ⟨𝑥∗, 𝑥⟩𝑋 − 𝑠𝐹 (𝑥)) + 𝐹 (𝑥) ≤ 𝐹 (𝑥).

(For 𝑥 ∉ dom 𝐹 this holds trivially.) But the second inequality in (3.2) implies that

𝑎(𝑥0) = 1
𝑠
(𝛼 − ⟨𝑥∗, 𝑥0⟩𝑋 ) > 𝜆.

(ii) 𝑠 = 0: Then ⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝛼 < ⟨𝑥∗, 𝑥0⟩𝑋 for all 𝑥 ∈ dom 𝐹 , which can only hold for
𝑥0 ∉ dom 𝐹 . But 𝐹 is proper, and hence we can find a 𝑦0 ∈ dom 𝐹 , for which we
can construct as in case (i) by separating epi 𝐹 and (𝑦0, 𝜇) for sufficiently small 𝜇 a
continuous affine functional 𝑎0 : 𝑋 → ℝ with 𝑎0 ≤ 𝐹 pointwise. For 𝜌 > 0 we now
set

𝑎𝜌 : 𝑋 → ℝ, 𝑥 ↦→ 𝑎0(𝑥) + 𝜌 (⟨𝑥∗, 𝑥⟩𝑋 − 𝛼) ,
which is continuous affine as well. Since ⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝛼 , we also have that 𝑎𝜌 (𝑥) ≤
𝑎0(𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ dom 𝐹 and any 𝜌 > 0. But due to ⟨𝑥∗, 𝑥0⟩𝑋 > 𝛼 , we can
choose 𝜌 > 0 with 𝑎𝜌 (𝑥0) > 𝜆.
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In both cases, the definition of 𝐹 Γ as a supremum implies that 𝐹 Γ (𝑥0) > 𝜆 as well, contra-
dicting the assumption 𝐹 Γ (𝑥0) < 𝜆. □

Remark 3.6. Using the weak-∗ Hahn–Banach Theorem 1.13 in place of Theorem 1.5, the same proof
shows that a proper functional 𝐹 : 𝑋 ∗ → ℝ is convex and weakly-∗ lower semicontinuous if and
only if 𝐹 = 𝐹Γ for

𝐹Γ (𝑥∗) ≔ sup {⟨𝑥∗, 𝑥⟩𝑋 + 𝛼 | 𝑥 ∈ 𝑋, 𝛼 ∈ ℝ, ⟨𝑥∗, 𝑥⟩𝑋 + 𝛼 ≤ 𝐹 (𝑥∗) for all 𝑥∗ ∈ 𝑋 ∗} .

(Note that a convex and weakly-∗ lower semicontinuous functional need not be lower semicontinu-
ous, since convex and closed sets need not be weakly-∗ closed.)

A particularly useful class of convex functionals in the calculus of variations arises from
integral functionals with convex integrands defined through superposition operators.

Lemma 3.7. Let 𝑓 : ℝ → ℝ be proper, convex, and lower semicontinuous. If Ω ⊂ ℝ𝑑 is
bounded and 1 ≤ 𝑝 ≤ ∞, this also holds for

𝐹 : 𝐿𝑝 (Ω) → ℝ, 𝑢 ↦→
{∫

Ω
𝑓 (𝑢 (𝑥)) 𝑑𝑥 if 𝑓 ◦ 𝑢 ∈ 𝐿1(Ω),

∞ else.

Proof. First, Lemma 3.5 implies that there exist 𝑎, 𝛼 ∈ ℝ such that

(3.3) 𝑓 (𝑡) ≥ 𝑎𝑡 − 𝛼 for all 𝑡 ∈ ℝ.

Since Ω is bounded and hence 𝐿𝑝 (Ω) ⊂ 𝐿1(Ω) for any 𝑝 ≥ 1, this implies that

𝐹 (𝑢) ≥
∫
Ω
𝑎𝑢 (𝑥) − 𝛼 𝑑𝑥 ∈ ℝ for any 𝑢 ∈ 𝐿𝑝 (Ω).

In particular, 𝐹 (𝑢) > −∞ for all 𝑢 ∈ 𝐿𝑝 (Ω). Since 𝑓 is proper, there is a 𝑡0 ∈ dom 𝑓 . Hence
(using again that Ω is bounded) the constant function 𝑢0 ≡ 𝑡0 ∈ dom 𝐹 satisfies 𝐹 (𝑢0) < ∞.
This shows that 𝐹 is proper.

To show convexity, we take 𝑢, 𝑣 ∈ dom 𝐹 (since otherwise (3.1) is trivially satisfied) and
𝜆 ∈ [0, 1] arbitrary. The convexity of 𝑓 now implies that

𝑓 (𝜆𝑢 (𝑥) + (1 − 𝜆)𝑣 (𝑥)) ≤ 𝜆𝑓 (𝑢 (𝑥)) + (1 − 𝜆) 𝑓 (𝑣 (𝑥)) for almost every 𝑥 ∈ Ω.

Since 𝑢, 𝑣 ∈ dom 𝐹 and 𝐿1(Ω) is a vector space, 𝜆𝑓 (𝑢 (𝑥)) + (1 − 𝜆) 𝑓 (𝑣 (𝑥)) ∈ 𝐿1(Ω) as well.
Similarly, the left-hand side is bounded from below by 𝑎(𝜆𝑢 (𝑥) + (1 − 𝜆)𝑣 (𝑥)) − 𝛼 ∈ 𝐿1(Ω)
by (3.3). We can thus integrate the inequality over Ω to obtain the convexity of 𝐹 .

To show lower semicontinuity, we use Lemma 3.1. Let {(𝑢𝑛, 𝑡𝑛)}𝑛∈ℕ ⊂ epi 𝐹 with 𝑢𝑛 → 𝑢

in 𝐿𝑝 (Ω) and 𝑡𝑛 → 𝑡 in ℝ. Then there exists a subsequence {𝑢𝑛𝑘 }𝑘∈ℕ with 𝑢𝑛𝑘 (𝑥) → 𝑢 (𝑥)
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almost everywhere. Hence, the lower semicontinuity of 𝑓 together with Fatou’s Lemma
implies that∫

Ω
𝑓 (𝑢 (𝑥)) − (𝑎𝑢 (𝑥) − 𝛼) 𝑑𝑥 ≤

∫
Ω

lim inf
𝑘→∞

(𝑓 (𝑢𝑛𝑘 (𝑥)) − (𝑎𝑢𝑛𝑘 (𝑥) − 𝛼)) 𝑑𝑥

≤ lim inf
𝑘→∞

∫
Ω
𝑓 (𝑢𝑛𝑘 (𝑥)) − (𝑎𝑢𝑛𝑘 (𝑥) − 𝛼) 𝑑𝑥

= lim inf
𝑘→∞

∫
Ω
𝑓 (𝑢𝑛𝑘 (𝑥)) 𝑑𝑥 −

∫
Ω
𝑎𝑢 (𝑥) − 𝛼 𝑑𝑥

as the integrands are nonnegative due to (3.3). Since (𝑢𝑛𝑘 , 𝑡𝑛𝑘 ) ∈ epi 𝐹 , this yields

𝐹 (𝑢) =
∫
Ω
𝑓 (𝑢 (𝑥)) 𝑑𝑥 ≤ lim inf

𝑘→∞

∫
Ω
𝑓 (𝑢𝑛𝑘 (𝑥)) 𝑑𝑥 = lim inf

𝑘→∞
𝐹 (𝑢𝑛𝑘 ) ≤ lim

𝑘→∞
𝑡𝑛𝑘 = 𝑡,

i.e., (𝑢, 𝑡) ∈ epi 𝐹 . Hence epi 𝐹 is closed, and the lower semicontinuity of 𝐹 follows from
Lemma 3.1 (iii). □

3.2 existence of minimizers

After all this preparation, we can quickly prove the main result on existence of solutions
to convex minimization problems.

Theorem 3.8. Let 𝑋 be a reflexive Banach space and let

(i) 𝑈 ⊂ 𝑋 be nonempty, convex, and closed;

(ii) 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous with dom 𝐹 ∩𝑈 ≠ ∅;
(iii) 𝑈 be bounded or 𝐹 be coercive.

Then the problem
min
𝑥∈𝑈

𝐹 (𝑥)
admits a solution 𝑥 ∈ 𝑈 ∩ dom 𝐹 . If 𝐹 is strictly convex, the solution is unique.

Proof. We consider the extended functional 𝐹 = 𝐹 + 𝛿𝑈 : 𝑋 → ℝ. Assumption (i) together
with Lemma 2.5 implies that 𝛿𝑈 is proper, convex, and weakly lower semicontinuous.
From (i) we obtain an 𝑥0 ∈ 𝑈 with 𝐹 (𝑥0) < ∞, and hence 𝐹 is proper, convex, and (by
Corollary 3.2) weakly lower semicontinuous. Finally, due to (iii), 𝐹 is coercive since for
bounded 𝑈 , we can use that 𝐹 > −∞, and for coercive 𝐹 , we can use that 𝛿𝑈 ≥ 0. Hence
we can apply Theorem 2.1 to obtain the existence of a minimizer 𝑥 ∈ dom 𝐹 = 𝑈 ∩ dom 𝐹

of 𝐹 with
𝐹 (𝑥) = 𝐹 (𝑥) ≤ 𝐹 (𝑥) = 𝐹 (𝑥) for all 𝑥 ∈ 𝑈 ,
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i.e., 𝑥 is the claimed solution.

Let now 𝐹 be strictly convex, and let 𝑥 and 𝑥′ ∈ 𝑈 be two different minimizers, i.e.,
𝐹 (𝑥) = 𝐹 (𝑥′) = min𝑥∈𝑈 𝐹 (𝑥) and 𝑥 ≠ 𝑥′. Then by the convexity of 𝑈 we have for all
𝜆 ∈ (0, 1) that

𝑥𝜆 ≔ 𝜆𝑥 + (1 − 𝜆)𝑥′ ∈ 𝑈 ,
while the strict convexity of 𝐹 implies that

𝐹 (𝑥𝜆) < 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑥′) = 𝐹 (𝑥).
But this is a contradiction to 𝐹 (𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ 𝑈 . □

Note that for a sum of two convex functionals to be coercive, it is in general not sufficient
that only one of them is. Functionals for which this is the case – such as the indicator
function of a bounded set – are called supercoercive; another example which will be helpful
later is the squared norm.

Lemma 3.9. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous, and 𝑥0 ∈ 𝑋 be
given. Then the functional

𝐽 : 𝑋 → ℝ, 𝑥 ↦→ 𝐹 (𝑥) + 1
2 ∥𝑥 − 𝑥0∥2

𝑋

is coercive.

Proof. Since 𝐹 is proper, convex, and lower semicontinuous, it follows from Lemma 3.5 that
𝐹 is bounded from below by a continuous affine functional, i.e., there exists an 𝑥∗ ∈ 𝑋 ∗

and an 𝛼 ∈ ℝ with 𝐹 (𝑥) ≥ ⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 for all 𝑥 ∈ 𝑋 . Together with the reverse triangle
inequality and (1.1), we obtain that

𝐽 (𝑥) ≥ ⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 + 1
2 (∥𝑥 ∥𝑋 − ∥𝑥0∥𝑋 )2

≥ −∥𝑥∗∥𝑋 ∗ ∥𝑥 ∥𝑋 − 𝛼 + 1
2 ∥𝑥 ∥2

𝑋 − ∥𝑥 ∥𝑋 ∥𝑥0∥𝑋
= ∥𝑥 ∥𝑋

( 1
2 ∥𝑥 ∥𝑋 − ∥𝑥∗∥𝑋 ∗ − ∥𝑥0∥𝑋

) − 𝛼.
Since 𝑥∗ and 𝑥0 are fixed, the term in parentheses is positive for ∥𝑥 ∥𝑋 sufficiently large,
and hence 𝐽 (𝑥) → ∞ for ∥𝑥 ∥𝑋 → ∞ as claimed. □

3.3 continuity properties

To close this chapter, we show the following remarkable result: Any (locally) bounded convex
functional is (locally) continuous. Besides being of use in later chapters, this result illustrates
the beauty of convex analysis: an algebraic but global property (convexity) connects two
topological but local properties (neighborhood and continuity). Here we consider of course
the strong topology in a normed vector space.
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Lemma 3.10. Let 𝑋 be a normed vector space, 𝐹 : 𝑋 → ℝ be convex, and 𝑥 ∈ 𝑋 . If there is a
𝜌 > 0 such that 𝐹 is bounded from above on 𝕆(𝑥, 𝜌), then 𝐹 is locally Lipschitz continuous
near 𝑥 .

Proof. By assumption, there exists an𝑀 ∈ ℝ with 𝐹 (𝑦) ≤ 𝑀 for all 𝑦 ∈ 𝕆(𝑥, 𝜌). We first
show that 𝐹 is locally bounded from below as well. Let 𝑦 ∈ 𝕆(𝑥, 𝜌) be arbitrary. Since
∥𝑥 − 𝑦 ∥𝑋 < 𝜌 , we also have that 𝑧 ≔ 2𝑥 − 𝑦 = 𝑥 − (𝑦 − 𝑥) ∈ 𝕆(𝑥, 𝜌), and the convexity of
𝐹 implies that 𝐹 (𝑥) = 𝐹 ( 1

2𝑦 + 1
2𝑧

) ≤ 1
2𝐹 (𝑦) + 1

2𝐹 (𝑧) and hence that

−𝐹 (𝑦) ≤ 𝐹 (𝑧) − 2𝐹 (𝑥) ≤ 𝑀 − 2𝐹 (𝑥) =:𝑚,

i.e., −𝑚 ≤ 𝐹 (𝑦) ≤ 𝑀 for all 𝑦 ∈ 𝕆(𝑥, 𝜌).
We now show that this implies Lipschitz continuity on 𝕆(𝑥, 𝜌2 ). Let 𝑦1, 𝑦2 ∈ 𝕆(𝑥, 𝜌2 ) with
𝑦1 ≠ 𝑦2 and set

𝑧 ≔ 𝑦1 + 𝜌2
𝑦1 − 𝑦2

∥𝑦1 − 𝑦2∥𝑋 ∈ 𝕆(𝑥, 𝜌),

which holds because ∥𝑧 − 𝑥 ∥𝑋 ≤ ∥𝑦1 − 𝑥 ∥𝑋 + 𝜌

2 < 𝜌 . By construction, we thus have that

𝑦1 = 𝜆𝑧 + (1 − 𝜆)𝑦2 for 𝜆 ≔
∥𝑦1 − 𝑦2∥𝑋

∥𝑦1 − 𝑦2∥𝑋 + 𝜌

2
∈ (0, 1),

and the convexity of 𝐹 now implies that 𝐹 (𝑦1) ≤ 𝜆𝐹 (𝑧) + (1 − 𝜆)𝐹 (𝑦2). Together with the
definition of 𝜆 as well as 𝐹 (𝑧) ≤ 𝑀 and −𝐹 (𝑦2) ≤ 𝑚 = 𝑀 − 2𝐹 (𝑥), this yields the estimate

𝐹 (𝑦1) − 𝐹 (𝑦2) ≤ 𝜆(𝐹 (𝑧) − 𝐹 (𝑦2)) ≤ 𝜆(2𝑀 − 2𝐹 (𝑥))
=

2(𝑀 − 𝐹 (𝑥))
∥𝑦1 − 𝑦2∥𝑋 + 𝜌

2
∥𝑦1 − 𝑦2∥𝑋

≤ 2(𝑀 − 𝐹 (𝑥))
𝜌

2
∥𝑦1 − 𝑦2∥𝑋 .

Exchanging the roles of 𝑦1 and 𝑦2, we obtain that

|𝐹 (𝑦1) − 𝐹 (𝑦2) | ≤ 4
𝜌
(𝑀 − 𝐹 (𝑥))∥𝑦1 − 𝑦2∥𝑋 for all 𝑦1, 𝑦2 ∈ 𝕆

(
𝑥,
𝜌

2

)
and hence the local Lipschitz continuity with constant 𝐿(𝑥, 𝜌/2) ≔ 4

𝜌
(𝑀 − 𝐹 (𝑥)). □

This result can be extended by showing that convex functions are bounded everywhere in
the interior (again a topological concept!) of their effective domain. As an intermediary
step, we first consider the scalar case.2

2With a bit more effort, one can show that the claim holds for 𝐹 : ℝ𝑁 → ℝ with arbitrary 𝑁 ∈ ℕ; see, e.g.,
[Schirotzek, 2007, Corollary 1.4.2].
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Lemma 3.11. If 𝑓 : ℝ → ℝ is convex, then 𝑓 is locally bounded from above on int(dom 𝑓 ).

Proof. Let 𝑥 ∈ (dom 𝑓 )𝑜 , i.e., there exist 𝑎, 𝑏 ∈ ℝ with 𝑥 ∈ (𝑎, 𝑏) ⊂ dom 𝑓 ; by possibly
shrinking the interval we can even assume that [𝑎, 𝑏] ⊂ dom 𝑓 . Let now 𝑧 ∈ (𝑎, 𝑏). Since
intervals are convex, there exists a 𝜆 ∈ (0, 1) with 𝑧 = 𝜆𝑎 + (1 − 𝜆)𝑏. By convexity, we thus
have

𝑓 (𝑧) ≤ 𝜆𝑓 (𝑎) + (1 − 𝜆) 𝑓 (𝑏) ≤ max{|𝑓 (𝑎) |, |𝑓 (𝑏) |} < ∞.
Hence 𝑓 is locally bounded from above in 𝑥 . □

The proof of the general case requires further assumptions on 𝑋 and 𝐹 .

Theorem 3.12. Let 𝑋 be a Banach space. If 𝐹 : 𝑋 → ℝ is convex and lower semicontinuous,
then 𝐹 is locally bounded from above on int(dom 𝐹 ).

Proof. We first show the claim for the case 𝑥 = 0 ∈ int(dom 𝐹 ), which implies in particular
that𝑀 ≔ |𝐹 (0) | is finite. Consider now for arbitrary ℎ ∈ 𝑋 the mapping

𝑓 : ℝ → ℝ, 𝑡 ↦→ 𝐹 (𝑡ℎ).
It is straightforward to verify that 𝑓 is convex and satisfies 0 ∈ int(dom 𝑓 ). By Lemmas 3.10
and 3.11, 𝑓 is thus locally Lipschitz continuous near 0; hence in particular |𝑓 (𝑡) − 𝑓 (0) | ≤
𝐿𝑡 ≤ 1 for sufficiently small 𝑡 > 0. The reverse triangle inequality therefore yields a 𝛿 > 0
with

𝐹 (0 + 𝑡ℎ) ≤ |𝐹 (0 + 𝑡ℎ) | = |𝑓 (𝑡) | ≤ |𝑓 (0) | + 1 = 𝑀 + 1 for all 𝑡 ∈ [0, 𝛿] .
Hence 0 lies in the algebraic interior of the sublevel set sub𝑀+1 𝐹 , which is convex and
closed (since we assumed 𝐹 to be lower semicontinuous) by Lemma 3.3. The core–int
Lemma 1.2 thus yields that 0 ∈ int(sub𝑀+1 𝐹 ), i.e., there exists a 𝜌 > 0 with 𝐹 (𝑧) ≤ 𝑀 + 1
for all 𝑧 ∈ 𝕆(0, 𝜌).
For the general case 𝑥 ∈ int(dom 𝐹 ), consider

𝐹 : 𝑋 → ℝ, 𝑦 ↦→ 𝐹 (𝑦 + 𝑥).
Again, it is straightforward to verify convexity and lower semicontinuity of 𝐹 and that
0 ∈ int(dom 𝐹 ). It follows from what we’ve shown so far that 𝐹 is locally bounded from
above on 𝕆(0, 𝜌), which immediately implies that 𝐹 is locally bounded from above on
𝕆(𝑥, 𝜌). □

Together with Lemma 3.10, we thus obtain the desired result.

Theorem 3.13. Let 𝑋 be a Banach space. If 𝐹 : 𝑋 → ℝ is convex and lower semicontinuous,
then 𝐹 is locally Lipschitz continuous on int(dom 𝐹 ).

We shall have several more occasions to observe the unreasonably nice behavior of convex
lower semicontinuous functions on the interior of their effective domain.
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4 CONVEX SUBDIFFERENTIALS

For convex functionals, we can use the general properties from the previous chapter to
obtain explicit optimality conditions. We do this by first deriving a Fermat principle in terms
of a generalized derivative that can be used to characterize global minimizers of nonsmooth
functionals. The remainder of the chapter is then devoted to the explicit characterization
of this generalized derivative specifically for convex lower semicontinuous functionals;
first directly for elementary examples, then for more complicated functions by deriving
calculus rules like a sum and a chain rule.

4.1 definition and basic properties

Themotivation for our notion of generalized derivative is geometric: The classical derivative
𝑓 ′(𝑡) of a scalar function 𝑓 : ℝ → ℝ at 𝑡 can be interpreted as the slope of the tangent at
𝑓 (𝑡). If the function is not differentiable, the tangent – if it exists at all – need no longer
be unique. The idea is then to define as the generalized derivative the set of all tangent
slopes. Correspondingly, we define in a normed vector space 𝑋 the (convex) subdifferential
of 𝐹 : 𝑋 → ℝ at 𝑥 ∈ dom 𝐹 as

(4.1) 𝜕𝐹 (𝑥) ≔ {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 𝐹 (𝑥) − 𝐹 (𝑥) for all 𝑥 ∈ 𝑋 } .
(Note that 𝑥 ∉ dom 𝐹 is allowed since in this case the inequality is trivially satisfied.) For
𝑥 ∉ dom 𝐹 , we set 𝜕𝐹 (𝑥) = ∅. An element 𝑥∗ ∈ 𝜕𝐹 (𝑥) is called a subderivative. (Following
the terminology for classical derivatives, we reserve the more common term subgradient
for its Riesz representation 𝑧𝑥∗ ∈ 𝑋 when 𝑋 is a Hilbert space.)

The following example shows that the subdifferential can also be empty for 𝑥 ∈ dom 𝐹 ,
even if 𝐹 is convex.

Example 4.1. We take 𝑋 = ℝ (and hence 𝑋 ∗ � 𝑋 = ℝ) and consider

𝐹 (𝑥) =
{
−√𝑥 if 𝑥 ≥ 0,
∞ if 𝑥 < 0.

Since (3.1) is trivially satisfied if 𝑥 or 𝑦 is negative, we can assume 𝑥, 𝑦 ≥ 0 so that
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4 convex subdifferentials

we are allowed to take the square of both sides of (3.1). A straightforward algebraic
manipulation then shows that this is equivalent to 𝜆(𝜆 − 1) (√𝑥 − √

𝑦)2 ≥ 0, which
holds for any 𝑥, 𝑦 ≥ 0 and 𝜆 ∈ [0, 1]. Hence 𝐹 is convex.

However, for 𝑥 = 0, any 𝑥∗ ∈ 𝜕𝐹 (0) by definition must satisfy

𝑥∗ · 𝑥 ≤ −
√
𝑥 for all 𝑥 ∈ ℝ.

Taking now 𝑥 > 0 arbitrary, we can divide by it on both sides and let 𝑥 → 0 to obtain

𝑥∗ ≤ −
(√
𝑥

)−1
→ −∞.

This is impossible for 𝑥∗ ∈ ℝ � 𝑋 ∗. Hence, 𝜕𝐹 (0) is empty.

In fact, it will become clear that the nonexistence of tangents is much more problematic
than the nonuniqueness. However, we will later show that for proper, convex, and lower
semicontinuous functionals, 𝜕𝐹 (𝑥) is nonempty (and bounded) for all 𝑥 ∈ int(dom 𝐹 ); see
Theorem 13.17. Furthermore, it follows directly from the definition that for all 𝑥 ∈ 𝑋 , the
set 𝜕𝐹 (𝑥) is convex and weakly-∗ closed.
The definition immediately yields a Fermat principle.

Theorem 4.2 (Fermat principle). Let 𝐹 : 𝑋 → ℝ and 𝑥 ∈ dom 𝐹 . Then the following
statements are equivalent:

(i) 0 ∈ 𝜕𝐹 (𝑥);
(ii) 𝐹 (𝑥) = min

𝑥∈𝑋
𝐹 (𝑥).

Proof. This is a direct consequence of the definitions: 0 ∈ 𝜕𝐹 (𝑥) if and only if

0 = ⟨0, 𝑥 − 𝑥⟩𝑋 ≤ 𝐹 (𝑥) − 𝐹 (𝑥) for all 𝑥 ∈ 𝑋,

i.e., 𝐹 (𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ 𝑋 .1 □

This matches the geometrical intuition: If 𝑋 = ℝ � 𝑋 ∗, the affine function 𝐹 (𝑥) ≔
𝐹 (𝑥) + 𝑥∗(𝑥 − 𝑥) with 𝑥∗ ∈ 𝜕𝐹 (𝑥) describes a tangent at (𝑥, 𝐹 (𝑥)) with slope 𝑥∗; the
condition 𝑥∗ = 0 ∈ 𝜕𝐹 (𝑥) thus means that 𝐹 has a horizontal tangent in 𝑥 . (Conversely, the

1Note that convexity of 𝐹 is not required for Theorem 4.2. The condition 0 ∈ 𝜕𝐹 (𝑥) therefore characterizes
the global(!) minimizers of any function 𝐹 . However, nonconvex functionals can also have localminimizers,
for which the subdifferential inclusion is not satisfied. In fact, (convex) subdifferentials of nonconvex
functionals are usually empty. (And conversely, one can show that 𝜕𝐹 (𝑥) ≠ ∅ for all 𝑥 ∈ dom 𝐹 implies
that 𝐹 is convex.) This leads to problems in particular for the proof of calculus rules, for which we will
indeed have to assume convexity.
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4 convex subdifferentials

function from Example 4.1 only has a vertical tangent in 𝑥 = 0, which corresponds to an
infinite slope that is not an element of any vector space.)

Not surprisingly, the convex subdifferential behaves more nicely for convex functions. The
key property is an alternative characterization using directional derivatives, which exist
(at least in the extended real-valued sense) for any convex function.

Lemma 4.3. Let 𝐹 : 𝑋 → ℝ be convex and let 𝑥 ∈ dom 𝐹 and ℎ ∈ 𝑋 be given. Then:

(i) the function

𝜑 : (0,∞) → ℝ, 𝑡 ↦→ 𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

,

is increasing;

(ii) there exists a limit 𝐹 ′(𝑥 ;ℎ) = lim𝑡→ 0 𝜑 (𝑡) ∈ [−∞,∞], which satisfies

𝐹 ′(𝑥 ;ℎ) ≤ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥);

(iii) if 𝑥 ∈ int(dom 𝐹 ), the limit 𝐹 ′(𝑥 ;ℎ) is finite.

Proof. (i): Inserting the definition and sorting terms shows that for all 0 < 𝑠 ≤ 𝑡 , the
condition 𝜑 (𝑠) ≤ 𝜑 (𝑡) is equivalent to

𝐹 (𝑥 + 𝑠ℎ) ≤ 𝑠

𝑡
𝐹 (𝑥 + 𝑡ℎ) +

(
1 − 𝑠

𝑡

)
𝐹 (𝑥),

which follows from the convexity of 𝐹 since 𝑥 + 𝑠ℎ = 𝑠
𝑡
(𝑥 + 𝑡ℎ) + (1 − 𝑠

𝑡
)𝑥 .

(ii): The claim immediately follows from (i) since

𝐹 ′(𝑥 ;ℎ) = lim
𝑡→ 0

𝜑 (𝑡) = inf
𝑡>0

𝜑 (𝑡) ≤ 𝜑 (1) = 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) ∈ ℝ.

(iii): Since int(dom 𝐹 ) is contained in the algebraic interior of dom 𝐹 , there exists an 𝜀 > 0
such that 𝑥 + 𝑡ℎ ∈ dom 𝐹 for all 𝑡 ∈ (−𝜀, 𝜀). Proceeding as in (i), we obtain that 𝜑 (𝑠) ≤ 𝜑 (𝑡)
for all 𝑠 < 𝑡 < 0 as well. From 𝑥 = 1

2 (𝑥 + 𝑡ℎ) + 1
2 (𝑥 − 𝑡ℎ) for 𝑡 > 0, we also obtain that

𝜑 (−𝑡) = 𝐹 (𝑥 − 𝑡ℎ) − 𝐹 (𝑥)
−𝑡 ≤ 𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)

𝑡
= 𝜑 (𝑡)

and hence that 𝜑 is increasing on all ℝ \ {0}. As in (ii), the choice of 𝜀 now implies that

−∞ < 𝜑 (−𝜀) ≤ 𝐹 ′(𝑥 ;ℎ) ≤ 𝜑 (𝜀) < ∞. □

Lemma 4.4. Let 𝐹 : 𝑋 → ℝ be convex and 𝑥 ∈ dom 𝐹 . Then

𝜕𝐹 (𝑥) = {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 } .
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Proof. Since any 𝑥 ∈ 𝑋 can be written as 𝑥 = 𝑥 +ℎ for some ℎ ∈ 𝑋 and vice versa, it suffices
to show that for any 𝑥∗ ∈ 𝑋 ∗, the following statements are equivalent:

(i) ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 ;
(ii) ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) for all ℎ ∈ 𝑋 .

If 𝑥∗ ∈ 𝑋 ∗ satisfies ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 , we immediately obtain from
Lemma 4.3 (ii) that

⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) ≤ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) for all ℎ ∈ 𝑋 .

Setting 𝑥 = 𝑥 + ℎ ∈ 𝑋 then yields 𝑥∗ ∈ 𝜕𝐹 (𝑥).
Conversely, if ⟨𝑥∗, ℎ⟩ ≤ 𝐹 (𝑥 +ℎ) − 𝐹 (𝑥) holds for all ℎ ∈ 𝑋 , it also holds for 𝑡ℎ for all ℎ ∈ 𝑋
and 𝑡 > 0. Dividing by 𝑡 and passing to the limit (which exists by Lemma 4.3 (ii)) then
yields that

⟨𝑥∗, ℎ⟩𝑋 ≤ lim
𝑡→ 0

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

= 𝐹 ′(𝑥 ;ℎ). □

4.2 fundamental examples

We now look at some examples. First, the construction from the directional derivative
indicates that the subdifferential is indeed a generalization of the Gâteaux derivative.

Theorem 4.5. Let 𝐹 : 𝑋 → ℝ be convex. If 𝐹 is Gâteaux differentiable at 𝑥 , then 𝜕𝐹 (𝑥) =
{𝐷𝐹 (𝑥)}.

Proof. By definition of the Gâteaux derivative, we have that

⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 = 𝐷𝐹 (𝑥)ℎ = 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 .

Lemma 4.4 now immediately yields 𝐷𝐹 (𝑥) ∈ 𝜕𝐹 (𝑥). Conversely, 𝑥∗ ∈ 𝜕𝐹 (𝑥) again by
Lemma 4.4 implies that

⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 for all ℎ ∈ 𝑋 .

Taking the supremum over all ℎ with ∥ℎ∥𝑋 ≤ 1 now yields that ∥𝑥∗ − 𝐷𝐹 (𝑥)∥𝑋 ∗ ≤ 0, i.e.,
𝑥∗ = 𝐷𝐹 (𝑥). □

The converse holds as well: If 𝑥 ∈ int(dom 𝐹 ) and 𝜕𝐹 (𝑥) is a singleton, then 𝐹 is Gâteaux
differentiable; see Theorem 13.18.

Of course, we also want to compute subdifferentials of functionals that are not differentiable.
The canonical example is the norm ∥ · ∥𝑋 on a normed vector space, which even for 𝑋 = ℝ

is not differentiable at 𝑥 = 0.
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Theorem 4.6. For any 𝑥 ∈ 𝑋 ,

𝜕(∥ · ∥𝑋 ) (𝑥) =
{
{𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 and ∥𝑥∗∥𝑋 ∗ = 1} if 𝑥 ≠ 0,
𝔹𝑋 ∗ if 𝑥 = 0.

Proof. For 𝑥 = 0, we have 𝑥∗ ∈ 𝜕(∥ · ∥𝑋 ) (𝑥) by definition if and only if

⟨𝑥∗, 𝑥⟩𝑋 ≤ ∥𝑥 ∥𝑋 for all 𝑥 ∈ 𝑋 \ {0}

(since the inequality is trivial for 𝑥 = 0), which by the definition of the operator norm holds
if and only if ∥𝑥∗∥𝑋 ∗ ≤ 1.

Let now 𝑥 ≠ 0 and consider 𝑥∗ ∈ 𝜕(∥ · ∥𝑋 ) (𝑥). Inserting first 𝑥 = 0 and then 𝑥 = 2𝑥 into
the definition (4.1) yields the sequence of inequalities

∥𝑥 ∥𝑋 ≤ ⟨𝑥∗, 𝑥⟩𝑋 = ⟨𝑥∗, 2𝑥 − 𝑥⟩ ≤ ∥2𝑥 ∥𝑋 − ∥𝑥 ∥𝑋 = ∥𝑥 ∥𝑋 ,

which imply that ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 . Similarly, we have for all 𝑥 ∈ 𝑋 that

⟨𝑥∗, 𝑥⟩𝑋 = ⟨𝑥∗, (𝑥 + 𝑥) − 𝑥⟩𝑋 ≤ ∥𝑥 + 𝑥 ∥𝑋 − ∥𝑥 ∥𝑋 ≤ ∥𝑥 ∥𝑋 ,

As in the case 𝑥 = 0, this implies that ∥𝑥∗∥𝑋 ∗ ≤ 1. For 𝑥 = 𝑥/∥𝑥 ∥𝑋 we further have that

⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥−1
𝑋 ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥−1

𝑋 ∥𝑥 ∥𝑋 = 1.

Hence, ∥𝑥∗∥𝑋 ∗ = 1 is in fact attained.

Conversely, let 𝑥∗ ∈ 𝑋 ∗ with ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 and ∥𝑥∗∥𝑋 ∗ = 1. Then we obtain for all 𝑥 ∈ 𝑋
from (1.1) the relation

⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 = ⟨𝑥∗, 𝑥⟩𝑋 − ⟨𝑥∗, 𝑥⟩𝑋 ≤ ∥𝑥 ∥𝑋 − ∥𝑥 ∥𝑋 ,

and hence 𝑥∗ ∈ 𝜕(∥ · ∥𝑋 ) (𝑥) by definition. □

Example 4.7. In particular, we obtain for 𝑋 = ℝ the subdifferential of the absolute value
function as2

(4.2) 𝜕( | · |) (𝑡) = sign(𝑡) ≔

{1} if 𝑡 > 0,
{−1} if 𝑡 < 0,
[−1, 1] if 𝑡 = 0,

cf. Figure 4.1a.
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𝑥

𝜕𝐹 (𝑥)

−1

0

1

(a) 𝐹 (𝑥) = |𝑥 |

𝑥

𝜕𝐹 (𝑥)

−1

−1
0 1

(b) 𝐹 (𝑥) = 𝛿 [−1,1] (𝑥)

Figure 4.1: Illustration of graph 𝜕𝐹 for two different functions 𝐹 : ℝ → ℝ.

We can also give a more explicit characterization of the subdifferential of the indicator
functional of a set 𝐶 ⊂ 𝑋 .

Lemma 4.8. For any 𝐶 ⊂ 𝑋 ,
𝜕𝛿𝐶 (𝑥) = {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 0 for all 𝑥 ∈ 𝐶} .

Proof. For any 𝑥 ∈ 𝐶 = dom𝛿𝐶 , we have that

𝑥∗ ∈ 𝜕𝛿𝐶 (𝑥) ⇔ ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 𝛿𝐶 (𝑥) for all 𝑥 ∈ 𝑋
⇔ ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 0 for all 𝑥 ∈ 𝐶,

since the first inequality is trivially satisfied for all 𝑥 ∉ 𝐶 . □

The set 𝑁𝐶 (𝑥) ≔ 𝜕𝛿𝐶 (𝑥) is also called the (convex) normal cone to 𝐶 at 𝑥 (which may be
empty if 𝐶 is not convex). We illustrate such sets in Figure 4.2. Depending on the set 𝐶 ,
this can be made even more explicit.

Example 4.9. Let 𝑋 = ℝ and 𝐶 = [−1, 1], and let 𝑡 ∈ 𝐶 . Then we have 𝑥∗ ∈ 𝜕𝛿 [−1,1] (𝑡) if
and only if 𝑥∗(𝑡 − 𝑡) ≤ 0 for all 𝑡 ∈ [−1, 1]. We proceed by distinguishing three cases.

Case 1: 𝑡 = 1. Then 𝑡 − 𝑡 ∈ [−2, 0], and hence the product is nonpositive if and
only if 𝑥∗ ≥ 0.

Case 2: 𝑡 = −1. Then 𝑡 − 𝑡 ∈ [0, 2], and hence the product is nonpositive if and
only if 𝑥∗ ≤ 0.

Case 3: 𝑡 ∈ (−1, 1). Then 𝑡 − 𝑡 can be positive as well as negative, and hence only

2Note that this set-valued definition of sign(𝑡) differs from the usual (single-valued) one, in particular for
𝑡 = 0; to make this distinction clear, one often refers to (4.2) as the sign in the sense of convex analysis.
Throughout this book, we will always use the sign in this sense.
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𝐶

𝑁𝐶 (𝑥1)
𝑁𝐶 (𝑥2)

Figure 4.2: Normal cones of a convex set 𝐶 at two points 𝑥1 and 𝑥2.

𝑥∗ = 0 is possible.

We thus obtain that

(4.3) 𝜕𝛿 [−1,1] (𝑡) =


[0,∞) if 𝑡 = 1,
(−∞, 0] if 𝑡 = −1,
{0} if 𝑡 ∈ (−1, 1),
∅ if 𝑡 ∈ ℝ \ [−1, 1],

cf. Figure 4.1b. Readers familiar with (non)linear optimization will recognize these as the
complementarity conditions for Lagrange multipliers corresponding to the inequalities
−1 ≤ 𝑡 ≤ 1.

Conversely, subdifferentials of convex functionals can be obtained from normal cones to
corresponding epigraphs (which are convex sets by Lemma 3.1). This relation will be the
basis for defining further subdifferentials for more general classes of mappings in Part IV.
We illustrate this result for the absolute value function of Example 4.7 in Figure 4.3.

Lemma 4.10. Let 𝐹 : 𝑋 → ℝ be convex and 𝑥 ∈ dom 𝐹 . Then 𝑥∗ ∈ 𝜕𝐹 (𝑥) if and only if
(𝑥∗,−1) ∈ 𝑁epi 𝐹 (𝑥, 𝐹 (𝑥)).

Proof. By definition of the normal cone, (𝑥∗,−1) ∈ 𝑁epi 𝐹 (𝑥, 𝐹 (𝑥)) is equivalent to

(4.4) ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 − (𝑡 − 𝐹 (𝑥)) ≤ 0 for all (𝑥, 𝑡) ∈ epi 𝐹,

i.e., for all 𝑥 ∈ 𝑋 and 𝑡 ≥ 𝐹 (𝑥). Taking 𝑡 = 𝐹 (𝑥) and rearranging, this yields that 𝑥∗ ∈ 𝜕𝐹 (𝑥).
Conversely, from 𝑥∗ ∈ 𝜕𝐹 (𝑥) we immediately obtain that

⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 𝐹 (𝑥) − 𝐹 (𝑥) ≤ 𝑡 − 𝐹 (𝑥) for all 𝑥 ∈ 𝑋, 𝑡 ≥ 𝐹 (𝑥),

i.e., (4.4) and thus (𝑥∗,−1) ∈ epi 𝐹 . □
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𝑓

(𝑔,−1)

(a) 𝜕𝑓 (𝑥) = {sign𝑥} at 𝑥 ≠ 0

𝑓

(𝑔,−1)
(b) 𝜕𝑓 (𝑥) = [−1, 1] at 𝑥 = 0

Figure 4.3: Subdifferentials of 𝑓 (𝑥) = |𝑥 | in terms of the normal cone of the epigraph.

The following result furnishes a crucial link between finite- and infinite-dimensional
convex optimization. We again assume (as we will from now on) that Ω ⊂ ℝ𝑑 is open and
bounded.

Theorem 4.11. Let 𝑓 : ℝ → ℝ be proper, convex, and lower semicontinuous, and let 𝐹 :
𝐿𝑝 (Ω) → ℝ with 1 ≤ 𝑝 < ∞ be as in Lemma 3.7. Then we have for all 𝑢 ∈ dom 𝐹 with
𝑞 ≔ 𝑝

𝑝−1 that

𝜕𝐹 (𝑢) = {𝑢∗ ∈ 𝐿𝑞 (Ω) | 𝑢∗(𝑥) ∈ 𝜕𝑓 (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω} .

Proof. Let 𝑢, �̃� ∈ dom 𝐹 , i.e., 𝑓 ◦ 𝑢, 𝑓 ◦ �̃� ∈ 𝐿1(Ω) (otherwise there is nothing to show), and
let 𝑢∗ ∈ 𝐿𝑞 (Ω) be arbitrary. If 𝑢∗(𝑥) ∈ 𝜕𝑓 (𝑢 (𝑥)) almost everywhere, we can integrate over
all 𝑥 ∈ Ω to obtain

𝐹 (�̃�) − 𝐹 (𝑢) =
∫
Ω
𝑓 (�̃� (𝑥)) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥 ≥

∫
Ω
𝑢∗(𝑥) (�̃� (𝑥) − 𝑢 (𝑥)) 𝑑𝑥 = ⟨𝑢∗, �̃� − 𝑢⟩𝐿𝑝 ,

i.e., 𝑢∗ ∈ 𝜕𝐹 (𝑢).
Conversely, let 𝑢∗ ∈ 𝜕𝐹 (𝑢). Then by definition it holds that∫

Ω
𝑢∗(𝑥) (�̃� (𝑥) − 𝑢 (𝑥)) 𝑑𝑥 ≤

∫
Ω
𝑓 (�̃� (𝑥)) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥 for all �̃� ∈ 𝐿𝑝 (Ω).

Let now 𝑡 ∈ ℝ be arbitrary and let 𝐴 ⊂ Ω be an arbitrary measurable set. Setting

�̃� (𝑥) ≔
{
𝑡 if 𝑥 ∈ 𝐴,
𝑢 (𝑥) if 𝑥 ∉ 𝐴,

the above inequality implies due to �̃� ∈ 𝐿𝑝 (Ω) that∫
𝐴

𝑢∗(𝑥) (𝑡 − 𝑢 (𝑥)) 𝑑𝑥 ≤
∫
𝐴

𝑓 (𝑡) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥.
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Since 𝐴 was arbitrary, it must hold that

𝑢∗(𝑥) (𝑡 − 𝑢 (𝑥)) ≤ 𝑓 (𝑡) − 𝑓 (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω.

Furthermore, since 𝑡 ∈ ℝ was arbitrary, we obtain that 𝑢∗(𝑥) ∈ 𝜕𝑓 (𝑢 (𝑥)) for almost every
𝑥 ∈ Ω. □

Remark 4.12. A similar representation representation can be shown for vector-valued and spatially-
dependent integrands 𝑓 : Ω ×ℝ → ℝ𝑚 under stronger assumptions; see, e.g., [Rockafellar, 1976a,
Corollary 3F].

A similar proof shows that for 𝐹 : ℝ𝑁 → ℝwith 𝐹 (𝑥) = ∑𝑁
𝑖=1 𝑓𝑖 (𝑥𝑖) and 𝑓𝑖 : ℝ → ℝ convex,

we have for any 𝑥 ∈ dom 𝐹 that

𝜕𝐹 (𝑥) = {
𝑥∗ ∈ ℝ𝑁

�� 𝑥∗𝑖 ∈ 𝜕𝑓𝑖 (𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑁
}
.

Together with the above examples, this yields componentwise expressions for the subdif-
ferential of the norm ∥ · ∥1 as well as of the indicator functional of the unit ball with respect
to the supremum norm in ℝ𝑁 .

4.3 calculus rules

As for classical derivatives, one rarely obtains subdifferentials from the fundamental defini-
tion but rather by applying calculus rules. It stands to reason that these are more difficult
to derive the weaker the derivative concept is (i.e., the more functionals are differentiable
in that sense). For convex subdifferentials, the following two rules still follow directly from
the definition.

Lemma 4.13. Let 𝐹 : 𝑋 → ℝ be convex and 𝑥 ∈ dom 𝐹 . Then,

(i) 𝜕(𝜆𝐹 ) (𝑥) = 𝜆(𝜕𝐹 (𝑥)) ≔ {𝜆𝑥∗ | 𝑥∗ ∈ 𝜕𝐹 (𝑥)} for 𝜆 ≥ 0;

(ii) 𝜕𝐹 (· + 𝑥0) (𝑥) = 𝜕𝐹 (𝑥 + 𝑥0) for 𝑥0 ∈ 𝑋 with 𝑥 + 𝑥0 ∈ dom 𝐹 .

Already the sum rule is considerably more delicate.

Theorem 4.14 (sum rule). Let 𝑋 be a Banach space, 𝐹,𝐺 : 𝑋 → ℝ be convex and lower
semicontinuous, and 𝑥 ∈ dom 𝐹 ∩ dom𝐺 . Then

𝜕𝐹 (𝑥) + 𝜕𝐺 (𝑥) ⊂ 𝜕(𝐹 +𝐺) (𝑥),

with equality if there exists an 𝑥0 ∈ int(dom 𝐹 ) ∩ dom𝐺 .
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Proof. The inclusion follows directly from adding the definitions of the two subdifferentials.
Let therefore 𝑥 ∈ dom 𝐹 ∩ dom𝐺 and 𝑥∗ ∈ 𝜕(𝐹 +𝐺) (𝑥), i.e., satisfying
(4.5) ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ (𝐹 (𝑥) +𝐺 (𝑥)) − (𝐹 (𝑥) +𝐺 (𝑥)) for all 𝑥 ∈ 𝑋 .
Our goal is now to use (as in the proof of Lemma 3.5) the characterization of convex
functionals via their epigraph together with the Hahn–Banach separation theorem to
construct a bounded linear functional 𝑦∗ ∈ 𝜕𝐺 (𝑥) ⊂ 𝑋 ∗ with 𝑥∗ − 𝑦∗ ∈ 𝜕𝐹 (𝑥), i.e.,

𝐹 (𝑥) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≥ ⟨𝑦∗, 𝑥 − 𝑥⟩𝑋 for all 𝑥 ∈ dom 𝐹,

𝐺 (𝑥) −𝐺 (𝑥) ≤ ⟨𝑦∗, 𝑥 − 𝑥⟩𝑋 for all 𝑥 ∈ dom𝐺.

For that purpose, we define the sets

𝐶1 ≔ {(𝑥, 𝑡 − (𝐹 (𝑥) − ⟨𝑥∗, 𝑥⟩𝑋 )) | 𝑥 ∈ dom 𝐹, 𝑡 ≥ 𝐹 (𝑥) − ⟨𝑥∗, 𝑥⟩𝑋 } ,
𝐶2 ≔ {(𝑥,𝐺 (𝑥) − 𝑡) | 𝑥 ∈ dom𝐺, 𝑡 ≥ 𝐺 (𝑥)} ,

i.e.,
𝐶1 = epi(𝐹 − 𝑥∗) − (0, 𝐹 (𝑥) − ⟨𝑥∗, 𝑥⟩𝑋 ), 𝐶2 = −(epi𝐺 − (0,𝐺 (𝑥))),

cf. Figure 4.4. To apply Corollary 1.6 to these sets, we have to verify its conditions.

(i) Since 𝑥 ∈ dom 𝐹 ∩ dom𝐺 , both 𝐶1 and 𝐶2 are nonempty. Furthermore, since 𝐹 and
𝐺 are convex, it is straightforward (if tedious) to verify from the definition that 𝐶1
and 𝐶2 are convex.

(ii) The critical point is of course the nonemptiness of int𝐶1, for which we argue as
follows. Since 𝑥0 ∈ int(dom 𝐹 ), we know from Theorem 3.12 that 𝐹 is bounded in an
open neighborhood𝑈 ⊂ int(dom 𝐹 ) of 𝑥0. We can thus find an open interval 𝐼 ⊂ ℝ

such that 𝑈 × 𝐼 ⊂ 𝐶1. Since 𝑈 × 𝐼 is open by the definition of the product topology
on 𝑋 ×ℝ, any (𝑥0, 𝛼) with 𝛼 ∈ 𝐼 is an interior point of 𝐶1.

(iii) It remains to show that int𝐶1 ∩𝐶2 = ∅. Assume there exists a (𝑥, 𝛼) ∈ int𝐶1 ∩𝐶2.
But then the definitions of these sets and of the product topology imply that

𝐹 (𝑥) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 < 𝛼 ≤ 𝐺 (𝑥) −𝐺 (𝑥),
contradicting (4.5). Hence int𝐶1 and 𝐶2 are disjoint.

We can thus apply Corollary 1.6 to obtain a pair (𝑧∗, 𝑠) ∈ (𝑋 ∗ ×ℝ) \ {(0, 0)} � (𝑋 ×ℝ)∗ \
{(0, 0)} and a 𝜆 ∈ ℝ with

⟨𝑧∗, 𝑥⟩𝑋 + 𝑠 (𝑡 − (𝐹 (𝑥) − ⟨𝑥∗, 𝑥⟩𝑋 )) ≤ 𝜆, 𝑥 ∈ dom 𝐹, 𝑡 ≥ 𝐹 (𝑥) − ⟨𝑥∗, 𝑥⟩𝑋 ,(4.6a)
⟨𝑧∗, 𝑥⟩𝑋 + 𝑠 (𝐺 (𝑥) − 𝑡) ≥ 𝜆, 𝑥 ∈ dom𝐺, 𝑡 ≥ 𝐺 (𝑥).(4.6b)

We now show that 𝑠 < 0. If 𝑠 = 0, we can insert 𝑥 = 𝑥0 ∈ dom 𝐹 ∩ dom𝐺 to obtain the
contradiction

⟨𝑧∗, 𝑥0⟩𝑋 < 𝜆 ≤ ⟨𝑧∗, 𝑥0⟩𝑋 ,
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𝐹 (𝑥) − 𝑥∗ · 𝑥

𝐶1

−𝐺 (𝑥)

𝐶2 𝑦∗ · 𝑥

𝑡

𝑥

Figure 4.4: Illustration of the proof of Theo-
rem 4.14 for 𝐹 (𝑥) = 1

2 |𝑥 |2, 𝐺 (𝑥) =
|𝑥 |, and 𝑥∗ = 1

2 ∈ 𝜕(𝐹 +𝐺) (0). The
dashed line is the separating hy-
perplane {(𝑥, 𝑡) | 𝑧∗ · 𝑥 + 𝑠𝑡 = 𝜆},
i.e., 𝜆 = 0, 𝑧∗ = −1, 𝑠 = −2 and
hence 𝑦∗ = 1

2 ∈ 𝜕𝐺 (0).

𝐶1

𝐶2

Figure 4.5: Illustration of the situation in
Example 4.15. Here the dashed
separating hyperplane corre-
sponds to the vertical line
{(𝑥, 𝑡) | 𝑥 = 0} (i.e., 𝑧∗ = 1
and 𝑠 = 0), and hence 𝑦∗ ∉ ℝ.

which follows since (𝑥0, 𝛼) for 𝛼 large enough is an interior point of 𝐶1 and hence can be
strictly separated from 𝐶2 by Theorem 1.5 (i). If 𝑠 > 0, choosing 𝑡 > 𝐹 (𝑥) − ⟨𝑥∗, 𝑥⟩𝑋 makes
the term in parentheses in (4.6a) strictly positive, and taking 𝑡 → ∞ with fixed 𝑥 leads to a
contradiction to the boundedness by 𝜆.

Hence 𝑠 < 0, and (4.6a) with 𝑡 = 𝐹 (𝑥) − ⟨𝑥∗, 𝑥⟩𝑋 and (4.6b) with 𝑡 = 𝐺 (𝑥) imply that

𝐹 (𝑥) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≥ 𝑠−1(𝜆 − ⟨𝑧∗, 𝑥⟩𝑋 ) for all 𝑥 ∈ dom 𝐹,

𝐺 (𝑥) −𝐺 (𝑥) ≤ 𝑠−1(𝜆 − ⟨𝑧∗, 𝑥⟩𝑋 ) for all 𝑥 ∈ dom𝐺.

Taking 𝑥 = 𝑥 ∈ dom 𝐹 ∩ dom𝐺 in both inequalities immediately yields that 𝜆 = ⟨𝑧∗, 𝑥⟩𝑋 .
Hence, 𝑦∗ = 𝑠−1𝑧∗ ∈ 𝑋 ∗ is the desired functional with (𝑥∗ − 𝑦∗) ∈ 𝜕𝐹 (𝑥) and 𝑦∗ ∈ 𝜕𝐺 (𝑥),
i.e., 𝑥∗ ∈ 𝜕𝐹 (𝑥) + 𝜕𝐺 (𝑥). □

The following example demonstrates that the inclusion is strict in general (although
naturally the situation in infinite-dimensional vector spaces is nowhere near as obvious).

Example 4.15. We take again 𝑋 = ℝ and 𝐹 : 𝑋 → ℝ from Example 4.1, i.e.,

𝐹 (𝑥) =
{
−√𝑥 if 𝑥 ≥ 0,
∞ if 𝑥 < 0,
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as well as𝐺 (𝑥) = 𝛿 (−∞,0] (𝑥). Both 𝐹 and𝐺 are convex, and 0 ∈ dom 𝐹 ∩ dom𝐺 . In fact,
(𝐹 +𝐺) (𝑥) = 𝛿{0} (𝑥) and hence it is straightforward to verify that 𝜕(𝐹 +𝐺) (0) = ℝ.

On the other hand, we know from Example 4.1 and the argument leading to (4.3) that

𝜕𝐹 (0) = ∅, 𝜕𝐺 (0) = [0,∞),

and hence that
𝜕𝐹 (0) + 𝜕𝐺 (0) = ∅ ⊊ ℝ = 𝜕(𝐹 +𝐺) (0).

(As 𝐹 only admits a vertical tangent as 𝑥 = 0, this example corresponds to the situation
where 𝑠 = 0 in (4.6a), cf. Figure 4.5.)

Remark 4.16. There exist alternative conditions that guarantee that the sum rule holds with equality.
For example, if 𝑋 is a Banach space and 𝐹 and 𝐺 are in addition lower semicontinuous, this holds
under the Attouch–Brézis condition that⋃

𝜆≥0
𝜆 (dom 𝐹 − dom𝐺) =: 𝑍 is a closed subspace of 𝑋,

see [Attouch and Brezis, 1986]. (Note that this condition is not satisfied in Example 4.15 either, since
in this case 𝑍 = − dom𝐺 = [0,∞) which is closed but not a subspace.)

It is not difficult to see that the condition 𝑥0 ∈ int(dom 𝐹 ) ∩ dom𝐺 in the statement of Lemma 4.13
implies the Attouch–Brézis condition. In fact, the latter allows us to generalize the condition to
𝑥0 ∈ ri(dom 𝐹 ) ∩ dom𝐺 where ri𝐴 for a set 𝐴 denotes the relative interior : the interior of 𝐴 with
respect to the smallest closed affine set that contains 𝐴. As an example, ri{𝑐} = {𝑐} for a point
𝑐 ∈ 𝑋 .

By induction, we obtain from this sum rules for an arbitrary (finite) number of functionals
(where 𝑥0 has to be an interior point of all but one effective domain). A chain rule for linear
operators can be proved similarly.

Theorem 4.17 (chain rule). Let 𝑋,𝑌 be Banach spaces, 𝐾 ∈ 𝕃(𝑋 ;𝑌 ), 𝐹 : 𝑌 → ℝ be proper,
convex, and lower semicontinuous, and 𝑥 ∈ dom(𝐹 ◦ 𝐾). Then,

𝜕(𝐹 ◦ 𝐾) (𝑥) ⊃ 𝐾∗𝜕𝐹 (𝐾𝑥) ≔ {𝐾∗𝑦∗ | 𝑦∗ ∈ 𝜕𝐹 (𝐾𝑥)}

with equality if there exists an 𝑥0 ∈ 𝑋 with 𝐾𝑥0 ∈ int(dom 𝐹 ).

Proof. The inclusion is again a direct consequence of the definition: If 𝑦∗ ∈ 𝜕𝐹 (𝐾𝑥) ⊂ 𝑌 ∗,
we in particular have for all �̃� = 𝐾𝑥 ∈ 𝑌 with 𝑥 ∈ 𝑋 that

𝐹 (𝐾𝑥) − 𝐹 (𝐾𝑥) ≥ ⟨𝑦∗, 𝐾𝑥 − 𝐾𝑥⟩𝑌 = ⟨𝐾∗𝑦∗, 𝑥 − 𝑥⟩𝑋 ,

i.e., 𝑥∗ ≔ 𝐾∗𝑦∗ ∈ 𝜕(𝐹 ◦ 𝐾) ⊂ 𝑋 ∗.
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4 convex subdifferentials

To show the claimed equality under the additional assumption, let 𝑥 ∈ dom(𝐹 ◦ 𝐾) and
𝑥∗ ∈ 𝜕(𝐹 ◦ 𝐾) (𝑥), i.e.,

𝐹 (𝐾𝑥) + ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 𝐹 (𝐾𝑥) for all 𝑥 ∈ 𝑋 .

We now construct a 𝑦∗ ∈ 𝜕𝐹 (𝐾𝑥) with 𝑥∗ = 𝐾∗𝑦∗ by applying the sum rule to3

𝐻 : 𝑋 × 𝑌 → ℝ, (𝑥, 𝑦) ↦→ 𝐹 (𝑦) + 𝛿graph𝐾 (𝑥, 𝑦).

Since 𝐾 is linear and continuous, graph𝐾 is convex and closed, and hence 𝛿graph𝐾 is convex
and lower semicontinuous. Furthermore, 𝐾𝑥 ∈ dom 𝐹 by assumption and thus (𝑥, 𝐾𝑥) ∈
dom𝐻 .

We begin by showing that 𝑥∗ ∈ 𝜕(𝐹 ◦ 𝐾) (𝑥) if and only if (𝑥∗, 0) ∈ 𝜕𝐻 (𝑥, 𝐾𝑥). First, let
(𝑥∗, 0) ∈ 𝜕𝐻 (𝑥, 𝐾𝑥). Then we have for all 𝑥 ∈ 𝑋, �̃� ∈ 𝑌 that

⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 + ⟨0, �̃� − 𝐾𝑥⟩𝑌 ≤ 𝐹 (�̃�) − 𝐹 (𝐾𝑥) + 𝛿graph𝐾 (𝑥, �̃�) − 𝛿graph𝐾 (𝑥, 𝐾𝑥).

In particular, this holds for all �̃� ∈ ran(𝐾) = {𝐾𝑥 | 𝑥 ∈ 𝑋 }. By 𝛿graph𝐾 (𝑥, 𝐾𝑥) = 0 we thus
obtain that

⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 𝐹 (𝐾𝑥) − 𝐹 (𝐾𝑥) for all 𝑥 ∈ 𝑋,
i.e., 𝑥∗ ∈ 𝜕(𝐹 ◦ 𝐾) (𝑥). Conversely, let 𝑥∗ ∈ 𝜕(𝐹 ◦ 𝐾) (𝑥). Since 𝛿graph𝐾 (𝑥, 𝐾𝑥) = 0 and
𝛿graph𝐾 (𝑥, �̃�) ≥ 0, it then follows for all 𝑥 ∈ 𝑋 and �̃� ∈ 𝑌 that

⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 + ⟨0, �̃� − 𝐾𝑥⟩𝑌 = ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋
≤ 𝐹 (𝐾𝑥) − 𝐹 (𝐾𝑥) + 𝛿graph𝐾 (𝑥, �̃�) − 𝛿graph𝐾 (𝑥, 𝐾𝑥)
= 𝐹 (�̃�) − 𝐹 (𝐾𝑥) + 𝛿graph𝐾 (𝑥, �̃�) − 𝛿graph𝐾 (𝑥, 𝐾𝑥),

where we have used that the last equality holds trivially as ∞ = ∞ for �̃� ≠ 𝐾𝑥 . Hence,
(𝑥∗, 0) ∈ 𝜕𝐻 (𝑥, 𝐾𝑥).
We now consider 𝐹 : 𝑋 × 𝑌 → ℝ, (𝑥, 𝑦) ↦→ 𝐹 (𝑦), and (𝑥0, 𝐾𝑥0) ∈ graph𝐾 = dom𝛿graph𝐾 .
Since 𝐾𝑥0 ∈ int(dom 𝐹 ) ⊂ 𝑌 by assumption, (𝑥0, 𝐾𝑥0) ∈ int(dom 𝐹 ) = 𝑋 × int(dom 𝐹 ) ⊂
𝑋 × 𝑌 as well. We can thus apply Theorem 4.14 to obtain

(𝑥∗, 0) ∈ 𝜕𝐻 (𝑥, 𝐾𝑥) = 𝜕𝐹 (𝑥, 𝐾𝑥) + 𝜕𝛿graph𝐾 (𝑥, 𝐾𝑥),

i.e., (𝑥∗, 0) = (𝑥∗1 , 𝑦∗1 )+(𝑥∗2, 𝑦∗2) for some (𝑥∗1 , 𝑦∗1 ) ∈ 𝜕𝐹 (𝑥, 𝐾𝑥) and (𝑥∗2, 𝑦∗2) ∈ 𝜕𝛿graph𝐾 (𝑥, 𝐾𝑥).
Finally, we “collapse” these subdifferentials back to the individual spaces to obtain the
desired characterization. First, we have (𝑥∗1 , 𝑦∗1 ) ∈ 𝜕𝐹 (𝑥, 𝐾𝑥) if and only if

⟨𝑥∗1 , 𝑥 − 𝑥⟩𝑋 + ⟨𝑦∗1 , �̃� − 𝐾𝑥⟩𝑌 ≤ 𝐹 (�̃�) − 𝐹 (𝐾𝑥) for all 𝑥 ∈ 𝑋, �̃� ∈ 𝑌 .
3This technique of “lifting” a problem to a product space in order to separate operators is also useful in
many other contexts.
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Fixing in turn 𝑥 = 𝑥 and �̃� = 𝐾𝑥 implies that 𝑦∗1 ∈ 𝜕𝐹 (𝐾𝑥) and 𝑥∗1 = 0, respectively. Second,
(𝑥∗2, 𝑦∗2) ∈ 𝜕𝛿graph𝐾 (𝑥, 𝐾𝑥) if and only if

⟨𝑥∗2, 𝑥 − 𝑥⟩𝑋 + ⟨𝑦∗2, �̃� − 𝐾𝑥⟩𝑌 ≤ 0 for all (𝑥, �̃�) ∈ graph𝐾,

i.e., for all 𝑥 ∈ 𝑋 and �̃� = 𝐾𝑥 . Therefore,

⟨𝑥∗2 + 𝐾∗𝑦∗2, 𝑥 − 𝑥⟩𝑋 ≤ 0 for all 𝑥 ∈ 𝑋

and hence 𝑥∗2 = −𝐾∗𝑦∗2 ∈ 𝑋 ∗. Together we obtain

(𝑥∗, 0) = (0, 𝑦∗1 ) + (−𝐾∗𝑦∗2, 𝑦
∗
2),

which implies that 𝑦∗1 = −𝑦∗2 and thus that 𝑥∗ = −𝐾∗𝑦∗2 = 𝐾∗𝑦∗1 with 𝑦∗1 ∈ 𝜕𝐹 (𝐾𝑥) as
claimed. □

The condition for equality in particular holds if 𝐾 is surjective and dom 𝐹 has nonempty
interior. Again, the inequality can be strict.

Example 4.18. Here we take 𝑋 = 𝑌 = ℝ and again 𝐹 : 𝑋 → ℝ from Examples 4.1
and 4.15 as well as

𝐾 : ℝ → ℝ, 𝐾𝑥 = 0.

Clearly, (𝐹 ◦ 𝐾) (𝑥) = 0 for all 𝑥 ∈ ℝ and hence 𝜕(𝐹 ◦ 𝐾) (𝑥) = {0} by Theorem 4.5. On
the other hand, 𝜕𝐹 (0) = ∅ by Example 4.1 and hence

𝐾∗𝜕𝐹 (𝐾𝑥) = 𝐾∗𝜕𝐹 (0) = ∅ ⊊ {0}.

(Note the problem: 𝐾∗ is far from surjective, and ran𝐾 ∩ int(dom 𝐹 ) = ∅.)

We can also obtain a chain rule when the inner mapping is nondifferentiable.

Theorem 4.19. Let 𝐹 : 𝑋 → ℝ be convex and 𝜑 : ℝ → ℝ be convex, increasing, and
differentiable. Then 𝜑 ◦ 𝐹 is convex, and for all 𝑥 ∈ 𝑋 ,

𝜕(𝜑 ◦ 𝐹 ) (𝑥) = 𝜑′(𝐹 (𝑥))𝜕𝐹 (𝑥) = {𝜑′(𝐹 (𝑥))𝑥∗ | 𝑥∗ ∈ 𝜕𝐹 (𝑥)} .

Proof. First, the convexity of 𝜑 ◦ 𝐹 follows from Lemma 3.4 (iii). To calculate the subdiffer-
ential, we fix 𝑥 ∈ 𝑋 and observe from Theorem 3.13 that 𝜑 is Lipschitz continuous with
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4 convex subdifferentials

some constant 𝐿 near 𝐹 (𝑥) ∈ int(dom𝜑) = ℝ. Thus, for any ℎ ∈ 𝑋 ,

(𝜑 ◦ 𝐹 )′(𝑥 ;ℎ) = lim
𝑡→ 0

(𝜑 ◦ 𝐹 ) (𝑥 + 𝑡ℎ) − (𝜑 ◦ 𝐹 ) (𝑥)
𝑡

= lim
𝑡→ 0

𝜑 (𝐹 (𝑥 + 𝑡ℎ)) − 𝜑 (𝐹 (𝑥) + 𝑡𝐹 ′(𝑥 ;ℎ))
𝑡

+ lim
𝑡→ 0

𝜑 (𝐹 (𝑥) + 𝑡𝐹 ′(𝑥 ;ℎ)) − 𝜑 (𝐹 (𝑥))
𝑡

≤ lim
𝑡→ 0

𝐿

����𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

− 𝐹 ′(𝑥 ;ℎ)
���� + 𝜑′(𝐹 (𝑥); 𝐹 ′(𝑥 ;ℎ))

= 𝜑′(𝐹 (𝑥); 𝐹 ′(𝑥 ;ℎ)),
where we have used the directional differentiability of 𝐹 in 𝑥 ∈ int(dom 𝐹 ) = 𝑋 in the last
step. Similarly, we prove the opposite inequality using 𝜑 (𝑡1) − 𝜑 (𝑡2) ≥ −𝐿 |𝑡1 − 𝑡2 | for all
𝑡1, 𝑡2 sufficiently close to 𝐹 (𝑥). Hence

(𝜑 ◦ 𝐹 )′(𝑥 ;ℎ) = 𝜑′(𝐹 (𝑥); 𝐹 ′(𝑥 ;ℎ)) = 𝜑′(𝐹 (𝑥))𝐹 ′(𝑥 ;ℎ)

by the differentiability of 𝜑 .

Now Lemma 4.4 yields that

𝜕(𝜑 ◦ 𝐹 ) (𝑥) = {𝑧∗ ∈ 𝑋 ∗ | ⟨𝑧∗, ℎ⟩𝑋 ≤ 𝜑′(𝐹 (𝑥))𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 } .

Since 𝜑 : ℝ → ℝ is monotone and differentiable, 𝜑′(𝐹 (𝑥)) ≥ 0. Hence if 𝜑′(𝐹 (𝑥)) > 0, we
can set 𝑥∗ ≔ 𝜑′(𝐹 (𝑥))−1𝑧∗ ∈ 𝑋 ∗; otherwise 𝑧∗ = 0 is the only element of 𝜕(𝜑 ◦ 𝐹 (𝑥)). In
either case, we can write

𝜕(𝜑 ◦ 𝐹 ) (𝑥) = {𝜑′(𝐹 (𝑥))𝑥∗ | ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 }

so that the claim follows by Lemma 4.4. □

Remark 4.20. The differentiability assumption on 𝜑 in Theorem 4.19 is not necessary, but the proof
is otherwise much more involved and demands the support functional machinery of Section 13.3.
See also [Hiriart-Urruty and Lemaréchal, 2001, Section D.4.3] for a version with set-valued 𝐹 in
finite dimensions.

The Fermat principle together with the sum rule yields the following characterization of
minimizers of convex functionals under convex constraints.

Corollary 4.21. Let 𝑈 ⊂ 𝑋 be nonempty, convex, and closed, and let 𝐹 : 𝑋 → ℝ be proper,
convex, and lower semicontinuous. If there exists an 𝑥0 ∈ int𝑈 ∩ dom 𝐹 , then 𝑥 ∈ 𝑈 solves

min
𝑥∈𝑈

𝐹 (𝑥)
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4 convex subdifferentials

if and only if 0 ∈ 𝜕𝐹 (𝑥) + 𝑁𝑈 (𝑥) or, in other words, if there exists an 𝑥∗ ∈ 𝑋 ∗ with

(4.7)
{
𝑥∗ ∈ 𝜕𝐹 (𝑥),
⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≥ 0 for all 𝑥 ∈ 𝑈 .

Proof. Due to the assumptions on 𝐹 and 𝑈 , we can apply Theorem 4.2 to 𝐽 ≔ 𝐹 + 𝛿𝑈 .
Furthermore, since 𝑥0 ∈ int𝑈 = int(dom𝛿𝑈 ), we can also apply Theorem 4.14. Hence 𝐹
has a minimum in 𝑥 if and only if

0 ∈ 𝜕𝐽 (𝑥) = 𝜕𝐹 (𝑥) + 𝜕𝛿𝑈 (𝑥).

Together with the characterization of subdifferentials of indicator functionals as normal
cones, this yields (4.7). □

If 𝐹 : 𝑋 → ℝ is Gâteaux differentiable (and hence finite-valued), (4.7) coincide with the
classical Karush–Kuhn–Tucker conditions; the existence of an interior point 𝑥0 ∈ int𝑈 is
related to a Slater condition in nonlinear optimization needed to show existence of the
Lagrange multiplier 𝑥∗ for inequality constraints.
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5 FENCHEL DUALITY

One of the main tools in convex optimization is duality: Any convex optimization problem
can be related to a dual problem, and the joint study of both problems yields additional
information about the solution. Our main objective in this chapter, the Fenchel–Rockafellar
duality theorem, will be our main tool for deriving explicit optimality conditions as well as
numerical algorithms for convex minimization problems that can be expressed as the sum
of (simple) functionals.

5.1 fenchel conjugates

Let 𝑋 be a normed vector space and 𝐹 : 𝑋 → ℝ be proper but not necessarily convex. We
then define the Fenchel conjugate (or convex conjugate) of 𝐹 as

𝐹 ∗ : 𝑋 ∗ → ℝ, 𝐹 ∗(𝑥∗) = sup
𝑥∈𝑋

{⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥)} .

(Since dom 𝐹 = ∅ is excluded, we have that 𝐹 ∗(𝑥∗) > −∞ for all 𝑥∗ ∈ 𝑋 ∗, and hence the
definition is meaningful.) An alternative interpretation is that 𝐹 ∗(𝑥∗) is the (negative of
the) affine part of the tangent to 𝐹 (in the point 𝑥 at which the supremum is attained)
with slope 𝑥∗, see Figure 5.1. Lemma 3.4 (v) and Lemma 2.3 (v) immediately imply that 𝐹 ∗
is always convex and weakly-∗ lower semicontinuous (as long as 𝐹 is indeed proper). If
𝐹 is bounded from below by an affine functional (which is always the case if 𝐹 is proper,
convex, and lower semicontinuous by Lemma 3.5), then 𝐹 ∗ is proper as well. Finally, the
definition directly yields the Fenchel–Young inequality

(5.1) ⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝐹 (𝑥) + 𝐹 ∗(𝑥∗) for all 𝑥 ∈ 𝑋, 𝑥∗ ∈ 𝑋 ∗.

If 𝑋 is not reflexive, we can similarly define for (weakly-∗ lower semicontinuous) 𝐹 : 𝑋 ∗ →
ℝ the Fenchel preconjugate

𝐹∗ : 𝑋 → ℝ, 𝐹∗(𝑥) = sup
𝑥∗∈𝑋 ∗

{⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥∗)} .

The point of this convention is that even in nonreflexive spaces, the biconjugate

𝐹 ∗∗ : 𝑋 → ℝ, 𝐹 ∗∗(𝑥) = (𝐹 ∗)∗(𝑥)
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𝑥

𝑡

𝑥∗ · 𝑥 − 𝐹 (𝑥)

𝐹 ∗(𝑥∗)

(a) 𝐹 ∗(𝑥∗) as maximizer of 𝑥∗ · 𝑥 − 𝐹 (𝑥)

𝑥

𝑡

𝐹 (𝑥)

−𝐹 ∗(𝑥∗) + 𝑥∗ · 𝑥

(𝑥, 𝐹 (𝑥))

−𝐹 ∗(𝑥∗)

(b) Alternative interpretation: −𝐹 ∗(𝑥∗) as offset
for tangent to 𝐹 with given slope 𝑥∗. Note that
in this case, 𝑥∗ ∈ 𝜕𝐹 (𝑥) and −𝐹 ∗(𝑥∗) +𝑥∗ ·𝑥 =
𝐹 (𝑥).

Figure 5.1: Geometrical illustration of the Fenchel conjugate.

is again defined on 𝑋 (rather than 𝑋 ∗∗ ⊃ 𝑋 ). For reflexive spaces, of course, we have
𝐹 ∗∗ = (𝐹 ∗)∗. Intuitively, 𝐹 ∗∗ is the convex envelope of 𝐹 , which by Lemma 3.5 coincides
with 𝐹 itself if 𝐹 is convex.

Theorem 5.1 (Fenchel–Moreau–Rockafellar). Let 𝐹 : 𝑋 → ℝ be proper. Then,

(i) 𝐹 ∗∗ ≤ 𝐹 ;

(ii) 𝐹 ∗∗ = 𝐹 Γ ;

(iii) 𝐹 ∗∗ = 𝐹 if and only if 𝐹 is convex and lower semicontinuous.

Proof. For (i), we take the supremum over all 𝑥∗ ∈ 𝑋 ∗ in the Fenchel–Young inequality (5.1)
and obtain that

𝐹 (𝑥) ≥ sup
𝑥∗∈𝑋 ∗

{⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 ∗(𝑥∗)} = 𝐹 ∗∗(𝑥).

For (ii), we first note that 𝐹 ∗∗ is convex and lower semicontinuous by definition as a Fenchel
conjugate as well as proper by (i). Hence, Lemma 3.5 yields that

𝐹 ∗∗(𝑥) = (𝐹 ∗∗)Γ (𝑥) = sup {𝑎(𝑥) | 𝑎 : 𝑋 → ℝ continuous affine with 𝑎 ≤ 𝐹 ∗∗} .

We now show that we can replace 𝐹 ∗∗ with 𝐹 on the right-hand side. For this, let 𝑎(𝑥) =
⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 with arbitrary 𝑥∗ ∈ 𝑋 ∗ and 𝛼 ∈ ℝ. If 𝑎 ≤ 𝐹 ∗∗, then (i) implies that 𝑎 ≤ 𝐹 .
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Conversely, if 𝑎 ≤ 𝐹 , we have that ⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥) ≤ 𝛼 for all 𝑥 ∈ 𝑋 , and taking the
supremum over all 𝑥 ∈ 𝑋 yields that 𝛼 ≥ 𝐹 ∗(𝑥∗). By definition of 𝐹 ∗∗, we thus obtain that

𝑎(𝑥) = ⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 ≤ ⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 ∗(𝑥∗) ≤ 𝐹 ∗∗(𝑥) for all 𝑥 ∈ 𝑋,

i.e., 𝑎 ≤ 𝐹 ∗∗.

Statement (iii) now directly follows from (ii) and Lemma 3.5. □

Remark 5.2. Continuing fromRemark 3.6,we can adapt the proof of Theorem 5.1 to proper functionals
𝐹 : 𝑋 ∗ → ℝ to show that 𝐹 = (𝐹∗)∗ if and only if 𝐹 is convex and weakly-∗ lower semicontinuous.

We again consider some relevant examples.

Example 5.3.

(i) Let 𝔹𝑋 be the unit ball in the normed vector space 𝑋 and take 𝐹 = 𝛿𝔹𝑋 . Then we
have for any 𝑥∗ ∈ 𝑋 ∗ that

(𝛿𝔹𝑋 )∗(𝑥∗) = sup
𝑥∈𝑋

{⟨𝑥∗, 𝑥⟩𝑋 − 𝛿𝔹𝑋 (𝑥)
}
= sup

∥𝑥 ∥𝑋≤1
{⟨𝑥∗, 𝑥⟩𝑋 } = ∥𝑥∗∥𝑋 ∗ .

Similarly, one shows using the definition of the Fenchel preconjugate and Corol-
lary 1.7 that (𝛿𝔹𝑋∗ )∗(𝑥) = ∥𝑥 ∥𝑋 .

(ii) Let 𝑋 be a normed vector space and take 𝐹 (𝑥) = ∥𝑥 ∥𝑋 . We now distinguish two
cases for a given 𝑥∗ ∈ 𝑋 ∗.

Case 1: ∥𝑥∗∥𝑋 ∗ ≤ 1. Then it follows from (1.1) that ⟨𝑥∗, 𝑥⟩𝑋 − ∥𝑥 ∥𝑋 ≤ 0 for all
𝑥 ∈ 𝑋 . Furthermore, ⟨𝑥∗, 0⟩ = 0 = ∥0∥𝑋 , which implies that

𝐹 ∗(𝑥∗) = sup
𝑥∈𝑋

{⟨𝑥∗, 𝑥⟩𝑋 − ∥𝑥 ∥𝑋 } = 0.

Case 2: ∥𝑥∗∥𝑋 ∗ > 1. Then by definition of the dual norm, there exists an 𝑥0 ∈ 𝑋
with ⟨𝑥∗, 𝑥0⟩𝑋 > ∥𝑥0∥𝑋 . Hence, taking 𝑡 → ∞ in

0 < 𝑡 (⟨𝑥∗, 𝑥0⟩𝑋 − ∥𝑥0∥𝑋 ) = ⟨𝑥∗, 𝑡𝑥0⟩𝑋 − ∥𝑡𝑥0∥𝑋 ≤ 𝐹 ∗(𝑥∗)

yields 𝐹 ∗(𝑥∗) = ∞.

Together we obtain that 𝐹 ∗ = 𝛿𝔹𝑋∗ . As above, a similar argument shows that
(∥ · ∥𝑋 ∗)∗ = 𝛿𝔹𝑋 .

We can generalize Example 5.3 (ii) to powers of norms.
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Lemma 5.4. Let 𝑋 be a normed vector space and 𝐹 (𝑥) ≔ 1
𝑝
∥𝑥 ∥𝑝

𝑋
for 𝑝 ∈ (1,∞). Then

𝐹 ∗(𝑥∗) = 1
𝑞
∥𝑥∗∥𝑞

𝑋 ∗ for 𝑞 ≔ 𝑝

𝑝−1 .

Proof. Wefirst consider the scalar function𝜑 (𝑡) ≔ 1
𝑝
|𝑡 |𝑝 and compute the Fenchel conjugate

𝜑∗(𝑠) for 𝑠 ∈ ℝ. By the choice of 𝑝 and 𝑞, we then can write 1
𝑞
= 1 − 1

𝑝
as well as |𝑠 |𝑞 =

sign(𝑠)𝑠 |𝑠 |1/(𝑝−1) = | sign(𝑠) |𝑠 |1/(𝑝−1) |𝑝 for any 𝑠 ∈ ℝ and therefore obtain

1
𝑞
|𝑠 |𝑞 =

(
sign(𝑠) |𝑠 |1/(𝑝−1)

)
𝑠 − 1

𝑝

���sign(𝑠) |𝑠 |1/(𝑝−1)
���𝑝 ≤ sup

𝑡∈ℝ

{
𝑡𝑠 − 1

𝑝
|𝑡 |𝑝

}
≤ 1
𝑞
|𝑠 |𝑞,

where we have used the classical Young inequality 𝑡𝑠 ≤ 1
𝑞
|𝑡 |𝑝 + 1

𝑞
|𝑠 |𝑞 in the last step. This

shows that 𝜑∗(𝑠) = 1
𝑞
|𝑠 |𝑞 .1

We now write using the definition of the norm in 𝑋 ∗ that

𝐹 ∗(𝑥∗) = sup
𝑥∈𝑋

{
⟨𝑥∗, 𝑥⟩𝑋 − 1

𝑝
∥𝑥 ∥𝑝

𝑋

}
= sup

𝑡≥0

{
sup
𝑥∈𝔹𝑋

{
⟨𝑥∗, 𝑡𝑥⟩𝑋 − 1

𝑝
∥𝑡𝑥 ∥𝑝

𝑋

}}
= sup

𝑡≥0

{
𝑡 ∥𝑥∗∥𝑋 ∗ − 1

𝑝
|𝑡 |𝑝

}
=

1
𝑞
|∥𝑥∗∥𝑋 ∗ |𝑞

since 𝜑 is even and the supremum over all 𝑡 ∈ ℝ is thus attained for 𝑡 ≥ 0. □

As for convex subdifferentials, Fenchel conjugates of integral functionals can be computed
pointwise.

Theorem 5.5. Let 𝑓 : ℝ → ℝ be measurable, proper and lower semicontinuous, and let
𝐹 : 𝐿𝑝 (Ω) → ℝ with 1 ≤ 𝑝 < ∞ be defined as in Lemma 3.7. Then we have for 𝑞 = 𝑝

𝑝−1 that

𝐹 ∗ : 𝐿𝑞 (Ω) → ℝ, 𝐹 ∗(𝑢∗) =
∫
Ω
𝑓 ∗(𝑢∗(𝑥)) 𝑑𝑥.

Proof. We argue similarly as in the proof of Theorem 4.11,with some changes that are needed
since measurability of 𝑓 ◦ 𝑢 does not immediately imply that of 𝑓 ∗ ◦ 𝑢∗. Let 𝑢∗ ∈ 𝐿𝑞 (Ω) be
arbitrary and consider for all 𝑥 ∈ Ω the functions

𝜑 (𝑥) ≔ sup
𝑡∈ℝ

{𝑡𝑢∗(𝑥) − 𝑓 (𝑡)} = 𝑓 ∗(𝑢∗(𝑥)),
as well as for 𝑛 ∈ ℕ

𝜑𝑛 (𝑥) ≔ sup
|𝑡 |≤𝑛

{𝑡𝑢∗(𝑥) − 𝑓 (𝑡)} ≤ 𝑓 ∗(𝑢∗(𝑥)) .

1Which is how the Fenchel–Young inequality got its name.
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By a measurable selection theorem ([Ekeland and Témam, 1999, Theorem VIII.1.2]), the
pointwise supremum in the definition of 𝜑𝑛 is attained at some 𝑡∗𝑥 for almost every 𝑥 ∈ Ω
and defines a measurable mapping 𝑥 ↦→ 𝑢𝑛 (𝑥) := 𝑡∗𝑥 with ∥𝑢𝑛∥𝐿∞ ≤ 𝑛. This also implies that
𝜑𝑛 = 𝑢𝑛 · 𝑢∗ − 𝑓 ◦ 𝑢𝑛 is measurable. Furthermore, by assumption there exists a 𝑡0 ∈ dom 𝑓 ,
and hence 𝑢0 := 𝑡0𝑢

∗(𝑥) − 𝑓 (𝑡0) is measurable and satisfies 𝑢0 ≤ 𝜑𝑛 (𝑥) for all 𝑛 ≥ |𝑡0 |.
Finally, by construction, 𝜑𝑛 (𝑥) is monotonically increasing and converges to 𝜑 (𝑥) for all
𝑥 ∈ Ω. The sequence {𝜑𝑛 − 𝑢0}𝑛∈ℕ of functions is thus measurable and nonnegative, and
the monotone convergence theorem yields that∫

Ω
𝜑 (𝑥) − 𝑢0(𝑥) 𝑑𝑥 =

∫
Ω

sup
𝑛∈ℕ

𝜑𝑛 (𝑥) − 𝑢0(𝑥) 𝑑𝑥 = sup
𝑛∈ℕ

∫
Ω
𝜑𝑛 (𝑥) − 𝑢0(𝑥) 𝑑𝑥 .

Hence the pointwise limit 𝜑 = 𝑓 ∗ ◦ 𝑢∗ is measurable as well.

The measurable selection theorem also yields that∫
Ω
𝑓 ∗(𝑢∗(𝑥)) 𝑑𝑥 = sup

𝑛∈ℕ

∫
Ω

sup
|𝑡 |≤𝑛

{𝑡𝑢∗(𝑥) − 𝑓 (𝑡)} 𝑑𝑥

= sup
𝑛∈ℕ

∫
Ω
𝑢∗(𝑥)𝑢𝑛 (𝑥) − 𝑓 (𝑢𝑛 (𝑥)) 𝑑𝑥

≤ sup
𝑢∈𝐿𝑝 (Ω)

∫
Ω
𝑢∗(𝑥)𝑢 (𝑥) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥 = 𝐹 ∗(𝑢∗),

since 𝑢𝑛 ∈ 𝐿∞(Ω) ⊂ 𝐿𝑝 (Ω) for all 𝑛 ∈ ℕ.

For the converse inequality, we can now proceed as in the proof of Theorem 4.11. For any
𝑢 ∈ 𝐿𝑝 (Ω) and 𝑢∗ ∈ 𝐿𝑞 (Ω), we have by the Fenchel–Young inequality (5.1) applied to 𝑓 and
𝑓 ∗ that

𝑓 (𝑢 (𝑥)) + 𝑓 ∗(𝑢∗(𝑥)) ≥ 𝑢∗(𝑥)𝑢 (𝑥) for almost every 𝑥 ∈ Ω.

Since both sides are measurable, this implies that∫
Ω
𝑓 ∗(𝑢∗(𝑥)) 𝑑𝑥 ≥

∫
Ω
𝑢∗(𝑥)𝑢 (𝑥) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥,

and taking the supremum over all 𝑢 ∈ 𝐿𝑝 (Ω) yields the claim. □

Remark 5.6. A similar representation representation can be shown for vector-valued and spatially-
dependent integrands 𝑓 : Ω ×ℝ → ℝ𝑚 under stronger assumptions; see, e.g., [Rockafellar, 1976a,
Corollary 3C].

Fenchel conjugates satisfy a number of useful calculus rules, which follow directly from
the properties of the supremum.

Lemma 5.7. Let 𝐹 : 𝑋 → ℝ be proper. Then,
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(i) (𝛼𝐹 )∗ = 𝛼𝐹 ∗ ◦ (𝛼−1Id) for any 𝛼 > 0;

(ii) (𝐹 (· + 𝑥0) + ⟨𝑥∗0, ·⟩𝑋 )∗ = 𝐹 ∗(· − 𝑥∗0) − ⟨· − 𝑥∗0, 𝑥0⟩𝑋 for all 𝑥0 ∈ 𝑋 , 𝑥∗0 ∈ 𝑋 ∗;

(iii) (𝐹 ◦ 𝐾)∗ = 𝐹 ∗ ◦ 𝐾−∗ for continuously invertible 𝐾 ∈ 𝕃(𝑌 ;𝑋 ) and 𝐾−∗ ≔ (𝐾−1)∗.

Proof. (i): For any 𝛼 > 0, we have that

(𝛼𝐹 )∗(𝑥∗) = sup
𝑥∈𝑋

{
𝛼 ⟨𝛼−1𝑥∗, 𝑥⟩𝑋 − 𝛼𝐹 (𝑥)} = 𝛼 sup

𝑥∈𝑋

{⟨𝛼−1𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥)} = 𝛼𝐹 ∗(𝛼−1𝑥∗).

(ii): Since {𝑥 + 𝑥0 | 𝑥 ∈ 𝑋 } = 𝑋 , we have that

(𝐹 (· + 𝑥0) + ⟨𝑥∗0, ·⟩𝑋 )∗(𝑥∗) = sup
𝑥∈𝑋

{⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥 + 𝑥0)} − ⟨𝑥∗0, 𝑥⟩𝑋
= sup
𝑥∈𝑋

{⟨𝑥∗ − 𝑥∗0, 𝑥 + 𝑥0⟩𝑋 − 𝐹 (𝑥 + 𝑥0)
} − ⟨𝑥∗ − 𝑥∗0, 𝑥0⟩𝑋

= sup
𝑥=𝑥+𝑥0,𝑥∈𝑋

{⟨𝑥∗ − 𝑥∗0, 𝑥⟩𝑋 − 𝐹 (𝑥)} − ⟨𝑥∗ − 𝑥∗0, 𝑥0⟩𝑋

= 𝐹 ∗(𝑥∗ − 𝑥∗0) − ⟨𝑥∗ − 𝑥∗0, 𝑥0⟩𝑋 .

(iii): Since 𝑋 = ran𝐾 , we have that

(𝐹 ◦ 𝐾)∗(𝑦∗) = sup
𝑦∈𝑌

{⟨𝑦∗, 𝐾−1𝐾𝑦⟩𝑌 − 𝐹 (𝐾𝑦)}
= sup
𝑥=𝐾𝑦,𝑦∈𝑌

{⟨𝐾−∗𝑦∗, 𝑥⟩𝑋 − 𝐹 (𝑥)} = 𝐹 ∗(𝐾−∗𝑦∗). □

There are some obvious similarities between the definitions of the Fenchel conjugate and
of the subdifferential, which yield the following very useful property that plays the role
of a “convex inverse function theorem”. (See also Figure 5.1b and compare Figures 4.1a
and 4.1b.)

Lemma 5.8 (Fenchel–Young). Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous.
Then the following statements are equivalent for any 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 ∗:

(i) ⟨𝑥∗, 𝑥⟩𝑋 = 𝐹 (𝑥) + 𝐹 ∗(𝑥∗);
(ii) 𝑥∗ ∈ 𝜕𝐹 (𝑥);
(iii) 𝑥 ∈ 𝜕𝐹 ∗(𝑥∗).
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Proof. If (i) holds, the definition of 𝐹 ∗ as a supremum immediately implies that

(5.2) ⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥) = 𝐹 ∗(𝑥∗) ≥ ⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥) for all 𝑥 ∈ 𝑋,
which again by definition is equivalent to (ii). Conversely, taking the supremum over all
𝑥 ∈ 𝑋 in (5.2) yields

⟨𝑥∗, 𝑥⟩𝑋 ≥ 𝐹 (𝑥) + 𝐹 ∗(𝑥∗),
which together with the Fenchel–Young inequality (5.1) leads to (i).

Similarly, (i) in combination with Theorem 5.1 implies that

⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 ∗(𝑥∗) = 𝐹 (𝑥) = 𝐹 ∗∗(𝑥) ≥ ⟨𝑥∗, 𝑥⟩ − 𝐹 ∗(𝑥∗) for all 𝑥∗ ∈ 𝑋 ∗,

yielding as above the equivalence of (i) and (iii). □

Remark 5.9. If 𝐹 is not convex, the above proof shows that we still have the equivalence (i)⇔ (ii).
Furthermore since always 𝐹 ∗∗ ≤ 𝐹 by Theorem 5.1 (i), it still holds that (i)⇒ (iii). However, we
can only conclude from (iii) that (i) and (ii) hold for 𝐹 ∗∗ ≠ 𝐹 in place of 𝐹 . Applying Lemma 5.8 to
nonconvex functionals therefore inevitably introduces a convexification (by replacing the nonconvex
𝐹 with its convex envelope 𝐹 ∗∗).

Remark 5.10. Recall that 𝜕𝐹 ∗(𝑥∗) ⊂ 𝑋 ∗∗. Therefore, if 𝑋 is not reflexive, 𝑥 ∈ 𝜕𝐹 ∗(𝑥∗) in (iii) has to
be understood via the canonical injection 𝐽 : 𝑋 ↩→ 𝑋 ∗∗ as 𝐽𝑥 ∈ 𝜕𝐹 ∗(𝑥∗), i.e., as

⟨𝐽𝑥, 𝑥∗ − 𝑥∗⟩𝑋 ∗ = ⟨𝑥∗ − 𝑥∗, 𝑥⟩𝑋 ≤ 𝐹 ∗(𝑥∗) − 𝐹 ∗(𝑥∗) for all 𝑥∗ ∈ 𝑋 .
Using (iii) to conclude equality in (i) or, equivalently, the subdifferential inclusion (ii) therefore
requires the additional condition that 𝑥 ∈ 𝑋 ↩→ 𝑋 ∗∗. Conversely, if (i) or (ii) hold, (iii) also guarantees
that the subderivative 𝑥 is an element of 𝜕𝐹 ∗(𝑥∗) ∩ 𝑋 , which is a stronger claim (see [gerw, 2022]
for a counterexample).

Similar statements apply to (weakly-∗ lower semicontinuous) 𝐹 : 𝑋 ∗ → ℝ and 𝐹∗ : 𝑋 → ℝ.

5.2 duality of optimization problems

Lemma 5.8 can be used to replace the subdifferential of a (complicated) norm with that of a
(simpler) conjugate indicator functional (or vice versa). For example, given a problem of
the form

(5.3) inf
𝑥∈𝑋

𝐹 (𝑥) +𝐺 (𝐾𝑥)

for 𝐹 : 𝑋 → ℝ and𝐺 : 𝑌 → ℝ proper, convex, and lower semicontinuous, and𝐾 ∈ 𝕃(𝑋 ;𝑌 ),
we can use Theorem 5.1 to replace 𝐺 with the definition of 𝐺∗∗ and obtain the saddle-point
problem

(5.4) inf
𝑥∈𝑋

sup
𝑦∗∈𝑌 ∗

𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗) .
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If(!) we were now able to exchange inf and sup, we could write (with inf 𝐹 = − sup(−𝐹 ))

inf
𝑥∈𝑋

sup
𝑦∗∈𝑌 ∗

𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗) = sup
𝑦∗∈𝑌 ∗

inf
𝑥∈𝑋

𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗)

= sup
𝑦∗∈𝑌 ∗

−
{
sup
𝑥∈𝑋

−𝐹 (𝑥) + ⟨−𝐾∗𝑦∗, 𝑥⟩𝑋
}
−𝐺∗(𝑦∗).

From the definition of 𝐹 ∗, we thus obtain the dual problem

(5.5) sup
𝑦∗∈𝑌 ∗

−𝐺∗(𝑦∗) − 𝐹 ∗(−𝐾∗𝑦∗).

As a side effect, we have shifted the operator 𝐾 from𝐺 to 𝐹 ∗ without having to invert it.

The following theorem uses in an elegant way the Fermat principle, the sum and chain rules,
and the Fenchel–Young equality to derive sufficient conditions for the exchangeability.

Theorem 5.11 (Fenchel–Rockafellar). Let 𝑋 and 𝑌 be Banach spaces, 𝐹 : 𝑋 → ℝ and 𝐺 :
𝑌 → ℝ be proper, convex, and lower semicontinuous, and 𝐾 ∈ 𝕃(𝑋 ;𝑌 ). Assume furthermore
that

(i) the primal problem (5.3) admits a solution 𝑥 ∈ 𝑋 ;
(ii) there exists an 𝑥0 ∈ dom(𝐺 ◦ 𝐾) ∩ dom 𝐹 with 𝐾𝑥0 ∈ int(dom𝐺) .

Then the dual problem (5.5) admits a solution 𝑦∗ ∈ 𝑌 ∗ and

(5.6) min
𝑥∈𝑋

𝐹 (𝑥) +𝐺 (𝐾𝑥) = max
𝑦∗∈𝑌 ∗ −𝐺

∗(𝑦∗) − 𝐹 ∗(−𝐾∗𝑦∗).

Furthermore, 𝑥 and 𝑦∗ are solutions to (5.3) and (5.5), respectively, if and only if

(5.7)
{

𝑦∗ ∈ 𝜕𝐺 (𝐾𝑥),
−𝐾∗𝑦∗ ∈ 𝜕𝐹 (𝑥).

Proof. Let first 𝑥 ∈ 𝑋 be a solution to (5.3). By assumption (ii), Theorems 4.14 and 4.17 are
applicable; Theorem 4.2 thus implies that

0 ∈ 𝜕(𝐹 +𝐺 ◦ 𝐾) (𝑥) = 𝐾∗𝜕𝐺 (𝐾𝑥) + 𝜕𝐹 (𝑥)

and thus the existence of a 𝑦∗ ∈ 𝜕𝐺 (𝐾𝑥) with −𝐾∗𝑦∗ ∈ 𝜕𝐹 (𝑥), i.e., satisfying (5.7).
Conversely, let (5.7) hold for 𝑥 ∈ 𝑋 and 𝑦∗ ∈ 𝑌 ∗. Then again by Theorems 4.2, 4.14, and 4.17,
𝑥 is a solution to (5.3). Furthermore, (5.7) together with Lemma 5.8 imply equality in the
Fenchel–Young inequalities for 𝐹 and 𝐺 , i.e.,

(5.8)
{ ⟨𝑦∗, 𝐾𝑥⟩𝑌 = 𝐺 (𝐾𝑥) +𝐺∗(𝑦∗),
⟨−𝐾∗𝑦∗, 𝑥⟩𝑋 = 𝐹 (𝑥) + 𝐹 ∗(−𝐾∗𝑦∗).
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Adding both equations and rearranging now yields

(5.9) 𝐹 (𝑥) +𝐺 (𝐾𝑥) = −𝐹 ∗(−𝐾∗𝑦∗) −𝐺∗(𝑦∗) .

It remains to show that 𝑦∗ is a solution to (5.5). For this purpose, we introduce

(5.10) 𝐿 : 𝑋 × 𝑌 ∗ → ℝ, 𝐿(𝑥, 𝑦∗) = 𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗).

For all 𝑥 ∈ 𝑋 and �̃�∗ ∈ 𝑌 ∗, we always have that

(5.11) sup
𝑦∗∈𝑌 ∗

𝐿(𝑥, 𝑦∗) ≥ 𝐿(𝑥, �̃�∗) ≥ inf
𝑥∈𝑋

𝐿(𝑥, �̃�∗),

and hence (taking the infimum over all 𝑥 in the first and the supremum over all �̃�∗ in the
second inequality) that

(5.12) inf
𝑥∈𝑋

sup
𝑦∗∈𝑌 ∗

𝐿(𝑥, 𝑦∗) ≥ sup
𝑦∗∈𝑌 ∗

inf
𝑥∈𝑋

𝐿(𝑥, 𝑦∗).

We thus obtain that

(5.13) 𝐹 (𝑥) +𝐺 (𝐾𝑥) = inf
𝑥∈𝑋

sup
𝑦∗∈𝑌 ∗

𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗)

≥ sup
𝑦∗∈𝑌 ∗

inf
𝑥∈𝑋

𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗)

= sup
𝑦∗∈𝑌 ∗

−𝐺∗(𝑦∗) − 𝐹 ∗(−𝐾∗𝑦∗)

(i.e., weak duality holds merely under assumption (i)). Combining this with (5.9) yields that

−𝐺∗(𝑦∗) − 𝐹 ∗(−𝐾∗𝑦∗) = 𝐹 (𝑥) +𝐺 (𝐾𝑥) ≥ sup
𝑦∗∈𝑌 ∗

−𝐺∗(𝑦∗) − 𝐹 ∗(−𝐾∗𝑦∗),

i.e., 𝑦∗ is a solution to (5.5), which in particular shows the claimed existence of a solution.

Since all solutions to (5.5) have by definition the same (maximal) functional value, (5.9) also
implies (5.6).

Finally, if 𝑥 ∈ 𝑋 and 𝑦∗ ∈ 𝑌 ∗ are solutions to (5.3) and (5.5), respectively, the just derived
strong duality (5.6) conversely implies that (5.9) holds. Together with the productive zero,
we obtain from this that

0 = [𝐺 (𝐾𝑥) +𝐺∗(𝑦∗) − ⟨𝑦∗, 𝐾𝑥⟩𝑋 ] + [𝐹 (𝑥) + 𝐹 ∗(−𝐾∗𝑦∗) − ⟨−𝐾∗𝑦∗, 𝑥⟩𝑌 ] .

Since both brackets have to be nonnegative due to the Fenchel–Young inequality, they each
have to be zero. We therefore deduce that (5.8) holds, and hence Lemma 5.8 implies (5.7). □

66



5 fenchel duality

Remark 5.12. If 𝑋 is the dual of a separable Banach space 𝑋∗, it is possible to derive a similar duality
result with the (weakly-∗ lower semicontinuous) preconjugate 𝐹∗ : 𝑋∗ → ℝ in place of 𝐹 ∗ : 𝑋 ∗ → ℝ

under the additional assumption that ran𝐾∗ ⊂ 𝑋∗ ⊊ 𝑋 ∗ (using Remark 5.10 in (5.8)). If 𝑋∗ is a
“nicer” space than 𝑋 ∗ (e.g., for 𝑋 = M(Ω), the space of bounded Radon measures on a domain Ω
with 𝑋∗ = 𝐶0(Ω), the space of continuous functions with compact support), the predual problem

sup
𝑦∗∈𝑌 ∗

−𝐺∗(𝑦∗) − 𝐹∗(−𝐾∗𝑦∗)

may be easier to treat than the dual problem (5.5). This is the basis of the “preduality trick” used in,
e.g., [Clason and Kunisch, 2011; Hintermüller and Kunisch, 2004].

Remark 5.13. The condition (ii) was only used to guarantee equality in the sum and chain rules
Theorems 4.14 and 4.17 applied to 𝐹 +𝐺 ◦ 𝐾 . Since these rules hold under the weaker condition
of Remark 4.16 (recall that the chain rule was proved by reduction to the sum rule), Theorem 5.11
and Corollary 5.14 hold under this weaker condition as well.

The relations (5.7) are referred to as Fenchel extremality conditions; we can use Lemma 5.8
to generate further, equivalent, optimality conditions by inverting one or the other sub-
differential inclusion. We will later exploit this to derive implementable algorithms for
solving optimization problems of the form (5.3). Furthermore, Theorem 5.11 characterizes
the subderivative 𝑦∗ produced by the sum and chain rules as solution to a convex mini-
mization problem, which may be useful. For example, if either 𝐹 ∗ or 𝐺∗ is strongly convex,
this subderivative will be unique, which has beneficial consequences for the stability and
the convergence of algorithms for the computation of solutions to (5.7).

For their analysis, it will sometimes be more convenient to apply the consequences of
Theorem 5.11 in the form of the saddle-point problem (5.4). For a general mapping 𝐿 :
𝑋 × 𝑌 ∗ → ℝ, we call (𝑥, �̃�∗) a saddle point of 𝐿 if

(5.14) sup
𝑦∗∈𝑌 ∗

𝐿(𝑥, 𝑦∗) ≤ 𝐿(𝑥, �̃�∗) ≤ inf
𝑥∈𝑋

𝐿(𝑥, �̃�∗) .

(Note that the opposite inequality (5.11) always holds.)

Corollary 5.14. Assume that the conditions of Theorem 5.11 hold. Then there exists a saddle
point (𝑥, 𝑦∗) ∈ 𝑋 × 𝑌 ∗ to

𝐿(𝑥, 𝑦∗) ≔ 𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗).
Furthermore, for any (𝑥, 𝑦∗) ∈ 𝑋 × 𝑌 ∗,

(5.15) 𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗) ≤ 𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗)
≤ 𝐹 (𝑥) + ⟨𝑦∗, 𝐾𝑥⟩𝑌 −𝐺∗(𝑦∗).

Proof. Both statements follow from the fact that under the assumption, the inequality in
(5.13) and hence in (5.14) holds as an equality. □
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With the notation 𝑢 = (𝑥, 𝑦), let us define the duality gap

(5.16) Ḡ(𝑢) ≔ 𝐹 (𝑥) +𝐺 (𝐾𝑥) +𝐺∗(𝑦∗) + 𝐹 ∗(−𝐾∗𝑦∗) .

By Theorem 5.11, we have Ḡ ≥ 0 and Ḡ(𝑢) = 0 if and only if 𝑢 is a saddle point.

On the other hand, for any saddle point 𝑢 = (𝑥, 𝑦∗) of a Lagrangian 𝐿 : 𝑋 × 𝑌 ∗ → ℝ, we
can also define the Lagrangian duality gap

G𝐿 (𝑢;𝑢) ≔ 𝐿(𝑥, 𝑦∗) − 𝐿(𝑥, 𝑦∗).

For 𝐿 defined in (5.10), we always have by the definition of the convex conjugate that

0 ≤ G𝐿 (𝑢;𝑢) ≤ Ḡ(𝑢).

However, G𝐿 (𝑢;𝑢) = 0 does not necessarily imply that 𝑢 is a saddle point. (This is the case
if 𝐿 is strictly convex in 𝑥 or strictly concave in 𝑦 , i.e., if either 𝐹 or 𝐺∗ is strictly convex.)
Nevertheless, as we will see in later chapters, the Lagrangian duality gap can generally be
shown to converge for iterates produced by optimization algorithms, while this is more
difficult for the conventional duality gap.
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Any minimizer 𝑥 ∈ 𝑋 of a convex functional 𝐹 : 𝑋 → ℝ satisfies by Theorem 4.2 the
Fermat principle 0 ∈ 𝜕𝐹 (𝑥). To use this to characterize 𝑥 , and, later, to derive implementable
algorithms for its iterative computation, we now study the mapping 𝑥 ↦→ 𝜕𝐹 (𝑥) in more
detail.

6.1 basic properties of set-valued mappings

We start with some basic concepts. For two normed vector spaces 𝑋 and 𝑌 we consider a
set-valued mapping 𝐴 : 𝑋 → P(𝑌 ), also denoted by 𝐴 : 𝑋 ⇒ 𝑌 , and define

• its domain of definition dom𝐴 = {𝑥 ∈ 𝑋 | 𝐴(𝑥) ≠ ∅};
• its range ran𝐴 =

⋃
𝑥∈𝑋 𝐴(𝑥);

• its graph graph𝐴 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑦 ∈ 𝐴(𝑥)};
• its inverse 𝐴−1 : 𝑌 ⇒ 𝑋 via 𝐴−1(𝑦) = {𝑥 ∈ 𝑋 | 𝑦 ∈ 𝐴(𝑥)} for all 𝑦 ∈ 𝑌 .

(Note that 𝐴−1(𝑦) = ∅ is allowed by the definition; hence for set-valued mappings, the
inverse and always exists.) Similarly, we will say that𝐴 : 𝑋 ⇒ 𝑌 is surjective if ran𝐴 = 𝑌 .

For 𝐴, 𝐵 : 𝑋 ⇒ 𝑌 , 𝐶 : 𝑌 ⇒ 𝑍 , and 𝜆 ∈ ℝ we further define

• 𝜆𝐴 : 𝑋 ⇒ 𝑌 via (𝜆𝐴) (𝑥) = {𝜆𝑦 | 𝑦 ∈ 𝐴(𝑥)};
• 𝐴 + 𝐵 : 𝑋 ⇒ 𝑌 via (𝐴 + 𝐵) (𝑥) = {𝑦 + 𝑧 | 𝑦 ∈ 𝐴(𝑥), 𝑧 ∈ 𝐵(𝑥)};
• 𝐶 ◦𝐴 : 𝑋 ⇒ 𝑍 via (𝐶 ◦𝐴) (𝑥) = {𝑧 | there is 𝑦 ∈ 𝐴(𝑥) with 𝑧 ∈ 𝐶 (𝑦)}.

Of particular importance not only in the following but also in Part IV is the continuity of
set-valued mappings. We first introduce notions of convergence of sets. So let {𝑋𝑛}𝑛∈ℕ be
a sequence of subsets of 𝑋 . We define

(i) the outer limit as the set

lim sup
𝑛→∞

𝑋𝑛 ≔

{
𝑥 ∈ 𝑋

���� there exists {𝑛𝑘}𝑘∈ℕ with 𝑥𝑛𝑘 ∈ 𝑋𝑛𝑘 and lim
𝑘→∞

𝑥𝑛𝑘 = 𝑥

}
,
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𝑋1 𝑋2

𝑋3

𝑋4
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0
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Figure 6.1: Illustration of Example 6.1 with lim sup𝑛→∞𝑋𝑛 = [0, 1] while lim inf𝑛→∞𝑋𝑛 = ∅.

(ii) the inner limit as the set

lim inf
𝑛→∞ 𝑋𝑛 ≔

{
𝑥 ∈ 𝑋

��� there exist 𝑥𝑛 ∈ 𝑋𝑛 with lim
𝑛→∞𝑥𝑛 = 𝑥

}
.

Correspondingly, we define the weak outer limit and the weak inner limit, denoted by
w-lim sup 𝑛→∞𝑋𝑛 and w-lim inf 𝑛→∞𝑋𝑛, respectively, using weakly converging (sub)se-
quences. Similarly, for a dual space𝑋 ∗, we define theweak-∗ outer limit w-∗-lim sup 𝑛→∞𝑋

∗
𝑛

and the weak-∗ inner limit w-∗-lim inf 𝑛→∞𝑋 ∗
𝑛 .

The outer limit consists of all points approximable through some subsequence of the sets
𝑋𝑛, while the inner limit has to be approximable through every subsequence. The vast
difference between inner and outer limits is illustrated by the following extreme example.

Example 6.1. Let 𝑋 = ℝ and {𝑋𝑛}𝑛∈ℕ, 𝑋𝑛 ⊂ [0, 1], be given as

𝑋𝑛 ≔


[0, 1

3 ) if 𝑛 = 3𝑘 − 2 for some 𝑘 ∈ ℕ,

[ 1
3 ,

2
3 ) if 𝑛 = 3𝑘 − 1 for some 𝑘 ∈ ℕ,

[ 2
3 , 1] if 𝑛 = 3𝑘 for some 𝑘 ∈ ℕ,

see Figure 6.1. Then,

lim sup
𝑛→∞

𝑋𝑛 = [0, 1],

since for any𝑥 ∈ [0, 1],we can find a subsequence of {𝑋𝑛}𝑛∈ℕ (by selecting subsequences
with, e.g., 𝑛 = 3𝑘 − 2 for 𝑘 ∈ ℕ if 𝑥 < 1

3 ) that contain 𝑥 . On the other hand,

lim inf
𝑛→∞ 𝑋𝑛 = ∅,

since for any 𝑥 ∈ [0, 1], there will be a subsequence of 𝑋𝑛 (again, selecting only subse-
quences with, e.g., 𝑛 = 3𝑘 for 𝑘 ∈ ℕ if 𝑥 < 1

3 ) that will not contain points arbitrarily
close to 𝑥 .

Lemma 6.2. Let {𝑋𝑛}𝑛∈ℕ, 𝑋𝑛 ⊂ 𝑋 . Then lim sup𝑛→∞𝑋𝑛 and lim inf𝑛→∞𝑋𝑛 are (possibly
empty) closed sets.
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Proof. Let 𝑋∞ ≔ lim sup𝑛→∞𝑋𝑛. If 𝑋∞ is empty, there is nothing to prove. So suppose,
{𝑥𝑘}𝑘∈ℕ ⊂ 𝑋∞ converges to some 𝑦 ∈ 𝑋 . Then by the definition of 𝑋∞ as an outer
limit, there exist infinite subsets 𝑁𝑘 ⊂ ℕ and subsequences 𝑥𝑘,𝑛 ∈ 𝑋𝑛 for 𝑛 ∈ 𝑁𝑘 with
lim𝑁𝑘∋𝑛→∞ 𝑥𝑘,𝑛 = 𝑥𝑘 . We can find for each 𝑘 ∈ ℕ an index 𝑛𝑘 ∈ 𝑁𝑘 such that ∥𝑥𝑘 −𝑥𝑘,𝑛𝑘 ∥𝑋 ≤
1/𝑛. Thus ∥𝑦 − 𝑥𝑘,𝑛𝑘 ∥𝑋 ≤ ∥𝑦 − 𝑥𝑘 ∥𝑋 + 1/𝑘 . Letting 𝑘 → ∞ we see that 𝑋𝑛𝑘 ∋ 𝑥𝑘,𝑛𝑘 → 𝑦 .
Thus 𝑦 ∈ 𝑋∞, that is, 𝑋∞ is (strongly) closed.

Let then 𝑋∞ ≔ lim inf𝑛→∞𝑋𝑛. If 𝑋∞ is empty, there is nothing to prove. So suppose
{𝑥𝑘}𝑘∈ℕ ⊂ 𝑋∞ converges to some 𝑦 ∈ 𝑋 . Then for each 𝑛 ∈ ℕ there exist 𝑥𝑘,𝑛 ∈ 𝑋𝑛
with lim𝑛→∞ 𝑥𝑘,𝑛 = 𝑥𝑘 . We can consequently find for each 𝑘 ∈ ℕ an index 𝑛𝑘 ∈ ℕ such
that ∥𝑥𝑘 − 𝑥𝑘,𝑛∥𝑋 < 1/𝑘 for 𝑛 ≥ 𝑛𝑘 . Thus for every 𝑛 ∈ ℕ we can find 𝑘𝑛 ∈ ℕ such
that ∥𝑥𝑘𝑛 − 𝑥𝑘𝑛,𝑛∥𝑋 ≤ 1/𝑘𝑛 with 𝑘𝑛 → ∞ as 𝑛 → ∞. Since this implies ∥𝑦 − 𝑥𝑘𝑛,𝑛∥𝑋 ≤
∥𝑦 − 𝑥𝑘𝑛 ∥𝑋 + 1/𝑘𝑛 , letting 𝑛 → ∞ we see that 𝑋𝑛 ∋ 𝑥𝑘𝑛,𝑛 → 𝑦 . Thus 𝑦 ∈ 𝑋∞, that is, 𝑋∞ is
(strongly) closed. □

With these definitions, we can define limits and continuity of set-valued mappings. Specifi-
cally, for 𝐴 : 𝑋 ⇒ 𝑌 , and a subset 𝐶 ⊂ 𝑋 , we define the inner and outer limits (relative to
𝐶 , if 𝐶 ≠ 𝑋 ) as

lim sup
𝐶∋𝑥→𝑥

𝐴(𝑥) ≔
⋃

𝐶∋𝑥𝑛→𝑥

lim sup
𝑛→∞

𝐴(𝑥𝑛),

and
lim inf
𝐶∋𝑥→𝑥

𝐴(𝑥) ≔
⋂

𝐶∋𝑥𝑛→𝑥

lim inf
𝑛→∞ 𝐴(𝑥𝑛).

If 𝐶 = 𝑋 , we drop 𝐶 from the notations. Analogously, we define weak-to-strong, strong-
to-weak, and weak-to-weak limits by replacing 𝑥𝑛 → 𝑥 by 𝑥𝑛 ⇀ 𝑥 and/or the outer/inner
limit by the weak outer/inner limit.

Corollary 6.3. Let 𝐴 : 𝑋 ⇒ 𝑌 and 𝑥 ∈ 𝑋 . Then lim sup𝑥→𝑥 𝐴(𝑥) and lim inf𝑥→𝑥 𝐴(𝑥) are
(possibly empty) closed sets.

Proof. The proof of the closedness of the outer limit is analogous to Lemma 6.2, while the
proof of the closedness of the inner limit is a consequence of Lemma 6.2 and of the fact
that the intersections of closed sets are closed. □

Let then 𝐴 : 𝑋 ⇒ 𝑌 be a set-valued mapping. We say that

(i) 𝐴 is outer semicontinuous at 𝑥 if lim sup𝐶∋𝑥→𝑥 𝐴(𝑥) ⊂ 𝐴(𝑥) with 𝐶 = 𝑋 .

(ii) 𝐴 is inner semicontinuous at 𝑥 if lim inf𝐶∋𝑥→𝑥 𝐴(𝑥) ⊃ 𝐴(𝑥) with 𝐶 = 𝑋 .

(iii) The map 𝐴 is outer/inner semicontinuous if it is outer/inner semicontinuous at all
𝑥 ∈ 𝑋 .
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𝐴

𝑥1 𝑥2

Figure 6.2: Illustration of outer and inner semicontinuity. The black line indicates the
bounds on the boundary of graph 𝐹 that belong to the graph. The set-valued
mapping 𝐴 is not outer semicontinuous at 𝑥1, because 𝐴(𝑥1) does not include
all limits from the right. It is outer semicontinuous at the “discontinuous” point
𝑥2, as 𝐴(𝑥2) includes all limits from both sides. The mapping 𝐴 is not inner
semicontinuous at 𝑥2, because at this point, 𝐴(𝑥) cannot be approximated from
both sides. It is inner semicontinuous at every other point 𝑥 , including 𝑥1, as at
this points 𝐴(𝑥) can be approximated from both sides.

(iv) continuous (at 𝑥 ) if it is both inner and outer semicontinuous (at 𝑥 ).

(v) We say that these properties are “relative𝐶” when we restrict 𝑥 ∈ 𝐶 for some𝐶 ⊂ 𝑋 .
These concepts are illustrated in Figure 6.2.

Just like lower semicontinuity of functionals, the outer semicontinuity of set-valued map-
pings can be interpreted as a closedness property and will be crucial. The following lemma
is stated for strong-to-strong outer semicontinuity, but corresponding statements hold
(with identical proof) for weak-to-strong, strong-to-weak, and weak-to-weak outer semi-
continuity as well.

Lemma 6.4. A set-valued mapping 𝐴 : 𝑋 ⇒ 𝑌 is outer semicontinuous if and only if
graph𝐴 ⊂ 𝑋 × 𝑌 is closed, i.e., 𝑥𝑛 → 𝑥 and 𝐴(𝑥𝑛) ∋ 𝑦𝑛 → 𝑦 imply that 𝑦 ∈ 𝐴(𝑥).

Proof. Let 𝑥𝑛 → 𝑥 and 𝑦𝑛 ∈ 𝐴(𝑥𝑛), and suppose also 𝑦𝑛 → 𝑦 . Then if graph𝐴 is closed,
(𝑥, 𝑦) ∈ graph𝐴 and hence 𝑦 ∈ 𝐴(𝑥). Since this holds for arbitrary sequences {𝑥𝑛}𝑛∈ℕ, 𝐴
is outer semicontinuous.

If, on the other hand, 𝐴 is outer semicontinuous, and (𝑥𝑛, 𝑦𝑛) ∈ graph𝐴 converge to
(𝑥, 𝑦) ∈ 𝑋 × 𝑌 ‚ then 𝑦 ∈ 𝐴(𝑥) and hence (𝑥, 𝑦) ∈ graph𝐴. Since this holds for arbitrary
sequences {(𝑥𝑛, 𝑦𝑛)}𝑛∈ℕ, graph𝐴 is closed. □
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6.2 monotone operators

For the codomain 𝑌 = 𝑋 ∗ (as in the case of 𝑥 ↦→ 𝜕𝐹 (𝑥)), additional properties become
important. A set-valued mapping 𝐴 : 𝑋 ⇒ 𝑋 ∗ is called monotone if
(6.1) ⟨𝑥∗1 − 𝑥∗2, 𝑥1 − 𝑥2⟩𝑋 ≥ 0 for all (𝑥1, 𝑥

∗
1 ), (𝑥2, 𝑥

∗
2) ∈ graph𝐴.

Straight from the definition, we obtain the monotonicity of the following mappings.

Example 6.5. (i) If𝐴 : 𝑋 ⇒ 𝑋 ∗ is monotone and 𝜆 ≥ 0, then 𝜆𝐴 is monotone as well.

(ii) If 𝐴, 𝐵 : 𝑋 ⇒ 𝑋 ∗ are monotone, then 𝐴 + 𝐵 is monotone as well.

(iii) If 𝐹 : 𝑋 → ℝ is proper, then 𝜕𝐹 : 𝑋 ⇒ 𝑋 ∗, 𝑥 ↦→ 𝜕𝐹 (𝑥), is monotone since for any
𝑥1, 𝑥2 ∈ 𝑋 with 𝑥∗1 ∈ 𝜕𝐹 (𝑥1) and 𝑥∗2 ∈ 𝜕𝐹 (𝑥2), we have by definition that

⟨𝑥∗1 , 𝑥 − 𝑥1⟩𝑋 ≤ 𝐹 (𝑥) − 𝐹 (𝑥1) for all 𝑥 ∈ 𝑋,
⟨𝑥∗2, 𝑥 − 𝑥2⟩𝑋 ≤ 𝐹 (𝑥) − 𝐹 (𝑥2) for all 𝑥 ∈ 𝑋 .

Adding the first inequality for 𝑥 = 𝑥2 and the second for 𝑥 = 𝑥1 and rearranging
the result yields (6.1).

(Example 6.5 (iii) generalizes the well-known fact that if 𝑓 : ℝ → ℝ is convex and differen-
tiable, its derivative 𝑓 ′ is monotonically increasing.)

In fact, we will need the following, stronger, property, which guarantees that 𝐴 is outer
semicontinuous: A monotone operator 𝐴 : 𝑋 ⇒ 𝑋 ∗ is called maximally monotone if there
does not exist another monotone operator �̃� : 𝑋 ⇒ 𝑋 ∗ such that graph𝐴 ⊊ graph �̃�. In
other words, 𝐴 is maximal monotone if for any 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 ∗ the condition
(6.2) ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 ≥ 0 for all (𝑥, 𝑥∗) ∈ graph𝐴
implies that 𝑥∗ ∈ 𝐴(𝑥). (In other words, (6.2) holds if and only if (𝑥, 𝑥∗) ∈ graph𝐴.)
For fixed 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 ∗, the condition claims that if 𝐴 is monotone, then so is the
extension

�̃� : 𝑋 ⇒ 𝑋 ∗, 𝑥 ↦→
{
𝐴(𝑥) ∪ {𝑥∗} if 𝑥 = 𝑥,

𝐴(𝑥) if 𝑥 ≠ 𝑥 .

For𝐴 to bemaximallymonotonemeans that this is not a true extension, i.e., �̃� = 𝐴.

Example 6.6. The operator

𝐴 : ℝ⇒ ℝ, 𝑡 ↦→

{1} if 𝑡 > 0,
{0} if 𝑡 = 0,
{−1} if 𝑡 < 0,
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6 monotone operators and proximal points

is monotone but not maximally monotone, since 𝐴 is a proper subset of the monotone
operator defined by �̃�(𝑡) = sign(𝑡) = 𝜕( | · |) (𝑡) from Example 4.7.

Several useful properties follow directly from the definition.

Lemma 6.7. If 𝐴 : 𝑋 ⇒ 𝑋 ∗ is maximally monotone, then so is 𝜆𝐴 for all 𝜆 > 0.

Proof. Let 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 ∗, and assume that

0 ≤ ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 = 𝜆⟨𝜆−1𝑥∗ − 𝜆−1𝑥∗, 𝑥 − 𝑥⟩𝑋 for all (𝑥, 𝑥∗) ∈ graph 𝜆𝐴.

Since 𝑥∗ ∈ 𝜆𝐴(𝑥) if and only if 𝜆−1𝑥∗ ∈ 𝐴(𝑥) and 𝐴 is maximally monotone, this implies
that 𝜆−1𝑥∗ ∈ 𝐴(𝑥), i.e., 𝑥∗ ∈ (𝜆𝐴) (𝑥). Hence, 𝜆𝐴 is maximally monotone. □

Lemma 6.8. If 𝐴 : 𝑋 ⇒ 𝑋 ∗ is maximally monotone, then 𝐴(𝑥) is convex and closed for all
𝑥 ∈ 𝑋 .

Proof. Closedness follows from Lemma 6.10. Assume then that 𝐴(𝑥) is not convex, i.e.,
𝑥∗
𝜆
≔ 𝜆𝑥∗ + (1 − 𝜆)𝑥∗ ∉ 𝐴(𝑥) for some 𝑥∗, 𝑥∗ ∈ 𝐴(𝑥) and 𝜆 ∈ (0, 1). We then show that 𝐴 is

not maximal. To see this, we define �̃� via

�̃�(𝑦) ≔
{
𝐴(𝑦) 𝑦 ≠ 𝑥,

𝐴(𝑥) ∪ {𝑥∗
𝜆
}, 𝑦 = 𝑥,

and show that �̃� is monotone. By the definition of �̃�, it suffices to show for all 𝑦 ∈ 𝑋 and
𝑦∗ ∈ 𝐴(𝑦) that

⟨𝑥∗
𝜆
− 𝑦∗, 𝑥 − 𝑦⟩𝑋 ≥ 0.

But this follows directly from the definition of 𝑥∗
𝜆
and the monotonicity of 𝐴. □

Lemma 6.9. Let 𝑋 be a reflexive Banach space. If 𝐴 : 𝑋 ⇒ 𝑋 ∗ is maximally monotone, then
so is 𝐴−1 : 𝑋 ∗ ⇒ 𝑋 ∗∗ ≃ 𝑋 .

Proof. First, recall that the inverse𝐴−1 : 𝑋 ∗ ⇒ 𝑋 always exists as a set-valued mapping and
can be identified with a set-valued mapping from 𝑋 ∗ to 𝑋 ∗∗ with the aid of the canonical
injection 𝐽 : 𝑋 → 𝑋 ∗∗ from (1.2), i.e.,

𝐴−1(𝑥∗) ≔ {𝐽𝑥 ∈ 𝑋 ∗∗ | 𝑥∗ ∈ 𝐴(𝑥)} for all 𝑥∗ ∈ 𝑋 ∗

From this and the definition (1.2), it is clear that 𝐴−1 is monotone if and only if 𝐴 is.

Let now 𝑥∗ ∈ 𝑋 ∗ and 𝑥∗∗ ∈ 𝑋 ∗∗ be given, and assume that

(6.3) ⟨𝑥∗∗ − 𝑥∗∗, 𝑥∗ − 𝑥∗⟩𝑋 ∗ ≥ 0 for all (𝑥∗, 𝑥∗∗) ∈ graph𝐴−1.
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6 monotone operators and proximal points

Since 𝑋 is reflexive, 𝐽 is surjective such that there exists an 𝑥 ∈ 𝑋 with 𝑥∗∗ = 𝐽𝑥 . Similarly,
we can write 𝑥∗∗ = 𝐽𝑥 for some 𝑥 ∈ 𝑋 with 𝑥∗ ∈ 𝐴(𝑥). By definition of the duality pairing,
(6.3) is thus equivalent to

⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 ≥ 0

for all 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝐴(𝑥). But since𝐴 is maximally monotone, this implies that 𝑥∗ ∈ 𝐴(𝑥)
and hence 𝑥∗∗ = 𝐽𝑥 ∈ 𝐴−1(𝑥). □

We now come to the outer semicontinuity.

Lemma 6.10. Let 𝐴 : 𝑋 ⇒ 𝑋 ∗ be maximally monotone. Then 𝐴 is both weak-to-strong and
strong-to-weak-∗ outer semicontinuous.

Proof. Let 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 ∗ and consider sequences {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 with 𝑥𝑛 ⇀ 𝑥 and
{𝑥∗𝑛}𝑛∈ℕ ⊂ 𝑋 ∗ with 𝑥∗𝑛 ∈ 𝐴(𝑥𝑛) and 𝑥∗𝑛 → 𝑥∗ (or 𝑥𝑛 → 𝑥 and 𝑥∗𝑛 ∗⇀ 𝑥∗). For arbitrary 𝑥 ∈ 𝑋
and 𝑥∗ ∈ 𝐴(𝑥), the monotonicity of 𝐴 implies that

0 ≤ ⟨𝑥∗𝑛 − 𝑥∗, 𝑥𝑛 − 𝑥⟩𝑋 → ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋
since the duality pairing of strongly and weakly (or weakly-∗ and strongly) converging
sequences is convergent. Since 𝐴 is maximally monotone, we obtain that 𝑥∗ ∈ 𝐴(𝑥) and
hence𝐴 is weak-to-strong (or strong-to-weakly-∗) outer semicontinuous by Lemma 6.4. □

Since the pairing of weakly and weakly-∗ convergent sequences does not converge in
general, weak-to-weak-∗ outer semicontinuity requires additional assumptions on the two
sequences. Although we will not need to make use of it, the following notion can prove
useful in other contexts. We call a set-valuedmapping𝐴 : 𝑋 ⇒ 𝑋 ∗ BCP outer semicontinuous
(for Brezis–Crandall–Pazy), if for any sequences {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 and {𝑥∗𝑛}𝑛∈ℕ ⊂ 𝑋 ∗ with

(i) 𝑥𝑛 ⇀ 𝑥 and 𝐴(𝑥𝑛) ∋ 𝑥∗𝑛 ∗⇀ 𝑥∗,

(ii) lim sup
𝑛→∞

⟨𝑥∗𝑛 − 𝑥∗, 𝑥𝑛 − 𝑥⟩𝑋 ≤ 0,

we have 𝑥∗ ∈ 𝐴(𝑥). The following result from [Brezis et al., 1970, Lemma 1.2] (hence the
name) shows that maximally monotone operators are BCP outer semicontinuous.

Lemma 6.11. Let 𝑋 be a Banach space and let 𝐴 : 𝑋 ⇒ 𝑋 ∗ be maximally monotone. Then 𝐴
is BCP outer semicontinuous.

Proof. First, the monotonicity of 𝐴 and assumption (ii) imply that

(6.4) 0 ≤ lim inf
𝑛→∞ ⟨𝑥∗𝑛 − 𝑥∗, 𝑥𝑛 − 𝑥⟩𝑋 ≤ lim sup

𝑛→∞
⟨𝑥∗𝑛 − 𝑥∗, 𝑥𝑛 − 𝑥⟩𝑋 ≤ 0.

75



6 monotone operators and proximal points

Furthermore, from assumption (i) and the fact that 𝑋 is a Banach space, it follows that
{𝑥𝑛}𝑛∈ℕ and {𝑥∗𝑛}𝑛∈ℕ and hence also {⟨𝑥∗𝑛, 𝑥𝑛⟩𝑋 }𝑛∈ℕ are bounded. Thus there exists a sub-
sequence such that ⟨𝑥∗𝑛𝑘 , 𝑥𝑛𝑘 ⟩𝑋 → 𝐿 for some 𝐿 ∈ ℝ. Passing to the limit, and using (6.4),
we obtain that

0 = lim
𝑘→∞

⟨𝑥∗𝑛𝑘 − 𝑥∗, 𝑥𝑛𝑘 − 𝑥⟩𝑋
= lim
𝑘→∞

⟨𝑥∗𝑛𝑘 , 𝑥𝑛𝑘 ⟩𝑋 − lim
𝑘→∞

⟨𝑥∗𝑛𝑘 , 𝑥⟩𝑋 − lim
𝑘→∞

⟨𝑥∗, 𝑥𝑛𝑘 ⟩𝑋 + ⟨𝑥∗, 𝑥⟩𝑋
= 𝐿 − ⟨𝑥∗, 𝑥⟩𝑋 .

Since the limit does not depend on the subsequence, we have that ⟨𝑥∗𝑛, 𝑥𝑛⟩𝑋 → ⟨𝑥∗, 𝑥⟩𝑋 .
Let now 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝐴(𝑥) be arbitrary. Using again the monotonicity of 𝐴 and
assumption (i) together with the first claim yields

0 ≤ lim inf
𝑛→∞ ⟨𝑥∗𝑛 − 𝑥∗, 𝑥𝑛 − 𝑥⟩𝑋

≤ lim
𝑛→∞⟨𝑥

∗
𝑛, 𝑥𝑛⟩𝑋 − lim

𝑛→∞⟨𝑥
∗
𝑛, 𝑥⟩𝑋 − lim

𝑛→∞⟨𝑥
∗, 𝑥𝑛⟩𝑋 + ⟨𝑥∗, 𝑥⟩𝑋

= ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋
and hence that 𝑥∗ ∈ 𝐴(𝑥) by the maximal monotonicity of 𝐴. □

The usefulness of BCP outer semicontinuity arises from the fact that it also implies weak-
to-strong outer semicontinuity under slightly weaker conditions on 𝐴.

Lemma 6.12. Suppose 𝐴 : 𝑋 ⇒ 𝑋 ∗ is monotone (but not necessarily maximally monotone)
and BCP outer semicontinuous. Then 𝐴 is also weak-to-strong outer semicontinuous.

Proof. Let 𝑥𝑛 ⇀ 𝑥 and 𝑥∗𝑛 → 𝑥∗ with 𝑥∗𝑛 ∈ 𝐴(𝑥𝑛) for all 𝑛 ∈ ℕ. This implies that 𝑥∗𝑛 ∗⇀ 𝑥∗

as well and that {𝑥𝑛}𝑛∈ℕ is bounded. We thus have for some 𝐶 > 0 that

lim sup
𝑛→∞

⟨𝑥∗𝑛 − 𝑥∗, 𝑥𝑛 − 𝑥⟩𝑋 ≤ 𝐶 lim sup
𝑛→∞

∥𝑥∗𝑛 − 𝑥∗∥𝑋 ∗ = 0.

Hence, condition (ii) is satisfied, and the BCP outer semicontinuity yields 𝑥∗ ∈ 𝐴(𝑥). □

We now show that convex subdifferentials are maximally monotone. Although this result
(known as Rockafellar’s Theorem, see [Rockafellar, 1970]) holds in arbitrary Banach spaces,
the proof (adapted here from [Simons, 2009]) greatly simplifies in reflexive Banach spaces.

Theorem 6.13. Let 𝑋 be a reflexive Banach space and 𝐹 : 𝑋 → ℝ be proper, convex, and lower
semicontinuous. Then 𝜕𝐹 : 𝑋 ⇒ 𝑋 ∗ is maximally monotone.
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Proof. First, we already know from Example 6.5 (iii) that 𝜕𝐹 is monotone. Let now 𝑥 ∈ 𝑋
and 𝑥∗ ∈ 𝑋 ∗ be given such that

(6.5) ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 ≥ 0 for all 𝑥 ∈ 𝑋, 𝑥∗ ∈ 𝜕𝐹 (𝑥).
We consider

𝐽 : 𝑋 → ℝ, 𝑧 ↦→ 𝐹 (𝑧 + 𝑥) − ⟨𝑥∗, 𝑧⟩𝑋 + 1
2 ∥𝑧∥

2
𝑋 ,

which is proper, convex and lower semicontinuous by the assumptions on 𝐹 . Furthermore,
𝐽 is coercive by Lemma 3.9. Theorem 3.8 thus yields a 𝑧 ∈ 𝑋 with 𝐽 (𝑧) = min𝑧∈𝑋 𝐽 (𝑧). By
Theorems 4.2, 4.5, and 4.14 and Lemma 4.13 (ii) then

(6.6) 0 ∈ 𝜕𝐹 (𝑧 + 𝑥) − {𝑥∗} + 𝜕 𝑗 (𝑧),
where we have introduced 𝑗 (𝑧) ≔ 1

2 ∥𝑧∥2
𝑋
. In other words, there exists a 𝑧∗ ∈ 𝜕 𝑗 (𝑧) such that

𝑥∗ − 𝑧∗ ∈ 𝜕𝐹 (𝑧 + 𝑥). Combining Lemma 5.4 for 𝑝 = 𝑞 = 2 and Lemma 5.8, we furthermore
have that 𝑧∗ ∈ 𝜕 𝑗 (𝑧) if and only if

(6.7) ⟨𝑧∗, 𝑧⟩𝑋 =
1
2 ∥𝑧∥

2
𝑋 + 1

2 ∥𝑧
∗∥2
𝑋 ∗ .

Applying now (6.5) for 𝑥 = 𝑧 + 𝑥 and 𝑥∗ = 𝑥∗ − 𝑧∗ ∈ 𝜕𝐹 (𝑥), we obtain using (6.7) that

0 ≤ ⟨𝑥∗ − 𝑥∗ + 𝑧∗, 𝑥 − 𝑧 − 𝑥⟩𝑋 = −⟨𝑧∗, 𝑧⟩𝑋 = − 1
2 ∥𝑧

∗∥2
𝑋 ∗ − 1

2 ∥𝑧∥
2
𝑋 ,

implying that both 𝑧 = 0 and 𝑧∗ = 0. Hence by (6.6) we conclude that 𝑥∗ ∈ 𝜕𝐹 (𝑥), which
shows that 𝜕𝐹 is maximally monotone. □

The argument in the preceding proof can be modified to give a characterization of maximal
monotonicity for general monotone operators; this is known as Minty’s Theorem and is
a central result in the theory of monotone operators. We again make use of the duality
mapping 𝜕 𝑗 : 𝑋 ⇒ 𝑋 ∗ for 𝑗 (𝑥) = 1

2 ∥𝑥 ∥2
𝑋
, noting for later use that if 𝑋 is a Hilbert space

(and we identify 𝑋 ∗ with 𝑋 ), then 𝜕 𝑗 = Id.

Theorem 6.14 (Minty). Let 𝑋 be a reflexive Banach space and 𝐴 : 𝑋 ⇒ 𝑋 ∗ be monotone with
graph𝐴 ≠ ∅. If 𝐴 is maximally monotone, then 𝜕 𝑗 +𝐴 is surjective.

Proof. We proceed similarly as in the proof of Theorem 6.13 by constructing a functional
𝐹𝐴 which plays the same role for𝐴 as 𝐹 does for 𝜕𝐹 . Specifically, we define for a maximally
monotone operator 𝐴 : 𝑋 ⇒ 𝑋 ∗ with graph𝐴 ≠ ∅ the Fitzpatrick functional

(6.8) 𝐹𝐴 : 𝑋 × 𝑋 ∗ → (−∞,∞], (𝑥, 𝑥∗) ↦→ sup
(𝑧,𝑧∗)∈graph𝐴

(⟨𝑥∗, 𝑧⟩𝑋 + ⟨𝑧∗, 𝑥⟩𝑋 − ⟨𝑧∗, 𝑧⟩𝑋 ) ,

which can be written equivalently as

(6.9) 𝐹𝐴 (𝑥, 𝑥∗) = ⟨𝑥∗, 𝑥⟩𝑋 − inf
(𝑧,𝑧∗)∈graph𝐴

⟨𝑥∗ − 𝑧∗, 𝑥 − 𝑧⟩𝑋 .

Each characterization implies useful properties.
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(i) By maximal monotonicity of 𝐴, we have by definition that ⟨𝑥∗ − 𝑧∗, 𝑥 − 𝑧⟩𝑋 ≥
0 for all (𝑧, 𝑧∗) ∈ graph𝐴 if and only if (𝑥, 𝑥∗) ∈ graph𝐴. In particular, for all
(𝑥, 𝑥∗) ∉ graph𝐴 there exists (𝑧, 𝑧∗) ∈ graph𝐴 with ⟨𝑥∗ − 𝑧∗, 𝑥 − 𝑧⟩𝑋 < 0, and
therefore inf (𝑧,𝑧∗)∈graph𝐴⟨𝑥∗ − 𝑧∗, 𝑥 − 𝑧⟩𝑋 < 0 for all (𝑥, 𝑥∗) ∉ graph𝐴. Furthermore,
for (𝑥, 𝑥∗) ∈ graph𝐴 the infimum is attained in (𝑧, 𝑧∗) = (𝑥, 𝑥∗)). Hence (6.9) implies
that 𝐹𝐴 (𝑥, 𝑥∗) ≥ ⟨𝑥∗, 𝑥⟩𝑋 with equality for (𝑥, 𝑥∗) ∈ graph𝐴. Since graph𝐴 ≠ ∅, this
shows that 𝐹𝐴 is proper.

(ii) On the other hand, the definition (6.8) yields that

𝐹𝐴 = (𝐺𝐴)∗ for 𝐺𝐴 (𝑧∗, 𝑧) = ⟨𝑧∗, 𝑧⟩𝑋 + 𝛿graph𝐴−1 (𝑧∗, 𝑧)
(since (𝑧, 𝑧∗) ∈ graph𝐴 if and only if (𝑧∗, 𝑧) ∈ graph𝐴−1). Furthermore, since
graph𝐴 ≠ ∅ was assumed, 𝐹𝐴 is the Fenchel conjugate of a proper functional and
therefore convex and lower semicontinuous.

As a first step, we show that 0 ∈ ran(𝜕 𝑗 +𝐴). We set Ξ ≔ 𝑋 ×𝑋 ∗ as well as 𝜉 ≔ (𝑥, 𝑥∗) ∈ Ξ
and consider the functional

𝐽𝐴 : Ξ → ℝ, 𝜉 ↦→ 𝐹𝐴 (𝜉) + 1
2 ∥𝜉 ∥

2
Ξ.

We first note that property (i) implies for all 𝜉 ∈ Ξ that

(6.10) 𝐽𝐴 (𝜉) = 𝐹𝐴 (𝜉) + 1
2 ∥𝜉 ∥

2
Ξ = 𝐹𝐴 (𝑥, 𝑥∗) + 1

2 ∥𝑥 ∥
2
𝑋 + 1

2 ∥𝑥
∗∥2
𝑋 ∗

≥ ⟨𝑥∗, 𝑥⟩𝑋 + 1
2 ∥𝑥 ∥

2
𝑋 + 1

2 ∥𝑥
∗∥2
𝑋 ∗

≥ 0,
where the last inequality follows from the Fenchel–Young inequality for 𝑗 applied to
(𝑥,−𝑥∗). Furthermore, 𝐽𝐴 is proper, convex, lower semicontinuous, and (by Lemma 3.9)
coercive. Theorem 3.8 thus yields a 𝜉 ≔ (𝑥, 𝑥∗) ∈ Ξ with 𝐽𝐴 (𝜉) = min𝜉∈Ξ 𝐽𝐴 (𝜉), which by
Theorems 4.2, 4.5, and 4.14 satisfies that

0 ∈ 𝜕𝐽𝐴 (𝜉) = 𝜕
(

1
2 ∥𝜉 ∥

2
𝑋

)
+ 𝜕𝐹𝐴 (𝜉),

i.e., there exists a 𝜉∗ = (�̄�∗, �̄�) ∈ Ξ∗ ≃ 𝑋 ∗ × 𝑋 (since 𝑋 is reflexive) such that 𝜉∗ ∈ 𝜕𝐹𝐴 (𝜉)
and −𝜉∗ ∈ 𝜕( 1

2 ∥𝜉 ∥2
𝑋
).

By definition of the subdifferential, we thus have for all 𝜉 ∈ Ξ that

𝐹𝐴 (𝜉) ≥ 𝐹𝐴 (𝜉) + ⟨𝜉∗, 𝜉 − 𝜉⟩Ξ = 𝐽𝐴 (𝜉) + 1
2 ∥𝜉

∗∥2
Ξ∗ + ⟨𝜉∗, 𝜉⟩Ξ ≥ 1

2 ∥𝜉
∗∥2

Ξ + ⟨𝜉∗, 𝜉⟩Ξ,
where the second step uses again the Fenchel–Young inequality holding with equality for
(𝜉,−𝜉∗), and the last step follows from (6.10). Property (i) then implies for all (𝑥, 𝑥∗) ∈
graph𝐴 that

⟨𝑥∗, 𝑥⟩𝑋 = 𝐹𝐴 (𝑥, 𝑥∗) ≥ 1
2 ∥�̄�

∗∥2
𝑋 ∗ + 1

2 ∥�̄� ∥2
𝑋 + ⟨�̄�∗, 𝑥⟩𝑋 + ⟨𝑥∗, �̄�⟩𝑋 .
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Adding ⟨�̄�∗, �̄�⟩𝑋 on both sides and rearranging yields

(6.11) ⟨𝑥∗ − �̄�∗, 𝑥 − �̄�⟩𝑋 ≥ ⟨�̄�∗, �̄�⟩𝑋 + 1
2 ∥�̄�

∗∥2
𝑋 ∗ + 1

2 ∥�̄� ∥2
𝑋 ≥ 0,

again by the Fenchel–Young inequality. The maximal monotonicity of 𝐴 thus yields that
�̄�∗ ∈ 𝐴(�̄�), i.e., (�̄�, �̄�∗) ∈ graph𝐴. Inserting this for (𝑥, 𝑥∗) in (6.11) then shows that

⟨�̄�∗, �̄�⟩𝑋 + 1
2 ∥�̄�

∗∥2
𝑋 ∗ + 1

2 ∥�̄� ∥2
𝑋 = 0.

Hence the Fenchel–Young inequality for 𝜕 𝑗 holds with equality at (�̄�,−�̄�∗), implying
−�̄�∗ ∈ 𝜕 𝑗 (�̄�). Together, we obtain that 0 = −�̄�∗ + �̄�∗ ∈ (𝜕 𝑗 +𝐴) (�̄�).
Finally, let 𝑧∗ ∈ 𝑋 ∗ be arbitrary and set 𝐵 : 𝑋 ⇒ 𝑋 ∗, 𝑥 ↦→ {−𝑧∗}+𝐴(𝑥). Using the definition,
it is straightforward to verify that𝐵 is maximally monotone with graph𝐵 ≠ ∅ as well. As we
have just shown, there now exists a 𝑥∗ ∈ 𝑋 ∗ with 0 ∈ (𝜕 𝑗 + 𝐵) (𝑥∗) = {𝑥∗} + {−𝑧∗} +𝐴(𝑥∗),
i.e., 𝑧∗ ∈ (𝜕 𝑗 +𝐴) (𝑥∗). Hence 𝜕 𝑗 +𝐴 is surjective. □

6.3 resolvents and proximal points

The proof of Theorem 6.13 is based on associating to any 𝑥∗ ∈ 𝜕𝐹 (𝑥) an element 𝑧 ∈ 𝑋
as the minimizer of a suitable functional. If 𝑋 is a Hilbert space, this functional is even
strictly convex and hence the minimizer 𝑧 is unique. This property can be exploited to
define a new single-valued mapping that is more useful for algorithms than the set-valued
subdifferential mapping. For this purpose, we restrict the discussion in the remainder of
this chapter to Hilbert spaces (but see Remark 6.29 below). This allows identifying 𝑋 ∗ with
𝑋 ; in particular, we will from now on identify the set 𝜕𝐹 (𝑥) ⊂ 𝑋 ∗ of subderivatives with
the corresponding set in 𝑋 of subgradients (i.e., their Riesz representations). By the same
token, we will also use the same notation for inner products as for duality pairings to avoid
the danger of confusing pairs of elements (𝑥, 𝑥∗) ∈ graph 𝜕𝐹 with their inner product.

We can then define for a maximally monotone operator 𝐴 : 𝑋 ⇒ 𝑋 with graph𝐴 ≠ ∅ the
resolvent

R𝐴 : 𝑋 ⇒ 𝑋, R𝐴 (𝑥) = (Id +𝐴)−1𝑥,

as well as for a proper, convex, and lower semicontinuous functional 𝐹 : 𝑋 → ℝ the
proximal point mapping

(6.12) prox𝐹 : 𝑋 → 𝑋, prox𝐹 (𝑥) = arg min
𝑧∈𝑋

1
2 ∥𝑧 − 𝑥 ∥

2
𝑋 + 𝐹 (𝑧).

Since a similar argument as in the proof of Theorem 6.13 shows that 𝑤 ∈ R𝜕𝐹 (𝑥) is
equivalent to the necessary and sufficient conditions for the proximal point 𝑤 to be a
minimizer of the strictly convex functional in (6.12), we have that

(6.13) prox𝐹 = (Id + 𝜕𝐹 )−1 = R𝜕𝐹 .
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6 monotone operators and proximal points

Resolvents of monotone and, in particular, maximal monotone operators have useful prop-
erties.

Lemma 6.15. If 𝐴 : 𝑋 ⇒ 𝑋 is monotone, R𝐴 is firmly nonexpansive, i.e.,

(6.14) ∥𝑧1 − 𝑧2∥2
𝑋 ≤ ⟨𝑥1 − 𝑥2, 𝑧1 − 𝑧2⟩𝑋 for all (𝑥1, 𝑧1), (𝑥2, 𝑧2) ∈ graphR𝐴

or equivalently,

(6.15) ∥𝑧1 − 𝑧2∥2
𝑋 + ∥(𝑥1 − 𝑧1) − (𝑥2 − 𝑧2)∥2

𝑋 ≤ ∥𝑥1 − 𝑥2∥2
𝑋

for all (𝑥1, 𝑧1), (𝑥2, 𝑧2) ∈ graphR𝐴 .

Proof. Let 𝑥1, 𝑥2 ∈ domR𝐴 as well as 𝑧1 ∈ R𝐴 (𝑥1) and 𝑧2 ∈ R𝐴 (𝑥2). By definition of the
resolvent, this implies that 𝑥1 − 𝑧1 ∈ 𝐴(𝑧1) and 𝑥2 − 𝑧2 ∈ 𝐴(𝑧2). By the monotonicity of 𝐴,
we thus have

0 ≤ ⟨(𝑥1 − 𝑧1) − (𝑥2 − 𝑧2), 𝑧1 − 𝑧2⟩𝑋 ,
which after rearranging yields (6.14). The equivalence of (6.14) and (6.15) is straightforward
to verify using binomial expansion. □

Corollary 6.16. Let𝐴 : 𝑋 ⇒ 𝑋 be maximally monotone with graph𝐴 ≠ ∅. Then R𝐴 : 𝑋 → 𝑋

is single-valued and Lipschitz continuous with constant 𝐿 = 1.

Proof. Under the stated assumptions, Id +𝐴 is surjective by Theorem 6.14, which implies
that R𝐴 (𝑥) ≠ ∅ for all 𝑥 ∈ 𝑋 , i.e., domR𝐴 = 𝑋 . Let now 𝑥 ∈ 𝑋 and 𝑧1, 𝑧2 ∈ R𝐴 (𝑥). Since 𝐴
is monotone, R𝐴 is nonexpansive by Lemma 6.15, which yields both single-valuedness of
R𝐴 (by taking 𝑥1 = 𝑥2 = 𝑥 implies 𝑧1 = 𝑧2) and its Lipschitz continuity (by applying the
Cauchy–Schwarz inequality). □

In particular, by Theorem 6.13, this holds for the proximal point mapping prox𝐹 : 𝑋 → 𝑋

of a proper, convex, and lower semicontinuous functional 𝐹 : 𝑋 → ℝ.

Remark 6.17. Conversely, it can be shown that every nonexpansive mapping 𝑇 : 𝑋 → 𝑋 that
satisfies 𝑇 (𝑥) ∈ 𝜕𝐺 (𝑥) for all 𝑥 ∈ 𝑋 for some proper, convex, and lower semicontinuous functional
𝐺 : 𝑋 → ℝ is the proximal mapping of some proper, convex, and lower semicontinuous functional
𝐹 : 𝑋 → ℝ; see [Gribonval and Nikolova, 2020; Moreau, 1965].

Lipschitz continuous mappings with constant 𝐿 = 1 are also called nonexpansive. A related
concept that is sometimes used is the following. A mapping𝑇 : 𝑋 → 𝑋 is called 𝛼-averaged
for some 𝛼 ∈ (0, 1), if 𝑇 = (1 − 𝛼)Id + 𝛼 𝐽 for some nonexpansive 𝐽 : 𝑋 → 𝑋 . We then have
the following relation.

Lemma 6.18. Let𝑇 : 𝑋 → 𝑋 . Then𝑇 is firmly nonexpansive if and only if𝑇 is (1/2)-averaged.
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6 monotone operators and proximal points

Proof. Suppose 𝑇 is (1/2)-averaged. Then 𝑇 = 1
2 (Id + 𝐽 ) for some nonexpansive 𝐽 . We

compute

∥𝑇 (𝑥) −𝑇 (𝑦)∥2
𝑋 =

1
4

(∥ 𝐽 (𝑥) − 𝐽 (𝑦)∥2
𝑋 + 2⟨𝐽 (𝑥) − 𝐽 (𝑦), 𝑥 − 𝑦⟩𝑋 + ∥𝑥 − 𝑦 ∥2

𝑋

)
≤ 1

2
(⟨𝐽 (𝑥) − 𝐽 (𝑦), 𝑥 − 𝑦⟩𝑋 + ∥𝑥 − 𝑦 ∥2

𝑋

)
= ⟨𝑇 (𝑥) −𝑇 (𝑦), 𝑥 − 𝑦⟩𝑋 .

Thus 𝑇 is firmly nonexpansive.

Suppose then that 𝑇 is firmly nonexpansive. If we show that 𝐽 ≔ 2𝑇 − Id is nonexpansive,
it follows that 𝑇 is (1/2)-averaged. This is established by the simple calculations

∥ 𝐽 (𝑥) − 𝐽 (𝑦)∥2
𝑋 = 4∥𝑇 (𝑥) −𝑇 (𝑦)∥2

𝑋 − 4⟨𝑇 (𝑥) −𝑇 (𝑦), 𝑥 − 𝑦⟩𝑋 + ∥𝑥 − 𝑦 ∥2
𝑋

≤ ∥𝑥 − 𝑦 ∥2
𝑋 .

This completes the proof. □

Like maximally monotone operators, 𝛼-averaged operators always have outer semiconti-
nuity properties. To show this, we will use that in Hilbert spaces, the converse of Minty’s
Theorem 6.14 holds (with the duality mapping 𝜕 𝑗 = Id).

Lemma 6.19. Let 𝐴 : 𝑋 ⇒ 𝑋 be monotone. If Id + 𝐴 is surjective, then 𝐴 is maximally
monotone.

Proof. Consider 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 with

(6.16) ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 ≥ 0 for all (𝑥, 𝑥∗) ∈ graph𝐴.

If Id +𝐴 is surjective, then for 𝑥 + 𝑥∗ ∈ 𝑋 there exist a 𝑧 ∈ 𝑋 and a 𝑧∗ ∈ 𝐴(𝑧) with

(6.17) 𝑥 + 𝑥∗ = 𝑧 + 𝑧∗ ∈ (Id +𝐴)𝑧.

Inserting (𝑥, 𝑥∗) = (𝑧, 𝑧∗) into (6.16) then yields that

0 ≤ ⟨𝑥∗ − 𝑧∗, 𝑥 − 𝑧⟩𝑋 = ⟨𝑧 − 𝑥, 𝑥 − 𝑧⟩𝑋 = −∥𝑥 − 𝑧∥2
𝑋 ≤ 0,

i.e., 𝑥 = 𝑧. From (6.17) we further obtain 𝑥∗ = 𝑧∗ ∈ 𝐴(𝑧) = 𝐴(𝑥), and hence 𝐴 is maximally
monotone. □

Lemma 6.20. Let𝑇 : 𝑋 → 𝑋 be 𝛼-averaged. Then𝑇 is weak-to-strong and strong-to-weakly-∗
outer semicontinuous, and the set of fixed points 𝑥 = 𝑇 (𝑥) of 𝑇 is convex and closed.
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6 monotone operators and proximal points

Proof. Let 𝑇 = (1 − 𝛼)Id + 𝛼 𝐽 for some nonexpansive operator 𝐽 : 𝑋 → 𝑋 . Then clearly
𝑥 ∈ 𝑋 is a fixed point of 𝑇 if and only if 𝑥 is a fixed point of 𝐽 . It thus suffices to show the
claim for the fixed-point set {𝑥 | 𝑥 = 𝐽 (𝑥)} = (Id − 𝐽 )−1(0) of a nonexpansive operator 𝐽 .
By Lemmas 6.8 to 6.10, we thus only need to show that Id − 𝐽 is maximally monotone.

First, Id− 𝐽 is clearly monotone. Moreover, 2Id− 𝐽 = Id+(Id− 𝐽 ) is surjective since otherwise
2𝑥 − 𝐽 (𝑥) = 2𝑦 − 𝐽 (𝑦) for 𝑥 ≠ 𝑦 , which together with the assumed nonexpansivity would
lead to the contradiction 0 ≠ 2∥𝑥 − 𝑦 ∥ ≤ ∥𝑥 − 𝑦 ∥. Lemma 6.19 then shows that Id − 𝐽 is
maximally monotone, and the claim follows. □

The following useful result allows characterizing minimizers of convex functionals as
proximal points.

Lemma 6.21. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous, and 𝑥, 𝑥∗ ∈ 𝑋 .
Then for any 𝛾 > 0,

𝑥∗ ∈ 𝜕𝐹 (𝑥) ⇔ 𝑥 = prox𝛾𝐹 (𝑥 + 𝛾𝑥∗).

Proof. Multiplying both sides of the subdifferential inclusion by 𝛾 > 0 and adding 𝑥 yields
that

𝑥∗ ∈ 𝜕𝐹 (𝑥) ⇔ 𝑥 + 𝛾𝑥∗ ∈ (Id + 𝛾𝜕𝐹 ) (𝑥)
⇔ 𝑥 ∈ (Id + 𝛾𝜕𝐹 )−1(𝑥 + 𝛾𝑥∗)
⇔ 𝑥 = prox𝛾𝐹 (𝑥 + 𝛾𝑥∗),

where in the last step we have used that 𝛾𝜕𝐹 = 𝜕(𝛾𝐹 ) by Lemma 4.13 (i) and hence that
prox𝛾𝐹 = R𝜕(𝛾𝐹 ) = R𝛾𝜕𝐹 . □

By applying Lemma 6.21 to the Fermat principle 0 ∈ 𝜕𝐹 (𝑥), we obtain the following
fixed-point characterization of minimizers of 𝐹 .

Corollary 6.22. Let 𝐹 : 𝑋 → ℝ be proper, convex and lower semicontinuous, and 𝛾 > 0 be
arbitrary. Then 𝑥 ∈ dom 𝐹 is a minimizer of 𝐹 if and only if

𝑥 = prox𝛾𝐹 (𝑥).

This simple result should not be underestimated: It allows replacing (explicit) set inclusions
in optimality conditions by equivalent (implicit) Lipschitz continuous equations, which (as
we will show in following chapters) can be solved by fixed-point iteration or Newton-type
methods.

We can also derive a generalization of the orthogonal decomposition of vector spaces.
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6 monotone operators and proximal points

Theorem 6.23 (Moreau decomposition). Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower
semicontinuous. Then we have for all 𝑥 ∈ 𝑋 that

𝑥 = prox𝐹 (𝑥) + prox𝐹 ∗ (𝑥).

Proof. Setting𝑤 = prox𝐹 (𝑥), Lemmas 5.8 and 6.21 for 𝛾 = 1 imply that

𝑤 = prox𝐹 (𝑥) = prox𝐹 (𝑤 + (𝑥 −𝑤)) ⇔ 𝑥 −𝑤 ∈ 𝜕𝐹 (𝑤)
⇔ 𝑤 ∈ 𝜕𝐹 ∗(𝑥 −𝑤)
⇔ 𝑥 −𝑤 = prox𝐹 ∗ ((𝑥 −𝑤) +𝑤) = prox𝐹 ∗ (𝑥). □

The following calculus rules will prove useful.

Lemma 6.24. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous. Then,

(i) for 𝜆 ≠ 0 and 𝑧 ∈ 𝑋 we have with 𝐻 (𝑥) ≔ 𝐹 (𝜆𝑥 + 𝑧) that
prox𝐻 (𝑥) = 𝜆−1(prox𝜆2𝐹 (𝜆𝑥 + 𝑧) − 𝑧);

(ii) for 𝛾 > 0 we have that

prox𝛾𝐹 ∗ (𝑥) = 𝑥 − 𝛾 prox𝛾−1𝐹 (𝛾−1𝑥);

(iii) for proper, convex, lower semicontinuous𝐺 : 𝑌 → ℝ and𝛾 > 0 we have with𝐻 (𝑥, 𝑦) ≔
𝐹 (𝑥) +𝐺 (𝑦) that

prox𝛾𝐻 (𝑥, 𝑦) =
(
prox𝛾𝐹 (𝑥)
prox𝛾𝐺 (𝑦)

)
.

Proof. (i): By definition,

prox𝐻 (𝑥) = arg min
𝑤∈𝑋

1
2 ∥𝑤 − 𝑥 ∥2

𝑋 + 𝐹 (𝜆𝑤 + 𝑧) =: �̄� .

Now note that since 𝑋 is a vector space,

min
𝑤∈𝑋

1
2 ∥𝑤 − 𝑥 ∥2

𝑋 + 𝐹 (𝜆𝑤 + 𝑧) = min
𝑣∈𝑋

1
2 ∥𝜆

−1(𝑣 − 𝑧) − 𝑥 ∥2
𝑋 + 𝐹 (𝑣),

and the respective minimizers �̄� and 𝑣 are related by 𝑣 = 𝜆�̄� + 𝑧. The claim then follows
from

𝑣 = arg min
𝑣∈𝑋

1
2 ∥𝜆

−1(𝑣 − 𝑧) − 𝑥 ∥2
𝑋 + 𝐹 (𝑣)

= arg min
𝑣∈𝑋

1
2𝜆2 ∥𝑣 − (𝜆𝑥 + 𝑧)∥2

𝑋 + 𝐹 (𝑣)

= arg min
𝑣∈𝑋

1
2 ∥𝑣 − (𝜆𝑥 + 𝑧)∥2

𝑋 + 𝜆2𝐹 (𝑣)

= prox𝜆2𝐹 (𝜆𝑥 + 𝑧).
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(ii): Theorem 6.23, Lemma 5.7 (i), and (i) for 𝜆 = 𝛾−1 and 𝑧 = 0 together imply that

prox𝛾𝐹 (𝑥) = 𝑥 − prox(𝛾𝐹 )∗ (𝑥)
= 𝑥 − prox𝛾𝐹 ∗◦(𝛾−1Id) (𝑥)
= 𝑥 − 𝛾 prox𝛾 (𝛾−2𝐹 ∗) (𝛾−1𝑥).

Applying this to 𝐹 ∗ and using that 𝐹 ∗∗ = 𝐹 by Theorem 5.1 (iii) now yields the claim.

(iii): By definition of the norm on the product space 𝑋 × 𝑌 , we have that

prox𝛾𝐻 (𝑥, 𝑦) = arg min
(𝑢,𝑣)∈𝑋×𝑌

1
2 ∥(𝑢, 𝑣) − (𝑥, 𝑦)∥2

𝑋×𝑌 + 𝛾𝐻 (𝑢, 𝑣)

= arg min
𝑢∈𝑋,𝑣∈𝑌

(
1
2 ∥𝑢 − 𝑥 ∥2

𝑋 + 𝛾𝐹 (𝑢)
)
+

(
1
2 ∥𝑣 − 𝑦 ∥

2
𝑌 + 𝛾𝐺 (𝑣)

)
.

Since there are no mixed terms in 𝑢 and 𝑣 , the two terms in parentheses can be minimized
separately. Hence, prox𝛾𝐻 (𝑥, 𝑦) = (𝑢, 𝑣) for

𝑢 = arg min
𝑢∈𝑋

1
2 ∥𝑢 − 𝑥 ∥2

𝑋 + 𝛾𝐹 (𝑢) = prox𝛾𝐹 (𝑥),

𝑣 = arg min
𝑣∈𝑌

1
2 ∥𝑣 − 𝑦 ∥

2
𝑌 + 𝛾𝐺 (𝑣) = prox𝛾𝐺 (𝑥) . □

Computing proximal points is difficult in general since evaluating prox𝐹 by its definition
entails minimizing 𝐹 . In some cases, however, it is possible to give an explicit formula for
prox𝐹 .

Example 6.25. We first consider scalar functions 𝑓 : ℝ → ℝ.

(i) 𝑓 (𝑡) = 1
2 |𝑡 |2. Since 𝑓 is differentiable, we can set the derivative of 1

2 (𝑠 − 𝑡)2 + 𝛾

2𝑠
2

to zero and solve for 𝑠 to obtain prox𝛾 𝑓 (𝑡) = (1 + 𝛾)−1𝑡 .

(ii) 𝑓 (𝑡) = |𝑡 |. By Example 4.7, we have that 𝜕𝑓 (𝑡) = sign(𝑡); hence 𝑠 ≔ prox𝛾 𝑓 (𝑡) =
(Id +𝛾 sign)−1(𝑡) if and only if 𝑡 ∈ {𝑠} +𝛾 sign(𝑠). Let 𝑡 be given and assume this
holds for some 𝑠 . We now proceed by case distinction.

Case 1: 𝑠 > 0. This implies that 𝑡 = 𝑠 + 𝛾 , i.e., 𝑠 = 𝑡 − 𝛾 , and hence that 𝑡 > 𝛾 .

Case 2: 𝑠 < 0. This implies that 𝑡 = 𝑠 − 𝛾 , i.e., 𝑠 = 𝑡 + 𝛾 , and hence that 𝑡 < −𝛾 .
Case 3: 𝑠 = 0. This implies that 𝑡 ∈ 𝛾 [−1, 1] = [−𝛾,𝛾].
Since this yields a complete and disjoint case distinction for 𝑡 , we can conclude
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that

prox𝛾 𝑓 (𝑡) =

𝑡 − 𝛾 if 𝑡 > 𝛾,
0 if 𝑡 ∈ [−𝛾,𝛾],
𝑡 + 𝛾 if 𝑡 < −𝛾 .

This mapping is also known as the soft-shrinkage or ]soft-thresholding operator.

(iii) 𝑓 (𝑡) = 𝛿 [−1,1] (𝑡). We can proceed here in the same way as in (ii), but for the sake
of variety we instead use Lemma 6.24 (ii) to compute the proximal point mapping
from that of 𝑓 ∗(𝑡) = |𝑡 | (see Example 5.3 (ii)) via

prox𝛾 𝑓 (𝑡) = 𝑡 − 𝛾 prox𝛾−1 𝑓 ∗ (𝛾−1𝑡)

=


𝑡 − 𝛾 (𝛾−1𝑡 − 𝛾−1) if 𝛾−1𝑡 > 𝛾−1,

𝑡 − 0 if 𝛾−1𝑡 ∈ [−𝛾−1, 𝛾−1],
𝑡 − 𝛾 (𝛾−1𝑡 + 𝛾−1) if 𝛾−1𝑡 < −𝛾−1

=


1 if 𝑡 > 1,
𝑡 if 𝑡 ∈ [−1, 1],

−1 if 𝑡 < −1.

For every 𝛾 > 0, the proximal point of 𝑡 is thus its projection onto [−1, 1].

Example 6.26. We can generalize Example 6.25 to 𝑋 = ℝ𝑁 (endowed with the Euclidean
inner product) by applying Lemma 6.24 (iii) 𝑁 times. We thus obtain componentwise

(i) for 𝐹 (𝑥) = 1
2 ∥𝑥 ∥2

2 =
∑𝑁
𝑖=1

1
2𝑥

2
𝑖 that

[prox𝛾𝐹 (𝑥)]𝑖 =
(

1
1 + 𝛾

)
𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑁 ;

(ii) for 𝐹 (𝑥) = ∥𝑥 ∥1 =
∑𝑁
𝑖=1 |𝑥𝑖 | that

[prox𝛾𝐹 (𝑥)]𝑖 = ( |𝑥𝑖 | − 𝛾)+ sign(𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑁 ;

(iii) for 𝐹 (𝑥) = 𝛿𝔹∞ (𝑥) =
∑𝑁
𝑖=1 𝛿 [−1,1] (𝑥𝑖) that

[prox𝛾𝐹 (𝑥)]𝑖 = 𝑥𝑖 − (𝑥𝑖 − 1)+ − (𝑥𝑖 + 1)− =
𝑥𝑖

max{1, |𝑥𝑖 |} , 1 ≤ 𝑖 ≤ 𝑁 .

Here we have used the convenient notation (𝑡)+ ≔ max{𝑡, 0} and (𝑡)− ≔ min{𝑡, 0}.

Many more examples of projection operators and proximal mappings can be found in
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6 monotone operators and proximal points

[Cegielski, 2012], [Parikh and Boyd, 2014, § 6.5], [Beck, 2017], as well as at https://www.
proximity-operator.net.

Since the subdifferential of convex integral functionals can be evaluated pointwise by
Theorem 4.11, the same holds for the definition (6.13) of the proximal point mapping.

Corollary 6.27. Let 𝑓 : ℝ → ℝ be proper, convex, and lower semicontinuous, and 𝐹 : 𝐿2(Ω) →
ℝ be defined by superposition as in Lemma 3.7. Then we have for all 𝛾 > 0 and 𝑢 ∈ 𝐿2(Ω)
that

[prox𝛾𝐹 (𝑢)] (𝑥) = prox𝛾 𝑓 (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω.

Example 6.28. Let 𝑋 be a Hilbert space. Similarly to Example 6.25 one can show that

(i) for 𝐹 = 1
2 ∥ · ∥2

𝑋
= 1

2 ⟨·, ·⟩𝑋 , that

prox𝛾𝐹 (𝑥) =
(

1
1 + 𝛾

)
𝑥 ;

(ii) for 𝐹 = ∥ · ∥𝑋 , using a case distinction as in Theorem 4.6, that

prox𝛾𝐹 (𝑥) =
(
1 − 𝛾

∥𝑥 ∥𝑋

)+
𝑥 ;

(iii) for 𝐹 = 𝛿𝐶 with 𝐶 ⊂ 𝑋 nonempty, convex, and closed, that by definition

prox𝛾𝐹 (𝑥) = proj𝐶 (𝑥) ≔ arg min
𝑧∈𝐶

∥𝑧 − 𝑥 ∥𝑋

the metric projection of 𝑥 onto 𝐶; the proximal point mapping thus generalizes
the concept projection onto convex sets. Explicit or at least constructive formulas
for the projection onto different classes of sets can be found in [Cegielski, 2012,
Chapter 4.1].

Remark 6.29. The results of this section can be extended to (reflexive) Banach spaces if the identity is
replaced by the duality mapping 𝜕 𝑗 : 𝑋 ⇒ 𝑋 ∗ for 𝑗 (𝑥) = 1

2 ∥𝑥 ∥2
𝑋 . If the norm is differentiable (which

is the case if the unit ball of 𝑋 ∗ is strictly convex as for, e.g., 𝑋 = 𝐿𝑝 (Ω) with 𝑝 ∈ (1,∞)), the duality
mapping is in fact single-valued [Cioranescu, 1990, Theorem 2.16], and hence the corresponding
resolvent (𝜕 𝑗 +𝐴)−1 is well-defined. However, the proximal mapping need no longer be Lipschitz
continuous, although the definition can be modified to obtain uniform continuity; see [Bačák and
Kohlenbach, 2018]. Similarly, the Moreau decomposition (Theorem 6.23) needs to be modified
appropriately; see [Combettes and Reyes, 2013]. The main difficulty from our point of view, however,
lies in the evaluation of the proximal mapping, which then rarely admits a closed form even for
simple functionals.
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7 SMOOTHNESS AND CONVEXITY

Before we turn to algorithms for the solution of nonsmooth optimization problems, we
derive consequences of convexity for differentiable functionals that will be useful in prov-
ing convergence of splitting methods for functionals involving a smooth component. In
particular, we will show that Lipschitz continuous differentiability is linked via Fenchel
duality to strong convexity.

7.1 smoothness

We now derive useful consequences of Lipschitz differentiability and their relation to
convexity. Recall from Theorem 4.5 that for 𝐹 : 𝑋 → ℝ convex and Gâteaux differentiable,
𝜕𝐹 (𝑥) = {𝐷𝐹 (𝑥)} (which can be identified with {∇𝐹 (𝑥)} ⊂ 𝑋 in Hilbert spaces).

Lemma 7.1. Let 𝑋 be a Banach space and let 𝐹 : 𝑋 → ℝ be Gâteaux differentiable. Consider
the properties:

(i) The property

(7.1) 𝐹 (𝑦) ≤ 𝐹 (𝑥) + ⟨𝐷𝐹 (𝑦), 𝑦 − 𝑥⟩𝑋 − 1
2𝐿 ∥𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑦)∥

2
𝑋 ∗ for all 𝑥, 𝑦 ∈ 𝑋 .

(ii) The co-coercivity of 𝐷𝐹 with factor 𝐿−1:

(7.2) 𝐿−1∥𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑦)∥2
𝑋 ∗ ≤ ⟨𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑦), 𝑥 − 𝑦⟩𝑋 for all 𝑥, 𝑦 ∈ 𝑋 .

(iii) Lipschitz continuity of 𝐷𝐹 with factor 𝐿:

(7.3) ∥𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑦)∥𝑋 ∗ ≤ 𝐿∥𝑥 − 𝑦 ∥𝑋 for all 𝑥, 𝑦 ∈ 𝑋 .

(iv) The property

(7.4) ⟨𝐷𝐹 (𝑥 + ℎ) − 𝐷𝐹 (𝑥), ℎ⟩𝑋 ≤ 𝐿∥ℎ∥2
𝑋 for all 𝑥, ℎ ∈ 𝑋 .
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7 smoothness and convexity

(v) The smoothness (also known as descent lemma) of 𝐹 with factor 𝐿:

(7.5) 𝐹 (𝑥 + ℎ) ≤ 𝐹 (𝑥) + ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 + 𝐿2 ∥ℎ∥
2
𝑋 for all 𝑥, ℎ ∈ 𝑋 .

(vi) The uniform smoothness of 𝐹 with factor 𝐿:

(7.6) 𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) + 𝜆(1 − 𝜆)𝐿2 ∥𝑥 − 𝑦 ∥2
𝑋

≥ 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦) for all 𝑥, 𝑦 ∈ 𝑋, 𝜆 ∈ [0, 1] .

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇔ (v) ⇔ (vi). If 𝐹 is convex and 𝑋 is reflexive, then all the
properties are equivalent.

Proof. (i)⇒ (ii): Summing the estimate (7.1) with the same estimate with 𝑥 and 𝑦 exchanged,
we obtain (7.2).

(ii) ⇒ (iii): This follows immediately from (1.1).

(iii) ⇒ (iv): Taking 𝑦 = 𝑥 + ℎ and multiplying (7.3) by ∥ℎ∥𝑋 , the property follows again
from (1.1).

(iv) ⇒ (v): Using the mean value Theorem 2.10 and (7.4), we obtain

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 =
∫ 1

0
⟨𝐷𝐹 (𝑥 + 𝑡ℎ), ℎ⟩𝑋 𝑑𝑡 − ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋

=
∫ 1

0
⟨𝐷𝐹 (𝑥 + 𝑡ℎ) − 𝐷𝐹 (𝑥), ℎ⟩𝑋 𝑑𝑡

≤
∫ 1

0
𝑡 𝑑𝑡 · 𝐿∥ℎ∥2

𝑋 =
𝐿

2 ∥ℎ∥
2
𝑋 .

(v)⇒ (iv): This follows by adding together (7.5) and the same inequality with 𝑥 +ℎ in place
of 𝑥 .

(v) ⇒ (vi): Set 𝑥𝜆 ≔ 𝜆𝑥 + (1 − 𝜆)𝑦 . Multiplying (7.5) first for 𝑥 = 𝑥𝜆 and ℎ = 𝑥 − 𝑥𝜆 =
(1 − 𝜆) (𝑥 − 𝑦) with 𝜆 and then for 𝑥 = 𝑥𝜆 and ℎ = 𝑦 − 𝑥𝜆 = 𝜆(𝑦 − 𝑥) with 1 − 𝜆 and adding
the results yields (7.6).

(vi) ⇒ (v): This follows by dividing (7.6) by 𝜆 > 0 and taking the limit 𝜆 → 0.

(v)⇒ (i) when 𝐹 is convex and 𝑋 is reflexive: Since 𝐹 is convex, we have from Theorem 4.5
that

⟨𝐷𝐹 (𝑦), (𝑥 + ℎ) − 𝑦⟩𝑋 ≤ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑦).
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7 smoothness and convexity

Combining this with (7.5) yields

(7.7) 𝐹 (𝑦) ≤ 𝐹 (𝑥) + ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 − ⟨𝐷𝐹 (𝑦), (𝑥 + ℎ) − 𝑦⟩𝑋 + 𝐿2 ∥ℎ∥
2
𝑋

= 𝐹 (𝑥) + ⟨𝐷𝐹 (𝑦), 𝑦 − 𝑥⟩𝑋 + ⟨𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑦), ℎ⟩𝑋 + 𝐿2 ∥ℎ∥
2
𝑋 .

Let 𝑧∗ ≔ −𝐿−1(𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑦)). Since 𝑋 is reflexive, the algebraic Hahn–Banach Theo-
rem 1.4 yields (after multiplication by ∥𝑧∗∥𝑋 ∗) an ℎ ∈ 𝑋 such that

∥ℎ∥𝑋 = ∥𝑧∗∥𝑋 ∗ and ⟨𝑧∗, ℎ⟩𝑋 = ∥𝑧∗∥2
𝑋 ∗ .

Consequently, continuing from (7.7),

𝐹 (𝑦) ≤ 𝐹 (𝑥) + ⟨𝐷𝐹 (𝑦), 𝑦 − 𝑥⟩𝑋 − 𝐿⟨𝑧∗, ℎ⟩𝑋 + 𝐿2 ∥ℎ∥
2
𝑋

= 𝐹 (𝑥) + ⟨𝐷𝐹 (𝑦), 𝑦 − 𝑥⟩𝑋 − 𝐿

2 ∥𝑧
∗∥2
𝑋 ∗

= 𝐹 (𝑥) + ⟨𝐷𝐹 (𝑦), 𝑦 − 𝑥⟩𝑋 − 1
2𝐿 ∥𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑦)∥

2
𝑋 ∗ .

This proves (7.1). □

The next “smoothness three-point corollary” will be valuable for the study of splitting
methods that involve a smooth component function.

Corollary 7.2. Let 𝑋 be a reflexive Banach space and let 𝐹 : 𝑋 → ℝ be convex and Gâteaux
differentiable. Then the following are equivalent:

(i) 𝐹 has 𝐿−1-co-coercive derivative (or any of the equivalent properties of Lemma 7.1).

(ii) The three-point smoothness

(7.8) ⟨𝐷𝐹 (𝑧), 𝑥 − 𝑥⟩𝑋 ≥ 𝐹 (𝑥) − 𝐹 (𝑥) − 𝐿

2 ∥𝑥 − 𝑧∥2
𝑋 for all 𝑥, 𝑧, 𝑥 ∈ 𝑋,

(iii) The three-point monotonicity

(7.9) ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋 ≥ −𝐿4 ∥𝑥 − 𝑧∥2
𝑋 for all 𝑥, 𝑧, 𝑥 ∈ 𝑋 .

Proof. If ∇𝐹 is 𝐿−1-co-coercive, using Lemma 7.1, we have the 𝐿-smoothness

𝐹 (𝑧) − 𝐹 (𝑥) ≥ ⟨𝐷𝐹 (𝑧), 𝑧 − 𝑥⟩𝑋 − 𝐿

2 ∥𝑥 − 𝑧∥2
𝑋 .

By convexity 𝐹 (𝑥) − 𝐹 (𝑧) ≥ ⟨𝐷𝐹 (𝑧), 𝑥 − 𝑧⟩𝑋 . Summing up, we obtain (7.8).
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7 smoothness and convexity

Regarding (7.9), by assumption we have the co-coercivity

⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑧 − 𝑥⟩𝑋 ≥ 𝐿−1∥𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥)∥2
𝑋 ∗ .

Thus, using (1.1) and Young’s inequality in the form 𝑎𝑏 ≤ 1
2𝛼𝑎

2 + 𝛼
2𝑏

2 for 𝑎, 𝑏 ∈ ℝ and 𝛼 > 0,
we obtain

⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋 = ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑧 − 𝑥⟩𝑋 + ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑧⟩𝑋
≥ 𝐿−1∥𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥)∥2

𝑋 ∗ − ∥𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥)∥𝑋 ∗ ∥𝑥 − 𝑧∥𝑋
≥ −𝐿4 ∥𝑥 − 𝑧∥2

𝑋 .

This is (7.9)

For the reverse implications,we assume that (7.9) holds and set 𝑧∗ ≔ −2𝐿−1(𝐷𝐹 (𝑧)−𝐷𝐹 (𝑥)).
By the assumed reflexivity, we can again apply the algebraic Hahn–Banach Theorem 1.4 to
obtain an ℎ ∈ 𝑋 such that

∥ℎ∥𝑋 = ∥𝑧∗∥𝑋 ∗ and ⟨𝑧∗, ℎ⟩𝑋 = ∥𝑧∗∥2
𝑋 ∗ .

With 𝑥 = 𝑧 + ℎ, (7.9) gives

⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑧 − 𝑥⟩𝑋 ≥ −⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), ℎ⟩𝑋 − 𝐿

4 ∥ℎ∥
2
𝑋

=
𝐿

2 ⟨𝑧
∗, ℎ⟩𝑋 − 𝐿

4 ∥𝑧
∗∥2
𝑋 ∗

=
𝐿

4 ∥𝑧
∗∥2
𝑋 ∗ =

1
𝐿
∥𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥)∥2

𝑋 ∗ .

This is the 𝐿−1-co-coercivity (7.2). The remaining equivalences follow from Lemma 7.1. □

7.2 strong convexity

The central notion in this chapter (and later for obtaining higher convergence rates for
first-order algorithms) is the following “quantitative” version of convexity. We say that
𝐹 : 𝑋 → ℝ is strongly convex with the factor 𝛾 > 0 if for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0, 1],

(7.10) 𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) + 𝜆(1 − 𝜆)𝛾2 ∥𝑥 − 𝑦 ∥2
𝑋 ≤ 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦).

Obviously, strong convexity implies strict convexity, so strongly convex functions have
a unique minimizer. If 𝑋 is a Hilbert space, it is straightforward if tedious to verify by
expanding the squared norm that (7.10) is equivalent to 𝐹 − 𝛾

2 ∥ · ∥2
𝑋
being convex.

We have the following important duality result that was first shown in [Azé and Penot,
1995].
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7 smoothness and convexity

Theorem 7.3. Let 𝐹 : 𝑋 → ℝ be proper and convex. Then the following are true:

(i) If 𝐹 is strongly convex with factor 𝛾 , then 𝐹 ∗ is uniformly smooth with factor 𝛾−1.

(ii) If 𝐹 is uniformly smooth with factor 𝐿, then 𝐹 ∗ is strongly convex with factor 𝐿−1.

(iii) If 𝐹 is lower semicontinuous, then 𝐹 is uniformly smooth with factor 𝐿 if and only if 𝐹 ∗

is strongly convex with factor 𝐿−1.

Proof. (i): Let 𝑥∗, 𝑦∗ ∈ 𝑋 ∗ and 𝛼𝑥 , 𝛼𝑦 ∈ ℝ with 𝛼𝑥 < 𝐹 ∗(𝑥∗) and 𝛼𝑦 < 𝐹 ∗(𝑦∗). From the
definition of the Fenchel conjugate, there exist 𝑥, 𝑦 ∈ 𝑋 such that

𝛼𝑥 < ⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥), 𝛼𝑦 < ⟨𝑦∗, 𝑦⟩𝑋 − 𝐹 (𝑦).

Multiplying the first inequality with 𝜆 ∈ [0, 1], the second with (1 − 𝜆), and using the
Fenchel–Young inequality (5.1) in the form

0 ≤ 𝐹 (𝑥𝜆) + 𝐹 ∗(𝑥∗𝜆) − ⟨𝑥∗
𝜆
, 𝑥𝜆⟩𝑋

for 𝑥∗
𝜆
≔ 𝜆𝑥∗ + (1 − 𝜆)𝑦∗ and 𝑥𝜆 ≔ 𝜆𝑥 + (1 − 𝜆)𝑦 then yields

𝜆𝛼𝑥 + (1 − 𝜆)𝛼𝑦 ≤ 𝐹 (𝑥𝜆) + 𝐹 ∗(𝑥∗𝜆) − 𝜆𝐹 (𝑥) − (1 − 𝜆)𝐹 (𝑦) + 𝜆(1 − 𝜆)⟨𝑥∗ − 𝑦∗, 𝑥 − 𝑦⟩𝑋
≤ 𝐹 ∗(𝑥∗

𝜆
) + 𝜆(1 − 𝜆)

(
⟨𝑥∗ − 𝑦∗, 𝑥 − 𝑦⟩𝑋 − 𝛾2 ∥𝑥 − 𝑦 ∥2

𝑋

)
≤ 𝐹 ∗(𝑥∗

𝜆
) + 𝜆(1 − 𝜆) sup

𝑧∈𝑋

{
⟨𝑥∗ − 𝑦∗, 𝑧⟩𝑋 − 𝛾2 ∥𝑧∥

2
𝑋

}
= 𝐹 ∗(𝑥∗

𝜆
) + 𝜆(1 − 𝜆) 1

2𝛾 ∥𝑥
∗ − 𝑦∗∥2

𝑋 ∗,

where we have used the definition (7.10) of strong convexity in the second inequality and
Lemma 5.4 together with Lemma 5.7 (i) in the final equality. Letting now 𝛼𝑥 → 𝐹 ∗(𝑥∗) and
𝛼𝑦 → 𝐹 ∗(𝑦∗), we obtain (7.6) for 𝐹 ∗ with 𝐿 ≔ 𝛾−1.

(ii): Let 𝑥∗, 𝑦∗ ∈ 𝑋 ∗ and 𝜆 ∈ [0, 1]. Set again 𝑥∗
𝜆
≔ 𝜆𝑥∗ + (1 − 𝜆)𝑦∗. Then we obtain from

the definition of the Fenchel conjugate and (7.6) that for any 𝑥, 𝑦 ∈ 𝑋 ,

𝜆𝐹 ∗(𝑥∗) + (1 − 𝜆)𝐹 ∗(𝑦∗) ≥ 𝜆 [⟨𝑥∗, 𝑥 + (1 − 𝜆)𝑦⟩𝑋 − 𝐹 (𝑥 + (1 − 𝜆)𝑦)]
+ (1 − 𝜆) [⟨𝑦∗, 𝑥 − 𝜆𝑦⟩𝑋 − 𝐹 (𝑥 − 𝜆𝑦)]

≥ 𝜆⟨𝑥∗, 𝑥 + (1 − 𝜆)𝑦⟩𝑋 + (1 − 𝜆)⟨𝑦∗, 𝑥 − 𝜆𝑦⟩𝑋
− 𝐹 (𝑥) − 𝜆(1 − 𝜆)𝐿2 ∥𝑦 ∥

2
𝑋

= ⟨𝑥∗
𝜆
, 𝑥⟩𝑋 − 𝐹 (𝑥) + 𝜆(1 − 𝜆)

(
⟨𝑦∗ − 𝑥∗, 𝑦⟩𝑋 − 𝐿

2 ∥𝑦 ∥
2
𝑋

)
.

Taking now the supremum over all 𝑥, 𝑦 ∈ 𝑋 and using again Lemma 5.4 together with
Lemma 5.7 (i), we obtain the strong convexity (7.10) with 𝛾 ≔ 𝐿−1.
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7 smoothness and convexity

(iii): One direction of the claim is clear from (ii). For the other direction, if 𝐹 ∗ is strongly
convex with factor 𝐿−1, then its preconjugate (𝐹 ∗)∗ is uniformly smooth with factor 𝐿 by a
proof completely analogous to (i). Then we use Theorem 5.1 to see that 𝐹 = 𝐹 ∗∗ ≔ (𝐹 ∗)∗
under the lower semicontinuity assumption. □

Just as convexity of 𝐹 implies monotonicity of 𝜕𝐹 , strong convexity has the following
consequences.

Lemma 7.4. Let 𝑋 be a Banach space and 𝐹 : 𝑋 → ℝ. Consider the properties:

(i) 𝐹 is strongly convex with factor 𝛾 > 0.

(ii) 𝐹 is strongly subdifferentiable with factor 𝛾 :

(7.11) 𝐹 (𝑦) − 𝐹 (𝑥) ≥ ⟨𝑥∗, 𝑦 − 𝑥⟩𝑋 + 𝛾2 ∥𝑦 − 𝑥 ∥2
𝑋 for all 𝑥, 𝑦 ∈ 𝑋 ; 𝑥∗ ∈ 𝜕𝐹 (𝑥).

(iii) 𝜕𝐹 is strongly monotone with factor 𝛾 :

(7.12) ⟨𝑦∗ − 𝑥∗, 𝑦 − 𝑥⟩𝑋 ≥ 𝛾 ∥𝑦 − 𝑥 ∥2
𝑋 for all 𝑥, 𝑦 ∈ 𝑋 ; 𝑥∗ ∈ 𝜕𝐹 (𝑥), 𝑦∗ ∈ 𝜕𝐹 (𝑦).

Then (i) ⇒ (ii) ⇒ (iii). If 𝑋 is reflexive and 𝐹 is proper, convex, and lower semicontinuous,
then also (iii) ⇒ (i).

Proof. (i)⇒ (ii): Let𝑥, 𝑦 ∈ 𝑋 and𝜆 ∈ (0, 1) be arbitrary. Dividing (7.10) by 𝜆 and rearranging
yields

𝐹 (𝑦 + 𝜆(𝑥 − 𝑦)) − 𝐹 (𝑦)
𝜆

≤ 𝐹 (𝑥) − 𝐹 (𝑦) − (1 − 𝜆)𝛾2 ∥𝑥 − 𝑦 ∥2
𝑋 .

Since strongly convex functions are also convex, we can apply Lemma 4.3 (ii) to pass to the
limit 𝜆 → 0 on both sides to obtain

𝐹 ′(𝑦, 𝑥 − 𝑦) ≤ 𝐹 (𝑥) − 𝐹 (𝑦) − 𝛾2 ∥𝑥 − 𝑦 ∥2
𝑋 .

Using Lemma 4.4 for ℎ = 𝑥 − 𝑦 , we thus obtain that for any 𝑦∗ ∈ 𝜕𝐹 (𝑦),

⟨𝑦∗, 𝑥 − 𝑦⟩𝑋 ≤ 𝐹 ′(𝑦, 𝑥 − 𝑦) ≤ 𝐹 (𝑥) − 𝐹 (𝑦) − 𝛾2 ∥𝑥 − 𝑦 ∥2
𝑋 .

Exchanging the roles of 𝑥 and 𝑦 and rearranging yields (7.11).

(ii) ⇒ (iii): Adding (7.11) with the same inequality with 𝑥 and 𝑦 exchanged immediately
yields (7.12).

(iii)⇒ (i): Suppose first that 𝜕𝐹 is surjective. Then dom 𝜕𝐹 ∗ = 𝑋 ∗. Using the duality between
𝜕𝐹 and 𝜕𝐹 ∗ in Lemma 5.8, we rewrite (7.12) as

(7.13) ⟨𝑦∗ − 𝑥∗, 𝑦 − 𝑥⟩𝑋 ≥ 𝛾 ∥𝑦 − 𝑥 ∥2
𝑋 for all 𝑥∗, 𝑦∗ ∈ 𝑋 ∗; 𝑥 ∈ 𝜕𝐹 ∗(𝑥∗), 𝑦 ∈ 𝜕𝐹 ∗(𝑦∗).
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7 smoothness and convexity

Taking 𝑦 = 𝑥 , this implies that 𝑥∗ = 𝑦∗, i.e., 𝜕𝐹 ∗(𝑥∗) is a singleton for all 𝑥∗ ∈ 𝑋 ∗. Here we
use that dom 𝜕𝐹 ∗ = 𝑋 ∗ to avoid the possibility that 𝜕𝐹 ∗(𝑥∗) = ∅. By Theorem 4.5 it follows
that 𝐹 ∗ is Gâteaux differentiable. Thus (7.13) describes the co-coercivity (7.2) of 𝐷𝐹 ∗ with
factor 𝛾 . By Lemma 7.1 it follows that 𝐹 ∗ is uniformly smooth with factor 𝛾−1. Consequently,
by Theorem 7.3 𝐹 is strongly convex with factor 𝛾 .

If 𝜕𝐹 is not surjective, we replace 𝐹 by 𝐹 + 𝜀 𝑗 for the duality mapping 𝑗 (𝑥) ≔ 1
2 ∥𝑥 ∥2

𝑋
and

some 𝜀 > 0. By Theorem 6.13 and Minty’s Theorem 6.14 now 𝜕(𝐹 + 𝜀 𝑗) is surjective. It also
remains strongly monotone with factor 𝛾 as 𝜕 𝑗 is monotone. Now, by the above reasoning,
𝐹 + 𝜀 𝑗 is strongly convex with factor 𝛾 . Since 𝜀 > 0 was arbitrary, we deduce from the
defining (7.10) that 𝐹 is strongly convex with factor 𝛾 . □

Note that the factor 𝛾 enters into the strong monotonicity (7.12) directly rather than as 𝛾2
as in the strong subdifferentiability (7.11) (and strong convexity).

We can also derive a stronger, quantitative, version of the fact that for convex functions,
points that satisfy the Fermat principle are minimizers.

Lemma 7.5. Let 𝑋 be a Banach space and let 𝐹 : 𝑋 → ℝ be strongly convex with factor
𝛾 > 0. Assume that 𝐹 admits a minimum𝑀 ≔ min𝑥∈𝑋 𝐹 (𝑥). Then the Polyak–Łojasewicz
inequality holds:

(7.14) 𝐹 (𝑥) −𝑀 ≤ 1
2𝛾 ∥𝑥

∗∥2
𝑋 ∗ for all 𝑥 ∈ 𝑋, 𝑥∗ ∈ 𝜕𝐹 (𝑥).

Proof. Let 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝜕𝐹 (𝑥) be arbitrary. Then from Lemma 7.4 (ii) we have that

−𝐹 (𝑥) + ⟨𝑥∗, 𝑥 − 𝑦⟩𝑋 − 𝛾2 ∥𝑥 − 𝑦 ∥2
𝑋 ≥ −𝐹 (𝑦) .

Taking the supremum over all 𝑦 ∈ 𝑋 , noting that this is equivalent to taking the supremum
over all 𝑥−𝑦 ∈ 𝑋 , and inserting the Fenchel conjugate of the squared norm from Lemma 5.4
together with Lemma 5.7 (i), we obtain

−𝐹 (𝑥) + 1
2𝛾 ∥𝑥

∗∥2
𝑋 ∗ ≥ sup

𝑦∈𝑋
−𝐹 (𝑦) = −min

𝑦∈𝑋
𝐹 (𝑦)

and hence, after rearranging, (7.14). □

Comparing the consequences of strong convexity in Lemma 7.4 and those of uniform
smoothness in Lemma 7.1, we can already see a certain duality between them: While the
former give lower bounds, the latter give upper bounds and vice versa. A simple example
is the following
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Corollary 7.6. If 𝐹 : 𝑋 → ℝ is strongly convex with factor 𝛾 and uniformly smooth with
factor 𝐿, then

(7.15) 𝛾 ∥𝑥 − 𝑦 ∥2
𝑋 ≤ ⟨𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑦), 𝑥 − 𝑦⟩𝑋 ≤ 𝐿∥𝑥 − 𝑦 ∥2

𝑋 for all 𝑥, 𝑦 ∈ 𝑋 .

Proof. The first inequality follows from Lemma 7.4 (iii), while the second follows from (1.1)
together with Lemma 7.1 (iii). □

The estimates of Corollary 7.2 can be improved if 𝐹 is in addition strongly convex.

Corollary 7.7. Let 𝑋 be a Banach space and let 𝐹 : 𝑋 → ℝ be strongly convex with factor
𝛾 > 0 as well as Lipschitz differentiable with constant 𝐿 > 0. Then for any 𝛼 > 0,

(7.16) ⟨𝐷𝐹 (𝑧), 𝑥 −𝑥⟩𝑋 ≥ 𝐹 (𝑥) − 𝐹 (𝑥) + 𝛾 − 𝛼𝐿2 ∥𝑥 −𝑥 ∥2
𝑋 −

𝐿

2𝛼 ∥𝑥 −𝑧∥
2
𝑋 for all 𝑥, 𝑧, 𝑥 ∈ 𝑋,

as well as

(7.17) ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋 ≥ (𝛾 − 𝛼𝐿)∥𝑥 − 𝑥 ∥2
𝑋 − 𝐿

4𝛼 ∥𝑥 − 𝑧∥2
𝑋 for all 𝑥, 𝑧, 𝑥 ∈ 𝑋 .

Proof. Using the strong subdifferentiability from Lemma 7.4 (ii), the Lipschitz continuity of
𝐷𝐹 , (1.1), and Young’s inequality, we obtain

⟨𝐷𝐹 (𝑧), 𝑥 − 𝑥⟩𝑋 = ⟨𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋 + ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋
≥ 𝐹 (𝑥) − 𝐹 (𝑥) + 𝛾2 ∥𝑥 − 𝑥 ∥2

𝑋 − 𝛼𝐿

2 ∥𝑥 − 𝑥 ∥2
𝑋 − 1

2𝛼𝐿 ∥𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥)∥
2
𝑋 ∗

≥ 𝐹 (𝑥) − 𝐹 (𝑥) + 𝛾2 ∥𝑥 − 𝑥 ∥2
𝑋 − 𝛼𝐿

2 ∥𝑥 − 𝑥 ∥2
𝑋 − 𝐿

2𝛼 ∥𝑥 − 𝑧∥2
𝑋 .

For (7.17), we can use the strong monotonicity of 𝐷𝐹 from Lemma 7.4 (iii) to estimate
analogously

⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋 = ⟨𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋 + ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋
≥ 𝛾 ∥𝑥 − 𝑥 ∥2

𝑋 − 𝛼𝐿∥𝑥 − 𝑥 ∥2
𝑋 − 𝐿

4𝛼 ∥𝑥 − 𝑧∥2
𝑋 . □

7.3 moreau–yosida regularization

We now look at another way to reformulate optimality conditions using proximal point
mappings. Although these are no longer equivalent reformulations, they will serve as a
link to the Newton-type methods which will be introduced in Chapter 14.

94



7 smoothness and convexity

We again assume that𝑋 is a Hilbert space and identify𝑋 ∗ with𝑋 via the Riesz isomorphism.
Let 𝐴 : 𝑋 ⇒ 𝑋 be a maximally monotone operator with graph𝐴 ≠ ∅ and 𝛾 > 0. Then we
define the Yosida approximation of 𝐴 as

𝐴𝛾 ≔
1
𝛾

(
Id − R𝛾𝐴

)
.

In particular, the Yosida approximation of the subdifferential of a proper, convex, and lower
semicontinuous functional 𝐹 : 𝑋 → ℝ is given by

(7.18) (𝜕𝐹 )𝛾 ≔ 1
𝛾

(
Id − prox𝛾𝐹

)
,

which by Corollary 6.16 and Theorem 6.13 is always Lipschitz continuous with constant
𝐿 = 𝛾−1.

An alternative point of view is the following. For a proper, convex, and lower semicontinuous
functional 𝐹 : 𝑋 → ℝ and 𝛾 > 0, we define the Moreau envelope1

(7.19) 𝐹𝛾 : 𝑋 → ℝ, 𝑥 ↦→ inf
𝑧∈𝑋

1
2𝛾 ∥𝑧 − 𝑥 ∥

2
𝑋 + 𝐹 (𝑧),

see Figure 7.1. Comparing this with the definition (6.12) of the proximal point mapping of
𝐹 , we see that

(7.20) 𝐹𝛾 (𝑥) = 1
2𝛾 ∥prox𝛾𝐹 (𝑥) − 𝑥 ∥2

𝑋 + 𝐹 (prox𝛾𝐹 (𝑥)) .

(Note that multiplying a functional by 𝛾 > 0 does not change its minimizers.) Hence 𝐹𝛾 is
indeed well-defined on 𝑋 and single-valued. Furthermore, we can deduce from (7.20) that
𝐹𝛾 is convex as well.

Lemma 7.8. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous, and 𝛾 > 0. Then 𝐹𝛾
is convex.

Proof. We first show that for any convex 𝐺 : 𝑋 → ℝ, the mapping

𝐻 : 𝑋 × 𝑋 → ℝ, (𝑥, 𝑧) ↦→ 𝐹 (𝑧) +𝐺 (𝑧 − 𝑥)

is convex as well. Indeed, for any (𝑥1, 𝑧1), (𝑥2, 𝑧2) ∈ 𝑋 × 𝑋 and 𝜆 ∈ [0, 1], the convexity of
𝐹 and 𝐺 implies that

𝐻 (𝜆(𝑥1, 𝑧1) + (1 − 𝜆) (𝑥2, 𝑧2)) = 𝐹 (𝜆𝑧1 + (1 − 𝜆)𝑧2) +𝐺 (𝜆(𝑧1 − 𝑥1) + (1 − 𝜆) (𝑧2 − 𝑥2))
≤ 𝜆 (𝐹 (𝑧1) +𝐺 (𝑧1 − 𝑥1)) + (1 − 𝜆) (𝐹 (𝑧2) +𝐺 (𝑧2 − 𝑥2))
= 𝜆𝐻 (𝑥1, 𝑧1) + (1 − 𝜆)𝐻 (𝑥2, 𝑧2).

1not to be confused with the convex envelope 𝐹 Γ!
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Let now 𝑥1, 𝑥2 ∈ 𝑋 and 𝜆 ∈ [0, 1]. Since 𝐹𝛾 (𝑥) = inf𝑧∈𝑋 𝐻 (𝑥, 𝑧) for 𝐺 (𝑦) ≔ 1
2𝛾 ∥𝑦 ∥2

𝑋
, there

exist two minimizing sequences {𝑧1
𝑛}𝑛∈ℕ, {𝑧2

𝑛}𝑛∈ℕ ⊂ 𝑋 with
𝐻 (𝑥1, 𝑧

1
𝑛) → 𝐹𝛾 (𝑥1), 𝐻 (𝑥2, 𝑧

2
𝑛) → 𝐹𝛾 (𝑥2).

From the properties of the infimum together with the convexity of 𝐻 , we thus obtain for
all 𝑛 ∈ ℕ that

𝐹𝛾 (𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝐻 (𝜆(𝑥1, 𝑧
1
𝑛) + (1 − 𝜆) (𝑥2, 𝑧

2
𝑛))

≤ 𝜆𝐻 (𝑥1, 𝑧
1
𝑛) + (1 − 𝜆)𝐻 (𝑥2, 𝑧

2
𝑛),

and passing to the limit 𝑛 → ∞ yields the desired convexity. □

We will also show later that Moreau–Yosida regularization preserves (global!) Lipschitz
continuity.

The next theorem links the two concepts of Moreau envelope and of Yosida approximation
and hence justifies the term Moreau–Yosida regularization.

Theorem 7.9. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous, and 𝛾 > 0. Then
𝐹𝛾 is Fréchet differentiable with

∇(𝐹𝛾 ) = (𝜕𝐹 )𝛾 .

Proof. Let 𝑥, 𝑦 ∈ 𝑋 be arbitrary and set 𝑥∗ = prox𝛾𝐹 (𝑥) and 𝑦∗ = prox𝛾𝐹 (𝑦). We first show
that

(7.21) 1
𝛾
⟨𝑦∗ − 𝑥∗, 𝑥 − 𝑥∗⟩𝑋 ≤ 𝐹 (𝑦∗) − 𝐹 (𝑥∗).

(Note that for proper 𝐹 , the definition of proximal points as minimizers necessarily implies
that 𝑥∗, 𝑦∗ ∈ dom 𝐹 .) To this purpose, consider for 𝑡 ∈ (0, 1) the point 𝑥∗𝑡 ≔ 𝑡𝑦∗ + (1 − 𝑡)𝑥∗.
Using the minimizing property of the proximal point 𝑥∗ together with the convexity of 𝐹
and completing the square, we obtain that

𝐹 (𝑥∗) ≤ 𝐹 (𝑥∗𝑡 ) +
1

2𝛾 ∥𝑥
∗
𝑡 − 𝑥 ∥2

𝑋 − 1
2𝛾 ∥𝑥

∗ − 𝑥 ∥2
𝑋

≤ 𝑡𝐹 (𝑦∗) + (1 − 𝑡)𝐹 (𝑥∗) − 𝑡

𝛾
⟨𝑥 − 𝑥∗, 𝑦∗ − 𝑥∗⟩𝑋 + 𝑡2

2𝛾 ∥𝑥
∗ − 𝑦∗∥2

𝑋 .

Rearranging the terms, dividing by 𝑡 > 0 and passing to the limit 𝑡 → 0 then yields (7.21).
Combining this with (7.20) implies that

𝐹𝛾 (𝑦) − 𝐹𝛾 (𝑥) = 𝐹 (𝑦∗) − 𝐹 (𝑥∗) + 1
2𝛾

(∥𝑦 − 𝑦∗∥2
𝑋 − ∥𝑥 − 𝑥∗∥2

𝑋

)
≥ 1

2𝛾
(
2⟨𝑦∗ − 𝑥∗, 𝑥 − 𝑥∗⟩𝑋 + ∥𝑦 − 𝑦∗∥2

𝑋 − ∥𝑥 − 𝑥∗∥2
𝑋

)
=

1
2𝛾

(
2⟨𝑦 − 𝑥, 𝑥 − 𝑥∗⟩𝑋 + ∥𝑦 − 𝑦∗ − 𝑥 + 𝑥∗∥2

𝑋

)
≥ 1
𝛾
⟨𝑦 − 𝑥, 𝑥 − 𝑥∗⟩𝑋 .
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By exchanging the roles of 𝑥∗ and 𝑦∗ in (7.21), we obtain that

𝐹𝛾 (𝑦) − 𝐹𝛾 (𝑥) ≤ 1
𝛾
⟨𝑦 − 𝑥, 𝑦 − 𝑦∗⟩𝑋 .

Together, these two inequalities yield that

0 ≤ 𝐹𝛾 (𝑦) − 𝐹𝛾 (𝑥) − 1
𝛾
⟨𝑦 − 𝑥, 𝑥 − 𝑥∗⟩𝑋

≤ 1
𝛾
⟨𝑦 − 𝑥, (𝑦 − 𝑦∗) − (𝑥 − 𝑥∗)⟩𝑋

≤ 1
𝛾

(∥𝑦 − 𝑥 ∥2
𝑋 − ∥𝑦∗ − 𝑥∗∥2

𝑋

)
≤ 1
𝛾
∥𝑦 − 𝑥 ∥2

𝑋 ,

where the next-to-last inequality follows from the firm nonexpansivity of proximal point
mappings (Lemma 6.15).

If we now set 𝑦 = 𝑥 + ℎ for arbitrary ℎ ∈ 𝑋 , we obtain that

0 ≤ 𝐹𝛾 (𝑥 + ℎ) − 𝐹𝛾 (𝑥) − ⟨𝛾−1(𝑥 − 𝑥∗), ℎ⟩𝑋
∥ℎ∥𝑋 ≤ 1

𝛾
∥ℎ∥𝑋 → 0 for ℎ → 0,

i.e., 𝐹𝛾 is Fréchet differentiable with gradient 1
𝛾
(𝑥 − 𝑥∗) = (𝜕𝐹 )𝛾 (𝑥). □

Since 𝐹𝛾 is convex by Lemma 7.8, this result together with Theorem 4.5 yields the catchy
relation 𝜕(𝐹𝛾 ) = (𝜕𝐹 )𝛾 .

Example 7.10. We consider again 𝑋 = ℝ𝑁 .

(i) For 𝐹 (𝑥) = 1
2 ∥𝑥 ∥2

2, Example 6.26 (ii) yields prox𝛾𝐹 (𝑥) = 1
1+𝛾𝑥 . Inserting this into the

definition of the Yosida approximation and the Moreau envelope and simplifying
yields that

(𝜕𝐹 )𝛾 (𝑥) = 1
𝛾

(
𝑥 − 1

1 + 𝛾

)
𝑥 =

1
1 + 𝛾 𝑥

and
𝐹𝛾 (𝑥) = 1

2𝛾 ∥
1

1+𝛾𝑥 ∥2
2 +

1
2 ∥

1
1+𝛾𝑥 ∥2

2 =
1

2(1 + 𝛾) ∥𝑥 ∥
2
2.

(Unsurpisingly, the Moreau envelope of a quadratic function remains quadratic
and is simply scaled.)

(ii) For 𝐹 (𝑥) = ∥𝑥 ∥1, we have from Example 6.26 (ii) that the proximal point mapping
is given by the componentwise soft-shrinkage operator. Inserting this into the
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definition yields that

[(𝜕∥ · ∥1)𝛾 (𝑥)
]
𝑖
=


1
𝛾
(𝑥𝑖 − (𝑥𝑖 − 𝛾)) = 1 if 𝑥𝑖 > 𝛾,

1
𝛾
𝑥𝑖 if 𝑥𝑖 ∈ [−𝛾,𝛾],

1
𝛾
(𝑥𝑖 − (𝑥𝑖 + 𝛾)) = −1 if 𝑥𝑖 < −𝛾 .

Comparing this to the corresponding subdifferential (4.2), we see that the set-
valued case in the point 𝑥𝑖 = 0 has been replaced by a linear function on a small
interval.

Similarly, inserting the definition of the proximal point into (7.20) shows that

𝐹𝛾 (𝑥) =
𝑁∑︁
𝑖=1

𝑓𝛾 (𝑥𝑖) for 𝑓𝛾 (𝑡) =


1
2𝛾 |𝑡 − (𝑡 − 𝛾) |2 + |𝑡 − 𝛾 | = 𝑡 − 𝛾

2 if 𝑡 > 𝛾,
1

2𝛾 |𝑡 |2 if 𝑡 ∈ [−𝛾,𝛾],
1

2𝛾 |𝑡 − (𝑡 + 𝛾) |2 + |𝑡 + 𝛾 | = −𝑡 − 𝛾

2 if 𝑡 < −𝛾 .

For small values, the absolute value is thus replaced by a quadratic function
(which removes the nondifferentiability at 0). This modification is well-known
under the name Huber norm; see Figure 7.1a.

(iii) For 𝐹 (𝑥) = 𝛿𝔹∞ (𝑥), we have from Example 6.26 (iii) that the proximal mapping is
given by the componentwise projection onto [−1, 1] and hence that[(𝜕𝛿𝔹∞)𝛾 (𝑥)

]
𝑖
=

1
𝛾

(
𝑥𝑖 −

(
𝑥𝑖 − (𝑥𝑖 − 1)+ − (𝑥𝑖 + 1)−) ) = 1

𝛾
(𝑥𝑖 − 1)+ + 1

𝛾
(𝑥𝑖 + 1)−.

Similarly, inserting this and using that prox𝛾𝐹 (𝑥) ∈ 𝔹∞ and ⟨(𝑥+1)−, (𝑥−1)+⟩𝑋 = 0
yields that

(𝛿𝔹∞)𝛾 (𝑥) =
1

2𝛾 ∥(𝑥 − 1)+∥2
2 +

1
2𝛾 ∥(𝑥 + 1)−∥2

2,

which corresponds to the classical penalty functional for the inequality constraints
𝑥 − 1 ≤ 0 and 𝑥 + 1 ≥ 0 in nonlinear optimization; see Figure 7.1b.

Using Corollary 6.27, analogous characterizations can be derived for the squared 𝐿2-norm,
the 𝐿1-norm, and the indicator functional of the 𝐿∞-ball on 𝐿2(Ω).

By Theorem 7.9, 𝐹𝛾 is Fréchet differentiable with Lipschitz continuous gradient with factor
𝛾−1. From Theorem 7.3, we thus know that 𝐹 ∗𝛾 is strongly convex with factor 𝛾 , which in
Hilbert spaces is equivalent to 𝐹 ∗𝛾 − 𝛾

2 ∥ · ∥2
𝑋
being convex. In fact, this can be made even

more explicit.
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(a) 𝑓 (𝑡) = |𝑡 | (b) 𝑓 (𝑡) = 𝛿 [−1,1] (𝑡)

Figure 7.1: Illustration of the Moreau–Yosida regularization (thick solid line) of 𝐹 (thin solid
line). The dotted line indicates the quadratic function 𝑧 ↦→ 1

2𝛾 ∥𝑥 − 𝑧∥2
𝑋
, while

the dashed line is 𝑧 ↦→ 𝐹 (𝑧) + 1
2𝛾 ∥𝑥 − 𝑧∥2

𝑋
. The dots and the horizontal and

vertical lines (nontrivial only in the second point of (a)) emanating from the
dots indicate the pair (𝑥, 𝐹𝛾 (𝑥)) and how it relates to the minimization of the
shifted quadratic functional. (In (b) the two lines are overlaid within [−1, 1], as
only the domain of definition of the two functions is different.)

Theorem 7.11. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous. Then we have for
all 𝛾 > 0 that

(𝐹𝛾 )∗ = 𝐹 ∗ + 𝛾2 ∥ · ∥
2
𝑋 .

Proof. We obtain directly from the definition of the Fenchel conjugate in Hilbert spaces
and of the Moreau envelope that

(𝐹𝛾 )∗(𝑥∗) = sup
𝑥∈𝑋

{
⟨𝑥∗, 𝑥⟩𝑋 − inf

𝑧∈𝑋

[
1

2𝛾 ∥𝑥 − 𝑧∥2
𝑋 + 𝐹 (𝑧)

]}
= sup
𝑥∈𝑋

{
⟨𝑥∗, 𝑥⟩𝑋 + sup

𝑧∈𝑋

{
− 1

2𝛾 ∥𝑥 − 𝑧∥2
𝑋 − 𝐹 (𝑧)

}}
= sup
𝑧∈𝑋

{
⟨𝑥∗, 𝑧⟩𝑋 − 𝐹 (𝑧) + sup

𝑥∈𝑋

{
⟨𝑥∗, 𝑥 − 𝑧⟩𝑋 − 1

2𝛾 ∥𝑥 − 𝑧∥2
𝑋

}}
= 𝐹 ∗(𝑥∗) +

(
1

2𝛾 ∥ · ∥2
𝑋

)∗
(𝑥∗),

since for any given 𝑧 ∈ 𝑋 , the inner supremum is always taken over the full space 𝑋 . The
claim now follows from Lemma 5.4 with 𝑝 = 2 (using again the fact that we have identified
𝑋 ∗ with 𝑋 ) and Lemma 5.7 (i). □

This immediately yields a Moreau decomposition of the envelope; cf. Lemma 6.24 (ii).

Corollary 7.12. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous. Then for all
𝑥 ∈ 𝑋 and 𝛾 > 0,

1
2𝛾 ∥𝑥 ∥

2
𝑋 = 𝐹𝛾 (𝑥) + (𝐹 ∗)𝛾−1 (𝛾−1𝑥).
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Proof. By definition of the Moreau envelope, we have that

𝐹𝛾 (𝑥) = inf
𝑧∈𝑋

𝐹 (𝑧) + 1
2𝛾 ∥𝑥 − 𝑧∥2

𝑋

= inf
𝑧∈𝑋

𝐹 (𝑧) + 1
2𝛾 ∥𝑥 ∥

2
𝑋 − 1

𝛾
(𝑥 | 𝑧)𝑋 + 1

2𝛾 ∥𝑧∥
2
𝑋

=
1

2𝛾 ∥𝑥 ∥
2
𝑋 − sup

𝑧∈𝑋

{
(𝛾−1𝑥 | 𝑧)𝑋 − 𝐹 (𝑧) − 1

2𝛾 ∥𝑧∥
2
𝑋

}
=

1
2𝛾 ∥𝑥 ∥

2
𝑋 −

(
𝐹 + 1

2𝛾 ∥ · ∥
2
𝑋

)∗
(𝛾−1𝑥).

The claim now follows since 𝐹 (by assumption) and 𝐹𝛾 (by Lemma 7.8 and Theorem 7.9) are
convex and lower semicontinous, and hence Theorem 5.1 (iii) together with Theorem 7.11
implies (

𝐹 + 1
2𝛾 ∥ · ∥

2
𝑋

)∗
=

(
𝐹 ∗∗ + 1

2𝛾 ∥ · ∥
2
𝑋

)∗
=

(
(𝐹 ∗)𝛾−1

)∗∗
= (𝐹 ∗)𝛾−1 . □

Taking the derivative of this identity and using Theorem 7.9 together with (7.18), we again
obtain Lemma 6.24 (ii).

With the help of Theorem 7.11, we can also show the converse of Theorem 7.9: every smooth
function can be obtained through Moreau–Yosida regularization.

Corollary 7.13. Let 𝐹 : 𝑋 → ℝ be convex and 𝐿-smooth. Then for all 𝑥 ∈ 𝑋 ,
𝐹 (𝑥) = (𝐺∗)𝐿−1 (𝑥) and ∇𝐹 (𝑥) = prox𝐿𝐺 (𝐿𝑥)

for

𝐺 : 𝑋 → ℝ, 𝐺 (𝑥) = 𝐹 ∗(𝑥) − 1
2𝐿 ∥𝑥 ∥

2
𝑋 .

Proof. Since 𝐹 is convex and 𝐿-smooth and𝑋 is a Hilbert space, Lemma 7.1 and Theorem 7.3
yields that 𝐹 ∗ is strongly convex with factor 𝐿−1 and thus that 𝐺 is convex. Furthermore,
as a Fenchel conjugate of a proper convex functional, 𝐹 ∗ and thus 𝐺 is proper and lower
semicontinuous. Theorems 5.1 and 7.11 now imply that for all 𝑥 ∈ 𝑋 ,

(𝐺∗)𝐿−1 (𝑥) = (𝐺∗)∗∗
𝐿−1 (𝑥) =

(
𝐺 + 1

2𝐿 ∥ · ∥
2
𝑋

)∗
(𝑥) = 𝐹 ∗∗(𝑥) = 𝐹 (𝑥).

Furthermore, by Lemma 4.13 and Theorems 4.5 and 4.14, we have that
𝜕𝐺 (𝑧) = 𝜕𝐹 ∗(𝑧) − {𝐿−1𝑧} for all 𝑧 ∈ 𝑋 .

By the definition of the proximal mapping, this is equivalent to 𝑧 = prox𝐿𝐺𝐿𝑥 for any
𝑥 ∈ 𝜕𝐹 ∗(𝑧). But by Lemma 5.8, 𝑥 ∈ 𝜕𝐹 ∗(𝑧) holds if and only if 𝑧 ∈ 𝜕𝐹 (𝑥) = {∇𝐹 (𝑥)}, and
combining these two yields the first expression for the gradient. □

Let us briefly consider the relevance of the previous results to optimization.
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7 smoothness and convexity

Approximation by smoothmappings For a convex functional 𝐹 : 𝑋 → ℝ, everyminimizer
𝑥 ∈ 𝑋 satisfies the Fermat principle 0 ∈ 𝜕𝐹 (𝑥), which we can write equivalently as
𝑥 ∈ 𝜕𝐹 ∗(0). If we now replace 𝜕𝐹 ∗ with its Yosida approximation (𝜕𝐹 ∗)𝛾 , we obtain the
regularized optimality condition

𝑥𝛾 = (𝜕𝐹 ∗)𝛾 (0) = − 1
𝛾

prox𝛾𝐹 ∗ (0).

This is now an explicit and even Lipschitz continuous relation. Although 𝑥𝛾 is no longer a
minimizer of 𝐹 , the convexity of 𝐹𝛾 implies that 𝑥𝛾 ∈ (𝜕𝐹 ∗)𝛾 (0) = 𝜕(𝐹 ∗𝛾 ) (0) is equivalent
to

0 ∈ 𝜕(𝐹 ∗𝛾 )∗(𝑥𝛾 ) = 𝜕
(
𝐹 ∗∗ + 𝛾

2 ∥ · ∥2
𝑋

) (𝑥𝛾 ) = 𝜕 (
𝐹 + 𝛾

2 ∥ · ∥2
𝑋

) (𝑥𝛾 ),
i.e., 𝑥𝛾 is the (unique due to the strict convexity of the squared norm) minimizer of the
functional 𝐹 + 𝛾

2 ∥ · ∥2
𝑋
. Hence, the regularization of 𝜕𝐹 ∗ has not made the original problem

smooth but merely (more) strongly convex. The equivalence can also be used to show
(similarly to the proof of Theorem 2.1) that 𝑥𝛾 ⇀ 𝑥 for 𝛾 → 0. In practice, this straight-
forward approach fails due to the difficulty of computing 𝐹 ∗ and prox𝐹 ∗ and is therefore
usually combined with one of the splitting techniques that will be introduced in the next
chapter.

Conversion between gradients and proximal mappings According to Corollary 7.13,
solving min𝑥 𝐹 (𝑥) for an 𝐿-smooth function 𝐹 is equivalent to solving

min
𝑥,𝑥∈𝑋

𝐺∗(𝑥) + 1
2𝐿 ∥𝑥 − 𝑥 ∥2

𝑋 .

Observe that𝐺∗may be nonsmooth. Supposewe apply an algorithm for the latter thatmakes
use of the proximal mapping of 𝐺∗ (such as the splitting methods that will be discussed in
the following chapters). Then using the Moreau decomposition of Lemma 6.24 (ii) with
Corollary 7.13, we see that

prox𝐿−1𝐺∗ (𝑥) = 𝑥 − 𝐿−1∇𝐹 (𝑥).

Therefore, this can still be done purely in terms of the gradient evaluations of 𝐹 .

Remark 7.14. Continuing from Remark 6.29, Moreau–Yosida regularization can also be defined in
reflexive Banach spaces; we refer to [Brezis et al., 1970] for details. Again, the main issue is the
practical evaluation of 𝐹𝛾 and (𝜕𝐹 )𝛾 if the duality mapping is no longer the identity.
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8 PROXIMAL POINT AND SPLITTING METHODS

We now turn to the development of algorithms for computing minimizers of functionals
𝐽 : 𝑋 → ℝ of the form

𝐽 (𝑥) ≔ 𝐹 (𝑥) +𝐺 (𝑥)
for 𝐹,𝐺 : 𝑋 → ℝ convex but not necessarily differentiable. One of the main difficulties
compared to the differentiable setting is that the naive equivalent to steepest descent, the
iteration

𝑥𝑘+1 ∈ 𝑥𝑘 − 𝜏𝑘𝜕𝐽 (𝑥𝑘),
does not work since even in finite dimensions, arbitrary subgradients need not be descent
directions – this can only be guaranteed for the subgradient of minimal norm; see, e.g.,
[Ruszczyǹski, 2006, Example 7.1, Lemma 2.77]. Furthermore, the minimal norm subgradient
of 𝐽 cannot be computed easily from those of 𝐹 and𝐺 . We thus follow a different approach
and look for a root 𝑥 of the set-valued mapping 𝑥 ↦→ 𝜕𝐽 (𝑥) (which coincides with the
minimizer 𝑥 of 𝐽 if 𝐽 is convex). In this chapter, we only derive methods, postponing proofs
of convergence, in various different senses, to Chapters 9 to 11. For the reasons mentioned
in the beginning of Section 6.3, we will assume in this and the following chapters that𝑋 (as
well as all further occurring spaces) is a Hilbert space so that we can identify 𝑋 ∗ � 𝑋 .

8.1 proximal point method

We have seen in Corollary 6.22 that a root 𝑥 of 𝜕𝐽 : 𝑋 ⇒ 𝑋 can be characterized as a fixed
point of prox𝜏 𝐽 for any 𝜏 > 0. This suggests a fixed-point iteration: Choose 𝑥0 ∈ 𝑋 and for
an appropriate sequence {𝜏𝑘}𝑘∈ℕ of step sizes set

(8.1) 𝑥𝑘+1 = prox𝜏𝑘 𝐽 (𝑥𝑘).
This iteration naturally generalizes to finding a root 𝑥 ∈ 𝐴−1(0) of a set-valued (usually
monotone) operator 𝐴 : 𝑋 ⇒ 𝑋 as

(8.2) 𝑥𝑘+1 = R𝜏𝑘𝐴 (𝑥𝑘).
This is the proximal point method, which is the basic building block for all methods in this
chapter. Using the definition of the resolvent, this can also be written in implicit form as

(8.3) 0 ∈ 𝜏𝑘𝐴(𝑥𝑘+1) + (𝑥𝑘+1 − 𝑥𝑘),
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which will be useful for the analysis of the method.

If 𝐴 is maximal monotone (in particular if 𝐴 = 𝜕𝐽 ), Lemma 6.15 shows that the iteration
map 𝑥 ↦→ R𝜏𝑘𝐴 (𝑥) is firmly nonexpansive. Mere (nonfirm) nonexpansivity already implies
that

∥𝑥𝑘+1 − 𝑥 ∥𝑋 = ∥R𝜏𝑘𝐴 (𝑥𝑘) − 𝑥 ∥𝑋 ≤ ∥𝑥𝑘 − 𝑥 ∥𝑋 .
In other words, the method does not escape from a fixed point. Either a more refined
analysis based on firm nonexpansivity of the iteration map or a more direct analysis based
on the maximal monotonicity of 𝐴 can be used to further show that the iterates {𝑥𝑘}𝑘∈ℕ
indeed converge to a fixed point 𝑥 for an initial iterate 𝑥0. The latter will be the topic of
Chapter 9.

A practical issue is the steps (8.1) of the basic proximal point method are typically just as
difficult as the original problem, so the method is not feasible for problems that demand an
iterative method for their solution in the first place. However, the proximal step does form
an important building block of several more practical splitting methods for problems of the
form 𝐽 = 𝐹 +𝐺 , which we derive in the following by additional clever manipulations.

Remark 8.1. The proximal point algorithm can be traced back to Krasnosel′skiı̆ [Krasnosel′skiı̆,
1955] and Mann [Mann, 1953] (as a special case of the Krasnosel′skiı̆–Mann iteration); it was also
studied in [Martinet, 1970]. The formulation considered here was proposed in [Rockafellar, 1976b].

8.2 explicit splitting: forward-backward splitting

As we have noted, the proximal point method is not feasible for most functionals of the
form 𝐽 (𝑥) = 𝐹 (𝑥) + 𝐺 (𝑥), since the evaluation of prox𝐽 is not significantly easier than
solving the original minimization problem – even if prox𝐹 and prox𝐺 have a closed-form
expression. (Such functionals are called prox-simple). We thus proceed differently: instead
of applying the proximal point reformulation directly to 0 ∈ 𝜕𝐽 (𝑥), we first apply the
subdifferential sum rule (Theorem 4.14) to deduce the existence of 𝑝 ∈ 𝑋 with

(8.4)
{
𝑝 ∈ 𝜕𝐹 (𝑥),

−𝑝 ∈ 𝜕𝐺 (𝑥) .
We can now replace one or both of these subdifferential inclusions by a proximal point
reformulation that only involves 𝐹 or 𝐺 .

Explicit splitting methods – also known as forward-backward splitting – are based on
applying Lemma 6.21 only to, e.g., the second inclusion in (8.4) to obtain

(8.5)
{
𝑝 ∈ 𝜕𝐹 (𝑥),
𝑥 = prox𝜏𝐺 (𝑥 − 𝜏𝑝).

The corresponding fixed-point iteration then consists in
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(i) choosing 𝑝𝑘 ∈ 𝜕𝐹 (𝑥𝑘) (with minimal norm);

(ii) setting 𝑥𝑘+1 = prox𝜏𝑘𝐺 (𝑥𝑘 − 𝜏𝑘𝑝𝑘).
Again, computing a subgradient with minimal norm can be complicated in general. It is,
however, easy if 𝐹 is additionally differentiable since in this case 𝜕𝐹 (𝑥) = {∇𝐹 (𝑥)} by
Theorem 4.5. This leads to the proximal gradient or forward-backward splitting method

(8.6) 𝑥𝑘+1 = prox𝜏𝑘𝐺 (𝑥𝑘 − 𝜏𝑘∇𝐹 (𝑥𝑘)).

(The special case 𝐺 = 𝛿𝐶 – i.e., prox𝜏𝐺 (𝑥) = proj𝐶 (𝑥) – is also known as the projected
gradient method). Similarly to the proximal point method, this method can be written in
implicit form as

(8.7) 0 ∈ 𝜏𝑘 [𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘)] + (𝑥𝑘+1 − 𝑥𝑘) .

Based on this, we will see in Chapter 9 that the iterates {𝑥𝑘} converge weakly if 𝜏𝑘𝐿 < 2 for
𝐿 the Lipschitz factor of ∇𝐹 . The need to know 𝐿 is one drawback of the explicit splitting
method. This can to some extend be circumvented by performing a line search, i.e., testing
for various choices of 𝜏𝑘 until a sufficient decrease in function values is achieved. We
will discuss such strategies later on in Section 12.3. Another highly successful variant of
explicit splitting applies inertia to the iterates for faster convergence; this we will discuss
in Section 12.2 after developing tools for the study of convergence rates.

Remark 8.2. Forward-backward splitting for finding the root of the sum of two monotone operators
was already proposed in [Lions and Mercier, 1979]. It has become especially popular under the name
iterative soft-thresholding (ISTA) in the context of sparse regression (i.e., regularization of linear
inverse problems with ℓ 1 penalties), see, e.g., [Chambolle et al., 1998; Daubechies et al., 2004; Wright
et al., 2009].

8.3 implicit splitting: douglas–rachford splitting

Even with a line search, the restriction on the step sizes 𝜏𝑘 in explicit splitting remain
unsatisfactory. Such restrictions are not needed in implicit splitting methods. (Compare
the properties of explicit vs. implicit Euler methods for differential equations.) Here, the
proximal point formulation is applied to both subdifferential inclusions in (8.4), which
yields the optimality conditions {

𝑥 = prox𝜏𝐹 (𝑥 + 𝜏𝑝),
𝑥 = prox𝜏𝐺 (𝑥 − 𝜏𝑝).

To eliminate 𝑝 from these equations, we set �̂� ≔ 𝑥 +𝜏𝑝 and𝑤 ≔ 𝑥 −𝜏𝑝 = 2𝑥 − �̂�. It remains
to derive a recursion for �̂�, which we obtain from the productive zero �̂� = �̂� + (𝑥 − 𝑥).
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Further replacing some copies of 𝑥 by a new variable 𝑦 leads to the overall fixed point
system 

𝑥 = prox𝜏𝐹 (�̂�),
𝑦 = prox𝜏𝐺 (2𝑥 − �̂�),
�̂� = �̂� + 𝑥 − 𝑦.

The corresponding fixed-point iteration leads to the Douglas–Rachford splitting (DRS)
method

(8.8)


𝑥𝑘+1 = prox𝜏𝐹 (𝑧𝑘),
𝑦𝑘+1 = prox𝜏𝐺 (2𝑥𝑘+1 − 𝑧𝑘),
𝑧𝑘+1 = 𝑧𝑘 + 𝑦𝑘+1 − 𝑥𝑘+1.

Of course, the algorithm and its derivation generalize to arbitrary monotone operators
𝐴, 𝐵 : 𝑋 ⇒ 𝑋 :

(8.9)


𝑥𝑘+1 = R𝜏𝐵 (𝑧𝑘),
𝑦𝑘+1 = R𝜏𝐴 (2𝑥𝑘+1 − 𝑧𝑘),
𝑧𝑘+1 = 𝑧𝑘 + 𝑦𝑘+1 − 𝑥𝑘+1.

We can also write the DRS method in more implicit form. Indeed, inverting the resolvents
in (8.9) and using the last update to change variables in the first two yields

0 ∈ 𝜏𝐵(𝑥𝑘+1) + 𝑦𝑘+1 − 𝑧𝑘+1,

0 ∈ 𝜏𝐴(𝑦𝑘+1) + 𝑧𝑘+1 − 𝑥𝑘+1,

0 = 𝑥𝑘+1 − 𝑦𝑘+1 + (𝑧𝑘+1 − 𝑧𝑘).

Therefore, with 𝑢 ≔ (𝑥, 𝑦, 𝑧) ∈ 𝑋 3, and the operators1

(8.10) 𝐻 (𝑥, 𝑦, 𝑧) ≔ ©«
𝜏𝐵(𝑥) + 𝑦 − 𝑧
𝜏𝐴(𝑦) + 𝑧 − 𝑥

𝑥 − 𝑦
ª®¬ and 𝑀 ≔ ©«

0 0 0
0 0 0
0 0 Id

ª®¬ ,
we can write the DRS method as the preconditioned proximal point method

(8.11) 0 ∈ 𝐻 (𝑢𝑘+1) +𝑀 (𝑢𝑘+1 − 𝑢𝑘).

Indeed, the basic proximal point in implicit form (8.3) is just (8.11) with the preconditioner
𝑀 = 𝜏−1Id. It is furthermore straightforward to verify that 0 ∈ 𝐻 (𝑢) is equivalent to
0 ∈ 𝐴(𝑥) + 𝐵(𝑥).
1Here and in the following, we identify 𝑥 ∈ 𝑋 with the singleton set {𝑥} ⊂ 𝑋 whenever there is no danger
of confusion.
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The formulation (8.11) will in the following chapter form the basis for proving the con-
vergence of the method. Recalling the discussion on convergence in Section 8.1, it seems
beneficial for 𝐻 to be maximally monotone, as then (although this is not immediate from
Lemma 6.15) it is reasonable to expect the nonexpansivity of the iterates with respect to
the semi-norm 𝑢 ↦→ ∥𝑢∥𝑀 ≔

√︁
⟨𝑀𝑢,𝑢⟩ on 𝑋 3 induced by the self-adjoint operator𝑀 , i.e.,

that
∥𝑥𝑘+1 − 𝑥 ∥𝑀 ≤ ∥𝑥𝑘 − 𝑥 ∥𝑀 .

While it is straightforward to verify that 𝐻 is monotone if 𝐴 and 𝐵 are, the question of
maximal monotonicity is more involved and will be addressed in Chapter 9. There, we will
also show that the expected nonexpansivity holds in a slightly stronger sense and that this
will yield the convergence of the method.

Remark 8.3. The Douglas–Rachford splitting was first introduced in [Douglas and Rachford, 1956];
the relationship to the proximal point method was discovered in [Eckstein and Bertsekas, 1992].
The DRS is the unique 2-operator splitting method that needs to propagate only one variable from
each iteration to the next one, 𝑧𝑘+1 [Ryu, 2019]. An extension of the DRS with a forward step with
respect to a third operator is studied [Davis and Yin, 2017]. It is also possible to devise acceleration
schemes under strong monotonicity [see, e.g., Bredies and Sun, 2016].

8.4 primal-dual proximal splitting

We now consider problems of the form

(8.12) min
𝑥∈𝑋

𝐹 (𝑥) +𝐺 (𝐾𝑥)

for 𝐹 : 𝑋 → ℝ and𝐺 : 𝑌 → ℝ proper, convex, and lower semicontinuous, and𝐾 ∈ 𝕃(𝑋 ;𝑌 ).
Applying Theorem 5.11 and Lemma 5.8 to such a problem yields the Fenchel extremality
conditions

(8.13)
{−𝐾∗𝑦 ∈ 𝜕𝐹 (𝑥),

𝑦 ∈ 𝜕𝐺 (𝐾𝑥), ⇔
{−𝐾∗𝑦 ∈ 𝜕𝐹 (𝑥),

𝐾𝑥 ∈ 𝜕𝐺∗(𝑦) .

With the general notation 𝑢 ≔ (𝑥, 𝑦), this can be written as 0 ∈ 𝐻 (𝑢) for

(8.14) 𝐻 (𝑢) ≔
(
𝜕𝐹 (𝑥) + 𝐾∗𝑦
𝜕𝐺∗(𝑦) − 𝐾𝑥

)
,

It is again not difficult to see that 𝐻 is monotone. This suggests that we might be able to
apply the proximal point method to find a root of 𝐻 . In practice we however need to work
a little bit more, as the resolvent of 𝐻 can rarely be given an explicit, easily solvable form.
If, however, the resolvents of 𝐺∗ and 𝐹 can individually be computed explicitly, it makes
sense to try to “decouple” the primal and dual variables. This is what we will do.
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To do so, we reformulate for arbitrary 𝜎, 𝜏 > 0 the extremality conditions (8.13) using
Lemma 6.21 as {

𝑥 = prox𝜏𝐹 (𝑥 − 𝜏𝐾∗𝑦),
𝑦 = prox𝜎𝐺∗ (𝑦 + 𝜎𝐾𝑥).

This suggests the fixed-point iterations

(8.15)
{
𝑥𝑘+1 = prox𝜏𝐹 (𝑥𝑘 − 𝜏𝐾∗𝑦𝑘),
𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐾𝑥𝑘+1).

In the first equation, we now use prox𝜏𝐹 = (Id + 𝜏𝜕𝐹 )−1 to obtain that

(8.16) 𝑥𝑘+1 = prox𝜏𝐹 (𝑥𝑘 − 𝜏𝐾∗𝑦𝑘) ⇔ 𝑥𝑘 − 𝜏𝐾∗𝑦𝑘 ∈ 𝑥𝑘+1 + 𝜏𝜕𝐹 (𝑥𝑘+1)
⇔ 0 ∈ 𝜏−1(𝑥𝑘+1 − 𝑥𝑘) − 𝐾∗(𝑦𝑘+1 − 𝑦𝑘)

+ [𝜕𝐹 (𝑥𝑘+1) + 𝐾∗𝑦𝑘+1] .

Similarly, the second equation of (8.15) gives

(8.17) 𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐾𝑥𝑘+1) ⇔ 𝜎−1𝑦𝑘 ∈ 𝜎−1𝑦𝑘+1 + 𝜕𝐺∗(𝑦𝑘+1) − 𝐾𝑥𝑘+1

⇔ 0 ∈ 𝜎−1(𝑦𝑘+1 − 𝑦𝑘) + [𝜕𝐺∗(𝑦𝑘+1) − 𝐾𝑥𝑘+1] .

With the help of (8.16), (8.17), and the operator

�̃� ≔

(
𝜏−1Id −𝐾∗

0 𝜎−1Id

)
,

we can then rearrange (8.15) as the preconditioned proximal point method (8.11). Further-
more, provided the step lengths are such that𝑀 = �̃� is invertible, this can be written

(8.18) 0 ∈ 𝐻 (𝑢𝑘+1) +𝑀 (𝑢𝑘+1 − 𝑢𝑘) ⇔ 𝑢𝑘+1 = R𝑀−1𝐻𝑢
𝑘 .

However, considering the remarks on convergence in the previous sections, there is a
problem:𝑀 is not self-adjoint and therefore does not induce a (semi-)norm on 𝑋 × 𝑌 . We
therefore change our algorithm and take

(8.19) 𝑀 ≔

(
𝜏−1Id −𝐾∗

−𝐾 𝜎−1Id

)
.

Correspondingly, replacing (8.17) by

𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐾 (2𝑥𝑘+1 − 𝑥𝑘)) ⇔ 𝜎−1𝑦𝑘 − 𝐾𝑥𝑘 ∈ 𝜎−1𝑦𝑘+1 + 𝜕𝐺∗(𝑦𝑘+1) − 2𝐾𝑥𝑘+1

⇔ 0 ∈ 𝜎−1(𝑦𝑘+1 − 𝑦𝑘) − 𝐾 (𝑥𝑘+1 − 𝑥𝑘)
+ [𝜕𝐺∗(𝑦𝑘+1) − 𝐾𝑥𝑘+1],
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we then obtain from (8.18) the Primal-Dual Proximal Splitting (PDPS) method

(8.20)


𝑥𝑘+1 = prox𝜏𝐹 (𝑥𝑘 − 𝜏𝐾∗𝑦𝑘),
𝑥𝑘+1 = 2𝑥𝑘+1 − 𝑥𝑘 ,
𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐾𝑥𝑘+1).

The middle over-relaxation step is a consequence of our choice of the bottom-left corner
of 𝑀 defined in (8.19). This itself was forced to have its current form through the self-
adjointness requirement on𝑀 and the choice of the top-right corner of𝑀 . As mentioned
above, the role of the latter is to “decouple” the primal update from the dual update by
shifting 𝐾∗𝑦𝑘+1 within 𝐻 to 𝐾∗𝑦𝑘 so that the primal iterate 𝑥𝑘+1 can be computed without
knowing 𝑦𝑘+1. (Alternatively, we could zero out the off-diagonal of 𝑀 and still have a
self-adjoint operator, but then we would generally not be able to compute 𝑥𝑘+1 independent
of 𝑦𝑘+1.)

In the following chapters, we will demonstrate that the PDPS method converges if the
step sizes are chosen to ensure 𝜎𝜏 ∥𝐾 ∥2

𝕃(𝑋 ;𝑌 ) < 1, and that in fact it has particularly good
convergence properties. Note that although the iteration (8.20) is implicit in 𝐹 and 𝐺 , it is
still explicit in 𝐾 ; it is therefore not surprising that step size restrictions based on 𝐾 remain.
Applying, for example, the PDPS method with �̃� (𝑥) ≔ 𝐺 (𝐾𝑥) (i.e., applying only the sum
rule but not the chain rule) would lead to a fully implicit method. This would, however,
require computing 𝐾−1 in the primal proximal step involving prox𝜎�̃�∗ . It is precisely the
point of the primal-dual proximal splitting to avoid having to invert 𝐾 , which is often
prohibitively expensive if not impossible (e.g., if 𝐾 does not have closed range as in many
inverse problems).

Remark 8.4. The primal-dual proximal splitting was first introduced in [Pock et al., 2009] for specific
image segmentation problems, and later more generally in [Chambolle and Pock, 2011]. For this
reason, it is frequently referred to as the Chambolle–Pock method. The relation to proximal point
methods was first pointed out in [He and Yuan, 2012]. In [Esser et al., 2010] it was classified as the
Primal-Dual Hybrid Gradient method, Modified or PDHGM after the method (8.15), which is called
the PDHG. The latter is due to [Zhu and Chan, 2008].

Banach space generalizations of the PDPS method, based on a so-called Bregman divergence in
place of 𝑢 ↦→ 1

2 ∥𝑢∥2, were introduced in [Hohage and Homann, 2014]. We will discuss Bregman
divergences in further detail in Section 11.1.

The PDPS method has been also generalized to different types of nonconvex problems in [Möllenhoff
et al., 2015; Valkonen, 2014]. Stochastic generalizations are considered in [Chambolle et al., 2018;
Valkonen, 2019].
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8.5 primal-dual explicit splitting

The PDPS method is useful for dealing with the sum of functionals where one summand
includes a linear operator. However, if this is the case for both operators, i.e.,

min
𝑥∈𝑋

𝐹 (𝐴𝑥) +𝐺 (𝐾𝑥)

for 𝐹 : 𝑍 → ℝ, 𝐺 : 𝑌 → ℝ, 𝐴 ∈ 𝕃(𝑋 ;𝑍 ) and 𝐾 ∈ 𝕃(𝑋 ;𝑌 ), we again have the problem of
dealing with a complicated proximal mapping. One workaround is the following “lifting
trick”: we introduce

(8.21) 𝐹 (𝑥) ≔ 0, �̃� (𝑦, 𝑧) ≔ 𝐺 (𝑦) + 𝐹 (𝑧) and �̃�𝑥 ≔ (𝐾𝑥,𝐴𝑥),
and then apply the PDPS method to the reformulated problem min𝑥 𝐹 (𝑥) + �̃� (�̃�𝑥). Ac-
cording to Lemma 6.24 (iii), the dual step of the PDPS method will then split into separate
proximal steps with respect to 𝐺∗ and 𝐹 ∗, while the proximal map in the primal step will
be trivial. However, an additional dual variable will have been introduced through the
introduction of 𝑧 above, which can be costly.

An alternative approach is the following. Analogously to (8.15), but only using Lemma 6.21
on the second relation of (8.13) together with the chain rule (Theorem 4.17), we can refor-
mulate the latter as

(8.22)
{
𝑥 ∈ 𝑥 − 𝜏 [𝜕𝐴∗𝐹 (𝐴𝑥) + 𝐾∗𝑦],
𝑦 = prox𝜎𝐺∗ (𝑦 + 𝜎𝐾𝑥).

(For 𝐾 = Id, we can alternatively obtain (8.22) from the derivation of explicit splitting by
using Moreau’s identity, Theorem 6.23, in the second relation of (8.5).)

If 𝐹 is Gâteaux differentiable (and taking 𝐴 = Id for the sake of presentation), inserting the
first relation in the second relation, (8.22) can be further rewritten as{

𝑥 = 𝑥 − 𝜏 [∇𝐹 (𝑥) + 𝐾∗𝑦],
𝑦 = prox𝜎𝐺∗ (𝑦 + 𝜎𝐾𝑥 − 𝜎𝜏𝐾 [∇𝐹 (𝑥) + 𝐾∗𝑦]).

Reordering the lines and fixing 𝜏 = 𝜎 = 1, the corresponding fixed-point iteration leads to
the primal-dual explicit splitting (PDES) method

(8.23)
{
𝑦𝑘+1 = prox𝐺∗ ((Id − 𝐾𝐾∗)𝑦𝑘 + 𝐾 (𝑥𝑘 − ∇𝐹 (𝑥𝑘))),
𝑥𝑘+1 = 𝑥𝑘 − ∇𝐹 (𝑥𝑘) − 𝐾∗𝑦𝑘+1.

Again, we can write (8.23) in more implicit form as{
0 ∈ 𝜕𝐺∗(𝑦𝑘+1) − 𝐾 (𝑥𝑘 − ∇𝐹 (𝑥𝑘) − 𝐾∗𝑦𝑘) + (𝑦𝑘+1 − 𝑦𝑘),
0 = ∇𝐹 (𝑥𝑘) + 𝐾∗𝑦𝑘+1 + (𝑥𝑘+1 − 𝑥𝑘).
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Inserting the second relation in the first, this is{
0 ∈ 𝜕𝐺∗(𝑦𝑘+1) − 𝐾𝑥𝑘+1 + (Id − 𝐾𝐾∗) (𝑦𝑘+1 − 𝑦𝑘),
0 = ∇𝐹 (𝑥𝑘) + 𝐾∗𝑦𝑘+1 + (𝑥𝑘+1 − 𝑥𝑘).

If we now introduce the preconditioning operator

(8.24) 𝑀 ≔

(
Id 0
0 Id − 𝐾𝐾∗

)
,

then in terms of the monotone operator 𝐻 introduced in (8.14) for the PDPS method and
𝑢 = (𝑥, 𝑦), the PDES method (8.23) can be written in implicit form as

(8.25) 0 ∈ 𝐻 (𝑢𝑘+1) +
(∇𝐹 (𝑥𝑘) − ∇𝐹 (𝑥𝑘+1)

0

)
+𝑀 (𝑢𝑘+1 − 𝑢𝑘).

The middle term switches the step with respect to 𝐹 to be explicit. Note that (8.7) could
have also been written with a similar middle term; we can therefore think of the PDES
method as a preconditioned explicit splitting method.

The preconditioning operator𝑀 is self-adjoint aswell as positive semi-definite if ∥𝐾 ∥𝕃(𝑋 ;𝑌 ) ≤
1. It does not have the off-diagonal decoupling terms that the preconditioner for the PDPS
method has. Instead, through the special structure of the problem the term Id − 𝐾𝐾∗

decouple 𝑦𝑘+1 from 𝑥𝑘+1, allowing 𝑦𝑘+1 be computed first.

We will in Section 9.4 see that the iterates of the PDES method converge weakly when ∇𝐹
is Lipschitz with factor strictly less than 2.

Remark 8.5. The primal-dual explicit splitting was introduced in [Loris and Verhoeven, 2011] as
Generalized Iterative Soft Thresholding (GIST) for 𝐹 (𝑥) = 1

2 ∥𝑏 − 𝑥 ∥2. The general case has later been
called the primal-dual fixed point method (PDFP) in [Chen et al., 2013] and the proximal alternating
predictor-corrector (PAPC) in [Drori et al., 2015].

8.6 augmented lagrangian and admm

Let 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑍 → ℝ be convex, proper, and lower semicontinuous. Also let
𝐴 ∈ 𝕃(𝑋 ;𝑌 ), and 𝐵 ∈ 𝕃(𝑍 ;𝑌 ), and consider for some 𝑐 ∈ 𝑌 the problem

(8.26) min
𝑥,𝑧

𝐹 (𝑥) +𝐺 (𝑧) s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐.

A traditional way to handle this kind of constraint problems is by means of the augmented
Lagrangian. We start by introducing the Lagrangian

L(𝑥, 𝑧; 𝜆) ≔ 𝐹 (𝑥) +𝐺 (𝑧) + ⟨𝐴𝑥 + 𝐵𝑧 − 𝑐, 𝜆⟩𝑌 .
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Then (8.26) has the same solutions as the saddle-point problem

(8.27) min
𝑥∈𝑋,𝑧∈𝑍

max
𝜆∈𝑌

L(𝑥, 𝑧; 𝜆).

We may then “augment” the Lagrangian by a squared penalty on the violation of the
constraint, hence obtaining the equivalent problem

(8.28) min
𝑥∈𝑋,𝑧∈𝑍

max
𝜆∈𝑌

L𝜏 (𝑥, 𝑧; 𝜆) ≔ 𝐹 (𝑥) +𝐺 (𝑧) + ⟨𝐴𝑥 + 𝐵𝑧 − 𝑐, 𝜆⟩𝑌 + 𝜏2 ∥𝐴𝑥 + 𝐵𝑧 − 𝑐 ∥2
𝑌 ,

where L𝜏 is the augmented Lagrangian.

A classical approach for the solution of (8.28) is by alternatingly solving for one variable,
keeping the others fixed. If we take a proximal step for the dual variable or Lagrange
multiplier 𝜆, this yields the Alternating Directions Method of Multipliers (ADMM)

(8.29)



𝑥𝑘+1 ≔ arg min
𝑥∈𝑋

L𝜏 (𝑥, 𝑧𝑘 ; 𝜆𝑘),

𝑧𝑘+1 ≔ arg min
𝑧∈𝑍

L𝜏 (𝑥𝑘+1, 𝑧; 𝜆𝑘),

𝜆𝑘+1 ≔ arg max
𝜆∈𝑌

L𝜏 (𝑥𝑘+1, 𝑧𝑘+1; 𝜆) − 1
2𝜏 ∥𝜆 − 𝜆

𝑘 ∥2
𝑌 .

This can be rewritten as

(8.30)


𝑥𝑘+1 ∈ (𝐴∗𝐴 + 𝜏−1𝜕𝐹 )−1(𝐴∗(𝑐 − 𝐵𝑧𝑘 − 𝜏−1𝜆𝑘)),
𝑧𝑘+1 ∈ (𝐵∗𝐵 + 𝜏−1𝜕𝐺)−1(𝐵∗(𝑐 −𝐴𝑥𝑘+1 − 𝜏−1𝜆𝑘)),
𝜆𝑘+1 ≔ 𝜆𝑘 + 𝜏 (𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐).

As can be observed, the ADMM requires inverting relatively complicated set-valued opera-
tors in place of simple proximal point operations. This is why the basic ADMM is seldom
practically implementable without the application of a further optimization method to
solve the 𝑥 and 𝑧 updates.

In the literature, there have been various remedies to the nonimplementability of the
ADMM. In particular, one can modify the ADMM iterations by adding to (8.29) additional
proximal terms. Introducing for some𝑄𝑥 ∈ 𝕃(𝑋 ;𝑋 ) and𝑄𝑧 ∈ 𝕃(𝑍 ;𝑍 ) the weighted norms
∥𝑥 ∥𝑄𝑥 ≔

√︁
⟨𝑄𝑥𝑥, 𝑥⟩𝑋 and ∥𝑧∥𝑄𝑧 ≔

√︁
⟨𝑄𝑧𝑧, 𝑧⟩𝑍 , this leads to the iteration

(8.31)



𝑥𝑘+1 ≔ arg min
𝑥∈𝑋

L𝜏 (𝑥, 𝑧𝑘 ; 𝜆𝑘) + 1
2 ∥𝑥 − 𝑥𝑘 ∥2

𝑄𝑥
,

𝑧𝑘+1 ≔ arg min
𝑧∈𝑍

L𝜏 (𝑥𝑘+1, 𝑧; 𝜆𝑘) + 1
2 ∥𝑧 − 𝑧

𝑘 ∥2
𝑄𝑧
,

𝜆𝑘+1 ≔ arg max
𝜆∈𝑌

L𝜏 (𝑥𝑘+1, 𝑧𝑘+1; 𝜆) − 1
2𝜏 ∥𝜆 − 𝜆

𝑘 ∥2
𝑌 .
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If we specifically take 𝑄𝑥 ≔ 𝜎−1Id − 𝜏𝐴∗𝐴 and 𝑄𝑧 ≔ 𝜃−1Id − 𝜏𝐵∗𝐵 for some 𝜎, 𝜃 > 0 with
𝜃𝜏 ∥𝐴∥ < 1 and 𝜎𝜏 ∥𝐵∥ < 1, then we can expand

L𝜏 (𝑥, 𝑧; 𝜆) + 1
2 ∥𝑥 − 𝑥𝑘 ∥2

𝑄𝑥
= 𝐹 (𝑥) +𝐺 (𝑧) + ⟨𝐴𝑥 + 𝐵𝑧 − 𝑐, 𝜆⟩𝑌
+ 𝜏 ⟨𝑥,𝐴∗(𝐵𝑧 − 𝑐)⟩𝑋 + 𝜏2 ∥𝐵𝑧 − 𝑐 ∥

2
𝑌

+ 1
2𝜎 ∥𝑥 − 𝑥𝑘 ∥2

𝑋 + 𝜏 ⟨𝑥𝑘+1, 𝐴∗𝐴𝑥𝑘⟩𝑋 − 𝜏

2 ∥𝐴𝑥
𝑘 ∥2
𝑌 ,

which has the “partial” subdifferential 𝜕𝑥 with respect to 𝑥 (keeping 𝑧, 𝜆 fixed)

𝜕𝑥L𝜏 (𝑥, 𝑧; 𝜆) = 𝜕𝐹 (𝑥) +𝐴∗𝜆 + 𝜏𝐴∗(𝐵𝑧 − 𝑐) + 𝜎−1(𝑥 − 𝑥𝑘) + 𝜏𝐴∗𝐴𝑥𝑘 .

Similarly computing the partial subdifferential 𝜕𝑧 with respect to 𝑧, (8.31) can thus be written
as the preconditioned ADMM

(8.32)


𝑥𝑘+1 ≔ prox𝜎𝐹 ((Id − 𝜎𝜏)𝐴∗𝐴𝑥𝑘 + 𝜎𝐴∗(𝜏 (𝑐 − 𝐵𝑧𝑘) − 𝜆𝑘)),
𝑧𝑘+1 ≔ prox𝜃𝐺 ((Id − 𝜃𝜏)𝐵∗𝐵𝑧𝑘 + 𝜃𝐵∗(𝜏 (𝑐 −𝐴𝑥𝑘+1) − 𝜆𝑘)),
𝜆𝑘+1 ≔ 𝜆𝑘 + 𝜏 (𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐).

We will see in the next section that this method is just the PDPS method with the primal
and dual variables exchanged.

Remark 8.6. The ADMM was introduced in [Arrow et al., 1958; Gabay, 1983] as an alternating
approach to the classical Augmented Lagrangian method. The preconditioned ADMM is due to
[Zhang et al., 2011].

8.7 connections

In Section 8.5 we have seen the importance and interplay of problem formulation and
algorithm choice for problems with a specific structure. We will now see that many of the
algorithmswe have presented are actually equivalentwhen applied to differing formulations
of the problem. Hence, if one algorithm is efficient on one formulation of the problem,
another algorithm may work equally well on a different formulation.

We start by considering the ADMM problem (8.26), which we can reformulate as

min
𝑥,𝑧

𝐹 (𝑥) +𝐺 (𝑧) + 𝛿{𝑐} (𝐴𝑥 + 𝐵𝑧).
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Applying the PDPS method (8.20) to this formulation yields the algorithm

(8.33)



𝑥𝑘+1 ≔ prox𝜏𝐹 (𝑥𝑘 − 𝜏𝐴∗𝜆𝑘),
𝑧𝑘+1 ≔ prox𝜏𝐺 (𝑧𝑘 − 𝜏𝐵∗𝜆𝑘),
𝑥𝑘+1 ≔ 2𝑥𝑘+1 − 𝑥𝑘 ,
𝑧𝑘+1 ≔ 2𝑧𝑘+1 − 𝑧𝑘 ,
𝜆𝑘+1 ≔ 𝜆𝑘 + 𝜎 (𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐).

Note that both the ADMM (8.30) and the preconditioned ADMM (8.32) have a very similar
form to this iteration. We will now demonstrate that if𝐴 = Id and so 𝑋 = 𝑌 , i.e., if we want
to solve the (primal) problem

(8.34) min
𝑧∈𝑍

𝐹 (𝑐 − 𝐵𝑧) +𝐺 (𝑧),

then the ADMM is equivalent to the PDPS method (8.20) applied to the (dual) problem

(8.35) min
𝑦∈𝑌

[𝐺∗(𝐵∗𝑦) − ⟨𝑐, 𝑦⟩𝑌 ] + 𝐹 ∗(𝑦),

where the dual step will be performed with respect to 𝐹 ∗.

To make the exact way the PDPS method is applied in each instance clearer, and to highlight
the primal-dual nature of the PDPS method, it will be more convenient to write the problem
to which the PDPS method is applied in saddle-point form. Specifically, minding (5.4)
together with the discussion following Theorem 5.11, the problem min𝑥 𝐹 (𝑥) +𝐺 (𝐾𝑥) can
be written as the saddle-point problem

min
𝑥∈𝑋

max
𝑦∈𝑌

𝐹 (𝑥) + ⟨𝐾𝑥, 𝑦⟩𝑌 −𝐺∗(𝑦).

This formulation also shows the dual variable directly in the problem formulation. Applied
to (8.35), we then obtain the problem

(8.36) min
𝑦∈𝑌

max
𝑥∈𝑋

[𝐺∗(𝐵∗𝑦) − ⟨𝑐, 𝑦⟩𝑌 ] + ⟨𝑥, 𝑦⟩𝑌 − 𝐹 (𝑥).

Our claim is that the PDPS method applied to this saddle-point formulation is equivalent
to the ADMM in case of 𝐴 = Id. The iterates of the two algorithms will be different, as the
variables solved for will be different aside from the shared 𝑥 . However, all the variables
will be related by affine transformations.

We will also demonstrate that the preconditioned ADMM is equivalent to the PDPS method
when 𝐵 = Id. In fact, we will demonstrate a chain of relationships from ADMM or precon-
ditioned ADMM (primal problem) via the PDPS (saddle-point problem) method to the DRS
method (dual problem); the equivalence between the ADMM and the DRS method even
holds generally.
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To demonstrate the idea, we start with 𝐴 = 𝐵 = Id. Then (8.30) reads

(8.37)


𝑥𝑘+1 ≔ prox𝜏−1𝐹 (𝑐 − 𝑧𝑘 − 𝜏−1𝜆𝑘),
𝑧𝑘+1 ≔ prox𝜏−1𝐺 (𝑐 − 𝑥𝑘+1 − 𝜏−1𝜆𝑘),
𝜆𝑘+1 ≔ 𝜆𝑘 + 𝜏 (𝑥𝑘+1 + 𝑧𝑘+1 − 𝑐).

Using the third step for the previous iteration to obtain an expression for 𝑧𝑘 , we can rewrite
the first step as

𝑥𝑘+1 ≔ prox𝜏−1𝐹 (𝑥𝑘 − 𝜏−1(2𝜆𝑘 − 𝜆𝑘−1)) .
If we use Lemma 6.24 (ii), the second step reads

𝑧𝑘+1 ≔ (𝑐 − 𝑥𝑘+1 − 𝜏−1𝜆𝑘) − 𝜏−1prox𝜏𝐺∗ (𝜏 (𝑐 − 𝑥𝑘+1) − 𝜆𝑘).
Minding the third step of (8.37), this yields 𝜆𝑘+1 = −prox𝜏𝐺∗ (𝜏 (𝑐 − 𝑥𝑘+1) − 𝜆𝑘). Replacing
𝜆𝑘+1 by 𝑦𝑘+1 ≔ −𝜆𝑘+1, moving 𝑐 into the proximal part, and reordering the steps such that
𝑥𝑘+1 becomes 𝑥𝑘 , transforms (8.37) into

(8.38)
{
𝑦𝑘+1 ≔ prox𝜏 (𝐺∗−⟨𝑐, · ⟩) (𝑦𝑘 − 𝜏𝑥𝑘),
𝑥𝑘+1 ≔ prox𝜏−1𝐹 (𝑥𝑘 + 𝜏−1(2𝑦𝑘+1 − 𝑦𝑘)) .

This is the PDPS method applied to (8.36) with 𝐵 = Id. However, the step lengths 𝜏 and
𝜎 = 𝜏−1 do not satisfy 𝜏𝜎 ∥𝐾 ∥2 < 1, which would be needed to deduce convergence of the
ADMM from that of the PDPS method. But we will see in Chapter 11 that these step lengths
at least lead to convergence of a certain “Lagrangian duality gap”, and for the ADMM we
can in general only prove such gap estimates.

To show the relation of ADMM to implicit splitting, we further use Lemma 6.24 (ii) in the
second step of (8.38) to obtain

𝑥𝑘+1 = 𝜏−1(2𝑦𝑘+1 − 𝑦𝑘) + 𝑥𝑘 − 𝜏−1prox𝜏𝐹 ∗ (2𝑦𝑘+1 − 𝑦𝑘 + 𝜏𝑥𝑘).
Introducing𝑤𝑘+1 ≔ 𝑦𝑘+1 − 𝜏𝑥𝑘+1 and changing variables, we thus transform (8.38) into

(8.39)
{
𝑦𝑘+1 ≔ prox𝜏 (𝐺∗−⟨𝑐, · ⟩) (𝑤𝑘),
𝑤𝑘+1 ≔ 𝑤𝑘 − 𝑦𝑘+1 + prox𝜏𝐹 ∗ (2𝑦𝑘+1 −𝑤𝑘).

But this is the DRS method (8.8) applied to

min
𝑥∈𝑋

𝐹 ∗(𝑥) + [𝐺∗(𝑥) − ⟨𝑐, 𝑥⟩𝑋 ] .

Recall now from Lemma 5.4 that [𝐺 (𝑐 − · )]∗ = 𝐺∗(− · ) + ⟨𝑐, · ⟩𝑌 . Theorem 5.11 thus shows
that this is the dual problem of (8.34), so we can at least deduce from Corollary 9.11 the
convergence of 𝑦𝑘 to a solution of the dual problem.

We canmake the correspondence more general with the help of the following generalization
of Moreau’s identity (Theorem 6.23).
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Lemma 8.7. Let 𝑆 = 𝐺 ◦ 𝐾 for convex, proper, and lower semicontinuous 𝐺 : 𝑌 → ℝ and
𝐾 ∈ 𝕃(𝑋 ;𝑌 ). If there exists an 𝑥0 ∈ dom 𝑆 such that 𝐾𝑥0 ∈ int(dom𝐺), then for all 𝑥 ∈ 𝑋
and 𝛾 > 0,

𝑥 = prox𝛾𝑆 (𝑥) + 𝛾𝐾∗(𝐾𝐾∗ + 𝛾−1𝜕𝐺∗)−1(𝛾−1𝐾𝑥).
In particular,

prox𝑆∗ (𝑥) = 𝐾∗(𝐾𝐾∗ + 𝜕𝐺∗)−1(𝐾𝑥).

Proof. By Theorem 5.11,𝑤 = prox𝛾𝑆 (𝑥) if and only if for some 𝑦∗ ∈ 𝑌 ∗ holds{−𝐾∗𝑦∗ ∈ 𝑤 − 𝑥,
𝑦∗ ∈ 𝛾𝜕𝐺 (𝐾𝑤).

In other words, by Lemma 5.8, {
−𝐾∗𝑦∗ = 𝑤 − 𝑥,
𝐾𝑤 ∈ 𝜕𝐺∗(𝛾−1𝑦∗).

Applying 𝐾 to the first relation, inserting the second, and multiplying by 𝛾−1 yields

𝐾𝐾∗𝛾−1𝑦∗ + 𝛾−1𝜕𝐺∗(𝛾−1𝑥∗) = 𝛾−1𝐾𝑦,

i.e., 𝛾−1𝑥∗ ∈ (𝐾𝐾∗ +𝛾−1𝜕𝐺∗)−1(𝛾−1𝐾𝑥). Combined with −𝐾∗𝑦∗ = 𝑤 − 𝑥 , this yields the first
claim. The second claim then follows from Theorem 7.11 together with the first claim for
𝛾 = 1. □

Theorem 8.8. Let 𝐹 : 𝑋 → ℝ and𝐺 : 𝑍 → ℝ be convex, proper, and lower semicontinuous.
Also let 𝐴 ∈ 𝕃(𝑋 ;𝑌 ), and 𝐵 ∈ 𝕃(𝑍 ;𝑌 ), and 𝑐 ∈ 𝑌 . Assume the existence of a point (𝑥0, 𝑧0) ∈
dom 𝐹 × dom𝐺 with 𝐴𝑥0 + 𝐵𝑧0 = 𝑐 . Then the iterates of the following algorithms can be
transformed to one another with affine transformations and (to obtain the ADMM) the addition
of elements of ker𝐴 and ker𝐵:

(i) The ADMM applied to the (primal) problem

(8.40) min
𝑥∈𝑋,𝑧∈𝑍

𝐹 (𝑥) +𝐺 (𝑧) s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐.

(ii) The DRS method applied to the (dual) problem

(8.41) min
𝑦∈𝑌

𝐹 ∗(𝐴∗𝑦) + [𝐺∗(𝐵∗𝑦) − ⟨𝑐, 𝑦⟩𝑌 ] .

(iii) If 𝐴 = Id, 𝑋 = 𝑌 , and 𝜎 = 𝜏−1, the PDPS method applied to the (saddle-point) problem

(8.42) min
𝑦∈𝑌

max
𝑥∈𝑋

[𝐺∗(𝐵∗𝑦) − ⟨𝑐, 𝑦⟩𝑌 ] + ⟨𝑥, 𝑦⟩𝑌 − 𝐹 (𝑥).
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Proof. We first show that the ADMM updates for (8.40) can be transformed, via affine
transformations alone, to the DRS updates for (8.41), and the PDPS updates for (8.42).
Observe that the assumption on the existence of (𝑥0, 𝑧0) ensures that the infimum in (8.40)
is finite. Thus, multiplying the first and second updates of (8.30) by 𝐴 and 𝐵, and changing
variables 𝑥𝑘+1 and 𝑧𝑘+1 to 𝑥𝑘+1 ≔ 𝐴𝑥𝑘+1 and 𝑧𝑘+1 ≔ 𝐵𝑧𝑘+1, we obtain

(8.43)


𝑥𝑘+1 ∈ 𝐴(𝐴∗𝐴 + 𝜏−1𝜕𝐹 )−1(𝐴∗(𝑐 − 𝑧𝑘 − 𝜏−1𝜆𝑘)),
𝑧𝑘+1 ∈ 𝐵(𝐵∗𝐵 + 𝜏−1𝜕𝐺)−1(𝐵∗(𝑐 − 𝑥𝑘+1 − 𝜏−1𝜆𝑘)),
𝜆𝑘+1 ≔ 𝜆𝑘 + 𝜏 (𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐).

Using Lemma 8.7 with 𝑦𝑘 ≔ −𝜆𝑘 and −𝑦𝑘+1 = −𝑦𝑘 + 𝜏 (𝑥𝑘+1 + 𝑧𝑘+1 − 𝑐), we transform this
as above to

(8.44)
{
𝑦𝑘+1 ∈ prox𝜏𝐺∗◦𝐵∗ (𝜏 (𝑐 − 𝑥𝑘) + 𝑦𝑘),
𝑥𝑘+1 ∈ 𝐴(𝐴∗𝐴 + 𝜏−1𝜕𝐹 )−1(𝐴∗(2𝑦𝑘+1 − 𝑦𝑘 + 𝑥𝑘)).

If 𝐴 = Id, this is the PDPS method for (8.42) with the iterate equivalence 𝑥𝑘+1 = 𝑥𝑘+1. We
continue with Lemma 8.7 and𝑤𝑘+1 ≔ 𝑦𝑘+1 − 𝜏𝑥𝑘+1 to transform (8.44) further into

(8.45)
{
𝑦𝑘+1 ≔ prox𝜏 (𝐺∗◦𝐵∗−⟨𝑐, · ⟩) (𝑤𝑘),
𝑤𝑘+1 ≔ 𝑤𝑘 − 𝑦𝑘+1 + prox𝜏𝐹 ∗◦𝐴∗ (2𝑦𝑘+1 −𝑤𝑘).

This is the DRS method for (8.41).

In the other direction, it is clear from the derivation above that the DRS (8.45) generates
(8.44) and, via affine transformations, its iterates. Likewise (8.44) and be transformed back
into (8.44) by reversing the steps. The passage from the iterates of (8.43) back to the iterates
of the ADMM (8.30) cannot be achieved with affine transformations alone, unless 𝐴 and 𝐵
are injective. However, when there exist 𝑥𝑘+1 and 𝑧𝑘+1 solving (8.43), there must exist some
𝑥𝑘+1 and 𝑧𝑘+1 with 𝑥𝑘+1 ≔ 𝐴𝑥𝑘+1 and 𝑧𝑘+1 ≔ 𝐵𝑧𝑘+1 that satisfy (8.30).

We still need to establish the claimed duality relationship between the problems (8.40),
(8.41), and (8.42). To pass from (8.40) to (8.41), we would like to apply Theorem 5.11 to
𝐹 (𝑥, 𝑧) ≔ 𝐹 (𝑥) + 𝐺 (𝑧), �̃� (𝑦) ≔ 𝛿{𝑦=𝑐} (𝑦), and �̃� ≔ (𝐴, 𝐵). However, dom𝐺 = {𝑐} has
empty interior, so condition (ii) of the theorem does not hold. Recalling Remarks 4.16
and 5.13, we can however replace the interior with the relative interior ri dom �̃� = {𝑐}.
Thus the condition reduces to the existence of 𝑦0 ∈ dom 𝐹 with 𝐾𝑦0 = 𝑐 , which is satisfied
by 𝑦0 = (𝑥0, 𝑧0).
Finally, the relationship to (8.42) when 𝐴 = Id is immediate from (8.41) and the definition
of the conjugate function 𝐹 ∗. The existence of a saddle point follows from the proof of
Theorem 5.11. □
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The methods in the proof of Theorem 8.8 are rarely computationally feasible or efficient
unless 𝐴 = 𝐵 = Id, due to the difficult proximal mappings for compositions of functionals
with operators or the set-valued operator inversions required. On the other hand, the PDPS
method (8.33) only requires that we can compute the proximal mappings of 𝐺 and 𝐹 . This
demonstrates the importance of problem formulation.

Similar connections hold for the preconditioned ADMM (8.32). With the help of the third
step of (8.32), the first step can be rewritten

𝑥𝑘+1 ≔ prox𝜎𝐹 (𝑥𝑘 − 𝜎𝐴∗(2𝜆𝑘 − 𝜆𝑘−1)) .

If 𝜃𝜏 = 1 and 𝐵 = Id, the second step reads

𝑧𝑘+1 ≔ prox𝜏−1𝐺 ((𝑐 −𝐴𝑥𝑘+1) − 𝜏−1𝜆𝑘).

We transform this with Lemma 6.24 (ii) into

𝑧𝑘+1 = (𝑐 −𝐴𝑥𝑘+1) − 𝜏−1𝜆𝑘 − 𝜏−1prox𝜏𝐺∗ (𝜏 (𝑐 −𝐴𝑥𝑘+1) − 𝜆𝑘).

Using the third step of (8.32), this is equivalent to

−𝜆𝑘+1 = prox𝜏𝐺∗ (𝜏 (𝑐 −𝐴𝑥𝑘+1) − 𝜆𝑘).

Introducing 𝑦𝑘+1 ≔ −𝜆𝑘+1 and changing the order of the first and second step, we therefore
transform (8.32) into the PDPS method

(8.46)
{
𝑦𝑘+1 ≔ prox𝜏𝐺∗ (𝑦𝑘 − 𝜏𝐴𝑥𝑘),
𝑥𝑘+1 ≔ prox𝜎𝐹 (𝑥𝑘 + 𝜎𝐴∗(2𝑦𝑘+1 − 𝑦𝑘)) .

We therefore have obtained the following result.

Theorem 8.9. Let 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑌 → ℝ be convex, proper, and lower semicontinuous.
Also let 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and 𝑐 ∈ 𝑌 . Assume the existence of a point (𝑥0, 𝑧0) ∈ dom 𝐹 × dom𝐺

with 𝐴𝑥0 + 𝑧0 = 𝑐 . Take 𝜃 = 𝜏−1. Then subject to affine transformations to obtain iterates not
explicitly generated in each case, the following are equivalent:

(i) The preconditioned ADMM (8.32) applied to the (primal) problem

min
𝑥∈𝑋,𝑧∈𝑌

𝐹 (𝑥) +𝐺 (𝑧) s.t. 𝐴𝑥 + 𝑧 = 𝑐.

(ii) The PDPS method applied to the (saddle point) problem

min
𝑦∈𝑌

max
𝑥∈𝑋

[𝐺∗(𝑦) − ⟨𝑐, 𝑦⟩𝑌 ] + ⟨𝐴𝑥, 𝑦⟩𝑌 − 𝐹 (𝑥).
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(iii) If 𝐴 = Id, 𝑋 = 𝑌 , and 𝜎 = 𝜏−1, the Douglas–Rachford splitting method applied to the
(dual) problem

min
𝑦∈𝑋

𝐹 ∗(𝑦) + [𝐺∗(𝑦) − ⟨𝑐, 𝑦⟩𝑌 ] .

Proof. We have already proved the equivalence of the preconditioned ADMM and the
PDPS method. For equivalence to the DRS method, we observe that under the additional
assumptions of this theorem, (8.46) reduces to (8.38). □
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Now that we have in the previous chapter derived several iterative procedures through the
manipulation of fixed-point equations, we have to show that they indeed converge to a
fixed point (which by construction is then the solution of an optimization problem, making
these procedures optimization algorithms). We start with weak convergence, as this is the
most that can generally be expected.

The classical approach to proving weak convergence is by introducing suitable contractive
(or at least firmly nonexpansive) operators related to the algorithm and then applying
classical fixed-point theorems (see Remark 9.5 below). We will instead introduce a very
direct approach that will then extend in the following chapters to be also capable of proving
convergence rates. The three main ingredients of all convergence proofs will be

(i) The three-point identity (1.5), which we recall here as

(9.1) ⟨𝑥 − 𝑦, 𝑥 − 𝑧⟩𝑋 =
1
2 ∥𝑥 − 𝑦 ∥2

𝑋 − 1
2 ∥𝑦 − 𝑧∥2

𝑋 + 1
2 ∥𝑥 − 𝑧∥2

𝑋 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

(ii) The monotonicity of the operator 𝐻 whose roots we seek to find (which in the
simplest case equals 𝜕𝐹 for the functional 𝐹 we want to minimize).

(iii) The nonnegativity of the preconditioning operators𝑀 defining the implicit forms of
the algorithms we presented in Chapter 8.

In the later chapters, stronger versions of the last two ingredients will be required to obtain
convergence rates and the convergence of function value differences 𝐹 (𝑥𝑘+1) − 𝐹 (𝑥) or of
more general gap functionals.

9.1 opial’s lemma and fejér monotonicity

The next lemma forms the basis of all our weak convergence proofs. It is a generalized
subsequence argument, showing that if all weak limit points of a sequence lie in a set and
if the sequence does not diverge (in the strong sense) away from this set, the full sequence
converges weakly. We recall that 𝑥 ∈ 𝑋 is a weak(-∗) limit point of the sequence {𝑥𝑘}𝑘∈ℕ,
if there exists a subsequence such that 𝑥𝑘ℓ ⇀ 𝑥 weakly(-∗) in 𝑋 .
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Lemma 9.1 (Opial). Let 𝑋 be a Hilbert space and 𝑋 ⊂ 𝑋 be a nonempty subset. If the sequence
{𝑥𝑘}𝑘∈ℕ ⊂ 𝑋 satisfies

(i) ∥𝑥𝑘+1 − 𝑥 ∥𝑋 ≤ ∥𝑥𝑘 − 𝑥 ∥𝑋 for all 𝑥 ∈ 𝑋 and 𝑘 ∈ ℕ;

(ii) all weak limit points of {𝑥𝑘}𝑘∈ℕ belong to 𝑋 ;

then 𝑥𝑘 ⇀ 𝑥 in 𝑋 for some 𝑥 ∈ 𝑋 .

Proof. First, the assumption (i) implies that the sequence {𝑥𝑘}𝑘∈ℕ is bounded and hence by
Theorem 1.9 contains a weakly convergent subsequence. Let now 𝑥 and 𝑥 be weak limit
points. The assumption (i) then implies that both {∥𝑥𝑘 − 𝑥 ∥𝑋 }𝑘∈ℕ and {∥𝑥𝑘 − 𝑥 ∥𝑋 }𝑘∈ℕ are
decreasing and bounded from below and therefore convergent. This yields that

⟨𝑥𝑘 , 𝑥 − 𝑥⟩𝑋 =
1
2

(
∥𝑥𝑘 − 𝑥 ∥2

𝑋 − ∥𝑥𝑘 − 𝑥 ∥2
𝑋 + ∥𝑥 ∥2

𝑋 − ∥𝑥 ∥2
𝑋

)
→ 𝑐 ∈ ℝ.

Since 𝑥 is a weak accumulation point, there exists a subsequence {𝑥𝑘𝑛 }𝑛∈ℕ with 𝑥𝑘𝑛 ⇀ 𝑥 ;
similarly, there exists a subsequence {𝑥𝑘𝑚 }𝑚∈ℕ with 𝑥𝑘𝑚 ⇀ 𝑥 . Hence,

⟨𝑥, 𝑥 − 𝑥⟩𝑋 = lim
𝑛→∞⟨𝑥

𝑘𝑛 , 𝑥 − 𝑥⟩𝑋 = 𝑐 = lim
𝑚→∞⟨𝑥

𝑘𝑚 , 𝑥 − 𝑥⟩𝑋 = ⟨𝑥, 𝑥 − 𝑥⟩𝑋 ,

and therefore
0 = ⟨𝑥 − 𝑥, 𝑥 − 𝑥⟩𝑋 = ∥𝑥 − 𝑥 ∥2

𝑋 ,

i.e., 𝑥 = 𝑥 . Every convergent subsequence thus has the same weak limit (which lies in 𝑋
by assumption (ii)). The claim now follows from a standard subsequence–subsequence
argument: Assume to the contrary that there exists a subsequence of {𝑥𝑘}𝑘∈ℕ that does
not converge to 𝑥 . Then we can apply the above argument to obtain a further subsequence
converging to 𝑥 , which is a contradiction to the fact that any subsequence of a convergent
sequences converges to the same limit. □

A sequence satisfying the condition (i) is called Fejér monotone (with respect to 𝑋 ); this is a
crucial property of iterates generated by any fixed-point algorithm.

Remark 9.2. Lemma 9.1 first appeared in the proof of [Opial, 1967, Theorem 1]. (There 𝑋 is assumed
to be closed and convex, but we do not require this since Condition (ii) is already sufficient to show
the claim.)

The concept of Fejér monotone sequences first appears in [Fejér, 1922], where it was observed that
for every point outside the convex hull of a subset of the Euclidean plane, it is always possible to
construct a point that is closer to each point in the subset than the original point (and that this
property in fact characterizes the convex hull). The term Fejér monotone itself appears in [Motzkin
and Schoenberg, 1954], where this construction is used to show convergence of an iterative scheme
for the projection onto a convex polytope.
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9 splitting methods: weak convergence

9.2 the fundamental methods: proximal point and explicit splitting

Using Opial’s Lemma 9.1, we can fairly directly show weak convergence of the proximal
point and forward-backward splitting methods.

proximal point method

We recall our most fundamental nonsmooth optimization algorithm, the proximal point
method. For later use, we treat the general version of (8.1) for an arbitrary set-valued
operator 𝐻 : 𝑋 ⇒ 𝑋 , i.e.,

(9.2) 𝑥𝑘+1 = R𝜏𝑘𝐻 (𝑥𝑘).

We will need the next lemma to allow a very general choice of the step lengths {𝜏𝑘}𝑘∈ℕ. (If
we assume 𝜏𝑘 ≥ 𝜀 > 0, in particular if we keep 𝜏𝑘 ≡ 𝜏 constant, it will not be needed.) For the
statement, note that by the definition of the resolvent, (9.2) is equivalent to 𝜏−1

𝑘
(𝑥𝑘 −𝑥𝑘+1) ∈

𝐻 (𝑥𝑘+1).

Lemma 9.3. Let {𝜏𝑘}𝑘∈ℕ ⊂ (0,∞) with ∑∞
𝑘=0 𝜏

2
𝑘
= ∞, and let 𝐻 : 𝑋 ⇒ 𝑋 be monotone.

Suppose {𝑥𝑘}𝑘∈ℕ and𝑤𝑘+1 ≔ −𝜏−1
𝑘
(𝑥𝑘+1 − 𝑥𝑘) satisfies

(i) 0 ≠ 𝑤𝑘+1 ∈ 𝐻 (𝑥𝑘+1) and

(ii)
∞∑︁
𝑘=0

𝜏2
𝑘
∥𝑤𝑘 ∥2

𝑋 < ∞.

Then ∥𝑤𝑘 ∥𝑋 → 0.

Proof. Since𝑤𝑘 ∈ 𝐻 (𝑥𝑘) and 𝐻 is monotone, we have from the definition of𝑤𝑘 that

0 ≤ ⟨𝑤𝑘+1 −𝑤𝑘 , 𝑥𝑘+1 − 𝑥𝑘⟩𝑋 = 𝜏𝑘 ⟨𝑤𝑘 −𝑤𝑘+1,𝑤𝑘+1⟩𝑋 ≤ 𝜏𝑘 ∥𝑤𝑘+1∥𝑋 (∥𝑤𝑘 ∥𝑋 − ∥𝑤𝑘+1∥𝑋 ).

Thus the nonnegative sequence {∥𝑤𝑘 ∥𝑋 }𝑘∈ℕ is decreasing and hence converges to some
𝑀 ≥ 0. Since ∑∞

𝑘=0 𝜏
2
𝑘
= ∞, the second assumption implies that lim inf𝑘→∞ ∥𝑤𝑘 ∥𝑋 = 0.

Since the full sequence converges,𝑀 = 0, i.e., ∥𝑤𝑘 ∥𝑋 → 0 as claimed. □

This shows that the “generalized residual” 𝑤𝑘 in the inclusion 𝑤𝑘 ∈ 𝐻 (𝑥𝑘) converges
(strongly) to zero. As usual, this does not (yet) imply that {𝑥𝑘}𝑘∈ℕ itself converges; but if it
does, we expect the limit to be a root of 𝐻 . This is what we prove next, using the three
fundamental ingredients we introduced in the beginning of the chapter.
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9 splitting methods: weak convergence

Theorem 9.4. Let 𝐻 : 𝑋 ⇒ 𝑋 be monotone and weak-to-strong outer semicontinuous with
𝐻−1(0) ≠ 0. Furthermore, let {𝜏𝑘}𝑘∈ℕ ⊂ (0,∞) with ∑∞

𝑘=0 𝜏
2
𝑘
= ∞. If {𝑥𝑘}𝑘∈ℕ ⊂ 𝑋 is given

by the iteration (9.2) for any initial iterate 𝑥0 ∈ 𝑋 , then 𝑥𝑘 ⇀ 𝑥 for some root 𝑥 ∈ 𝐻−1(0).

Proof. We recall that the proximal point iteration can be written in implicit form as

(9.3) 0 ∈ 𝜏𝑘𝐻 (𝑥𝑘+1) + (𝑥𝑘+1 − 𝑥𝑘).
We “test” (9.3) by the application of ⟨ · , 𝑥𝑘+1 − 𝑥⟩𝑋 for an arbitrary 𝑥 ∈ 𝐻−1(0). Thus we
obtain

(9.4) 0 ∈ ⟨𝜏𝑘𝐻 (𝑥𝑘+1) + (𝑥𝑘+1 − 𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ,
where the right-hand side should be understood as the set of all possible inner products
involving elements of 𝐻 (𝑥𝑘+1). By the monotonicity of 𝐻 , since 0 ∈ 𝐻 (𝑥), we have

⟨𝐻 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 0,

which again should be understood to hold for any𝑤 ∈ 𝐻 (𝑥𝑘+1). (We will frequently make
use of this notation and the one from (9.4) throughout this and the following chapters to
keep the presentation concise.) Thus (9.4) yields

⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑋 ≤ 0.

Applying now the three-point identity (9.1) for 𝑥 = 𝑥𝑘+1, 𝑦 = 𝑥𝑘 , and 𝑧 = 𝑥 , yields

(9.5) 1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑋 + 1

2 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 ≤ 1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑋 .

This shows the Fejér monotonicity of {𝑥𝑘}𝑘∈ℕ with respect to 𝑋 = 𝐻−1(0).
Furthermore, summing (9.5) over 𝑘 = 0, . . . , 𝑁 − 1 gives

(9.6) 1
2 ∥𝑥

𝑁 − 𝑥 ∥2
𝑋 +

𝑁−1∑︁
𝑘=0

1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≤ 1

2 ∥𝑥
0 − 𝑥 ∥2

𝑋 =: 𝐶0.

Writing 𝑤𝑘+1 ≔ −𝜏−1
𝑘
(𝑥𝑘+1 − 𝑥𝑘), the implicit iteration (9.3) shows that 𝑤𝑘+1 ∈ 𝐻 (𝑥𝑘+1).

From (9.6) we also deduce that
𝑁−1∑︁
𝑘=0

𝜏2
𝑘
∥𝑤𝑘+1∥2

𝑋 ≤ 2𝐶0.

If 𝜏𝑘 ≥ 𝜀 > 0, letting 𝑁 → ∞ shows ∥𝑤𝑘+1∥𝑋 → 0. Otherwise, we can use Lemma 9.3 to
establish the same.

Let finally 𝑥 be any weak limit point of {𝑥𝑘}𝑘∈ℕ, that is 𝑥𝑘𝑖 ⇀ 𝑥 for a subsequence
{𝑘𝑖}𝑖∈ℕ ⊂ ℕ. Recall that 𝑤𝑘𝑖 ∈ 𝐻 (𝑥𝑘𝑖 ). The weak-to-strong outer semicontinuity of 𝐻
now immediately yields 0 ∈ 𝐻 (𝑥). We then finish by applying Opial’s Lemma 9.1 for the
set 𝑋 = 𝐻−1(0). □

122



9 splitting methods: weak convergence

Note that the conditions of Theorem 9.4 are in particularly satisfied if𝐻 is either maximally
monotone (Lemma 6.10) or monotone and BCP outer semicontinuous (Lemma 6.12). In
particular, applying Theorem 9.4 to 𝐻 = 𝜕𝐽 yields the convergence of the proximal point
method (8.1) for any proper, convex, and lower semicontinuous functional 𝐽 : 𝑋 → ℝ.

Remark 9.5. A conventional way of proving the convergence of the proximal point method is with
Browder’s fixed-point theorem [Browder, 1965], which shows the existence of fixed points of firmly
nonexpansive or, more generally, 𝛼-averaged mappings. (We have already shown in Lemma 6.15
the firm nonexpansivity of the proximal map.) On the other hand, to prove Browder’s fixed-point
theorem itself, we can use similar arguments as Theorem 9.4, see Theorem 9.22 below.

explicit splitting

The convergence of the forward-backward splitting method

(9.7) 𝑥𝑘+1 = prox𝜏𝑘𝐺 (𝑥𝑘 − 𝜏𝑘∇𝐹 (𝑥𝑘))
can be shown analogously. To do so, we need to assume the Lipschitz continuity of the
gradient of 𝐹 (since we are not using a proximal point mapping for 𝐹 which is always
firmly nonexpansive and hence Lipschitz continuous).

Theorem 9.6. Let 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑋 → ℝ be proper, convex, and lower semicontinuous.
Suppose (𝜕(𝐹 + 𝐺))−1(0) ≠ ∅, i.e., that 𝐽 ≔ 𝐹 + 𝐺 has a minimizer. Furthermore, let 𝐹 be
Gâteaux differentiable with 𝐿-Lipschitz gradient. If 0 < 𝜏min ≤ 𝜏𝑘 ≤ 𝜏max < 2𝐿−1, then
for any initial iterate 𝑥0 ∈ 𝑋 the sequence generated by (9.7) converges weakly to a root
𝑥 ∈ (𝜕(𝐹 +𝐺))−1(0).

Proof. We again start by writing (9.7) in implicit form as

(9.8) 0 ∈ 𝜏𝑘 [𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘)] + (𝑥𝑘+1 − 𝑥𝑘).
By the monotonicity of 𝜕𝐺 and the three-point monotonicity (7.9) of 𝐹 from Corollary 7.2,
we first deduce for any 𝑥 ∈ 𝑋 ≔ (𝜕(𝐹 +𝐺))−1(0) that

⟨𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ −𝐿4 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 .

Thus, again testing (9.8) with ⟨ · , 𝑥𝑘+1 − 𝑥⟩𝑋 yields

⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑋 ≤ 𝐿𝜏𝑘

4 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 .

The three-point identity (9.1) now implies that

(9.9) 1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑋 + 1 − 𝜏𝑘𝐿/2

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≤ 1

2 ∥𝑥
𝑘 − 𝑥 ∥2

𝑋 .
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9 splitting methods: weak convergence

The assumption 2 > 𝜏𝑘𝐿 then establishes the Fejér monotonicity of {𝑥𝑘}𝑘∈ℕ with respect
to 𝑋 . Let now 𝑥 be a weak limit point of {𝑥𝑘}𝑘∈ℕ, i.e., 𝑥𝑘𝑖 ⇀ 𝑥 for a subsequence {𝑘𝑖}𝑖∈ℕ ⊂
ℕ. Since (9.9) implies 𝑥𝑘+1 − 𝑥𝑘 → 0 by the assumption on the step lengths, we have
∇𝐹 (𝑥𝑘𝑖+1) − ∇𝐹 (𝑥𝑘𝑖 ) → 0 by the Lipschitz continuity of ∇𝐹 . Consequently, using again the
subdifferential sum rule Theorem 4.14, 𝜕(𝐺+𝐹 ) (𝑥𝑘𝑖+1) ∋ 𝑤𝑘𝑖+1+∇𝐹 (𝑥𝑘𝑖+1)−∇𝐹 (𝑥𝑘𝑖 ) → 0. By
the weak-to-strong outer semicontinuity of 𝜕(𝐺 + 𝐹 ) from Lemma 6.10 and Theorem 6.13,
it follows that 0 ∈ 𝜕(𝐺 + 𝐹 ) (𝑥). We finish by applying Opial’s Lemma 9.1 with 𝑋 =
(𝜕(𝐹 +𝐺))−1(0). □

Remark 9.7. The 𝐿-Lipschitz requirement on ∇𝐹 can in some cases be restrictive, or upper estimates
of 𝐿 difficult to obtain. In the latter case, line search can be used, as we will discuss in Section 12.3.
However, a slight modification of the forward-backward iteration can avoid the requirement entirely.
Indeed, [Malitsky and Tam, 2020] prove the convergence of the forward-reflected-backward iteration
𝑥𝑘+1 ≔ prox𝜏𝐺 (𝑥𝑘 − 2𝜏∇𝐹 (𝑥𝑘 ) + 𝜏∇𝐹 (𝑥𝑘−1)), merely requiring 𝐹 to be �̃�-Lipschitz, and the fixed
step length 0 < 𝜏 < 1/(2�̃�).

9.3 preconditioned proximal point methods: drs and pdps

We now extend the analysis of the previous section to the preconditioned proximal point
method (8.11), which we recall can be written in implicit form as

(9.10) 0 ∈ 𝐻 (𝑥𝑘+1) +𝑀 (𝑥𝑘+1 − 𝑥𝑘)

for some preconditioning operator𝑀 ∈ 𝕃(𝑋 ;𝑋 ) and includes the Douglas–Rachford split-
ting (DRS) and the primal-dual proximal splitting (PDPS) methods as special cases. To deal
with𝑀 , we need to improve Theorem 9.6 slightly. First, we introduce the preconditioned
norm ∥𝑥 ∥𝑀 ≔

√︁
⟨𝑀𝑥, 𝑥⟩, which satisfies the preconditioned three-point identity

(9.11) ⟨𝑀 (𝑥 − 𝑦), 𝑥 − 𝑧⟩ = 1
2 ∥𝑥 − 𝑦 ∥2

𝑀 − 1
2 ∥𝑦 − 𝑧∥2

𝑀 + 1
2 ∥𝑥 − 𝑧∥2

𝑀 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

The boundedness assumption in the statement of the next theorem holds in particular for
𝑀 = Id and 𝐻 maximally monotone by Corollary 6.16.

Theorem 9.8. Suppose𝐻 : 𝑋 ⇒ 𝑋 is monotone and weak-to-strong outer semicontinuous with
𝐻−1(0) ≠ ∅, that𝑀 ∈ 𝕃(𝑋 ;𝑋 ) is self-adjoint and positive semi-definite, and that either𝑀 has
a bounded inverse, or (𝐻 +𝑀)−1◦𝑀 1/2 is bounded on bounded sets. Let the initial iterate 𝑥0 ∈ 𝑋
be arbitrary, and assume that (9.10) has a unique solution 𝑥𝑘+1 for all 𝑘 ∈ ℕ. Then the iterates
{𝑥𝑘}𝑘∈ℕ of (9.10) are bounded and satisfy 0 ∈ lim sup𝑘→∞𝐻 (𝑥𝑘) and𝑀 1/2(𝑥𝑘 − 𝑥) ⇀ 0 for
some 𝑥 ∈ 𝐻−1(0).
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9 splitting methods: weak convergence

Proof. Let 𝑥 ∈ 𝐻−1(0) be arbitrary. By the monotonicity of 𝐻 , we then have as before

⟨𝐻 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 0,

which together with (9.10) yields

(9.12) ⟨𝑀 (𝑥𝑘+1 − 𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≤ 0.

Applying the preconditioned three-point identity (9.11) for 𝑥 = 𝑥𝑘+1, 𝑦 = 𝑥𝑘 , and 𝑧 = 𝑥 in
(9.12) shows that

(9.13) 1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑀 + 1

2 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑀 ≤ 1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑀 ,

and summing (9.13) over 𝑘 = 0, . . . , 𝑁 − 1 yields

(9.14) 1
2 ∥𝑥

𝑁 − 𝑥 ∥2
𝑀 +

𝑁−1∑︁
𝑘=0

1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑀 ≤ 1

2 ∥𝑥
0 − 𝑥 ∥2

𝑀 .

Let now 𝑧𝑘 ≔ 𝑀 1/2𝑥𝑘 . Our objective is then to show 𝑧𝑘 ⇀ 𝑧 for some 𝑧 ∈ 𝑍 ≔ 𝑀 1/2𝐻−1(0),
which we do by using Opial’s Lemma 9.1. From (9.13), we obtain the necessary Fejér
monotonicity of {𝑧𝑘}𝑘∈ℕ with respect to the set 𝑍 . It remains to verify that 𝑍 contains all
weak limit points of {𝑧𝑘}𝑘∈ℕ.
Let therefore 𝑧 be such a limit point, i.e., 𝑧𝑘𝑖 ⇀ 𝑧 for a subsequence {𝑘𝑖}𝑖∈ℕ. We want to
show that 𝑧 = 𝑀 1/2𝑥 for a weak limit point 𝑥 of {𝑥𝑘}𝑘∈ℕ. We proceed by first showing in
two cases the boundedness of {𝑥𝑘}𝑘∈ℕ:

(i) If 𝑀 has a bounded inverse, then 𝑀 ≥ 𝜃𝐼 for some 𝜃 > 0, and thus the sequence
{𝑥𝑘}𝑘∈ℕ is bounded by (9.14).

(ii) Otherwise, (𝐻 + 𝑀)−1 ◦ 𝑀 1/2 is bounded on bounded sets. Now (9.14) only gives
boundedness of {𝑧𝑘}𝑘∈ℕ. However, 𝑥𝑘+1 ∈ (𝐻 +𝑀)−1(𝑀𝑥𝑘) = (𝐻 +𝑀)−1(𝑀 1/2𝑧𝑘),
and {𝑧𝑘}𝑘∈ℕ is bounded by (9.14), so we obtain the boundedness of {𝑥𝑘}𝑘∈ℕ.

Thus there exists a further subsequence of {𝑥𝑘𝑖 }𝑖∈ℕ, weakly converging to some 𝑥 ∈ 𝑋 .
Since 𝑧𝑘 = 𝑀 1/2𝑥𝑘 , it follows that 𝑧 = 𝑀 1/2𝑥 . To show that 𝑧 ∈ 𝑍 , if therefore suffices to
show that the weak limit points of {𝑥𝑘}𝑘∈ℕ belong to 𝐻−1(0).
Let thus 𝑥 be any weak limit point of {𝑥𝑘}𝑘∈ℕ, i.e., 𝑥𝑘𝑖 ⇀ 𝑥 for some subsequence {𝑘𝑖}𝑘∈ℕ ⊂
ℕ. From (9.14), we obtain first that𝑀 1/2(𝑥𝑘+1 − 𝑥𝑘) → 0 and hence that𝑤𝑘+1 ≔ −𝑀 (𝑥𝑘+1 −
𝑥𝑘) → 0. From (8.18), we also know that𝑤𝑘+1 ∈ 𝐻 (𝑥𝑘+1). It follows that 0 = lim𝑘→∞𝑤𝑘+1 ∈
lim sup𝑘→∞𝐻 (𝑥𝑘+1). The weak-to-strong outer semicontinuity now immediately yields
0 ∈ 𝐻 (𝑥). Hence, 𝑍 contains all weak limit points of {𝑧𝑘}𝑘∈ℕ.
The claim now follows from Lemma 9.1. □

In the following, we verify that the DRS and PDPS methods satisfy the assumptions of this
theorem.
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9 splitting methods: weak convergence

douglas–rachford splitting

Recall that the DRS method (8.8), i.e.,

(9.15)


𝑥𝑘+1 = prox𝜏𝐹 (𝑧𝑘),
𝑦𝑘+1 = prox𝜏𝐺 (2𝑥𝑘+1 − 𝑧𝑘),
𝑧𝑘+1 = 𝑧𝑘 + 𝑦𝑘+1 − 𝑥𝑘+1,

can be written as the preconditioned proximal point method (8.11) in terms of𝑢 = (𝑥, 𝑦, 𝑧) ∈
𝑈 ≔ 𝑋 3 and the operators

(9.16) 𝐻 (𝑥, 𝑦, 𝑧) ≔ ©«
𝜏𝐵(𝑥) + 𝑦 − 𝑧
𝜏𝐴(𝑦) + 𝑧 − 𝑥

𝑥 − 𝑦
ª®¬ and 𝑀 ≔ ©«

0 0 0
0 0 0
0 0 𝐼

ª®¬
for 𝐵 = 𝜕𝐹 and𝐴 = 𝜕𝐺 . We are now interested in the properties of 𝐻 in terms of those of𝐴
and 𝐵. For this, we can make use of the generic structure of 𝐻 , which will reappear several
times in the following.

Lemma 9.9. If 𝐴 : 𝑋 ⇒ 𝑋 is maximally monotone and Ξ ∈ 𝕃(𝑋 ;𝑋 ) is skew-adjoint (i.e.,
Ξ∗ = −Ξ), then 𝐻 ≔ 𝐴 + Ξ is maximally monotone. In particular, any skew-adjoint operator
Ξ is maximally monotone.

Proof. Let 𝑥, 𝑧∗ ∈ 𝑋 be given such that

⟨𝑧∗ − 𝑧∗, 𝑥 − 𝑥⟩𝑋 ≥ 0 for all 𝑥 ∈ 𝑋, 𝑧∗ ∈ 𝐻 (𝑥).

Recalling (6.2), we need to show that 𝑧∗ ∈ 𝐻 (𝑥). By the definition of 𝐻 , for any 𝑧∗ ∈ 𝐻 (𝑥)
there exists a 𝑥∗ ∈ 𝐴(𝑥) with 𝑧∗ = 𝑥∗ + Ξ𝑥 . On the other hand, setting 𝑥∗ ≔ 𝑧∗ − Ξ𝑥 ,
we have 𝑧∗ = 𝑥∗ + Ξ𝑥 . We are thus done if we can show that 𝑥∗ ∈ 𝐴(𝑥). But using the
skew-adjointness of 𝐻 and the symmetry of the inner product, we can write

(9.17) 0 ≤ ⟨𝑧∗ − 𝑧∗, 𝑥 − 𝑥⟩𝑋
= ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 + ⟨Ξ(𝑥 − 𝑥), 𝑥 − 𝑥⟩𝑋
= ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 + 1

2 ⟨Ξ(𝑥 − 𝑥), 𝑥 − 𝑥⟩𝑋 − 1
2 ⟨𝑥 − 𝑥,Ξ(𝑥 − 𝑥)⟩𝑋

= ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 ,

and 𝑥∗ ∈ 𝐴(𝑥) follows from the maximal monotonicity of 𝐴.

To prove the final claim about skew-adjoint operators being maximally monotone, we
take 𝐴 = {0} = 𝜕𝑆 for the constant functional 𝑆 ≡ 0, which is maximally monotone by
Theorem 6.13. □
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Corollary 9.10. Let 𝐴 and 𝐵 be maximally monotone. Then the operator 𝐻 defined in (9.16) is
maximally monotone.

Proof. Let

�̃�(𝑢) ≔ ©«
𝜏𝐵(𝑥)
𝜏𝐴(𝑦)

0

ª®¬ and Ξ ≔ ©«
0 Id −Id
−Id 0 Id
Id −Id 0

ª®¬ .
From the definition of the inner product on the product space 𝑋 3 together with Lemma 6.7,
we have that �̃� is maximally monotone, while Ξ is clearly skew-adjoint. The claim now
follows from Lemma 9.9. □

We can now show convergence of the DRS method.

Corollary 9.11. Let 𝐴, 𝐵 : 𝑋 ⇒ 𝑋 be maximally monotone, and suppose (𝐴 + 𝐵)−1(0) ≠ ∅.
Pick a step length 𝜏 > 0 and an initial iterate 𝑧0 ∈ 𝑋 . Then the iterates {(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘)}𝑘∈ℕ of
the DRS method (9.15) converge weakly to (𝑥, 𝑦, �̂�) ∈ 𝐻−1(0) satisfying 𝑥 = 𝑦 ∈ (𝐴 +𝐵)−1(0).
Moreover, 𝑥𝑘 − 𝑦𝑘 → 0.

Proof. Since 𝐴 and 𝐵 are maximally monotone, Corollary 6.16 shows that the DRS iteration
is always solvable for 𝑢𝑘+1. Regarding convergence, we start by proving that the sequence
{𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘)}𝑘∈ℕ is bounded, 𝑧𝑘 ⇀ �̂� for some �̂�, and 0 ∈ lim sup𝑘→∞𝐻 (𝑢𝑘). Note
that the latter implies as claimed that 𝑥𝑘 − 𝑦𝑘 → 0 strongly. We do this using Theorem 9.8
whose conditions we have to verify. By Corollary 9.10, 𝐻 is maximally monotone and
hence weak-to-strong outer semicontinuous by Lemma 6.10. Since 𝑀 is noninvertible,
we also have to verify that (𝐻 + 𝑀)−1 ◦ 𝑀 1/2 is bounded on bounded sets. But since
𝑢𝑘+1 ∈ (𝐻 +𝑀)−1(𝑀𝑢𝑘) = (𝐻 +𝑀)−1(𝑀 1/2𝑢𝑘) is an equivalent formulation of the iteration
(9.15), this follows from the Lipschitz continuity of the resolvent (Corollary 6.16). Hence,
we can apply Theorem 9.8 to deduce 0 ∈ lim sup𝑘→∞𝐻 (𝑢𝑘) as well as 𝑀 1/2(𝑢𝑘 − 𝑢) ⇀ 0
for some 𝑢 = (𝑥, 𝑦, �̂�) with 0 ∈ 𝐻 (𝑢). By the definition of𝑀 , this gives 𝑧𝑘 ⇀ �̂�. Moreover,
the third line in the definition of 𝐻 implies that 𝑥 = 𝑦 . Adding the first two lines in the
same definition, we then obtain 0 ∈ 𝐴(𝑥) + 𝐵(𝑥).
It remains to show weak convergence of the other variables. Since {𝑢𝑘}𝑘∈ℕ is bounded,
it contains a subsequence converging weakly to some �̃� = (𝑥, �̃�, 𝑧) which satisfies 0 ∈
𝐻 (𝑥, �̃�, 𝑧) such that 𝑥 = �̃� . Since 𝑧𝑘 ⇀ �̂�, we have 𝑧 = �̂�. The first relation of the inclusion
then can be rearranged to �̃� = 𝑥 = R𝜏𝐵 (𝑧) = R𝜏𝐵 (�̂�) by the single-valuedness of the
resolvent (Corollary 6.16). The limit is thus independent of the subsequence, and hence a
subsequence–subsequence argument shows that the full sequence converges. □

In particular, this convergence result applies to the special case of 𝐵 = 𝜕𝐹 and 𝐴 = 𝜕𝐺 for
proper, convex, lower semicontinuous 𝐹,𝐺 : 𝑋 → ℝ. However, the fixed point provided
by the DRS method is related to a solution of the problem min𝑥∈𝑋 𝐹 (𝑥) +𝐺 (𝑥) only if the
subdifferential sum rule (Theorem 4.14) holds with equality.
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9 splitting methods: weak convergence

primal-dual proximal splitting

To study the PDPS method, we recall from (8.14) and (8.19) the operators

(9.18) 𝐻 (𝑢) ≔
(
𝜕𝐹 (𝑥) + 𝐾∗𝑦
𝜕𝐺∗(𝑦) − 𝐾𝑥

)
, and 𝑀 ≔

(
𝜏−1Id −𝐾∗

−𝐾 𝜎−1Id

)
for 𝑢 = (𝑥, 𝑦) ∈ 𝑋 × 𝑌 =: 𝑈 . With these we have already shown in Section 8.4 that the
PDPS method

(9.19)


𝑥𝑘+1 = prox𝜏𝐹 (𝑥𝑘 − 𝜏𝐾∗𝑦𝑘),
𝑥𝑘+1 = 2𝑥𝑘+1 − 𝑥𝑘 ,
𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐾𝑥𝑘+1).

has the form (9.10) of the preconditioned proximal point method. To show convergence,
we first have to establish some basic properties of both 𝐻 and𝑀 .

Lemma 9.12. The operator 𝑀 : 𝑈 → 𝑈 defined in (8.19) is bounded and self-adjoint. If
𝜎𝜏 ∥𝐾 ∥2

𝕃(𝑋 ;𝑌 ) < 1, then𝑀 is positive definite.

Proof. The definition of 𝑀 directly implies boundedness (since 𝐾 ∈ 𝕃(𝑋 ;𝑌 ) is bounded)
and self-adjointness. Let now 𝑢 = (𝑥, 𝑦) ∈ 𝑈 be given. Then

(9.20) ⟨𝑀𝑢,𝑢⟩𝑈 = ⟨𝜏−1𝑥 − 𝐾∗𝑦, 𝑥⟩𝑋 + ⟨𝜎−1𝑦 − 𝐾𝑥, 𝑦⟩𝑌
= 𝜏−1∥𝑥 ∥2

𝑋 − 2⟨𝑥, 𝐾∗𝑦⟩𝑋 + 𝜎−1∥𝑦 ∥2
𝑌

≥ 𝜏−1∥𝑥 ∥2
𝑋 − 2∥𝐾 ∥𝕃(𝑋 ;𝑌 ) ∥𝑥 ∥𝑋 ∥𝑦 ∥𝑌 + 𝜎−1∥𝑦 ∥2

𝑌

≥ 𝜏−1∥𝑥 ∥2
𝑋 − ∥𝐾 ∥𝕃(𝑋 ;𝑌 )

√
𝜎𝜏 (𝜏−1∥𝑥 ∥2

𝑋 + 𝜎−1∥𝑦 ∥2
𝑌 ) + 𝜎−1∥𝑦 ∥2

𝑌

= (1 − ∥𝐾 ∥𝕃(𝑋 ;𝑌 )
√
𝜎𝜏) (𝜏−1∥𝑥 ∥2

𝑋 + 𝜎−1∥𝑦 ∥2
𝑌 )

≥ 𝐶 (∥𝑥 ∥2
𝑋 + ∥𝑦 ∥2

𝑌 )

for 𝐶 ≔ (1 − ∥𝐾 ∥𝕃(𝑋 ;𝑌 )
√
𝜎𝜏) min{𝜏−1, 𝜎−1} > 0. Hence, ⟨𝑀𝑢,𝑢⟩𝑈 ≥ 𝐶 ∥𝑢∥2

𝑈
for all 𝑢 ∈ 𝑈 ,

and therefore𝑀 is positive definite. □

Lemma 9.13. The operator 𝐻 : 𝑈 ⇒ 𝑈 defined in (9.18) is maximally monotone.

Proof. Let 𝐴(𝑢) ≔
(
𝜕𝐹 (𝑥)
𝜕𝐺∗ (𝑦)

)
and Ξ ≔

( 0 𝐾∗
−𝐾 0

)
. Then Ξ is skew-adjoint, and 𝐴 is maximally

monotone by the definition of the inner product on 𝑈 = 𝑋 × 𝑌 and Theorem 6.13. The
claim now follows from Lemma 9.9. □

With this, we can deduce the convergence of the PDPS method.
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9 splitting methods: weak convergence

Corollary 9.14. Let the convex, proper, and lower semicontinuous functions 𝐹 : 𝑋 → ℝ,
𝐺 : 𝑌 → ℝ, and the linear operator 𝐾 ∈ 𝕃(𝑋 ;𝑌 ) satisfy the assumptions of Theorem 5.11.
If, moreover, 𝜎𝜏 ∥𝐾 ∥2

𝕃(𝑋 ;𝑌 ) < 1, then the sequence {𝑢𝑘 ≔ (𝑥𝑘 , 𝑦𝑘)}𝑘∈ℕ generated by the
PDPS method (9.19) for any initial iterate 𝑢0 ∈ 𝑋 × 𝑌 converges weakly in 𝑈 to a pair
𝑢 ≔ (𝑥, 𝑦) ∈ 𝐻−1(0), i.e., satisfying (8.13).

Proof. By Lemma 9.12,𝑀 is self-adjoint and positive definite and thus has a bounded inverse.
Minding Lemma 9.13, we can therefore apply Theorem 9.8 to show that (𝑢𝑘 − 𝑢) ⇀ 0 for
some 𝑢 ∈ 𝐻−1(0) with respect to the inner product ⟨𝑀 · , · ⟩𝑈 . Since 𝑀 is has a bounded
inverse, this implies that

⟨𝑢𝑘 , 𝑀𝑤⟩𝑈 = ⟨𝑀𝑢𝑘 ,𝑤⟩𝑈 → ⟨𝑀𝑢,𝑤⟩𝑈 = ⟨𝑢,𝑀𝑤⟩𝑈 for all𝑤 ∈ 𝑈

and hence 𝑢𝑘 ⇀ 𝑢 in𝑈 since ran𝑀 = 𝑈 due to the invertibility of𝑀 . □

Remark 9.15. Through a general approach to degenerately preconditioned proximal point methods,
i.e., singular𝑀 , [Bredies et al., 2022] prove the weak convergence of PDPS in the degenerate case
𝜏𝜎 ∥𝐾 ∥2 = 1. Like our Corollary 9.11, their approach also readily establishes the convergence of
{(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 )}𝑘∈ℕ for the DRS; classical proofs only show the convergence of {𝑧𝑘 }𝑘∈ℕ.

9.4 preconditioned explicit splitting methods: pdes and more

Let 𝐴, 𝐵 : 𝑋 ⇒ 𝑋 be monotone operators and consider the iterative scheme

(9.21) 0 ∈ 𝐴(𝑥𝑘+1) + 𝐵(𝑥𝑘) +𝑀 (𝑥𝑘+1 − 𝑥𝑘),

which is implicit in 𝐴 but explicit in 𝐵. We obviously intend to use this method to find
some 𝑥 ∈ (𝐴 + 𝐵)−1(0).
As we have seen, the proximal point, PDPS, and DRS methods are all of the form (9.21) with
𝐵 = 0. The basic explicit splitting method is also of this form with 𝐴 = 𝜕𝐺 , 𝐵 = ∇𝐹 , and
𝑀 = 𝜏−1Id. It is moreover not difficult to see from (8.25) that the primal-dual explicit splitting
(PDES) method is also of the form (9.21) with nonzero 𝐵. So to prove the convergence of
this algorithm, we want to improve Theorem 9.6 to be able to deal with the preconditioning
operator𝑀 and the general monotone operators 𝐴 and 𝐵 in place of subdifferentials and
gradients.

To proceed, we need a suitable notion of smoothness for 𝐵 to be able to deal with the
explicit step. In Theorem 9.6 we only used the Lipschitz continuity of ∇𝐹 in two places:
first, to establish the three-point monotonicity using Corollary 7.2, and second, at the end
of the proof for a continuity argument. To simplify dealing with 𝐵 that may only act on a
subspace, as in the case of the primal-dual explicit splitting in Section 8.5, we now make
this three-point monotonicity with respect to an operator Λ our main assumption.
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Specifically, we say that 𝐵 : 𝑋 ⇒ 𝑋 is three-point monotone at 𝑥 ∈ 𝑋 with respect to
Λ ∈ 𝕃(𝑋 ;𝑋 ) if

(9.22) ⟨𝐵(𝑧) − 𝐵(𝑥), 𝑥 − 𝑥⟩ ≥ − 1
4 ∥𝑧 − 𝑥 ∥

2
Λ for all 𝑥, 𝑧 ∈ 𝑋 .

If this holds for every 𝑥 , we say that 𝐵 is three-point monotone with respect to Λ. From
Corollary 7.2, it is clear that if ∇𝐹 is Lipschitz continuous with constant 𝐿, then 𝐵 = ∇𝐹 is
three-point monotone with respect to Λ = 𝐿 Id.

We again start with a lemma exploiting the structural properties of the saddle-point operator
to show a “shifted outer semicontinuity”.

Lemma 9.16. Let 𝐻 = 𝐴 + 𝐵 : 𝑋 ⇒ 𝑋 be weak-to-strong outer semicontinuous with 𝐵
single-valued and Lipschitz continuous. If𝑤𝑘+1 ∈ 𝐴(𝑥𝑘+1) + 𝐵(𝑧𝑘) for 𝑘 ∈ ℕ with𝑤𝑘 → �̄�

and 𝑥𝑘+1 − 𝑧𝑘 → 0 strongly in 𝑋 and 𝑥𝑘 ⇀ 𝑥 weakly in 𝑋 , then �̄� ∈ 𝐻 (𝑥).

Proof. We have𝑤𝑘+1 ∈ 𝐴(𝑥𝑘+1) + 𝐵(𝑧𝑘) so that

�̃�𝑘+1 ≔ 𝑤𝑘+1 − 𝐵(𝑧𝑘) + 𝐵(𝑥𝑘+1) ∈ 𝐻 (𝑥𝑘+1).

Since𝑤𝑘+1 → �̄� and 𝑥𝑘+1 − 𝑧𝑘 → 0 and 𝐵 is Lipschitz continuous, we have �̃�𝑘+1 → �̄� as
well. The weak-to-strong outer semicontinuity of𝐻 then immediately yields �̄� ∈ 𝐻 (𝑥). □

Theorem 9.17. Let𝐻 = 𝐴+𝐵 with𝐻−1(0) ≠ ∅ for𝐴, 𝐵 : 𝑋 ⇒ 𝑋 with𝐴monotone and𝐵 single-
valued Lipschitz continuous and three-point monotone with respect to some Λ ∈ 𝕃(𝑋 ;𝑋 ).
Furthermore, let𝑀 ∈ 𝕃(𝑋 ;𝑋 ) be self-adjoint, positive definite, with a bounded inverse, and
satisfy (2 − 𝜀)𝑀 ≥ Λ for some 𝜀 > 0. Suppose 𝐻 is weak-to-strong outer semicontinuous.
Let the starting point 𝑥0 ∈ 𝑋 be arbitrary and assume that (9.21) has a unique solution 𝑥𝑘+1

for every 𝑘 ∈ ℕ. Then the iterates {𝑥𝑘}𝑘∈ℕ of (9.21) satisfy 𝑀 1/2(𝑥𝑘 − 𝑥) ⇀ 0 for some
𝑥 ∈ 𝐻−1(0).

Proof. The proof follows along the same lines as that of Theorem 9.8 with minor modifica-
tions. First, since 0 ∈ 𝐻 (𝑥), the monotonicity of 𝐴 and the three-point monotonicity (9.22)
of 𝐵 yields

⟨𝐴(𝑥𝑘+1) + 𝐵(𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩ ≥ − 1
4 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
Λ,

which together with (9.21) leads to

⟨𝑀 (𝑥𝑘+1 − 𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩ ≤ 1
4 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
Λ.

From the preconditioned three-point identity (9.11) we then obtain

(9.23) 1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑀 + 1

2 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑀−Λ/2 ≤ 1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑀 .
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Our assumption that (2 − 𝜀)𝑀 ≥ Λ implies that 𝑀 − Λ/2 ≥ 𝜀𝑀/2. By definition, we can
therefore bound the second norm on the left-hand side from below to obtain (9.13) with an
additional constant depending on 𝜀. We may thus proceed as in the proof of Theorem 9.8 to
establish𝑤𝑘+1 ≔ −𝑀 (𝑥𝑘+1 − 𝑥𝑘) → 0. We now have𝑤𝑘+1 ∈ 𝐴(𝑥𝑘+1) + 𝐵(𝑥𝑘) and therefore
use Lemma 9.16 with 𝑧𝑘 = 𝑥𝑘 and �̄� = 0 to establish 0 ∈ 𝐻 (𝑥). The rest of the proof again
proceeds as for Theorem 9.8 with the application of Opial’s Lemma 9.1. □

We again apply this result to show the convergence of specific splitting methods containing
an explicit step.

primal-dual explicit splitting

We now return to algorithms for problems of the form

min
𝑥∈𝑋

𝐹 (𝑥) +𝐺 (𝐾𝑥)

for Gâteaux differentiable 𝐹 and linear𝐾 . Recall from (8.23) the primal-dual explicit splitting
(PDES) method

(9.24)
{
𝑦𝑘+1 = prox𝐺∗ ((Id − 𝐾𝐾∗)𝑦𝑘 + 𝐾 (𝑥𝑘 − ∇𝐹 (𝑥𝑘))),
𝑥𝑘+1 = 𝑥𝑘 − ∇𝐹 (𝑥𝑘) − 𝐾∗𝑦𝑘+1,

which can be written in implicit form as

(9.25) 0 ∈ 𝐻 (𝑢𝑘+1) +
(∇𝐹 (𝑥𝑘) − ∇𝐹 (𝑥𝑘+1)

0

)
+𝑀 (𝑢𝑘+1 − 𝑢𝑘)

with

(9.26) 𝐻 (𝑢) ≔
(
𝜕𝐹 (𝑥) + 𝐾∗𝑦
𝜕𝐺∗(𝑦) − 𝐾𝑥

)
and 𝑀 ≔

(
Id 0
0 Id − 𝐾𝐾∗

)
,

for 𝑢 = (𝑥, 𝑦) ∈ 𝑋 × 𝑌 =: 𝑈 .

Corollary 9.18. Let 𝐹 : 𝑋 → ℝ and𝐺 : 𝑌 → ℝ be proper, convex, and lower semicontinuous,
and 𝐾 ∈ 𝕃(𝑋 ;𝑌 ). Suppose 𝐹 is Gâteaux differentiable with 𝐿-Lipschitz gradient for 𝐿 < 2,
that ∥𝐾 ∥𝕃(𝑋 ;𝑌 ) < 1, and that the assumptions of Theorem 5.11 are satisfied. Then for any initial
iterate 𝑢0 ∈ 𝑋 × 𝑌 the iterates {𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘)}𝑘∈ℕ of the (8.23) converge weakly to some
𝑢 ∈ 𝐻−1(0) with 𝐻 given by (8.14).

Proof. We recall that Theorem 5.11 guarantees that 𝐻−1(0) ≠ ∅. To apply Theorem 9.17, we
write 𝐻 = 𝐴 + 𝐵 for

𝐴(𝑢) ≔
(

0
𝜕𝐺∗(𝑦)

)
+ Ξ𝑢, 𝐵(𝑢) ≔

(∇𝐹 (𝑥)
0

)
, Ξ ≔

(
0 𝐾∗

−𝐾 0

)
.

131



9 splitting methods: weak convergence

We first note that 𝑀 as given in (9.26) is self-adjoint and positive definite under our
assumption ∥𝐾 ∥𝕃(𝑋 ;𝑌 ) < 1. By Corollary 7.2, the three-point monotonicity (9.22) holds for
Λ ≔

(
𝐿 0
0 0

)
. Since 𝐿 < 2, there furthermore exists an 𝜀 > 0 sufficiently small such that

(2−𝜀)𝑀 ≥ Λ. Finally, Lemma 9.13 shows that𝐻 is maximally monotone and hence weak-to-
strong outer semicontinuous by Lemma 6.10. The claim now follows from Theorem 9.17. □

Remark 9.19. It is possible to improve the result to ∥𝐾 ∥ ≤ 1 if we increase the complexity of
Theorem 9.17 slightly to allow for 𝑀 ≥ 0. However, in this case it is only possible to show the
convergence of the partial iterates {𝑥𝑘 }𝑘∈ℕ.

primal-dual proximal splitting with an additional forward step

Using a similar switching term as in the implicit formulation (9.25) of the PDES method,
it is possible to incorporate additional forward steps in the PDPS method. For 𝐹 = 𝐹0 + 𝐸
with 𝐹0, 𝐸 convex and 𝐸 Gâteaux differentiable, we therefore consider

(9.27) min
𝑥∈𝑋

𝐹0(𝑥) + 𝐸 (𝑥) +𝐺 (𝐾𝑥).

With 𝑢 = (𝑥, 𝑦) and following Section 8.4, any minimizer 𝑥 ∈ 𝑋 satisfies 0 ∈ 𝐻 (𝑢) for

(9.28) 𝐻 (𝑢) ≔
(
𝜕𝐹 (𝑥) + ∇𝐸 (𝑥) + 𝐾∗𝑦

𝜕𝐺∗(𝑦) − 𝐾𝑥
)
.

Similarly, following the arguments in Section 8.4, we can show that the iteration

(9.29)


𝑥𝑘+1 = prox𝜏𝐹0 (𝑥𝑘 − 𝜏∇𝐸 (𝑥𝑘) − 𝜏𝐾∗𝑦𝑘),
𝑥𝑘+1 = 2𝑥𝑘+1 − 𝑥𝑘 ,
𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐾𝑥𝑘+1),

is equivalent to the implicit formulation

0 ∈
(
𝜕𝐹0(𝑥𝑘+1) + ∇𝐸 (𝑥𝑘) + 𝐾∗𝑦𝑘+1

𝜕𝐺 (𝑦𝑘+1) − 𝐾𝑥𝑘+1

)
+𝑀 (𝑢𝑘+1 − 𝑢𝑘)

with the preconditioner𝑀 defined as in (9.18). The convergence can thus be shown as for
the PDES method.

Corollary 9.20. Let 𝐸 : 𝑋 → ℝ, 𝐹0 : 𝑋 → ℝ, and 𝐺 : 𝑌 → ℝ be proper, convex, and lower
semicontinuous, and 𝐾 ∈ 𝕃(𝑋 ;𝑌 ). Suppose 𝐸 is Gâteaux differentiable with an 𝐿-Lipschitz
gradient, and that the assumptions of Theorem 5.11 are satisfied with 𝐹 ≔ 𝐹0 + 𝐸. Assume,
moreover, that 𝜏, 𝜎 > 0 satisfy

(9.30) 1 > ∥𝐾 ∥2
𝕃(𝑋 ;𝑌 )𝜏𝜎 + 𝜏 𝐿2 .

Then for any initial iterate 𝑢0 ∈ 𝑋 ×𝑌 the iterates {𝑢𝑘}𝑘∈ℕ of (9.29) converge weakly to some
𝑢 ∈ 𝐻−1(0) for 𝐻 given by (9.28).
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9 splitting methods: weak convergence

Proof. As before, Theorem 5.11 guarantees that 𝐻−1(0) ≠ ∅. We apply Theorem 9.17 to

𝐴(𝑢) ≔
(
𝜕𝐹0(𝑥)
𝜕𝐺∗(𝑦)

)
+ Ξ𝑢, 𝐵(𝑢) ≔

(∇𝐸 (𝑥)
0

)
, Ξ ≔

(
0 𝐾∗

−𝐾 0

)
,

and 𝑀 given by (9.18). By Corollary 7.2, the three-point monotonicity (9.22) holds with
Λ ≔

(
𝐿 0
0 0

)
. We have already shown in Lemma 9.12 that 𝑀 is self-adjoint and positive

definite. Furthermore, from (9.20) in the proof of Lemma 9.12, we have

⟨𝑀𝑢,𝑢⟩ ≥ (1 − ∥𝐾 ∥𝕃(𝑋 ;𝑌 )
√
𝜎𝜏) (𝜏−1∥𝑥 ∥2

𝑋 + 𝜎−1∥𝑦 ∥2
𝑌 )

Thus (9.30) implies that𝑀 is positive definite. Arguing similarly to (9.20), we also estimate

⟨𝑀𝑢,𝑢⟩𝑈 ≥ 𝜏−1∥𝑥 ∥2
𝑋 − 2∥𝐾 ∥𝕃(𝑋 ;𝑌 ) ∥𝑥 ∥𝑋 ∥𝑦 ∥𝑌 + 𝜎−1∥𝑦 ∥2

𝑌 ≥ (1 − ∥𝐾 ∥2
𝕃(𝑋 ;𝑌 )𝜎𝜏)𝜏−1∥𝑥 ∥2

𝑋 .

By the strict inequality in (9.30), we thus deduce (2 − 𝜀)𝑀 ≥ Λ for some 𝜀 > 0.

Now by Lemma 9.13, 𝐻 is again maximally monotone and therefore weak-to-strong outer
semicontinuous by Lemma 6.10, and the claim follows from Theorem 9.17. □

Remark 9.21. The forward step was introduced to the basic PDPS method in [Condat, 2013; Vũ, 2013],
see also [Chambolle and Pock, 2015]. These papers also introduced an additional over-relaxation
step that we will discuss in Chapter 12.

9.5 fixed-point theorems

Based on our generic approach, we now prove the classical Browder fixed-point theorem,
which can itself be used to prove the convergence of optimization methods and other fixed-
point iterations (see Remark 9.5). We recall from Lemma 6.18 that firmly nonexpansive maps
are (1/2)-averaged, so the result applies by Lemma 6.15 to the resolvents of maximally
monotone maps in particular – hence proving the convergence of the proximal point
method.

Theorem 9.22 (Browder Fixed-point Theorem). On a Hilbert space 𝑋 , suppose 𝑇 : 𝑋 → 𝑋

is 𝛼-averaged for some 𝛼 ∈ (0, 1) and has a fixed point 𝑥 = 𝑇 (𝑥). Let 𝑥𝑘+1 ≔ 𝑇 (𝑥𝑘). Then
𝑥𝑘 ⇀ 𝑥 weakly in 𝑋 for some fixed point 𝑥 of 𝑇 .

Proof. Finding a fixed point of 𝑇 is equivalent to finding a root of 𝐻 (𝑥) ≔ 𝑇 (𝑥) − 𝑥 .
Similarly, we can rewrite the fixed-point iteration as solving for 𝑥𝑘+1 the inclusion

(9.31) 0 = 𝑥𝑘 −𝑇 (𝑥𝑘) + (𝑥𝑘+1 − 𝑥𝑘).
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9 splitting methods: weak convergence

Proceeding as in the previous sections, we test this by the application of ⟨ · , 𝑥𝑘+1 − 𝑥⟩𝑋 .
After application of the three-point identity (9.1), we then obtain

(9.32) 1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑋 + 1

2 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 + ⟨𝑥𝑘 −𝑇 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≤ 1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑋 .

Since 𝑥𝑘+1 = 𝑇 (𝑥𝑘), 𝑥 is a fixed point of 𝑇 , and by assumption 𝑇 = (1 − 𝛼)Id + 𝛼 𝐽 for some
nonexpansive operator 𝐽 : 𝑋 → 𝑋 , we have

⟨𝑥𝑘 −𝑇 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 = ⟨𝑥𝑘 − 𝑥 − (𝑇 (𝑥𝑘) −𝑇 (𝑥)),𝑇 (𝑥𝑘) −𝑇 (𝑥)⟩𝑋
= 𝛼 ⟨𝑥𝑘 − 𝑥 − (𝐽 (𝑥𝑘) − 𝐽 (𝑥)), (1 − 𝛼) (𝑥𝑘 − 𝑥) + 𝛼 (𝐽 (𝑥𝑘) − 𝐽 (𝑥))⟩𝑋
= (𝛼 − 𝛼2)∥𝑥𝑘 − 𝑥 ∥2

𝑋 − 𝛼2∥ 𝐽 (𝑥𝑘) − 𝐽 (𝑥)∥2
𝑋

+ (2𝛼2 − 𝛼)⟨𝑥𝑘 − 𝑥, 𝐽 (𝑥𝑘) − 𝐽 (𝑥)⟩𝑋
as well as

1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 =

1
2 ∥𝑇 (𝑥

𝑘) − 𝑥𝑘 ∥2
𝑋 =

𝛼2

2 ∥ 𝐽 (𝑥𝑘) − 𝑥𝑘 ∥2
𝑋 =

𝛼2

2 ∥ 𝐽 (𝑥𝑘) − 𝐽 (𝑥) − (𝑥𝑘 − 𝑥)∥2
𝑋

=
𝛼2

2 ∥𝑥𝑘 − 𝑥 ∥2
𝑋 + 𝛼

2

2 ∥ 𝐽 (𝑥𝑘) − 𝐽 (𝑥)∥2
𝑋 − 𝛼2⟨𝑥𝑘 − 𝑥, 𝐽 (𝑥𝑘) − 𝐽 (𝑥)⟩𝑋 .

Thus, for any 𝛿 > 0,

1 − 𝛿
2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 + ⟨𝑥𝑘 −𝑇 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 = ((1 + 𝛿)𝛼2 − 𝛼)⟨𝑥𝑘 − 𝑥, 𝐽 (𝑥𝑘) − 𝐽 (𝑥)⟩𝑋

+ 2𝛼 − (1 + 𝛿)𝛼2

2 ∥𝑥𝑘 − 𝑥 ∥2
𝑋 − (1 + 𝛿)𝛼2

2 ∥ 𝐽 (𝑥𝑘) − 𝐽 (𝑥)∥2
𝑋 .

Taking 𝛿 = 1
𝛼
− 1, we have 𝛿 > 0 and 𝛼 = (1 + 𝛿)𝛼2. Thus the factor in front of the inner

product term is positive, and hence we obtain by the nonexpansivity of 𝐽

1 − 𝛿
2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 + ⟨𝑥𝑘 −𝑇 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 =
𝛼

2 ∥𝑥
𝑘 − 𝑥 ∥2

𝑋 − 𝛼

2 ∥ 𝐽 (𝑥
𝑘) − 𝐽 (𝑥)∥2

𝑋 ≥ 0.

From (9.32), it now follows that

1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑋 + 𝛿2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≤ 1

2 ∥𝑥
𝑘 − 𝑥 ∥2

𝑋 .

As before, this implies Fejér monotonicity of {𝑥𝑘}𝑘∈ℕ and that ∥𝑥𝑘+1 −𝑥𝑘 ∥𝑋 → 0. The latter
implies ∥𝑇 (𝑥𝑘) − 𝑥𝑘 ∥𝑋 → 0 via (9.31). Let 𝑥 be any weak limit point of {𝑥𝑘}𝑘∈ℕ. Denote by
𝑁 ⊂ ℕ be the indices of the corresponding subsequence. We show that 𝑥 is a fixed point of
𝑇 . Since by Lemma 6.20 the set of fixed points is convex and closed, the claim then follows
from Opial’s Lemma 9.1.
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To show that 𝑥 is a fixed point of 𝑇 , first, we expand

1
2 ∥𝑥

𝑘 −𝑇 (𝑥)∥2
𝑋 =

1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑋 + 1

2 ∥𝑥 −𝑇 (𝑥)∥2
𝑋 + ⟨𝑥𝑘 − 𝑥, 𝑥 −𝑇 (𝑥)⟩𝑋 .

Since 𝑥𝑘 ⇀ 𝑥 , this gives

lim sup
𝑁∋𝑘→∞

1
2 ∥𝑥

𝑘 −𝑇 (𝑥)∥2
𝑋 ≥ lim sup

𝑁∋𝑘→∞

1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑋 + ∥𝑥 −𝑇 (𝑥)∥2

𝑋 .

On the other hand, by the nonexpansivity of 𝑇 and 𝑇 (𝑥𝑘) − 𝑥𝑘 → 0, we have

lim sup
𝑁∋𝑘→∞

∥𝑥𝑘 −𝑇 (𝑥)∥𝑋 ≤ lim sup
𝑁∋𝑘→∞

(
∥𝑇 (𝑥𝑘) −𝑇 (𝑥)∥𝑋 + ∥𝑥𝑘 −𝑇 (𝑥𝑘)∥𝑋

)
≤ lim sup

𝑁∋𝑘→∞
∥𝑥𝑘 −𝑥 ∥𝑋 .

Together this two inequalities show, as desired, that ∥𝑇 (𝑥) − 𝑥 ∥ = 0. □

Remark 9.23. Theorem 9.22 in its modern form (stated for firmly nonexpansive or more generally
𝛼-averaged maps) can be first found in [Browder, 1967]. However, similar results for what are now
called Krasnosel′skiı̆–Mann iterations – which are closely related to 𝛼-averaged maps – were stated
in more limited settings in [Krasnosel′skiı̆, 1955; Mann, 1953; Opial, 1967; Petryshyn, 1966; Schaefer,
1957]. Our overall approach in this book, based on [Valkonen, 2020b], is an “implicit” counterpart
to the more classical fixed point theorems. Instead of considering explicit iterations 𝑥𝑘+1 ≔ 𝑇 (𝑥𝑘 ),
the theory is based on 𝑥𝑘+1 defined implicitly through equations 0 = 𝐻 (𝑥𝑘+1) + (𝑥𝑘+1 − 𝑥𝑘 ).
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As we have seen, minimizers of convex problems in a Hilbert space 𝑋 can generally be
characterized by the inclusion

0 ∈ 𝐻 (𝑥)
for the unknown 𝑥 ∈ 𝑋 and a suitable monotone operator 𝐻 : 𝑋 ⇒ 𝑋 . This inclusion in
turn can be solved using a (preconditioned) proximal point iteration that converges weakly
under suitable assumptions. In the present chapter, we want to improve this analysis to
obtain convergence rates, i.e., estimates of the distance ∥𝑥𝑘 − 𝑥 ∥𝑋 of iterates to 𝑥 in terms of
the iteration number 𝑘 . Our general approach will be to consider this distance multiplied
by an iteration-dependent testing parameter 𝜑𝑘 (or, for structured algorithms, consider
the norm relative to a testing operator) and to show by roughly the same arguments as in
Chapter 9 that this product stays bounded: 𝜑𝑘 ∥𝑥𝑘 − 𝑥 ∥𝑋 ≤ 𝐶 . If we can then show that this
testing parameter grows at a certain rate, the distance must decay at the reciprocal rate.
Consequently, we can now avoid the complications of dealing with weak convergence; in
fact, this chapter will consist of simple algebraic manipulations. However, for this to work
we need to assume additional properties of 𝐻 , namely strong monotonicity. Recall from
Lemma 7.4 that 𝐻 is called strongly monotone with factor 𝛾 > 0 if

(10.1) ⟨𝐻 (𝑥) − 𝐻 (𝑥), 𝑥 − 𝑥⟩𝑋 ≥ 𝛾 ∥𝑥 − 𝑥 ∥2
𝑋 (𝑥, 𝑥 ∈ 𝑋 ),

where, in a slight abuse of notation, the left-hand side is understood to stand for any choice
of elements from 𝐻 (𝑥) and 𝐻 (𝑥).
Before we turn to the actual estimates, we first define various notions of convergence rates.
Consider a function 𝑟 : ℕ → [0,∞) (e.g., 𝑟 (𝑘) = ∥𝑥𝑘 − 𝑥 ∥𝑋 or 𝑟 (𝑘) = 𝐺 (𝑥𝑘) −𝐺 (𝑥) for 𝑥 a
minimizer of 𝐺).

(i) We say that 𝑟 (𝑘) converges (to zero as 𝑘 → ∞) at the rate 𝑂 (𝑓 (𝑘)) if 𝑟 (𝑘) ≤ 𝐶𝑓 (𝑘)
for some constant 𝐶 > 0 for all 𝑘 ∈ ℕ and a decreasing function 𝑓 : ℕ → [0,∞)
with lim𝑘→∞ 𝑓 (𝑘) = 0 (e.g., 𝑓 (𝑘) = 1/𝑘 or 𝑓 (𝑘) = 1/𝑘2).

(ii) Analogously, we say that a function 𝑅 : ℕ → [0,∞) grows at the rate Ω(𝐹 (𝑘)) if
𝑅(𝑘) ≥ 𝑐𝐹 (𝑘) for all 𝑘 ∈ ℕ for some constant 𝑐 > 0 and an increasing function
𝐹 : ℕ → [0,∞) with lim𝑘→∞ 𝐹 (𝑘) = ∞.
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Clearly 𝑟 = 1/𝑅 converges to zero at the rate 𝑓 = 1/𝐹 if and only if 𝑅 grows at the rate 𝐹 .
The most common cases are 𝐹 (𝑘) = 𝑘 or 𝐹 (𝑘) = 𝑘2.

We can alternatively characterize orders of convergence via

𝜇 ≔ lim
𝑘→∞

𝑟 (𝑘 + 1)
𝑟 (𝑘) .

(i) If 𝜇 = 1, we say that 𝑟 (𝑘) converges (to zero as 𝑘 → ∞) sublinearly.

(ii) If 𝜇 ∈ (0, 1), then this convergence is linear . This is equivalent to a convergence at
the rate 𝑂 (�̃�𝑘) for any �̃� ∈ (𝜇, 1).

(iii) If 𝜇 = 0, then the convergence is superlinear .

Different rates of superlinear convergence can also be studied. We say that 𝑟 (𝑘) converges
(to zero as 𝑘 → ∞) superlinearly with order 𝑞 > 1 if

lim
𝑘→∞

𝑟 (𝑘 + 1)
𝑟 (𝑘)𝑞 < ∞.

The most common case is 𝑞 = 2, which is also known as quadratic convergence. (This is not
to be confused with the – much slower – convergence at the rate 𝑂 (1/𝑘2); similarly, linear
convergence is different from – and much faster than – convergence at the rate𝑂 (1/𝑘).)

10.1 the fundamental methods

Before going into this abstract operator-based theory, we demonstrate the general concept
of testing by studying the fundamental methods, the proximal point and explicit splitting
methods. These are purely primal methods with a single step length parameter, which
simplifies the testing approach since we only need a single testing parameter. (It should
be pointed out that the proofs in this section can be carried out – and in fact shortened –
without introducing testing parameters at all. Nevertheless, we follow this approach since
it provides a blueprint for the proofs for the structured primal-dual methods where these
are required.)

proximal point method

We start with the basic proximal point method for solving 0 ∈ 𝐻 (𝑥) for a monotone
operator 𝐻 : 𝑋 ⇒ 𝑋 , which we recall can be written in implicit form as

(10.2) 0 ∈ 𝜏𝑘𝐻 (𝑥𝑘+1) + (𝑥𝑘+1 − 𝑥𝑘).
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Theorem 10.1 (proximal point method iterate rates). Suppose 𝐻 : 𝑋 ⇒ 𝑋 is strongly
monotone with 𝐻−1(0) ≠ ∅. Let 𝑥𝑘+1 ≔ R𝜏𝑘𝐻 (𝑥𝑘) for some {𝜏𝑘}𝑘∈ℕ ⊂ (0,∞) and 𝑥0 ∈ 𝑋 be
arbitrary. Then the following hold for the iterates {𝑥𝑘}𝑘∈ℕ and the unique point 𝑥 ∈ 𝐻−1(0):

(i) If 𝜏𝑘 ≡ 𝜏 is constant, then ∥𝑥𝑘 − 𝑥 ∥𝑋 → 0 linearly.

(ii) If 𝜏𝑘 →∞, then ∥𝑥𝑘 − 𝑥 ∥𝑋 → 0 superlinearly.

Proof. Let 𝑥 ∈ 𝐻−1(0); by assumption, such a point exists and is unique due to the assumed
strong monotonicity of 𝐻 (since inserting any two roots 𝑥, 𝑥 ∈ 𝑋 of 𝐻 in (10.1) yields
∥𝑥 − 𝑥 ∥𝑋 ≤ 0). For each iteration 𝑘 ∈ ℕ, pick a testing parameter 𝜑𝑘 > 0 and apply the test
𝜑𝑘 ⟨ · , 𝑥𝑘+1 − 𝑥⟩𝑋 to (10.2) to obtain (using the same notation from Theorem 9.4)

(10.3) 0 ∈ 𝜑𝑘𝜏𝑘 ⟨𝐻 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑋 + 𝜑𝑘 ⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑋 .
By the strong monotonicity of 𝐻 , and the fact that 0 ∈ 𝐻 (𝑥), for some 𝛾 > 0,

⟨𝐻 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝛾 ∥𝑥𝑘+1 − 𝑥 ∥2
𝑋

Multiplying this inequality with 𝜑𝑘𝜏𝑘 and using (10.3), we obtain

𝜑𝑘𝜏𝑘𝛾 ∥𝑥𝑘+1 − 𝑥 ∥2
𝑋 + 𝜑𝑘 ⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑋 ≤ 0.

An application of the three-point identity (9.1) then yields

(10.4) 𝜑𝑘 (1 + 2𝜏𝑘𝛾)
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 + 𝜑𝑘2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≤ 𝜑𝑘

2 ∥𝑥𝑘 − 𝑥 ∥2
𝑋 .

Let us now force on the testing parameters the recursion

(10.5) 𝜑0 = 1, 𝜑𝑘+1 = 𝜑𝑘 (1 + 2𝜏𝑘𝛾).
Then (10.4) yields

(10.6) 𝜑𝑘+1
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 + 𝜑𝑘2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≤ 𝜑𝑘

2 ∥𝑥𝑘 − 𝑥 ∥2
𝑋 .

We now distinguish the two cases for the step sizes 𝜏𝑘 .

(i) Summing (10.6) for 𝑘 = 0, . . . , 𝑁 − 1 gives

𝜑𝑁

2 ∥𝑥𝑁 − 𝑥 ∥2
𝑋 +

𝑁−1∑︁
𝑘=0

𝜑𝑘

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≤ 𝜑0

2 ∥𝑥0 − 𝑥 ∥2
𝑋 .

In particular, 𝜑0 = 1 implies that

∥𝑥𝑁 − 𝑥 ∥2
𝑋 ≤ 𝜑−1

𝑁 ∥𝑥0 − 𝑥 ∥2
𝑋 .

Since 𝜏𝑘 ≡ 𝜏 , (10.5) implies that 𝜑𝑁 = (1 + 2𝜏𝛾)𝑁 . Setting �̃� ≔ (1 + 2𝜏𝛾)−1/2 < 1 now
gives convergence at the rate 𝑂 (�̃�−𝑁 ) and therefore the claimed linear rate.
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(ii) From (10.6) combined with (10.5) follows directly that

∥𝑥𝑘+1 − 𝑥 ∥2
𝑋

∥𝑥𝑘 − 𝑥 ∥2
𝑋

≤ 𝜑𝑘

𝜑𝑘+1
= (1 + 2𝜏𝑘𝛾)−1 → 0

since 𝜏𝑘 → ∞, which implies the claimed superlinear convergence of ∥𝑥𝑘 − 𝑥 ∥𝑋 . (A
similar argument can be used to directly show linear convergence for constant step
sizes.) □

explicit splitting

We now return to problems of the form

(10.7) min
𝑥∈𝑋

𝐹 (𝑥) +𝐺 (𝑥)

for Gâteaux differentiable 𝐹 , and study the convergence rates of the explicit (or forward–
backward) splitting method

(10.8) 𝑥𝑘+1 ≔ prox𝜏𝐺 (𝑥𝑘 − 𝜏∇𝐹 (𝑥𝑘)),
which we recall can be written in implicit form as

(10.9) 0 ∈ 𝜏 [𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘)] + (𝑥𝑘+1 − 𝑥𝑘).

Theorem 10.2 (explicit splitting iterate rates). Let 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑋 → ℝ be convex,
proper, and lower semicontinuous. Suppose further that 𝐹 is Gâteaux differentiable, ∇𝐹 is
Lipschitz continuous with constant 𝐿 > 0, and 𝐺 is 𝛾-strongly convex for some 𝛾 > 0. If
[𝜕(𝐹 +𝐺)]−1(0) ≠ ∅ and the step length parameter 𝜏 > 0 satisfies 𝜏𝐿 ≤ 2, then for any initial
iterate 𝑥0 ∈ 𝑋 the iterates {𝑥𝑘}𝑘∈ℕ generated by the explicit splitting method (10.8) converge
linearly to the unique minimizer of (10.7).

Proof. Let 𝑥 ∈ [𝜕(𝐹 +𝐺)]−1(0); by assumption, such a point exists and is unique due to
the strong and therefore strict convexity of 𝐺 . As in the proof of Theorem 10.1, for each
iteration 𝑘 ∈ ℕ, pick a testing parameter 𝜑𝑘 > 0 and apply the test 𝜑𝑘 ⟨ · , 𝑥𝑘+1 − 𝑥⟩ to (10.9)
to obtain

(10.10) 0 ∈ 𝜑𝑘𝜏 ⟨𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 + 𝜑𝑘 ⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑋 .
Since 𝐺 is strongly convex, it follows from (10.9) and Lemma 7.4 (iii) that

⟨𝜕𝐺 (𝑥𝑘+1) − 𝜕𝐺 (𝑥), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝛾 ∥𝑥𝑘+1 − 𝑥 ∥2
𝑋 .

Similarly, since ∇𝐹 is Lipschitz continuous, it follows from Corollary 7.2 that

⟨∇𝐹 (𝑥𝑘) − ∇𝐹 (𝑥), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ −𝐿4 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 .
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Combining the last two inequalities with 0 ∈ 𝜕𝐺 (𝑥) + ∇𝐹 (𝑥), we obtain

(10.11) ⟨𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝛾 ∥𝑥𝑘+1 − 𝑥 ∥2
𝑋 − 𝐿

4 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 .

Inserting this into (10.10) and using the three-point identity, as in the proof of Theorem 10.1,
we now obtain

(10.12) 𝜑𝑘 (1 + 2𝜏𝛾)
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 + 𝜑𝑘 (1 − 𝜏𝐿/2)
2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 ≤ 𝜑𝑘

2 ∥𝑥𝑘 − 𝑥 ∥2
𝑋 .

Since 1 − 𝜏𝐿/2 ≥ 0, summing over 𝑘 = 0, . . . , 𝑁 − 1, we arrive at
𝜑𝑁

2 ∥𝑥𝑁 − 𝑥 ∥2
𝑋 ≤ 𝜑0

2 ∥𝑥0 − 𝑥 ∥2
𝑋 .

As in Theorem 10.1, the definition of 𝜑𝑘 shows that ∥𝑥𝑘 − 𝑥 ∥2
𝑋
→ 0 linearly. □

Observe that it is not possible to obtain superlinear convergence in this case since the
assumption 𝜏𝑘 ≤ 2𝐿−1 forces the step lengths to remain bounded.

10.2 structured algorithms and acceleration

We now to extend the analysis above to the structured case where 𝐻 = 𝐴 + 𝐵, since we
have already seen that most common first-order algorithm can be written as calculating
in each step the next iterate 𝑥𝑘+1 from a specific instance of the general preconditioned
implicit–explicit splitting method

(10.13) 0 ∈ 𝐴(𝑥𝑘+1) + 𝐵(𝑥𝑘) +𝑀 (𝑥𝑘+1 − 𝑥𝑘) .

In the proofs of convergence of the proximal point and explicit splitting methods (e.g., in
Theorems 10.1 and 10.2 as well as in Chapter 9), we had the step length 𝜏𝑘 in front of 𝐻
or ∇𝐹 + 𝜕𝐺 . On the other hand, in Section 9.3 on structured algorithms, we incorporated
the step length parameters into the preconditioning operator 𝑀 . To transfer the testing
approach from these fundamental methods to the structured methods, we will now split
them out from𝑀 and move them in front of 𝐻 as well by introducing a step length operator
𝑊𝑘+1. We will also allow the preconditioner𝑀𝑘+1 to vary by iteration; as we will see below,
this is required for accelerated versions of the PDPS method. Correspondingly, we consider
the scheme

(10.14) 0 ∈𝑊𝑘+1 [𝐴(𝑥𝑘+1) + 𝐵(𝑥𝑘)] +𝑀𝑘+1(𝑥𝑘+1 − 𝑥𝑘).

Since we now have a step length operator instead of a single scalar step length, we will
also have to consider instead of a scalar testing parameter an iteration-dependent testing
operator 𝑍𝑘+1 ∈ 𝕃(𝑋 ;𝑋 ). The rough idea is that 𝑍𝑘+1𝑀 – or, as needed for accelerated

140



10 splitting methods: rates of convergence

algorithms, 𝑍𝑘+1𝑀𝑘+1 – will form a “local norm” that measures the rate of convergence
in a nonuniform way; and rather than testing the (scalar) three-point identity (10.4), we
will build the testing already into the initial strong monotonicity inequality. We therefore
require an operator-level version of strong monotonicity, which we introduce next.

Let 𝐴 : 𝑋 ⇒ 𝑋 and let 𝑍, Γ ∈ 𝕃(𝑋 ;𝑋 ) be such that 𝑍Γ is positive semi-definite. Then we
say that 𝐴 is Γ-strongly monotone at 𝑥 ∈ 𝑋 with respect to 𝑍 if

(10.15) ⟨𝐴(𝑥) −𝐴(𝑥), 𝑥 − 𝑥⟩𝑍 ≥ ∥𝑥 − 𝑥 ∥2
𝑍Γ (𝑥 ∈ 𝑋 ) .

If this holds for all 𝑥 ∈ 𝑋 , we say that 𝐴 is Γ-strongly monotone with respect to 𝑍 .

It is clear that strongly monotone operators with parameter 𝛾 > 0 are 𝛾 · Id-strongly mono-
tone with respect to 𝑍 = Id. More generally, operators with a separable block-structure,
𝐴(𝑥) = (𝐴1(𝑥1), . . . , 𝐴𝑛 (𝑥𝑛)) for 𝑥 = (𝑥1, . . . , 𝑥𝑛) satisfy the property, as as illustrated in
more detail in the next example for the two-block case.

Example 10.3. Let 𝐴(𝑥) = (𝐴1(𝑥1), 𝐴2(𝑥2)) for 𝑥 = (𝑥1, 𝑥2) ∈ 𝑋1 ×𝑋2 and the monotone
operators 𝐴1 : 𝑋1 ⇒ 𝑋1 and 𝐴2 : 𝑋2 ⇒ 𝑋2. Suppose 𝐴1 and 𝐴2 are, respectively 𝛾1- and
𝛾2-(strongly) monotone for 𝛾1, 𝛾2 ≥ 0. Then (10.15) holds for any 𝜑1, 𝜑2 > 0 for

Γ ≔

(
𝛾1Id 0

0 𝛾2Id

)
and 𝑍 ≔

(
𝜑1Id 0

0 𝜑2Id

)
We do not impose 𝑍Γ to be self-adjoint in (10.15), although we use the norm notation.
Forgoing with self-adjointness allows Γ to have skew-adjoint parts Ξ = −Ξ∗, cf. Lemma 9.9.
Indeed, for the operator 𝐻 for the PDPS method from (8.14), we can for 𝑍 = Id always
choose Γ =

( 0 𝐾∗
−𝐾 0

)
skew-adjoint. With either 𝐹 or 𝐺∗ strongly convex, Γ will also have

corresponding components as in Example 10.3.

Let further 𝐵 : 𝑋 ⇒ 𝑋 and let 𝑍,Λ ∈ 𝕃(𝑋 ;𝑋 ) be such that 𝑍Λ is positive semi-definite.
Then we say that 𝐵 is three-point monotone at 𝑥 ∈ 𝑋 with respect to 𝑍 and Λ if

(10.16) ⟨𝐵(𝑧) − 𝐵(𝑥), 𝑥 − 𝑥⟩𝑍 ≥ − 1
4 ∥𝑥 − 𝑧∥2

𝑍Λ (𝑥, 𝑧 ∈ 𝑋 ).

If this holds for all 𝑥 ∈ 𝑋 , we say that 𝐵 is three-point monotone with respect to 𝑍 and Λ.

Example 10.4. Let 𝐵(𝑥) = (∇𝐸1(𝑥1),∇𝐸2(𝑥2)) for 𝑥 = (𝑥1, 𝑥2) ∈ 𝑋1 × 𝑋2 and the respec-
tively 𝐿1- and 𝐿2-smooth convex functions 𝐸1 : 𝑋1 → ℝ and 𝐸2 : 𝑋2 → ℝ. Then a
referral to Corollary 7.2 shows (10.16) to hold for any 𝜑1, 𝜑2 > 0 for

Λ ≔

(
𝐿1Id 0

0 𝐿2Id

)
and 𝑍 ≔

(
𝜑1Id 0

0 𝜑2Id

)
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More generally, we can take 𝐵(𝑥) = (𝐵1(𝑥1), 𝐵2(𝑥2)) for 𝐵1 : 𝑋1 → 𝑋1 and 𝐵2 : 𝑋2 → 𝑋2
three-point monotone as defined in (7.9).

Clearly Example 10.4 as Example 10.3 generalizes to a large number of blocks, and both to
operators acting separably on more general direct sums of orthogonal subspaces.

We are now ready to forge our hammer for producing convergence rates for structured
algorithms. In the following, for any𝑀, 𝑁 ∈ 𝕃(𝑋 ;𝑋 ), we write𝑀 ⪰ 𝑁 to mean that𝑀 −𝑁
is positive semi-definite: ∥𝑥 ∥2

𝑀
≥ ∥𝑥 ∥2

𝑁
for all 𝑥 ∈ 𝑋 .

Theorem 10.5. Let𝐴, 𝐵 : 𝑋 ⇒ 𝑋 and𝐻 ≔ 𝐴+𝐵. For each 𝑘 ∈ ℕ, let further𝑍𝑘+1,𝑊𝑘+1, 𝑀𝑘+1 ∈
𝕃(𝑋 ;𝑋 ) be such that 𝑍𝑘+1𝑀𝑘+1 is self-adjoint and positive semi-definite. Assume that there
exists a 𝑥 ∈ 𝐻−1(0). For each 𝑘 ∈ ℕ, suppose for some Γ,Λ ∈ 𝕃(𝑋 ;𝑋 ) that 𝐴 is Γ-strongly
monotone at 𝑥 with respect to 𝑍𝑘+1𝑊𝑘+1 and that 𝐵 is three-point monotone at 𝑥 with respect
to 𝑍𝑘+1𝑊𝑘+1 and Λ. Let the initial iterate 𝑥0 ∈ 𝑋 be arbitrary, and suppose {𝑥𝑘+1}𝑘∈ℕ are
generated by (10.14). If for every 𝑘 ∈ ℕ both

𝑍𝑘+1(𝑀𝑘+1 + 2𝑊𝑘+1Γ) ⪰ 𝑍𝑘+2𝑀𝑘+2 and(10.17)
𝑍𝑘+1𝑀𝑘+1 ⪰ 𝑍𝑘+1𝑊𝑘+1Λ/2.(10.18)

hold, then

(10.19) 1
2 ∥𝑥

𝑁 − 𝑥 ∥2
𝑍𝑁+1𝑀𝑁+1

≤ 1
2 ∥𝑥

0 − 𝑥 ∥2
𝑍1𝑀1

.

Proof. For brevity, denote𝐻𝑘+1(𝑥𝑘+1) ≔𝑊𝑘+1 [𝐴(𝑥𝑘+1)+𝐵(𝑥𝑘)]. First, from (10.15) and (10.16)
we have that

(10.20) ⟨𝐻𝑘+1(𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑍𝑘+1 ≥ ∥𝑥𝑘+1 − 𝑥 ∥2
𝑍𝑘+1𝑊𝑘+1Γ

− 1
4 ∥𝑥

𝑘 − 𝑥𝑘+1∥2
𝑍𝑘+1𝑊𝑘+1Λ

.

Multiplying (10.14) with 𝑍𝑘+1 and rearranging, we obtain

−𝑍𝑘+1𝑀𝑘+1(𝑥𝑘+1 − 𝑥𝑘) ∈ 𝑍𝑘+1𝐻𝑘+1(𝑥𝑘+1).

Inserting this into (10.20) and applying the preconditioned three-point formula (9.11) for
𝑀 = 𝑍𝑘+1𝑀𝑘+1 yields

1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑍𝑘+1 (𝑀𝑘+1+2𝑊𝑘+1Γ) +

1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑍𝑘+1 (𝑀𝑘+1−𝑊𝑘+1Λ/2) ≤

1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑍𝑘+1𝑀𝑘+1

.

Using (10.17) and (10.18), this implies that

(10.21) 1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑍𝑘+2𝑀𝑘+2

≤ 1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑍𝑘+1𝑀𝑘+1

.

Summing over 𝑘 = 0, . . . , 𝑁 − 1 now yields the claim. □
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The inequality (10.21) is a quantitative or variable metric version of the Fejér monotonicity
of Lemma 9.1 (i) with respect to 𝑋 = {𝑥}.
If Theorem 10.5 is applicable, we immediately obtain the convergence rate result.

Corollary 10.6 (convergence with a rate). If (10.19) holds and 𝑍𝑁+1𝑀𝑁+1 ⪰ 𝜇 (𝑁 )𝐼 for some
𝜇 : ℕ → ℝ, then ∥𝑥𝑁 − 𝑢∥2 → 0 at the rate 𝑂 (1/𝜇 (𝑁 )).

primal-dual proximal splitting methods

We now apply this operator-testing technique to primal-dual splitting methods for the
solution of

(10.22) min
𝑥∈𝑋

𝐹0(𝑥) + 𝐸 (𝑥) +𝐺 (𝐾𝑥)

with 𝐹0 : 𝑋 → ℝ, 𝐸 : 𝑋 → ℝ, and 𝐺 : 𝑌 → ℝ convex, proper, and lower semicontinuous
and 𝐾 ∈ 𝕃(𝑋 ;𝑌 ). We will also write 𝐹 ≔ 𝐹0 + 𝐸. The methods include in particular
the PDPS method with a forward step (9.29). Now allowing varying step lengths and an
over-relaxation parameter 𝜔𝑘 , this can be written

(10.23)


𝑥𝑘+1 ≔ (𝐼 + 𝜏𝑘𝜕𝐹0)−1(𝑥𝑘 − 𝜏𝑘𝐾∗𝑦𝑘 − 𝜏𝑘∇𝐸 (𝑥𝑘)),
𝑥𝑘+1 ≔ 𝜔𝑘 (𝑥𝑘+1 − 𝑥𝑘) + 𝑥𝑘+1,

𝑦𝑘+1 ≔ (𝐼 + 𝜎𝑘+1𝜕𝐺
∗)−1(𝑦𝑘 + 𝜎𝑘+1𝐾𝑥

𝑘+1).

For the basic version of the algorithm with 𝜔𝑘 = 1, 𝜏𝑘 ≡ 𝜏0 > 0, and 𝜎𝑘 ≡ 𝜎0 > 0, we
have seen in Corollary 9.20 that the iterates converge weakly if the step length parameters
satisfy

(10.24) 𝐿𝜏0/2 + 𝜏0𝜎0∥𝐾 ∥2
𝕃(𝑋 ;𝑌 ) < 1,

where 𝐿 is the Lipschitz constant of ∇𝐸. We will now show that under strong convexity of
𝐹0, we can choose these parameters to accelerate the algorithm to yield convergence at a
rate𝑂 (1/𝑁 2). If both 𝐹0 and𝐺∗ are strongly convex, we can even obtain linear convergence.
Throughout 𝑢 = (𝑥, 𝑦) denotes a root of

𝐻 (𝑢) ≔
(
𝜕𝐹0(𝑥) + ∇𝐸 (𝑥) + 𝐾∗𝑦

𝜕𝐺∗(𝑦) − 𝐾𝑥
)
,

which we assume exists. From Theorem 5.11, this is the case if an interior point condition
is satisfied for 𝐺 ◦ 𝐾 and (10.22) admits a solution.

We will also require the following technical lemma in place of the simpler growth argument
for the choice (10.5).
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Lemma 10.7. Pick 𝜑0 > 0 arbitrarily, and define iteratively 𝜑𝑘+1 ≔ 𝜑𝑘
(
1 + 2𝛾𝜑−1/2

𝑘

)
for some

𝛾 > 0. Then there exists a constant 𝑐 > 0 such that 𝜑𝑘 ≥ (
𝑐𝑘 + 𝜑 1/2

0
)2 for all 𝑘 ∈ ℕ.

Proof. Replacing 𝜑𝑘 by 𝜑′𝑘 ≔ 𝛾−2𝜑𝑘 , we may assume without loss of generality that 𝛾 = 1.
We claim that 𝜑 1/2

𝑘
≥ 𝑐𝑘 + 𝜑 1/2

0 for some 𝑐 > 0. We proceed by induction. The case 𝑘 = 0
is clear. If the claim holds for 𝑘 = 0, . . . , 𝑁 − 1, we can unroll the recursion to obtain the
estimate

𝜑𝑁 − 𝜑0 =
𝑁−1∑︁
𝑘=0

2𝜑 1/2
𝑘

≥ 2
𝑁−1∑︁
𝑘=0

𝑐𝑘 + 2𝜑 1/2
0 𝑁 = 𝑐𝑁 (𝑁 − 1) + 2𝜑 1/2

0 𝑁 = 𝑐𝑁 2 + (2𝜑 1/2
0 − 𝑐)𝑁 .

Expanding (𝑐𝑁 + 𝜑 1/2
0 )2 = 𝑐2𝑁 2 + 2𝑐𝜑 1/2

0 𝑁 + 𝜑0, we see that the claim for 𝜑𝑁 holds if
𝑐 ≥ 𝑐2 and 2𝜑 1/2

0 − 𝑐 ≥ 2𝑐𝜑 1/2
0 . Taking the latter with equality and solving for 𝑐 yields

𝑐 = 2𝜑 1/2
0 /(1 + 2𝜑 1/2

0 ) < 1 and hence also the former. Since this choice of 𝑐 does not depend
on 𝑁 , the claim follows. □

Theorem 10.8 (accelerated and linearly convergent PDPS). Let 𝐹0 : 𝑋 → ℝ, 𝐸 : 𝑋 → ℝ

and 𝐺 : 𝑌 → ℝ be convex, proper, and lower semicontinuous with ∇𝐸 Lipschitz continuous
with constant 𝐿 > 0. Also let 𝐾 ∈ 𝕃(𝑋 ;𝑌 ), and suppose the assumptions of Theorem 5.11 are
satisfied with 𝐹 ≔ 𝐹0 + 𝐸. Pick initial step lengths 𝜏0, 𝜎0 > 0 subject to (10.24). For any initial
iterate 𝑢0 ∈ 𝑋 × 𝑌 , suppose {𝑢𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1)}𝑘∈ℕ are generated by (10.23).

(i) If 𝐹0 is strongly convex with factor 𝛾 > 0, and we take

(10.25) 𝜔𝑘 ≔ 1/
√︁

1 + 2𝛾𝜏𝑘 , 𝜏𝑘+1 ≔ 𝜏𝑘𝜔𝑘 , and 𝜎𝑘+1 ≔ 𝜎𝑘/𝜔𝑘 ,

then ∥𝑥𝑁 − 𝑥 ∥2
𝑋
→ 0 at the rate 𝑂 (1/𝑁 2).

(ii) If both 𝐹0 and𝐺∗ are strongly convex with factor 𝛾 > 0 and 𝜌 > 0, respectively, and we
take

(10.26) 𝜔𝑘 ≔ 1/(1 + 2𝜃 ), 𝜃 ≔ min{𝜌𝜎0, 𝛾𝜏0}, 𝜏𝑘 ≔ 𝜏0 and 𝜎𝑘 ≔ 𝜎0,

then ∥𝑥𝑁 − 𝑥 ∥2
𝑋
+ ∥𝑦𝑁 − 𝑦 ∥2

𝑌
→ 0 linearly.

Proof. Recalling Corollary 9.20, we write (10.23) in the form (10.14) by taking

𝐴(𝑢) ≔
(
𝜕𝐹0(𝑥)
𝜕𝐺∗(𝑦)

)
+ Ξ𝑢, 𝐵(𝑢) ≔

(∇𝐸 (𝑥)
0

)
, Ξ ≔

(
0 𝐾∗

−𝐾 0

)
,

𝑊𝑘+1 ≔

(
𝜏𝑘 Id 0

0 𝜎𝑘+1Id

)
, and 𝑀𝑘+1 ≔

(
Id −𝜏𝑘𝐾∗

−𝜔𝑘𝜎𝑘+1𝐾 Id

)
.
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As before, Theorem 5.11 guarantees that 𝐻−1(0) ≠ ∅. For some primal and dual testing
parameters 𝜑𝑘 ,𝜓𝑘+1 > 0, we also take as our testing operator

(10.27) 𝑍𝑘+1 ≔

(
𝜑𝑘 Id 0

0 𝜓𝑘+1Id

)
.

By Examples 10.3 and 10.4, 𝐴 is then Γ-strongly monotone with respect to 𝑍𝑘+1𝑊𝑘+1 and 𝐵
is three-point monotone with respect to 𝑍𝑘+1𝑊𝑘+1 and Λ for

Γ ≔ Ξ +
(
𝛾 Id 0
0 𝜌Id

)
, and Λ ≔

(
𝐿 Id 0

0 0

)
,

where 𝜌 = 0 if 𝐺∗ is not strongly convex.

We will apply Theorem 10.5. Taking 𝜔𝑘 ≔ 𝜎−1
𝑘+1𝜓

−1
𝑘+1𝜑𝑘𝜏𝑘 , we expand

(10.28) 𝑍𝑘+1𝑀𝑘+1 =

(
𝜑𝑘 Id −𝜑𝑘𝜏𝑘𝐾∗

−𝜑𝑘𝜏𝑘𝐾 𝜓𝑘+1Id

)
.

Thus 𝑍𝑘+1𝑀𝑘+1 is self-adjoint as required. We still need to show that it is nonnegative and
indeed grows at a rate that gives our claims. We also need to verify (10.17) and (10.18), which
expand as ( (𝜑𝑘 (1 + 2𝛾𝜏𝑘) − 𝜑𝑘+1)Id (𝜑𝑘𝜏𝑘 + 𝜑𝑘+1𝜏𝑘+1)𝐾∗

(𝜑𝑘+1𝜏𝑘+1 − 2𝜓𝑘+1𝜎𝑘+1 − 𝜑𝑘𝜏𝑘)𝐾 (𝜓𝑘+1(1 + 2𝜌𝜎𝑘+1) −𝜓𝑘+2)Id
)
⪰ 0, and(10.29) (

𝜑𝑘 (1 − 𝜏𝑘𝐿/2)Id −𝜑𝑘𝜏𝑘𝐾∗

−𝜑𝑘𝜏𝑘𝐾 𝜓𝑘+1Id

)
⪰ 0.(10.30)

We now proceed backward by deriving the step length rules as sufficient conditions for
these two inequalities. First, clearly (10.29) holds if for all 𝑘 ∈ ℕ we can guarantee that

(10.31) 𝜑𝑘+1 ≤ 𝜑𝑘 (1 + 2𝛾𝜏𝑘), 𝜓𝑘+1 ≤ 𝜓𝑘 (1 + 2𝜌𝜎𝑘), and 𝜑𝑘𝜏𝑘 = 𝜓𝑘𝜎𝑘 .

We deal with (10.30) and the lower bounds on 𝑍𝑘+1𝑀𝑘+1 in one go. By Young’s inequality,
we have for any 𝛿 ∈ (0, 1) that

2𝜑𝑘𝜏𝑘 ⟨𝐾𝑥, 𝑦⟩ ≤ (1 − 𝛿)𝜑𝑘 ∥𝑥 ∥2 + 𝜑𝑘𝜏2
𝑘
(1 − 𝛿)−1∥𝐾∗𝑦 ∥2 (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ),

hence recalling (10.28) also

(10.32) 𝑍𝑘+1𝑀𝑘+1 ⪰
(
𝛿𝜑𝑘 Id 0

0 𝜓𝑘+1Id − 𝜑𝑘𝜏2
𝑘
(1 − 𝛿)−1𝐾𝐾∗

)
.

Similarly, for the operator from (10.30), we have(
𝜑𝑘 (1 − 𝜏𝑘𝐿/2)Id −𝜑𝑘𝜏𝑘𝐾∗

−𝜑𝑘𝜏𝑘𝐾 𝜓𝑘+1Id

)
⪰

(
𝜑𝑘 (𝛿 − 𝜏𝑘𝐿/2)Id 0

0 𝜓𝑘+1Id − 𝜑𝑘𝜏2
𝑘
(1 − 𝛿)−1𝐾∗𝐾

)
.
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10 splitting methods: rates of convergence

The condition (10.30) is therefore satisfied and 𝑍𝑘+1𝑀𝑘+1 ≥ 𝜀𝑍𝑘+1 for some 𝜀 > 0 if (10.31)
holds and both

(10.33) 𝛿𝜑𝑘 ≥ 𝜀𝜑𝑘 + 𝜑𝑘𝜏𝑘𝐿/2 and 𝜓𝑘+1 ≥ 𝜀𝜓𝑘+1 + 𝜑𝑘𝜏2
𝑘
(1 − 𝛿)−1∥𝐾 ∥2.

By (10.31),𝜓𝑘+1 ≥ 𝜓𝑘 , so using also using the last part of (10.31), we see (10.33) to hold if

(10.34) 𝛿 − 𝜀 ≥ 𝜏𝑘𝐿/2 and (1 − 𝛿) (1 − 𝜀) ≥ 𝜏𝑘𝜎𝑘 ∥𝐾 ∥2.

If we choose 𝜏𝑘 and 𝜎𝑘 such that their product stays constant (i.e., 𝜏𝑘𝜎𝑘 = 𝜎0𝜏0), then the
second equality holds for 𝛿 = 1 − 𝜎0𝜏0∥𝐾 ∥2/(1 − 𝜀), which has to be positive. Inserting this
into the first part of (10.34), we see that it to hold if 1 ≥ 𝜎0𝜏0∥𝐾 ∥2/(1 − 𝜀) + 𝜀 + 𝜏𝑘𝐿/2. This
holds for some 𝜀 > 0 due to the assumed (10.24), i.e., 𝜏𝑘𝐿/2 + 𝜎0𝜏0∥𝐾 ∥2 < 1. Since {𝜏𝑘}𝑘∈ℕ
is nonincreasing, we see that (10.34) and hence (10.30) is satisfied when the initialization
condition (10.24) holds.

To apply Theorem 10.5, all that remains is to verify (10.31) and that 𝜏𝑘𝜎𝑘 = 𝜏0𝜎0. To obtain
convergence rates, we need to further study the rate of increase of 𝜑𝑘 and𝜓𝑘+1, which we
recall that we wish to make as high as possible.

(i) If 𝛾 > 0 and 𝜌 = 0, the best possible choice allowed by (10.31) is 𝜓𝑘 ≡ 𝜓0 and
𝜑𝑘+1 = 𝜑𝑘 (1 + 2𝛾𝜏𝑘) with 𝜎𝑘 = 𝜑𝑘𝜏𝑘/𝜓0. Together with the condition 𝜏𝑘𝜎𝑘 = 𝜎0𝜏0,
this forces 𝜎0𝜏0 = 𝜑𝑘𝜏2

𝑘
/𝜓0. If we take𝜓0 = 1/(𝜎0𝜏0), we thus need 𝜏𝑘 = 𝜑−1/2

𝑘
. Since

𝜎𝑘+1 = 𝜎0𝜏0/𝜏𝑘+1 = 1/(𝜓0𝜏𝑘+1), we obtain the relations

𝜔𝑘 =
𝜑𝑘𝜏𝑘

𝜎𝑘+1𝜓𝑘+1
=
𝜑

1/2
𝑘

𝜑
1/2
𝑘+1

=
1√

1 + 2𝛾𝜏𝑘
,

which are satisfied for the choices of 𝜔𝑘 , 𝜏𝑘+1, and 𝜎𝑘+1 in (10.25).

We now use Theorem 10.5 and Corollary 10.6 and (10.32) to obtain

𝛿𝜑𝑁

2 ∥𝑥𝑁 − 𝑥 ∥2
𝑋 ≤ 1

2 ∥𝑢
𝑁 − 𝑢∥2

𝑍𝑁+1𝑀𝑁+1
≤ 𝐶0 ≔

1
2 ∥𝑢

0 − 𝑢∥2
𝑍1𝑀1

.

Although this does not tell us anything about the convergence of the dual iterates
{𝑦𝑁 }𝑁∈ℕ as𝜓𝑁 ≡ 𝜓 stays constant, Lemma 10.7 shows that the primal test 𝜑𝑁 grows
at the rate Ω(𝑁 2) Hence we obtain the claimed convergence of the primal iterates at
the rate 𝑂 (1/𝑁 2).

(ii) If 𝛾 > 0 and 𝜌 > 0 and we take 𝜏𝑘 ≡ 𝜏0 and 𝜎𝑘 ≡ 𝜎0, the last condition of (10.31) forces
𝜓𝑘 = 𝜑𝑘𝜏0/𝜎0. Inserting this into the second condition yields 𝜑𝑘+1 ≤ 𝜑𝑘 (1 + 2𝜌𝜎0).
Together with the first condition, we therefore at best can take 𝜑𝑘+1 = 𝜑𝑘 (1 + 2𝜃 ) for
𝜃 ≔ min{𝜌𝜎0, 𝛾𝜏0}. Reversing the roles of𝜓 and 𝜑 , we see that we can at best take
𝜓𝑘+1 = 𝜓𝑘 (1 + 2𝜃 ). This leads to the relations

𝜔𝑘 =
𝜑𝑘𝜏0
𝜎0𝜓𝑘+1

=
𝜑𝑘

𝜑𝑘+1
=

1
1 + 2𝜃 ,
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10 splitting methods: rates of convergence

which are again satisfied by the respective choices in (10.26).

We finish the proof with Theorem 10.5 and Corollary 10.6, observing now from (10.32)
that 𝑍𝑁𝑀𝑁 ≥ 𝐶 (1 + 2𝜃 )𝑁 Id for some 𝐶 > 0. □

Note that if𝛾 = 0 and 𝜌 = 0, (10.31) forces 𝜑𝑘 ≡ 𝜑0 as well as𝜓𝑘 ≡ 𝜓0. If we take 𝜑𝑘 ≡ 1, then
we also have to take 𝜏𝑘 = 𝜎𝑘𝜓0. We can use this to define𝜓0 if we also fix 𝜏𝑘 ≡ 𝜏0 and𝜎𝑘 ≡ 𝜎0.
This also forces 𝜔𝑘 ≡ 1. We thus again arrive at (10.31) as well as 𝜏𝑘𝜎𝑘 = 𝜎0𝜏0. However, we
cannot obtain from this convergence rates for the iterates, merely boundedness and hence
weak convergence as in Section 9.4.
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11 SPLITTING METHODS: GAPS AND ERGODIC RESULTS

We continue with the testing framework introduced in Chapter 10 for proving rates of
convergence of iterates of optimization methods. This generally required strong convexity,
which is not always available. In this chapter, we use the testing idea to derive convergence
rates of objective function values and other, more general, gap functionals that indicate
algorithm convergence more indirectly than iterate convergence. This can be useful in
cases where we can only obtain weak convergence of iterates, but can obtain rates of
convergence of such a gap functional. Nevertheless, this gap convergence often will only
be ergodic, i.e., the estimates only apply to a weighted sum of the history of iterates instead
of the most recent iterate. In fact, we will first derive ergodic estimates for all algorithms.
If we can additionally show that the algorithm is monotonic with respect to this gap, we
can improve the ergodic estimate to the nonergodic ones as in the previous chapters.

11.1 gap functionals

We recall that one of the three fundamental ingredients in the convergence proofs of
Chapter 9 was the monotonicity of 𝐻 (with one of the points fixed to a root 𝑥). We now
modify this requirement to be able to prove estimates on the convergence of function
values when 𝐻 = 𝜕𝐹 for some proper, convex, and lower semicontinuous 𝐹 : 𝑋 → ℝ. In
this case, by the definition of the convex subdifferential,

(11.1) ⟨𝜕𝐹 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝐹 (𝑥𝑘+1) − 𝐹 (𝑥) (𝑥 ∈ 𝑋 ) .

On the other hand, for an 𝐿-smooth functional 𝐺 : 𝑋 → ℝ, we can use the three-point
estimates of Corollary 7.2 to obtain

(11.2) ⟨∇𝐺 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝐺 (𝑥𝑘+1) −𝐺 (𝑥) − 1
2𝐿 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 (𝑥 ∈ 𝑋 ).

These two inequalities are enough to obtain function value estimates for the more general
case 𝐻 = 𝜕𝐹 + ∇𝐺 including a forward step with respect to 𝐺 . We will produce such
estimates in Section 11.2.
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11 splitting methods: gaps and ergodic results

generic gap functionals

More generally, when 𝐻 does not directly arise from subdifferentials or gradients but
has a more complicated structure, we introduce several gap functionals. We identified in
Chapter 9 that for some lifted functionals 𝐹 and �̃� and a skew-adjoint operator Ξ = −Ξ∗,
the unaccelerated PDPS, PDES, and DRS consist in taking 𝐻 = 𝜕𝐹 +∇�̃� +Ξ and iterating

(11.3) 0 ∈ 𝜕�̃� (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘) + Ξ𝑥𝑘+1 +𝑀 (𝑥𝑘+1 − 𝑥𝑘),

where the skew-adjoint operator Ξ does not arise as a subdifferential of any function. Work-
ing with this requires extra effort, especially when we later study accelerated methods.

Note that by the skew-adjointness of Ξ, we have ⟨Ξ𝑥, 𝑥⟩𝑋 = 0. Using this and the estimates
(11.1) and (11.2) on 𝐹 and �̃� , we obtain for the basic unaccelerated scheme (11.3) the estimate

⟨𝜕�̃� (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘) + Ξ𝑥𝑘+1, 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ G̃(𝑥 ;𝑥) − 1
2𝐿 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋

with the generic gap functional

(11.4) G̃(𝑥 ;𝑥) ≔ (�̃� + 𝐹 ) (𝑥) − (�̃� + 𝐹 ) (𝑥) + ⟨Ξ𝑥, 𝑥⟩𝑋 .

In the next lemma, we collect some elementary properties of this functional. Note that
G̃(𝑥, 𝑧) = 0 is possible even for 𝑥 ≠ 𝑧.

Lemma 11.1. Let 𝐻 ≔ 𝜕𝐹 + ∇�̃� + Ξ, where Ξ ∈ 𝕃(𝑋 ;𝑋 ) is skew-adjoint and �̃� : 𝑋 → ℝ and
𝐹 : 𝑋 → ℝ are convex, proper, and lower semicontinuous. If 𝑥 ∈ 𝐻−1(0), then G̃( · ;𝑥) ≥ 0
and G̃(𝑥 ;𝑥) = 0.

Proof. We first note that 𝑥 ∈ 𝐻−1(0) is equivalent to −Ξ𝑥 ∈ 𝜕(𝐹 + �̃�) (𝑥). Hence using
the definition of the convex subdifferential and the fact that ⟨Ξ𝑥, 𝑥⟩𝑋 = 0 due to the
skew-adjointness of Ξ, we deduce for arbitrary 𝑥 ∈ 𝑋 that

(𝐹 + �̃�) (𝑥) − (𝐹 + �̃�) (𝑥) ≥ ⟨−Ξ𝑥, 𝑥 − 𝑥⟩𝑋 = ⟨−Ξ𝑥, 𝑥⟩𝑋 ,

i.e., G̃(𝑥, 𝑥) ≥ 0. The fact that G̃(𝑥, 𝑥) = 0 follows immediately from the skew-adjointness
of Ξ. □

The function value estimates (11.1) and (11.2) – unlike simple monotonicity-based nonnega-
tivity estimates – do not depend on 𝑥 being a root of 𝐻 . Therefore, taking any bounded set
𝐵 ⊂ 𝑋 such that 𝐻−1(0) ∩ 𝐵 ≠ ∅, we see that the partial gap

G̃(𝑥 ;𝐵) ≔ sup
𝑥∈𝐵

G̃(𝑥 ;𝑥)

also satisfies G̃( · ;𝐵) ≥ 0.
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11 splitting methods: gaps and ergodic results

the lagrangian duality gap

Let us now return to the problem

(11.5) min
𝑥∈𝑋

𝐹 (𝑥) +𝐺 (𝐾𝑥),

where we split 𝐹 = 𝐹0 + 𝐸 assuming 𝐸 to have a Lipschitz-continuous gradient. With the
notation 𝑢 = (𝑥, 𝑦), we recall that Theorem 5.11 guarantees the existence of a primal-dual
solution 𝑢 whenever its conditions are satisfied. This, we further recall, can be written as
0 ∈ 𝐻 (𝑢) for

(11.6a) 𝐻 (𝑢) ≔
(
𝜕𝐹 (𝑥) + 𝐾∗𝑦
𝜕𝐺∗(𝑦) − 𝐾𝑥

)
.

As we have already seen in, e.g., Theorem 10.8, we can express this choice of 𝐻 in the
present framework with

𝐹 (𝑢) ≔ 𝐹0(𝑥) +𝐺 (𝑦), �̃� (𝑢) ≔ 𝐸 (𝑥), and Ξ ≔

(
0 𝐾∗

−𝐾 0

)
.(11.6b)

With this, the generic gap functional G̃ from (11.4) becomes the Lagrangian duality gap

(11.7) G𝐿 (𝑢;𝑢) ≔ (
𝐹 (𝑥) + ⟨𝑦, 𝐾𝑥⟩ −𝐺∗(𝑦)) − (

𝐹 (𝑥) + ⟨𝑦, 𝐾𝑥⟩ −𝐺∗(𝑦)) ≤ Ḡ(𝑢),
where

Ḡ(𝑢) ≔ 𝐹 (𝑥) +𝐺 (𝐾𝑥) + 𝐹 ∗(−𝐾𝑦) +𝐺∗(𝑦)
is the real duality gap, cf. (5.16). As Corollary 5.14 shows, when its conditions are satisfied
and 𝑢 = 𝑢 ∈ 𝐻−1(0), the Lagrangian duality gap is nonnegative.

Since (11.1) and (11.2) do not depend on 𝑥 being a root of 𝐻 , convergence results for the
Lagrangian duality gap can sometimes be improved slightly by taking any bounded set
𝐵 ⊂ 𝑋 × 𝑌 such that 𝐵 ∩ 𝐻−1(0) ≠ ∅ and defining the partial duality gap

(11.8) G(𝑢;𝐵) ≔ sup
𝑢∈𝐵

G𝐿 (𝑢;𝑢).

This satisfies 0 ≤ G(𝑢;𝐵) ≤ Ḡ(𝑢). Moreover, by the definition of 𝐹 ∗ and𝐺∗∗ = 𝐺 , we have
G(𝑢;𝑋 × 𝑌 ) = Ḡ(𝑢), which explains both the importance of partial duality gaps and the
term “partial gap”.

bregman divergences and gap functionals

Although we will not need this in the following, we briefly discuss a possible extension to
Banach spaces. Let 𝐽 : 𝑋 → ℝ be convex on a Banach space 𝑋 . Then for 𝑥 ∈ dom 𝐽 and
𝑝 ∈ 𝜕𝐽 (𝑥), one can define the asymmetric Bregman divergence (or distance)

𝐵
𝑝

𝐽
(𝑧, 𝑥) ≔ 𝐽 (𝑧) − 𝐽 (𝑥) − ⟨𝑝, 𝑧 − 𝑥⟩𝑋 , (𝑥 ∈ 𝑋 ).

150



11 splitting methods: gaps and ergodic results

Due to the definition of the convex subdifferential, this is nonnegative. It is also possible to
symmetrize the distance by considering �̃� 𝐽 (𝑥, 𝑧) ≔ 𝐵

𝑞

𝐽
(𝑥, 𝑧) + 𝐵𝑝

𝐽
(𝑧, 𝑥) with 𝑞 ∈ 𝜕𝐽 (𝑧) and

𝑧 ∈ dom 𝐽 , but even the symmetrized divergence is not generally a true distance as it can
happen that 𝐵 𝐽 (𝑥, 𝑧) = 0 even if 𝑥 ≠ 𝑧.

The Bregman divergence satisfies a three-point identity for any 𝑥 ∈ dom 𝐽 : We have

𝐵
𝑝

𝐽
(𝑥, 𝑥) − 𝐵𝑝

𝐽
(𝑥, 𝑧) + 𝐵𝑞

𝐽
(𝑥, 𝑧) = [𝐽 (𝑥) − 𝐽 (𝑥) − ⟨𝑝, 𝑥 − 𝑥⟩𝑋 ] − [𝐽 (𝑥) − 𝐽 (𝑧) − ⟨𝑞, 𝑥 − 𝑧⟩𝑋 ]

+ [𝐽 (𝑥) − 𝐽 (𝑧) − ⟨𝑞, 𝑥 − 𝑧⟩𝑋 ],

which immediately gives the three-point identity

(11.9) ⟨𝑝 −𝑞, 𝑥 −𝑥⟩𝑋 = 𝐵𝑝
𝐽
(𝑥, 𝑥) −𝐵𝑞

𝐽
(𝑥, 𝑧) +𝐵𝑞

𝐽
(𝑥, 𝑧) (𝑥, 𝑥, 𝑧 ∈ 𝑋, 𝑝 ∈ 𝜕𝐽 (𝑧), 𝑞 ∈ 𝜕𝐽 (𝑥)) .

If𝑋 is a Hilbert space,we can take 𝐽 (𝑥) = 1
2 ∥𝑥 ∥2 to obtain 𝐵𝑥−𝑧

𝐽
(𝑧, 𝑥) = �̃� 𝐽 (𝑧, 𝑥) = 1

2 ∥𝑧−𝑥 ∥2
𝑋
.

Therefore this three-point identity generalizes the classical three-point identity (9.1) in
Hilbert spaces. This could be used to generalize our convergence proofs to Banach spaces
to treat methods of the general form

0 ∈ 𝐻 (𝑥𝑘+1) + 𝜕1𝐵
𝑞𝑘

𝐽
(𝑥𝑘+1, 𝑥𝑘),

where 𝜕1 denotes taking a subdifferential with respect to the first variable. To see how (11.9)
applies, observe that

𝜕1𝐵
𝑞𝑘

𝐽
(𝑥𝑘+1, 𝑥𝑘) = 𝜕𝐽 (𝑥𝑘+1) − 𝑞𝑘 = {𝑝𝑘+1 − 𝑞𝑘 | 𝑞𝑘+1 ∈ 𝜕𝐽 (𝑥𝑘+1)}.

This would, however, not provide convergence in norm but with respect to 𝐵 𝐽 . For a general
approach to primal-dual methods based on Bregman divergences, see [Valkonen, 2021a].

Returning to our generic gap functional G̃ defined in (11.4), we have already observed in
the proof of Lemma 11.1 that −Ξ𝑥 ∈ 𝜕(𝐹 + �̃�) (𝑥). Since due to the skew-adjointness of Ξ
we also have ⟨Ξ𝑥, 𝑥⟩𝑋 = ⟨Ξ𝑥, 𝑥 − 𝑥⟩𝑋 for a solution 𝑥 ∈ 𝐻−1(0), this means that

G̃(𝑥, 𝑥) = 𝐵−Ξ𝑥
�̃�+𝐹 (𝑥, 𝑥).

In other words, the gap based at a solution 𝑥 ∈ 𝐻−1(0) is also a Bregman divergence. In
general, as we have already remarked, it can be zero for 𝑥 ≠ 𝑥 .

11.2 convergence of function values

We start with the fundamental algorithms: the proximal point method and explicit splitting.
In the following, we write 𝐺min ≔ min𝑥∈𝑋 𝐺 (𝑥) whenever the minimum exists.
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Theorem 11.2 (proximal pointmethod ergodic function value). Let𝐺 be proper, lower semicon-
tinuous, and (strongly) convex with factor 𝛾 ≥ 0. Suppose [𝜕𝐺]−1(0) ≠ ∅. Pick an arbitrary
𝑥0 ∈ 𝑋 . Let 𝜑𝑘+1 ≔ 𝜑𝑘 (1 + 𝛾𝜏𝑘), and 𝜑0 ≔ 1. For the iterates 𝑥𝑘+1 ≔ prox𝜏𝑘𝐺 (𝑥𝑘) of the
proximal point method, define the ergodic sequence

(11.10) 𝑥𝑁 ≔
1
𝜁𝑁

𝑁−1∑︁
𝑘=0

𝜏𝑘𝜑𝑘𝑥
𝑘+1 for 𝜁𝑁 ≔

𝑁−1∑︁
𝑘=0

𝜏𝑘𝜑𝑘 (𝑁 ≥ 1).

(i) If 𝜏𝑘 ≡ 𝜏 > 0 and 𝐺 is not strongly convex (𝛾 = 0), then 𝐺 (𝑥𝑁 ) → 𝐺min at the rate
𝑂 (1/𝑁 ).

(ii) If 𝜏𝑘 ≡ 𝜏 > 0 and 𝐺 is strongly convex (𝛾 > 0), then 𝐺 (𝑥𝑁 ) → 𝐺min linearly.

(iii) If 𝜏𝑘 →∞ and 𝐺 is strongly convex, then 𝐺 (𝑥𝑁 ) → 𝐺min superlinearly.

Proof. Let the root 𝑥 ∈ [𝜕𝐺]−1(0) be arbitrary; by assumption at least one exists. Then
𝐺min = 𝐺 (𝑥) by Theorem 4.2. We recall that the proximal point iteration for minimizing 𝐺
can be written as

(11.11) 0 ∈ 𝜏𝑘𝜕𝐺 (𝑥𝑘+1) + (𝑥𝑘+1 − 𝑥𝑘).

As in the proof of Theorem 9.4, we test (11.11) by the application of 𝜑𝑘 ⟨ · , 𝑥𝑘+1 − 𝑥⟩𝑋 for
some testing parameter 𝜑𝑘 > 0 to obtain

(11.12) 0 ∈ 𝜑𝑘𝜏𝑘 ⟨𝜕𝐺 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑋 + 𝜑𝑘 ⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑋 .

The next step will differ from the proof of Theorem 9.4, as we want a value estimate. Indeed,
by the subdifferential characterization of strong convexity, Lemma 7.4 (ii),

⟨𝜕𝐺 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝐺 (𝑥𝑘+1) −𝐺 (𝑥) + 𝛾2 ∥𝑥
𝑘+1 − 𝑥 ∥2

𝑋 .

Using this and the three-point-identity (9.1) in (11.12), we obtain similarly to the proof of
Theorem 10.1 the estimate

(11.13) 𝜑𝑘 (1 + 𝜏𝑘𝛾)2 ∥𝑥𝑘+1 − 𝑥 ∥2
𝑋 +𝜑𝑘𝜏𝑘 [𝐺 (𝑥𝑘+1) −𝐺 (𝑥)] + 𝜑𝑘2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 ≤ 𝜑𝑘

2 ∥𝑥𝑘 − 𝑥 ∥2
𝑋 .

We now impose the recursion

(11.14) 𝜑𝑘 (1 + 𝜏𝑘𝛾) = 𝜑𝑘+1.

(Observe the factor-of-two difference compared to (10.5).) Thus

(11.15) 𝜑𝑘+1
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 + 𝜑𝑘𝜏𝑘 [𝐺 (𝑥𝑘+1) −𝐺 (𝑥)] + 𝜑𝑘2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≤ 𝜑𝑘

2 ∥𝑥𝑘 − 𝑥 ∥2
𝑋 .

152



11 splitting methods: gaps and ergodic results

Summing over 𝑘 = 0, . . . , 𝑁 − 1 then yields

(11.16) 𝜑𝑁2 ∥𝑥𝑁−𝑥 ∥2
𝑋 +

𝑁−1∑︁
𝑘=0

𝜑𝑘𝜏𝑘 [𝐺 (𝑥𝑘+1)−𝐺 (𝑥)]+
𝑁−1∑︁
𝑘=0

𝜑𝑘

2 ∥𝑥𝑘+1−𝑥𝑘 ∥2
𝑋 ≤ 𝜑0

2 ∥𝑥0−𝑥 ∥2
𝑋 =: 𝐶0.

Using Jensen’s inequality, it follows for the ergodic sequence defined in (11.10) that

𝜁𝑁 [𝐺 (𝑥𝑁 ) −𝐺 (𝑥)] ≤ 𝐶0.

If 𝜑𝑘 ≡ 𝜑0 and 𝛾 = 0, we therefore have that 𝜁𝑁 = 𝑁𝜑0𝜏 and thus obtain 𝑂 (1/𝑁 ) conver-
gence of function values for the ergodic variable 𝑥𝑁 .

If 𝜑𝑘 ≡ 𝜑0 and 𝛾 > 0, we deduce from (11.14) that 𝜁𝑁 =
∑𝑁−1
𝑘=0 (1 + 𝛾𝜏𝑘)𝑘𝜏𝑘𝜑0. This grows

exponentially and hence we obtain the claimed linear convergence.

Finally, if 𝜏𝑘 → ∞, we would similarly to Theorem 10.1 (ii) obtain superlinear convergence
if 𝜁𝑁 /𝜁𝑁+1 → 0 were to hold. To show this, we can write

𝜁𝑁

𝜁𝑁+1
=

∑𝑁−1
𝑘=0 𝜑𝑘𝜏𝑘∑𝑁
𝑘=0 𝜑𝑘𝜏𝑘

=

∑𝑁−1
𝑘=0

𝜑𝑘𝜏𝑘
𝜑𝑁 𝜏𝑁

1 + ∑𝑁−1
𝑘=0

𝜑𝑘𝜏𝑘
𝜑𝑁 𝜏𝑁

So it suffices to show that 𝑐𝑁 ≔
∑𝑁−1
𝑘=𝑘0

𝜑𝑘𝜏𝑘
𝜑𝑁 𝜏𝑁

→ 0 as 𝑁 → ∞. This we obtain by estimating

𝑐𝑁 =
𝑁−1∑︁
𝑘=0

𝜏𝑘/𝜏𝑁∏𝑁−1
𝑗=𝑘 (1 + 𝛾𝜏 𝑗 )

≤
𝑁−1∑︁
𝑘=0

(1 + 𝛾𝜏𝑘)/(1 + 𝛾𝜏𝑁 )∏𝑁−1
𝑗=𝑘 (1 + 𝛾𝜏 𝑗 )

=
𝑁−1∑︁
𝑘=0

1∏𝑁
𝑗=𝑘+1(1 + 𝛾𝜏 𝑗 )

≤
𝑁−1∑︁
𝑘=0

(1 + 𝛾𝜏𝑘+1)−(𝑁−𝑘) .

In the first and last step we have used that {𝜏𝑘}𝑘∈ℕ is increasing. Now we pick 𝑎 > 1 and
find 𝑘0 ∈ ℕ such that 1 + 𝛾𝜏𝑘 ≥ 𝑎 for 𝑘 ≥ 𝑘0. Then for 𝑁 > 𝑘0,

𝑐𝑁 ≤
𝑘0−1∑︁
𝑘=0

(1 + 𝛾𝜏𝑘+1)−(𝑁−𝑘) +
𝑁−1∑︁
𝑘=𝑘0

𝑎−(𝑁−𝑘) =
𝑘0−1∑︁
𝑘=0

(1 + 𝛾𝜏𝑘+1)−(𝑁−𝑘) +
𝑁−𝑘0∑︁
𝑗=1

𝑎− 𝑗 .

The first term goes to zero as 𝑁 → ∞ while the second term, as a geometric series,
converges to 𝑎−1/(1 − 𝑎−1). We therefore deduce that lim𝑁→∞ 𝑐𝑁 ≤ 𝑎−1/(1 − 𝑎−1). Letting
𝑎 → ∞, we see that 𝑐𝑁→ 0. □

It is possible to improve the result to be nonergodic by showing that the proximal point
method is in fact monotonic.

Corollary 11.3 (proximal point method function value). The proximal point method is mono-
tonic, i.e.,𝐺 (𝑥𝑘+1) ≤ 𝐺 (𝑥𝑘) for all 𝑘 ∈ ℕ. Therefore the convergence rates of Theorem 11.2 also
hold for 𝐺 (𝑥𝑁 ) → 𝐺min.
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Proof. We know from (11.11) that

0 ≤ 𝜏−1
𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 = ⟨𝜕𝐺 (𝑥𝑘+1), 𝑥𝑘 − 𝑥𝑘+1⟩𝑋 ≤ 𝐺 (𝑥𝑘) −𝐺 (𝑥𝑘+1).

This proves monotonicity. Now (11.16) gives

𝜁𝑁 [𝐺 (𝑥𝑁 ) −𝐺 (𝑥)] ≤ 𝐶0.

Now we proceed using the growth estimates for 𝜁𝑁 in the proof of Theorem 11.2. □

These results can be extended to the explicit splitting method,

𝑥𝑘+1 ≔ prox𝜏𝐺 (𝑥𝑘 − 𝜏∇𝐹 (𝑥𝑘)),

in a straightforward manner. In the next theorem, observe in comparison to Theorem 10.2
that 𝜏𝐿 ≤ 1 instead of 𝜏𝐿 ≤ 2. This kind of factor-of-two stricter step length or Lipschitz
factor bound is a general feature of function value estimates of methods involving an
explicit step, as well as of the gap estimates in the following sections. It stems from the
corresponding difference between the value estimate (7.8) and the non-value estimate (7.9)
in Corollary 7.2.

Theorem 11.4 (explicit splitting function value). Let 𝐽 ≔ 𝐹 + 𝐺 where 𝐺 : 𝑋 → ℝ and
𝐹 : 𝑋 → ℝ are convex, proper, and lower semicontinuous, with 𝐹 moreover 𝐿-smooth. Suppose
[𝜕𝐽 ]−1(0) ≠ ∅. If 𝜏𝐿 ≤ 1, the explicit splitting method satisfies both 𝐽 (𝑥𝑁 ) → 𝐽min at the rate
𝑂 (1/𝑁 ). If 𝐺 is strongly convex, then this convergence is linear.

Proof. With 𝜏𝑘 ≔ 𝜏 , as usual, we write the method as

(11.17) 0 ∈ 𝜏𝑘 [𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘)] + (𝑥𝑘+1 − 𝑥𝑘) .

We then take arbitrary 𝑥 ∈ [𝜕(𝐹 + 𝐺)]−1(0) and use the three-point smoothness of 𝐹
proved in Corollary 7.2, and the subdifferential characterization of strong convexity of 𝐺 ,
Lemma 7.4 (ii), to obtain

⟨𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝐽 (𝑥𝑘+1) − 𝐽 (𝑥) + 𝛾2 ∥𝑥
𝑘+1 − 𝑥 ∥2

𝑋 − 𝐿

4 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 .

As in the proof of Theorem 11.2, after testing (11.17) by the application of 𝜑𝑘 ⟨ · , 𝑥𝑘+1 − 𝑥⟩𝑋 ,
we now obtain

(11.18) 𝜑𝑘+1
2 ∥𝑥𝑘+1 −𝑥 ∥2

𝑋 +𝜑𝑘𝜏𝑘 [𝐽 (𝑥𝑘+1) − 𝐽 (𝑥)] + 𝜑𝑘 (1 − 𝜏𝑘𝐿)2 ∥𝑥𝑘+1 −𝑥𝑘 ∥2
𝑋 ≤ 𝜑𝑘

2 ∥𝑥𝑘 −𝑥 ∥2
𝑋 .

Since 𝜏𝑘𝐿 ≤ 1, we may proceed as in Theorem 11.2 to prove the ergodic convergences. □

Again, we can show nonergodic convergence due to the monotonicity of the iteration.
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Corollary 11.5. The convergence rates of Theorem 11.4 also hold for 𝐽 (𝑥𝑁 ) → 𝐽min.

Proof. We obtain from (11.17) and the smoothness of 𝐹 (see (7.5)) that

𝜏−1
𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 = ⟨𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘), 𝑥𝑘 − 𝑥𝑘+1⟩𝑋 ≤ 𝐽 (𝑥𝑘) − 𝐽 (𝑥𝑘+1) + 𝐿2 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 .

Since 𝐿𝜏𝑘 ≤ 1 < 2, we obtain monotonicity. The rest now follows as in Theorem 11.2
and Corollary 11.3. □

Remark 11.6. Based on Corollary 7.7, any strong convexity of 𝐹 can also be used to obtain linear
convergence by adapting the steps of the proof of Theorem 11.4.

11.3 ergodic gap estimates

We now study the convergence of gap functionals for general unaccelerated schemes of
the form (11.3). Since �̃� may in general not have the same factor 𝐿 of smoothness on all
subspaces, we introduce the condition (11.19) of the next result. It is simply a version of
the standard result of Corollary 7.2 that allows a block-separable structure through the
operator Λ in place of the factor 𝐿; compare Example 10.4.

Theorem 11.7. Let 𝐻 ≔ 𝜕𝐹 + ∇�̃� + Ξ, where Ξ ∈ 𝕃(𝑋 ;𝑋 ) is skew-adjoint and �̃� : 𝑋 → ℝ

and 𝐹 : 𝑋 → ℝ are convex, proper, and lower semicontinuous. Suppose 𝐹 satisfies for some
Λ ∈ 𝕃(𝑋 ;𝑋 ) the three-point smoothness condition

(11.19) ⟨∇𝐹 (𝑧), 𝑥 − 𝑥⟩𝑋 ≥ 𝐹 (𝑥) − 𝐹 (𝑥) − 1
2 ∥𝑧 − 𝑥 ∥

2
Λ (𝑥, 𝑥, 𝑧 ∈ 𝑋 ).

Also let 𝑀 ∈ 𝕃(𝑋 ;𝑋 ) be positive semi-definite and self-adjoint. Pick 𝑥0 ∈ 𝑋 , and let the
sequence {𝑥𝑘+1}𝑘∈ℕ be generated through the iterative solution of (11.3). Then for every 𝑥 ∈ 𝑋 ,

(11.20) 1
2 ∥𝑥

𝑁 − 𝑥 ∥2
𝑍𝑀 +

𝑁−1∑︁
𝑘=0

(
G̃(𝑥𝑘+1;𝑥) + 1

2 ∥𝑥
𝑘+1 − 𝑥 ∥2

𝑀−Λ

)
≤ 1

2 ∥𝑥
1 − 𝑥 ∥2

𝑍𝑀 .

Proof. Observe that (11.19) implies

(11.21) ⟨∇𝐹 (𝑧), 𝑥 − 𝑥⟩ ≥ 𝐹 (𝑥) − 𝐹 (𝑥) − 1
2 ∥𝑧 − 𝑥 ∥

2
Λ (𝑥, 𝑧 ∈ 𝑋 ).

Likewise, by the convexity of �̃� we have

(11.22) ⟨𝜕�̃� (𝑥), 𝑥 − 𝑥⟩ ≥ �̃� (𝑥) − �̃� (𝑥) (𝑥 ∈ 𝑋 ).
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Using (11.21) and (11.22), we obtain

(11.23) ⟨𝜕�̃� (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘) + Ξ𝑥𝑘+1, 𝑥𝑘+1 − 𝑥⟩
≥ (�̃� + 𝐹 ) (𝑥𝑘+1) − (�̃� + 𝐹 ) (𝑥) + ⟨Ξ𝑥𝑘+1, 𝑥𝑘+1 − 𝑥⟩𝑋 − 1

2 ∥𝑧 − 𝑥 ∥
2
Λ

= G̃(𝑥𝑘+1;𝑥) − 1
2 ∥𝑧 − 𝑥 ∥

2
Λ.

In the final stepwe have also referred to the definition of G̃ in (11.4) and the skew-adjointness
of Ξ.

From here on, our arguments are already standard: We test (11.3) through the application
of ⟨ · , 𝑥𝑘+1 − 𝑥⟩, obtaining

0 ∈ ⟨𝜕�̃� (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘) + Ξ𝑥𝑘+1 +𝑀 (𝑥𝑘+1 − 𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩.

Then we insert (11.23), which gives

1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑀 + G̃(𝑥𝑘+1;𝑥) + 1

2 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑀−Λ ≤ 1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑀 .

Summing over 𝑘 = 0, . . . , 𝑁 − 1 yields (11.20). □

In particular, we obtain the following corollary that shows that G̃(𝑥𝑁 ;𝑥) → G̃(𝑥 ;𝑥) = 0
at the rate 𝑂 (1/𝑁 ) for any 𝑥 ∈ 𝐻−1(0). Even further, taking any bounded set 𝐵 ⊂ 𝑋 such
that 𝐻−1(0) ∩ 𝐵 ≠ ∅, we see that also the partial gap G̃(𝑥𝑁 ;𝐵) → G̃(𝑥 ;𝐵) = 0.

Corollary 11.8. In Theorem 11.7, suppose in addition that 𝑀 ≥ Λ and define the ergodic
sequence

𝑥𝑁 ≔
1
𝑁

𝑁−1∑︁
𝑘=0

𝑥𝑘+1.

Then
G̃(𝑥𝑁 ;𝑥) ≤ 1

2𝑁 ∥𝑥 1 − 𝑥 ∥2
𝑀 .

Proof. This follows immediately from using𝑀 ≥ Λ to eliminate the term 1
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑀−Λ
from (11.20) and then using Jensen’s inequality on the gap. □

Due to the presence of Ξ, we cannot in general prove monotonicity of the abstract proximal
point method and thus get rid of the ergodicity of the estimates.
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implicit splitting

We now consider the solution of

min
𝑥∈𝑋

𝐹 (𝑥) +𝐺 (𝑥).

Setting 𝐵 = 𝜕𝐹 and 𝐴 = 𝜕𝐺 , (9.16), the Douglas–Rachford or implicit splitting method can
be written in the general form (11.3) with 𝑢 = (𝑥, 𝑦, 𝑧),

�̃� (𝑢) ≔ 𝜏𝐺 (𝑦) + 𝜏𝐹 (𝑥), 𝐹 ≡ 0,

Ξ ≔ ©«
0 Id −Id
−Id 0 Id
Id −Id 0

ª®¬ , and 𝑀 ≔ ©«
0 0 0
0 0 0
0 0 𝐼

ª®¬ .
Moreover,

(11.24) 𝐻 (𝑢) ≔ 𝜕�̃� (𝑢) + Ξ𝑢.

We then have the following ergodic estimate for

GDRS(𝑢;𝑢) = [𝐺 (𝑦) + 𝐹 (𝑥)] − [𝐺 (𝑥) + 𝐹 (𝑥)] + ⟨𝑥 − �̂�, 𝑥 − 𝑦⟩ ≥ 0.

Theorem 11.9. Let 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑋 → ℝ be proper, convex, and lower semicontinuous.
Let 𝑢 ∈ 𝐻−1(0) for 𝐻 given by (11.24). Then for any initial iterate 𝑢0 = (𝑥0, 𝑦0, 𝑧0) ∈ 𝑋 3, the
iterates {𝑢𝑘}𝑘∈𝑁 of the implicit splitting method (8.8) satisfy

GDRS(�̃�𝑁 ;𝑢) ≤ 1
2𝑁𝜏 ∥𝑢

1 − 𝑢∥2
𝑀 , where �̃�𝑁 ≔

1
𝑁

𝑁−1∑︁
𝑘=0

𝑢𝑘+1.

Proof. Clearly𝑀 is self-adjoint and positive semi-definite, and𝑀 ≥ Λ ≔ 0. The rest is clear
from Corollary 11.8 by moving 𝜏 from G̃ on the right-hand side, and using that 𝑥 = 𝑦 . □

Clearly, following the discussion in Section 11.1, we can define a partial version of GDRS
and obtain its convergence from Theorem 11.9.

primal-dual explicit splitting

We recall that the PDES method (8.23) for (11.5) corresponds to (11.5) with the choice 𝐹0 = 0
and 𝐸 = 𝐹 , while the preconditioning operator is given by

𝑀 ≔

(
Id 0
0 Id − 𝐾𝐾∗

)
With this, we obtain the following estimate for the Lagrangian duality gap defined in
(11.7).
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Theorem 11.10. Let 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑌 → ℝ be proper, convex, and lower semicontinuous,
and 𝐾 ∈ 𝕃(𝑋 ;𝑌 ). Suppose 𝐹 is be Gâteaux differentiable with 𝐿-Lipschitz gradient for 𝐿 ≤ 1,
and that ∥𝐾 ∥𝕃(𝑋 ;𝑌 ) ≤ 1. Then for any initial iterate𝑢0 ∈ 𝑋 ×𝑌 , the iterates {𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘)}𝑘∈ℕ
of (8.23) satisfy for all 𝑢 = (𝑥, 𝑦) ∈ 𝑋 × 𝑌 the ergodic gap estimate

G(�̃�𝑁 ;𝑢) ≤ 1
2𝑁 ∥𝑢1 − 𝑢∥2

𝑀 , where �̃�𝑁 ≔
1
𝑁

𝑁−1∑︁
𝑘=0

𝑢𝑘+1.

In particular, if 𝐵 ⊂ 𝑋 is bounded and 𝐵 ∩𝐻−1(0) ≠ ∅, the partial duality gap G(𝑢𝑁 , 𝐵) → 0
at the rate 𝑂 (1/𝑁 ).

Proof. We use Corollary 11.8. Using the assumed bound ∥𝐾 ∥𝕃(𝑋 ;𝑌 ) ≤ 1, clearly 𝑀 is self-
adjoint and positive semi-definite. By Corollary 7.2, the three-point smoothness condition
(11.19) holds with Λ ≔

(
𝐿 0
0 0

)
, where 𝐿 is the Lipschitz factor of ∇𝐹 . Since ∥𝐾 ∥𝕃(𝑋 ;𝑌 ) ≤ 1

and 𝐿 ≤ 1, we also verify𝑀 ≥ Λ. The rest now follows from Corollary 11.8 as well as the
nonnegativity of the partial duality gap (11.8). □

primal-dual proximal splitting

We continue with the problem (11.5) and the corresponding structure (11.6) for 𝐻 . We recall
from Corollaries 9.14 and 9.20 that for the unaccelerated PDPS we take the preconditioning
operator as

(11.25) 𝑀 ≔

(
𝜏−1Id −𝐾∗

−𝐾 𝜎−1Id

)
for some primal and dual step length parameters 𝜏, 𝜎 > 0. We now obtain the following
result for the Lagrangian duality gap defined in (11.7).

Theorem 11.11. Let 𝐹0 : 𝑋 → ℝ, 𝐸 : 𝑋 → ℝ, and 𝐺 : 𝑌 → ℝ be proper, convex, and
lower semicontinuous, and 𝐾 ∈ 𝕃(𝑋 ;𝑌 ). Suppose 𝐸 is Gâteaux differentiable with 𝐿-Lipschitz
gradient. Take 𝜎, 𝜏 > 0 satisfying

𝐿𝜏 + 𝜏𝜎 ∥𝐾 ∥2 < 1.

Then for any initial iterate 𝑢0 ∈ 𝑋 × 𝑌 the iterates {𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘)}𝑘∈ℕ of the PDPS method
(9.29) satisfy for any 𝑢 = (𝑥, 𝑦) ∈ 𝑋 × 𝑌 the ergodic gap estimate

G(�̃�𝑁 ;𝑢) ≤ 1
2𝑁𝜏 ∥𝑢

1 − 𝑢∥2
𝑀 , where �̃�𝑁 ≔

1
𝑁

𝑁−1∑︁
𝑘=0

𝑢𝑘+1.

In particular, if 𝐵 ⊂ 𝑋 is bounded and 𝐵 ∩𝐻−1(0) ≠ ∅, the partial duality gap G(𝑢𝑁 , 𝐵) → 0
at the rate 𝑂 (1/𝑁 ).
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Proof. We use Corollary 11.8. By Corollary 7.2, the three-point smoothness condition (11.19)
holds with Λ ≔

(
𝐿 0
0 0

)
, where 𝐿 is the Lipschitz factor of ∇𝐸. In Corollary 9.20 we have

already proved that 𝑍𝑀 is self-adjoint and positive semi-definite. Similarly to the proof
of the corollary, we verify that the condition 𝐿𝜏 + 𝜏𝜎 ∥𝐾 ∥2 < 1 guarantees 𝑀 ≥ Λ. (The
only difference to the conditions in that result is the standard gap estimate factor-of-two
difference in the term containing 𝐿.) The rest is clear from Corollary 11.8 as well as the
nonnegativity of the partial duality gap (11.8). □

11.4 the testing approach in its general form

We now want to produce gap estimates for accelerated methods. As we have seen in
Section 10.1, as an extension of (11.3) these iteratively solve

(11.26) 0 ∈𝑊𝑘+1 [𝜕�̃� (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘) + Ξ𝑥𝑘+1] +𝑀𝑘+1(𝑥𝑘+1 − 𝑥𝑘)

for iteration-dependent step length and preconditioning operators𝑊𝑘+1 ∈ 𝕃(𝑋 ;𝑋 ) and
𝑀𝑘+1 ∈ 𝕃(𝑋 ;𝑋 ). We also introduced testing operators 𝑍𝑘+1 ∈ 𝕃(𝑋 ;𝑋 ) such that 𝑍𝑘+1𝑀𝑘+1
is self-adjoint and positive semi-definite.

Unless 𝑍𝑘+1𝑊𝑘+1 is a scalar multiple of the identity, we will not be able to extract in a
straightforward way any of the gap functionals of Section 11.1 out of (11.26). Indeed, it is
not clear how to provide a completely general approach to gap functionals of accelerated
or otherwise complex algorithms. We will specifically see the difficulties when performing
gap realignment for the accelerated PDPS in Section 11.5 and when developing very specific
gap functionals for the ADMM in Section 11.6.

Towards brevity in the following sections, we however do some general preparatory work.
Observe that the method (11.26) can be written more abstractly as

(11.27) 0 ∈ 𝐻𝑘+1(𝑥𝑘+1) +𝑀𝑘+1(𝑥𝑘+1 − 𝑥𝑘)

for some iteration-dependent set-valued function 𝐻𝑘+1 : 𝑋 ⇒ 𝑋 . The estimate (11.28) in
the next theorem is in essence a quantitative or variable-metric version of the three-point
smoothness and strong convexity estimate (7.16). The proof of the following result is already
standard, where the abstract value V𝑘+1(𝑥) models a suitable gap functional for iterate
𝑥𝑘+1.

Theorem 11.12. On a Hilbert space 𝑋 , let 𝐻𝑘+1 : 𝑋 ⇒ 𝑋 , and𝑀𝑘+1, 𝑍𝑘+1 ∈ 𝕃(𝑋 ;𝑋 ) for 𝑘 ∈ ℕ.
Suppose (11.27) is solvable for the iterates {𝑥𝑘}𝑘∈ℕ. If 𝑍𝑘+1𝑀𝑘+1 is self-adjoint and

(11.28) ⟨𝐻𝑘+1(𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑍𝑘+1 ≥ V𝑘+1(𝑥) +
1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑍𝑘+2𝑀𝑘+2−𝑍𝑘+1𝑀𝑘+1

− 1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑍𝑘+1𝑀𝑘+1
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for all 𝑘 ∈ ℕ and some 𝑥 ∈ 𝑋 andV𝑘+1(𝑥) ∈ ℝ, then both

(11.29) 1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑍𝑘+2𝑀𝑘+2

+ V𝑘+1(𝑥) ≤
1
2 ∥𝑥

𝑘 − 𝑥 ∥2
𝑍𝑘+1𝑀𝑘+1

(𝑘 ∈ ℕ)

and

(11.30) 1
2 ∥𝑥

𝑁 − 𝑥 ∥2
𝑍𝑁+1𝑀𝑁+1

+
𝑁−1∑︁
𝑘=0

V𝑘+1(𝑥) ≤
1
2 ∥𝑥

0 − 𝑥 ∥2
𝑍1𝑀1

(𝑁 ≥ 1).

Proof. Inserting (11.27) into (11.28), we obtain

(11.31) −⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑍𝑘+1𝑀𝑘+1 ≥
1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑍𝑘+2𝑀𝑘+2−𝑍𝑘+1𝑀𝑘+1

− 1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑍𝑘+1𝑀𝑘+1

+ V𝑘+1(𝑥).

We recall for general self-adjoint𝑀 the three-point formula (9.1), i.e.,

⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑀 =
1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑀 − 1

2 ∥𝑥
𝑘 − 𝑥 ∥2

𝑀 + 1
2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑀 .

Using this with 𝑀 = 𝑍𝑘+1𝑀𝑘+1, we rewrite (11.31) as (11.29). Summing (11.29) over 𝑘 =
0, . . . , 𝑁 − 1, we obtain (11.30). □

11.5 ergodic gaps for accelerated primal-dual methods

To derive ergodic gap estimates for the accelerated primal-dual proximal splitting of Theo-
rem 10.8, we need to perform significant additional work due to the fact that 𝜂𝑘 ≔ 𝜑𝑘𝜏𝑘 ≠
𝜓𝑘+1𝜎𝑘+1. The overall idea of the proof remains the same, but we need to pay special atten-
tion to the blockwise structure of the problem and to do some realignment of the blocks to
get the same factor 𝜂𝑘 in front of both 𝐺 and 𝐹 .

duality gap realignment

We continue with the problem (11.5) and the setup (11.6). Working with the general scheme
(11.27), we write

(11.32a) 𝐻𝑘+1(𝑢) ≔𝑊𝑘+1(𝜕�̃� (𝑢𝑘+1) + ∇𝐹 (𝑢𝑘) + Ξ)

taking as in Theorem 10.8 the testing and step length operators

𝑊𝑘+1 ≔

(
𝜏𝑘 Id 0

0 𝜎𝑘+1Id

)
and 𝑍𝑘+1 ≔

(
𝜑𝑘 Id 0

0 𝜓𝑘+1Id

)
(11.32b)
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for some step length and testing parameters 𝜏𝑘 , 𝜎𝑘+1, 𝜑𝑘 , 𝜎𝑘+1 > 0. Throughout this section
we also take

(11.32c) Γ ≔

(
𝛾 · Id 0

0 𝜌 · Id

)
and Λ ≔

(
𝐿 · Id 0

0 0

)
.

For the moment, we do not yet need to know the specific structure of 𝑀𝑘+1; hence the
following estimates apply not only to the PDPS method but also to the PDES method and
its potential accelerated variants.

Lemma 11.13. Let us be given 𝐾 ∈ 𝕃(𝑋 ;𝑌 ), 𝐹 = 𝐹0 + 𝐸 with 𝐹0 : 𝑋 → ℝ, 𝐸 : 𝑋 → ℝ, and
𝐺∗ : 𝑌 → ℝ convex, proper, and lower semicontinuous on Hilbert spaces 𝑋 and 𝑌 . Suppose 𝐹0
and 𝐺∗ are (strongly) convex for some 𝛾, 𝜌 ≥ 0, and 𝐸 has 𝐿-Lipschitz continuous gradient.
With the setup of (11.6) and (11.32), for any 𝑢,𝑢 ∈ 𝑋 × 𝑌 and any 𝑘 ∈ ℕ we have

⟨𝐻𝑘+1(𝑢), 𝑢 − 𝑢⟩𝑍𝑘+1 ≥ G𝑘+1(𝑢;𝑢) + 1
2 ∥𝑢 − 𝑢∥2

𝑍𝑘+1𝑊𝑘+1 (2Ξ+Γ) −
1
4 ∥𝑢 − 𝑢𝑘 ∥2

𝑍𝑘+1𝑊𝑘+1Λ

for

G𝑘+1(𝑢;𝑢) ≔ 𝜑𝑘𝜏𝑘 (𝐹 (𝑥) − 𝐹 (𝑥)) +𝜓𝑘+1𝜎𝑘+1(𝐺∗(𝑦) −𝐺∗(𝑦))
+ ⟨(𝜑𝑘𝜏𝑘𝐾∗)𝑦, 𝑥⟩𝑋 − ⟨(𝜓𝑘+1𝜎𝑘+1𝐾)𝑥, 𝑦⟩𝑌 − ⟨(𝐾𝜑𝑘𝜏𝑘 −𝜓𝑘+1𝜎𝑘+1𝐾)𝑥, 𝑦⟩𝑌 .

Proof. Expanding 𝐻𝑘+1, we have

⟨𝐻𝑘+1(𝑢), 𝑢 − 𝑢⟩𝑍𝑘+1 = 𝜑𝑘𝜏𝑘 ⟨𝜕𝐹0(𝑥), 𝑥 − 𝑥⟩𝑋
+ 𝜑𝑘𝜏𝑘 ⟨∇𝐸 (𝑥𝑘), 𝑥 − 𝑥⟩𝑋
+𝜓𝑘+1𝜎𝑘+1⟨𝜕𝐺∗(𝑦), 𝑦 − 𝑦⟩𝑌
+ ⟨(𝜑𝑘𝜏𝑘𝐾∗)𝑦, 𝑥 − 𝑥⟩𝑋 − ⟨(𝜓𝑘+1𝜎𝑘+1𝐾)𝑥, 𝑦 − 𝑦⟩𝑌 .

Observe that
⟨(𝜑𝑘𝜏𝑘𝐾∗)𝑦, 𝑥 − 𝑥⟩𝑋 − ⟨(𝜓𝑘+1𝜎𝑘+1𝐾)𝑥, 𝑦 − 𝑦⟩𝑌

= ⟨(𝐾𝜑𝑘𝜏𝑘 −𝜓𝑘+1𝜎𝑘+1𝐾) (𝑥 − 𝑥), 𝑦 − 𝑦⟩𝑌
+ ⟨(𝜑𝑘𝜏𝑘𝐾∗)𝑦, 𝑥 − 𝑥⟩𝑋 − ⟨(𝜓𝑘+1𝜎𝑘+1𝐾)𝑥, 𝑦 − 𝑦⟩𝑌

=
1
2 ∥𝑢 − 𝑢∥2

2𝑍𝑘+1𝑊𝑘+1Ξ
− ⟨(𝐾𝜑𝑘𝜏𝑘 −𝜓𝑘+1𝜎𝑘+1𝐾)𝑥, 𝑦⟩𝑌

+ ⟨(𝜑𝑘𝜏𝑘𝐾∗)𝑦, 𝑥⟩𝑋 − ⟨(𝜓𝑘+1𝜎𝑘+1𝐾)𝑥, 𝑦⟩𝑌 .
Therefore

(11.33) ⟨𝐻𝑘+1(𝑢), 𝑢 − 𝑢⟩𝑍𝑘+1 = 𝜑𝑘𝜏𝑘 ⟨𝜕𝐹0(𝑥), 𝑥 − 𝑥⟩𝑋
+ 𝜑𝑘𝜏𝑘 ⟨∇𝐸 (𝑥𝑘), 𝑥 − 𝑥⟩𝑋
+𝜓𝑘+1𝜎𝑘+1⟨𝜕𝐺∗(𝑦), 𝑦 − 𝑦⟩𝑌
+ 1

2 ∥𝑢 − 𝑢∥2
2𝑍𝑘+1𝑊𝑘+1Ξ

− ⟨(𝐾𝜑𝑘𝜏𝑘 −𝜓𝑘+1𝜎𝑘+1𝐾)𝑥, 𝑦⟩𝑌
+ ⟨(𝜑𝑘𝜏𝑘𝐾∗)𝑦, 𝑥⟩𝑋 − ⟨(𝜓𝑘+1𝜎𝑘+1𝐾)𝑥, 𝑦⟩𝑌 .
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Due to the smoothness three-point corollaries, specifically (7.8), we have

(11.34a) ⟨∇𝐸 (𝑥𝑘), 𝑥 − 𝑥⟩𝑋 ≥ 𝐸 (𝑥) − 𝐸 (𝑥) − 𝐿

2 ∥𝑥 − 𝑥𝑘 ∥2
𝑋 .

Also, by the (strong) convexity of 𝐹0, we have

(11.34b) ⟨𝜕𝐹0(𝑥), 𝑥 − 𝑥⟩𝑋 ≥ 𝐹0(𝑥) − 𝐹0(𝑥) + 𝛾2 ∥𝑥 − 𝑥 ∥2
𝑋 ,

as well as by the (strong) convexity of 𝐺∗

(11.34c) ⟨𝜕𝐺∗(𝑦), 𝑦 − 𝑦⟩𝑌 ≥ 𝐺∗(𝑦) −𝐺∗(𝑦) + 𝜌2 ∥𝑦 − 𝑦 ∥2
𝑌 .

Applying these estimates in (11.33), and using the structure (11.32b) and (11.32c) of the
involved operators, we obtain the claim. □

If𝜑𝑘𝜏𝑘 = 𝜓𝑘+1𝜎𝑘+1, clearly G𝑘+1(𝑢𝑘+1;𝑢) ≥ 𝜑𝑘𝜏𝑘G(𝑢𝑘+1). This is the case in the unaccelerated
case already considered in Theorems 11.10 and 11.11. Some specific stochastic accelerated
algorithms also satisfy this [see Valkonen, 2019]. Applying the techniques of Section 11.3,
we could then use Jensen’s inequality to estimate ∑𝑛−1

𝑘=0 G𝑘+1(𝑢𝑘+1;𝑢) ≥ ∑𝑁−1
𝑘=0 𝜑𝑘𝜏𝑘G(𝑢𝑘+1)

further from below to obtain a gap on suitable ergodic sequences. However, in our primary
accelerated algorithm of interest, the PDPS method, instead 𝜑𝑘𝜏𝑘 = 𝜓𝑘𝜎𝑘 . We will therefore
have to do some rearrangements.

Lemma 11.14. Let 𝐾 ∈ 𝕃(𝑋 ;𝑌 ), 𝐹 = 𝐹0 + 𝐸 with 𝐹0 : 𝑋 → ℝ, 𝐸 : 𝑋 → ℝ, and 𝐺∗ : 𝑌 → ℝ

convex, proper, and lower semicontinuous on Hilbert spaces 𝑋 and 𝑌 . Suppose 𝐹0 and 𝐺∗ are
(strongly) convex for some 𝛾, 𝜌 ≥ 0, and 𝐸 has 𝐿-Lipschitz gradient. With the setup of (11.6)
and (11.32), suppose 𝜑𝑘𝜏𝑘 = 𝜓𝑘𝜎𝑘 . If 𝑢 ∈ 𝐻−1(0), then

(11.35) ⟨𝐻𝑘+1(𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 ≥ G∗,𝑘+1(𝑥𝑘+1, 𝑦𝑘 ;𝑢) + 1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+1𝑊𝑘+1 (2Ξ+Γ)

− 1
2 ∥𝑢

𝑘+1 − 𝑢𝑘 ∥2
𝑍𝑘+1𝑊𝑘+1Λ

(𝑁 ≥ 2)

for some G∗,𝑘+1(𝑥𝑘+1, 𝑦𝑘 ;𝑢) satisfying with G given by (11.7) the estimate

(11.36)
𝑁−1∑︁
𝑘=0

G∗,𝑘+1(𝑥𝑘+1, 𝑦𝑘 ;𝑢) ≥
𝑁−1∑︁
𝑘=1

𝜑𝑘𝜏𝑘G(𝑥𝑘+1, 𝑦𝑘 ;𝑢).

Proof. First, note that (11.35) holds for

G∗,𝑘+1(𝑥𝑘+1, 𝑦𝑘 ;𝑢) ≔ inf
𝑤𝑘+1∈𝐻𝑘+1 (𝑢𝑘+1)

⟨𝑤𝑘+1, 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1

− 1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+1𝑊𝑘+1 (2Ξ+Γ) +

1
2 ∥𝑢

𝑘+1 − 𝑢𝑘 ∥2
𝑍𝑘+1𝑊𝑘+1Λ

.
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It remains to prove the estimate (11.36) for this choice.

With 𝑁 ≥ 1, let us define the set

𝑆𝑁 ≔
𝑁−1∑︁
𝑘=0

(
⟨𝐻𝑘+1(𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 −

1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+1𝑊𝑘+1 (2Ξ+Γ) +

1
2 ∥𝑢

𝑘+1 − 𝑢𝑘 ∥2
𝑍𝑘+1𝑊𝑘+1Λ

)
=
𝑁−1∑︁
𝑘=0

(
𝜑𝑘𝜏𝑘

(
⟨𝜕𝐹0(𝑥𝑘+1) + ∇𝐸 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 − 𝛾2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑋 + 𝐿2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋

)
+𝜓𝑘+1𝜎𝑘+1

(
⟨𝜕𝐺∗(𝑦𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌 − 𝜌

2 ∥𝑦
𝑘+1 − 𝑦 ∥2

𝑌

))
.

Observe that in the second expression, 𝑍𝑘+1𝑊𝑘+1Ξ has canceled the corresponding compo-
nent of 𝐻𝑘+1. Then it is enough to prove that 𝑆𝑁 ≥ ∑𝑁−1

𝑘=1 𝜑𝑘𝜏𝑘G(𝑥𝑘+1, 𝑦𝑘 ;𝑢). To do this, we
need to shift 𝑦𝑘+1 to 𝑦𝑘 . With 𝑁 ≥ 2, we therefore rearrange terms to obtain

𝑆𝑁 = 𝐴𝑁 + 𝐵𝑁
for

𝐴𝑁 = 𝜑0𝜏0
(
⟨𝜕𝐹0(𝑥 1) + ∇𝐸 (𝑥0), 𝑥 1 − 𝑥⟩𝑋 − 𝛾2 ∥𝑥

1 − 𝑥 ∥2
𝑋 + 𝐿2 ∥𝑥

1 − 𝑥0∥2
𝑋

)
+𝜓𝑁𝜎𝑁

(
⟨𝜕𝐺∗(𝑦𝑁 ), 𝑦𝑁 − 𝑦⟩𝑌 − 𝜌

2 ∥𝑦
𝑁 − 𝑦 ∥2

𝑌

)
− ⟨(𝐾𝜑0𝜏0 −𝜓𝑁𝜎𝑁𝐾)𝑥, 𝑦⟩𝑌 + ⟨(𝜑0𝜏0𝐾

∗)𝑦, 𝑥 1⟩𝑋 − ⟨(𝜓𝑁𝜎𝑁𝐾)𝑥, 𝑦𝑁 ⟩𝑌
and

𝐵𝑁 ≔
𝑁−1∑︁
𝑘=1

(
𝜑𝑘𝜏𝑘

(
⟨𝜕𝐹0(𝑥𝑘+1) + ∇𝐸 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 − 𝛾2 ∥𝑥

𝑘+1 − 𝑥 ∥2
𝑋 + 𝐿2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋

)
+𝜓𝑘𝜎𝑘

(
⟨𝜕𝐺∗(𝑦𝑘), 𝑦𝑘 − 𝑦⟩𝑌 − 𝜌

2 ∥𝑦
𝑘+1 − 𝑦 ∥2

𝑌

)
+ ⟨(𝜑𝑘𝜏𝑘𝐾∗)𝑦, 𝑥𝑘+1⟩𝑋 − ⟨(𝜓𝑘𝜎𝑘𝐾)𝑥, 𝑦𝑘⟩𝑌

)
Observe that we only sum over 𝑘 = 1, . . . , 𝑁 − 1 instead of 𝑘 = 0, . . . , 𝑁 − 1.

We can now use (11.34) and our assumption 𝜑𝑘𝜏𝑘 = 𝜓𝑘𝜎𝑘 to estimate

(11.37) 𝐵𝑁 ≥
𝑁−1∑︁
𝑘=1

𝜑𝑘𝜏𝑘G(𝑥𝑘+1, 𝑦𝑘).

By Corollary 7.2, 𝐸 satisfies the three-point monotonicity estimate (7.9); in particular,

⟨∇𝐸 (𝑥0) − ∇𝐸 (𝑥), 𝑥 1 − 𝑥⟩𝑋 ≥ −𝐿2 ∥𝑥
1 − 𝑥0∥2

𝑋 .
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Since 𝐾∗𝑥 ∈ 𝜕𝐺∗(𝑦), and −𝐾𝑦 ∈ 𝜕𝐹0(𝑥) + ∇𝐸 (𝑥), and 𝜕𝐹0 and 𝜕𝐺 are strongly monotone,
we also obtain

⟨𝜕𝐹0(𝑥 1) + ∇𝐸 (𝑥) + 𝐾∗𝑦, 𝑥 1 − 𝑥⟩𝑋 − 𝛾2 ∥𝑥
1 − 𝑥 ∥2

𝑋 ≥ 0 and

⟨𝜕𝐺∗(𝑦𝑁 ) − 𝐾𝑥, 𝑦𝑁 − 𝑦⟩𝑌 − 𝜌

2 ∥𝑦
𝑁 − 𝑦 ∥2

𝑌 ≥ 0.

Rearranging and using these estimates we obtain

(11.38) 𝐴𝑁 = 𝜑0𝜏0
(
⟨𝜕𝐹0(𝑥 1) + ∇𝐸 (𝑥0) + 𝐾∗𝑦, 𝑥 1 − 𝑥⟩𝑋 − 𝛾2 ∥𝑥

1 − 𝑥 ∥2
𝑋 + 𝐿2 ∥𝑥

1 − 𝑥0∥2
𝑋

)
+𝜓𝑁𝜎𝑁

(
⟨𝜕𝐺∗(𝑦𝑁 ) − 𝐾𝑥, 𝑦𝑁 − 𝑦⟩𝑌 − 𝛾2 ∥𝑦

𝑁 − 𝑦 ∥2
𝑌

)
≥ 0.

The estimates (11.37) and (11.38) finally give 𝑆𝑁 ≥ ∑𝑁−1
𝑘=1 𝜑𝑘𝜏𝑘G(𝑥𝑘+1, 𝑦𝑘 ;𝑢) as we set out to

prove. □

In the proof of Lemma 11.14, we required 𝑢 ∈ 𝐻−1(0) to show that 𝐴𝑁 ≥ 0. Therefore, as
the estimate (11.35) will not hold for an arbitrary base point 𝑢 in place 𝑢, we will not be
able to obtain for accelerated methods the convergence of the partial duality gap (11.8) that
converges for unaccelerated methods.

The next theorem is our main result regarding ergodic gaps for general accelerated methods.
As 𝛾 and 𝜌 feature as acceleration parameters in algorithms, the conditions of this theorem
imply that gap estimates require slower acceleration.

Theorem 11.15. Let 𝐾 ∈ 𝕃(𝑋 ;𝑌 ), 𝐹 = 𝐹0 + 𝐸 with 𝐹0 : 𝑋 → ℝ, 𝐸 : 𝑋 → ℝ, and 𝐺∗ : 𝑌 → ℝ

convex, proper, and lower semicontinuous on Hilbert spaces 𝑋 and 𝑌 . Suppose 𝐹0 and 𝐺∗

are (strongly) convex for some 𝛾, 𝜌 ≥ 0, and 𝐸 has 𝐿-Lipschitz gradient. Assume the setup
(11.6) and (11.32). For each 𝑘 ∈ ℕ, also take 𝑀𝑘+1 ∈ 𝕃(𝑋 × 𝑌 ;𝑋 × 𝑌 ) such that 𝑍𝑘+1𝑀𝑘+1
is self-adjoint. Pick an initial iterate 𝑢0 ∈ 𝑋 × 𝑌 and suppose {𝑢𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1)}𝑘∈ℕ are
generated by (11.27). Let 𝑢 = (𝑥, 𝑦) ∈ 𝐻−1(0). If 𝜑𝑘𝜏𝑘 = 𝜓𝑘𝜎𝑘 , and

(11.39) 1
2 ∥𝑢

𝑘+1 − 𝑢𝑘 ∥2
𝑍𝑘+1 (𝑀𝑘+1−𝑊𝑘+1Λ) +

1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+1 (𝑀𝑘+1+𝑊𝑘+1 (2Ξ+Γ))−𝑍𝑘+2𝑀𝑘+2

≥ 0,

then

(11.40) 1
2 ∥𝑢

𝑁 − 𝑢∥2
𝑍𝑁+1𝑀𝑁+1

+ 𝜁∗,𝑁G(𝑥∗,𝑁 , �̃�∗,𝑁 ;𝑢) ≤ ∥𝑢0 − 𝑢∥2
𝑍1𝑀1

(𝑁 ≥ 2)

for G given by (11.7) and the ergodic sequences

𝑥∗,𝑁 ≔ 𝜁 −1
∗,𝑁

𝑁−1∑︁
𝑘=1

𝜏𝑘𝜑𝑘𝑥
𝑘+1 and �̃�∗,𝑁 ≔ 𝜁 −1

∗,𝑁
𝑁−1∑︁
𝑘=1

𝜎𝑘𝜓𝑘𝑦
𝑘 for 𝜁∗,𝑁 ≔

𝑁−1∑︁
𝑘=1

𝜂𝑘 .
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Proof. Using (11.35) in (11.39), we obtain (11.28) forV𝑘+1(𝑢) ≔ G∗,𝑘+1(𝑥𝑘+1, 𝑦𝑘 ;𝑢). By Jensen’s
inequality,

𝑁−1∑︁
𝑘=0

G∗,𝑘+1(𝑥𝑘+1, 𝑦𝑘 ;𝑢) ≥ 𝜁∗,𝑁G(𝑥∗,𝑁 , �̃�∗,𝑁 ;𝑢).

We therefore obtain (11.40) from (11.30) in Theorem 11.12. □

accelerated primal-dual proximal splitting

We now obtain gap estimates for the accelerated PDPS method. Observe the factor-of-two
differences in the definitions of 𝜔𝑘 and in the initial conditions for the step lengths in
the following theorem compared to Theorem 10.8. Because strong convexity with factor
𝛾 implies strong convexity with the factor 𝛾/2, the conditions and step length rules of
this theorem imply the iterate convergence results of Corollary 9.20 and Theorem 10.8 as
well.

Theorem 11.16 (gap estimates for PDPS). Let 𝐹0 : 𝑋 → ℝ, 𝐸 : 𝑋 → ℝ and 𝐺 : 𝑌 → ℝ be
convex, proper, and lower semicontinuous on Hilbert spaces𝑋 and 𝑌 with ∇𝐸 𝐿-Lipschitz. Also
let 𝐾 ∈ 𝕃(𝑋 ;𝑌 ) and let 𝑢 = (𝑥, 𝑦) be a primal-dual solution to the problem (11.5). Pick initial
step lengths 𝜏0, 𝜎0 > 0 subject to 𝐿𝜏0 + 𝜏0𝜎0∥𝐾 ∥2

𝕃(𝑋 ;𝑌 ) < 1. For any initial iterate 𝑢0 ∈ 𝑋 × 𝑌 ,
suppose {𝑢𝑘+1}𝑘∈ℕ are generated by the (accelerated) PDPS method (10.23). Let the Lagrangian
duality gap functional G be given by (11.7), and the ergodic iterates 𝑥∗,𝑁 and �̃�∗,𝑁 by (11.15).

(i) If we take 𝜏𝑘 ≡ 𝜏0 and 𝜎𝑘 ≡ 𝜎0, then the ergodic gap G(𝑥∗,𝑁 , �̃�∗,𝑁 ;𝑢) → 0 at the rate
𝑂 (1/𝑁 ).

(ii) If 𝐹0 is strongly convex with factor 𝛾 > 0, and we take

𝜔𝑘 ≔ 1/
√︁

1 + 𝛾𝜏𝑘 , 𝜏𝑘+1 ≔ 𝜏𝑘𝜔𝑘 , and 𝜎𝑘+1 ≔ 𝜎𝑘/𝜔𝑘 ,

then G(𝑥∗,𝑁 , �̃�∗,𝑁 ;𝑢) → 0 at the rate 𝑂 (1/𝑁 2)
(iii) If both 𝐹0 and 𝐺∗ are strongly convex with respective factors 𝛾 > 0 and 𝜌 > 0, and we

take
𝜔𝑘 ≔ 1/

√
1 + 𝜃, 𝜃 ≔ min{𝜌𝜎0, 𝛾𝜏0}, 𝜏𝑘 ≔ 𝜏0 and 𝜎𝑘 ≔ 𝜎0,

then G(𝑥∗,𝑁 , �̃�∗,𝑁 ;𝑢) → 0 linearly.

Proof. We use Theorem 11.15 in place of Theorem 10.5 in the proof of Theorem 10.8. We
recall that the latter consists of showing 𝑍𝑘+1𝑀𝑘+1 to be self-adjoint and (10.17) and𝑀 ≥ Λ
to hold, i.e.,

𝑍𝑘+1(𝑀𝑘+1 + 2𝑊𝑘+1Γ) ⪰ 𝑍𝑘+2𝑀𝑘+2, and 𝑍𝑘+1(𝑀𝑘+1 −𝑊𝑘+1Λ/2) ⪰ 0,
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Now, to prove (11.39), we instead prove the self-adjointness as well as

𝑍𝑘+1(𝑀𝑘+1 +𝑊𝑘+1Γ) ⪰ 𝑍𝑘+2𝑀𝑘+2, and 𝑍𝑘+1(𝑀𝑘+1 −𝑊𝑘+1Λ) ⪰ 0.

These all follows from the proof of Theorem 10.8 with the factor-of-two differences in the
formulas for 𝜔𝑘 and the initialization condition apparent from the statements of these two
theorems. The proof of Theorem 10.8 also verifies that 𝜑𝑘𝜏𝑘 = 𝜓𝑘𝜎𝑘 .

All the conditions Theorem 11.15 are therefore satisfied, so (11.40) holds; in particular,
𝜁∗,𝑁G(𝑥∗,𝑁 , �̃�∗,𝑁 ;𝑢) ≤ 𝐶0 ≔ ∥𝑢0 −𝑢∥2

𝑍1𝑀1
for all 𝑁 ≥ 2. It remains to study the convergence

rate of the gap from this estimate. We have 𝜁∗,𝑁 =
∑𝑁−1
𝑘=1 𝜑

1/2
𝑘

. In the unaccelerated case
(𝛾 = 0), we get 𝜁∗,𝑁 = 𝑁𝜑 1/2

0 . This gives the claimed𝑂 (1/𝑁 ) rate. In the accelerated case, 𝜑𝑘
is of the order Ω(𝑘2) by the proof of Theorem 10.8. Therefore also 𝜁∗,𝑁 is of the orderΘ(𝑁 2),
so we get the claimed𝑂 (1/𝑁 2) convergence. In the linear convergence case, likewise, 𝜑𝑘 is
exponential. Therefore so is 𝜁∗,𝑁 . □

Remark 11.17 (spatially adaptive and stochastic methods). Recalling the block-separability Exam-
ple 10.3, consider the spaces 𝑋 = 𝑋1 × · · · × 𝑋𝑚 and 𝑌 = 𝑌1 × · · · × 𝑌𝑛 . Suppose 𝐹 (𝑥) = ∑𝑚

𝑗=1 𝐹 𝑗 (𝑥 𝑗 )
and𝐺∗(𝑦) = ∑𝑛

ℓ=1𝐺
∗
ℓ (𝑦ℓ ) for 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ 𝑋 and 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑌 . Take 𝑍𝑘+1 ≔

(
Φ𝑘 0
0 Ψ𝑘+1

)
as well as𝑊𝑘+1 ≔

(
𝑇𝑘 0
0 Σ𝑘+1

)
for 𝑇𝑘 ≔

∑𝑛
𝑗=1 𝜏𝑘,𝑗𝑃 𝑗 , and similar expressions for Φ𝑘 , Σ𝑘+1, and Σ𝑘+1,

where 𝑃 𝑗𝑥 ≔ 𝑥 𝑗 projects into 𝑋 𝑗 . Instead of 𝜑𝑘𝜏𝑘 = 𝜓𝑘𝜎𝑘 that we required in (10.8), imposing
𝔼[Φ𝑘𝑇𝑘 ] = 𝜂𝑘 𝐼 and 𝔼[Ψ𝑘Σ𝑘 ] = 𝜂𝑘 𝐼 for some scalar 𝜂𝑘 , we may then start following through the
proof of Theorem 10.8 to derive stochastic block-coordinate methods that randomly update only
some of the blocks on each iteration, as well as methods that adapt the blockwise step lengths to
the spatial or blockwise structure of the problem. With somewhat more effort, we can also follow
through the proofs of the present Section 11.5. Specifically, if we replace our ergodic sequences by

𝑥∗,𝑁 ≔ 𝜁 −1
∗,𝑁𝔼

[
𝑁−1∑︁
𝑘=1

𝑇 ∗
𝑘 Φ

∗
𝑘𝑥
𝑘+1

]
and �̃�∗,𝑁 ≔ 𝜁 −1

∗,𝑁𝔼

[
𝑁−1∑︁
𝑘=1

Σ∗
𝑘Ψ

∗
𝑘𝑦

𝑘

]
for 𝜁∗,𝑁 ≔

𝑁−1∑︁
𝑘=1

𝜂𝑘 ,

we then obtain in place of (11.40) the estimate

𝔼

[
1
2 ∥𝑢

𝑁 − 𝑢∥2
𝑍𝑁 +1𝑀𝑁 +1

]
+ 𝜁∗,𝑁G(𝑥∗,𝑁 , �̃�∗,𝑁 ) +

𝑁−1∑︁
𝑘=0

𝔼 [V𝑘+1(𝑢)] ≤ ∥𝑢0 − 𝑢∥2
𝑍1𝑀1

.

If instead 𝔼[Φ𝑘𝑇𝑘 ] = 𝜂𝑘 𝐼 , and 𝔼[Ψ𝑘+1Σ𝑘+1] = 𝜂𝑘 𝐼 , we get the result for the ergodic sequences

𝑥𝑁 ≔ 𝜁 −1
𝑁 𝔼

[
𝑁−1∑︁
𝑘=0

𝑇 ∗
𝑘 Φ

∗
𝑘𝑥
𝑘+1

]
and �̃�𝑁 ≔ 𝜁 −1

𝑁 𝔼

[
𝑁−1∑︁
𝑘=0

Σ∗
𝑘+1Ψ

∗
𝑘+1𝑦

𝑘+1

]
where 𝜁𝑁 ≔

𝑁−1∑︁
𝑘=0

𝜂𝑘 .

In either case, if we do not or cannot, due to lack of strong convexity of some of the 𝐹ℓ , accelerate
all of the blockwise step lengths 𝜏𝑘+1, 𝑗 with the same factor 𝛾 = 𝛾 𝑗 , it will generally be the case
that 𝔼 [V𝑘+1(𝑢)] < 0. This quantity will have such an order of magnitude that we get mixed
𝑂 (1/𝑁 2) +𝑂 (1/𝑁 ) convergence rates. We refer to [Valkonen, 2019] for details on such spatially
adaptive and stochastic primal-dual methods, and [Wright, 2015] for an introduction to the idea of
stochastic coordinate descent.
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11.6 convergence of the admm

Let 𝐺 : 𝑋 → ℝ, 𝐹 : 𝑍 → ℝ be convex, proper, and lower semicontinuous, 𝐴 ∈ 𝕃(𝑋 ;𝑌 ),
𝐵 ∈ 𝕃(𝑍 ;𝑌 ), and 𝑐 ∈ 𝑌 . Recall the problem
(11.41) min

𝑥,𝑧
𝐽 (𝑥, 𝑧) ≔ 𝐺 (𝑥) + 𝐹 (𝑧) + 𝛿𝐶 (𝑥, 𝑧),

where
𝐶 ≔ {(𝑥, 𝑧) ∈ 𝑋 × 𝑍 | 𝐴𝑥 + 𝐵𝑧 = 𝑐}.

We now show an ergodic convergence result for the ADMM applied to this problem, which
we recall from (8.30) to read

(11.42)


𝑥𝑘+1 ∈ (𝐴∗𝐴 + 𝜏−1𝜕𝐹 )−1(𝐴∗(𝑐 − 𝐵𝑧𝑘 − 𝜏−1𝜆𝑘)),
𝑧𝑘+1 ∈ (𝐵∗𝐵 + 𝜏−1𝜕𝐺)−1(𝐵∗(𝑐 −𝐴𝑥𝑘+1 − 𝜏−1𝜆𝑘)),
𝜆𝑘+1 ≔ 𝜆𝑘 + 𝜏 (𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐).

The general structure of the convergence proof is very similar to all the other algorithms
we have studied. However, now the forward-step component does not arise as a gradient
∇𝐸 but is a special nonself-adjoint preconditioner �̃�𝑖+1. Moreover, in the first stage of the
proof we obtain a convergence estimate for a duality gap that we then refine at the end of
the proof to separate function value and constraint satisfaction estimates.

Theorem 11.18. Let𝐺 : 𝑋 → ℝ and 𝐹 : 𝑍 → ℝ be convex, proper, and lower semicontinuous,
𝐴 ∈ 𝕃(𝑋 ;𝑌 ), 𝐵 ∈ 𝕃(𝑍 ;𝑌 ), and 𝑐 ∈ 𝑌 . Let 𝐽 be defined as in (11.41), which we assume to admit
a solution (𝑥, �̂�) ∈ 𝑋 ×𝑍 . For arbitrary initial iterates (𝑥0, 𝑦0, 𝑧0), let {(𝑥𝑘+1, 𝑧𝑘+1, 𝜆𝑘+1)}𝑘∈ℕ ⊂
𝑋 × 𝑍 × 𝑌 be generated by the ADMM (11.42) for (11.41). Define the ergodic sequences 𝑥𝑁 ≔
1
𝑁

∑𝑁−1
𝑘=0 𝑥

𝑘+1 and 𝑧𝑁 ≔ 1
𝑁

∑𝑁−1
𝑘=0 𝑧

𝑘+1. Then both (𝐺+𝐹 ) (𝑥𝑁 , 𝑧𝑁 ) → min𝑥∈𝑋 𝐽 (𝑥) and ∥𝐴𝑥𝑁 +
𝐵𝑧𝑁 − 𝑐 ∥𝑌 → 0 at the rate 𝑂 (1/𝑁 ).

Proof. We consider the augmented problem

min
(𝑥,𝑧)∈𝑋×𝑍

𝐽𝜏 (𝑥, 𝑧) ≔ 𝐺 (𝑥) + 𝐹 (𝑧) + 𝛿𝐶 (𝑥, 𝑧) + 𝜏2 ∥𝐴𝑥 + 𝐵𝑧 − 𝑐 ∥2
𝑌 ,

which has the same solutions as (11.41). As the normal cone to the constraint set 𝐶 at any
point (𝑥, 𝑧) ∈ 𝐶 is given by 𝑁𝐶 (𝑥, 𝑧) = {(𝐴∗𝜆, 𝐵∗𝜆) | 𝜆 ∈ 𝑌 }, setting 𝑢 = (𝑥, 𝑧, 𝜆) and

𝐻 (𝑢) ≔ ©«
𝜕𝐺 (𝑥) +𝐴∗𝜆 + 𝜏𝐴∗(𝐴𝑥 + 𝐵𝑧 − 𝑐)
𝜕𝐹 (𝑧) + 𝐵∗𝜆 + 𝜏𝐵∗(𝐴𝑥 + 𝐵𝑧 − 𝑐)

−(𝐴𝑥 + 𝐵𝑧 − 𝑐)
ª®¬ ,

the optimality conditions for this problem can be written as 0 ∈ 𝐻 (𝑢). In particular, there
exists 𝜆 ∈ 𝑌 such that (𝑥, �̂�, 𝜆) ∈ 𝐻−1(0). However, we will not be needing this, and take 𝜆
arbitrary.
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11 splitting methods: gaps and ergodic results

We could rewrite the algorithm (11.42) as (11.27) with

𝐻𝑘+1(𝑢) = 𝐻 (𝑢) and 𝑀𝑘+1 =
©«
0 −𝜏𝐴∗𝐵 −𝐴∗

0 0 −𝐵∗
0 0 𝜏−1𝐼

ª®¬ .
However,𝑀𝑘+1 is nonsymmetric, and any symmetrizing 𝑍𝑘+1 would make 𝑍𝑘+1𝐻𝑘+1 difficult
to analyze. We therefore take instead

𝐻𝑘+1(𝑢) ≔ 𝐻 (𝑢) + �̃�𝑘+1(𝑢 − 𝑢𝑘) with �̃�𝑘+1 ≔
©«
0 −𝜏𝐴∗𝐵 −𝐴∗

0 −𝜏𝐵∗𝐵 −𝐵∗
0 0 0

ª®¬ ,
as well as

𝑀𝑘+1 ≔
©«
0 0 0
0 𝜏𝐵∗𝐵 0
0 0 𝜏−1𝐼

ª®¬ , and 𝑍𝑘+1 ≔ 𝐼 .

Clearly 𝑍𝑘+1𝑀𝑘+1 is self-adjoint.

Let us set

Γ ≔ 𝜏
©«
𝐴∗𝐴 𝐴∗𝐵 0
𝐵∗𝐴 𝐵∗𝐵 0

0 0 0

ª®¬ and Ξ ≔ ©«
0 0 𝐴∗

0 0 𝐵∗

−𝐴 −𝐵 0

ª®¬ .
Using the fact that 𝐴𝑥 + 𝐵𝑥 = 𝑐 , observe that we can split 𝐻 = 𝜕𝐹 + Ξ, where

𝐹 (𝑢) ≔ 𝐺 (𝑥) + 𝐹 (𝑧) + 𝜏2 ∥𝐴𝑥 + 𝐵𝑧 − 𝑐 ∥2
𝑌 + ⟨𝑐, 𝜆⟩𝑌

= 𝐺 (𝑥) + 𝐹 (𝑧) + 1
2 ∥𝑢 − 𝑢∥2

Γ + ⟨𝑐, 𝜆⟩𝑌 .

It follows

⟨𝐻 (𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 ≥ 𝐹 (𝑢𝑘+1) − 𝐹 (𝑢) + 1
2 ∥𝑢

𝑘+1 − 𝑢∥2
Γ + ⟨𝑢,𝑢𝑘+1⟩Ξ

= [𝐹 (𝑥𝑘+1) +𝐺 (𝑧𝑘+1)] − [𝐹 (𝑥) +𝐺 (𝑥)] + ⟨𝑐, 𝜆𝑘+1 − 𝜆⟩𝑌
+ ∥𝑢𝑘+1 − 𝑢∥2

Γ + ⟨𝑢,𝑢𝑘+1⟩Ξ.
Again using 𝐴𝑥 + 𝐵𝑥 = 𝑐 , we expand

⟨𝑢,𝑢𝑘+1⟩Ξ = ⟨𝜆,𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1⟩𝑌 − ⟨𝐴𝑥 + 𝐵�̂�, 𝜆𝑘+1⟩𝑌
= ⟨𝜆,𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐⟩𝑌 − ⟨𝑐, 𝜆𝑘+1 − 𝜆⟩𝑌 .

Thus

(11.43) ⟨𝐻 (𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 ≥ [𝐹 (𝑥𝑘+1) +𝐺 (𝑧𝑘+1)] − [𝐹 (𝑥) +𝐺 (𝑥)]
+ ∥𝑢𝑘+1 − 𝑢∥2

Γ + ⟨𝜆,𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐⟩𝑌
= 𝐹 (𝑢𝑘+1; 𝜆) − 𝐹 (𝑢; 𝜆) + ∥𝑢𝑘+1 − 𝑢∥2

Γ
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for

(11.44) 𝐹 (𝑢; 𝜆) ≔ 𝐹 (𝑥) +𝐺 (𝑧) + ⟨𝜆,𝐴𝑥 + 𝐵𝑧 − 𝑐⟩𝑌 .

On the other hand,

⟨𝑢𝑘+1 − 𝑢𝑘 , 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1�̃�𝑘+1
= ⟨−𝜏𝐵(𝑧𝑘+1 − 𝑧𝑘) − (𝜆𝑘+1 − 𝜆𝑘), 𝐴(𝑥𝑘+1 − 𝑥)⟩𝑌
+ ⟨−𝜏𝐵(𝑧𝑘+1 − 𝑧𝑘) − (𝜆𝑘+1 − 𝜆𝑘), 𝐵(𝑧𝑘+1 − �̂�)⟩𝑌

= ⟨−𝜏𝐵(𝑧𝑘+1 − 𝑧𝑘) − (𝜆𝑘+1 − 𝜆𝑘), 𝐴(𝑥𝑘+1 − 𝑥) + 𝐵(𝑧𝑘+1 − �̂�)⟩𝑌 .
From (11.42) we recall

𝜆𝑘+1 − 𝜆𝑘 = 𝜏 (𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐) = 𝜏 [𝐴(𝑥𝑘+1 − 𝑥) + 𝐵(𝑧𝑘+1 − �̂�)] .
Hence

(11.45) ⟨𝑢𝑘+1 − 𝑢𝑘 , 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1�̃�𝑘+1
= −∥𝑢𝑘+1 − 𝑢∥2

Γ − ⟨𝐵(𝑧𝑘+1 − 𝑧𝑘), 𝜆𝑘+1 − 𝜆𝑘⟩𝑌
≥ −∥𝑢𝑘+1 − 𝑢∥2

Γ −
1
2 ∥𝑢

𝑘+1 − 𝑢𝑘 ∥2
𝑍𝑖+1𝑀𝑖+1

.

Combining (11.43) and (11.45) it follows that

⟨𝐻𝑘+1(𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 ≥ 𝐹 (𝑢𝑘+1; 𝜆) − 𝐹 (𝑢; 𝜆) − 1
2 ∥𝑢

𝑘+1 − 𝑢𝑘 ∥2
𝑍𝑖+1𝑀𝑖+1

.

By Theorem 11.12 now

1
2 ∥𝑢

𝑁 − 𝑢∥2
𝑍𝑁+1𝑀𝑁+1

+
𝑁−1∑︁
𝑘=0

(
𝐹 (𝑢𝑘+1; 𝜆) − 𝐹 (𝑢; 𝜆)

)
≤ 1

2 ∥𝑢
0 − 𝑢∥2

𝑍1𝑀1
(𝑁 ≥ 1).

Writing �̃�𝑁 = (𝑥𝑁 , �̃�𝑁 , �̃�𝑁 ) ≔ 1
𝑁

∑𝑁−1
𝑘=0 𝑢

𝑘+1, Jensen’s inequality now shows that

(11.46) 𝐹 (�̃�𝑁 ; 𝜆) − 𝐹 (𝑢; 𝜆) ≤ 1
2𝑁 ∥𝑢0 − 𝑢∥2

𝑍1𝑀1
(𝑁 ≥ 1).

Since 𝐴𝑥 + 𝐵�̂� = 𝑐 , observe that 𝐹 ( · ; 𝜆) − 𝐹 (𝑢; 𝜆) is the Lagrangian duality gap (11.7) for
the minmax formulation (8.27) of (11.41), hence nonnegative when 𝑢 ∈ 𝐻−1(0). So (11.46)
shows the convergence of the duality gap. However, we can improve the result somewhat
since 𝜆 was taken as arbitrary. Expanding 𝐹 using (11.44) and taking the supremum over
𝜆 ∈ 𝔹(0, 𝜅) in (11.46), we thus obtain for any 𝜅 > 0 the estimate

0 ≤ [𝐹 (𝑥𝑁 ) +𝐺 (𝑧𝑁 )] − [𝐹 (𝑥) +𝐺 (𝑥)] + 𝜅∥𝐴𝑥𝑁 + 𝐵𝑧𝑁 − 𝑐 ∥𝑌
= sup
𝜆∈𝔹(0,𝜅)

(
𝐹 (�̃�𝑁 ; 𝜆) − 𝐹 (𝑢; 𝜆)

)
≤ sup
𝜆∈𝔹(0,𝜅)

1
2𝑁 ∥𝑢0 − 𝑢∥2

𝑍1𝑀1
.

This gives the claim. □
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12 META-ALGORITHMS

In this chapter, we consider several “meta-algorithms” for accelerating minimization al-
gorithms such as the ones derived in the previous chapters. These include inertia and
over-relaxation, as well as line searches. These schemes differ from the strong convexity
based acceleration of Chapter 9 in that no additional assumptions are made on 𝐹 and 𝐺 .
Rather, through the use of an additional extrapolated or interpolated point, the first two
schemes attempt to obtain a second-order approximation of the function. Line search, on
the other hand, can be used to find optimal parameters or to estimate unknown parameters.
Throughout the chapter, we base our work in the abstract algorithm (11.27), i.e.,

(12.1) 0 ∈ 𝐻𝑘+1(𝑥𝑘+1) +𝑀𝑘+1(𝑥𝑘+1 − 𝑥𝑘),

where the iteration-dependent set-valued operator 𝐻𝑘+1 : 𝑋 ⇒ 𝑋 in suitable sense approxi-
mates a (monotone) operator𝐻 : 𝑋 ⇒ 𝑋 , whose root we intend to find, and𝑀𝑘+1 ∈ 𝕃(𝑋 ;𝑋 )
is a linear preconditioner.

12.1 over-relaxation

We start with over-relaxation. Essentially, this amounts to taking (12.1) and replacing 𝑥𝑘
in the preconditioner by an over-relaxed point 𝑧𝑘 defined for some parameters 𝜆𝑘 > 0
through the recurrence

(12.2) 𝑧𝑘+1 ≔ 𝜆−1
𝑘
𝑥𝑘+1 + (1 − 𝜆−1

𝑘
)𝑧𝑘 .

We thus seek to solve

(12.3) 0 ∈ 𝐻𝑘+1(𝑥𝑘+1) +𝑀𝑘+1(𝑥𝑘+1 − 𝑧𝑘).

Since 𝑧𝑘+1 − 𝑧𝑘 = 𝜆−1
𝑘
(𝑥𝑘+1 − 𝑧𝑘), we can write (12.1) as

(12.4) 0 ∈ 𝐻𝑘+1(𝑥𝑘+1) + 𝜆𝑘𝑀𝑘+1(𝑧𝑘+1 − 𝑧𝑘).

We can therefore lift the overall algorithm into the form (12.1) as

(12.5) 0 ∈ �̂�𝑘+1(𝑞𝑘+1) + �̂�𝑘+1(𝑞𝑘+1 − 𝑞𝑘)
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12 meta-algorithms

by taking 𝑞 ≔ (𝑥, 𝑧) with

(12.6) �̂�𝑘+1(𝑞) ≔
(
𝐻𝑘+1(𝑥)
𝜆−1
𝑘
(𝑧 − 𝑥)

)
and �̂�𝑘+1 ≔

(
0 𝜆𝑘𝑀𝑘+1
0 (𝐼 − 𝜆−1

𝑘
)𝐼

)
.

To be able to use our previous estimate on ⟨𝐻𝑘+1(𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑍𝑘+1 , we would like to test
with

𝑍𝑘+1 ≔

(
𝜆𝑘𝑍𝑘+1 0

0 0

)
.

Unfortunately, 𝑍𝑘+1𝑀𝑘+1 is not self-adjoint, so Theorem 11.12 does not apply. However,
observing from (12.2) that

(12.7) 𝑧𝑘+1 − 𝑥𝑘+1 = (1 − 𝜆𝑘) (𝑧𝑘+1 − 𝑧𝑘),

we are able to proceed along the same lines of proof.

Theorem 12.1. On a Hilbert space 𝑋 , let 𝐻𝑘+1 : 𝑋 ⇒ 𝑋 , and𝑀𝑘+1, 𝑍𝑘+1 ∈ 𝕃(𝑋 ;𝑋 ) for 𝑘 ∈ ℕ.
Suppose (12.3) is solvable for the iterates {𝑥𝑘}𝑘∈ℕ. If 𝑍𝑘+1𝑀𝑘+1 is self-adjoint,

(12.8) 𝜆2
𝑘
𝑍𝑘+1𝑀𝑘+1 ⪰ 𝜆2

𝑘+1𝑍𝑘+2𝑀𝑘+2,

and

(12.9) ⟨𝐻𝑘+1(𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑍𝑘+1 ≥ V𝑘+1(𝑥) −
1
2 ∥𝑥

𝑘+1 − 𝑧𝑘 ∥2
𝑍𝑘+1𝑄𝑘+1

for some 𝑄𝑘+1 ∈ 𝕃(𝑋 ;𝑋 ), for all 𝑘 ∈ ℕ and some 𝑥 ∈ 𝑋 and V𝑘+1(𝑥) ∈ ℝ, then

(12.10)
𝜆2
𝑘+1
2 ∥𝑧𝑘+1 − 𝑥 ∥2

𝑍𝑘+2𝑀𝑘+2
+ 𝜆𝑘V𝑘+1(𝑥) +

𝜆𝑘

2 ∥𝑧𝑘+1 − 𝑧𝑘 ∥2
𝜆𝑘 (2𝜆𝑘−1)𝑍𝑘+1𝑀𝑘+1−𝑍𝑘+1𝑄𝑘+1

≤ 𝜆2
𝑘

2 ∥𝑧𝑘 − 𝑥 ∥2
𝑍𝑘+1𝑀𝑘+1

(𝑘 ∈ ℕ).

Proof. Taking 𝑞 ≔ (𝑥, 𝑥), we apply ⟨ · , 𝑞𝑘+1 − 𝑞⟩𝑍𝑘+1
to (12.3). Thus

0 ∈ ⟨�̂�𝑘+1(𝑞𝑘+1) + �̂�𝑘+1(𝑞𝑘+1 − 𝑞𝑘), 𝑞𝑘+1 − 𝑞⟩𝑍𝑘+1
.

Observe that
𝑍𝑘+1�̂�𝑘+1 =

(
0 𝜆2

𝑘
𝑍𝑘+1𝑀𝑘+1

0 0

)
.

Thus
0 ∈ ⟨𝐻𝑘+1(𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝜆𝑘𝑍𝑘+1 + 𝜆2

𝑘
⟨𝑧𝑘+1 − 𝑧𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑍𝑘+1𝑀𝑘+1 .

Using (12.7) we then get

0 ∈ ⟨𝐻𝑘+1(𝑥𝑘+1), 𝑥𝑘+1 −𝑥⟩𝜆𝑘𝑍𝑘+1 −𝜆2
𝑘
(1−𝜆𝑘)∥𝑧𝑘+1 −𝑧𝑘 ∥2

𝑍𝑘+1𝑀𝑘+1
+𝜆2

𝑘
⟨𝑧𝑘+1 −𝑧𝑘 , 𝑧𝑘+1 −𝑥⟩𝑍𝑘+1𝑀𝑘+1 .
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Using the three-point-identity (9.1), we rearrange this into

0 ∈ ⟨𝐻𝑘+1(𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝜆𝑘𝑍𝑘+1 +
𝜆2
𝑘
− 2𝜆2

𝑘
(1 − 𝜆𝑘)

2 ∥𝑧𝑘+1 − 𝑧𝑘 ∥2
𝑍𝑘+1𝑀𝑘+1

+ 𝜆
2
𝑘

2 ∥𝑧𝑘+1 − 𝑥 ∥2
𝑍𝑘+1𝑀𝑘+1

− 𝜆2
𝑘

2 ∥𝑧𝑘 − 𝑥 ∥2
𝑍𝑘+1𝑀𝑘+1

.

Observe that 𝜆2
𝑘
− 2𝜆2

𝑘
(1 − 𝜆𝑘) = 𝜆2

𝑘
(2𝜆𝑘 − 1). Using (12.2), (12.9), and (12.8), this gives

(12.10). □

Clearly we should try to ensure 𝜆𝑘 (2𝜆𝑘 − 1)𝑍𝑘+1𝑀𝑘+1 ≥ 𝑍𝑘+1𝑄𝑘+1. If 𝑍𝑘+1𝑀𝑘+1 = 𝑍0𝑀0 is con-
stant and 𝑄𝑘+1 = 0, this holds if {𝜆𝑘}𝑘∈𝑁 is nonincreasing and satisfies 𝜆𝑘 ≥ 1/2. Therefore,
we cannot get any convergence rates from the iterates in this case. It is, however, possible
to obtain convergence of a gap, and it would be possible to obtain weak convergence.

The next result is a variant of Corollary 11.8 for over-relaxed methods.

Corollary 12.2. Let 𝐻 ≔ 𝜕𝐹 + ∇�̃� + Ξ, where Ξ ∈ 𝕃(𝑋 ;𝑋 ) is skew-adjoint, and �̃� : 𝑋 → ℝ

and 𝐹 : 𝑋 → ℝ convex, proper, and lower semicontinuous. Suppose 𝐹 satisfies for some
Λ ∈ 𝕃(𝑋 ;𝑋 ) the three-point smoothness condition (11.19). Also let 𝑀 ∈ 𝕃(𝑋 ;𝑋 ) be positive
semi-definite and self-adjoint. Pick 𝑥0 = 𝑧0 ∈ 𝑋 , and define the sequence {(𝑥𝑘+1, 𝑧𝑘+1)}𝑘∈ℕ
through

(12.11)
{

0 ∈ [𝜕�̃� (𝑥𝑘+1) + 𝜕𝐹 (𝑧𝑘) + Ξ𝑥𝑘+1] +𝑀 (𝑥𝑘+1 − 𝑧𝑘),
𝑧𝑘+1 ≔ 𝜆−1

𝑘
𝑥𝑘+1 − (𝜆−1

𝑘
− 1)𝑧𝑘 .

Suppose {𝜆𝑘}𝑘∈∈ℕ is nonincreasing and

(12.12) 𝜆𝑘 (2𝜆𝑘 − 1)𝑀 ⪰ Λ (𝑘 ∈ ℕ).

Then for every 𝑥 ∈ 𝐻−1(0) and the gap functional G̃ defined in (11.4),

(12.13) G̃(𝑥𝑁 ;𝑥) ≤ 𝜆2
0

2 ∑𝑁−1
𝑘=0 𝜆𝑘

∥𝑧0 − 𝑥 ∥2
𝑀 , where 𝑥𝑁 ≔

1∑𝑁−1
𝑘=0 𝜆𝑘

𝑁−1∑︁
𝑘=0

𝜆𝑘𝑥
𝑘+1.

Proof. The method (12.11) is (12.3) with �̃�𝑘+1(𝑥) ≔ 𝜕�̃� (𝑥) +∇𝐹 (𝑧𝑘) +Ξ𝑥 as well as𝑀𝑘+1 ≡ 𝑀
and 𝑍𝑘+1 ≡ Id. Using (11.19) for 𝐹 , the convexity of �̃� , and the assumption 𝑍𝑊 = 𝜂Id, we
obtain as in the proof of (11.7) the estimate

⟨𝐻𝑘+1(𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩ ≥ G̃(𝑥𝑘+1;𝑥) − 1
2 ∥𝑧

𝑘 − 𝑥𝑘+1∥2
Λ
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This provides (12.9) while (12.12) and the constant choice of the testing and preconditioning
operators guarantee that 𝜆𝑘 (2𝜆𝑘 − 1)𝑍𝑘+1𝑀𝑘+1 ⪰ 𝑍𝑘+1𝑄𝑘+1 for 𝑄𝑘+1 ≡ Λ. By Theorem 12.1,
we now obtain

(12.14)
𝜆2
𝑘+1
2 ∥𝑧𝑘+1 − 𝑥 ∥2

𝑀 + 𝜆𝑘 G̃(𝑥𝑘+1;𝑥) ≤ 𝜆2
𝑘

2 ∥𝑧𝑘 − 𝑥 ∥2
𝑀 .

Summing over 𝑘 = 0, . . . , 𝑁 − 1 and an application of Jensen’s inequality finishes the
proof. □

over-relaxed proximal point method

We apply the above results to the over-relaxed proximal point method

(12.15)
{
𝑥𝑘+1 ≔ prox𝜏𝐺 (𝑧𝑘),
𝑧𝑘+1 ≔ 𝜆−1

𝑘
𝑥𝑘+1 − (𝜆−1

𝑘
− 1)𝑧𝑘 .

Theorem 12.3. Let𝐺 : 𝑋 → ℝ be convex, proper, and lower semicontinuous with [𝜕𝐺]−1(0) ≠
∅. Pick an initial iterate 𝑥0 = 𝑧0 ∈ 𝑋 . If {𝜆𝑘}𝑘∈ℕ ≥ 1/2 is nonincreasing, the ergodic
sequence {𝑥𝑁 }𝑁∈ℕ defined in (12.13) and generated from the iterates {𝑥𝑘}𝑘∈ℕ of the over-
relaxed proximal point method (12.15) satisfies 𝐺 (𝑥𝑁 ) → 𝐺min ≔ min𝑥∈𝑋 𝐺 (𝑥) at the rate
𝑂 (1/𝑁 ).

Proof. We apply Corollary 12.2 with �̃� = 𝐺 , 𝐹 = 0,𝑀 = 𝜏−1Id. Clearly 𝐹 satisfies (11.19) with
Λ = 0. Then (12.12) holds if 2𝜆𝑘 ≥ 1, that is to say 𝜆𝑘 ≥ 1/2. For 𝑥 ∈ arg min𝐺 , we have
G̃(𝑥 ;𝑥) = 𝐺 (𝑥) −𝐺 (𝑥) = 𝐺 (𝑥) −𝐺min. Therefore Corollary 12.2 gives

(12.16) 𝐺 (𝑥𝑁 ) ≤ 𝐺min +
𝜆2

0
2𝜏 ∑𝑁−1

𝑘=0 𝜆𝑘
∥𝑧0 − 𝑥 ∥2

𝑋

Since ∑𝑁−1
𝑘=0 𝜆𝑘 ≥ 𝑁 /2 by the lower bound on 𝜆𝑘 , we get the claimed 𝑂 (1/𝑁 ) convergence

rate of the function values for the ergodic sequence. □

over-relaxed explicit splitting

For a smooth function 𝐹 , the over-relaxed explicit splitting method iterates

(12.17)
{
𝑥𝑘+1 ≔ prox𝜏𝐺 (𝑧𝑘 − 𝜏∇𝐹 (𝑧𝑘)),
𝑧𝑘+1 ≔ 𝜆−1

𝑘
𝑥𝑘+1 − (𝜆−1

𝑘
− 1)𝑧𝑘 .
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Theorem 12.4. Let 𝐽 ≔ 𝐺 + 𝐹 for 𝐺 : 𝑋 → ℝ and 𝐹 : 𝑋 → ℝ be convex, proper, and
lower semicontinuous with ∇𝐹 𝐿-Lipschitz. Suppose [𝜕𝐽 ]−1(0) ≠ ∅. Pick an initial iterate
𝑥0 = 𝑧0 ∈ 𝑋 . If {𝜆𝑘}𝑘∈ℕ is nonincreasing and satisfies

(12.18) 𝜆𝑘 ≥ 1
4 (1 +

√
1 + 8𝐿𝜏),

then the ergodic sequence {𝑥𝑁 }𝑁∈ℕ defined in (12.13) and generated from the iterates {𝑥𝑘}𝑘∈ℕ
of the over-relaxed explicit splitting method (12.17) satisfies 𝐽 (𝑥𝑁 ) → 𝐽min ≔ min𝑥∈𝑋 𝐽 (𝑥) at
the rate 𝑂 (1/𝑁 ).

Proof. We apply Corollary 12.2 with �̃� = 𝐺 , 𝐹 = 𝐹 , and 𝑀 = 𝜏−1Id. By Corollary 7.2, 𝐹
satisfies the three-point smoothness condition (11.19) with Λ = 𝐿 Id. The condition (12.12)
consequently holds if 𝜆𝑘 (2𝜆𝑘 − 1) > 𝐿𝜏 , which holds under the assumption (12.18). The rest
follows as in the proof of Theorem 12.3. □

over-relaxed pdps

With 𝐹 = 𝐹0 + 𝐸 : 𝑋 → ℝ, 𝐺∗ : 𝑌 → ℝ, and 𝐾 ∈ 𝕃(𝑋 ;𝑌 ), take 𝐻 : 𝑋 × 𝑌 ⇒ 𝑋 × 𝑌 as
well as 𝐹, �̃� , and Ξ as in (11.6), and the preconditioner𝑀 as in (11.25) for fixed step length
parameters 𝜏, 𝜎 > 0. Writing 𝑧𝑘 = (𝜉𝑘 , 𝜐𝑘), and, as usual 𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘), the method (12.4)
then becomes the over-relaxed primal-dual proximal splitting (PDPS) method with a forward
step, also known as the Vũ–Condat method:

(12.19)



𝑥𝑘+1 ≔ (𝐼 + 𝜏𝜕𝐹0)−1(𝜉𝑘 − 𝜏𝐾∗𝑦𝑘 − 𝜏∇𝐸 (𝜉𝑘)),
𝑥𝑘+1 ≔ (𝑥𝑘+1 − 𝜉𝑘) + 𝑥𝑘+1,

𝑦𝑘+1 ≔ (𝐼 + 𝜎𝜕𝐺∗)−1(𝜐𝑘 + 𝜎𝐾𝑥𝑘+1),
𝜉𝑘+1 ≔ 𝜆−1

𝑘
𝑥𝑘+1 − (𝜆−1

𝑘
− 1)𝜉𝑘 ,

𝜐𝑘+1 ≔ 𝜆−1
𝑘
𝑦𝑘+1 − (𝜆−1

𝑘
− 1)𝜐𝑘 .

For the statement of the next result, we recall that for the primal-dual saddle-point operator
𝐻 from (11.6), the generic gap functional G̃ becomes the primal-dual gap G given in (11.7).

Theorem 12.5. Suppose 𝐹0 : 𝑋 → ℝ, 𝐸 : 𝑋 → ℝ and 𝐺 : 𝑌 → ℝ are convex, proper, and
lower semicontinuous on Hilbert spaces 𝑋 and 𝑌 with ∇𝐸 𝐿-Lipschitz. Let also 𝐾 ∈ 𝕃(𝑋 ;𝑌 ).
With 𝐹 = 𝐹0 + 𝐸, suppose the assumptions of Theorem 5.11 are satisfied. Pick an initial iterate
𝑢0 = 𝑧0 ∈ 𝑋 × 𝑌 . If the sequence {𝜆𝑘}𝑘∈ℕ is nonincreasing and satisfies

(12.20) 𝜆𝑘 ≥ 1
4 (1 +

√︁
1 + 8𝐿𝜏/(1 − 𝜏𝜎 ∥𝐾 ∥2)) and 𝜏𝜎 ∥𝐾 ∥2 ≤ 1,

then the ergodic sequence {�̃�𝑁 = (𝑥𝑁 , �̃�𝑁 )}𝑁∈ℕ defined as in (12.13) and generated from the
iterates {𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘)}𝑘∈ℕ of the over-relaxed PDPS method (12.19) satisfies G(𝑥∗,𝑁 , �̃�∗,𝑁 ) →
0 at the rate 𝑂 (1/𝑁 ).
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Proof. We recall that 𝐻−1(0) ≠ ∅ under the assumptions of Theorem 5.11. Clearly 𝑀 is
self-adjoint. The condition (12.12) can with (10.32) be reduced to(

𝜆𝑘 (2𝜆𝑘 − 1)𝛿𝜏Id 0
0 𝜎−1𝐼 − 𝜏 (1 − 𝛿)−1𝐾𝐾∗

)
⪰

(
𝐿 0
0 0

)
for some 𝛿 ∈ (0, 1). As in (10.34) in the proof of Theorem 10.8, these conditions reduce to

(12.21) 𝜆𝑘 (2𝜆𝑘 − 1)𝛿 ≥ 𝜏𝐿 and 1 − 𝛿 ≥ 𝜏𝜎 ∥𝐾 ∥2.

The first inequality holds if 𝜆𝑘 ≥ 1
4 (1 +

√
1 + 8𝐿𝜏𝛿−1). Solving the second inequality as an

equality for 𝛿 yields the condition

𝜆𝑘 ≥ 1
4 (1 +

√︁
1 + 8𝐿𝜏 [(1 − 𝜏𝜎 ∥𝐾 ∥2)]−1),

i.e., (12.20). Now we obtain the gap convergence from Corollary 12.2. □

Remark 12.6. The method (12.19) is due to [Condat, 2013; Vũ, 2013]. The convergence of the ergodic
gap was observed in [Chambolle and Pock, 2015].

12.2 inertia

Our next inertial meta-algorithm will likewise not yield convergence of the main iterates,
but through a special arrangement of variables combinedwith intricate unrolling arguments,
is able to do awaywith the word ergodic in the gap estimates. In essence, the meta-algorithm
replaces the previous iterate 𝑥𝑘 in the linear preconditioner of (12.1) by an inertial point

(12.22) 𝑥𝑘 ≔ (1 + 𝛼𝑘)𝑥𝑘 − 𝛼𝑘𝑥𝑘−1 for 𝛼𝑘 ≔ 𝜆𝑘 (𝜆−1
𝑘−1 − 1)

for some inertial parameter sequence {𝜆𝑘}𝑘∈ℕ. We thus solve

(12.23) 0 ∈ 𝐻𝑘+1(𝑥𝑘+1) +𝑀𝑘+1(𝑥𝑘+1 − 𝑥𝑘).

We can relate this to over-relaxation as follows: we simply replace 𝑧𝑘 in the definition (12.2)
of 𝑧𝑘+1 by 𝑥𝑘 , i.e., we take

(12.24) 𝑧𝑘+1 ≔ 𝜆−1
𝑘
𝑥𝑘+1 − (𝜆−1

𝑘
− 1)𝑥𝑘 .

Since

(12.25) 𝜆𝑘 (𝑧𝑘+1 − 𝑧𝑘) = 𝑥𝑘+1 − (1 − 𝜆𝑘)𝑥𝑘 − 𝜆𝑘 [𝜆−1
𝑘−1𝑥

𝑘 − (𝜆−1
𝑘−1 − 1)𝑥𝑘−1]

= 𝑥𝑘+1 − [1 − 𝜆𝑘 + 𝜆𝑘𝜆−1
𝑘−1]𝑥𝑘 + 𝜆𝑘 (𝜆−1

𝑘−1 − 1)𝑥𝑘−1

= 𝑥𝑘+1 − [(1 + 𝛼𝑘)𝑥𝑘 − 𝛼𝑘𝑥𝑘−1] = 𝑥𝑘+1 − 𝑥𝑘 ,
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we obtain the method (12.4), with the differing update (12.24) of 𝑧𝑘+1. Again we can also lift
the overall algorithm into the form (12.1), specifically (12.5), by taking 𝑞 ≔ (𝑥, 𝑧) with

�̂�𝑘+1(𝑞) ≔
(
𝐻𝑘+1(𝑥)
𝑧 − 𝑥

)
, and �̂�𝑘+1 ≔

(
0 𝜆𝑘𝑀𝑘+1

(𝐼 − 𝜆−1
𝑘
)𝐼 0

)
.

Now comes the trick with inertial methods: Unlike with over-relaxed methods, where we
wanted to avoid having to estimate ⟨𝐻𝑘+1(𝑥𝑘+1), 𝑧𝑘+1 − �̂�⟩𝑍𝑘+1 , with inertial methods we are
brave enough to do this. Indeed, our specific choice (12.24) makes this possible, as we shall
see below. We therefore test with

𝑍𝑘+1 ≔

(
0 0

𝜆𝑘𝑍𝑘+1 0

)
to obtain a self-adjoint and positive semi-definite

(12.26) 𝑍𝑘+1𝑀𝑘+1 =

(
0 0
0 𝜆2

𝑘
𝑍𝑘+1𝑀𝑘+1

)
.

Therefore Theorem 11.12 applies, and we obtain the following:

Theorem 12.7. Let 𝑋 be a Hilbert space, 𝐻𝑘+1 : 𝑋 ⇒ 𝑋 , and𝑀𝑘+1, 𝑍𝑘+1 ∈ 𝕃(𝑋 ;𝑋 ) for 𝑘 ∈ ℕ.
Suppose (12.23) is solvable for the iterates {𝑥𝑘}𝑘∈ℕ and inertial parameters {𝜆𝑘}𝑘∈ℕ ⊂ (0,∞).
If 𝑍𝑘+1𝑀𝑘+1 is self-adjoint, and

(12.27) 𝜆𝑘 ⟨𝐻𝑘+1(𝑥𝑘+1), 𝑧𝑘+1 − �̂�⟩𝑍𝑘+1 ≥ V𝑘+1(𝑥) +
1
2 ∥𝑧

𝑘+1 − �̂�∥2
𝜆2
𝑘+1𝑍𝑘+2𝑀𝑘+2−𝜆2

𝑘
𝑍𝑘+1𝑀𝑘+1

− 𝜆2
𝑘

2 ∥𝑧𝑘+1 − 𝑧𝑘 ∥2
𝑍𝑘+1𝑀𝑘+1

for all 𝑘 ∈ ℕ and some 𝑥 ∈ 𝑋 and V𝑘+1(𝑥) ∈ ℝ, then

𝜆2
𝑁

2 ∥𝑧𝑁 − 𝑥 ∥2
𝑍𝑁+1𝑀𝑁+1

+
𝑁−1∑︁
𝑘=0

V𝑘+1(𝑥) ≤
𝜆2

0
2 ∥𝑧0 − 𝑥 ∥2

𝑍1𝑀1
(𝑁 ≥ 1).

Proof. This follows directly from Theorem 11.12 and the expansion (12.26). □

We now provide examples of how to apply this result to the proximal point method and
explicit splitting. As we recall, in these algorithms we take 𝑍𝑘+1 = 𝜑𝑘𝐼 and𝑊𝑘+1 = 𝜏𝑘𝐼 . To
proceed, we will need a few further general-purpose technical lemmas. The first one is the
fundamental lemma for inertia, which provides inertial function value unrolling.
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Lemma 12.8. Let𝐺 : 𝑋 → ℝ be convex, proper, and lower semicontinuous. Suppose 𝜆𝑘 ∈ [0, 1]
and 𝜑𝑘 , 𝜏𝑘 > 0 for 𝑘 ∈ ℕ with

(12.28) 𝜑𝑘+1𝜏𝑘+1(1 − 𝜆𝑘+1) ≤ 𝜑𝑘𝜏𝑘 (𝑘 ≥ 0).

Assume 𝑞𝑘+1 ∈ 𝜕𝐺 (𝑥𝑘+1) for 𝑘 = 0, . . . , 𝑁 − 1, and 0 ∈ 𝜕𝐺 (𝑥). Then

(12.29) 𝑠𝐺,𝑁 ≔
𝑁−1∑︁
𝑘=0

𝜑𝑘𝜏𝑘𝜆𝑘 ⟨𝑞𝑘+1, 𝑧𝑘+1 − 𝑥⟩𝑋

≥ 𝜑𝑁−1𝜏𝑁−1(𝐺 (𝑥𝑁 ) −𝐺 (𝑥)) − 𝜑0𝜏0(1 − 𝜆0) (𝐺 (𝑥0) −𝐺 (𝑥)).

Proof. Using (12.24), observe that

(12.30) 𝜆𝑘 (𝑧𝑘+1 − 𝑥) = 𝜆𝑘 [𝜆−1
𝑘+1𝑥

𝑘+1 − (𝜆−1
𝑘

− 1)𝑥𝑘 − 𝑥]
= 𝜆𝑘 (𝑥𝑘+1 − 𝑥) + (1 − 𝜆𝑘) (𝑥𝑘+1 − 𝑥𝑘).

Recalling from (12.30) that 𝜆𝑘 (𝑧𝑘+1 − 𝑥) = 𝜆𝑘 (𝑥𝑘+1 − 𝑥) + (1 − 𝜆𝑘) (𝑥𝑘+1 − 𝑥𝑘) and using the
convexity of 𝐺 , we can estimate

(12.31) 𝑠𝐺,𝑁 =
𝑁−1∑︁
𝑘=0

𝜑𝑘𝜏𝑘

[
𝜆𝑘 ⟨𝑞𝑘+1, 𝑥𝑘+1 − 𝑥⟩𝑋 + (1 − 𝜆𝑘)⟨𝑞𝑘+1, 𝑥𝑘+1 − 𝑥𝑘⟩𝑋

]
≥

𝑁−1∑︁
𝑘=0

𝜑𝑘𝜏𝑘

[
𝜆𝑘 (𝐺 (𝑥𝑘+1) −𝐺 (𝑥)) + (1 − 𝜆𝑘) (𝐺 (𝑥𝑘+1) −𝐺 (𝑥𝑘))

]
=
𝑁−1∑︁
𝑘=0

[
𝜑𝑘𝜏𝑘 (𝐺 (𝑥𝑘+1) −𝐺 (𝑥)) − 𝜑𝑘𝜏𝑘 (1 − 𝜆𝑘) (𝐺 (𝑥𝑘) −𝐺 (𝑥))

]
.

Since𝐺 (𝑥𝑘) ≥ 𝐺 (𝑥), the recurrence inequality (12.28) together with a telescoping argument
now gives

𝑠𝐺,𝑁 ≥ 𝜑𝑁−1𝜏𝑁−1(𝐺 (𝑥𝑁 ) −𝐺 (𝑥)) − 𝜑0𝜏0(1 − 𝜆0) (𝐺 (𝑥0) −𝐺 (𝑥)) .

This is the claim. □

Lemma 12.9. Suppose 𝜆0 = 1 and 𝜆−2
𝑘

= 𝜆−2
𝑘+1 − 𝜆−1

𝑘+1 for 𝑘 = 0, . . . , 𝑁 − 1. Then

(12.32) 𝜆𝑘+1 =
2

1 +
√︃

1 + 4𝜆−2
𝑘

(𝑘 = 0, . . . , 𝑁 − 1)

and 𝜆−1
𝑁

≥ (𝑁 + 1).
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Proof. First, the recurrence (12.32) is a simple solution of the assumed quadratic equation.
We show the lower bound by total induction on 𝑁 . Assume that 𝜆−1

𝑘
≥ (𝑘 + 1) for all

𝑘 = 0, . . . , 𝑁 − 1. Rearranging the original update as

𝜆−2
𝑘+1 − 𝜆−1

𝑘+1 = 𝜆
−2
𝑘

− 𝜆−1
𝑘

+ 𝜆−1
𝑘
,

summing over 𝑘 = 0, . . . , 𝑁 − 1, and telescoping yields

𝜆−2
𝑁 − 𝜆−1

𝑁 =
𝑁−1∑︁
𝑘=0

𝜆−1
𝑘
.

From the induction assumption, we thus obtain 𝜆−2
𝑁

− 𝜆−1
𝑁

≥ (𝑁 + 2) (𝑁 + 1). Solving this
quadratic inequality as an equality then shows that 𝜆−1

𝑁
≥ (1 +

√︁
1 + 4(𝑁 + 2) (𝑁 + 1)) ≥

(𝑁 + 1), which completes the proof. □

inertial proximal point method

Let 𝐻 = 𝜕𝐺 and �̃�𝑘+1 = 𝜏𝜕𝐺 for a convex, proper, lower semicontinuous function 𝐺 . Take
𝜏 > 0 and 𝜆𝑘+1 by (12.32) for 𝜆0 = 1. Then (12.23) becomes the inertial proximal point
method

(12.33)


𝑥𝑘+1 ≔ prox𝜏𝐺 (𝑥𝑘),
𝛼𝑘+1 ≔ 𝜆𝑘+1(𝜆−1

𝑘
− 1),

𝑥𝑘+1 ≔ (1 + 𝛼𝑘+1)𝑥𝑘+1 − 𝛼𝑘+1𝑥
𝑘 .

Note that 𝑥0 is never needed, as 𝛼1 = 0. The real initial iterate, which can be freely chosen,
is 𝑥0.

Theorem 12.10. Let 𝐺 : 𝑋 → ℝ be convex, proper, and lower semicontinuous. Suppose
[𝜕𝐺]−1(0) ≠ ∅. Take 𝜏 > 0 and 𝜆0 = 1, and pick an initial iterate 𝑥0 ∈ 𝑋 . Then the inertial
proximal point method (12.33) satisfies 𝐺 (𝑥𝑁 ) → 𝐺min at the rate 𝑂 (1/𝑁 2).

Proof. If we take 𝜏𝑘 = 𝜏 as stated and 𝜑𝑘 = 𝜆−2
𝑘
, then (12.9) verifies (12.28). Since now

𝜆2
𝑘+1𝜑𝑘+1 = 𝜆2

𝑘
𝜑𝑘 , (12.27) holds if

(12.34) 𝜆𝑘𝜑𝑘𝜏𝑘 ⟨𝜕𝐺 (𝑥𝑘+1), 𝑧𝑘+1 − �̂�⟩𝑋 ≥ V𝑘+1(𝑥) −
𝜆2
𝑘
𝜑𝑘

2 ∥𝑧𝑘+1 − 𝑧𝑘 ∥2
𝑋

for someV𝑘+1(𝑥) ∈ ℝ. This is verified by Lemma 12.8 for someV𝑘+1(𝑥) such that

𝑁−1∑︁
𝑘=0

V𝑘+1(𝑥) ≥ 𝜑𝑁−1𝜏𝑁−1(𝐺 (𝑥𝑁 ) −𝐺 (𝑥)) − 𝜑0𝜏0(1 − 𝜆0) (𝐺 (𝑥0) −𝐺 (𝑥)) .
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Since 𝜆0 = 1, Theorem 12.7 gives the estimate

𝜑𝑁𝜆
2
𝑁

2 ∥𝑥𝑁 − 𝑥 ∥2
𝑋 + 𝜑𝑁−1𝜏𝑁−1(𝐺 (𝑥𝑁 ) −𝐺 (𝑥)) ≤ 𝜑0𝜆

2
0

2 ∥𝑥0 − 𝑥 ∥2
𝑋 .

By Lemma 12.9 now𝜑𝑁−1𝜏𝑁−1 = 𝜆−2
𝑁−1𝜏 ≥ 𝜏𝑁 2. Thereforewe obtain the claimed convergence

rate. □

inertial explicit splitting

Let𝐻 = 𝜕𝐺+∇𝐹 and �̃�𝑘+1(𝑥) = 𝜏 (𝜕𝐺 (𝑥)+∇𝐹 (𝑥𝑘)) for convex, proper, lower semicontinuous
functions 𝐺 and 𝐹 with 𝐹 smooth. Take 𝜏 > 0 and 𝜆𝑘+1 by (12.32) for 𝜆0 = 1. Then (12.23)
becomes the inertial explicit splitting method

(12.35)


𝑥𝑘+1 ≔ prox𝜏𝐺 (𝑥𝑘 − 𝜏∇𝐹 (𝑥𝑘)),
𝛼𝑘+1 ≔ 𝜆𝑘+1(𝜆−1

𝑘
− 1),

𝑥𝑘+1 ≔ (1 + 𝛼𝑘+1)𝑥𝑘+1 − 𝛼𝑘+1𝑥
𝑘 .

Again, 𝑥0 is never needed, as 𝛼1 = 0. The freely pickable initial iterate is 𝑥0.

To prove the convergence of this method, we need to incorporate the forward step into
Lemma 12.8.

Lemma 12.11. Let 𝐽 ≔ 𝐹 +𝐺 for 𝐺 : 𝑋 → ℝ and 𝐹 : 𝑋 → ℝ be convex, proper, and lower
semicontinuous. Suppose 𝐹 has 𝐿-Lipschitz gradient and that 𝜆𝑘 ∈ [0, 1] and 𝜑𝑘 , 𝜏𝑘 > 0 satisfy
the recurrence inequality (12.28) for 𝑘 ∈ ℕ. Assume𝑤𝑘+1 ∈ 𝜕𝐺 (𝑥𝑘+1) for all 𝑘 = 0, . . . , 𝑁 − 1,
and that 0 ∈ 𝜕𝐽 (𝑥). Then

(12.36) 𝑠𝑁 ≔
𝑁−1∑︁
𝑘=0

(
𝜑𝑘𝜏𝑘𝜆𝑘 ⟨𝑤𝑘+1 + ∇𝐹 (𝑥𝑘), 𝑧𝑘+1 − 𝑥⟩𝑋 + 𝜑𝑘𝜏𝑘𝜆

2
𝑘
𝐿

2 ∥𝑧𝑘+1 − 𝑧𝑘 ∥2
𝑋

)
≥ 𝜑𝑁−1𝜏𝑁−1(𝐽 (𝑥𝑁 ) − 𝐽 (𝑥)) − 𝜑0𝜏0(1 − 𝜆0) (𝐽 (𝑥0) − 𝐽 (𝑥)) .

Proof. We recall from (12.25) that 𝜆
2
𝑘
2 ∥𝑧𝑘+1 − 𝑧𝑘 ∥2

𝑋
= 1

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋
.We therefore estimate
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using Corollary 7.2 that
(12.37)

𝑠𝐹,𝑁 ≔
𝑁−1∑︁
𝑘=0

(
𝜑𝑘𝜏𝑘𝜆𝑘 ⟨∇𝐹 (𝑥𝑘), 𝑧𝑘+1 − 𝑥⟩𝑋 + 𝜑𝑘𝜏𝑘𝜆

2
𝑘
𝐿

2 ∥𝑧𝑘+1 − 𝑧𝑘 ∥2
𝑋

)
=
𝑁−1∑︁
𝑘=0

𝜑𝑘𝜏𝑘

[
𝜆𝑘 ⟨∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 + (1 − 𝜆𝑘)⟨∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥𝑘⟩𝑋 + 𝐿2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋

]
≥

𝑁−1∑︁
𝑘=0

𝜑𝑘𝜏𝑘

[
𝜆𝑘 (𝐹 (𝑥𝑘+1) − 𝐹 (𝑥)) + (1 − 𝜆𝑘) (𝐹 (𝑥𝑘+1) − 𝐹 (𝑥𝑘))

]
=
𝑁−1∑︁
𝑘=0

[
𝜑𝑘𝜏𝑘 (𝐹 (𝑥𝑘+1) − 𝐹 (𝑥)) − 𝜑𝑘𝜏𝑘 (1 − 𝜆𝑘) (𝐹 (𝑥𝑘) − 𝐹 (𝑥))

]
.

Summing with the estimate (12.31) for 𝐺 , we deduce

𝑠𝑁 ≥
𝑁−1∑︁
𝑘=0

[
𝜑𝑘𝜏𝑘 ((𝐹 +𝐺) (𝑥𝑘+1) − (𝐹 +𝐺) (𝑥)) − 𝜑𝑘𝜏𝑘 (1 − 𝜆𝑘) ((𝐹 +𝐺) (𝑥𝑘) − (𝐹 +𝐺) (𝑥))

]
.

Since (𝐹 +𝐺) (𝑥𝑘) ≥ (𝐹 +𝐺) (𝑥), the recurrence inequality (12.28) together with a telescoping
argument now gives the claim. □

Theorem 12.12. Let 𝐽 ≔ 𝐺 + 𝐹 for 𝐺 : 𝑋 → ℝ and 𝐹 : 𝑋 → ℝ be convex, proper, and lower
semicontinuous with ∇𝐹 Lipschitz. Suppose [𝜕𝐽 ]−1(0) ≠ ∅. Take 𝜏 > 0 with 𝜏𝐿 ≤ 1, and
𝜆0 = 1, and pick an initial iterate 𝑥0 ∈ 𝑋 . Then the inertial explicit splitting (12.35) satisfies
𝐽 (𝑥𝑁 ) → min𝑥∈𝑋 𝐽 (𝑥) at the rate 𝑂 (1/𝑁 2).

Proof. The proof follows that of Theorem 12.10: in place of (12.34) we reduce (12.27) to the
condition

𝜆𝑘𝜑𝑘𝜏𝑘 ⟨𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘), 𝑧𝑘+1 − �̂�⟩𝑋 ≥ V𝑘+1(𝑥) −
𝜆2
𝑘
𝜑𝑘

2 ∥𝑧𝑘+1 − 𝑧𝑘 ∥2
𝑋 .

This is verified for someV𝑘+1(𝑥) such that
𝑁−1∑︁
𝑘=0

V𝑘+1(𝑥) ≥ 𝜑𝑁−1𝜏𝑁−1(𝐽 (𝑥𝑁 ) − 𝐽 (𝑥)) − 𝜑0𝜏0(1 − 𝜆0) (𝐽 (𝑥0) − 𝐽 (𝑥))

by using Lemma 12.11 and the bound 𝜏𝐿 ≤ 1 in place of Lemma 12.8. □

Remark 12.13 (accelerated gradient methods, FISTA). The inertial scheme was first introduced by
[Nesterov, 1983] for the basic gradient descent method for smooth functions. The extension to
explicit splitting is due to [Beck and Teboulle, 2009a], which proposed a fast iterative shrinkage-
thresholding algorithm (FISTA) for the specific problem of minimizing a least-squares term plus a
weighted ℓ 1 norm. (Note that in most treatments of FISTA, 𝜆−1

𝑘
is written as 𝑡𝑘 .) We refer to [Beck,

2017; Nesterov, 2004] for a further discussion of these algorithms and more general accelerated
gradient methods based on combinations of a history of iterates.
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Remark 12.14 (PDPS, Douglas–Rachford, and correctors). The above unrolling arguments cannot
be directly applied to PDPS, Douglas–Rachford splitting, and other methods based on (12.1) with
non-maximally monotone 𝐻 . Following [Chambolle and Pock, 2015], one can apply inertia to the
PDPS method with the restricted choice 𝛼𝑘 ∈ (0, 1/3). This prevents the use of the FISTA rule
(12.32) and only yields 𝑂 (1/𝑁 ) convergence of an ergodic gap. Based on alternative argumentation,
when one of the functions is quadratic, [Patrinos et al., 2014] managed to employ the FISTA rule
and obtain 𝑂 (1/𝑁 2) rates for inertial Douglas–Rachford splitting. Moreover, [Valkonen, 2020a]
observed that by introducing a corrector for the non-subdifferential component of 𝐻 , in essence
Ξ𝑘+1, the gap unrolling arguments can be performed. This approach also allows combining inertial
acceleration with strong monotonicity based acceleration.

12.3 line search

Let us return to the basic results on weak convergence (Theorem 9.6), strong convergence
with rates (Theorem 10.2), and function value convergence (Theorem 11.4) of the explicit
splitting method. These results depend on the three-point inequalities of Corollary 7.2 (or,
for faster rates under strong convexity, Corollary 7.7), specifically either the non-value
estimate

⟨∇𝐹 (𝑥𝑘) − ∇𝐹 (𝑥), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ −𝐿4 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋(12.38)

or the value estimate

⟨∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝐹 (𝑥𝑘+1) − 𝐹 (𝑥) − 𝐿

2 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 .(12.39)

Recall that for weak convergence of iterates, we required the step length parameters {𝜏𝑘}𝑘∈ℕ
to satisfy on each iteration the bound 𝜏𝑘𝐿 < 2. Under a strong convexity assumption, the
bound𝜏𝑘𝐿 ≤ 2was sufficient for strong convergence of iterates. Function value convergence
was finally shown under the bound 𝜏𝑘𝐿 ≤ 1. All cases thus hold for 𝜏𝑘𝐿 ≤ 1, which we
assume in the following for simplicity.

In this section, we address the following question: What if we do not know the Lipschitz
factor 𝐿? A basic idea is to take 𝐿 large enough. But what is large enough? Finding such a
large enough 𝐿 is the same as taking 𝜏𝑘 small enough and 𝐿 = 1/𝜏𝑘 . This leads us to the
following rough line search rule: for some 𝜏 > 0 and line search parameter 𝜃 ∈ (0, 1), start
with 𝜏𝑘 ≔ 𝜏 , and iterate 𝜏𝑘 ↦→ 𝜃𝜏𝑘 until (12.39) (or (12.38)) is satisfied with 𝐿 = 1/𝜏𝑘 . Note
that on each update of 𝜏𝑘 , we need to recalculate 𝑥𝑘+1 ≔ prox𝜏𝑘𝐺 (𝑥𝑘 − 𝜏𝑘∇𝐹 (𝑥𝑘))).
Performing this line search still appears to depend on knowing 𝑥 through (12.39). However,
going back to the proof of Corollary 7.2, we see that what is really needed is to satisfy the
smoothness (or descent) inequality (7.5) which was used to derive (12.39). We are therefore
lead to the following practical line search method to guarantee the inequality

(12.40) ⟨∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥𝑘⟩𝑋 ≥ 𝐹 (𝑥𝑘+1) − 𝐹 (𝑥𝑘) − 1
2𝜏𝑘

∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋
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on every iteration:

0. Pick 𝜃 ∈ (0, 1), 𝜏 > 0, 𝜆0 ≔ 1, 𝑥0 ∈ 𝑋 ; set 𝑘 = 0.

1. Set 𝜏𝑘 = 𝜏 .

2. Calculate 𝑥𝑘+1 ≔ prox𝜏𝑘𝐺 (𝑥𝑘 − 𝜏𝑘∇𝐹 (𝑥𝑘)).
3. If (12.40) does not hold, update 𝜏𝑘 ≔ 𝜃𝜏𝑘 , and go back to step 2.

4. Set 𝑘 ≔ 𝑘 + 1, and continue from step 1.

Theorem 12.15 (explicit splitting line search). Let 𝐽 ≔ 𝐹 + 𝐺 where 𝐺 : 𝑋 → ℝ and
𝐹 : 𝑋 → ℝ are convex, proper, and lower semicontinuous, with ∇𝐹 moreover Lipschitz.
Suppose [𝜕𝐽 ]−1(0) ≠ ∅. Then the above line search method satisfies 𝐽 (𝑥𝑁 ) → min𝑥∈𝑋 𝐽 (𝑥)
at the rate 𝑂 (1/𝑁 ). If 𝐺 is strongly convex, then this convergence is linear.

Proof. Since ∇𝐹 is �̃�-smooth for some unknown �̃� > 0, eventually the line search procedure
satisfies 1/𝜏𝑘 ≥ �̃�. Hence (12.40) is satisfied, and 𝜏𝑘 ≥ 𝜀 > 0 for some 𝜀 > 0. We can therefore
follow through the proof of Theorem 11.4 with 𝐿 = 1/𝜏𝑘 . □

We can also combine the line search method with the inertial explicit splitting (12.35). If in
place of (12.40) we seek to satisfy

(12.41) ⟨∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥𝑘⟩𝑋 ≥ 𝐹 (𝑥𝑘+1) − 𝐹 (𝑥𝑘) − 1
2𝜏𝑘

∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ,

then also
⟨∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝐹 (𝑥𝑘+1) − 𝐹 (𝑥) − 1

2𝜏𝑘
∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 .

This allows the inequality of (12.37) to be shown.

We are therefore lead to the following practical backtracking inertial explicit splitting:

0. Pick 𝜃 ∈ (0, 1), 𝜏 > 0, 𝜆0 ≔ 1, 𝑥0 = 𝑥0 ∈ 𝑋 ; set 𝑘 = 0.

1. Set 𝜏𝑘 = 𝜏 .

2. Calculate 𝑥𝑘+1 ≔ prox𝜏𝑘𝐺 (𝑥𝑘 − 𝜏𝑘∇𝐹 (𝑥𝑘))).
3. If (12.41) does not hold, update 𝜏𝑘 ≔ 𝜃𝜏𝑘 , and go back to step 2.

4. Set 𝑥𝑘+1 ≔ (1 + 𝛼𝑘+1)𝑥𝑘+1 − 𝛼𝑘+1𝑥
𝑘 for 𝛼𝑘+1 ≔ 𝜆𝑘+1(𝜆−1

𝑘
− 1).

5. Set 𝑘 ≔ 𝑘 + 1, and continue from step 1.

The proof of the following is immediate:
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Theorem 12.16. Let 𝐽 ≔ 𝐺 + 𝐹 for 𝐺 : 𝑋 → ℝ and 𝐹 : 𝑋 → ℝ be convex, proper, and
lower semicontinuous with ∇𝐹 Lipschitz. Suppose [𝜕𝐽 ]−1(0) ≠ ∅. Take 𝜏 > 0 and 𝜆0 = 1, and
pick an initial iterate 𝑥0 ∈ 𝑋 . Then the above backtracking inertial explicit splitting satisfies
𝐽 (𝑥𝑁 ) → min𝑥∈𝑋 𝐽 (𝑥) at the rate 𝑂 (1/𝑁 2).

The reader may now work out how to use line search to satisfy the nonnegativity of
the metric 𝑍𝑘+1𝑀𝑘+1 in the PDPS method when ∥𝐾 ∥ is not known, or how to satisfy the
condition 𝐿𝜏0 + 𝜏0𝜎0∥𝐾 ∥2 < 1 when the Lipschitz factor 𝐿 of the forward step component
𝐸 is not known.

Remark 12.17 (adaptive inertial parameters, quasi-Newton methods, and primal-dual proximal

line searches). Regarding our statement in the beginning of the chapter about inertia methods
attempting to construct a second-order approximation of the function, [Ochs and Pock, 2019] show
that an adaptive inertial explicit splitting, performing an optimal line search on 𝜆𝑘 instead of 𝜏𝑘 , is
equivalent to a proximal quasi-Newton method. Such a method is a further development of variants
[see Beck and Teboulle, 2009b] of the method that attempt to restore the monotonicity of explicit
splitting that is lost by inertia. Indeed, if 𝐽 (𝑥𝑘+1) ≤ 𝐽 (𝑥𝑘 ) does not hold for 𝜆𝑘 < 1, we can revert
to 𝜆𝑘 = 1 to ensure descent as the step reduces to basic explicit splitting, which we know to be
monotone by Theorem 11.4. Finally, a line search for the PDPS method is studied in [Malitsky and
Pock, 2018].
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13 CLARKE SUBDIFFERENTIALS

We now turn to a concept of generalized derivatives that covers, among others, both Fréchet
derivatives and convex subdifferentials. Again, we start with the general class of functionals
that admit such a derivative. It is clear that we need to require some continuity properties,
since otherwise there would be no relation between functional values at neighboring points
and thus no hope of characterizing optimality through pointwise properties. In Part II, we
used lower semicontinuity for this purpose, which together with convexity yielded the
required properties. In this part, we want to drop the latter, global, assumption; in turn we
need to strengthen the local continuity assumption. We thus consider now locally Lipschitz
continuous functionals. Recall that 𝐹 : 𝑋 → ℝ is locally Lipschitz continuous near 𝑥 ∈ 𝑋
if there exist a 𝛿 > 0 and an 𝐿 > 0 (which in the following will always denote the local
Lipschitz constant of 𝐹 ) such that

|𝐹 (𝑥1) − 𝐹 (𝑥2) | ≤ 𝐿∥𝑥1 − 𝑥2∥𝑋 for all 𝑥1, 𝑥2 ∈ 𝕆(𝑥, 𝛿).

We will refer to the 𝕆(𝑥, 𝛿) from the definition as the Lipschitz neighborhood of 𝑥 . Note
that for this we have to require that 𝐹 is (locally) finite-valued (but see Remark 13.27 below).
Throughout this chapter, we will assume that𝑋 is a Banach space unless stated otherwise.

13.1 definition and basic properties

We proceed as for the convex subdifferential and first define for 𝐹 : 𝑋 → ℝ the generalized
directional derivative in 𝑥 ∈ 𝑋 in direction ℎ ∈ 𝑋 as

(13.1) 𝐹 ◦(𝑥 ;ℎ) ≔ lim sup
𝑦→𝑥
𝑡→ 0

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦)
𝑡

.

Note the difference to the classical directional derivative: We no longer require the existence
of a limit but merely of accumulation points. We will need the following properties.

Lemma 13.1. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous near 𝑥 ∈ 𝑋 with the factor 𝐿.
Then the mapping ℎ ↦→ 𝐹 ◦(𝑥 ;ℎ) is

(i) Lipschitz continuous with constant 𝐿 and satisfies |𝐹 ◦(𝑥 ;ℎ) | ≤ 𝐿∥ℎ∥𝑋 < ∞;
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(ii) subadditive, i.e., 𝐹 ◦(𝑥 ;ℎ + 𝑔) ≤ 𝐹 ◦(𝑥 ;ℎ) + 𝐹 ◦(𝑥 ;𝑔) for all ℎ,𝑔 ∈ 𝑋 ;
(iii) positively homogeneous, i.e., 𝐹 ◦(𝑥 ;𝛼ℎ) = (𝛼𝐹 )◦(𝑥 ;ℎ) for all 𝛼 > 0 and ℎ ∈ 𝑋 ;
(iv) reflective, i.e., 𝐹 ◦(𝑥 ;−ℎ) = (−𝐹 )◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 .

Proof. (i): Let ℎ,𝑔 ∈ 𝑋 be arbitrary. The local Lipschitz continuity of 𝐹 implies that

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦) ≤ 𝐹 (𝑦 + 𝑡𝑔) − 𝐹 (𝑦) + 𝑡𝐿∥ℎ − 𝑔∥𝑋
for all 𝑦 sufficiently close to 𝑥 and 𝑡 sufficiently small. Dividing by 𝑡 > 0 and taking the
lim sup then yields that

𝐹 ◦(𝑥 ;ℎ) ≤ 𝐹 ◦(𝑥 ;𝑔) + 𝐿∥ℎ − 𝑔∥𝑋 .
Exchanging the roles of ℎ and 𝑔 shows the Lipschitz continuity of 𝐹 ◦(𝑥 ; ·), which also yields
the claimed boundedness since 𝐹 ◦(𝑥 ;𝑔) = 0 for 𝑔 = 0 from the definition.

(ii): Since 𝑡→ 0 and 𝑔 ∈ 𝑋 is fixed, 𝑦 → 𝑥 if and only if 𝑦 + 𝑡𝑔 → 𝑥 . The definition of the
lim sup and the productive zero thus immediately yield

𝐹 ◦(𝑥 ;ℎ + 𝑔) = lim sup
𝑦→𝑥
𝑡→ 0

𝐹 (𝑦 + 𝑡ℎ + 𝑡𝑔) − 𝐹 (𝑦)
𝑡

≤ lim sup
𝑦→𝑥
𝑡→ 0

𝐹 (𝑦 + 𝑡ℎ + 𝑡𝑔) − 𝐹 (𝑦 + 𝑡𝑔)
𝑡

+ lim sup
𝑦→𝑥
𝑡→ 0

𝐹 (𝑦 + 𝑡𝑔) − 𝐹 (𝑦)
𝑡

= 𝐹 ◦(𝑥 ;ℎ) + 𝐹 ◦(𝑥 ;𝑔).

(iii): The claim is clear for 𝛼 = 0. For 𝛼 > 0, we obain again from the definition that

𝐹 ◦(𝑥 ;𝛼ℎ) = lim sup
𝑦→𝑥
𝑡→ 0

𝐹 (𝑦 + 𝑡 (𝛼ℎ)) − 𝐹 (𝑦)
𝑡

= lim sup
𝑦→𝑥
𝛼𝑡→ 0

𝛼
𝐹 (𝑦 + (𝛼𝑡)ℎ) − 𝐹 (𝑦)

𝛼𝑡
= (𝛼𝐹 )◦(𝑥 ;ℎ).

(iv): Similarly, since 𝑡→ 0 and ℎ ∈ 𝑋 is fixed, 𝑦 → 𝑥 if and only if 𝑤 ≔ 𝑦 − 𝑡ℎ → 𝑥 . We
thus have that

𝐹 ◦(𝑥 ;−ℎ) = lim sup
𝑦→𝑥
𝑡→ 0

𝐹 (𝑦 − 𝑡ℎ) − 𝐹 (𝑦)
𝑡

= lim sup
𝑤→𝑥
𝑡→ 0

−𝐹 (𝑤 + 𝑡ℎ) − (−𝐹 (𝑤))
𝑡

= (−𝐹 )◦(𝑥 ;ℎ). □
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In particular, Lemma 13.1 (i)–(iii) imply that the mapping ℎ ↦→ 𝐹 ◦(𝑥 ;ℎ) is proper, convex,
and lower semicontinuous.

We now define for a locally Lipschitz continuous functional 𝐹 : 𝑋 → ℝ the Clarke
subdifferential in 𝑥 ∈ 𝑋 as

(13.2) 𝜕𝐶𝐹 (𝑥) ≔ {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 } .

The definition together with Lemma 13.1 (i) directly implies the following properties.

Lemma 13.2. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous and 𝑥 ∈ 𝑋 . Then 𝜕𝐶𝐹 (𝑥) is
convex, weakly-∗ closed, and bounded. Specifically, if 𝐹 is Lipschitz near 𝑥 with constant 𝐿,
then 𝜕𝐶𝐹 (𝑥) ⊂ 𝔹(0, 𝐿).

Furthermore, we have the following useful continuity property.

Lemma 13.3. Let 𝐹 : 𝑋 → ℝ. Then 𝜕𝐶𝐹 (𝑥) is strong-to-weak-∗ outer semicontinuous, i.e., if
𝑥𝑛 → 𝑥 and if 𝜕𝐶𝐹 (𝑥𝑛) ∋ 𝑥∗𝑛 ∗⇀ 𝑥∗, then 𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥).

Proof. Let ℎ ∈ 𝑋 be arbitrary. By assumption, we then have that ⟨𝑥∗𝑛, ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥𝑛;ℎ) for
all 𝑛 ∈ ℕ. The weak-∗ convergence of {𝑥∗𝑛}𝑛∈ℕ then implies that

⟨𝑥∗, ℎ⟩𝑋 = lim
𝑛→∞⟨𝑥

∗
𝑛, ℎ⟩𝑋 ≤ lim sup

𝑛→∞
𝐹 ◦(𝑥𝑛;ℎ).

Hence we are finished if we can show that lim sup𝑛→∞ 𝐹
◦(𝑥𝑛;ℎ) ≤ 𝐹 ◦(𝑥 ;ℎ) (since then

𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥) by definition).

For this,we use that by definition of 𝐹 ◦(𝑥𝑛;ℎ), there exist sequences {𝑦𝑛,𝑚}𝑚∈ℕ and {𝑡𝑛,𝑚}𝑚∈ℕ
with 𝑦𝑛,𝑚 → 𝑥𝑛 and 𝑡𝑛,𝑚→ 0 for𝑚 → ∞ realizing the lim sup for each 𝑥𝑛 . Hence, for all
𝑛 ∈ ℕ we can find a 𝑦𝑛 ≔ 𝑦𝑛,𝑚(𝑛) and a 𝑡𝑛 ≔ 𝑡𝑛,𝑚(𝑛) such that ∥𝑦𝑛 − 𝑥𝑛∥𝑋 + 𝑡𝑛 < 𝑛−1 (and
hence in particular 𝑦𝑛 → 𝑥 and 𝑡𝑛→ 0) as well as

𝐹 ◦(𝑥𝑛;ℎ) − 1
𝑛
≤ 𝐹 (𝑦𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑦𝑛)

𝑡𝑛

for 𝑛 sufficiently large. Taking the lim sup for 𝑛 → ∞ on both sides yields the desired
inequality. □

Again, the construction immediately yields a Fermat principle.1

1Similarly to Theorem 4.2, we do not need to require Lipschitz continuity of 𝐹 – the Fermat principle for
the Clarke subdifferential characterizes (among others) any local minimizer. However, if we want to use
this principle to verify that a given 𝑥 ∈ 𝑋 is indeed a (candidate for) a minimizer, we need a suitable
characterization of the subdifferential – and this is only possible for (certain) locally Lipschitz continuous
functionals.
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Theorem 13.4 (Fermat principle). If 𝐹 : 𝑋 → ℝ has a local minimum in 𝑥 , then 0 ∈ 𝜕𝐶𝐹 (𝑥).

Proof. If 𝑥 ∈ 𝑋 is a local minimizer of 𝐹 , then 𝐹 (𝑥) ≤ 𝐹 (𝑥 + 𝑡ℎ) for all ℎ ∈ 𝑋 and 𝑡 > 0
sufficiently small (since the topological interior is always included in the algebraic interior).
But this implies that

⟨0, ℎ⟩𝑋 = 0 ≤ lim inf
𝑡→ 0

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

≤ lim sup
𝑡→ 0

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

≤ 𝐹 ◦(𝑥 ;ℎ)

and hence 0 ∈ 𝜕𝐶𝐹 (𝑥) by definition. □

Note that 𝐹 is not assumed to be convex, and hence the condition is in general not sufficient
(consider, e.g., 𝑓 (𝑡) = −|𝑡 |).

13.2 fundamental examples

Next, we show that the Clarke subdifferential is indeed a generalization of the derivative
concepts we’ve studied so far.

Theorem 13.5. Let 𝐹 : 𝑋 → ℝ be continuously Fréchet differentiable in a neighborhood𝑈 of
𝑥 ∈ 𝑋 . Then 𝜕𝐶𝐹 (𝑥) = {𝐹 ′(𝑥)}.

Proof. First, we note that 𝐹 is locally Lipschitz continuous near 𝑥 by Lemma 2.11. We now
show that 𝐹 ◦(𝑥 ;ℎ) = 𝐹 ′(𝑥)ℎ (= 𝐹 ′(𝑥 ;ℎ)) for all ℎ ∈ 𝑋 . Take again sequences {𝑦𝑛}𝑛∈ℕ and
{𝑡𝑛}𝑛∈ℕ with 𝑦𝑛 → 𝑥 and 𝑡𝑛→ 0 realizing the lim sup in (13.1). Applying the mean value
Theorem 2.10 and using the continuity of 𝐹 ′ yields for any ℎ ∈ 𝑋 that

𝐹 ◦(𝑥 ;ℎ) = lim
𝑛→∞

𝐹 (𝑦𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑦𝑛)
𝑡𝑛

= lim
𝑛→∞

∫ 1

0

1
𝑡𝑛
⟨𝐹 ′(𝑦𝑛 + 𝑠 (𝑡𝑛ℎ)), 𝑡𝑛ℎ⟩𝑋 𝑑𝑠

= ⟨𝐹 ′(𝑥), ℎ⟩𝑋
since the integrand converges uniformly in 𝑠 ∈ [0, 1] to ⟨𝐹 ′(𝑥), ℎ⟩𝑋 . Hence by definition,
𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥) if and only if ⟨𝑥∗, ℎ⟩𝑋 ≤ ⟨𝐹 ′(𝑥), ℎ⟩𝑋 for all ℎ ∈ 𝑋 , which is only possible for
𝑥∗ = 𝐹 ′(𝑥). □

The following example shows that Theorem 13.5 does not hold if 𝐹 is merely Fréchet
differentiable.
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Example 13.6. Let 𝐹 : ℝ → ℝ, 𝐹 (𝑥) = 𝑥2 sin(𝑥−1). Then it is straightforward (if tedious)
to show that 𝐹 is differentiable on ℝ with

𝐹 ′(𝑥) =
{

2𝑥 sin(𝑥−1) − cos(𝑥−1) if 𝑥 ≠ 0,
0 if 𝑥 = 0.

In particular, 𝐹 is not continuously differentiable at 𝑥 = 0. But a similar limit argument
shows that for all ℎ ∈ ℝ,

𝐹 ◦(0;ℎ) = |ℎ |
and hence that

𝜕𝐶𝐹 (0) = [−1, 1] ⊋ {0} = {𝐹 ′(0)}.
(The first equality also follows more directly from Theorem 13.26 below.)

As the example suggests, we always have the following weaker relation.

Lemma 13.7. Let 𝐹 : 𝑋 → ℝ be Lipschitz continuous and Gâteaux differentiable in a
neighborhood𝑈 of 𝑥 ∈ 𝑋 . Then 𝐷𝐹 (𝑥) ∈ 𝜕𝐶𝐹 (𝑥).

Proof. Let ℎ ∈ 𝑋 be arbitrary. First, note that we always have that

(13.3) 𝐹 ′(𝑥 ;ℎ) = lim
𝑡→ 0

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

≤ lim sup
𝑦→𝑥
𝑡→ 0

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦)
𝑡

= 𝐹 ◦(𝑥 ;ℎ).

Since 𝐹 is Gâteaux differentiable, it follows that

⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 = 𝐹 ′(𝑥 ;ℎ) ≤ 𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋,

and thus 𝐷𝐹 (𝑥) ∈ 𝜕𝐶𝐹 (𝑥) by definition. □

Similarly, the Clarke subdifferential reduces to the convex subdifferential in some situa-
tions.

Theorem 13.8. Let 𝐹 : 𝑋 → ℝ be convex and lower semicontinuous. Then 𝜕𝐶𝐹 (𝑥) = 𝜕𝐹 (𝑥)
for all 𝑥 ∈ int(dom 𝐹 ).

Proof. By Theorem 3.13, 𝐹 is locally Lipschitz continuous near 𝑥 ∈ int(dom 𝐹 ). We now
show that 𝐹 ◦(𝑥 ;ℎ) = 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 , which together with Lemma 4.4 yields the
claim. By (13.3), we always have that 𝐹 ′(𝑥 ;ℎ) ≤ 𝐹 ◦(𝑥 ;ℎ). To show the reverse inequality,
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let 𝛿 > 0 be arbitrary. Since the difference quotient of convex functionals is increasing by
Lemma 4.3 (i), we obtain that

𝐹 ◦(𝑥 ;ℎ) = lim
𝜀→ 0

sup
𝑦∈𝔹(𝑥,𝛿𝜀)

sup
0<𝑡<𝜀

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦)
𝑡

≤ lim
𝜀→ 0

sup
𝑦∈𝔹(𝑥,𝛿𝜀)

𝐹 (𝑦 + 𝜀ℎ) − 𝐹 (𝑦)
𝜀

≤ lim
𝜀→ 0

𝐹 (𝑥 + 𝜀ℎ) − 𝐹 (𝑥)
𝜀

+ 2𝐿𝛿

= 𝐹 ′(𝑥 ;ℎ) + 2𝐿𝛿,

where the last inequality follows by adding two productive zeros and using the local
Lipschitz continuity in 𝑥 . Since 𝛿 > 0 was arbitrary, this implies that 𝐹 ◦(𝑥 ;ℎ) ≤ 𝐹 ′(𝑥 ;ℎ),
and the claim follows. □

A locally Lipschitz continuous functional 𝐹 : 𝑋 → ℝ with 𝐹 ◦(𝑥 ;ℎ) = 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋
is called regular in 𝑥 ∈ 𝑋 . We have just shown that every continuously differentiable and
every convex and lower semicontinuous functional is regular; intuitively, a function is thus
regular at any points in which it is either differentiable or has at most a “convex kink”.

Finally, similarly to Theorem 4.11 one can show the following pointwise characterization
of the Clarke subdifferential of integral functionals with Lipschitz continuous integrands.
We again assume that Ω ⊂ ℝ𝑑 is open and bounded.

Theorem 13.9. Let 𝑓 : ℝ → ℝ be Lipschitz continuous and 𝐹 : 𝐿𝑝 (Ω) → ℝ with 1 ≤ 𝑝 < ∞
as in Lemma 3.7. Then we have for all 𝑢 ∈ 𝐿𝑝 (Ω) with 𝑞 = 𝑝

𝑝−1 (where 𝑞 = ∞ for 𝑝 = 1) that

𝜕𝐶𝐹 (𝑢) ⊂ {𝑢∗ ∈ 𝐿𝑞 (Ω) | 𝑢∗(𝑥) ∈ 𝜕𝐶 𝑓 (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω} .

If 𝑓 is regular at 𝑢 (𝑥) for almost every 𝑥 ∈ Ω, then 𝐹 is regular at 𝑢, and equality holds.

Proof. First, by the properties of the Lebesgue integral and the Lipschitz continuity of 𝑓 ,
we have for any 𝑢, 𝑣 ∈ 𝐿𝑝 (Ω) that

|𝐹 (𝑢) − 𝐹 (𝑣) | ≤
∫
Ω
|𝑓 (𝑢 (𝑥)) − 𝑓 (𝑣 (𝑥)) | 𝑑𝑥 ≤ 𝐿

∫
Ω
|𝑢 (𝑥) − 𝑣 (𝑥) | 𝑑𝑥 ≤ 𝐿𝐶𝑝 ∥𝑢 − 𝑣 ∥𝐿𝑝 ,

where 𝐿 is the Lipschitz constant of 𝑓 and𝐶𝑝 the constant from the continuous embedding
𝐿𝑝 (Ω) ↩→ 𝐿1(Ω) for 1 ≤ 𝑝 ≤ ∞. Hence 𝐹 : 𝐿𝑝 (Ω) → ℝ is Lipschitz continuous and
therefore finite-valued as well.
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Let now 𝜉 ∈ 𝜕𝐶𝐹 (𝑢) ⊂ 𝐿𝑝 (Ω)∗ be given and ℎ ∈ 𝐿𝑝 (Ω) be arbitrary. By definition, we thus
have

(13.4) ⟨𝜉, ℎ⟩𝐿𝑝 ≤ 𝐹 ◦(𝑢;ℎ) = lim sup
𝑣→𝑢
𝑡→ 0

𝐹 (𝑣 + 𝑡ℎ) − 𝐹 (𝑣)
𝑡

≤
∫
Ω

lim sup
𝑣→𝑢
𝑡→ 0

𝑓 (𝑣 (𝑥) + 𝑡ℎ(𝑥)) − 𝑓 (𝑣 (𝑥))
𝑡

𝑑𝑥

≤
∫
Ω

lim sup
𝑣𝑥→𝑢 (𝑥)
𝑡𝑥→ 0

𝑓 (𝑣𝑥 + 𝑡𝑥ℎ(𝑥)) − 𝑓 (𝑣𝑥 )
𝑡𝑥

𝑑𝑥

=
∫
Ω
𝑓 ◦(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥,

where we were able to use the Reverse Fatou Lemma to exchange the lim sup with the
integral in the first inequality since the integrand is bounded from above by the integrable
function 𝐿 |ℎ | due to Lemma 13.1 (i); the second inequality follows by bounding for almost
every 𝑥 ∈ Ω the (pointwise) limit over the sequences realizing the lim sup in the second
line by the lim sup over all admissible sequences.

In order to interpret (13.4) pointwise, we use that Lemma 13.1 (i) together with the (global)
Lipschitz continuity of 𝑓 implies that the function 𝑥 ↦→ 𝑓 ◦(𝑢 (𝑥); 𝑡) is integrable for any
𝑡 ∈ ℝ. We can thus argue exactly as in the proof of Theorem 4.11: Let 𝑡 ∈ ℝ be arbitrary
and 𝐴 ⊂ Ω be an arbitrary measurable subset. Setting

ℎ(𝑥) =
{
𝑡 if 𝑥 ∈ 𝐴,
0 if 𝑥 ∉ 𝐴,

(so that ℎ ∈ 𝐿∞(Ω) ⊂ 𝐿𝑝 (Ω)) and using 𝑓 ◦(𝑢 (𝑥); 0) = 0, we obtain from (13.4) together
with the representation of 𝜉 ∈ 𝐿𝑝 (Ω)∗ via some 𝑢∗ ∈ 𝐿𝑞 (Ω) that∫

𝐴

𝑢∗(𝑥)𝑡 𝑑𝑥 = ⟨𝜉, ℎ⟩𝐿𝑝 ≤
∫
Ω
𝑓 ◦(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥 =

∫
𝐴

𝑓 ◦(𝑢 (𝑥); 𝑡) 𝑑𝑥.

Since 𝐴 was arbitrary, this implies that

𝑢∗(𝑥)𝑡 ≤ 𝑓 ◦(𝑢 (𝑥); 𝑡) for almost every 𝑥 ∈ Ω.

Since 𝑡 ∈ ℝ was arbitrary, we obtain 𝑢∗(𝑥) ∈ 𝜕𝐶 𝑓 (𝑢 (𝑥)) almost everywhere.

It remains to show the remaining assertions when 𝑓 is regular. In this case, it follows from
(13.4) that for any ℎ ∈ 𝐿𝑝 (Ω),

(13.5) 𝐹 ◦(𝑢;ℎ) ≤
∫
Ω
𝑓 ◦(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥 =

∫
Ω
𝑓 ′(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥

≤ lim
𝑡→ 0

𝐹 (𝑢 + 𝑡ℎ) − 𝐹 (𝑢)
𝑡

= 𝐹 ′(𝑢;ℎ) ≤ 𝐹 ◦(𝑢;ℎ),
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where the second inequality is obtained by applying Fatou’s Lemma, this time appealing
to the integrable lower bound −𝐿 |ℎ(𝑥) |. This shows that 𝐹 ′(𝑢;ℎ) = 𝐹 ◦(𝑢;ℎ) and hence
that 𝐹 is regular. We further obtain for any 𝑢∗ ∈ 𝐿𝑞 (Ω) with 𝑢∗(𝑥) ∈ 𝜕𝐶 𝑓 (𝑢 (𝑥)) almost
everywhere and any ℎ ∈ 𝐿𝑝 (Ω), that

⟨𝑢∗, ℎ⟩𝐿𝑝 =
∫
Ω
𝑢∗(𝑥)ℎ(𝑥) 𝑑𝑥 ≤

∫
Ω
𝑓 ◦(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥 ≤ 𝐹 ◦(𝑢,ℎ),

where we have used (13.5) in the last inequality. Since ℎ ∈ 𝐿𝑝 (Ω) was arbitrary, this implies
that 𝑢∗ ∈ 𝜕𝐶𝐹 (𝑢). □

Under additional assumptions similar to those of Theorem 2.14 and with more technical
arguments, this result can be extended to spatially varying integrands 𝑓 : Ω ×ℝ → ℝ; see,
e.g., [Clarke, 1990, Theorem 2.7.5].

13.3 calculus rules

We now turn to calculus rules. The first one follows directly from the definition.

Theorem 13.10. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous near 𝑥 ∈ 𝑋 and 𝛼 ∈ ℝ. Then,

𝜕𝐶 (𝛼𝐹 ) (𝑥) = 𝛼𝜕𝐶 (𝐹 ) (𝑥).

Proof. First, 𝛼𝐹 is clearly locally Lipschitz continuous near 𝑥 for any 𝛼 ∈ ℝ. If 𝛼 = 0, both
sides of the claimed equality are zero (which is easiest seen from Theorem 13.5). If 𝛼 > 0,
we have that (𝛼𝐹 )◦(𝑥 ;ℎ) = 𝛼𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 from the definition. Hence,

𝛼𝜕𝐶𝐹 (𝑥) = {𝛼𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 }
= {𝛼𝑥∗ ∈ 𝑋 ∗ | ⟨𝛼𝑥∗, ℎ⟩𝑋 ≤ 𝛼𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 }
= {𝑦∗ ∈ 𝑋 ∗ | ⟨𝑦∗, ℎ⟩𝑋 ≤ (𝛼𝐹 )◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 }
= 𝜕𝐶 (𝛼𝐹 ) (𝑥).

To conclude the proof, it suffices to show the claim for𝛼 = −1. For that,we use Lemma 13.1 (iv)
to obtain that

𝜕𝐶 (−𝐹 ) (𝑥) = {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, ℎ⟩𝑋 ≤ (−𝐹 )◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 }
= {𝑥∗ ∈ 𝑋 ∗ | ⟨−𝑥∗,−ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥 ;−ℎ) for all ℎ ∈ 𝑋 }
= {−𝑦∗ ∈ 𝑋 ∗ | ⟨𝑦∗, 𝑔⟩𝑋 ≤ 𝐹 ◦(𝑥 ;𝑔) for all 𝑔 ∈ 𝑋 }
= −𝜕𝐶𝐹 (𝑥). □

Corollary 13.11. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous near 𝑥 ∈ 𝑋 . If 𝐹 has a local
maximum in 𝑥 , then 0 ∈ 𝜕𝐶𝐹 (𝑥).
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Proof. If 𝑥 is a local maximizer of 𝐹 , it is a local minimizer of −𝐹 . Hence, Theorems 13.4
and 13.10 imply that

0 ∈ 𝜕𝐶 (−𝐹 ) (𝑥) = −𝜕𝐶𝐹 (𝑥),
i.e., 0 = −0 ∈ 𝜕𝐶𝐹 (𝑥). □

support functionals

The remaining rules are significantly more involved. As in the previous proofs, a key step
is to relate different sets of the form (13.2), which we will do with the help of the following
lemmas due to [Hörmander, 1955].

Lemma 13.12. Let 𝑆 : 𝑋 → ℝ be positively homogeneous, subadditive, and lower semicontinu-
ous, and let

𝐴 = {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝑆 (𝑥) for all 𝑥 ∈ 𝑋 } .
Then

(13.6) 𝑆 (𝑥) = sup
𝑥∗∈𝐴

⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝑋 .

Proof. By definition of 𝐴, the inequality ⟨𝑥∗, 𝑥⟩𝑋 − 𝑆 (𝑥) ≤ 0 holds for all 𝑥 ∈ 𝑋 if and only
if 𝑥∗ ∈ 𝐴. Thus a case distinction as in Example 5.3 (ii) using the positive homogeneity of 𝑆
(which in particular implies that 𝑆 (0) = 0) shows that

𝑆∗(𝑥∗) = sup
𝑥∈𝑋

⟨𝑥∗, 𝑥⟩𝑋 − 𝑆 (𝑥) =
{

0 𝑥∗ ∈ 𝐴,
∞ 𝑥∗ ∉ 𝐴,

i.e., 𝑆∗ = 𝛿𝐴. Furthermore, by assumption 𝑆 is also subadditive and hence convex as well as
lower semicontinuous; it is also proper. Theorem 5.1 thus yields

□(13.7) 𝑆 (𝑥) = 𝑆∗∗(𝑥) = (𝛿𝐴)∗(𝑥) = sup
𝑥∗∈𝐴

⟨𝑥∗, 𝑥⟩𝑋 .

The right-hand side of (13.6) is called the support functional of 𝐴 ⊂ 𝑋 ∗; see, e.g., [Hiriart-
Urruty and Lemaréchal, 2001] for their use in convex analysis (in finite dimensions). Note
that (13.7) implies that any set of the form 𝐴 is nonempty since the supremum over the
empty set is −∞ and 𝑆 was assumed to be real-valued.

Lemma 13.13. Let 𝐴, 𝐵 ⊂ 𝑋 ∗ be nonempty, convex, and weakly-∗ closed. Then 𝐴 ⊂ 𝐵 if and
only if

(13.8) sup
𝑥∗∈𝐴

⟨𝑥∗, 𝑥⟩𝑋 ≤ sup
𝑥∗∈𝐵

⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝑋 .
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Proof. If 𝐴 ⊂ 𝐵, then the right-hand side of (13.8) is obviously not less than the left-hand
side. Conversely, assume that there exists an 𝑥∗ ∈ 𝐴 with 𝑥∗ ∉ 𝐵. By the assumptions on 𝐴
and 𝐵, we then obtain from Theorem 1.13 an 𝑥 ∈ 𝑋 and a 𝜆 ∈ ℝ with

⟨𝑧∗, 𝑥⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑧∗ ∈ 𝐵.

Taking the supremum over all 𝑧∗ ∈ 𝐵 and estimating the right-hand side by the supremum
over all 𝑥∗ ∈ 𝐴 then yields that

sup
𝑧∗∈𝐵

⟨𝑧∗, 𝑥⟩𝑋 < sup
𝑥∗∈𝐴

⟨𝑥∗, 𝑥⟩𝑋 .

Hence (13.8) is violated, and the claim follows by contraposition. □

Corollary 13.14. Let 𝐴, 𝐵 ⊂ 𝑋 ∗ be nonempty, convex, and weakly-∗ closed. Then 𝐴 = 𝐵 if and
only if

(13.9) sup
𝑥∗∈𝐴

⟨𝑥∗, 𝑥⟩𝑋 = sup
𝑥∗∈𝐵

⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝑋 .

Proof. Again, the claim is obvious if 𝐴 = 𝐵. Conversely, if (13.9) holds, then in particular
(13.8) holds, and we obtain from Lemma 13.13 that 𝐴 ⊂ 𝐵. Exchanging the roles of 𝐴 and 𝐵
now yields the claim. □

Since generalized directional derivatives are real-valued,Lemma 13.12 togetherwith Lemma 13.1
directly yields the following useful representation.

Corollary 13.15. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous and 𝑥 ∈ 𝑋 . Then

𝐹 ◦(𝑥 ;ℎ) = sup
𝑥∗∈𝜕𝐶𝐹 (𝑥)

⟨𝑥∗, ℎ⟩𝑋 for all ℎ ∈ 𝑋 .

In particular, 𝜕𝐶𝐹 (𝑥) is nonempty.

For example, this implies a converse result to Theorem 13.5.

Corollary 13.16. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous near 𝑥 . If 𝜕𝐶𝐹 (𝑥) = {𝑥∗} for
some 𝑥∗ ∈ 𝑋 ∗, then 𝐹 is Gâteaux differentiable in 𝑥 with 𝐷𝐹 (𝑥) = 𝑥∗.

Proof. Under the assumption, it follows from Corollary 13.15 that

𝐹 ◦(𝑥 ;ℎ) = sup
𝑥∗∈𝜕𝐹𝐶 (𝑥)

⟨𝑥∗, ℎ⟩𝑋 = ⟨𝑥∗, ℎ⟩𝑋
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for all ℎ ∈ 𝑋 . In particular, 𝐹 ◦(𝑥 ;ℎ) is linear (and not just reflective) in ℎ. It thus follows
from Lemma 13.1 (iv) that for any ℎ ∈ 𝑋 ,

lim inf
𝑦→𝑥
𝑡→ 0

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦)
𝑡

= − lim sup
𝑦→𝑥
𝑡→ 0

−𝐹 (𝑦 + 𝑡ℎ) − (−𝐹 (𝑦))
𝑡

= −(−𝐹 )◦(𝑥 ;ℎ) = −𝐹 ◦(𝑥 ;−ℎ) = 𝐹 ◦(𝑥, ℎ)
= lim sup

𝑦→𝑥
𝑡→ 0

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦)
𝑡

.

Hence the lim sup is a proper limit, and thus 𝐹 ◦(𝑥 ;ℎ) = 𝐹 ′(𝑥 ;ℎ); i.e., 𝐹 is regular in 𝑥 . This
shows that 𝐹 ′(𝑥 ;ℎ) is linear and bounded in ℎ, and hence 𝑥∗ is by definition the Gâteaux
derivative. □

It is not hard to verify from the definition and the Lipschitz continuity of 𝐹 that in this
case, 𝑥∗ is in fact a Fréchet derivative.

We can also use this to show the promised nonemptiness of the convex subdifferential.

Theorem 13.17. Let 𝑋 be a Banach space and let 𝐹 : 𝑋 → ℝ be proper, convex, and lower
semicontinuous, and 𝑥 ∈ int(dom 𝐹 ). Then 𝜕𝐹 (𝑥) is nonempty, convex, weakly-∗ closed, and
bounded.

Proof. Since 𝑥 ∈ (dom 𝐹 )𝑜 , Theorem 13.8 shows that 𝜕𝐹 (𝑥) = 𝜕𝐶𝐹 (𝑥) ≠ ∅ by Corollary 13.15.
The remaining properties follow similarly from Lemma 13.2. □

By a similar argument, we now obtain the promised converse of Theorem 4.5; we combine
both statements here for the sake of reference.

Theorem 13.18. Let 𝑋 be a Banach space and let 𝐹 : 𝑋 → ℝ be convex. If 𝐹 is Gâteaux
differentiable at 𝑥 , then 𝜕𝐹 (𝑥) = {𝐷𝐹 (𝑥)}. Conversely, if 𝑥 ∈ int(dom 𝐹 ) and 𝜕𝐹 (𝑥) = {𝑥∗}
is a singleton, then 𝐹 is Gâteaux differentiable at 𝑥 with 𝐷𝐹 (𝑥) = 𝑥∗.

Proof. The first claim was already shown in Theorem 4.5, while the second follows from
Corollary 13.16 together with Theorem 13.8. □

As another consequence, we can show that Moreau–Yosida regularization defined in Sec-
tion 7.3 preserves (global!) Lipschitz continuity.

Lemma 13.19. Let 𝑋 be a Hilbert space and let 𝐹 : 𝑋 → ℝ be Lipschitz continuous with
constant 𝐿. Then 𝐹𝛾 is Lipschitz continuous with constant 𝐿 as well. If 𝐹 is in addition convex,

then 𝐹 − 𝛾𝐿2

2 ≤ 𝐹𝛾 ≤ 𝐹 .
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Proof. Let 𝑥, 𝑧 ∈ 𝑋 . We expand

𝐹𝛾 (𝑥) − 𝐹𝛾 (𝑧) = sup
𝑦𝑧∈𝑋

inf
𝑦𝑥∈𝑋

(
𝐹 (𝑦𝑥 ) − 𝐹 (𝑦𝑧) + 1

2𝛾 ∥𝑦𝑥 − 𝑥 ∥
2
𝑋 − 1

2𝛾 ∥𝑦𝑧 − 𝑧∥
2
𝑋

)
.

Taking 𝑦𝑥 = 𝑦𝑧 + 𝑥 − 𝑧, we estimate

𝐹𝛾 (𝑥) − 𝐹𝛾 (𝑧) ≤ sup
𝑦𝑧∈𝑋

(𝐹 (𝑦𝑧 + 𝑥 − 𝑧) − 𝐹 (𝑦𝑧)) ≤ 𝐿∥𝑥 − 𝑧∥𝑋 .

Exchanging 𝑥 and 𝑦 , we obtain the first claim.

For the second claim, we first observe that by assumption dom 𝐹 = 𝑋 . Hence by Theo-
rem 13.17 and Lemma 13.2, for every 𝑥 ∈ 𝑋 , there exists some 𝑥∗ ∈ 𝜕𝐹 (𝑥) with ∥𝑥∗∥𝑋 ∗ ≤ 𝐿.
Thus, using Lemma 4.4, for any 𝑥∗ ∈ 𝜕𝐹 (𝑥),

𝐹𝛾 (𝑥) = inf
𝑦∈𝑋

𝐹 (𝑧) + 1
2𝛾 ∥𝑥 − 𝑦 ∥2

𝑋 ≥ 𝐹 (𝑥) + ⟨𝑥∗, 𝑧 − 𝑥⟩𝑋 + 1
2𝛾 ∥𝑥 − 𝑧∥2

𝑋 .

The Cauchy–Schwarz and generalized Young’s inequality then yield 𝐹𝛾 (𝑥) ≥ 𝐹 (𝑥) −
𝛾

2 ∥𝑥∗∥2
𝑋 ∗ ≥ 𝐹 (𝑥) − 𝛾

2𝐿
2. The second inequality follows by estimating the infimum in (7.19)

by 𝑧 = 𝑥 . □

sum rule

With the aid of these results on support functionals, we can now show a sum rule.

Theorem 13.20. Let 𝐹,𝐺 : 𝑋 → ℝ be locally Lipschitz continuous near 𝑥 ∈ 𝑋 . Then,

𝜕𝐶 (𝐹 +𝐺) (𝑥) ⊂ 𝜕𝐶𝐹 (𝑥) + 𝜕𝐶𝐺 (𝑥) .

If 𝐹 and 𝐺 are regular at 𝑥 , then 𝐹 +𝐺 is regular at 𝑥 and equality holds.

Proof. It is clear that 𝐹 +𝐺 is locally Lipschitz continuous near 𝑥 . Furthermore, from the
properties of the lim sup we always have for all ℎ ∈ 𝑋 that

(13.10) (𝐹 +𝐺)◦(𝑥 ;ℎ) ≤ 𝐹 ◦(𝑥 ;ℎ) +𝐺◦(𝑥 ;ℎ).

If 𝐹 and 𝐺 are regular at 𝑥 , the calculus of limits yields that

𝐹 ◦(𝑥 ;ℎ) +𝐺◦(𝑥 ;ℎ) = 𝐹 ′(𝑥 ;ℎ) +𝐺′(𝑥 ;ℎ) = (𝐹 +𝐺)′(𝑥 ;ℎ) ≤ (𝐹 +𝐺)◦(𝑥 ;ℎ),

which implies that (𝐹 +𝐺)◦(𝑥 ;ℎ) = (𝐹 +𝐺)′(𝑥 ;ℎ), i.e., 𝐹 +𝐺 is regular.

By the definition of the Clarke subdifferential, it follows from (13.10)

𝜕𝐶 (𝐹 +𝐺) (𝑥) ⊂ {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥 ;ℎ) +𝐺◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 } =: 𝐴
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(with equality if 𝐹 and 𝐺 are regular); it thus remains to show that 𝐴 = 𝜕𝐶𝐹 (𝑥) + 𝜕𝐶𝐺 (𝑥).
For this, we use that 𝜕𝐶𝐹 (𝑥) and 𝜕𝐶𝐺 (𝑥) are convex and weakly-∗ closed by Lemma 13.2
and nonempty by Corollary 13.15, and hence so is their sum since both sets are bounded.
Furthermore, as shown in Lemma 13.1, generalized directional derivatives and hence their
sums are real-valued, positively homogeneous, convex, and lower semicontinuous. We
thus obtain from Lemma 13.12 for all ℎ ∈ 𝑋 that

sup
𝑥∗∈𝜕𝐶𝐹 (𝑥)+𝜕𝐶𝐺 (𝑥)

⟨𝑥∗, ℎ⟩𝑋 = sup
𝑥∗1 ∈𝜕𝐶𝐹 (𝑥)

⟨𝑥∗1 , ℎ⟩𝑋 + sup
𝑥∗2∈𝜕𝐶𝐺 (𝑥)

⟨𝑥∗2, ℎ⟩𝑋

= 𝐹 ◦(𝑥 ;ℎ) +𝐺◦(𝑥 ;ℎ) = sup
𝑥∗∈𝐴

⟨𝑥∗, ℎ⟩𝑋 .

The claimed equality of 𝐴 (which is nonempty, convex, and weakly-∗ closed as well) and
the sum of the subdifferentials now follows from Corollary 13.14. □

Note the differences to the convex sum rule: The generic inclusion is now in the other
direction; furthermore, both functionals have to be regular, and in exactly the point where
the sum rule is applied. By induction, one obtains from this sum rule for an arbitrary
number of functionals (which all have to be regular).

chain rule

To prove a chain rule, we need the following “nonsmooth” mean value theorem due to
[Lebourg, 1975, 1979].

Theorem 13.21. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous near 𝑥 ∈ 𝑋 and 𝑥 be in the
Lipschitz neighborhood of 𝑥 . Then there exists a 𝜆 ∈ (0, 1) and an 𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥 + 𝜆(𝑥 − 𝑥))
such that

𝐹 (𝑥) − 𝐹 (𝑥) = ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 .

Proof. Define𝜓,𝜑 : [0, 1] → ℝ as

𝜓 (𝜆) ≔ 𝐹 (𝑥 + 𝜆(𝑥 − 𝑥)), 𝜑 (𝜆) ≔ 𝜓 (𝜆) + 𝜆(𝐹 (𝑥) − 𝐹 (𝑥)) .
By the assumptions on 𝐹 and 𝑥 , both𝜓 and 𝜑 are Lipschitz continuous. In addition, 𝜑 (0) =
𝐹 (𝑥) = 𝜑 (1), and hence 𝜑 has a local minimum or maximum in an interior point 𝜆 ∈ (0, 1).
From the Fermat principle Theorem 13.4 or Corollary 13.11, respectively, together with the
sum rule from Theorem 13.20 and the characterization of the subdifferential of the second
term from Theorem 13.5, we thus obtain that

0 ∈ 𝜕𝐶𝜑 (𝜆) ⊂ 𝜕𝐶𝜓 (𝜆) + {𝐹 (𝑥) − 𝐹 (𝑥)}.
Hence we are finished if we can show for 𝑥𝜆 ≔ 𝑥 + 𝜆(𝑥 − 𝑥) that
(13.11) 𝜕𝐶𝜓 (𝜆) ⊂

{⟨𝑥∗, 𝑥 − 𝑥⟩𝑋
�� 𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥𝜆)} =: 𝐴.
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For this purpose, consider for arbitrary 𝑠 ∈ ℝ the generalized directional derivative

𝜓 ◦(𝜆; 𝑠) = lim sup
𝜆→𝜆
𝑡→ 0

𝜓 (𝜆 + 𝑡𝑠) −𝜓 (𝜆)
𝑡

= lim sup
𝜆→𝜆
𝑡→ 0

𝐹 (𝑥 + (𝜆 + 𝑡𝑠) (𝑥 − 𝑥)) − 𝐹 (𝑥 + 𝜆(𝑥 − 𝑥))
𝑡

≤ lim sup
𝑧→𝑥𝜆
𝑡→ 0

𝐹 (𝑧 + 𝑡𝑠 (𝑥 − 𝑥)) − 𝐹 (𝑧)
𝑡

= 𝐹 ◦(𝑥𝜆; 𝑠 (𝑥 − 𝑥)),

where the inequality follows from considering arbitrary sequences 𝑧 → 𝑥𝜆 (instead of
special sequences of the form 𝑧𝑛 = 𝑥 + 𝜆𝑛 (𝑥 − 𝑥)) in the last lim sup. Again, the definition
of the Clarke subdifferential thus implies that

(13.12) 𝜕𝐶𝜓 (𝜆) ⊂
{
𝑡∗ ∈ ℝ

�� 𝑡∗𝑠 ≤ 𝐹 ◦(𝑥𝜆; 𝑠 (𝑥 − 𝑥)) for all 𝑠 ∈ ℝ
}
=: 𝐵.

It remains to show that the sets 𝐴 and 𝐵 from (13.11) and (13.12) coincide. But this follows
again from Lemma 13.12 and Corollary 13.14, since for all 𝑠 ∈ ℝ we have that

sup
𝑡∗∈𝐴

𝑡∗𝑠 = sup
𝑥∗∈𝜕𝐶𝐹 (𝑥𝜆)

⟨𝑥∗, 𝑠 (𝑥 − 𝑥)⟩𝑋 = 𝐹 ◦(𝑥𝜆; 𝑠 (𝑥 − 𝑥)) = sup
𝑡∗∈𝐵

𝑡∗𝑠 . □

We also need the following generalization of the argument in Theorem 13.5.

Lemma 13.22. Let𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 → 𝑌 be continuously Fréchet differentiable
at 𝑥 ∈ 𝑋 . Let {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 be a sequence with 𝑥𝑛 → 𝑥 and {𝑡𝑛}𝑛∈ℕ ⊂ (0,∞) be a sequence
with 𝑡𝑛→ 0. Then for any ℎ ∈ 𝑋 ,

lim
𝑛→∞

𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)
𝑡𝑛

= 𝐹 ′(𝑥)ℎ.

Proof. Let ℎ ∈ 𝑋 be arbitrary. By the Hahn–Banach extension Theorem 1.4, for every 𝑛 ∈ ℕ

there exists a 𝑦∗𝑛 ∈ 𝑌 ∗ with ∥𝑦∗𝑛 ∥𝑌 ∗ = 1 and

∥𝑡−1
𝑛 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)) − 𝐹 ′(𝑥)ℎ∥𝑌 = ⟨𝑦∗𝑛, 𝑡−1

𝑛 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)) − 𝐹 ′(𝑥)ℎ⟩𝑌 .
Applying now the classical mean value theorem to the scalar functions

𝑓𝑛 : [0, 1] → ℝ, 𝑓𝑛 (𝑠) = ⟨𝑦∗𝑛, 𝐹 (𝑥𝑛 + 𝑠𝑡𝑛ℎ)⟩𝑌 ,
we obtain similarly to the proof of Theorem 2.10 for all 𝑛 ∈ ℕ that

∥𝑡−1
𝑛 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)) − 𝐹 ′(𝑥)ℎ∥𝑌 = 𝑡−1

𝑛

∫ 1

0
⟨𝑦∗𝑛, 𝐹 ′(𝑥𝑛 + 𝑠𝑡𝑛ℎ)𝑡𝑛ℎ⟩𝑌 𝑑𝑠 − ⟨𝑦∗𝑛, 𝐹 ′(𝑥)ℎ⟩𝑌

=
∫ 1

0
⟨𝑦∗𝑛, [𝐹 ′(𝑥𝑛 + 𝑠𝑡𝑛ℎ) − 𝐹 ′(𝑥)]ℎ⟩𝑌 𝑑𝑠

≤
∫ 1

0
∥𝐹 ′(𝑥𝑛 + 𝑠𝑡𝑛ℎ) − 𝐹 ′(𝑥))∥𝕃(𝑋 ;𝑌 ) 𝑑𝑠 ∥ℎ∥𝑋 ,
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where we have used (1.1) together with ∥𝑦∗𝑛 ∥𝑌 ∗ = 1 in the last step. Since 𝐹 ′ is continuous
by assumption, the integrand goes to zero as 𝑛 → ∞ uniformly in 𝑠 ∈ [0, 1], and the claim
follows. □

We now come to the chain rule, which in contrast to the convex case does not require the
inner mapping to be linear; this is one of the main advantages of the Clarke subdifferential
in the context of nonsmooth optimization.

Theorem 13.23. Let 𝑌 be a separable Banach space, 𝐹 : 𝑋 → 𝑌 be continuously Fréchet
differentiable at 𝑥 ∈ 𝑋 , and 𝐺 : 𝑌 → ℝ be locally Lipschitz continuous near 𝐹 (𝑥). Then,

𝜕𝐶 (𝐺 ◦ 𝐹 ) (𝑥) ⊂ 𝐹 ′(𝑥)∗𝜕𝐶𝐺 (𝐹 (𝑥)) ≔ {𝐹 ′(𝑥)∗𝑦∗ | 𝑦∗ ∈ 𝜕𝐶𝐺 (𝐹 (𝑥))} .

If 𝐺 is regular at 𝐹 (𝑥), then 𝐺 ◦ 𝐹 is regular at 𝑥 , and equality holds.

Proof. The local Lipschitz continuity of 𝐺 ◦ 𝐹 follows from that of 𝐺 and 𝐹 (which in turn
follows from Lemma 2.11). For the claimed inclusion (respectively, equality), we argue
as before using the support calculus. First we show that for every ℎ ∈ 𝑋 there exists a
𝑦∗ ∈ 𝜕𝐶𝐺 (𝐹 (𝑥)) with

(13.13) (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) = ⟨𝑦∗, 𝐹 ′(𝑥)ℎ⟩𝑌 .

To this end, consider for given ℎ ∈ 𝑋 sequences {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 and {𝑡𝑛}𝑛∈ℕ ⊂ (0,∞) with
𝑥𝑛 → 𝑥 , 𝑡𝑛→ 0, and

(𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) = lim
𝑛→∞

𝐺 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ)) −𝐺 (𝐹 (𝑥𝑛))
𝑡𝑛

.

Let us now write 𝑈𝐹 (𝑥) for the neighborhood of 𝐹 (𝑥) where 𝐺 is Lipschitz with factor
𝐿. By continuity of 𝐹 , we can then find 𝑛0 ∈ ℕ such that 𝐹 (𝑥𝑛), 𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) ∈ 𝑈𝐹 (𝑥)
for all 𝑛 ≥ 𝑛0. Theorem 13.21 thus yields for all 𝑛 ≥ 𝑛0 a 𝑦∗𝑛 ∈ 𝜕𝐶𝐺 (𝑦𝑛) with 𝑦𝑛 :=
𝐹 (𝑥𝑛) + 𝜆𝑛 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)) for some 𝜆𝑛 ∈ (0, 1) such that

(13.14) 𝐺 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ)) −𝐺 (𝐹 (𝑥𝑛))
𝑡𝑛

= ⟨𝑦∗𝑛, 𝑞𝑛⟩𝑌 with 𝑞𝑛 := 𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)
𝑡𝑛

Since 𝜆𝑛 ∈ (0, 1) is uniformly bounded, we also have that 𝑦𝑛 → 𝐹 (𝑥) for 𝑛 → ∞. Hence 𝑦𝑛
is in the Lipschitz neighborhood of 𝐹 (𝑥) for 𝑛 ∈ ℕ large enough, and Lemma 13.2 yields
that 𝑦∗𝑛 ∈ 𝜕𝐶𝐺 (𝑦𝑛) ⊂ 𝔹(0, 𝐿) for 𝑛 ∈ ℕ sufficiently large. This implies that {𝑦∗𝑛}𝑛∈ℕ ⊂ 𝑌 ∗ is
bounded, and the Banach–Alaoglu Theorem 1.11 yields a weakly-∗ convergent subsequence
with limit 𝑦∗ ∈ 𝜕𝐶𝐺 (𝐹 (𝑥)) by Lemma 13.3. Finally, since 𝐹 is continuously Fréchet differ-
entiable, 𝑞𝑛 → 𝐹 ′(𝑥)ℎ strongly in 𝑌 by Lemma 13.22. Hence, ⟨𝑦∗𝑛, 𝑞𝑛⟩𝑌 → ⟨𝑦∗, 𝐹 ′(𝑥)ℎ⟩ as
the duality pairing of weakly-∗ and strongly converging sequences. Passing to the limit in
(13.14) therefore yields (13.13) (first along the subsequence chosen above; by convergence
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of the left-hand side of (13.14) and the uniqueness of limits then for the full sequence as
well). By definition of the Clarke subdifferential, we thus have for 𝑦∗ ∈ 𝜕𝐶𝐺 (𝐹 (𝑥)) that
(13.15) (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) = ⟨𝑦∗, 𝐹 ′(𝑥)ℎ⟩𝑌 ≤ 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ).

If 𝐺 is now regular at 𝑥 , we have that 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ) = 𝐺′(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ) and hence by
the local Lipschitz continuity of 𝐺 and the Fréchet differentiability of 𝐹 that

𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ)
= lim
𝑡→ 0

𝐺 (𝐹 (𝑥) + 𝑡𝐹 ′(𝑥)ℎ) −𝐺 (𝐹 (𝑥))
𝑡

= lim
𝑡→ 0

𝐺 (𝐹 (𝑥) + 𝑡𝐹 ′(𝑥)ℎ) −𝐺 (𝐹 (𝑥 + 𝑡ℎ)) +𝐺 (𝐹 (𝑥 + 𝑡ℎ)) −𝐺 (𝐹 (𝑥))
𝑡

≤ lim
𝑡→ 0

(
𝐿∥ℎ∥𝑋 ∥𝐹 (𝑥) + 𝐹 ′(𝑥)𝑡ℎ − 𝐹 (𝑥 + 𝑡ℎ)∥𝑌

∥𝑡ℎ∥𝑋 + 𝐺 (𝐹 (𝑥 + 𝑡ℎ)) −𝐺 (𝐹 (𝑥))
𝑡

)
= (𝐺 ◦ 𝐹 )′(𝑥 ;ℎ) ≤ (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ).

Together with (13.15), this implies that (𝐺 ◦ 𝐹 )′(𝑥 ;ℎ) = (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) (i.e., 𝐺 ◦ 𝐹 is regular
at 𝑥 ) and that

(13.16) (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) = 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ).

As before, Lemma 13.12 now implies for all ℎ ∈ 𝑋 that

sup
𝑥∗∈𝐹 ′ (𝑥)∗𝜕𝐶𝐺 (𝐹 (𝑥))

⟨𝑥∗, ℎ⟩𝑋 = sup
𝑦∗∈𝜕𝐶𝐺 (𝐹 (𝑥))

⟨𝑦∗, 𝐹 ′(𝑥)ℎ⟩𝑌 = 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ)

and hence by Lemma 13.13 that

𝐹 ′(𝑥)∗𝜕𝐶𝐺 (𝐹 (𝑥)) = {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ) for all ℎ ∈ 𝑋 } .
Combined with (13.15) or (13.16) and the definition of the Clarke subdifferential in (13.2), this
now yields the claimed inclusion or equality, respectively, for the Clarke subdifferential of
the composition. □

Again, the generic inclusion is the reverse of the one in the convex chain rule. Note that
equality in the chain rule also holds if −𝐺 is regular, since we can then apply Theorem 13.23
to −𝐺 ◦ 𝐹 and use that 𝜕𝐶 (−𝐺) (𝐹 (𝑥)) = −𝜕𝐶𝐺 (𝐹 (𝑥)) by Theorem 13.10. Furthermore, if
𝐺 is not regular but 𝐹 ′(𝑥) is surjective, a similar proof shows that equality (but not the
regularity of 𝐺 ◦ 𝐹 ) holds in the chain rule; see [Clarke, 2013, Theorem 10.19].

Example 13.24. As a simple example, we consider

𝐹 : ℝ2 → ℝ, (𝑥1, 𝑥2) ↦→ |𝑥1𝑥2 |,
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which is not convex. To compute the Clarke subdifferential, we write 𝐹 = 𝑔 ◦𝑇 for

𝑔 : ℝ → ℝ, 𝑡 ↦→ |𝑡 |, 𝑇 : ℝ2 → ℝ, (𝑥1, 𝑥2) ↦→ 𝑥1𝑥2,

where 𝑔 is finite-valued, convex, and Lipschitz continuous, and hence regular at any
𝑡 ∈ ℝ, and 𝑇 is continuously differentiable for all 𝑥 ∈ ℝ2 with Fréchet derivative

𝑇 ′(𝑥) : ℝ2 → ℝ, 𝑇 ′(𝑥)ℎ ≔ 𝑥2ℎ1 + 𝑥1ℎ2.

Its adjoint is easily verified to be given by

𝑇 ′(𝑥)∗ : ℝ → ℝ2, 𝑇 ′(𝑥)∗𝑡 ≔ (
𝑥2𝑡
𝑥1𝑡

)
.

Hence, Theorem 13.23 together with Theorem 13.8 yields that 𝐹 is regular at any 𝑥 ∈ ℝ2

and that
𝜕𝐶𝐹 (𝑥) = 𝑇 ′(𝑥)∗𝜕𝑔(𝑇 (𝑥)) =

(
𝑥2
𝑥1

)
sign(𝑥1𝑥2),

for the set-valued sign function from Example 4.7.

13.4 characterization in finite dimensions

Amore explicit characterization of the Clarke subdifferential is possible in finite-dimensional
spaces. The basis is the following theorem, which only holds in ℝ𝑁 ; a proof can be found
in, e.g., [DiBenedetto, 2002, Theorem 23.2] or [Heinonen, 2005, Theorem 3.1].

Theorem 13.25 (Rademacher). Let𝑈 ⊂ ℝ𝑁 be open and 𝐹 : 𝑈 → ℝ be Lipschitz continuous.
Then 𝐹 is Fréchet differentiable at almost every 𝑥 ∈ 𝑈 .

This result allows replacing the lim sup in the definition of the Clarke subdifferential (now
considered as a subset of ℝ𝑁 , i.e., identifying the dual of ℝ𝑁 with ℝ𝑁 itself) with a proper
limit.

Theorem 13.26. Let 𝐹 : ℝ𝑁 → ℝ be locally Lipschitz continuous near 𝑥 ∈ ℝ𝑁 . Then 𝐹 is
Fréchet differentiable on ℝ𝑁 \ 𝐸𝐹 for a set 𝐸𝐹 ⊂ ℝ𝑁 of Lebesgue measure 0 and

(13.17) 𝜕𝐶𝐹 (𝑥) = co
{

lim
𝑛→∞∇𝐹 (𝑥𝑛)

��� 𝑥𝑛 → 𝑥, 𝑥𝑛 ∉ 𝐸𝐹
}
,

where co𝐴 denotes the convex hull of 𝐴 ⊂ ℝ𝑁 .

Proof. We first note that the Rademacher Theorem ensures that such a set 𝐸𝐹 exists and has
Lebesgue measure 0. Hence there indeed exist sequences {𝑥𝑛}𝑛∈ℕ ∈ ℝ𝑁 \ 𝐸𝐹 with 𝑥𝑛 → 𝑥 .
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Furthermore, the local Lipschitz continuity of 𝐹 yields that for any 𝑥𝑛 in the Lipschitz
neighborhood of 𝑥 and any ℎ ∈ ℝ𝑁 , we have that

|⟨∇𝐹 (𝑥𝑛), ℎ⟩| =
����lim𝑡→ 0

𝐹 (𝑥𝑛 + 𝑡ℎ) − 𝐹 (𝑥𝑛)
𝑡

���� ≤ 𝐿∥ℎ∥

and hence that ∥∇𝐹 (𝑥𝑛)∥ ≤ 𝐿 for all 𝑛 ∈ ℕ large enough. This implies that {∇𝐹 (𝑥𝑛)}𝑛∈ℕ ⊂
ℝ𝑁 is bounded and thus contains a convergent subsequence. The set on the right-hand
side of (13.17) is therefore nonempty.

Let now {𝑥𝑛}𝑛∈ℕ ⊂ ℝ𝑁 \ 𝐸𝐹 be an arbitrary sequence with 𝑥𝑛 → 𝑥 and {∇𝐹 (𝑥𝑛)}𝑛∈ℕ → 𝑥∗

for some 𝑥∗ ∈ ℝ𝑁 . Since 𝐹 is differentiable at every 𝑥𝑛 ∉ 𝐸𝐹 by definition, Lemma 13.7
yields that ∇𝐹 (𝑥𝑛) ∈ 𝜕𝐶𝐹 (𝑥𝑛), and hence 𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥) by Lemma 13.3. The convexity of
𝜕𝐶𝐹 (𝑥) from Lemma 13.2 now implies that any convex combination of such limits 𝑥∗ is
contained in 𝜕𝐶𝐹 (𝑥), which shows the inclusion “⊃” in (13.17).

For the other inclusion, we first show for all ℎ ∈ ℝ𝑁 and 𝜀 > 0 that

(13.18) 𝐹 ◦(𝑥 ;ℎ) − 𝜀 ≤ lim sup
𝐸𝐹∌𝑦→𝑥

⟨∇𝐹 (𝑦), ℎ⟩ =: 𝑀 (ℎ).

Indeed, by definition of𝑀 (ℎ) and of the lim sup, for every 𝜀 > 0 there exists a 𝛿 > 0 such
that

⟨∇𝐹 (𝑦), ℎ⟩ ≤ 𝑀 (ℎ) + 𝜀 for all 𝑦 ∈ 𝕆(𝑥, 𝛿) \ 𝐸𝐹 .
Here, 𝛿 > 0 can be chosen sufficiently small for 𝐹 to be Lipschitz continuous on 𝕆(𝑥, 𝛿).
In particular, 𝐸𝐹 ∩𝕆(𝑥, 𝛿) is a set of zero measure. Hence, 𝐹 is differentiable at 𝑦 + 𝑡ℎ for
almost all 𝑦 ∈ 𝕆(𝑥, 𝛿2 ) and almost all 𝑡 ∈ (0, 𝛿

2∥ℎ∥ ) by Fubini’s Theorem. The classical mean
value theorem therefore yields for all such 𝑦 and 𝑡 that

(13.19) 𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦) =
∫ 𝑡

0
⟨∇𝐹 (𝑦 + 𝑠ℎ), ℎ⟩ 𝑑𝑠 ≤ 𝑡 (𝑀 (ℎ) + 𝜀)

since 𝑦 + 𝑠ℎ ∈ 𝕆(𝑥, 𝛿) for all 𝑠 ∈ (0, 𝑡) by the choice of 𝑡 . The continuity of 𝐹 implies that
the full inequality (13.19) even holds for all 𝑦 ∈ 𝕆(𝑥, 𝛿2 ) and all 𝑡 ∈ (0, 𝛿

2∥ℎ∥ ). Dividing by
𝑡 > 0 and taking the lim sup over all 𝑦 → 𝑥 and 𝑡→ 0 now yields (13.18).

Since 𝜀 > 0 was arbitrary, this implies that 𝐹 ◦(𝑥 ;ℎ) ≤ 𝑀 (ℎ) for all ℎ ∈ ℝ𝑁 and hence that

𝜕𝐶𝐹 (𝑥) ⊂
{
𝑥∗ ∈ ℝ𝑁

�� ⟨𝑥∗, ℎ⟩ ≤ 𝑀 (ℎ) for all ℎ ∈ ℝ𝑁
}
=: 𝐵.

We are thus finished if we can show that 𝐵 is equal to the set on the right-hand side of
(13.17), which we denote by co𝐴. For this, we once again appeal to Corollary 13.14. First,
we note that the definition of the convex hull implies for all ℎ ∈ ℝ𝑁 that

sup
𝑥∗∈co𝐴

⟨𝑥∗, ℎ⟩ = sup
𝑥∗𝑖 ∈𝐴∑

𝑖 𝑡𝑖=1,𝑡𝑖≥0

∑︁
𝑖

𝑡𝑖 ⟨𝑥∗𝑖 , ℎ⟩ = sup∑
𝑖 𝑡𝑖=1,𝑡𝑖≥0

∑︁
𝑖

𝑡𝑖 sup
𝑥∗𝑖 ∈𝐴

⟨𝑥∗𝑖 , ℎ⟩ = sup
𝑥∗∈𝐴

⟨𝑥∗, ℎ⟩
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since the sum is maximal if and only if each summand is maximal. Next we have that

𝑀 (ℎ) = lim sup
𝐸𝐹∌𝑦→𝑥

⟨∇𝐹 (𝑦), ℎ⟩ = sup
𝐸𝐹∌𝑥𝑛→𝑥

⟨lim𝑛→∞ ∇𝐹 (𝑥𝑛), ℎ⟩ = sup
𝑥∗∈𝐴

⟨𝑥∗, ℎ⟩.

Finally, one can show as in Lemma 13.1 that the mapping ℎ ↦→ 𝑀 (ℎ) is positively ho-
mogeneous, subadditive, and lower semicontinuous. From Lemma 13.12, we thus have
that

sup
𝑥∗∈𝐵

⟨𝑥∗, ℎ⟩ = 𝑀 (ℎ) = sup
𝑥∗∈𝐴

⟨𝑥∗, ℎ⟩ = sup
𝑥∗∈co𝐴

⟨𝑥∗, ℎ⟩.

Since both sets are clearly convex and closed as well as nonempty (which we’ve already
argued for co𝐴 and which follows from (13.18) for 𝐵), (13.9) yields 𝐵 = co𝐴 and thus the
claim. □

Remark 13.27. It is possible to extend the Clarke subdifferential defined here to extended-real valued
functions using an equivalent, more geometrical, construction involving generalized normal cones
to epigraphs; see [Clarke, 1990, Definition 2.4.10]. We will follow this approach when studying the
more general subdifferentials for set-valued functionals in Chapters 18 and 20.
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14 SEMISMOOTH NEWTON METHODS

The proximal point and splitting methods in Chapter 8 are generalizations of gradient
methods and in general have at most linear convergence. In this chapter, we will therefore
consider second-order methods, specifically a generalization of Newton’s method which
admits (locally) superlinear convergence.

14.1 convergence of generalized newton methods

As a motivation, we first consider the most general form of a Newton-type method. Let 𝑋
and 𝑌 be normed vector spaces and 𝐹 : 𝑋 → 𝑌 be given and suppose we are looking for an
𝑥 ∈ 𝑋 with 𝐹 (𝑥) = 0. A Newton-type method to find such an 𝑥 then consists of repeating
the following steps:

1. choose an invertible𝑀𝑘 ≔ 𝑀 (𝑥𝑘) ∈ 𝕃(𝑋 ;𝑌 );
2. solve the Newton step 𝑀𝑘𝑠

𝑘 = −𝐹 (𝑥𝑘);
3. update 𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘 .

We can now ask under which conditions this method converges to 𝑥 , and in particular,
when the convergence is superlinear , i.e.,

(14.1) lim
𝑘→∞

∥𝑥𝑘+1 − 𝑥 ∥𝑋
∥𝑥𝑘 − 𝑥 ∥𝑋

= 0.

(Recall the discussion in the beginning of Chapter 10.) For this purpose, we set 𝑒𝑘 ≔ 𝑥𝑘 − 𝑥
and use the Newton step together with the fact that 𝐹 (𝑥) = 0 to obtain that

(14.2) ∥𝑥𝑘+1 − 𝑥 ∥𝑋 = ∥𝑥𝑘 −𝑀 (𝑥𝑘)−1𝐹 (𝑥𝑘) − 𝑥 ∥𝑋
= ∥𝑀 (𝑥𝑘)−1

[
𝐹 (𝑥𝑘) − 𝐹 (𝑥) −𝑀 (𝑥𝑘) (𝑥𝑘 − 𝑥)

]
∥𝑋

= ∥𝑀 (𝑥 + 𝑒𝑘)−1
[
𝐹 (𝑥 + 𝑒𝑘) − 𝐹 (𝑥) −𝑀 (𝑥 + 𝑒𝑘)𝑒𝑘

]
∥𝑋

≤ ∥𝑀 (𝑥 + 𝑒𝑘)−1∥𝕃(𝑌 ;𝑋 ) ∥𝐹 (𝑥 + 𝑒𝑘) − 𝐹 (𝑥) −𝑀 (𝑥 + 𝑒𝑘)𝑒𝑘 ∥𝑌 .

Hence, (14.1) holds under
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(i) a regularity condition: there exists a 𝐶 > 0 with

∥𝑀 (𝑥𝑘)−1∥𝕃(𝑌 ;𝑋 ) ≤ 𝐶 for all 𝑘 ∈ ℕ;

(ii) an approximation condition:

lim
𝑘→∞

∥𝐹 (𝑥 + 𝑒𝑘) − 𝐹 (𝑥) −𝑀 (𝑥 + 𝑒𝑘)𝑒𝑘 ∥𝑌
∥𝑒𝑘 ∥𝑋

= 0.

This motivates the following definition: We call 𝐹 : 𝑋 → 𝑌 Newton differentiable in 𝑥 ∈ 𝑋
with Newton derivative 𝐷𝑁 𝐹 (𝑥) if there exists a neighborhood 𝑈 ⊂ 𝑋 of 𝑥 and a mapping
𝐷𝑁 𝐹 : 𝑈 → 𝕃(𝑋 ;𝑌 ) such that

(14.3) lim
∥ℎ∥𝑋→0

∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ∥𝑌
∥ℎ∥𝑋 = 0.

Note the differences to the Fréchet derivative: First, the Newton derivative is evaluated
in 𝑥 + ℎ instead of 𝑥 . More importantly, we have not required any connection between
𝐷𝑁 𝐹 with 𝐹 , while the only possible candidate for the Fréchet derivative was the Gâteaux
derivative (which itself was linked to 𝐹 via the directional derivative). A function thus
can only be Newton differentiable (or not) with respect to a concrete choice of 𝐷𝑁 𝐹 . In
particular, Newton derivatives are not unique.

If 𝐹 is Newton differentiable with Newton derivative 𝐷𝑁 𝐹 , we can set𝑀 (𝑥𝑘) = 𝐷𝑁 𝐹 (𝑥𝑘)
and obtain the semismooth Newton method

(14.4) 𝑥𝑘+1 ≔ 𝑥𝑘 − 𝐷𝑁 𝐹 (𝑥𝑘)−1𝐹 (𝑥𝑘).
Its local superlinear convergence follows directly from the construction.

Theorem 14.1. Let 𝑋,𝑌 be normed vector spaces and let 𝐹 : 𝑋 → 𝑌 be Newton differentiable
near 𝑥 ∈ 𝑋 with 𝐹 (𝑥) = 0 with Newton derivative 𝐷𝑁 𝐹 (𝑥). Assume further that there exist
𝛿 > 0 and 𝐶 > 0 with ∥𝐷𝑁 𝐹 (𝑥)−1∥𝕃(𝑌 ;𝑋 ) ≤ 𝐶 for all 𝑥 ∈ 𝕆(𝑥, 𝛿). Then the semismooth
Newton method (14.4) converges superlinearly to 𝑥 for all 𝑥0 sufficiently close to 𝑥 .

Proof. The proof is virtually identical to that for the classical Newton method. We have
already shown that for any 𝑥0 ∈ 𝕆(𝑥, 𝛿),
(14.5) ∥𝑒1∥𝑋 ≤ 𝐶 ∥𝐹 (𝑥 + 𝑒0) − 𝐹 (𝑥) − 𝐷𝑁 𝐹 (𝑥 + 𝑒0)𝑒0∥𝑌 .
Let now 𝜀 ∈ (0, 1) be arbitrary. The Newton differentiability of 𝐹 then implies that there
exists a 𝜌 > 0 such that

(14.6) ∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ∥𝑌 ≤ 𝜀

𝐶
∥ℎ∥𝑋 for all ∥ℎ∥𝑋 ≤ 𝜌.

Hence, if we choose 𝑥0 such that ∥𝑥 − 𝑥0∥𝑋 ≤ min{𝛿, 𝜌}, the estimate (14.5) implies that
∥𝑥−𝑥 1∥𝑋 ≤ 𝜀∥𝑥−𝑥0∥𝑋 . By induction,we obtain from this that ∥𝑥−𝑥𝑘 ∥𝑋 ≤ 𝜀𝑘 ∥𝑥−𝑥0∥𝑋 → 0.
Since 𝜀 ∈ (0, 1) was arbitrary, we can take in each step 𝑘 a different 𝜀𝑘 → 0 to obtain that
∥𝑥𝑘+1 − 𝑥 ∥𝑋 ≤ 𝜀𝑘 ∥𝑥𝑘 − 𝑥 ∥𝑋 and hence that the convergence is superlinear. □
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Sometimes, the Newton derivatives 𝐷𝑁 𝐹 (𝑥) are poorly conditioned, or the region of con-
vergence impractically small. In that case, it may help to dampen the method to

𝑥𝑘+1 ≔ 𝑥𝑘 − [𝐷𝑁 𝐹 (𝑥𝑘) + 𝜃 Id]−1𝐹 (𝑥𝑘),

for some 𝜃 > 0. As shown in the next theorem, this method still converges, but only linearly.
For this scheme, we would take𝑀 (𝑥) = 𝐷𝑁 𝐹 (𝑥) + 𝜃 Id in the theorem. As we will learn in
Chapter 30, it is also possible to modify 𝐷𝑁 𝐹 (𝑥) only on a subspace.

Theorem 14.2. Let 𝑋,𝑌 be normed vector spaces and let 𝐹 : 𝑋 → 𝑌 be Newton differentiable
near 𝑥 ∈ 𝑋 with 𝐹 (𝑥) = 0 with Newton derivative 𝐷𝑁 𝐹 (𝑥). Also assume to be given𝑀 (𝑥) ∈
𝕃(𝑋 ;𝑌 ) that satisfy ∥𝑀 (𝑥)−𝐷𝑁 𝐹 (𝑥)∥𝕃(𝑋 ;𝑌 ) ≤ 𝜃 and ∥𝑀 (𝑥)−1∥𝕃(𝑌 ;𝑋 ) ≤ 𝐶 for all𝑥 ∈ 𝕆(𝑥, 𝛿)
for some 𝜃, 𝛿 > 0 and 0 < 𝐶 < 𝜃−1. Then 𝑥𝑘+1 ≔ 𝑥𝑘 −𝑀 (𝑥𝑘)−1𝐹 (𝑥𝑘) converge linearly to 𝑥
for all 𝑥0 sufficiently close to 𝑥 .

Proof. Following (14.2), we have

(14.7) ∥𝑒1∥𝑋 ≤ 𝐶 ∥𝐹 (𝑥 + 𝑒0) − 𝐹 (𝑥) −𝑀 (𝑥 + 𝑒0)𝑒0∥𝑌 .

Let 𝜀 > 0. Using the Newton differentiability of 𝐹 , following (14.6), we deduce the existence
of 𝜌 > 0 such that whenever ∥ℎ∥𝑋 ≤ 𝜌 , we have

∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) −𝑀 (𝑥 + ℎ)ℎ∥𝑌 ≤ ∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ∥𝑌
+ ∥[𝐷𝑁 𝐹 (𝑥 + ℎ) −𝑀 (𝑥 + ℎ)]ℎ∥𝑌

≤
( 𝜀
𝐶

+ 𝜃
)
∥ℎ∥𝑋 .

Hence, if we choose 𝑥0 such that ∥𝑥 − 𝑥0∥𝑋 ≤ min{𝛿, 𝜌}, the estimate (14.7) implies that
∥𝑥 − 𝑥 1∥𝑋 ≤ (𝐶𝜃 + 𝜀)∥𝑥 − 𝑥0∥𝑋 . Since 0 < 𝐶𝜃 < 1, taking 𝜀 > 0 small enough, we have
𝛽 ≔ 𝐶𝜃 + 𝜀 ∈ (0, 1). By induction, we obtain from this that ∥𝑥 − 𝑥𝑘 ∥𝑋 ≤ 𝛽𝑘 ∥𝑥 − 𝑥0∥𝑋 → 0.
This shows the linear convergence. □

14.2 newton derivatives

The remainder of this chapter is dedicated to the construction of Newton derivatives that
satisfy the approximation condition (although it should be pointed out that the verification
of the regularity condition is usually the much more involved step in practice, which is
usually very specific to the concrete problem). We begin with the obvious connection with
the Fréchet derivative.

Theorem 14.3. Let 𝑋,𝑌 be normed vector spaces. If 𝐹 : 𝑋 → 𝑌 is continuously differentiable
at 𝑥 ∈ 𝑋 , then 𝐹 is also Newton differentiable at 𝑥 with Newton derivative 𝐷𝑁 𝐹 (𝑥) = 𝐹 ′(𝑥).
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Proof. We have for arbitrary ℎ ∈ 𝑋 that

∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐹 ′(𝑥 + ℎ)ℎ∥𝑌 ≤ ∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐹 ′(𝑥)ℎ∥𝑌
+ ∥𝐹 ′(𝑥) − 𝐹 ′(𝑥 + ℎ)∥𝕃(𝑋 ;𝑌 ) ∥ℎ∥𝑋 ,

where the first summand is 𝑜 (∥ℎ∥𝑋 ) by definition of the Fréchet derivative and the second
by the continuity of 𝐹 ′. □

Calculus rules can be shown similarly to those for Fréchet derivatives. For the sum rule
this is immediate; here we prove a chain rule by way of example.

Theorem 14.4. Let 𝑋 , 𝑌 , and 𝑍 be normed vector spaces, and let 𝐹 : 𝑋 → 𝑌 be Newton differ-
entiable at 𝑥 ∈ 𝑋 with Newton derivative 𝐷𝑁 𝐹 (𝑥) and 𝐺 : 𝑌 → 𝑍 be Newton differentiable
at 𝑦 ≔ 𝐹 (𝑥) ∈ 𝑌 with Newton derivative 𝐷𝑁𝐺 (𝑦). If 𝐷𝑁 𝐹 and 𝐷𝑁𝐺 are uniformly bounded
in a neighborhood of 𝑥 and 𝑦 , respectively, then 𝐺 ◦ 𝐹 is also Newton differentiable at 𝑥 with
Newton derivative

𝐷𝑁 (𝐺 ◦ 𝐹 ) (𝑥) = 𝐷𝑁𝐺 (𝐹 (𝑥)) ◦ 𝐷𝑁 𝐹 (𝑥).

Proof. We proceed as in the proof of Theorem 2.7. For ℎ ∈ 𝑋 and 𝑔 ≔ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) we
have that

(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) = 𝐺 (𝑦 + 𝑔) −𝐺 (𝑦).
The Newton differentiability of 𝐺 then implies that

∥(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) − 𝐷𝑁𝐺 (𝑦 + 𝑔)𝑔∥𝑍 ≤ 𝑟1(∥𝑔∥𝑌 )

with 𝑟1(𝑡)/𝑡 → 0 for 𝑡 → 0. The Newton differentiability of 𝐹 further implies that

∥𝑔 − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ∥𝑌 ≤ 𝑟2(∥ℎ∥𝑋 )

with 𝑟2(𝑡)/𝑡 → 0 for 𝑡 → 0. In particular,

∥𝑔∥𝑌 ≤ ∥𝐷𝑁 𝐹 (𝑥 + ℎ)∥𝕃(𝑋 ;𝑌 ) ∥ℎ∥𝑌 + 𝑟2(∥ℎ∥𝑋 ).

The uniform boundedness of 𝐷𝑁 𝐹 now implies that ∥𝑔∥𝑌 → 0 for ∥ℎ∥𝑋 → 0. Hence, using
that 𝑦 + 𝑔 = 𝐹 (𝑥 + ℎ), we obtain

∥(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) − 𝐷𝑁𝐺 (𝐹 (𝑥 + ℎ))𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ∥𝑍
≤ ∥𝐺 (𝑦 + 𝑔) −𝐺 (𝑦) − 𝐷𝑁𝐺 (𝑦 + 𝑔)𝑔∥𝑍
+ ∥𝐷𝑁𝐺 (𝑦 + 𝑔) [𝑔 − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ] ∥𝑍

≤ 𝑟1(∥𝑔∥𝑌 ) + ∥𝐷𝑁𝐺 (𝑦 + 𝑔)∥𝕃(𝑌 ;𝑍 )𝑟2(∥ℎ∥𝑋 ),

and the claim thus follows from the uniform boundedness of 𝐷𝑁𝐺 . □
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Finally, it follows directly from the definition of the product norm andNewton differentiabil-
ity that Newton derivatives of vector-valued functions can be computed componentwise.

Theorem 14.5. Let 𝑋,𝑌𝑖 be normed vector spaces and let 𝐹𝑖 : 𝑋 → 𝑌𝑖 be Newton differentiable
with Newton derivative 𝐷𝑁 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑚. Then

𝐹 : 𝑋 → (𝑌1 × · · · × 𝑌𝑚), 𝑥 ↦→ (𝐹1(𝑥), . . . , 𝐹𝑚 (𝑥))𝑇 ,
is also Newton differentiable with Newton derivative

𝐷𝑁 𝐹 (𝑥) = (𝐷𝑁 𝐹1(𝑥), . . . , 𝐷𝑁 𝐹𝑚 (𝑥))𝑇 .

Since the definition of a Newton derivative is not constructive, allowing different choices,
the question remains how to obtain a candidate for which the approximation condition in
the definition can be verified. For two classes of functions, such an explicit construction is
known.

locally lipschitz continuous functions on ℝ𝑁

If 𝐹 : ℝ𝑁 → ℝ is locally Lipschitz continuous, candidates can be taken from the Clarke
subdifferential, which has an explicit characterization by Theorem 13.26. Under some
additional assumptions, each candidate is indeed a Newton derivative.

A function 𝐹 : ℝ𝑁 → ℝ is called piecewise (continuously) differentiable or PC1 function, if

(i) 𝐹 is continuous on ℝ𝑁 ;

(ii) for all 𝑥 ∈ ℝ𝑁 there exists an open neighborhood 𝑈𝑥 ⊂ ℝ𝑁 of 𝑥 and a finite set
{𝐹𝑖 : 𝑈𝑥 → ℝ}𝑖∈𝐼𝑥 of continuously differentiable functions with

𝐹 (𝑥) ∈ {𝐹𝑖 (𝑥)}𝑖∈𝐼𝑥 for all 𝑥 ∈ 𝑈𝑥 .

In this case, we call 𝐹 a continuous selection of the 𝐹𝑖 in𝑈𝑥 . The set

𝐼𝑎 (𝑥) ≔ {𝑖 ∈ 𝐼𝑥 | 𝐹 (𝑥) = 𝐹𝑖 (𝑥)}
is called the active index set at 𝑥 . Since the 𝐹𝑖 are continuous, we have that 𝐹 (𝑥) ≠ 𝐹 𝑗 (𝑥)
for all 𝑗 ∉ 𝐼𝑎 (𝑥) and 𝑥 sufficiently close to 𝑥 . Hence, indices that are only active on sets of
zero measure do not have to be considered in the following. We thus define the essentially
active index set

𝐼𝑒 (𝑥) ≔ {𝑖 ∈ 𝐼𝑥 | 𝑥 ∈ cl (int {𝑥 ∈ 𝑈𝑥 | 𝐹 (𝑥) = 𝐹𝑖 (𝑥)})} ⊂ 𝐼𝑎 (𝑥).
An example of an active but not essentially active index set is the following.

208



14 semismooth newton methods

Example 14.6. Consider the function

𝑓 : ℝ → ℝ, 𝑡 ↦→ max{0, 𝑡, 𝑡/2},

i.e., 𝑓1(𝑡) = 0, 𝑓2(𝑡) = 𝑡 , and 𝑓3(𝑡) = 𝑡/2. Then 𝐼𝑎 (0) = {1, 2, 3} but 𝐼𝑒 (0) = {1, 2}, since
𝑓3 is active only at 𝑡 = 0 and hence int {𝑡 ∈ ℝ | 𝑓 (𝑡) = 𝑓3(𝑡)} = ∅ = cl ∅.

Since any 𝐶1 function 𝐹𝑖 : 𝑈𝑥 → ℝ is Lipschitz continuous with Lipschitz constant
𝐿𝑖 ≔ sup𝑥∈𝑈𝑥 |∇𝐹 (𝑥) | by Lemma 2.11, PC1 functions are always locally Lipschitz continuous;
see [Scholtes, 2012, Corollary 4.1.1].

Theorem 14.7. Let 𝐹 : ℝ𝑁 → ℝ be piecewise differentiable. Then 𝐹 is locally Lipschitz
continuous on ℝ𝑁 with local constant 𝐿(𝑥) = max𝑖∈𝐼𝑎 (𝑥) 𝐿𝑖 .

This yields the following explicit characterization of the Clarke subdifferential of a PC1

function.

Theorem 14.8. Let 𝐹 : ℝ𝑁 → ℝ be piecewise differentiable and 𝑥 ∈ ℝ𝑁 . Then

𝜕𝐶𝐹 (𝑥) = co {∇𝐹𝑖 (𝑥) | 𝑖 ∈ 𝐼𝑒 (𝑥)} .

Proof. Let 𝑥 ∈ ℝ𝑁 be arbitrary. By Theorem 13.26 it suffices to show that{
lim
𝑛→∞∇𝐹 (𝑥𝑛)

��� 𝑥𝑛 → 𝑥, 𝑥𝑛 ∉ 𝐸𝐹
}
= {∇𝐹𝑖 (𝑥) | 𝑖 ∈ 𝐼𝑒 (𝑥)} ,

where 𝐸𝐹 is the set of Lebesgue measure 0 where 𝐹 is not differentiable from Rademacher’s
Theorem. For this, let {𝑥𝑛}𝑛∈ℕ ⊂ ℝ𝑁 be a sequence with 𝑥𝑛 → 𝑥 , 𝐹 is differentiable at 𝑥𝑛
for all 𝑛 ∈ ℕ, and ∇𝐹 (𝑥𝑛) → 𝑥∗ ∈ ℝ𝑁 . Since 𝐹 is differentiable at 𝑥𝑛 , it must hold that
𝐹 (𝑥) = 𝐹𝑖𝑛 (𝑥) for some 𝑖𝑛 ∈ 𝐼𝑎 (𝑥) and all 𝑥 sufficiently close to 𝑥𝑛, which implies that
∇𝐹 (𝑥𝑛) = ∇𝐹𝑖𝑛 (𝑥𝑛). For sufficiently large 𝑛 ∈ ℕ, we can further assume that 𝑖𝑛 ∈ 𝐼𝑒 (𝑥)
(if necessary, by adding 𝑥𝑛 with 𝑖𝑛 ∉ 𝐼𝑒 (𝑥) to 𝐸𝐹 , which does not increase its Lebesgue
measure). If we now consider subsequences {𝑥𝑛𝑘 }𝑘∈ℕ with constant index 𝑖𝑛𝑘 =: 𝑖 ∈ 𝐼𝑒 (𝑥)
(which exist since 𝐼𝑒 (𝑥) is finite), we obtain using the continuity of ∇𝐹𝑖 that

𝑥∗ = lim
𝑘→∞

∇𝐹 (𝑥𝑛𝑘 ) = lim
𝑘→∞

∇𝐹𝑖 (𝑥𝑛𝑘 ) ∈ {∇𝐹𝑖 (𝑥) | 𝑖 ∈ 𝐼𝑒 (𝑥)} .

Conversely, for every∇𝐹𝑖 (𝑥) with 𝑖 ∈ 𝐼𝑒 (𝑥) there exists by definition of the essentially active
indices a sequence {𝑥𝑛}𝑛∈ℕ with 𝑥𝑛 → 𝑥 and 𝐹 = 𝐹𝑖 in a sufficiently small neighborhood
of each 𝑥𝑛 for 𝑛 large enough. The continuous differentiability of the 𝐹𝑖 thus implies that
∇𝐹 (𝑥𝑛) = ∇𝐹𝑖 (𝑥𝑛) for all 𝑛 ∈ ℕ large enough and hence that

∇𝐹𝑖 (𝑥) = lim
𝑛→∞∇𝐹𝑖 (𝑥𝑛) = lim

𝑛→∞∇𝐹 (𝑥𝑛). □
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From this, we obtain the Newton differentiability of PC1 functions.

Theorem 14.9. Let 𝐹 : ℝ𝑁 → ℝ be piecewise differentiable. Then 𝐹 is Newton differentiable
for all 𝑥 ∈ ℝ𝑁 , and every 𝐷𝑁 𝐹 (𝑥) ∈ 𝜕𝐶𝐹 (𝑥) is a Newton derivative.

Proof. Let 𝑥 ∈ ℝ𝑁 be arbitrary and ℎ ∈ 𝑋 with 𝑥 + ℎ ∈ 𝑈𝑥 . By Theorem 14.8, every
𝐷𝑁 𝐹 (𝑥 + ℎ) ∈ 𝜕𝐶𝐹 (𝑥 + ℎ) is of the form

𝐷𝑁 𝐹 (𝑥 + ℎ) =
∑︁

𝑖∈𝐼𝑒 (𝑥+ℎ)
𝜆𝑖∇𝐹𝑖 (𝑥 + ℎ) for

∑︁
𝑖∈𝐼𝑒 (𝑥+ℎ)

𝜆𝑖 = 1, 𝜆𝑖 ≥ 0.

Since 𝐹 is continuous, we have for all ℎ ∈ ℝ𝑁 sufficiently small that 𝐼𝑒 (𝑥 +ℎ) ⊂ 𝐼𝑎 (𝑥 +ℎ) ⊂
𝐼𝑎 (𝑥), where the second inclusion follows from the fact that by continuity, 𝐹 (𝑥) ≠ 𝐹𝑖 (𝑥)
implies that 𝐹 (𝑥 + ℎ) ≠ 𝐹𝑖 (𝑥 + ℎ). Hence, 𝐹 (𝑥 + ℎ) = 𝐹𝑖 (𝑥 + ℎ) and 𝐹 (𝑥) = 𝐹𝑖 (𝑥) for all
𝑖 ∈ 𝐼𝑒 (𝑥 + ℎ). Theorem 14.3 then yields that

|𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ | ≤
∑︁

𝑖∈𝐼𝑒 (𝑥+ℎ)
𝜆𝑖 |𝐹𝑖 (𝑥 + ℎ) − 𝐹𝑖 (𝑥) − ∇𝐹𝑖 (𝑥 + ℎ)ℎ | = 𝑜 (∥ℎ∥),

since all 𝐹𝑖 are continuously differentiable by assumption. □

A natural application of the above are proximal point mappings of convex and lower
semicontinuous functionals.

Example 14.10.

(i) We first consider the proximal mapping for the indicator function 𝛿𝐴 : ℝ𝑁 → ℝ

of the set 𝐴 ≔
{
𝑥 ∈ ℝ𝑁

�� 𝑥𝑖 ∈ [𝑎, 𝑏]} for some 𝑎 < 𝑏 ∈ ℝ. Analogously to (iii),
the corresponding proximal mapping is the componentwise projection

[proj𝐴 (𝑥)]𝑖 = proj[𝑎,𝑏]𝑥𝑖 =


𝑎 if 𝑥𝑖 < 𝑎,
𝑥𝑖 if 𝑥𝑖 ∈ [𝑎, 𝑏],
𝑏 if 𝑥𝑖 > 𝑏,

which is clearly piecewise differentiable. Theorem 14.8 thus yields (also compo-
nentwise) that

𝜕𝐶 [proj𝐴 (𝑥)]𝑖 =

{1} if 𝑥𝑖 ∈ (𝑎, 𝑏),
{0} if 𝑥𝑖 ∉ [𝑎, 𝑏],
[0, 1] if 𝑥𝑖 ∈ {𝑎, 𝑏}.

By Theorems 14.5 and 14.9, a possible Newton derivative is therefore given by

[𝐷𝑁proj𝐴 (𝑥)ℎ]𝑖 = [𝟙[𝑎,𝑏] (𝑥) ⊙ ℎ]𝑖 ≔
{
ℎ𝑖 if 𝑥𝑖 ∈ [𝑎, 𝑏],
0 if 𝑥𝑖 ∉ [𝑎, 𝑏],
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where the choice of which case to include 𝑥𝑖 ∈ {𝑎, 𝑏} in is arbitrary. (The com-
ponentwise product [𝑥 ⊙ 𝑦]𝑖 ≔ 𝑥𝑖𝑦𝑖 on ℝ𝑁 is also known as the Hadamard
product.)

(ii) Consider now the proximal mapping for 𝐺 : ℝ𝑁 → ℝ, 𝐺 (𝑥) ≔ ∥𝑥 ∥1, whose
proximalmapping for arbitrary𝛾 > 0 is given by Example 6.26 (ii) componentwise
as

[prox𝛾𝐺 (𝑥)]𝑖 =

𝑥𝑖 − 𝛾 if 𝑥𝑖 > 𝛾,
0 if 𝑥𝑖 ∈ [−𝛾,𝛾],
𝑥𝑖 + 𝛾 if 𝑥𝑖 < −𝛾 .

Again, this is clearly piecewise differentiable, and Theorem 14.8 thus yields (also
componentwise) that

𝜕𝐶 [(prox𝛾𝐺 ) (𝑥)]𝑖 =

{1} if |𝑥𝑖 | > 𝛾,
{0} if |𝑥𝑖 | < 𝛾,
[0, 1] if |𝑥𝑖 | = 𝛾 .

By Theorems 14.5 and 14.9, a possible Newton derivative is therefore given by

[𝐷𝑁prox𝛾𝐺 (𝑥)ℎ]𝑖 = [𝟙{|𝑡 |≥𝛾} (𝑥) ⊙ ℎ]𝑖 ≔
{
ℎ𝑖 if |𝑥𝑖 | ≥ 𝛾,
0 if |𝑥𝑖 | < 𝛾,

where again we could have taken the value 𝑡ℎ𝑖 for any 𝑡 ∈ [0, 1] for |𝑥𝑖 | = 𝛾 .

superposition operators on 𝐿𝑝 (Ω)

Rademacher’s Theorem does not hold in infinite-dimensional function spaces, and hence
the Clarke subdifferential no longer yields an algorithmically useful candidate for a Newton
derivative in general. One exception is the class of superposition operators defined by
scalar Newton differentiable functions, for which the Newton derivative can be evaluated
pointwise as well.

We thus consider as in Section 2.3 for an open and bounded domainΩ ⊂ ℝ𝑁 , a Carathéodory
function 𝑓 : Ω ×ℝ → ℝ (i.e., (𝑥, 𝑧) ↦→ 𝑓 (𝑥, 𝑧) is measurable in 𝑥 and continuous in 𝑧), and
1 ≤ 𝑝, 𝑞 ≤ ∞ the corresponding superposition operator

𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω), [𝐹 (𝑢)] (𝑥) = 𝑓 (𝑥,𝑢 (𝑥)) for almost every 𝑥 ∈ Ω.

The goal is now to similarly obtain a Newton derivative 𝐷𝑁 𝐹 for 𝐹 as a superposition
operator defined by the Newton derivative 𝐷𝑁 𝑓 (𝑥, 𝑧) of 𝑧 ↦→ 𝑓 (𝑥, 𝑧). Here, the assump-
tion that 𝐷𝑁 𝑓 is also a Carathéodory function is too restrictive, since we want to allow
discontinuous derivatives as well (see Example 14.10). Luckily, for our purpose, a weaker
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property is sufficient: A function is called Baire–Carathéodory function if it can be written
as a pointwise limit of Carathéodory functions, i.e., if

𝑓 (𝑥, 𝑧) = lim
𝑛→∞ 𝑓𝑛 (𝑥, 𝑧) for almost every 𝑥 ∈ Ω and all 𝑧 ∈ ℝ,

where 𝑓𝑛 is a Carathéodory function for all 𝑛 ∈ ℕ; see [Appell and Zabrejko, 1990, Lemma
1.4].

Under certain growth conditions on 𝑓 and 𝐷𝑁 𝑓 ,1 we can transfer the Newton differentia-
bility of 𝑓 to 𝐹 , but we again have to take a two-norm discrepancy into account.

Theorem 14.11. Let 𝑓 : Ω ×ℝ → ℝ be a Carathéodory function. Furthermore, assume that

(i) 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is uniformly Lipschitz continuous for almost every 𝑥 ∈ Ω and 𝑥 ↦→ 𝑓 (𝑥, 0)
is bounded;

(ii) 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is Newton differentiable with Newton derivative 𝑧 ↦→ 𝐷𝑁 𝑓 (𝑥, 𝑧) for almost
every 𝑥 ∈ Ω;

(iii) 𝐷𝑁 𝑓 is a Baire–Carathéodory function and uniformly bounded.

Then for any 1 ≤ 𝑞 < 𝑝 < ∞, the corresponding superposition operator 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω)
is Newton differentiable with Newton derivative

𝐷𝑁 𝐹 : 𝐿𝑝 (Ω) → 𝕃(𝐿𝑝 (Ω);𝐿𝑞 (Ω)), [𝐷𝑁 𝐹 (𝑢)ℎ] (𝑥) = 𝐷𝑁 𝑓 (𝑥,𝑢 (𝑥))ℎ(𝑥)

for almost every 𝑥 ∈ Ω and all ℎ ∈ 𝐿𝑝 (Ω).

Proof. First, the uniform Lipschitz continuity together with the reverse triangle inequality
yields that

|𝑓 (𝑥, 𝑧) | ≤ |𝑓 (𝑥, 0) | + 𝐿 |𝑧 | ≤ 𝐶 + 𝐿 |𝑧 |𝑞/𝑞 for almost every 𝑥 ∈ Ω and all 𝑧 ∈ ℝ,

and hence the growth condition (2.5) is satisfied for all 1 ≤ 𝑞 ≤ ∞. Due to the continuous
embedding 𝐿𝑝 (Ω) ↩→ 𝐿𝑞 (Ω) for all 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞, the superposition operator 𝐹 :
𝐿𝑝 (Ω) → 𝐿𝑞 (Ω) is therefore well-defined and continuous by Theorem 2.14.

For any measurable 𝑢 : Ω → ℝ, we have that 𝑥 ↦→ 𝐷𝑁 𝑓 (𝑥,𝑢 (𝑥)) is by assumption (iii)
the pointwise limit of measurable functions and hence itself measurable. Furthermore,
its uniform boundedness in particular implies the growth condition (2.5) for 𝑝′ ≔ 𝑝 and
𝑞′ ≔ 𝑝 − 𝑞 > 0. As in the proof of Theorem 2.15, we deduce that the corresponding
superposition operator 𝐷𝑁 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑠 (Ω) is well-defined and continuous for 𝑠 ≔ 𝑝𝑞

𝑝−𝑞 ,
and that for any𝑢 ∈ 𝐿𝑝 (Ω), the mapping ℎ ↦→ 𝐷𝑁 𝐹 (𝑢) ·ℎ defines a bounded linear operator
𝐷𝑁 𝐹 (𝑢) : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω). (This time, we do not distinguish in notation between the linear
operator and the function defining this operator by pointwise multiplication.)
1which can be significantly relaxed; see [Schiela, 2008, Proposition a.1]
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To show that 𝐷𝑁 𝐹 (𝑢) is a Newton derivative for 𝐹 in 𝑢 ∈ 𝐿𝑝 (Ω), we consider the pointwise
residual

𝑟 : Ω ×ℝ → ℝ, 𝑟 (𝑥, 𝑧) ≔
{ |𝑓 (𝑥,𝑧)−𝑓 (𝑥,𝑢 (𝑥))−𝐷𝑁 𝑓 (𝑥,𝑧) (𝑧−𝑢 (𝑥)) |

|𝑧−𝑢 (𝑥) | if 𝑧 ≠ 𝑢 (𝑥),
0 if 𝑧 = 𝑢 (𝑥).

Since 𝑓 is a Carathéodory function and𝐷𝑁 𝑓 is a Baire–Carathéodory function, the function
𝑥 ↦→ 𝑟 (𝑥, �̃� (𝑥)) =: [𝑅(�̃�)] (𝑥) is measurable for any measurable �̃� : Ω → ℝ (since sums,
products, and quotients of measurable functions are again measurable). Furthermore, for
�̃� ∈ 𝐿𝑝 (Ω), the uniform Lipschitz continuity of 𝑓 and the uniform boundedness of 𝐷𝑁 𝑓
imply that for almost every 𝑥 ∈ Ω with �̃� (𝑥) ≠ 𝑢 (𝑥),

(14.8) | [𝑅(�̃�)] (𝑥) | = |𝑓 (𝑥, �̃� (𝑥)) − 𝑓 (𝑥,𝑢 (𝑥)) − 𝐷𝑁 𝑓 (𝑥, �̃� (𝑥)) (�̃� (𝑥) − 𝑢 (𝑥)) |
|�̃� (𝑥) − 𝑢 (𝑥) | ≤ 𝐿 +𝐶

and thus that 𝑅(�̃�) ∈ 𝐿∞(Ω). Hence, the superposition operator 𝑅 : 𝐿𝑝 (Ω) → 𝐿𝑠 (Ω) is
well-defined.

Let now {𝑢𝑛}𝑛∈ℕ ⊂ 𝐿𝑝 (Ω) be a sequence with 𝑢𝑛 → 𝑢 ∈ 𝐿𝑝 (Ω). Then there exists a
subsequence, again denoted by {𝑢𝑛}𝑛∈ℕ, with 𝑢𝑛 (𝑥) → 𝑢 (𝑥) for almost every 𝑥 ∈ Ω.
Since 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is Newton differentiable almost everywhere, we have by definition
that 𝑟 (𝑥,𝑢𝑛 (𝑥)) → 0 for almost every 𝑥 ∈ Ω. Together with the boundedness from (14.8),
Lebesgue’s dominated convergence theorem therefore yields that 𝑅(𝑢𝑛) → 0 in 𝐿𝑠 (Ω) (and
hence along the full sequence since the limit is unique).2 For any �̃� ∈ 𝐿𝑝 (Ω), the Hölder
inequality with 1

𝑝
+ 1
𝑠
= 1

𝑞
thus yields that

∥𝐹 (�̃�) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (�̃�) (�̃� − 𝑢)∥𝐿𝑞 = ∥𝑅(�̃�) (�̃� − 𝑢)∥𝐿𝑞 ≤ ∥𝑅(�̃�)∥𝐿𝑠 ∥�̃� − 𝑢∥𝐿𝑝 .

If we now set �̃� ≔ 𝑢 + ℎ for ℎ ∈ 𝐿𝑝 (Ω) with ∥ℎ∥𝐿𝑝 → 0, we have that ∥𝑅(𝑢 + ℎ)∥𝐿𝑠 → 0
and hence by definition the Newton differentiability of 𝐹 in 𝑢 with Newton derivative
ℎ ↦→ 𝐷𝑁 𝐹 (𝑢)ℎ as claimed. □

Example 14.12.

(i) Consider

𝐴 ≔
{
𝑢 ∈ 𝐿2(Ω)

�� 𝑎 ≤ 𝑢 (𝑥) ≤ 𝑏 for almost every 𝑥 ∈ Ω
}

and proj𝐴 : 𝐿𝑝 (Ω) → 𝐿2(Ω) for 𝑝 > 2, which by (iii) can be written as a superpo-
sition operator of the corresponding Lipschitz continuous scalar proximal point
operator, whose Newton derivative is given in Example 14.10 (i). Since this deriva-
tive is clearly bounded (by 1) and the pointwise limit of continuous functions,

2This is the step that fails for 𝐹 : 𝐿∞ (Ω) → 𝐿∞ (Ω), since pointwise convergence and boundedness together
do not imply uniform convergence almost everywhere.
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Theorem 14.11 yields the pointwise almost everywhere Newton derivative

[𝐷𝑁proj𝐴 (𝑢)ℎ] (𝑥) = [𝟙[𝑎,𝑏] (𝑢)ℎ] (𝑥) ≔
{
ℎ(𝑥) if 𝑢 (𝑥) ∈ [𝑎, 𝑏],
0 if 𝑢 (𝑥) ∉ [𝑎, 𝑏] .

(ii) Consider now

𝐺 : 𝐿2(Ω) → ℝ, 𝐺 (𝑢) = ∥𝑢∥𝐿1 =
∫
Ω
|𝑢 (𝑥) | 𝑑𝑥

and prox𝛾𝐺 : 𝐿𝑝 (Ω) → 𝐿2(Ω) for𝑝 > 2 and𝛾 > 0, which by (ii) can be written as a
superposition operator of the corresponding Lipschitz continuous scalar proximal
point operator, whose Newton derivative is given in Example 14.10 (ii). Since this
derivative is clearly bounded (by 1) and the pointwise limit of continuous functions,
Theorem 14.11 yields the pointwise almost everywhere Newton derivative

[𝐷𝑁prox𝛾𝐺 (𝑢)ℎ] (𝑥) = [𝟙{|𝑡 |≥𝛾} (𝑢)ℎ] (𝑥) ≔
{
ℎ(𝑥) if |𝑢 (𝑥) | ≥ 𝛾,
0 if |𝑢 (𝑥) | < 𝛾 .

For 𝑝 = 𝑞 ∈ [1,∞], however, the claim is false in general, as can be shown by counterexam-
ples.

Example 14.13. We take

𝑓 : ℝ → ℝ, 𝑓 (𝑧) = max{0, 𝑧} ≔
{

0 if 𝑧 ≤ 0,
𝑧 if 𝑧 ≥ 0.

This is a piecewise differentiable function, and hence by Theorem 14.9 we can for any
𝛿 ∈ [0, 1] take as Newton derivative

𝐷𝑁 𝑓 (𝑧)ℎ =


0 if 𝑧 < 0,
𝛿ℎ if 𝑧 = 0,
ℎ if 𝑧 > 0.

We now consider the corresponding superposition operators 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑝 (Ω)
and 𝐷𝑁 𝐹 (𝑢) ∈ 𝕃(𝐿𝑝 (Ω);𝐿𝑝 (Ω)) for any 𝑝 ∈ [1,∞) and show that the approximation
condition (14.3) is violated for Ω = (−1, 1), 𝑢 (𝑥) = −|𝑥 |, and

ℎ𝑛 (𝑥) =
{

1
𝑛

if |𝑥 | < 1
𝑛
,

0 if |𝑥 | ≥ 1
𝑛
.
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First, it is straightforward to compute ∥ℎ𝑛∥𝑝𝐿𝑝 = 2
𝑛𝑝+1 . Then since [𝐹 (𝑢)] (𝑥) = max{0,−|𝑥 |} =

0 almost everywhere, we have that

[𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛] (𝑥) =

−|𝑥 | if |𝑥 | < 1

𝑛
,

0 if |𝑥 | > 1
𝑛
,

−𝛿
𝑛

if |𝑥 | = 1
𝑛
,

and thus

∥𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛∥𝑝𝐿𝑝 =
∫ 1

𝑛

− 1
𝑛

|𝑥 |𝑝 𝑑𝑥 =
2

𝑝 + 1

(
1
𝑛

)𝑝+1
.

This implies that

lim
𝑛→∞

∥𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛∥𝐿𝑝
∥ℎ𝑛∥𝐿𝑝 =

(
1

𝑝 + 1

) 1
𝑝

≠ 0

and hence that 𝐹 is not Newton differentiable from 𝐿𝑝 (Ω) to 𝐿𝑝 (Ω) for any 𝑝 < ∞.

For the case 𝑝 = 𝑞 = ∞, we take Ω = (0, 1), 𝑢 (𝑥) = 𝑥 , and

ℎ𝑛 (𝑥) =
{
𝑛𝑥 − 1 if 𝑥 ≤ 1

𝑛
,

0 if 𝑥 ≥ 1
𝑛
,

such that ∥ℎ𝑛∥𝐿∞ = 1 for all 𝑛 ∈ ℕ. We also have that 𝑥 + ℎ𝑛 = (1 + 𝑛)𝑥 − 1 ≤ 0 for
𝑥 ≤ 1

𝑛+1 ≤ 1
𝑛
and hence that

[𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛] (𝑥) =
{
(1 + 𝑛)𝑥 − 1 if 𝑥 ≤ 1

𝑛+1 ,

0 if 𝑥 ≥ 1
𝑛+1 ,

since either ℎ𝑛 = 0 or 𝐹 (𝑢 + ℎ𝑛) = 𝐹 (𝑢) + 𝐷𝑁 𝐹 (𝑢)ℎ𝑛 in the second case. Now,

sup
𝑥∈(0, 1

𝑛+1 ]
| (1 + 𝑛)𝑥 − 1| = 1 for all 𝑛 ∈ ℕ,

which implies that

lim
𝑛→∞

∥𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛∥𝐿𝑝
∥ℎ𝑛∥𝐿𝑝 = 1 ≠ 0

and hence that 𝐹 is not Newton differentiable from 𝐿∞(Ω) to 𝐿∞(Ω) either.
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Remark 14.14. Semismoothness was introduced in [Mifflin, 1977] for Lipschitz-continuous functionals
𝐹 : ℝ𝑁 → ℝ as a condition relating Clarke subderivatives and directional derivatives near a point.
This definition was extended to functions 𝐹 : ℝ𝑁 → ℝ𝑀 in [Qi, 1993; Qi and Sun, 1993] and shown
to imply a uniform version of the approximation condition (14.3) for all elements of the Clarke
subdifferential and hence superlinear convergence of the semismooth Newton method in finite
dimensions. A semismooth Newton method specifically for PC1 functions was already considered
in [Kojima and Shindo, 1986]. In normed vector spaces, [Kummer, 1988] was the first to study an
abstract class of Newton methods for nonsmooth equations based on the condition (14.3), unifying
the previous results; see [Klatte and Kummer, 2002]. In all these works, the analysis was based on
semismoothness as a property relating 𝐹 : 𝑋 → 𝑌 to a set-valued mapping𝐺 : 𝑋 ⇒ 𝐿(𝑋,𝑌 ), whose
elements (uniformly) satisfy (14.3). In contrast, [Chen et al., 2000; Kummer, 2000] considered – as
we do in this book – single-valued Newton derivatives (named Newton maps in the former and
slanting functions in the latter) in Banach spaces. This approach was later followed in [Hintermüller
et al., 2002; Ito and Kunisch, 2008] to show that for a specific choice of Newton derivative, the
classical primal-dual active set method for solving quadratic optimization problems under linear
inequality constraints can be interpreted as a semismooth Newton method. In parallel, [Ulbrich,
2002, 2011] showed that superposition operators defined by semismooth functions (in the sense
of [Qi and Sun, 1993]) are semismooth (in the sense of [Kummer, 1988]) between the right spaces.
A similar result for single-valued Newton derivatives was shown in [Schiela, 2008] using a proof
that is much closer to the one for the classical differentiability of superposition operators; compare
Theorems 2.15 and 14.11. It should, however, be mentioned that not all calculus results for semismooth
functions are available in the single-valued setting; for example, the implicit function theorem from
[Kruse, 2018] requires set-valued Newton derivatives, since the selection of the Newton derivative
of the implicit function need not correspond to the selection of the given mapping. Finally, we
remark that the notion of semismoothness and semismooth Newton methods were very recently
extended to set-valued mappings in [Gferer and Outrata, 2021].
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15 NONLINEAR PRIMAL-DUAL PROXIMAL SPLITTING

In this chapter, our goal is to extend the primal-dual proximal splitting (PDPS) method to
nonlinear operators 𝐾 ∈ 𝐶1(𝑋 ;𝑌 ), i.e., to problems of the form

(15.1) min
𝑋
𝐹 (𝑥) +𝐺 (𝐾 (𝑥)),

where we still assume 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑌 → ℝ to be convex, proper, and lower
semicontinuous on the Hilbert spaces 𝑋 and 𝑌 . For simplicity, we will only consider linear
convergence under a strong convexity assumption and refer to the literature for weak
convergence and acceleration under partial strong convexity (see Remark 15.12 below). As
in earlier chapters, we use the same notation for the inner product as for the duality pairing
in Hilbert spaces to distinguish them better from pairs of elements.

We recall the three-point program for convergence proofs of first-order methods from
Chapter 9, which remains fundamentally the same in the nonlinear setting. However,
we need to make some of the concepts local. Thus the three main ingredients of our
convergence proofs will be the following.

(i) The three-point identity (1.5).

(ii) The local monotonicity of the operator𝐻 whose roots correspond to the (primal-dual)
critical points of (15.1). We fix one of the points in the definition of monotonicity
in Section 6.2 to a root 𝑥 of 𝐻 , and only vary the other point in a neighborhood of
𝑥 . This is essentially a nonsmooth variant of the standard second-order sufficient
(or local quadratic growth) condition ∇2𝐹 (𝑥) ≻ 0 (i.e., positive definiteness of the
Hessian) for minimizing a smooth function 𝐹 : ℝ𝑁 → ℝ.

(iii) The nonnegativity of the preconditioning operators𝑀𝑘+1 defining the implicit form
of the algorithm. These will now in general depend on the current iterate, and thus
we can only show the nonnegativity in a neighborhood of suitable 𝑥 .

15.1 nonconvex explicit splitting

To motivate our more specific assumptions on 𝐾 , we start by showing that forward-
backward splitting can be applied to a nonconvex function for the forward step. We
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thus consider for the problem

(15.2) min
𝑥∈𝑋

𝐺 (𝑥) + 𝐹 (𝑥),

with 𝐹 smooth but possibly nonconvex, the algorithm

(15.3) 𝑥𝑘+1 = prox𝜏𝐺 (𝑥𝑘 − 𝜏∇𝐹 (𝑥𝑘)) .

To show convergence of this algorithm, we extend the non-value three-point smoothness
inequalities of Corollaries 7.2 and 7.7 from convex smooth functions to 𝐶2 functions. (It is
also possible to obtain corresponding value inequalities.)

Lemma 15.1. Suppose 𝐹 ∈ 𝐶2(𝑋 ). Let 𝑧, 𝑥 ∈ 𝑋 , and suppose for some 𝐿 > 0 and 𝛾 ≥ 0 for all
𝜁 ∈ 𝔹(𝑥, ∥𝑧 − 𝑥 ∥𝑋 ) that 𝛾 · Id ≤ ∇2𝐹 (𝜁 ) ≤ 𝐿 · Id. Then for any 𝛽 ∈ (0, 2] and 𝑥 ∈ 𝑋 we have

(15.4) ⟨∇𝐹 (𝑧) − ∇𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋 ≥ 𝛾 (2 − 𝛽)
2 ∥𝑥 − 𝑥 ∥2

𝑋 − 𝐿

2𝛽 ∥𝑥 − 𝑧∥2
𝑋 .

Proof. By the one-dimensionalmean value theorem applied to 𝑡 ↦→ ⟨∇𝐹 (𝑥+𝑡 (𝑧−𝑥)), 𝑥−𝑥⟩𝑋 ,
we obtain for 𝜁 = 𝑥 + 𝑠 (𝑧 − 𝑥) for some 𝑠 ∈ [0, 1] that

⟨∇𝐹 (𝑧) − ∇𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋 = ⟨∇2𝐹 (𝜁 ) (𝑧 − 𝑥), 𝑥 − 𝑥⟩𝑋 .

Therefore, for any 𝛽 > 0,

(15.5) ⟨∇𝐹 (𝑧) − ∇𝐹 (𝑥), 𝑥 − 𝑥⟩𝑋 = ∥𝑥 − 𝑥 ∥2
∇2𝐹 (𝜁 ) + ⟨∇2𝐹 (𝜁 ) (𝑧 − 𝑥), 𝑥 − 𝑥⟩𝑋

≥ 2 − 𝛽
2 ∥𝑥 − 𝑥 ∥2

∇2𝐹 (𝜁 ) −
1

2𝛽 ∥𝑥 − 𝑧∥2
∇2𝐹 (𝜁 ) .

By the definition of 𝛾 and 𝐿, we obtain (15.4). □

The following result is almost a carbon copy of Theorems 9.6 and 10.2 for convex smooth 𝐹 .
However, since our present problem is nonconvex, we can only expect local convergence
to a critical point of 𝐽 ≔ 𝐹 +𝐺 .

Theorem 15.2. Let 𝐹 ∈ 𝐶2(𝑋 ) and let𝐺 : 𝑋 → ℝ be proper, convex, and lower semicontinuous.
Given an initial iterate 𝑥0 and a critical point 𝑥 ∈ [𝜕𝐺 + ∇𝐹 ]−1(0) of 𝐽 ≔ 𝐹 + 𝐺 , let
X ≔ 𝔹(𝑥, ∥𝑥0 − 𝑥 ∥), and suppose for some 𝐿 > 0 and 𝛾 ≥ 0 that

(15.6) 𝛾 · Id ≤ ∇2𝐹 (𝜁 ) ≤ 𝐿 · Id (𝜁 ∈ X).

Take 0 < 𝜏 < 2𝐿−1.

(i) If 𝛾 > 0, then the sequence {𝑥𝑘}𝑘∈ℕ generated by (15.3) converges linearly to 𝑥 .
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(ii) If 𝛾 = 0, then the sequence {𝑥𝑘}𝑘∈ℕ converges weakly to a critical point of 𝐽 .

Note that if 𝐺 is locally finite-valued, then by Theorem 13.20 our definition of a critical
point in this theorem means 𝑥 ∈ [𝜕𝐶 𝐽 ]−1(0).

Proof. As usual, we write (15.3) as

(15.7) 0 ∈ 𝜏 [𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘)] + (𝑥𝑘+1 − 𝑥𝑘).
Suppose 𝑥𝑘 ∈ X and let 𝛽 ∈ (𝐿𝜏, 2) be arbitrary (which is possible since 𝜏𝐿 < 2). By the
monotonicity of 𝜕𝐺 and the local three-pointmonotonicity (15.4) of 𝐹 implied by Lemma 15.1,
we obtain

(15.8) ⟨𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ 𝛾 (2 − 𝛽)
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 − 𝐿

2𝛽 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 .

Observe that if we had 𝑥𝑘+1 = 𝑥𝑘 (or 𝐹 = 0), this would show the local quadratic growth
of 𝐹 +𝐺 at 𝑥 . Since, in general, 𝑥𝑘+1 ≠ 𝑥𝑘 , we however need to compensate for taking the
forward step with respect to 𝐹 .

Testing (15.7) by the application of 𝜑𝑘 ⟨ · , 𝑥𝑘+1 − 𝑥⟩𝑋 for some testing parameter 𝜑𝑘 > 0 and
afterwards applying (15.8) yields

𝜑𝑘𝛾𝜏 (2 − 𝛽)
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 − 𝜑𝑘𝐿𝜏

2𝛽 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 + 𝜑𝑘 ⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑋 ≤ 0.

Taking

(15.9) 𝜑𝑘+1 ≔ 𝜑𝑘 (1 + 𝛾𝜏 (2 − 𝛽)) with 𝜑0 > 0,

the three-point formula (9.1) yields

(15.10) 𝜑𝑘+1
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 + 𝜑𝑘 (1 − 𝜏𝐿/𝛽)2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≤ 𝜑𝑘

2 ∥𝑥𝑘 − 𝑥 ∥2
𝑋 .

Since 𝛽 ∈ (𝐿𝜏, 2) and 𝑥𝑘 ∈ X, this implies that 𝑥𝑘+1 ∈ X. By induction, we thus obtain that
{𝑥𝑘}𝑘∈ℕ ⊂ X under our assumption 𝑥0 ∈ X.

If 𝛾 > 0, the recursion (15.9) together with 𝛽 < 2 shows that 𝜑𝑘 grows exponentially. Using
that 𝜏𝐿/𝛽 ≤ 1 and telescoping (15.10) then shows the claimed linear convergence.

Let us then consider weak convergence. With 𝛾 = 0 and 𝛽 < 2, the recursion (15.9) reduces
to 𝜑𝑘+1 ≡ 𝜑0 > 0. Since 𝜏𝐿 ≤ 𝛽 , the estimate (15.10) yields Fejér monotonicity of the
iterates {𝑥𝑘}𝑘∈ℕ. Moreover, we establish for𝑤𝑘+1 ≔ −𝜏−1(𝑥𝑘+1 −𝑥𝑘) that ∥𝑤𝑘+1∥𝑋 → 0 and
𝑤𝑘+1 ∈ 𝜕𝐺 (𝑥𝑘+1) +∇𝐹 (𝑥𝑘) for all 𝑘 ∈ ℕ. Let 𝑥 be any weak limit point of {𝑥𝑘}𝑘∈ℕ, i.e., there
exists a subsequence {𝑥𝑘𝑛 }𝑛∈ℕ with 𝑥𝑘𝑛 ⇀ 𝑥 ∈ X. Then also 𝑥𝑘𝑛+1 ⇀ 𝑥 ∈ X. Since ∇𝐹
is by (15.6) Lipschitz continuous in X, we have ∇𝐹 (𝑥𝑘𝑛+1) − ∇𝐹 (𝑥𝑘𝑛 ) → 0. Consequently,
𝜕𝐺 (𝑥𝑘𝑛+1) + ∇𝐹 (𝑥𝑘𝑛+1) ∋ 𝑤𝑘𝑛+1 + ∇𝐹 (𝑥𝑘𝑛+1) − ∇𝐹 (𝑥𝑘𝑛 ) → 0. By the outer semicontinuity
of 𝜕𝐺 + ∇𝐹 , it follows that 0 ∈ 𝜕𝐺 (𝑥) + ∇𝐹 (𝑥) and therefore 𝑥 ∈ (𝜕𝐹 + ∇𝐺)−1(0) ⊂ X. The
claim thus follows by applying Opial’s Lemma 9.1. □
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15.2 nonconvex primal-dual splitting: algorithm and assumptions

Asmentioned above,we consider the problem (15.1) with 𝐹 : 𝑋 → ℝ and𝐺 : 𝑌 → ℝ convex,
proper, and lower semicontinuous, and 𝐾 ∈ 𝐶1(𝑋 ;𝑌 ). We will soon state more precise
assumptions on 𝐾 . When either the null space of [∇𝐾 (𝑥)]∗ is trivial or dom𝐺 = 𝑋 , we can
apply the chain rule Theorem 13.23 for Clarke subdifferentials as well as the equivalences
of Theorems 13.5 and 13.8 for convex and differentiable functions, respectively, to rewrite as
in Section 8.4 the critical point conditions for this problem as 0 ∈ 𝐻 (𝑢) for the set-valued
operator 𝐻 : 𝑋 × 𝑌 ⇒ 𝑋 × 𝑌 defined for 𝑢 = (𝑥, 𝑦) ∈ 𝑋 × 𝑌 as

(15.11) 𝐻 (𝑢) ≔
(
𝜕𝐹 (𝑥) + [∇𝐾 (𝑥)]∗𝑦
𝜕𝐺∗(𝑦) − 𝐾 (𝑥)

)
.

Throughout the rest of this chapter, we write 𝑢 = (𝑥, 𝑦) ∈ 𝐻−1(0) for an arbitrary root of
𝐻 that we assume to exist.

In analogy to the basic PDPS method, the basic unaccelerated NL-PDPS method then
iterates

(15.12)


𝑥𝑘+1 ≔ (𝐼 + 𝜏𝜕𝐹 )−1(𝑥𝑘 − 𝜏 [∇𝐾 (𝑥𝑘)]∗𝑦𝑘),
𝑥𝑘+1 ≔ (1 + 𝜔)𝑥𝑘+1 − 𝜔𝑥𝑘 ,
𝑦𝑘+1 ≔ (𝐼 + 𝜎𝜕𝐺∗)−1(𝑦𝑘 + 𝜎𝐾 (𝑥𝑘+1))

for some acceleration parameter 𝛾𝐺∗ ≥ 0 (later to be fixed to be less than the factor of
strong convexity of 𝐺∗), and where we set the over-relaxation parameter

(15.13) 𝜔 =
1

1 + 2𝛾𝐺∗𝜎
.

We can write this algorithm in the general form of Theorem 11.12 as follows. For each
iteration 𝑘 ∈ ℕ with some primal and dual testing parameters 𝜑𝑘 ,𝜓𝑘+1 > 0, we define the
step length and testing operators

𝑊 ≔

(
𝜏Id 0
0 𝜎Id

)
and 𝑍𝑘+1 ≔

(
𝜑𝑘 Id 0

0 𝜓𝑘+1Id

)
.

We also define the linear preconditioner 𝑀𝑘+1 and the step length weighted partial lin-
earization 𝐻𝑘+1 of 𝐻 by

𝑀𝑘+1 ≔

(
Id −𝜏 [∇𝐾 (𝑥𝑘)]∗

−𝜔𝜎∇𝐾 (𝑥𝑘) Id

)
, and(15.14)

𝐻𝑘+1(𝑢) ≔𝑊

(
𝜕𝐹 (𝑥) + [∇𝐾 (𝑥𝑘)]∗𝑦

𝜕𝐺∗(𝑦) − 𝐾 (𝑥𝑘+1) − ∇𝐾 (𝑥𝑘) (𝑥 − 𝑥𝑘+1).
)

(15.15)
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Observe that 𝐻𝑘+1(𝑢) simplifies to𝑊𝐻 (𝑢) for linear 𝐾 . Then (15.12) becomes

(15.16) 0 ∈ 𝐻𝑘+1(𝑢𝑘+1) +𝑀𝑘+1(𝑢𝑘+1 − 𝑢𝑘) .

We will need 𝐾 to be locally Lipschitz differentiable.

Assumption 15.3 (locally Lipschitz ∇𝐾 ). The operator 𝐾 : 𝑋 → 𝑌 is Fréchet differentiable,
and for some 𝐿 ≥ 0 and a neighborhood X𝐾 of 𝑥 ,

(15.17) ∥∇𝐾 (𝑥) − ∇𝐾 (𝑧)∥𝕃(𝑋,𝑌 ) ≤ 𝐿∥𝑥 − 𝑧∥𝑋 (𝑥, 𝑧 ∈ X𝐾 ).

We also require a three-point assumption on 𝐾 . This assumption combines a second-order
growth condition with a three-point smoothness estimate. Note that the factor 𝛾𝐾 can be
negative; if it is, it will need to be offset by sufficient strong convexity of 𝐹 .

Assumption 15.4 (three-point condition on 𝐾). For a neighborhood X𝐾 of 𝑥 , and some
𝛾𝐾 ∈ ℝ and 𝐿, 𝜃 ≥ 0, we require

(15.18) ⟨[∇𝐾 (𝑧) − ∇𝐾 (𝑥)]∗𝑦, 𝑥 − 𝑥⟩𝑋
≥ 𝛾𝐾 ∥𝑥 − 𝑥 ∥2

𝑋 + 𝜃 ∥𝐾 (𝑥) − 𝐾 (𝑥) − ∇𝐾 (𝑥) (𝑥 − 𝑥)∥𝑌 − 𝜆

2 ∥𝑥 − 𝑧∥2
𝑋 (𝑥, 𝑧 ∈ X𝐾 ).

We observe the following special cases of Assumption 15.4:

(a) For linear 𝐾 , the assumption trivially holds for any 𝛾𝐾 ≤ 0, 𝜃 ≥ 0 and 𝜆 = 0.

(b) Let 𝐺∗ = 𝛿{1}, so that 𝐾 : 𝑋 → ℝ and the problem (15.1) reduces to (15.2) with
𝐾 in place of 𝐹 . Minding that in this case 𝑦 = 1, Lemma 15.1 with 𝛽 = 1 proves
Assumption 15.4 for 𝜆 = 𝐿, any 𝜃 ≥ 0 and 𝛾𝐾 ≤ 𝛾 with 𝛾, 𝐿 ≥ 0 satisfying 𝛾 · Id ≤
∇2𝐾 (𝜁 ) ≤ 𝐿 · Id or all 𝜁 ∈ X𝐾 .

In more general settings, the verification of Assumption 15.4 can demand some effort.
We refer to [Clason et al., 2019] for examples and to [Clason et al., 2020] for further
generalizations.

15.3 nonconvex primal-dual splitting: convergence proof

For simplicity of treatment, and to demonstrate the main ideas without excessive techni-
calities, we only show linear convergence under strong convexity of both 𝐹 and 𝐺∗.

We will base our proof on Theorem 11.12 and thus have to verify its assumptions. Most
of the work is in verifying the inequality (11.28), which we do in several steps. First, we
ensure that the operator 𝑍𝑘+1𝑀𝑘+1 giving rise to the local metric is self-adjoint. Then we
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show that 𝑍𝑘+2𝑀𝑘+2 and the update 𝑍𝑘+1(𝑀𝑘+1 +Ξ𝑘+1) actually performed by the algorithm
yield identical norms, where Ξ𝑘+1 represents some off-diagonal components from the
algorithm as well as any strong convexity provided by 𝐹 and 𝐺∗. Finally, we estimate the
local monotonicity of 𝐻𝑘+1.

We write 𝛾𝐹 , 𝛾𝐺∗ ≥ 0 for the factors of (strong) convexity of 𝐹 and 𝐺∗, and recall the factor
𝛾𝐾 ∈ ℝ from Assumption 15.4 Then for some “acceleration parameters” 𝛾𝐹 , 𝛾𝐺∗ ≥ 0 and
𝜅 ∈ [0, 1), we require that

𝛾𝐹 + 𝛾𝐾 ≥ 𝛾𝐹 ≥ 0, 𝛾𝐺∗ ≥ 𝛾𝐺∗ ≥ 0,(15.19a)
𝜂𝑘 ≔ 𝜑𝑘𝜏 = 𝜓𝑘𝜎, 1 − 𝜅 ≤ 𝜏𝜎 ∥∇𝐾 (𝑥𝑘)∥2,(15.19b)

𝜑𝑘+1 = 𝜑𝑘 (1 + 2𝛾𝐹𝜏), and 𝜓𝑘+1 = 𝜓𝑘 (1 + 2𝛾𝐺∗𝜎) (𝑘 ∈ ℕ) .(15.19c)

With this, 𝜔 defined in (15.13) satisfies

(15.20) 𝜔 = 𝜓−1
𝑘+1𝜓𝑘 = 𝜂

−1
𝑘+1𝜂𝑘 (𝑘 ∈ ℕ).

The next lemma adapts Lemma 9.12.

Lemma 15.5. Fix 𝑘 ∈ ℕ and suppose (15.19) holds. Then 𝑍𝑘+1𝑀𝑘+1 is self-adjoint and satisfies

𝑍𝑘+1𝑀𝑘+1 ⪰
(
𝛿𝜑𝑘 · Id 0

0 (𝜅 − 𝛿) (1 − 𝛿)−1𝜓𝑘+1 · Id

)
for any 𝛿 ∈ [0, 𝜅] .

Proof. From (15.19) and (15.20) we have 𝜑𝑘𝜏 = 𝜓𝑘+1𝜔𝜎 = 𝜂𝑘 . By (15.14) then

(15.21) 𝑍𝑘+1𝑀𝑘+1 =

(
𝜑𝑘 · Id −𝜂𝑘 [∇𝐾 (𝑥𝑘)]∗

−𝜂𝑘∇𝐾 (𝑥𝑘) 𝜓𝑘+1 · Id

)
.

This shows that 𝑍𝑘+1𝑀𝑘+1 is self-adjoint. Furthermore, since Young’s inequality followed
by (15.19) and (15.20) shows that

2𝜂𝑘 ⟨∇𝐾 (𝑥𝑘)𝑥, �̃�⟩ ≤ (1 − 𝛿)𝜂𝑘𝜏−1∥𝑥 ∥2 + 𝜂𝑘𝜏

1 − 𝛿 ∥∇𝐾 (𝑥
𝑘)∗�̃� ∥2

= (1 − 𝛿)𝜑𝑘 ∥𝑥 ∥2 +𝜓𝑘+1𝜔
𝜏𝜎

1 − 𝛿 ∥∇𝐾 (𝑥
𝑘)∗�̃� ∥2 (𝑥 ∈ 𝑋, �̃� ∈ 𝑌 ),

we obtain from (15.21) that

(15.22) 𝑍𝑘+1𝑀𝑘+1 ⪰
(
𝛿𝜑𝑘 Id 0

0 𝜓𝑘+1
(
Id − 𝜔 𝜏𝜎

1−𝛿∇𝐾 (𝑥𝑘) [∇𝐾 (𝑥𝑘)]∗
) ) .

The claimed estimate then follows from the assumptions (15.19). □

Our next step is to simplify the operator 𝑍𝑘+1𝑀𝑘+1 − 𝑍𝑘+2𝑀𝑘+2 occuring in the inequality
(11.28) we are trying to prove.
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Lemma 15.6. Fix 𝑘 ∈ ℕ, and suppose (15.19) holds. Then 1
2 ∥ · ∥2

𝑍𝑘+1 (𝑀𝑘+1+Ξ𝑘+1)−𝑍𝑘+2𝑀𝑘+2
= 0 for

(15.23) Ξ𝑘+1 ≔

(
2𝛾𝐹𝜏Id 2𝜏 [∇𝐾 (𝑥𝑘)]∗

−2𝜎∇𝐾 (𝑥𝑘+1) 2𝛾𝐺∗𝜎Id

)
.

Proof. Using (15.19) and (15.21) can write

𝑍𝑘+1(𝑀𝑘+1 + Ξ𝑘+1) − 𝑍𝑘+2𝑀𝑘+2 = 𝐷𝑘+1

for the skew-symmetric operator

𝐷𝑘+1 ≔

(
0 [𝜂𝑘+1∇𝐾 (𝑥𝑘+1) + 𝜂𝑘∇𝐾 (𝑥𝑘)]∗

−[𝜂𝑘+1∇𝐾 (𝑥𝑘+1) + 𝜂𝑘∇𝐾 (𝑥𝑘)] 0

)
.

This yields the claim. □

For our convergence claim, we need to assume that the dual variables stay bounded within
the “nonlinear range” of 𝐾 . To this end, we introduce the (possibly empty) subspace 𝑌L of
𝑌 in which 𝐾 acts linearly, i.e.,

𝑌L ≔ {𝑦 ∈ 𝑌 | the mapping 𝑥 ↦→ ⟨𝑦, 𝐾 (𝑥)⟩ is linear} and 𝑌NL ≔ 𝑌⊥
L .

We then denote by 𝑃NL the orthogonal projection to 𝑌NL. We also write

𝔹NL(𝑦, 𝑟 ) ≔ {𝑦 ∈ 𝑌 | ∥𝑦 − 𝑦 ∥𝑃NL ≤ 𝑟 }

for the closed cylinder in 𝑌 of the radius 𝑟 with axis orthogonal to 𝑌NL.

With X𝐾 given by Assumption 15.3, we now define for some radius 𝜌𝑦 > 0 the neighbor-
hood

(15.24) U(𝜌𝑦) ≔ X𝐾 × 𝔹NL(𝑦, 𝜌𝑦).

We will require that the iterates {𝑢𝑘}𝑘∈ℕ of (15.12) stay within this neighborhood for some
fixed 𝜌𝑦 > 0.

The next lemma provides the necessary three-point inequality to estimate the linearizations
performed within 𝐻𝑘+1.

Lemma 15.7. For a fixed 𝑘 ∈ ℕ, suppose 𝑥𝑘+1 ∈ X𝐾 , and let 𝜌𝑦 ≥ 0 be such that 𝑢𝑘 , 𝑢𝑘+1 ∈
U(𝜌𝑦). Suppose 𝐾 satisfies Assumptions 15.3 and 15.4 with 𝜔𝜃 ≥ 𝜌𝑦 . If (15.19) holds, then

⟨𝐻𝑘+1(𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 ≥
1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+1Ξ𝑘+1

− 𝜂𝑘 [𝜆 + 3𝐿𝜌𝑦]
2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 .
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Proof. From (15.11), (15.15), (15.19), and (15.23), we calculate

(15.25) 𝐷 ≔ ⟨𝐻𝑘+1(𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 −
1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+1Ξ𝑘+1

= ⟨𝐻 (𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1𝑊 − 𝜂𝑘𝛾𝐹 ∥𝑥𝑘+1 − 𝑥 ∥2
𝑋 − 𝜂𝑘+1𝛾𝐺∗ ∥𝑦𝑘+1 − 𝑦 ∥2

𝑌

+ 𝜂𝑘 ⟨[∇𝐾 (𝑥𝑘) − ∇𝐾 (𝑥𝑘+1)] (𝑥𝑘+1 − 𝑥), 𝑦𝑘+1⟩𝑌
+ 𝜂𝑘+1⟨𝐾 (𝑥𝑘+1) − 𝐾 (𝑥𝑘+1) − ∇𝐾 (𝑥𝑘) (𝑥𝑘+1 − 𝑥𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌
+ ⟨(𝜂𝑘+1∇𝐾 (𝑥𝑘+1) − 𝜂𝑘∇𝐾 (𝑥𝑘)) (𝑥𝑘+1 − 𝑥), 𝑦𝑘+1 − 𝑦⟩𝑌 .

Here the first of the terms involving 𝐾 comes from the first lines of 𝐻𝑘+1 and 𝐻 , the second
of the terms from the second line, and the third from Ξ𝑘+1. Since 0 ∈ 𝐻 (𝑢), we have
𝑞𝐹 ≔ −[∇𝐾 (𝑥)]∗𝑦 ∈ 𝜕𝐹 (𝑥) and 𝑞𝐺∗ ≔ 𝐾 (𝑥) ∈ 𝜕𝐺∗(𝑦). Using (15.19), we can therefore
expand

⟨𝐻 (𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1𝑊 = 𝜂𝑘 ⟨𝜕𝐹 (𝑥𝑘+1) − 𝑞𝐹 , 𝑥𝑘+1 − 𝑥⟩𝑋
+ 𝜂𝑘+1⟨𝜕𝐺∗(𝑦𝑘+1) − 𝑞𝐺∗, 𝑦𝑘+1 − 𝑦⟩𝑌
+ 𝜂𝑘 ⟨[∇𝐾 (𝑥𝑘+1)]∗𝑦𝑘+1 − [∇𝐾 (𝑥)]∗𝑦, 𝑥𝑘+1 − 𝑥⟩𝑋
+ 𝜂𝑘+1⟨𝐾 (𝑥) − 𝐾 (𝑥𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌 .

Using the 𝛾𝐹 -strong monotonicity of 𝜕𝐹 and the 𝛾𝐺∗-strong monotonicity of 𝜕𝐺∗, and
rearranging terms, we obtain

⟨𝐻 (𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1𝑊 ≥ 𝜂𝑘𝛾𝐹 ∥𝑥𝑘+1 − 𝑥 ∥2
𝑋 + 𝜂𝑘+1𝛾𝐺∗ ∥𝑦𝑘+1 − 𝑦 ∥2

𝑌

+ 𝜂𝑘 ⟨∇𝐾 (𝑥𝑘+1) (𝑥𝑘+1 − 𝑥), 𝑦𝑘+1⟩𝑌
− 𝜂𝑘 ⟨∇𝐾 (𝑥) (𝑥𝑘+1 − 𝑥), 𝑦⟩𝑌 + 𝜂𝑘+1⟨𝐾 (𝑥) − 𝐾 (𝑥𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌 .

Combining this estimate with (15.25) and rearranging terms, we obtain

𝐷 ≥ 𝜂𝑘 (𝛾𝐹 − 𝛾𝐹 )∥𝑥𝑘+1 − 𝑥 ∥2
𝑋 + 𝜂𝑘+1(𝛾𝐺∗ − 𝛾𝐺∗)∥𝑦𝑘+1 − 𝑦 ∥2

𝑌

− 𝜂𝑘 ⟨∇𝐾 (𝑥) (𝑥𝑘+1 − 𝑥), 𝑦⟩𝑌 + 𝜂𝑘 ⟨∇𝐾 (𝑥𝑘) (𝑥𝑘+1 − 𝑥), 𝑦𝑘+1⟩𝑌
+ 𝜂𝑘+1⟨𝐾 (𝑥) − 𝐾 (𝑥𝑘+1) − ∇𝐾 (𝑥𝑘) (𝑥𝑘+1 − 𝑥𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌
+ ⟨(𝜂𝑘+1∇𝐾 (𝑥𝑘+1) − 𝜂𝑘∇𝐾 (𝑥𝑘)) (𝑥𝑘+1 − 𝑥), 𝑦𝑘+1 − 𝑦⟩𝑌 .

Further rearrangements and 𝛾𝐹 + 𝛾𝐾 ≥ 𝛾𝐹 and 𝛾𝐺∗ ≥ 𝛾𝐺∗ give

(15.26) 𝐷 ≥ −𝜂𝑘𝛾𝐾 ∥𝑥𝑘+1 − 𝑥 ∥2
𝑋 + 𝜂𝑘 ⟨[∇𝐾 (𝑥𝑘) − ∇𝐾 (𝑥)] (𝑥𝑘+1 − 𝑥), 𝑦⟩𝑌

+ 𝜂𝑘+1⟨𝐾 (𝑥) − 𝐾 (𝑥𝑘+1) − ∇𝐾 (𝑥𝑘+1) (𝑥 − 𝑥𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌
+ 𝜂𝑘+1⟨𝐾 (𝑥𝑘+1) − 𝐾 (𝑥𝑘+1) + ∇𝐾 (𝑥𝑘+1) (𝑥𝑘+1 − 𝑥𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌
+ 𝜂𝑘+1⟨(∇𝐾 (𝑥𝑘) − ∇𝐾 (𝑥𝑘+1)) (𝑥𝑘+1 − 𝑥𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌 .
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Using Assumption 15.3 and the mean value theorem in the form

𝐾 (𝑥′) = 𝐾 (𝑥) + ∇𝐾 (𝑥) (𝑥′ − 𝑥) +
∫ 1

0
(∇𝐾 (𝑥 + 𝑠 (𝑥′ − 𝑥)) − ∇𝐾 (𝑥)) (𝑥′ − 𝑥)𝑑𝑠,

we obtain for any 𝑥, 𝑥′ ∈ X𝐾 and 𝑦 ∈ 𝑌 the inequality

(15.27) ⟨𝐾 (𝑥′) − 𝐾 (𝑥) − ∇𝐾 (𝑥) (𝑥′ − 𝑥), 𝑦⟩𝑌 ≤ (𝐿/2)∥𝑥 − 𝑥′∥2
𝑋 ∥𝑦 ∥𝑃NL .

Applying Assumption 15.3, the inequality (15.27), and 𝑥𝑘+1 − 𝑥𝑘+1 = 𝜔 (𝑥𝑘+1 − 𝑥𝑘) to the last
two terms of (15.26), we obtain

⟨𝐾 (𝑥𝑘+1) − 𝐾 (𝑥𝑘+1) + ∇𝐾 (𝑥𝑘+1) (𝑥𝑘+1 − 𝑥𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌 ≥ −𝐿𝜔
2

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2∥𝑦𝑘+1 − 𝑦 ∥𝑃NL
and

⟨(∇𝐾 (𝑥𝑘) − ∇𝐾 (𝑥𝑘+1)) (𝑥𝑘+1 − 𝑥𝑘+1), 𝑦𝑘+1 − 𝑦⟩𝑌 ≥ −𝐿𝜔 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ∥𝑦𝑘+1 − 𝑦 ∥𝑃NL .

These estimates together with (15.19) and 𝑢𝑘+1 ∈ U(𝜌𝑦) now imply that 𝐷 ≥ 𝜂𝑘𝐷𝐾𝑘+1 for

𝐷𝐾
𝑘+1 ≔ ⟨[∇𝐾 (𝑥𝑘) − ∇𝐾 (𝑥)] (𝑥𝑘+1 − 𝑥), 𝑦⟩𝑌 − 𝛾𝐾 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 − 𝐿(1 + 𝜔/2)𝜌𝑦 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋

− 𝜔−1∥𝑦𝑘+1 − 𝑦 ∥𝑃NL ∥𝐾 (𝑥) − 𝐾 (𝑥𝑘+1) − ∇𝐾 (𝑥𝑘+1) (𝑥 − 𝑥𝑘+1)∥𝑌 .

Finally, we use Assumption 15.4 and Young’s inequality to estimate

𝐷𝐾
𝑘+1 ≥ (𝜃 − 𝜔−1∥𝑦𝑘+1 − 𝑦 ∥𝑃NL)∥𝐾 (𝑥) − 𝐾 (𝑥𝑘+1) − ∇𝐾 (𝑥𝑘+1) (𝑥 − 𝑥𝑘+1)∥𝑌

− 𝜆 + 3𝐿𝜌𝑦
2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 .

Now observe that 𝜃 − 𝜔−1∥𝑦𝑘+1 − 𝑦 ∥𝑃NL ≥ 𝜃 − 𝜔−1𝜌𝑦 ≥ 0. Combining with the estimate
𝐷 ≥ 𝜂𝑘𝐷𝐾𝑘+1, we therefore obtain our claim. □

We now have all the necessary tools at hand to prove the main estimate (11.28) needed for
the application of Theorem 11.12.

Theorem 15.8. Let 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑌 → ℝ be convex, proper, and lower semicontinuous.
Suppose 𝐾 : 𝑋 → 𝑌 satisfies Assumptions 15.3 and 15.4. Fix 𝑘 ∈ ℕ, and also suppose 𝑥𝑘+1 ∈ X𝐾
and that 𝑢𝑘 , 𝑢𝑘+1 ∈ U(𝜌𝑦) for some 𝜌𝑦 ≥ 0 Suppose (15.19) holds for some 𝜅 ∈ [0, 1) and

(15.28) 𝜏 <
𝜅

𝜆 + 3𝐿𝜌𝑦

as well as 𝜔𝜃 ≥ 𝜌𝑦 . Then

(15.29) 1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+2𝑀𝑘+2

≤ 1
2 ∥𝑢

𝑘 − 𝑢∥2
𝑍𝑘+1𝑀𝑘+1

(𝑘 ∈ ℕ).
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Proof. We show that (15.30) holds withV𝑘+1 ≡ 0, i.e., that

(15.30) ⟨𝐻𝑘+1(𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 ≥
1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+2𝑀𝑘+2−𝑍𝑘+1𝑀𝑘+1

− 1
2 ∥𝑢

𝑘+1 − 𝑢𝑘 ∥2
𝑍𝑘+1𝑀𝑘+1

.

The claim then follows from Theorem 11.12 and Lemma 15.5, the latter of which provides
the necessary self-adjointness of 𝑍𝑘+1𝑀𝑘+1.

Let thus 𝛿 ∈ (0, 𝜅) be arbitrary, and define

𝑆𝑘+1 ≔

((𝛿𝜑𝑘 − 𝜂𝑘 [𝜆 + 3𝐿𝜌𝑦])Id 0
0 𝜓𝑘+1

(
Id − 𝜔 𝜏𝜎

1−𝛿∇𝐾 (𝑥𝑘) [∇𝐾 (𝑥𝑘)]∗
) ) .

Using (15.22) and (15.21) and, in the second and third step, Lemmas 15.6 and 15.7, we estimate

1
2 ∥𝑢

𝑘+1 − 𝑢𝑘 ∥2
𝑆𝑘+1−𝑍𝑘+1𝑀𝑘+1

≤ −𝜂𝑘 [𝜆 + 3𝐿𝜌𝑦]
2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋

≤ ⟨𝐻𝑘+1(𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 −
1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+1Ξ𝑘+1

= ⟨𝐻𝑘+1(𝑢𝑘+1), 𝑢𝑘+1 − 𝑢⟩𝑍𝑘+1 −
1
2 ∥𝑢

𝑘+1 − 𝑢∥2
𝑍𝑘+2𝑀𝑘+2−𝑍𝑘+1𝑀𝑘+1

.

Then (15.30) holds if 𝑆𝑘+1 ≥ 0. This readily follows from (15.28) with 𝛿 ∈ (0, 𝜅) for the
primal variable and (15.19) for the dual variable. □

Theorem 15.9. Let 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑌 → ℝ be strongly convex, proper, and lower
semicontinuous. Suppose 𝐾 : 𝑋 → 𝑌 satisfies Assumptions 15.3 and 15.4. Let 𝑅𝐾 > 0 be
such that sup𝑥∈X𝐾 ∥∇𝐾 (𝑥)∥ ≤ 𝑅𝐾 . Pick 0 < 𝜏 < 1/(𝜆 + 3𝐿𝜌𝑦) for a given 𝜌𝑦 ≥ 0, and take
𝜎 = 𝜏𝛾𝐹/𝛾𝐺∗ for some 𝛾𝐹 ∈ (0, 𝛾𝐹 + 𝛾𝐾 ] and 𝛾𝐺∗ ∈ (0, 𝛾𝐺 ] such that 𝜔𝜃 ≥ 𝜌𝑦 . Let the iterates
{(𝑢𝑘 , 𝑥𝑘+1)}𝑘∈ℕ be generated by the NL-PDPS method (15.12). If 𝑥𝑘+1 ∈ X𝐾 and 𝑢𝑘 ∈ U(𝜌𝑦)
for all 𝑘 ∈ ℕ and some 𝑢 ∈ 𝐻−1(0) for 𝐻 given in (15.11), then 𝑢𝑘 → 𝑢 linearly.

Proof. Take 𝜑𝑘+1 ≔ 𝜑𝑘 (1 + 2𝛾𝐹𝜏) and𝜓𝑘+1 ≔ 𝜓𝑘 (1 + 2𝛾𝐺∗𝜎) for 𝜑0 = 1 and𝜓1 ≔ 𝜏/𝜎 . Then
𝜑𝑘𝜏 = 𝜓𝑘+1𝜎 if and only if 1 + 2𝛾𝐹𝜏 = 1 + 2𝛾𝐺∗𝜎 , i.e., for 𝜎 = 𝜏𝛾𝐹/𝛾𝐺∗ as stated. Consequently
(15.19) is satisfied and the testing parameters 𝜑𝑘 and𝜓𝑘+1 grow exponentially. Clearly (15.28)
holds for some 𝜅 ∈ [0, 1). Combining (15.29) from Theorem 15.8 with Lemma 15.5 now
shows the claimed linear convergence. □

Besides step length bounds and structural properties of the problem, Theorem 15.9 still
requires us to ensure that the iterates stay close enough to the critical point 𝑥 . This can
be done if we initialize close enough to a critical point. As the proof is very technical, we
merely state the following result.
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15 nonlinear primal-dual proximal splitting

Theorem 15.10 ([Clason et al., 2019, Proposition 4.8]). Under the assumptions of Theorem 15.9,
for any 𝜌𝑦 > 0 there exists an 𝜀 > 0 such that {𝑢𝑘}𝑘∈ℕ ⊂ U(𝜌𝑦) for all initial iterates
𝑢0 = (𝑥0, 𝑦0) satisfying

(15.31)
√︁

2𝛿−1(∥𝑥0 − 𝑥 ∥2 + 𝜏𝜎−1∥𝑦0 − 𝑦 ∥2) ≤ 𝜀.

Remark 15.11 (weaker assumptions, weaker convergence). We have only demonstrated linear conver-
gence of the method under the strong convexity of both 𝐹 and 𝐺∗. However, under similarly lesser
assumptions as for the basic PDPS method familiar from Part II, both an accelerated 𝑂 (1/𝑁 2) rate
and weak convergence can be proved. We refer to [Clason et al., 2019] for details, noting that Opial’s
Lemma 9.1 extends straightforwardly to the quantitative Fejér monotonicity (10.21) that is the basis
of our proofs here. We also note that our linear convergence result differs from that in [Clason
et al., 2019] by taking the over-relaxation parameter 𝜔 = 1 in (15.12) instead of 𝜔 = 1/(1 + 2𝛾𝐹𝜏) < 1;
compare Theorem 10.8.

Remark 15.12 (historical development of the NL-PDPS). The NL-PDPS method was first introduced
in [Valkonen, 2014] in finite dimensions with applications to inverse problems in magnetic resonance
imaging. The method was later extended in [Clason and Valkonen, 2017a] to infinite dimensions
and applied to PDE-constrained optimization problems. In these works, only (weak) convergence of
the iterates is shown, based on the metric regularity of the operator 𝐻 . We discuss metric regularity
later in Chapters 27 and 28. Convergence rates were then first shown in [Clason et al., 2019]. In
that paper, alternative forms of the three-point condition Assumption 15.4 on 𝐾 are also discussed.

Similarly to how we showed in Section 8.7 that the preconditioned ADMM is equivalent to the
PDPS method, it is possible to derive a preconditioned nonlinear ADMM that is equivalent to the
NL-PDPS method; such algorithms are considered in [Benning et al., 2016]. The NL-PDPS method
has been extended in [Clason et al., 2020] by replacing ⟨𝐾 (𝑥), 𝑦⟩𝑌 by a general saddle term 𝐾 (𝑥, 𝑦),
which can be applied to nonconvex optimization problems such as ℓ0-TV denoising or elliptic Nash
equilibrium problems. Block-adapted and stochastic variants in the spirit of Remark 11.17 can be
found in [Mazurenko et al., 2020]. Finally, a simplified approach using the Bregman divergences of
Section 11.1 is presented in [Valkonen, 2021a].
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16 LIMITING SUBDIFFERENTIALS

While the Clarke subdifferential is a suitable concept for nonsmooth but convex or non-
convex but smooth functionals, it has severe drawbacks for nonsmooth and nonconvex
functionals: As shown in Corollary 13.11, its Fermat principle cannot distinguish minimizers
from maximizers. The reason is that the Clarke subdifferential is always convex, which
is a direct consequence of its construction (13.2) via polarity with respect to (generalized)
directional derivatives. To obtain sharper results for such functionals, it is therefore neces-
sary to construct nonconvex subdifferentials directly via a dual limiting process. On the
other hand, deriving calculus rules for the previous subdifferentials crucially exploited
their convexity by applying Hahn–Banach separation theorems, and calculus rules for
nonconvex subdifferentials are thus significantly more difficult to obtain. As in Chapter 13,
we will assume throughout this chapter that𝑋 is a Banach space unless stated otherwise.

16.1 bouligand subdifferentials

The first definition is motivated by Theorem 13.26: We define a subdifferential as a suitable
limit of classical derivatives (without convexification). For 𝐹 : 𝑋 → ℝ, we first define the
set of Gâteaux points

𝐺𝐹 ≔ {𝑥 ∈ 𝑋 | 𝐹 is Gâteaux differentiable at 𝑥} ⊂ dom 𝐹

and then the Bouligand subdifferential of 𝐹 at 𝑥 as

(16.1) 𝜕𝐵𝐹 (𝑥) ≔ {𝑥∗ ∈ 𝑋 ∗ | 𝐷𝐹 (𝑥𝑛) ∗⇀ 𝑥∗ for some 𝐺𝐹 ∋ 𝑥𝑛 → 𝑥} .

For 𝐹 : ℝ𝑁 → ℝ locally Lipschitz, it follows from Theorem 13.26 that 𝜕𝐶𝐹 (𝑥) = co 𝜕𝐵𝐹 (𝑥).
However, unless 𝑋 is finite-dimensional, it is not clear a priori that the Bouligand subdif-
ferential is nonempty even for 𝑥 ∈ dom 𝐹 .1 Furthermore, the subdifferential does not admit
a satisfactory calculus; not even a Fermat principle holds.

1Although in special cases it is possible to give a full characterization in Hilbert spaces; see, e.g., [Christof
et al., 2018].
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16 limiting subdifferentials

Example 16.1. Let 𝐹 : ℝ → ℝ, 𝐹 (𝑥) ≔ |𝑥 |. Then 𝐹 is differentiable at every 𝑥 ≠ 0 with
𝐹 ′(𝑥) = sign(𝑥). Correspondingly,

0 ∉ {−1, 1} = 𝜕𝐵𝐹 (0).

To make this approach work therefore requires a more delicate limiting process. The
remainder of this chapter is devoted to one such approach, where we only give an overview
and state important results following [Mordukhovich, 2006]. The full theory is based
on a geometric construction similar to Lemma 4.10 making use of tangent and normal
cones (corresponding to generalized directional derivatives and subgradients, respectively)
that also allows for differentiation of set-valued mappings. We will develop this theory in
Chapters 18 to 21. For an alternative, more axiomatic, approach to generalized derivatives
of nonconvex functionals, we refer to [Ioffe, 2017; Penot, 2013].

16.2 fréchet subdifferentials

We begin with the following limiting construction, which combines the characterizations
of both the Fréchet derivative and the convex subdifferential. Let 𝑋 be a Banach space and
𝐹 : 𝑋 → ℝ. The Fréchet subdifferential (or regular subdifferential or presubdifferential) of 𝐹
at 𝑥 is then defined as2

(16.2) 𝜕𝐹𝐹 (𝑥) ≔
{
𝑥∗ ∈ 𝑋 ∗

���� lim inf
𝑦→𝑥

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋 ≥ 0

}
.

Note how this “localizes” the definition of the convex subdifferential around the point of
interest: the numerator does not need to be nonnegative for all 𝑦 ; it suffices if this holds
for any 𝑦 sufficiently close to 𝑥 . By a similar argument as for Theorem 4.2, we thus obtain
a Fermat principle for local minimizers.

Theorem 16.2. Let 𝐹 : 𝑋 → ℝ be proper and𝑥 ∈ dom 𝐹 be a local minimizer. Then 0 ∈ 𝜕𝐹𝐹 (𝑥).

Proof. Let𝑥 ∈ dom 𝐹 be a local minimizer. Then there exists an 𝜀 > 0 such that 𝐹 (𝑥) ≤ 𝐹 (𝑦)
for all 𝑦 ∈ 𝕆(𝑥, 𝜀), which is equivalent to

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨0, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋 ≥ 0 for all 𝑦 ∈ 𝕆(𝑥, 𝜀).

Now for any strongly convergent sequence 𝑦𝑛 → 𝑥 , we have that 𝑦𝑛 ∈ 𝕆(𝑥, 𝜀) for 𝑛 large
enough. Taking the lim inf in the above inequality thus yields 0 ∈ 𝜕𝐹𝐹 (𝑥). □

2The equivalence of (16.2) with the usual definition based on corresponding normal cones follows from,
e.g., [Mordukhovich, 2006, Theorem 1.86].
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16 limiting subdifferentials

For convex functionals, of course, the numerator is always nonnegative by definition, and
the Fréchet subdifferential reduces to the convex subdifferential.

Theorem 16.3. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous and 𝑥 ∈ dom 𝐹 .
Then 𝜕𝐹𝐹 (𝑥) = 𝜕𝐹 (𝑥).

Proof. By definition of the convex subdifferential, any 𝑥∗ ∈ 𝜕𝐹 (𝑥) satisfies

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑦 − 𝑥⟩𝑋 ≥ 0 for all 𝑦 ∈ 𝑋 .

Dividing by ∥𝑥−𝑦 ∥𝑋 > 0 for 𝑦 ≠ 𝑥 and taking the lim inf as 𝑦 → 𝑥 thus yields 𝑥∗ ∈ 𝜕𝐹𝐹 (𝑥).
Conversely, let 𝑥∗ ∈ 𝜕𝐹𝐹 (𝑥) and ℎ ∈ 𝑋 \ {0} be arbitrary. Then for an 𝛿 > 0, there exists
an 𝜀 > 0 such that

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑡ℎ⟩𝑋
𝑡 ∥ℎ∥𝑋 ≥ −𝛿 for all 𝑡 ∈ (0, 𝜀).

Multiplying by ∥ℎ∥𝑋 > 0 and letting 𝑡 → 0, we obtain from Lemma 4.3 that

(16.3) ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

+ 𝛿 → 𝐹 ′(𝑥 ;ℎ) + 𝛿.

Since 𝛿 > 0 was arbitrary, this implies by Lemma 4.4 that 𝑥∗ ∈ 𝜕𝐹 (𝑥). □

Similarly, for Fréchet differentiable functionals, the limit in (16.2) is zero for all sequences.

Theorem 16.4. Let 𝐹 : 𝑋 → ℝ be Fréchet differentiable at 𝑥 ∈ 𝑋 . Then 𝜕𝐹𝐹 (𝑥) = {𝐹 ′(𝑥)}.

Proof. The definition of the Fréchet derivative immediately yields

lim
𝑦→𝑥

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝐹 ′(𝑥), 𝑦 − 𝑥⟩𝑋
∥𝑥 − 𝑦 ∥𝑋 = lim

∥ℎ∥𝑋→0

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐹 ′(𝑥)ℎ
∥ℎ∥𝑋 = 0

and hence 𝐹 ′(𝑥) ∈ 𝜕𝐹𝐹 (𝑥).
Conversely, let 𝑥∗ ∈ 𝜕𝐹𝐹 (𝑥) and let again ℎ ∈ 𝑋 \ {0} be arbitrary. As in the proof of
Theorem 16.3, we then obtain that

(16.4) ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) = ⟨𝐹 ′(𝑥), ℎ⟩𝑋 .

Applying the same argument to −ℎ then yields ⟨𝑥∗, ℎ⟩𝑋 = ⟨𝐹 ′(𝑥), ℎ⟩𝑋 for all ℎ ∈ 𝑋 , i.e.,
𝑥∗ = 𝐹 ′(𝑥). □

For nonsmooth and nonconvex functionals, the Fréchet subdifferential can be strictly
smaller than the Clarke subdifferential.
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16 limiting subdifferentials

Example 16.5. Consider 𝐹 : ℝ → ℝ, 𝐹 (𝑥) ≔ −|𝑥 |. For any 𝑥 ≠ 0, it follows from
Theorem 16.4 that 𝜕𝐹𝐹 (𝑥) = {− sign(𝑥)}. But for 𝑥 = 0 and arbitrary 𝑥∗ ∈ ℝ, we have
that

lim inf
𝑦→0

𝐹 (𝑦) − 𝐹 (0) − ⟨𝑥∗, 𝑦 − 0⟩
|𝑦 − 0| = lim inf

𝑦→0
(−1 − 𝑥∗ · sign(𝑦)) = −1 − |𝑥∗ | < 0

and hence that
𝜕𝐹𝐹 (0) = ∅ ⊊ [−1, 1] = 𝜕𝐶𝐹 (0).

Note that 0 ∈ dom 𝐹 in this example. Although the Fréchet subdifferential does not pick
up a maximizer in contrast to the Clarke subdifferential, the fact that 𝜕𝐹𝐹 (𝑥) can be empty
even for 𝑥 ∈ dom 𝐹 is a problem when trying to derive calculus rules that hold with equality.
In fact, as Example 16.5 shows, the Fréchet subdifferential fails to be outer semicontinuous,
which is also not desirable. This leads to the next and final definition.

16.3 mordukhovich subdifferentials

Let 𝑋 be a reflexive Banach space and 𝐹 : 𝑋 → ℝ. The Mordukhovich subdifferential (or
basic subdifferential or limiting subdifferential) of 𝐹 at 𝑥 ∈ dom 𝐹 is then defined as the
strong-to-weak∗ outer closure of 𝜕𝐹𝐹 (𝑥), i.e.,3

(16.5) 𝜕𝑀𝐹 (𝑥) ≔ w-∗-lim sup
𝑦→𝑥

𝜕𝐹𝐹 (𝑦)

=
{
𝑥∗ ∈ 𝑋 ∗ �� 𝑥∗𝑛 ∗⇀ 𝑥∗ for some 𝑥∗𝑛 ∈ 𝜕𝐹𝐹 (𝑥𝑛) with 𝑥𝑛 → 𝑥

}
,

which can be seen as a generalization of the definition (16.1) of the Bouligand subdifferential.
Note that in contrast to (16.1), this definition includes the constant sequence 𝑥∗𝑛 ≡ 𝑥∗ even
at nondifferentiable points, which makes this a more useful concept in general. This also
implies that 𝜕𝐹𝐹 (𝑥) ⊂ 𝜕𝑀𝐹 (𝑥) for any 𝐹 , and Theorem 16.2 immediately yields a Fermat
principle.

Corollary 16.6. Let 𝐹 : 𝑋 → ℝ be proper and 𝑥 ∈ dom 𝐹 be a local minimizer. Then
0 ∈ 𝜕𝑀𝐹 (𝑥).

As for the Fréchet subdifferential, maximizers do not satisfy the Fermat principle.

Example 16.7. Consider again 𝐹 : ℝ → ℝ, 𝐹 (𝑥) ≔ −|𝑥 |. Using Example 16.5, we directly

3The equivalence of this definition with the original geometric definition – which holds in reflexive Banach
spaces – follows from [Mordukhovich, 2006, Theorem 2.34].
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16 limiting subdifferentials

obtain from (16.5) that 𝜕𝑀𝐹 (0) = {−1, 1} = 𝜕𝐵𝐹 (0).

Since the convex subdifferential is strong-to-weak∗ outer semicontinuous, theMordukhovich
subdifferential reduces to the convex subdifferential as well.

Theorem 16.8. Let 𝑋 be a reflexive Banach space, 𝐹 : 𝑋 → ℝ be proper, convex, and lower
semicontinuous, and 𝑥 ∈ dom 𝐹 . Then 𝜕𝑀𝐹 (𝑥) = 𝜕𝐹 (𝑥).

Proof. From Theorem 16.3, it follows that 𝜕𝐹 (𝑥) = 𝜕𝐹𝐹 (𝑥) ⊂ 𝜕𝑀𝐹 (𝑥). Let therefore 𝑥∗ ∈
𝜕𝑀𝐹 (𝑥) be arbitrary. Then by definition there exists a sequence {𝑥∗𝑛}𝑛∈ℕ ⊂ 𝑋 ∗ with 𝑥∗𝑛 ∗⇀ 𝑥∗

and 𝑥∗𝑛 ∈ 𝜕𝐹𝐹 (𝑥𝑛) = 𝜕𝐹 (𝑥𝑛) for 𝑥𝑛 → 𝑥 . From Theorem 6.13 and Lemma 6.10, it then follows
that 𝑥∗ ∈ 𝜕𝐹 (𝑥) as well. □

A similar result holds for continuously differentiable functionals.

Theorem 16.9. Let𝑋 be a reflexive Banach space and 𝐹 : 𝑋 → ℝ be continuously differentiable
at 𝑥 ∈ 𝑋 . Then 𝜕𝑀𝐹 (𝑥) = {𝐹 ′(𝑥)}.

Proof. From Theorem 16.3, it follows that {𝐹 ′(𝑥)} = 𝜕𝐹𝐹 (𝑥) ⊂ 𝜕𝑀𝐹 (𝑥). Let therefore
𝑥∗ ∈ 𝜕𝑀𝐹 (𝑥) be arbitrary. Then by definition there exists a sequence {𝑥∗𝑛}𝑛∈ℕ ⊂ 𝑋 ∗ with
𝑥∗𝑛

∗⇀ 𝑥∗ and 𝑥∗𝑛 ∈ 𝜕𝐹𝐹 (𝑥𝑛) = {𝐹 ′(𝑥𝑛)} for 𝑥𝑛 → 𝑥 . The continuity of 𝐹 ′ then immediately
implies that 𝐹 ′(𝑥𝑛) → 𝐹 ′(𝑥), and since strong limits are also weak-∗ limits, we obtain
𝑥∗ = 𝐹 ′(𝑥). □

The same function as in Example 13.6 shows that this equality does not hold if 𝐹 is merely
Fréchet differentiable.

We also have the following relation to Clarke subdifferentials, which should be compared
to Theorem 13.26. We will give a proof in a more restricted setting in Chapter 20, cf. Corol-
lary 20.21.

Theorem 16.10 ([Mordukhovich, 2006, Theorem 3.57]). Let 𝑋 be a reflexive Banach space
and 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous around 𝑥 ∈ 𝑋 . Then 𝜕𝐶𝐹 (𝑥) = cl∗ co 𝜕𝑀𝐹 (𝑥),
where cl∗𝐴 stands for the weak-∗ closure of the set 𝐴 ⊂ 𝑋 ∗.4

The following example illustrates that the Mordukhovich subdifferential can be noncon-
vex.

4Of course, in reflexive Banach spaces the weak-∗ closure coincides with the weak closure. The statement
holds more general in so-called Asplund spaces which include some nonreflexive Banach spaces.
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16 limiting subdifferentials

Example 16.11. Let 𝐹 : ℝ2 → ℝ, 𝐹 (𝑥1, 𝑥2) = |𝑥1 | − |𝑥2 |. Since 𝐹 is continuously differen-
tiable for any (𝑥1, 𝑥2) where 𝑥1, 𝑥2 ≠ 0 with

∇𝐹 (𝑥1, 𝑥2) ∈ {(1, 1), (−1, 1), (1,−1), (−1,−1)},

we obtain from (16.2) that

𝜕𝐹𝐹 (𝑥1, 𝑥2) =



{(1,−1)} if 𝑥1 > 0, 𝑥2 > 0,
{(−1,−1)} if 𝑥1 < 0, 𝑥2 > 0,
{(−1, 1)} if 𝑥1 < 0, 𝑥2 < 0,
{(1, 1)} if 𝑥1 > 0, 𝑥2 < 0,
{(𝑡,−1) | 𝑡 ∈ [−1, 1]} if 𝑥1 = 0, 𝑥2 > 0,
{(𝑡, 1) | 𝑡 ∈ [−1, 1]} if 𝑥1 = 0, 𝑥2 < 0,
∅ if 𝑥2 = 0.

In particular, 𝜕𝐹𝐹 (0, 0) = ∅. However, from (16.5) it follows that

𝜕𝑀𝐹 (0, 0) = {(𝑡,−1) | 𝑡 ∈ [−1, 1]} ∪ {(𝑡, 1) | 𝑡 ∈ [−1, 1]} .

In particular, 0 ∉ 𝜕𝑀𝐹 (0, 0). On the other hand, Theorem 16.10 then yields that

(16.6) 𝜕𝐶𝐹 (0, 0) = {(𝑡, 𝑠) | 𝑡, 𝑠 ∈ [−1, 1]} = [−1, 1]2

and hence 0 ∈ 𝜕𝐶𝐹 (0, 0). (Note that 𝐹 attains neither a minimum nor a maximum on
ℝ2, while (0, 0) is a nonsmooth saddle-point.)

In contrast to the Bouligand subdifferential, the Mordukhovich subdifferential admits a
satisfying calculus, although the assumptions are understandably more restrictive than in
the convex setting. The first rule follows as always straight from the definition.

Theorem 16.12. Let 𝑋 be a reflexive Banach space and 𝐹 : 𝑋 → ℝ. Then for any 𝜆 ≥ 0 and
𝑥 ∈ 𝑋 ,

𝜕𝑀 (𝜆𝐹 ) (𝑥) = 𝜆𝜕𝑀𝐹 (𝑥).

Full calculus in infinite-dimensional spaces holds only for a rather small class ofmappings.

Theorem 16.13 ([Mordukhovich, 2006, Proposition 1.107]). Let 𝑋 be a reflexive Banach space,
𝐹 : 𝑋 → ℝ be continuously differentiable, and 𝐺 : 𝑋 → ℝ be arbitrary. Then for any
𝑥 ∈ dom𝐺 ,

𝜕𝑀 (𝐹 +𝐺) (𝑥) = {𝐹 ′(𝑥)} + 𝜕𝑀𝐺 (𝑥).
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While the previous two theorems also hold for the Fréchet subdifferential (the latter even for
merely Fréchet differentiable 𝐹 ), the following chain rule is only valid for the Mordukhovich
subdifferential. Compared to Theorem 13.23, it also allows for the outer functional to be
extended-real valued.

Theorem 16.14 ([Mordukhovich, 2006, Proposition 1.112]). Let 𝑋 be a reflexive Banach space,
𝐹 : 𝑋 → 𝑌 be continuously differentiable, and 𝐺 : 𝑌 → ℝ be arbitrary. Then for any 𝑥 ∈ 𝑋
with 𝐹 (𝑥) ∈ dom𝐺 and 𝐹 ′(𝑥) : 𝑋 → 𝑌 surjective,

𝜕𝑀 (𝐺 ◦ 𝐹 ) (𝑥) = 𝐹 ′(𝑥)∗𝜕𝑀𝐺 (𝐹 (𝑥)) .

More general calculus rules require 𝑋 to be a reflexive Banach5 space as well as additional,
nontrivial, assumptions on 𝐹 and 𝐺 ; see, e.g., [Mordukhovich, 2006, Theorem 3.36 and
Theorem 3.41].

Wewill illustrate how to prove the above calculus results andmore in Section 20.4 and Chap-
ter 25, after studying the differentiation of set-valued mappings.

5or Asplund

234



17 𝜀-SUBDIFFERENTIALS AND APPROXIMATE FERMAT

PRINCIPLES

We now study an approximate variant of the Fréchet subdifferential of Section 16.2 as
well as related approximate Fermat principles; these will be needed in Chapter 18 to study
limiting tangent and normal cones.

17.1 𝜀-subdifferentials

Just like the 𝜀-minimizers in Section 2.4, it can be useful to consider “relaxed” 𝜀-subdifferenti-
als. In particular, it is possible to derive exact calculus rules for these relaxed subdifferentials,
which can lead to tighter results than inclusions for the corresponding exact subdifferentials
(in particular, for the Fréchet subdifferential). We will make use of this in Chapter 27.

Similarly to the Fréchet subdifferential (16.2), we thus define for 𝐹 : 𝑋 → ℝ the 𝜀(-Fréchet)-
subdifferential by

(17.1) 𝜕𝜀𝐹 (𝑥) ≔
{
𝑥∗ ∈ 𝑋 ∗

���� lim inf
𝑦→𝑥

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋 ≥ −𝜀

}
,

where 𝜕0𝐹 = 𝜕𝐹𝐹 . The following lemma provides further insight into the 𝜀-subdifferential.

Lemma 17.1. Let 𝐹 : 𝑋 → ℝ on a Banach space 𝑋 , and 𝜀 ≥ 0. Then the following are
equivalent:

(i) 𝑥∗ ∈ 𝜕𝜀𝐹 (𝑥);
(ii) 𝑥∗ ∈ 𝜕𝐹 [𝐹 + 𝜀∥ · − 𝑥 ∥𝑋 ] (𝑥);
(iii) 0 ∈ 𝜕𝐹 [𝐹 + 𝜀∥ · − 𝑥 ∥𝑋 − ⟨𝑥∗, · − 𝑥⟩] (𝑥).

Proof. Each of the alternatives is by (17.1) and (16.2) equivalent to

lim inf
𝑦→𝑥

𝜀∥𝑦 − 𝑥 ∥𝑋 + 𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋 ≥ 0. □
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We have the following “fuzzy” 𝜀-sum rule.

Lemma 17.2. Let 𝑋 be a Banach space, 𝐺 : 𝑋 → ℝ, and 𝐹 : 𝑋 → ℝ be convex with
𝜕𝐹 (𝑥) ⊂ 𝔹(𝑥∗, 𝜀) for some 𝜀 ≥ 0 and 𝑥∗ ∈ 𝑋 ∗. Then for all 𝛿 ≥ 0,

𝜕𝛿𝐺 (𝑥) + 𝜕𝐹 (𝑥) ⊂ 𝜕𝛿 [𝐺 + 𝐹 ] (𝑥) ⊂ 𝜕𝜀+𝛿𝐺 (𝑥) + {𝑥∗}.
In particular, if 𝑥∗ ∈ 𝜕𝐹 (𝑥), then

𝜕𝛿𝐺 (𝑥) + 𝜕𝐹 (𝑥) ⊂ 𝜕𝛿 [𝐺 + 𝐹 ] (𝑥) ⊂ 𝜕𝜀+𝛿𝐺 (𝑥) + 𝜕𝐹 (𝑥).

Proof. We start with the first inclusion. Let 𝑥∗ ∈ 𝜕𝐹 (𝑥) and 𝑥∗ ∈ 𝜕𝛿𝐺 (𝑥). Then the defini-
tions (4.1) and (17.1), respectively, imply that

lim inf
𝑦→𝑥

𝐺 (𝑦) −𝐺 (𝑥) + 𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝑥∗ + 𝑥∗, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋

≥ lim inf
𝑦→𝑥

𝐺 (𝑦) −𝐺 (𝑥) − ⟨𝑥∗, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋 ≥ −𝛿,

i.e., 𝑥∗ + 𝑥∗ ∈ 𝜕𝛿 [𝐺 + 𝐹 ] (𝑥).
To prove the second inclusion, let 𝑥∗ ∈ 𝜕𝛿 [𝐺 + 𝐹 ] (𝑥) and ℎ ∈ 𝑋 with ∥ℎ∥𝑋 = 1. Then (17.1)
implies that for all 𝑡𝑛→ 0 and ℎ𝑛 → ℎ,

(17.2) lim inf
𝑛→∞

𝐹 (𝑥 + 𝑡𝑛ℎ𝑛) − 𝐹 (𝑥) +𝐺 (𝑥 + 𝑡𝑛ℎ𝑛) −𝐺 (𝑥) − 𝑡𝑛⟨𝑥∗, ℎ𝑛⟩𝑋
𝑡𝑛

≥ −𝛿.

Since 𝐹 is directionally differentiable by Lemma 4.3 and locally Lipschitz around 𝑥 ∈
int(dom 𝐹 ) = 𝑋 by Theorem 3.13 with Lipschitz constant 𝐿 > 0, we have

lim
𝑛→∞

𝐹 (𝑥 + 𝑡𝑛ℎ𝑛) − 𝐹 (𝑥)
𝑡𝑛

≤ lim
𝑛→∞

(
𝐹 (𝑥 + 𝑡𝑛ℎ) − 𝐹 (𝑥)

𝑡𝑛
+ 𝐿∥ℎ𝑛 − ℎ∥𝑋

)
= 𝐹 ′(𝑥 ;ℎ).

Let now 𝜌 > 0 be arbitrary. Then by Lemma 4.4, Theorem 13.8, , and Corollary 13.15 there
exists an 𝑥∗

ℎ,𝜌
∈ 𝜕𝐹 (𝑥) such that 𝐹 ′(𝑥 ;ℎ) ≤ ⟨𝑥∗

ℎ,𝜌
, ℎ⟩𝑋 + 𝜌 . Therefore

lim
𝑛→∞

𝐹 (𝑥 + 𝑡𝑛ℎ𝑛) − 𝐹 (𝑥) − 𝑡𝑛⟨𝑥∗, ℎ𝑛⟩𝑋
𝑡𝑛

≤ 𝐹 ′(𝑥 ;ℎ) − ⟨𝑥∗, ℎ⟩𝑋
≤ ⟨𝑥∗

ℎ,𝜌
− 𝑥∗, ℎ⟩𝑋 + 𝜌

≤ 𝜀 + 𝜌,
where we have used that 𝜕𝐹 (𝑥) ⊂ 𝔹(𝑥∗, 𝜀) and ∥ℎ∥𝑋 = 1 in the last inequality. Since 𝜌 > 0
was arbitrary, the characterization (17.2) now implies

lim inf
𝑛→∞

𝐺 (𝑥 + 𝑡𝑛ℎ𝑛) −𝐺 (𝑥) − 𝑡𝑛⟨𝑥∗ − 𝑥∗, ℎ𝑛⟩𝑋
𝑡𝑛

≥ −(𝛿 + 𝜀).

Since 𝑦𝑛 ≔ 𝑥 + 𝑡𝑛ℎ𝑛 → 𝑥 was arbitrary, this proves 𝑥∗ −𝑥∗ ∈ 𝜕𝜀+𝛿𝐺 (𝑥), i.e., 𝜕𝛿 [𝐺 + 𝐹 ] (𝑥) ⊂
𝜕𝜀+𝛿𝐺 (𝑥) + {𝑥∗}. □
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17 𝜀-subdifferentials and approximate fermat principles

The following is now immediate from Theorem 4.5, since we are allowed to take 𝜀 = 0 if
𝜕𝐹 (𝑥) is a singleton.

Corollary 17.3. Let 𝑋 be a Banach space,𝐺 : 𝑋 → ℝ, and 𝐹 : 𝑋 → ℝ be convex and Gâteaux
differentiable at 𝑥 ∈ 𝑋 . Then for every 𝛿 ≥ 0,

𝜕𝛿 [𝐺 + 𝐹 ] (𝑥) = 𝜕𝛿𝐺 (𝑥) + {𝐷𝐹 (𝑥)}.
In particular,

𝜕𝐹 [𝐺 + 𝐹 ] (𝑥) = 𝜕𝐹𝐺 (𝑥) + {𝐷𝐹 (𝑥)}.

17.2 smooth spaces

For the remaining results in this chapter, we need additional assumptions on the normed
vector space 𝑋 . In particular, we need to assume that the norm is Gâteaux differentiable on
𝑋 \ {0}; we call such spaces Gâteaux smooth.

Recalling from Chapter 7 the duality between differentiability and convexity, it is not
surprising that this property can be related to the convexity of the dual norm. Here we
need the following property: a normed vector space 𝑋 is called locally uniformly convex if
for any 𝑥 ∈ 𝑋 with ∥𝑥 ∥𝑋 = 1 and all 𝜀 ∈ (0, 2] there exists a 𝛿 (𝜀, 𝑥) > 0 such that

(17.3) ∥ 1
2 (𝑥 + 𝑦)∥𝑋 ≤ 1 − 𝛿 (𝜀, 𝑥) for all 𝑦 ∈ 𝑋 with ∥𝑦 ∥𝑋 = 1 and ∥𝑥 − 𝑦 ∥𝑋 ≥ 𝜀.

Lemma 17.4. Let 𝑋 be a Banach space and 𝑋 ∗ be locally uniformly convex. Then 𝑋 is Gâteaux
smooth.

Proof. Let 𝑥 ∈ 𝑋 \ {0} be given. Since norms are convex, it suffices by Theorem 13.18
to show that 𝜕∥ · ∥𝑋 (𝑥) is a singleton. Let therefore 𝑥∗1 , 𝑥∗2 ∈ 𝜕∥ · ∥𝑋 (𝑥), i.e., satisfying by
Theorem 4.6

∥𝑥∗1 ∥𝑋 ∗ = ∥𝑥∗2 ∥𝑋 ∗ = 1, ⟨𝑥∗1 , 𝑥⟩𝑋 = ⟨𝑥∗2, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 .
This implies that

2 =
1

∥𝑥 ∥𝑋
(⟨𝑥∗1 , 𝑥⟩𝑋 + ⟨𝑥∗2, 𝑥⟩𝑋

)
= ⟨𝑥∗1 + 𝑥∗2, 𝑥

∥𝑥 ∥𝑋 ⟩𝑋 ≤ ∥𝑥∗1 + 𝑥∗2 ∥𝑋 ∗

by (1.1) and hence that ∥ 1
2 (𝑥∗1 +𝑥∗2)∥𝑋 ∗ ≥ 1. Since 𝑋 ∗ is locally uniformly convex, this is only

possible if 𝑥∗1 = 𝑥∗2 , as otherwise we could choose for 𝜀 ≔ ∥𝑥∗1 − 𝑥∗2 ∥𝑋 ∗ ∈ (0, 2] a 𝛿 (𝜀, 𝑥) > 0
such that ∥ 1

2 (𝑥∗1 + 𝑥∗2)∥𝑋 ∗ ≤ 1 − 𝛿 (𝜀, 𝛿) < 1. □

Remark 17.5. In fact, if 𝑋 is additionally reflexive, the norm is even continuously (Fréchet) differen-
tiable; see [Schirotzek, 2007, Proposition 4.7.10]. We will not need this stronger property, however.
In addition, locally uniformly convex spaces always have the Radon–Riesz property; see [Schirotzek,
2007, Lemma 4.7.9].
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17 𝜀-subdifferentials and approximate fermat principles

Example 17.6. The following spaces are locally uniformly convex:

(i) 𝑋 a Hilbert space. This follows from the parallelogram identity

∥ 1
2 (𝑥 + 𝑦)∥2

𝑋 =
1
2 ∥𝑥 ∥

2
𝑋 + 1

2 ∥𝑦 ∥
2
𝑋 − 1

4 ∥𝑥 − 𝑦 ∥2
𝑋 for all 𝑥, 𝑦 ∈ 𝑋,

which in fact characterizes precisely those norms that are induced by an inner
product. This identity immediately yields for all 𝜀 > 0 and all 𝑥, 𝑦 ∈ 𝑋 satisfying
∥𝑥 − 𝑦 ∥𝑋 ≥ 𝜀 that

∥ 1
2 (𝑥 + 𝑦)∥2

𝑋 ≤ 1 − 𝜀2

4 ≤
(
1 − 𝜀2

8

)2
,

which in particular verifies (17.3) with 𝛿 := 𝜀2

8 .

(ii) 𝑋 = 𝐿𝑝 (Ω) for 𝑝 ∈ (2,∞). This follows from the algebraic inequality

|𝑎 + 𝑏 |𝑝 + |𝑎 − 𝑏 |𝑝 ≤ 2𝑝−1( |𝑎 |𝑝 + |𝑏 |𝑝) for all 𝑎, 𝑏 ∈ ℝ,

see [Cioranescu, 1990, Lemma II.4.1]. This implies that

∥ 1
2 (𝑢 + 𝑣)∥

𝑝

𝐿𝑝 (Ω) ≤
1
2 ∥𝑢∥

𝑝

𝐿𝑝 (Ω) +
1
2 ∥𝑣 ∥

𝑝

𝐿𝑝 (Ω) −
1

2𝑝 ∥𝑢 − 𝑣 ∥
𝑝

𝐿𝑝 (Ω) for all 𝑢, 𝑣 ∈ 𝐿𝑝 (Ω).

We can now argue exactly as in case (i).

(iii) 𝑋 = 𝐿𝑝 (Ω) for 𝑝 ∈ (1, 2). This follows from the algebraic inequality

|𝑎 + 𝑏 |𝑝 + |𝑎 − 𝑏 |𝑝 ≤ 2( |𝑎 |𝑝 + |𝑏 |𝑝)𝑝/(𝑝−1) for all 𝑎, 𝑏 ∈ ℝ,

see [Cioranescu, 1990, Lemma II.4.1], implying a similar inequality for the 𝐿𝑝 (Ω)
norms from which the claim follows as for (i) and (ii).

Hence every Hilbert space (by identifying 𝑋 with 𝑋 ∗) and every 𝐿𝑝 (Ω) for 𝑝 ∈ (1,∞)
(identifying 𝐿𝑝 (Ω) with 𝐿𝑞 (Ω), 𝑞 = 𝑝

𝑝−1 ∈ (1,∞)) is Gâteaux smooth.

In fact, the celebrated Lindenstrauss and Trojanski renorming theorems show that every
reflexive Banach space admits an equivalent norm such that the space (with that norm)
becomes locally uniformly convex; see [Cioranescu, 1990, Theorem III.2.10]. (Of course,
even though that means that the dual space of the renormed space is Gâteaux smooth, this
does not imply anything about the differentiability of the original norm, as the obvious
example of ℝ𝑁 endowed with the 1- or the ∞-norm shows.) For many more details on
smooth and uniformly convex spaces, see [Cioranescu, 1990; Fabian et al., 2001; Schirotzek,
2007].

238



17 𝜀-subdifferentials and approximate fermat principles

Note that even in Gâteaux smooth spaces, the norm will not be differentiable at 𝑥 = 0. But
this can be addressed by considering ∥𝑥 ∥𝑝

𝑋
for 𝑝 > 1; for later use, we state this for 𝑝 = 2.

Lemma 17.7. Let 𝑋 be a Gâteaux smooth Banach space and 𝐹 (𝑥) = ∥𝑥 ∥2
𝑋
. Then 𝐹 is Gâteaux

differentiable at any 𝑥 ∈ 𝑋 with

𝐷𝐹 (𝑥) = 2∥𝑥 ∥𝑋𝑥∗ for any 𝑥∗ ∈ 𝑋 ∗ with ∥𝑥∗∥𝑋 ∗ = 1 and ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 .

Proof. Since norms are convex, we can apply Theorems 4.6 and 4.19 to obtain that

𝜕𝐹 (𝑥) = {2∥𝑥 ∥𝑋𝑥∗ | 𝑥∗ ∈ 𝑋 ∗ with ∥𝑥∗∥𝑋 ∗ = 1 and ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 } (𝑥 ∈ 𝑋 ).

At any 𝑥 ≠ 0, this set is a singleton by Theorem 4.5 and the assumption that 𝑋 is Gâteaux
smooth. Clearly also 𝜕𝐹 (0) = {0}, and hence the claim follows from Theorem 13.18. □

Remark 17.8 (Asplund spaces). Asplund spaces are, by (one equivalent) definition, those Banach
spaces where every continuous, convex, real-valued function is Fréchet-differentiable on a dense
set. (This is a limited version of Rademacher’s Theorem 13.25 in ℝ𝑁 .) We refer to [Yost, 1993] for an
introduction to Asplund spaces. Importantly, reflexive Banach spaces are Asplund.

The norm of an Asplund space is thus differentiable on a dense set 𝐷 . It was shown in [Ekeland and
Lebourg, 1976] that perturbed optimization problems on Asplund spaces have solutions on a dense
set of perturbation parameters and that the objective function is differentiable at such a solution. If
we worked in the following sections with perturbed optimization problems and applied such an
existence result instead of the Ekeland or the Borwein–Preiss variational principles (Theorem 2.16
or Theorem 2.17, respectively), we would be able to extend the following results to Asplund spaces.

17.3 fuzzy fermat principles

The following result generalizes the Fermat principle of Theorem 16.2 to sums of two
functions in a “fuzzy” fashion. We will use it to show a fuzzy containment formula for
𝜀-subdifferentials. Its generalizations to more than two functions can also be used to derive
more advanced fuzzy sum rules than 17.2. Our focus is, however, on exact calculus, so we
will not be developing such generalizations.

Lemma 17.9 (fuzzy Fermat principle). Let 𝑋 be a Gâteaux smooth Banach space and 𝐹,𝐺 :
𝑋 → ℝ. If 𝐹 +𝐺 attains a local minimum at a point 𝑥 ∈ 𝑋 where 𝐹 is lower semicontinuous
and 𝐺 is locally Lipschitz, then for any 𝛿, 𝜇 > 0 we have

0 ∈
⋃

𝑥,𝑦∈𝔹(𝑥,𝛿)
(𝜕𝐹𝐹 (𝑥) + 𝜕𝐹𝐺 (𝑦)) + 𝜇𝔹𝑋 ∗ .
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17 𝜀-subdifferentials and approximate fermat principles

Proof. Let 𝜌, 𝛼 > 0 be arbitrary. The idea is to separate the two nonsmooth functions 𝐹
and𝐺 , and hence be able to use the exact sum rule of Corollary 17.3, by locally relaxing the
problem min𝑥∈𝑋 (𝐹 +𝐺) to

inf
𝑥,𝑦∈𝑋

𝐽𝛼 (𝑥, 𝑦) ≔ 𝐹 (𝑥) +𝐺 (𝑦) + 𝛼 ∥𝑥 − 𝑦 ∥2
𝑋 + ∥𝑥 − 𝑥 ∥2

𝑋 + 𝛿𝔹(𝑥,𝜌)2 (𝑥, 𝑦).

We take 𝜌 > 0 small enough that 𝑥 minimizes 𝐹 +𝐺 within 𝔹(𝑥, 𝜌), and both 𝐹 ≥ 𝐹 (𝑥) − 1
and𝐺 ≥ 𝐺 (𝑦) − 1 on 𝔹(𝑥, 𝜌). The first requirement is possible by the assumption of 𝐹 +𝐺
attaining its local minimum at 𝑥 , while the latter follows from the lower semicontinuity of 𝐹
and the local Lipschitz continuity of𝐺 . In the following, we denote by 𝐿 the Lipschitz factor
of𝐺 on 𝔹(𝑥, 𝜌). It follows that 𝐽𝛼 (𝑥, 𝑦) ≥ 𝐹 (𝑥) +𝐺 (𝑥) −2 for all (𝑥, 𝑦) ∈ 𝔹(𝑥, 𝜌)2 = dom 𝐽𝛼 ,
and hence 𝐽𝛼 is bounded from below.

We study the approximate solutions of the relaxed problem in several steps.

Step 1: constrained infimal values converge to 𝐽 (𝑥, 𝑥). Let 𝑥𝛼 , 𝑦𝛼 ∈ 𝔹(𝑥, 𝜌) be such that

(17.4) 𝐽𝛼 (𝑥𝛼 , 𝑦𝛼 ) < 𝑗𝛼 + 𝛼−1 where 𝑗𝛼 ≔ inf
𝑥,𝑦∈𝑋

𝐽𝛼 (𝑥, 𝑦).

We show that

𝐽𝛼 (𝑥, 𝑥) < 𝑗𝛼 + 𝜀𝛼 for 𝜀𝛼 ≔ 𝐿

√︂
𝛼−1 + 2
𝛼

+ 𝛼−1.

To start with, we have

𝐹 (𝑥) +𝐺 (𝑥) + 𝛼−1 = 𝐽 (𝑥, 𝑥) + 𝛼−1

≥ 𝑗𝛼 + 𝛼−1

> 𝐽𝛼 (𝑥𝛼 , 𝑦𝛼 )
= 𝐹 (𝑥𝛼 ) +𝐺 (𝑦𝛼 ) + 𝛼 ∥𝑥𝛼 − 𝑦𝛼 ∥2

𝑋 + ∥𝑥𝛼 − 𝑥 ∥2
𝑋

≥ 𝐹 (𝑥) +𝐺 (𝑥) + 𝛼 ∥𝑥𝛼 − 𝑦𝛼 ∥2
𝑋 + ∥𝑥𝛼 − 𝑥 ∥2

𝑋 − 2.

This implies that ∥𝑥𝛼 − 𝑦𝛼 ∥𝑋 <

√︃
𝛼−1+2
𝛼

. Since 𝑥 minimizes 𝐹 +𝐺 within 𝔹(𝑥, 𝜌), we obtain
the bound (17.4) through

𝐽𝛼 (𝑥, 𝑥) = 𝐹 (𝑥) +𝐺 (𝑥)
≤ 𝐹 (𝑥𝛼 ) +𝐺 (𝑥𝛼 )
≤ 𝐹 (𝑥𝛼 ) +𝐺 (𝑦𝛼 ) + 𝐿∥𝑥𝛼 − 𝑦𝛼 ∥𝑋 .
≤ 𝐽 (𝑥𝛼 , 𝑦𝛼 ) + 𝐿∥𝑥𝛼 − 𝑦𝛼 ∥𝑋 .
< 𝑗𝛼 + 𝜀𝛼 .

Step 2: exact unconstrained minimizers exist for a perturbed problem. By (17.4), we can apply
the Borwein–Preiss variational principle (Theorem 2.17) for any 𝜆, 𝛼 > 0, small enough
𝜌 > 0 (all to be fixed later), and 𝑝 = 2 to obtain a sequence {𝜇𝑛}𝑛≥0 of nonnegative weights
summing to 1 and a sequence {(𝑥𝑛, 𝑦𝑛)}𝑛≥0 ⊂ 𝑋 ∈ 𝑋 with (𝑥0, 𝑦0) = (𝑥, 𝑥) converging
strongly to some (𝑥𝛼 , 𝑦𝛼 ) ∈ 𝑋 × 𝑋 (endowed with the euclidean product norm) such that
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17 𝜀-subdifferentials and approximate fermat principles

(i) ∥𝑥𝑛 − 𝑥𝛼 ∥2
𝑋
+ ∥𝑦𝑛 − 𝑦𝛼 ∥2

𝑋
≤ 𝜆2 for all 𝑛 ≥ 0 (in particular, ∥𝑥 − 𝑥𝛼 ∥𝑋 ≤ 𝜆);

(ii) the function

𝐻𝛼 (𝑥, 𝑦) ≔ 𝐽𝛼 (𝑥, 𝑦) + 𝜀𝛼
𝜆2

∞∑︁
𝑛=0

𝜇𝑛
(∥𝑥 − 𝑥𝑛∥2 + ∥𝑦 − 𝑦𝑛∥2)

attains its global minimum at (𝑥𝛼 , 𝑦𝛼 ).
Note that since 𝐽𝛼 includes the constraint (𝑥, 𝑦) ∈ 𝔹(𝑥, 𝜌)2, we have (𝑥𝛼 , 𝑦𝛼 ) ∈ 𝔹(𝑥, 𝜌)2.
In fact, by taking 𝜆 ∈ (0, 𝜌), it follows from (i) and the convergence (𝑥𝑛, 𝑦𝑛) → (𝑥𝛼 , 𝑦𝛼 )
that the minimizer (𝑥𝛼 , 𝑦𝛼 ) ∈ 𝔹(𝑥, 𝜆)2 ⊂ int𝔹(𝑥, 𝜌)2 is unconstrained.

Step 3: the perturbed minimizers satisfy the claim for large 𝛼 and small 𝜆. Setting Ψ𝑦 (𝑥) ≔
∥𝑥 − 𝑦 ∥2

𝑋
, it follows from Lemma 17.7 that Ψ𝑦 is Gâteaux differentiable for any 𝑦 ∈

𝑋 with 𝐷Ψ𝑦 (𝑥) ∈ 2∥𝑥 − 𝑦 ∥𝑋𝔹𝑋 ∗ . Furthermore, since (𝑥𝛼 , 𝑦𝛼 ) ∈ int𝔹(𝑥, 𝜌)2, we have
𝜕𝛿𝔹(𝑥,𝜌)2 (𝑥𝛼 , 𝑦𝛼 ) = (0, 0). Hence the only nonsmooth component of 𝐻𝛼 at (𝑥𝛼 , 𝑦𝛼 ) is
(𝑥, 𝑦) ↦→ 𝐹 (𝑥) +𝐺 (𝑦). We can thus apply Theorem 16.2 and Corollary 17.3 to obtain

0 ∈ 𝜕𝐹𝐻𝛼 (𝑥𝛼 , 𝑦𝛼 ) =
(
𝜕𝐹𝐹 (𝑥) + 𝛼𝐷Ψ𝑦𝛼 (𝑥𝛼 ) + 𝐷Ψ𝑥 (𝑥𝛼 ) + 𝜀𝛼

𝜆2
∑∞
𝑛=0 𝜇𝑛𝐷Ψ𝑥𝑛 (𝑥𝛼 )

𝜕𝐹𝐺 (𝑥) + 𝛼𝐷Ψ𝑥𝛼 (𝑦𝛼 ) + 𝜀𝛼
𝜆2

∑∞
𝑛=0 𝜇𝑛𝐷Ψ𝑦𝑛 (𝑦𝛼 )

)
.

By (i) and 𝑥𝛼 , 𝑦𝛼 ∈ 𝔹(𝑥, 𝜆) we have ∥𝑥𝛼 − 𝑥𝑛∥𝑋 , ∥𝑦𝛼 − 𝑦𝑛∥𝑋 ≤ 𝜆 for all 𝑛 ≥ 0. In addition,∑∞
𝑛=0 𝜇𝑛 = 1, and thus 𝜀𝛼

𝜆2
∑∞
𝑛=0 𝜇𝑛𝐷Ψ𝑥𝑛 (𝑥𝛼 ) ∈ 2𝜀𝛼

𝜆
𝔹𝑋 ∗ and likewise for 𝐷Ψ𝑦𝑛 (so that in fact

we were justified in differentiating the series term-wise). By (i) also ∥𝑥𝛼 − 𝑥 ∥𝑋 ≤ 𝜆, so that
𝐷Ψ𝑥 (𝑥𝛼 ) ∈ 2𝜆𝔹𝑋 ∗ . Finally, since −𝑥∗ ∈ 𝜕∥ · ∥𝑋 (−𝑥) for any 𝑥∗ ∈ 𝜕∥ · ∥𝑋 (𝑥) and any 𝑥 ∈ 𝑋 ,
we have 𝐷Ψ𝑦 (𝑥) = −𝐷Ψ𝑥 (𝑦) for all 𝑥, 𝑦 ∈ 𝑋 . We thus have

−𝛼𝐷Ψ𝑦𝛼 (𝑥𝛼 ) ∈ 𝜕𝐹𝐹 (𝑥𝛼 ) +
(
2𝜆 + 2𝜀𝛼

𝜆

)
𝔹𝑋 ∗,

𝛼𝐷Ψ𝑦𝛼 (𝑥𝛼 ) ∈ 𝜕𝐹𝐺 (𝑦𝛼 ) + 2𝜀𝛼
𝜆

𝔹𝑋 ∗,

which implies that

0 ∈ 𝜕𝐹𝐹 (𝑥𝛼 ) + 𝜕𝐹𝐺 (𝑦𝛼 ) +
(
2𝜆 + 4𝜀𝛼

𝜆

)
𝔹𝑋 ∗ .

Since (𝑥𝛼 , 𝑦𝛼 ) ∈ 𝔹(𝑥, 𝜆)2, the claim now follows by taking 𝜆 ∈ (0, 𝜌) small enough and
then 𝛼 > 0 large (and thus 𝜀𝛼 small) enough. □

Remark 17.10 (fuzzy Fermat principles and trustworthy subdifferentials). Lemma 17.9 is due to
[Fabian, 1988]. Such fuzzy Fermat principles are studied in more detail from the point of view of
fuzzy variational principles in [Ioffe, 2017]. Specifically, the claim of Lemma 17.9 has to hold for an
arbitrary subdifferential operator 𝜕∗ for it to be called trustworthy, whereas the opposite inclusion
𝜕∗𝐺 (𝑥) + 𝜕∗𝐹 (𝑥) ⊂ 𝜕∗ [𝐺 + 𝐹 ] (𝑥) is required for the subdifferential to be called elementary.
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17 𝜀-subdifferentials and approximate fermat principles

Remark 17.11 (notes on the proof of Lemma 17.9). Note how we had to apply the Borwein–Preiss
variational principle instead of Ekeland’s to obtain a differentiable convex perturbation and thus
to be able to apply the sum rule Corollary 17.3. In contrast, the proof in [Ioffe, 2017] is based on
the Deville–Godefroy–Zizler variational principle, which makes no convexity assumption on the
perturbation function and hence requires the stronger property of Fréchet smoothness (i.e., Fréchet
instead of Gâteaux differentiability of the norm outside the origin).

Finally, with an additional argument showing 𝐽𝛼 (𝑥𝛼 , 𝑦𝛼 ) ≤ 𝑗𝛼 + 𝛽𝛼 for a suitable 𝛽𝛼 , it would be
possible to further constrain |𝐹 (𝑥) − 𝐹 (𝑥) | ≤ 𝛿 in the claim of Lemma 17.9, as is done in [Ioffe, 2017,
Theorem 4.30].

Corollary 17.12. Let 𝑋 be a Gâteaux smooth Banach space, let 𝐹 : 𝑋 → ℝ be lower semicon-
tinuous near 𝑥 ∈ 𝑋 , and 𝜀 > 0. Then for any 𝛿 > 0 and 𝜀′ > 𝜀 we have

𝜕𝜀𝐹 (𝑥) ⊂
⋃

𝑧∈𝔹(𝑥,𝛿)
𝜕𝐹𝐹 (𝑧) + 𝜀′𝔹𝑋 ∗ .

Proof. We may assume that 𝑥 ∈ dom 𝐹 , in particular that there exists some 𝑥∗ ∈ 𝜕𝜀𝐹 (𝑥),
i.e., such that

lim inf
𝑥≠𝑦→𝑥

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋 ≥ −𝜀.

Taking any 𝜀′ > 𝜀 and defining

𝐹 (𝑥) ≔ 𝐹 (𝑥) − ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 and 𝐺 (𝑥) ≔ 𝜀′∥𝑥 − 𝑥 ∥𝑋 ,

we obtain as in Lemma 17.1 that

lim inf
𝑥≠𝑦→𝑥

(𝐺 + 𝐹 ) (𝑦) − (𝐺 + 𝐹 ) (𝑥)
∥𝑦 − 𝑥 ∥𝑋 ≥ (𝜀′ − 𝜀).

Thus 𝐹 +𝐺 achieves its local minimum at 𝑥 . The function 𝐺 is convex and Lipschitz while
𝐹 lower semicontinuous. Hence Lemma 17.9 implies for any 𝛿 > 0 and 𝜇′ > 0 that

0 ∈
⋃

𝑧,𝑦∈𝔹(𝑥,𝛿)

(
𝜕𝐹𝐹 (𝑦) + 𝜕𝐹𝐺 (𝑧)) + 𝜇′𝔹𝑋 .

Since 𝜕𝐹𝐹 (𝑦) = 𝜕𝐹𝐹 (𝑦) − {𝑥∗} (by Corollary 17.3 or directly from the definition) and
𝜕𝐹𝐺 (𝑧) = 𝜕𝐺 (𝑧) ⊂ 𝜀′𝔹𝑋 , we obtain

𝑥∗ ∈
⋃

𝑧∈𝔹(𝑥,𝛿)
𝜕𝐹𝐹 (𝑧) + (𝜇′ + 𝜀′)𝔹𝑋 .

Since 𝜇′ > 0 and 𝜀′ > 𝜀 were arbitrary, the claim follows. □
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17 𝜀-subdifferentials and approximate fermat principles

17.4 approximate fermat principles and projections

We now introduce an approximate Fermat principle, which can be invoked when we do not
know whether a minimizer exists; in particular, when 𝐹 fails to be weakly lower semicon-
tinuous so that Theorem 2.1 is not applicable.

Theorem 17.13. Let 𝑋 be a Banach space and 𝐹 : 𝑋 → ℝ be proper, lower semicontinuous,
and bounded from below. Then for every 𝜀, 𝛿 > 0 there exists an 𝑥𝜀 ∈ 𝑋 such that

(i) 𝐹 (𝑥𝜀) ≤ inf𝑥∈𝑋 𝐹 (𝑥) + 𝜀;
(ii) 𝐹 (𝑥𝜀) < 𝐹 (𝑥) + 𝛿 ∥𝑥 − 𝑥𝜀 ∥𝑋 for all 𝑥 ≠ 𝑥𝜀 ;

(iii) 0 ∈ 𝜕𝛿𝐹 (𝑥𝜀).

Proof. Since 𝐹 is bounded from below, inf𝑥∈𝑋 𝐹 (𝑥) > −∞. We can thus take a minimizing
sequence {𝑥𝑛}𝑛∈ℕ with 𝐹 (𝑥𝑛)→ inf𝑥∈𝑋 𝐹 (𝑥) and find a 𝑛(𝜀) ∈ ℕ such that 𝑥𝜀 ≔ 𝑥𝑛(𝜀)
satisfies (i). Ekeland’s variational principle Theorem 2.16 thus yields for 𝜆 ≔ 𝜀/𝛿 an
𝑥𝜀 ≔ 𝑥𝜀,𝜆 such that ∥𝑥𝜀 − 𝑥𝜀 ∥𝑋 ≤ 𝜆,

𝐹 (𝑥𝜀) ≤ 𝐹 (𝑥𝜀) + 𝜀
𝜆
∥𝑥𝜀 − 𝑥𝜀 ∥𝑋 ≤ 𝐹 (𝑥𝜀),

as well as
𝐹 (𝑥𝜀) < 𝐹 (𝑥) + 𝜀

𝜆
∥𝑥𝜀 − 𝑥 ∥𝑋 (𝑥 ≠ 𝑥𝜀).

Thus (i) as well as (ii) hold. The latter implies for all 𝑥 ≠ 𝑥𝜀 that

𝐹 (𝑥) − 𝐹 (𝑥𝜀) − ⟨0, 𝑥 − 𝑥𝜀⟩𝑋
∥𝑥 − 𝑥𝜀 ∥𝑋 ≥ −𝛿,

i.e., 0 ∈ 𝜕𝛿𝐹 (𝑥𝜀) by definition. □

As an example for possible applications of approximate Fermat principles, we use it to prove
the following result on projections and approximate projections onto a nonconvex set𝐶 ⊂ 𝑋 .
For nonconvex sets, even the exact projection need no longer be unique; furthermore, for
the reasons discussed before Theorem 17.13, the set of projections 𝑃𝐶 (𝑥) may be empty
when 𝐶 ≠ ∅ is closed but not weakly closed. We recall that by Lemma 1.10, convex closed
sets are weakly closed, as are, of course, finite-dimensional closed sets. However, more
generally, weak closedness can be elusive. Hence we will need to perform approximate
projections in Part IV. It is not surprising that this requires additional assumptions on the
containing space to make up for this.

243



17 𝜀-subdifferentials and approximate fermat principles

Theorem 17.14. Let 𝑋 be a Gâteaux smooth Banach space and let 𝐶 ⊂ 𝑋 be nonempty and
closed. Define the (possibly multi-valued) projection

𝑃𝐶 : 𝑋 ⇒ 𝑋, 𝑃𝐶 (𝑥) ≔ arg min
𝑥∈𝐶

∥𝑥 − 𝑥 ∥𝑋

and the corresponding distance function

𝑑𝐶 : 𝑋 → ℝ, 𝑑𝐶 (𝑥) ≔ inf
𝑥∈𝐶

∥𝑥 − 𝑥 ∥𝑋 .

Then the following hold:

(i) For any 𝑥 ∈ 𝑃𝐶 (𝑥), there exists an 𝑥∗ ∈ 𝜕𝐹𝛿𝐶 (𝑥) such that

(17.5) ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 = ∥𝑥 − 𝑥 ∥𝑋 , ∥𝑥∗∥𝑋 ∗ ≤ 1.

(ii) For any 𝜀 > 0, there exists an approximate projection 𝑥𝜀 ∈ 𝐶 satisfying

∥𝑥𝜀 − 𝑥 ∥𝑋 ≤ 𝑑𝐶 (𝑥) + 𝜀

as well as (17.5) for some 𝑥∗ ∈ 𝜕𝜀𝛿𝐶 (𝑥𝜀).
(iii) If 𝑋 is a Hilbert space, then 𝑥 − 𝑥 ∈ 𝜕𝜀𝛿𝐶 (𝑥) for all 𝜀 ≥ 0.

Proof. (i): Let 𝑥 ∉ 𝐶 , since otherwise 𝑥∗ ≔ 0 ∈ 𝜕𝐹 (𝑥) for 𝑥 = 𝑥 ∈ 𝐶 by the definition of
the Fréchet subdifferential. Set 𝐹 (𝑥) := ∥𝑥 − 𝑥 ∥𝑋 and assume that 𝑥 ∈ 𝑃𝐶 (𝑥). The Fermat
principle Theorem 16.2 then yields that 0 ∈ 𝜕𝐹 [𝛿𝐶 + 𝐹 ] (𝑥). Since 𝑥 ∉ 𝐶 and 𝑥 ∈ 𝐶 , by
assumption 𝐹 is differentiable at 𝑥 . Thus Theorem 4.5 shows that 𝜕𝐹 (𝑥) = {𝐷𝐹 (𝑥)} is a
singleton. The sum rule of Corollary 17.3 then yields that 𝑥∗ ≔ −𝐷𝐹 (𝑥) ∈ 𝜕𝐹𝛿𝐶 (𝑥). The
claim of (17.5) now follows from Theorem 4.6.

(ii): Compared to (i), we merely invoke the approximate Fermat principle of Theorem 17.13 in
place of Theorem 16.2,which establishes the existence of𝑥𝜀 ∈ 𝐶 satisfying ∥𝑥𝜀−𝑥 ∥𝑋 ≤ 𝑑𝐶 (𝑥)
and 0 ∈ 𝜕𝜀 [𝛿𝐶+𝐹 ] (𝑥). The sum rule of Lemma 17.2 then shows that𝑥∗ ≔ −𝐷𝐹 (𝑥) ∈ 𝜕𝜀𝛿𝐶 (𝑥).
(iii): In a Hilbert space, we can identify −𝐷𝐹 (𝑥) with the corresponding gradient −∇𝐹 (𝑥) =
(𝑥 − 𝑥)/∥𝑥 − 𝑥 ∥𝑋 ∈ 𝑋 for 𝑥 ≠ 0 (otherwise −∇𝐹 (𝑥) = 0 = 𝑥 − 𝑥). Since 𝜕𝜀𝛿𝐶 (𝑥) is a cone,
this implies that 𝑥 − 𝑥 ∈ 𝜕𝐹𝛿𝐶 (𝑥) as well. □

In the next chapters, we will see that 𝜕𝐹𝛿𝐶 (𝑥) coincides with a suitable normal cone to𝐶 at
𝑥 . In other words, 𝑥∗ is a normal vector to the set 𝐶 . In Hilbert spaces, this normal vector
can be identified with the (normalized) vector pointing from 𝑥 to 𝑥 .
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18 TANGENT AND NORMAL CONES

We now start our study of stability properties of the solutions to nonsmooth optimization
problems. As we have characterized the latter via subdifferential inclusions, we need to
study the sensitivity of such relations to perturbations. As in the smooth case, this can be
done through derivatives of these conditions with respect to relevant parameters; however,
these conditions are expressed as inclusions instead of simple equations. Hence we require
notions of derivatives for set-valued mappings.

To motivate how we will develop differential calculus for set-valued mappings, recall from
Lemma 4.10 how the subdifferential of a convex function 𝐹 can be defined in terms of
the normal cone to the epigraph of 𝐹 . This idea forms the basis of differentiating general
set-valued mappings 𝐻 : 𝑋 ⇒ 𝑌 , where instead of taking the normal cone at (𝑥, 𝐹 (𝑥))
to epi 𝐹 , we do this at any point (𝑥, 𝑦) of graph𝐻 ≔ {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑦 ∈ 𝐻 (𝑥)}. Since
we are generally not in the nice convex setting – even for a convex function 𝐹 ‚ the set
graph 𝜕𝐹 is not convex unless 𝐹 is linear – there are some complications which result in
having to deal with various nonequivalent definitions. In this chapter, we introduce the
relevant graphical notions of tangent and normal cones. In Chapter 19, we develop specific
expressions for these conses to sets in 𝐿𝑝 (Ω) defined as pointwise via finite-dimensional
sets. In the following Chapters 20 to 25, we then define and further develop notions of
differentiation of set-valued mappings based on these cones.

18.1 definitions and examples

the fundamental cones

Our first type of tangent cone is defined using roughly the same limiting process on
difference quotients as basic directional derivatives. Let 𝑋 be a Banach space. We define
the tangent cone (or Bouligand or contingent cone) of the set 𝐶 ⊂ 𝑋 at 𝑥 ∈ 𝑋 as

(18.1) 𝑇𝐶 (𝑥) ≔ lim sup
𝜏→ 0

𝐶 − 𝑥
𝜏

=

{
Δ𝑥 ∈ 𝑋

���� Δ𝑥 = lim
𝑘→∞

𝑥𝑘 − 𝑥
𝜏𝑘

for some 𝐶 ∋ 𝑥𝑘 → 𝑥, 𝜏𝑘→ 0
}
,
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18 tangent and normal cones

i.e., the tangent cone is the outer limit (in the sense of Section 6.1) of the “blown up” sets
(𝐶 − 𝑥)/𝜏 as 𝜏→ 0.

The tangent cone is closely related to the Fréchet normal cone, which is based on the same
limiting process as the Fréchet subdifferential in Chapter 16:

(18.2) 𝑁𝐶 (𝑥) ≔
{
𝑥∗ ∈ 𝑋 ∗

���� lim sup
𝐶∋𝑥→𝑥

⟨𝑥∗, 𝑥 − 𝑥⟩𝑋
∥𝑥 − 𝑥 ∥𝑋 ≤ 0

}
.

limiting cones in finite dimensions

One difficulty with the Fréchet normal cone is that it is not outer semicontinuous. By
taking their outer limit (in the sense of set-valued mappings), we obtain the less “irregular”
(basic or limiting orMordukhovich) normal cone. This definition is somewhat more involved
in infinite dimensions, so we first consider 𝐶 ⊂ ℝ𝑁 at 𝑥 ∈ ℝ𝑁 . In this case, the limiting
normal cone is defined as

(18.3) 𝑁𝐶 (𝑥) ≔ lim sup
𝐶∋𝑥→𝑥

𝑁𝐶 (𝑥)

=

{
𝑥∗ ∈ ℝ𝑁

���� 𝑥∗ = lim
𝑘→∞

𝑥∗
𝑘
for some 𝑥∗

𝑘
∈ 𝑁𝐶 (𝑥𝑘), 𝐶 ∋ 𝑥𝑘 → 𝑥

}
.

Despite 𝑁𝐶 being obtained by the outer semicontinuous regularization of 𝑁𝐶 , the latter is
sometimes in the literature called the regular normal cone. We stick to the convention of
calling 𝑁𝐶 the Fréchet normal cone and 𝑁𝐶 the limiting normal cone.

The limiting variant of the tangent cone is the Clarke tangent cone (also known as the
regular tangent cone), defined for a set 𝐶 ⊂ ℝ𝑁 at 𝑥 ∈ ℝ𝑁 as the inner limit

(18.4) 𝑇𝐶 (𝑥) ≔ lim inf
𝐶∋𝑥→𝑥,
𝜏→ 0

𝐶 − 𝑥
𝜏

=

{
Δ𝑥 ∈ ℝ𝑁

���� for all 𝜏𝑘→ 0, 𝐶 ∋ 𝑥𝑘 → 𝑥 there exists 𝐶 ∋ 𝑥𝑘 → 𝑥

with (𝑥𝑘 − 𝑥𝑘)/𝜏𝑘 → Δ𝑥

}
.

We will later in Corollary 18.20 see that for a closed set 𝐶 ⊂ ℝ𝑁 , we in fact have that
𝑇𝐶 (𝑥) = lim inf𝐶∋𝑥→𝑥 𝑇𝐶 (𝑥).
The following example as well as Figure 18.1 illustrate the different cones.

Example 18.1. We compute the different tangent and normal cones at all points 𝑥 ∈ 𝐶
for different 𝐶 ⊂ ℝ2.

247



18 tangent and normal cones

𝐶

𝑥

(a) tangent cone 𝑇𝐶 (𝑥)

𝐶

𝑥

(b) Clarke tangent cone
𝑇𝐶 (𝑥)

𝐶

𝑥

(c) Fréchet normal cone
𝑁𝐶 (𝑥) = {0}

𝐶

𝑥

(d) limiting normal
cone 𝑁𝐶 (𝑥)

Figure 18.1: Illustration of the different normal and tangent cones at a nonregular point of
a set 𝐶 . The dot indicates the base point 𝑥 . The thick arrows and dark filled-in
areas indicate the directions included in the cones.

(i) 𝐶 = 𝔹(0, 1): Clearly, if 𝑥 ∈ int𝐶 , then

𝑁𝐶 (𝑥) = 𝑁𝐶 (𝑥) = {0},
𝑇𝐶 (𝑥) = 𝑇𝐶 (𝑥) = ℝ2.

For any 𝑥 ∈ bd𝐶 , on the other hand,

𝑁𝐶 (𝑥) = 𝑁𝐶 (𝑥) = [0,∞)𝑥 ≔ {𝑡𝑥 | 𝑡 ≥ 0} ,
𝑇𝐶 (𝑥) = 𝑇𝐶 (𝑥) = {𝑧 | ⟨𝑧, 𝑥⟩ ≤ 0}.

(ii) 𝐶 = [0, 1]2: For 𝑥 ∈ int𝐶 , we again have that 𝑁𝐶 (𝑥) = 𝑁𝐶 (𝑥) = {0} and 𝑇𝐶 (𝑥) =
𝑇𝐶 (𝑥) = ℝ2; similarly, for 𝑥 ∈ bd𝐶 \ {(0, 0), (0, 1), (1, 0), (1, 1)} (i.e., 𝑥 is not one
of the corners of 𝐶), again 𝑁𝐶 (𝑥) = 𝑁𝐶 (𝑥) = [0,∞)𝑥 and 𝑇𝐶 (𝑥) = 𝑇𝐶 (𝑥) =
{𝑧 | ⟨𝑧, 𝑥⟩ = 0}. Of the corners, we concentrate on 𝑥 = (1, 1), the others being
analogous. Then

𝑁𝐶 (𝑥) = 𝑁𝐶 (𝑥) = {(Δ𝑥,Δ𝑦) | Δ𝑥,Δ𝑦 ≥ 0},
𝑇𝐶 (𝑥) = 𝑇𝐶 (𝑥) = {(Δ𝑥,Δ𝑦) | Δ𝑥,Δ𝑦 ≤ 0}.

(iii) 𝐶 = [0, 1]2 \ [ 1
2 , 1]2: Here as well 𝑁𝐶 (𝑥) = 𝑁𝐶 (𝑥) = {0} and 𝑇𝐶 (𝑥) = 𝑇𝐶 (𝑥) = ℝ2

for 𝑥 ∈ int𝐶 . Other points on bd𝐶 are computed analogously to similar corners
and edges of the square [0, 1]2, but we have to be careful with the “interior corner”
𝑥 = ( 1

2 ,
1
2 ). Here, similarly to Figure 18.1c, we see that 𝑁𝐶 (𝑥) = {0}. However, as

a lim sup,
𝑁𝐶 (𝑥) = (0, 1) [0,∞) ∪ (1, 0) [0,∞).
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18 tangent and normal cones

For the tangent cones, we then get

𝑇𝐶 (𝑥) = {(Δ𝑥,Δ𝑦) | Δ𝑥 ≤ 0 or Δ𝑦 ≤ 0},
while, as a lim inf ,

𝑇𝐶 (𝑥) = 𝑇𝐶 (𝑥) ∪ (1, 0)ℝ ∪ (0, 1)ℝ.

limiting cones in infinite dimensions

Let now 𝑋 be again a Banach space. Although the fundamental cones – the (basic) tangent
cone and the Fréchet normal cone – were defined based on strongly convergent sequences,
in infinite-dimensional spaces weak modes of convergence better replicate various rela-
tionships between the different cones. We thus call an element Δ𝑥 ∈ 𝑋 weakly tangent to
𝐶 at 𝑥 if

(18.5) Δ𝑥 = w-lim
𝑘→∞

𝑥𝑘 − 𝑥
𝜏𝑘

for some 𝐶 ∋ 𝑥𝑘 → 𝑥, 𝜏𝑘→ 0,

where the w-lim of course stands for 𝜏−1
𝑘
(𝑥𝑘 − 𝑥) ⇀ Δ𝑥 . We denote by the weak tangent

cone (or weak contingent cone) 𝑇𝑤
𝐶
(𝑥) ⊂ 𝑋 the set of all such Δ𝑥 . Using the notion of outer

limits of set-valued mappings from Chapter 6, we can also write

(18.6) 𝑇𝑤𝐶 (𝑥) = w-lim sup
𝜏→ 0

𝐶 − 𝑥
𝜏

.

Likewise, the limiting normal cone 𝑁𝐶 (𝑥) to 𝐶 ⊂ 𝑋 in a general infinite-dimensional
Banach space 𝑋 is based on weak-∗ limits. Moreover, several proofs will be easier if we
slightly relax the definition. Therefore, given 𝜀 ≥ 0 we first introduce the 𝜀-normal cone of
𝑥∗ ∈ 𝑋 ∗ satisfying

(18.7) 𝑁 𝜀
𝐶 (𝑥) ≔

{
𝑥∗ ∈ 𝑋 ∗

���� lim sup
𝐶∋𝑥→𝑥

⟨𝑥∗, 𝑥 − 𝑥⟩𝑋
∥𝑥 − 𝑥 ∥𝑋 ≤ 𝜀

}
.

The Fréchet normal cone is then simply 𝑁𝐶 (𝑥) ≔ 𝑁 0
𝐶
(𝑥).

Now, the (basic or limiting or Mordukhovich) normal cone is defined as

(18.8) 𝑁𝐶 (𝑥) ≔ w-∗-lim sup
𝑥→𝑥, 𝜀→ 0

𝑁 𝜀
𝐶 (𝑥).

In other words, 𝑥∗ ∈ 𝑁𝐶 (𝑥) if and only if there exist 𝐶 ∋ 𝑥𝑘 → 𝑥 , 𝜀𝑘→ 0 and 𝑥∗
𝑘
∈ 𝑁 𝜀𝑘

𝐶
(𝑥𝑘)

such that 𝑥∗
𝑘

∗⇀ 𝑥∗.

In Gâteaux smooth Banach spaces, we can fix 𝜀 ≡ 0 in (18.8). Thus such spaces can be
treated similarly to the finite-dimensional case in (18.3).
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18 tangent and normal cones

Theorem 18.2. Let 𝑋 be a Gâteaux smooth Banach space, 𝐶 ⊂ 𝑋 , and 𝑥 ∈ 𝑋 . Then

(18.9) 𝑁𝐶 (𝑥) = w-∗-lim sup
𝑥→𝑥

𝑁𝐶 (𝑥).

Proof. Denote by 𝐾 the set on the right hand side of (18.9). Then by the definition (18.8),
clearly 𝑁𝐶 (𝑥) ⊃ 𝐾 . To show 𝑁𝐶 (𝑥) ⊂ 𝐾 , let 𝑥∗ ∈ 𝑁𝐶 (𝑥). Then (18.8) yields 𝑥𝑘 → 𝑥 , 𝜀𝑘→ 0,
and 𝑥∗

𝑘

∗⇀ 𝑥𝑘 with 𝑥∗
𝑘
∈ 𝑁

𝜀𝑘
𝐶
(𝑥𝑘). We need to show that there exist some 𝑥𝑘 → 𝑥 and

𝑥∗
𝑘

∗⇀ 𝑥∗ with 𝑥∗
𝑘
∈ 𝑁𝐶 (𝑥𝑘). Indeed, since 𝑁 𝜀

𝐶
= 𝜕𝜀𝛿𝐶 , by Corollary 17.12 applied to 𝐹 = 𝛿𝐶 ,

we have for any sequence 𝛿𝑘→ 0 that

𝑥∗
𝑘
∈ 𝑁 𝜀𝑘

𝐶
(𝑥𝑘) ⊂

⋃
𝑥∈𝔹(𝑥𝑘 ,𝛿𝑘 )

𝑁𝐶 (𝑥) + 𝛿𝑘𝔹𝑋 ∗ (𝑘 ∈ ℕ).

In particular, there exist 𝑥𝑘 ∈ 𝔹(𝑥𝑘 , 𝛿𝑘) and 𝑥∗𝑘 ∈ 𝑁𝐶 (𝑥𝑘) ∩ 𝔹(𝑥∗
𝑘
, 𝛿𝑘), which implies that

𝑥𝑘 → 𝑥 and 𝑥∗
𝑘

∗⇀ 𝑥∗ as desired. □

Remark 18.3. Theorem 18.2 can be extended to Asplund spaces – in particular to reflexive Banach
spaces. The equivalence of (18.9) and (18.8) can, in fact, be used as a definition of an Asplund space.
For details we refer to [Mordukhovich, 2006, Theorem 2.35].

Finally, the Clarke tangent cone is defined as in finite dimensions as

(18.10) 𝑇𝐶 (𝑥) ≔ lim inf
𝐶∋𝑥→𝑥,
𝜏→ 0

𝐶 − 𝑥
𝜏

=

{
Δ𝑥 ∈ 𝑋

���� for all 𝜏𝑘→ 0, 𝐶 ∋ 𝑥𝑘 → 𝑥 there exists 𝐶 ∋ 𝑥𝑘 → 𝑥

with (𝑥𝑘 − 𝑥𝑘)/𝜏𝑘 → Δ𝑥

}
.

In infinite-dimensional spaces, however, we in general only have the inclusion 𝑇𝐶 (𝑥) ⊂
lim inf𝐶∋𝑥→𝑥 𝑇𝐶 (𝑥); see Corollary 18.20.

Remark 18.4 (a much too brief history of various cones). The (Bouligand) tangent cone was already
introduced for smooth sets by Peano in 1908 [Peano, 1908]; the term contingent cone is due to
Bouligand [Bouligand, 1930]. The Clarke tangent cone (also called circatangent cone) was intro-
duced in [Clarke, 1973, 1975]; see also [Clarke, 1990]. The limiting normal cone can be found in
[Mordukhovich, 1976], who stressed the need of defining (nonconvex) normal cones directly rather
than as (necessarily convex) polars of tangent cones. The history of the Fréchet normal cone is
harder to trace, but it has appeared in the literature as the polar of the tangent cone. We will see
that in finite dimensions, 𝑁𝐶 (𝑥) = 𝑇𝐶 (𝑥)◦. In infinite dimensions, 𝑇𝐶 (𝑥)◦ is sometimes called the
Dini normal cone and is in general not equal to the Fréchet normal cone.

We do not attempt to do full justice to themuddier parts of the historical development here, and rather
refer to the accounts in [Bigolin and Golo, 2014; Dolecki and Greco, 2011] as well as [Rockafellar
and Wets, 1998, Commentary to Ch. 6] and [Mordukhovich, 2018, Commentary to Ch. 1]. Various
further cones are also discussed in [Aubin and Frankowska, 1990].
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18 tangent and normal cones

18.2 basic relationships and properties

As seen in Example 18.1, the limiting normal cone 𝑁𝐶 (𝑥) can be larger than the Fréchet
normal cone 𝑁𝐶 (𝑥); conversely, the Clarke tangent cone 𝑇𝐶 (𝑥) is smaller than the tangent
cone 𝑇𝐶 (𝑥); see Figure 18.1. These inclusions hold in general.

Theorem 18.5. Let 𝐶 ⊂ 𝑋 and 𝑥 ∈ 𝑋 . Then
(i) 𝑇𝐶 (𝑥) ⊂ 𝑇𝐶 (𝑥) ⊂ 𝑇𝑤𝐶 (𝑥);
(ii) 𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥).

Proof. If we fix the base point 𝑥 as 𝑥 in the definition (18.10) of𝑇𝐶 (𝑥), the tangent inclusion
𝑇𝐶 (𝑥) ⊂ 𝑇𝐶 (𝑥) is clear from the definition (18.1) of 𝑇𝐶 (𝑥) as an outer limit and of 𝑇𝐶 (𝑥) as
an inner limit. The inclusion 𝑇𝐶 (𝑥) ⊂ 𝑇𝑤𝐶 (𝑥) is likewise clear from the definition of 𝑇𝐶 (𝑥)
as a strong outer limit and of 𝑇𝑤

𝐶
(𝑥) is the corresponding weak outer limit.

The normal inclusion 𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥) follows from the definition (18.8) of 𝑁𝐶 (𝑥) as the
outer limit of 𝑁 𝜀

𝐶
(𝑥) as 𝑥 → 𝑥 and 𝜀→ 0. (In finite dimensions, we can fix 𝜀 = 0 in this

argument or refer to the equivalence of definitions shon in Theorem 18.2.) □

For a closed and convex set𝐶 , however, both the Fréchet and limiting normal cones coincide
with the convex normal cone defined in Lemma 4.8 (which we here denote by 𝜕𝛿𝐶 (𝑥) to
avoid confusion).

Lemma 18.6. Let 𝐶 ⊂ 𝑋 be nonempty, closed, and convex. Then for all 𝑥 ∈ 𝑋 ,
(i) 𝑁𝐶 (𝑥) = 𝜕𝛿𝐶 (𝑥);
(ii) if 𝑋 is Gâteaux smooth (in particular, finite-dimensional), 𝑁𝐶 (𝑥) = 𝜕𝛿𝐶 (𝑥).

Proof. If 𝑥 ∉ 𝐶 , it follows from their definitions that all three cones are empty. We can thus
assume that 𝑥 ∈ 𝐶 .
(i): If 𝑥∗ ∈ 𝜕𝛿𝐶 (𝑥), we have by definition that

⟨𝑥∗, 𝑦 − 𝑥⟩𝑋 ≤ 0 for all 𝑦 ∈ 𝐶.

Taking in particular 𝑦 = 𝑥 and passing to the limit 𝑥 → 𝑥 thus implies that 𝑥∗ ∈ 𝑁𝐶 (𝑥).
Conversely, let 𝑥∗ ∈ 𝑁𝐶 (𝑥) and let 𝑦 ∈ 𝐶 be arbitrary. Since 𝐶 is convex, this implies that
𝑥𝑡 ≔ 𝑥 + 𝑡 (𝑦 − 𝑥) ∈ 𝐶 for any 𝑡 ∈ (0, 1) as well. We also have that 𝑥𝑡 → 𝑥 for 𝑡 → 0. From
(18.2), it then follows by inserting the definition of 𝑥𝑡 and dividing by 𝑡 > 0 that

0 ≥ lim
𝑡→0

⟨𝑥∗, 𝑥𝑡 − 𝑥⟩𝑋
∥𝑥𝑡 − 𝑥 ∥𝑋 =

⟨𝑥∗, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋 .
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18 tangent and normal cones

and hence, since 𝑦 ∈ 𝐶 was arbitrary, that 𝑥∗ ∈ 𝜕𝛿𝐶 (𝑥).
(ii): By Lemmas 2.5 and 6.10 and Theorem 6.13, 𝜕𝛿𝐶 is strong-to-weak-∗ outer semicon-
tinuous, which by Theorem 18.5 and the 𝜀 ≡ 0 characterization of Theorem 18.2 implies
that

𝑁𝐶 (𝑥) = w-∗-lim sup
𝑥→𝑥

𝑁𝐶 (𝑥) = w-∗-lim sup
𝑥→𝑥

𝜕𝛿𝐶 (𝑥) ⊂ 𝜕𝛿𝐶 (𝑥) = 𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥).

Hence 𝑁𝐶 (𝑥) = 𝑁𝐶 (𝑥). □

Note that convexity was only used for the second inclusion, and hence 𝜕𝛿𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥)
always holds. In general, comparing (18.2) with (16.2), we have the following relation.

Corollary 18.7. Let 𝐶 ⊂ 𝑋 and 𝑥 ∈ 𝑋 . Then 𝑁𝐶 (𝑥) = 𝜕𝐹𝛿𝐶 (𝑥).

The next theorem lists some of the most basic properties of the various tangent and normal
cones.

Theorem 18.8. Let 𝐶 ⊂ 𝑋 and 𝑥 ∈ 𝑋 . Then
(i) 𝑇𝐶 (𝑥), 𝑇𝐶 (𝑥), 𝑁𝐶 (𝑥), and 𝑁𝐶 (𝑥) are cones;
(ii) 𝑇𝐶 (𝑥), 𝑇𝐶 (𝑥), and 𝑁 𝜀

𝐶
(𝑥) for every 𝜀 ≥ 0 are closed;

(iii) 𝑇𝐶 (𝑥) and 𝑁 𝜀
𝐶
(𝑥) for every 𝜀 ≥ 0 are convex;

(iv) if 𝑋 is finite-dimensional, then 𝑁𝐶 (𝑥) is closed.

Proof. We argue the different properties for each type of cone in turn.

The Fréchet (𝜀-)normal cone: It is clear from the definition of 𝑁𝐶 (𝑥) that it is a cone, i.e.,
that 𝑥∗ ∈ 𝑁𝐶 (𝑥) implies that 𝜆𝑥∗ ∈ 𝑁𝐶 (𝑥) for all 𝜆 > 0.

Let now 𝜀 ≥ 0 be arbitrary. Let 𝑥∗
𝑘
∈ 𝑁 𝜀

𝐶
(𝑥) converge to some 𝑥∗ ∈ 𝑋 ∗. Also suppose

𝐶 ∋ 𝑥ℓ → 𝑥 . Then for any ℓ, 𝑘 ∈ ℕ, we have by the Cauchy–Schwarz inequality that

⟨𝑥∗, 𝑥ℓ − 𝑥⟩𝑋
∥𝑥ℓ − 𝑥 ∥𝑋 ≤ ⟨𝑥∗

𝑘
, 𝑥ℓ − 𝑥⟩𝑋

∥𝑥ℓ − 𝑥 ∥𝑋 + ∥𝑥∗
𝑘
− 𝑥∗∥𝑋

and thus that
lim sup
ℓ→∞

⟨𝑥∗, 𝑥ℓ − 𝑥⟩𝑋
∥𝑥ℓ − 𝑥 ∥𝑋 ≤ 𝜀 + ∥𝑥∗

𝑘
− 𝑥∗∥𝑋 .

Since 𝑘 ∈ ℕ was arbitrary and 𝑥∗
𝑘
→ 𝑥∗, we see that 𝑥∗ ∈ 𝑁 𝜀

𝐶
(𝑥) and may conclude that

𝑁 𝜀
𝐶
(𝑥) is closed.
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18 tangent and normal cones

To show convexity, take 𝑥∗1 , 𝑥∗2 ∈ 𝑁 𝜀
𝐶
(𝑥) and let 𝑥∗ ≔ 𝜆𝑥∗1 + (1 − 𝜆)𝑥∗2 for some 𝜆 ∈ (0, 1).

We then have

⟨𝑥∗, 𝑥ℓ − 𝑥⟩𝑋
∥𝑥ℓ − 𝑥 ∥𝑋 = 𝜆

⟨𝑥∗1 , 𝑥ℓ − 𝑥⟩𝑋
∥𝑥ℓ − 𝑥 ∥𝑋 + (1 − 𝜆) ⟨𝑥

∗
2, 𝑥ℓ − 𝑥⟩𝑋
∥𝑥ℓ − 𝑥 ∥𝑋 .

Taking the limit 𝑥ℓ → 𝑥 now yields 𝑥∗ ∈ 𝑁 𝜀
𝐶
(𝑥) and hence the convexity.

The limiting normal cone: If 𝑋 is finite-dimensional, the set 𝑁𝐶 (𝑥) is a closed cone as the
strong outer limit of the (closed) cones 𝑁𝐶 (𝑥ℓ) as 𝑥ℓ → 𝑥 ; see Lemma 6.2.

The tangent cone: By Lemma 6.2,𝑇𝐶 (𝑥) is closed as the outer limit of the sets𝐶𝜏 ≔ (𝐶−𝑥)/𝜏
as 𝜏→ 0. To see that it is a cone, suppose Δ𝑥 ∈ 𝑇𝐶 (𝑥). Then there exist by definition 𝜏𝑘→ 0
and 𝐶 ∋ 𝑥𝑘 → 𝑥 such that (𝑥𝑘 − 𝑥)/𝜏𝑘 → Δ𝑥 . Now, for any 𝜆 > 0, taking 𝜏𝑘 ≔ 𝜆−1𝜏𝑘 , we
have (𝑥𝑘 − 𝑥)/𝜏𝑘 → 𝜆Δ𝑥 . Hence 𝜆Δ𝑥 ∈ 𝑇𝐶 (𝑥).
The Clarke tangent cone: Finally, 𝑇𝐶 (𝑥) is a closed set through its definition as an inner
limit, cf. Corollary 6.3, as well as a cone by analogous arguments as for 𝑇𝐶 (𝑥). To see
that it is convex, take Δ𝑥 1,Δ𝑥2 ∈ 𝑇𝐶 (𝑥). Since 𝑇𝐶 (𝑥) is a cone, we only need to show
that Δ𝑥 ≔ Δ𝑥 1 + Δ𝑥2 ∈ 𝑇𝐶 (𝑥). By the definition of 𝑇𝐶 (𝑥) as an inner limit, we therefore
have to show that for any sequence 𝜏𝑘→ 0 and any “base point sequence” 𝐶 ∋ 𝑥𝑘 → 𝑥 ,
there exist 𝑥𝑘 ∈ 𝐶 such that (𝑥𝑘 − 𝑥𝑘)/𝜏𝑘 → Δ𝑥 . We do this by using the varying base
point in the definition of 𝑇𝐶 (𝑥) to “bridge” between the sequences generating Δ𝑥1 and
Δ𝑥2; see Figure 18.2. First, since Δ𝑥 1 ∈ 𝑇𝐶 (𝑥), by the very same definition of 𝑇𝐶 (𝑥) as an
inner limit, we can find for the base point sequence {𝑥𝑘}𝑘∈ℕ points 𝐶 ∋ 𝑥 1

𝑘
→ 𝑋 with

(𝑥 1
𝑘
−𝑥𝑘)/𝜏𝑘 → Δ𝑥 1. Continuing in the same way, since Δ𝑥2 ∈ 𝑇𝐶 (𝑥), we can now find with

{𝑥 1
𝑘
}𝑘∈ℕ as the base point sequence points 𝑥2

𝑘
∈ 𝐶 such that (𝑥2

𝑘
− 𝑥 1

𝑘
)/𝜏𝑘 → Δ𝑥2. It follows

𝑥2
𝑘
− 𝑥𝑘
𝜏𝑘

=
𝑥2
𝑘
− 𝑥 1

𝑘

𝜏𝑘
+ 𝑥

1
𝑘
− 𝑥𝑘
𝜏𝑘

→ Δ𝑥 1 + Δ𝑥2 = Δ𝑥 .

Thus {𝑥𝑘}𝑘∈ℕ = {𝑥2
𝑘
}𝑘∈ℕ is the sequence we are looking for, showing that Δ𝑥 ∈ 𝑇𝐶 (𝑥) and

hence that the Clarke tangent cone is convex. □

One might expect 𝑇𝑤
𝐶
(𝑥) to be weakly closed and 𝑁𝐶 (𝑥) to be weak-∗ closed. However,

this is not necessarily the case, since weak and weak-∗ inner and outer limits need not be
closed in the respective topologies. Consequently, 𝑁𝐶 may also not be (strong-to-weak-∗)
outer semicontinuous at a point 𝑥 , as this would imply 𝑁𝐶 (𝑥) to be weak-∗ closed and
hence closed. However, in finite dimensions we do have outer semicontinuity.

Corollary 18.9. If 𝑋 is finite-dimensional, then the mapping 𝑥 ↦→ 𝑁𝐶 (𝑥) is outer semicontinu-
ous.
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18 tangent and normal cones

𝑥

𝑥𝑘

Δ𝑥2
𝑘

Δ𝑥 1
𝑘

𝑥 1
𝑘

𝑥2
𝑘

Δ𝑥 1
𝑘
+ Δ𝑥2

𝑘

Figure 18.2: Illustration of the “bridging” argument in the proof of Theorem 18.8. As 𝑥𝑘
converges to 𝑥 , the dashed arrows converge to the solid arrows,while the dotted
arrow converges to the dash-dotted one, which depicts the point Δ𝑥 1

𝑘
+ Δ𝑥2

𝑘

that we are trying to prove to be in 𝑇𝐶 (𝑥).

Proof. Let𝐶 ∋ 𝑥𝑘 → 𝑥 and 𝑥∗
𝑘
∈ 𝑁𝐶 (𝑥𝑘) with 𝑥∗𝑘 → 𝑥∗. Then for 𝛿𝑘→ 0, the definition (18.3)

provides 𝑥𝑘 ∈ 𝐶 and 𝑥∗
𝑘
∈ 𝑁𝐶 (𝑥𝑘) with ∥𝑥∗

𝑘
− 𝑥∗

𝑘
∥ ≤ 𝛿𝑘 and ∥𝑥𝑘 − 𝑥𝑘 ∥ ≤ 𝛿𝑘 . It follows that

𝐶 ∋ 𝑥𝑘 → 𝑥 and 𝑥∗
𝑘
→ 𝑥∗ with 𝑥∗

𝑘
∈ 𝑁𝐶 (𝑥𝑘). Thus by definition, 𝑥∗ ∈ 𝑁𝐶 (𝑥), and hence

𝑁𝐶 is outer semicontinuous. □

18.3 polarity and limiting relationships

The tangent and normal cones satisfy various polarity relationships. To state these, recall
from Section 1.2 for a general set 𝐶 ⊂ 𝑋 the definition of the polar cone

𝐶◦ = {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, 𝑥⟩𝑋 ≤ 0 for all 𝑥 ∈ 𝐶}

as well as of the bipolar cone 𝐶◦◦ = (𝐶◦)◦ ⊂ 𝑋 .

the fundamental cones

The relations in the following result will be crucial.

Lemma 18.10. Let 𝑋 be a Banach space, 𝐶 ⊂ 𝑋 , and 𝑥 ∈ 𝑋 . Then
(i) 𝑁𝐶 (𝑥) ⊂ 𝑇𝑤𝐶 (𝑥)◦ ⊂ 𝑇𝐶 (𝑥)◦;
(ii) if 𝑋 is reflexive, then 𝑁𝐶 (𝑥) = 𝑇𝑤𝐶 (𝑥)◦;
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18 tangent and normal cones

(iii) if 𝑋 is finite-dimensional, then 𝑁𝐶 (𝑥) = 𝑇𝐶 (𝑥)◦.

Proof. (i): We take Δ𝑥 ∈ 𝑇𝑤
𝐶
(𝑥) and 𝑥∗ ∈ 𝑁𝐶 (𝑥). Then there exist 𝜏𝑘→ 0 and 𝐶 ∋ 𝑥𝑘 → 𝑥

such that (𝑥𝑘 − 𝑥)/𝜏𝑘 ⇀ Δ𝑥 weakly in 𝑋 . Thus

⟨𝑥∗,Δ𝑥⟩𝑋 = lim sup
𝑘→∞

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋
𝜏𝑘

= lim sup
𝑘→∞

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋
∥𝑥𝑘 − 𝑥 ∥𝑋

· ∥𝑥𝑘 − 𝑥 ∥𝑋
𝜏𝑘

.

Since 𝑥∗ ∈ 𝑁𝐶 (𝑥) and𝐶 ∋ 𝑥𝑘 → 𝑥 ,we have by definition that lim sup𝑘→∞⟨𝑥∗, 𝑥𝑘−𝑥⟩𝑋/∥𝑥𝑘−
𝑥 ∥𝑋 ≤ 0. Moreover, (𝑥𝑘 −𝑥)/𝜏𝑘 ⇀ Δ𝑥 implies that ∥𝑥𝑘 −𝑥 ∥𝑋/𝜏𝑘 is bounded. Passing to the
limit, it therefore follows that ⟨𝑥∗,Δ𝑥⟩𝑋 ≤ 0. Since this holds for every Δ𝑥 ∈ 𝑇𝑤

𝐶
(𝑥), we see

that 𝑥∗ ∈ 𝑇𝑤
𝐶
(𝑥)◦. This shows that 𝑁𝐶 (𝑥) ⊂ 𝑇𝑤𝐶 (𝑥)◦. Since𝑇𝐶 (𝑥) ⊂ 𝑇𝑤𝐶 (𝑥) by Theorem 18.5,

𝑇𝑤
𝐶
(𝑥)◦ ⊂ 𝑇𝐶 (𝑥)◦ follows from Theorem 1.8.

(ii): Due to (i), we only need to show “⊃”. Let 𝑥∗ ∉ 𝑁𝐶 (𝑥). Then, by definition, there exist
𝐶 ∋ 𝑥𝑘 → 𝑥 with

(18.11) lim
𝑘→∞

⟨𝑥∗,Δ𝑥𝑘⟩ > 0 for Δ𝑥𝑘 ≔
𝑥𝑘 − 𝑥

∥𝑥𝑘 − 𝑥 ∥𝑋
.

We now use the reflexivity of 𝑋 and the Eberlein–S̆mulyan Theorem 1.9 to pass to a
subsequence, unrelabelled, such that that Δ𝑥𝑘 ⇀ Δ𝑥 for some Δ𝑥 ∈ 𝑋 that by definition
satisfies Δ𝑥 ∈ 𝑇𝑤

𝐶
(𝑥). However, passing to the limit in (18.11) now shows that ⟨𝑥∗,Δ𝑥⟩𝑋 > 0

and hence that 𝑥∗ ∉ 𝑇𝑤
𝐶
(𝑥)◦.

(iii): This is immediate from (ii) since 𝑇𝐶 (𝑥) = 𝑇𝑤𝐶 (𝑥) in finite-dimensional spaces. □

the limiting cones: preliminary lemmas

For a polarity relationship between the basic normal cone and the Clarke tangent cone, we
need to work significantly harder. We start here with some preliminary lemmas shared
between the finite-dimensional and infinite-dimensional setting, and then treat the two in
that order.

Lemma 18.11. Let 𝑋 be a reflexive Banach space, 𝐶 ⊂ 𝑋 , and 𝑥 ∈ 𝑋 . Then

(18.12) 𝑇𝐶 (𝑥) ⊂ lim inf
𝐶∋𝑥→𝑥

𝑇𝑤𝐶 (𝑥).

If 𝑋 = ℝ𝑁 , then
𝑇𝐶 (𝑥) ⊂ lim inf

𝐶∋𝑥→𝑥
𝑇𝐶 (𝑥).
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18 tangent and normal cones

Proof. The case 𝑋 = ℝ𝑁 trivially follows from (18.12). To prove (18.12), denote by 𝐾 the set
on its right-hand side. If Δ𝑥 ∉ 𝐾 , then there exist 𝜀 > 0 and a sequence 𝐶 ∋ 𝑥𝑘 → 𝑥 such
that

(18.13) inf
Δ𝑥𝑘∈𝑇𝑤𝐶 (𝑥𝑘 )

∥Δ𝑥𝑘 − Δ𝑥 ∥𝑋 ≥ 3𝜀.

Fix 𝑘 ∈ ℕ and suppose that for some 𝜏ℓ→ 0 and 𝑥ℓ ∈ 𝐶 ,

(18.14)
𝑥ℓ−𝑥𝑘𝜏ℓ

− Δ𝑥

𝑋
≤ 2𝜀 (ℓ ∈ ℕ).

Using the reflexivity of 𝑋 and the Eberlein–S̆mulyan Theorem 1.9, we then find a further,
unrelabelled, subsequence of {(𝑥ℓ , 𝜏ℓ)}ℓ∈ℕ such that (𝑥ℓ − 𝑥𝑘)/𝜏𝑘ℓ ⇀ Δ𝑥𝑘 as ℓ → ∞ for
some Δ𝑥𝑘 ∈ 𝑇𝑤

𝐶
(𝑥𝑘) with ∥Δ𝑥𝑘 − Δ𝑥 ∥𝑋 ≤ 2𝜀, in contradiction to (18.13). We thus have

lim
𝜏→ 0

inf
𝑥∈𝐶

𝑥−𝑥𝑘𝜏 − Δ𝑥

𝑋
≥ 2𝜀.

Since this holds for all 𝑘 ∈ ℕ, we can find 𝜏𝑘 > 0 with 𝜏𝑘→ 0 satisfying the inequality

lim inf
𝑘→∞

inf
𝑥∈𝐶

𝑥−𝑥𝑘𝜏𝑘
− Δ𝑥


𝑋
≥ 𝜀

implying that Δ𝑥 ∉ 𝑇𝐶 (𝑥). Therefore (18.12) holds. □

Lemma 18.12. Let 𝑋 be a reflexive and Gâteaux smooth (or finite-dimensional) Banach space,
𝐶 ⊂ 𝑋 , and 𝑥 ∈ 𝑋 . Then

𝑇𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥)◦.

Proof. Take 𝑥∗ ∈ 𝑁𝐶 (𝑥) and Δ𝑥 ∈ 𝑇𝐶 (𝑥). This gives by Theorem 18.2 (or (18.3) if 𝑋 is
finite-dimensional) sequences 𝑥𝑘 → 𝑥 and 𝑥∗

𝑘

∗⇀ 𝑥∗ with 𝑥∗
𝑘
∈ 𝑁𝐶 (𝑥𝑘). By Lemma 18.11,

we can find for each 𝑘 ∈ ℕ a Δ𝑥𝑘 ∈ 𝑇𝑤
𝐶
(𝑥𝑘) such that Δ𝑥𝑘 → Δ𝑥 . Since 𝑁𝐶 (𝑥𝑘) = 𝑇𝑤𝐶 (𝑥𝑘)◦

by Lemma 18.10 (ii) when 𝑋 is reflexive, we have ⟨𝑥∗
𝑘
,Δ𝑥𝑘⟩𝑋 ≤ 0. Combining all these

observations, we obtain

⟨𝑥∗,Δ𝑥⟩𝑋 = lim
𝑘→∞

(⟨𝑥∗
𝑘
,Δ𝑥𝑘⟩𝑋 + ⟨𝑥∗ − 𝑥∗

𝑘
,Δ𝑥⟩𝑋 + ⟨𝑥∗

𝑘
,Δ𝑥 − Δ𝑥𝑘⟩𝑋 )

= lim
𝑘→∞

⟨𝑥∗
𝑘
,Δ𝑥𝑘⟩𝑋 ≤ 0.

Since 𝑥∗ ∈ 𝑁𝐶 (𝑥) was arbitrary, we deduce that Δ𝑥 ∈ 𝑁𝐶 (𝑥)◦ and hence the claim. □
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18 tangent and normal cones

𝑥𝑥
𝑥

𝑥 + 𝑧
𝑥 + 𝜃𝑧

𝑥∗
𝑥∗

(a) By assumption, the interior of the ball around 𝑥 + 𝑧 of radius 𝜀 does not intersect 𝐶 (shaded). In
this example, the point 𝑥 ∈ 𝐶 intersects the boundary; however, it is not on the leading edge
(thick lines) where the normal vector 𝑥∗ would satisfy ⟨𝑧, 𝑥∗⟩ ≥ 𝜀. Reducing 𝜃 < 1 produces an
intersecting point 𝑥 on the leading edge.

𝑥

𝑥 + 𝜃𝑧

𝑇𝐶 (𝑥)

𝑥∗

(b) The “ice cream cone” emanating from 𝑥 along the line [𝑥, 𝑥 + 𝜃𝑧] with a ball of radius 𝜀𝜃 does
not intersect𝐶 (light shading). From this it follows that the tangent cone𝑇𝐶 (𝑥) (incomplete dark
shading) is at a distance 𝜀 from 𝑧.

Figure 18.3: Geometric illustration of the construction in the proof of Lemma 18.13.

the limiting cones in finite dimensions

We now start our development of polarity relationships between the limiting cones, as
well as limiting relationships between the tangent and Clarke tangent cones. Our main
tool will be the following “ice cream cone lemma”, for which it is important that we endow
ℝ𝑁 with the Euclidean norm.

Lemma 18.13. Let 𝐶 ⊂ ℝ𝑁 be closed and let 𝑥 ∈ 𝐶 . Let 𝑧 ∈ ℝ𝑁 \ {0} and 𝜀 > 0 be such that

(18.15) int𝔹(𝑥 + 𝑧, 𝜀) ∩𝐶 = ∅.

Then for any 𝜀 ∈ (0, 𝜀), there exists an 𝑥 ∈ 𝐶 such that there exist

(i) 𝜃 ∈ (0, 1] satisfying ∥(𝑥 + 𝜃𝑧) − (𝑥 + 𝑧)∥ ≤ 𝜀 and infΔ𝑥∈𝑇𝐶 (𝑥) ∥Δ𝑥 − 𝑧∥ ≥ 𝜀;
(ii) 𝑥∗ ∈ 𝑁𝐶 (𝑥) satisfying ⟨𝑥∗, 𝑧⟩ ≥ 𝜀 and ∥𝑥∗∥ ≤ 1.

Proof. We define the increasing real function 𝜑 (𝑡) ≔
√

1 + 𝑡2 and 𝐹,𝐺 : ℝ𝑁 ×ℝ → ℝ by

𝐹 (𝑥, 𝜃 ) ≔ 𝜑 (𝜀)𝜃 + 𝜑 (∥(𝑥 + 𝜃𝑧) − (𝑥 + 𝑧)∥) and 𝐺 (𝑥, 𝜃 ) ≔ 𝛿𝐶 (𝑥) + 𝛿 [0,∞) (𝜃 ).
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18 tangent and normal cones

Then 𝐹 +𝐺 is proper, coercive, and lower semicontinuous and hence admits a minimizer
(𝑥, 𝜃 ) ∈ 𝐶× [0,∞) by Theorem 2.1. (We illustrate the idea of such a minimizer geometrically
in Figure 18.3.) Let 𝑦 := (𝑥 + 𝜃𝑧) − (𝑥 + 𝑧).
(i): We first prove 𝜃 ∈ (0, 1]. Suppose 𝜃 = 0. Since 𝑥 ∈ 𝐶 we obtain using (18.15) that

[𝐹 +𝐺] (𝑥, 0) = 𝜑 (∥𝑥 − (𝑥 + 𝑧)∥) ≥ 𝜑 (𝜀) > 𝜑 (𝜀) = [𝐹 +𝐺] (𝑥, 1).
This is a contradiction to (𝑥, 0) being a minimizer. Thus 𝜃 ≠ 0. Likewise,

𝜑 (𝜀)𝜃 + 𝜑 (∥𝑦 ∥) = [𝐹 +𝐺] (𝑥, 𝜃 ) ≤ [𝐹 +𝐺] (𝑥, 1) = 𝜑 (𝜀),
where both terms on the left-hand side are nonnegative. Hence 𝜃 ≤ 1. By the monotonicity
of 𝜑 , this also verifies the claim ∥𝑦 ∥ ≤ 𝜀.
We still need to prove the claim on the tangent cone. Since (𝑥, 𝜃 ) is a minimizer of 𝐹 +𝐺 ,
for any 𝜃 ≥ 0 and 𝑥 ∈ 𝐶 we have

𝜑 (𝜀)𝜃 + 𝜑 (∥𝑦 ∥) ≤ [𝐹 +𝐺] (𝑥, 𝜃 ) ≤ [𝐹 +𝐺] (𝑥, 𝜃 ) = 𝜑 (𝜀)𝜃 + 𝜑 (∥𝑦 ∥) .
Letting 𝑦 ≔ (𝑥 + 𝜃𝑧) − (𝑥 + 𝑧) and using first this inequality and then the convexity of 𝜑
with 𝜑′(𝑡) = 𝑡/𝜑 (𝑡) ≤ 1 for all 𝑡 ≥ 0 yields

𝜑 (𝜀) (𝜃 − 𝜃 ) ≤ 𝜑 (∥𝑦 ∥) − 𝜑 (∥𝑦 ∥)
≤ 𝜑′(∥𝑦 ∥) (∥𝑦 ∥ − ∥𝑦 ∥)
≤ ∥𝑦 − 𝑦 ∥ = ∥𝑥 − 𝑥 − (𝜃 − 𝜃 )𝑧∥.

Dividing by 𝜏 = 𝜃 − 𝜃 for 𝜃 ∈ [0, 𝜃 ), we obtain that 𝜀 ≤ 𝜑 (𝜀) ≤
𝑥−𝑥

𝜏
− 𝑧

. Taking the
infimum over 𝑥 ∈ 𝐶 and 𝜏 ∈ (0, 𝜃 ] thus yields infΔ𝑥∈𝑇𝐶 (𝑥) ∥Δ𝑥 − 𝑧∥ ≥ 𝜀.
(ii): By Lemma 3.4 (iv), 𝐹 is convex. Furthermore, int(dom 𝐹 ) = ℝ𝑁+1 so that 𝐹 is Lipschitz
near (𝑥, 𝜃 ) by Theorem 3.13. Using Theorems 4.6, 4.17, and 4.19 with 𝐾 (𝑥, 𝜃 ) ≔ 𝑥 + 𝜃𝑧, it
follows that

𝜕𝐹 (𝑥, 𝜃 ) =
{(

𝜑′(∥𝑦 ∥)𝑦∗
𝜑 (𝜀) + 𝜑′(∥𝑦 ∥)⟨𝑧, 𝑦∗⟩

) ���� ⟨𝑦∗, 𝑦⟩ = ∥𝑦 ∥, ∥𝑦∗∥ = 1 if 𝑦 ≠ 0
∥𝑦∗∥ ≤ 1 if 𝑦 = 0

}
.(18.16)

Since ℝ𝑁 endowed with the euclidean norm is a Hilbert space, 𝑥 ↦→ ∥𝑥 ∥2 is Gâteaux differ-
entiable by Example 17.6 (i) and Lemma 17.7. Hence 𝜕𝐹 (𝑥, 𝜃 ) is a singleton, and therefore 𝐹
is Gâteaux differentiable at (𝑥, 𝜃 ) due to Lemma 13.7 and Theorem 13.8. We can thus apply
the Fermat principle (Theorem 16.2) and the Fréchet sum rule (Corollary 17.3) to deduce
0 ∈ 𝜕𝐹𝐹 (𝑥, 𝜃 ) + 𝜕𝐹𝐺 (𝑥, 𝜃 ). Since 𝜃 > 0, we have 𝜕𝐹𝐺 (𝑥, 𝜃 ) = 𝑁𝐶 (𝑥) × {0} by Corollary 18.7,
which implies that

(18.17) −𝜑′(∥𝑦 ∥)𝑦∗ ∈ 𝑁𝐶 (𝑥) and 𝜑 (𝜀) + 𝜑′(∥𝑦 ∥)⟨𝑧, 𝑦∗⟩ = 0.

Since 𝜑 (𝜀) > 0, the second equation in (18.17) yields 𝜑′(∥𝑦 ∥) ≠ 0 as well. As 𝜑′(𝑡) ∈ (0, 1)
and 𝜑 (𝑡) > 𝑡 for all 𝑡 > 0, we can set 𝑥∗ ≔ −𝜑′(∥𝑦 ∥)𝑦∗ to obtain 𝑥∗ ∈ 𝑁𝐶 (𝑥) with ∥𝑥∗∥ ≤ 1
and ⟨𝑧, 𝑥∗⟩ = 𝜑 (𝜀)

𝜑 ′ (∥𝑦 ∥) ≥ 𝜑 (𝜀) ≥ 𝜀. □
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18 tangent and normal cones

The following consequence of the ice cream cone lemma will be useful for several polarity
relations. We call a set 𝐶 closed near 𝑥 ∈ 𝐶 , if there exists a 𝛿 > 0 such that 𝐶 ∩ 𝔹(𝑥, 𝛿) is
closed.

Lemma 18.14. Let𝐶 ⊂ ℝ𝑁 be closed near 𝑥 . If 𝑧 ∉ 𝑇𝐶 (𝑥), then there exist 𝜀 > 0 and a sequence
𝐶 ∋ 𝑥𝑘 → 𝑥 such that for all 𝑘 ∈ ℕ,

(i) infΔ𝑥𝑘∈𝑇𝐶 (𝑥𝑘 ) ∥Δ𝑥𝑘 − 𝑧∥ ≥ 𝜀;
(ii) there exists 𝑥∗

𝑘
∈ 𝑁𝐶 (𝑥𝑘) with ∥𝑥∗

𝑘
∥ ≤ 1 and ⟨𝑥∗

𝑘
, 𝑧⟩ ≥ 𝜀.

Proof. First, 𝑧 ∉ 𝑇𝐶 (𝑥) implies by (18.10) the existence of 𝜀 > 0, 𝐶 ∋ 𝑥𝑘 → 𝑥 , and 𝜏𝑘→ 0
such that

inf
𝑥∈𝐶

𝑥−𝑥𝑘𝜏𝑘
− 𝑧

 ≥ 𝜀 (𝑘 ∈ ℕ),
implying that

int𝔹(𝑥𝑘 + 𝜏𝑘𝑧, 𝜏𝑘𝜀) ∩𝐶 = ∅.
By taking 𝜏𝑘 small enough – i.e., 𝑘 ∈ ℕ large enough – we may without loss of generality
assume that𝐶 is closed. For any 𝜀 ∈ (0, 𝜀) and every 𝑘 ∈ ℕ, Lemma 18.13 now yields 𝑥𝑘 ∈ 𝐶
and 𝜃𝑘 ∈ (0, 1] satisfying
(i’) ∥(𝑥𝑘 + 𝜃𝑘𝜏𝑘𝑧) − (𝑥 + 𝜏𝑘𝑧)∥ ≤ 𝜀𝜏𝑘 and infΔ𝑥𝑘∈𝑇𝐶 (𝑥𝑘 ) ∥Δ𝑥𝑘 − 𝜏𝑘𝑧∥ ≥ 𝜀𝜏𝑘 ;
(ii’) there exists an 𝑥∗

𝑘
∈ 𝑁𝐶 (𝑥𝑘) such that ⟨𝑥∗

𝑘
, 𝜏𝑘𝑧⟩ ≥ 𝜏𝑘𝜀 and ∥𝑥∗

𝑘
∥ ≤ 1.

We readily obtain (i) from (i’) and (ii) from (ii’) Since (i’) also shows that 𝑥𝑘 → 𝑥 as 𝜏𝑘→ 0,
this finishes the proof. □

We can now show the converse inclusion of Lemma 18.12 when the set is closed near 𝑥 .

Theorem 18.15. If 𝐶 ⊂ ℝ𝑁 is closed near 𝑥 , then

𝑇𝐶 (𝑥) = 𝑁𝐶 (𝑥)◦.

Proof. By Lemma 18.12, we only need to prove𝑇𝐶 (𝑥) ⊃ 𝑁𝐶 (𝑥)◦. We argue by contraposition.
Let 𝑧 ∉ 𝑇𝐶 (𝑥). Then Lemma 18.14 yields a sequence {𝑥∗

𝑘
}𝑘∈ℕ ⊂ ℝ𝑁 such that 𝑥∗

𝑘
∈ 𝑁𝐶 (𝑥𝑘)

for 𝐶 ∋ 𝑥𝑘 → 𝑥 and ⟨𝑥∗
𝑘
, 𝑧⟩ ≥ 𝜀 > 0 as well as ∥𝑥∗

𝑘
∥ ≤ 1. Since {𝑥∗

𝑘
}𝑘∈ℕ is bounded, we

can extract a subsequence that converges to some 𝑥∗ ∈ ℝ𝑁 . By definition of the limiting
normal cone, 𝑥∗ ∈ 𝑁𝐶 (𝑥). Moreover, ⟨𝑥∗, 𝑧⟩ ≥ 𝜀 > 0. This provides, as required, that
𝑧 ∉ 𝑁𝐶 (𝑥)◦. □
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18 tangent and normal cones

the limiting cones in infinite dimensions

We now repeat the arguments above in infinite dimensions, however, we need extra care
and extra assumptions. Besides reflexivity (to obtain weak-∗ compactness from Eberlein–
S̆mulyan Theorem 1.9) and Gâteaux smoothness (to obtain differentiability of the norm),
we need to use the approximate Fermat principle of Theorem 17.13 since exact projections
to general sets 𝐶 may not exist; compare Theorem 17.14. This introduces 𝜀-normal cones
into the proof. The geometric ideas of the proof, however, are the same as illustrated in
Figure 18.3.

Lemma 18.16. Let 𝑋 be a Banach space, 𝐶 ⊂ 𝑋 be closed, and 𝑥 ∈ 𝐶 . Let 𝑧 ∈ 𝑋 \ {0} and
𝜀 > 0 be such that

(18.18) int𝔹(𝑥 + 𝑧, 𝜀) ∩𝐶 = ∅.

Then for any 𝜀 ∈ (0, 𝜀) and 𝜌 > 0, there exists 𝑥 ∈ 𝐶 such that there exist

(i) 𝜃 ∈ (0, 1] such that ∥(𝑥 + 𝜃𝑧) − (𝑥 + 𝑧)∥𝑋 ≤ 𝜀 and infΔ𝑥∈𝑇𝐶 (𝑥) ∥Δ𝑥 − 𝑧∥𝑋 ≥ 𝜀;
(ii) if 𝑋 is Gâteaux smooth, 𝑥∗ ∈ 𝑁 𝜌

𝐶
(𝑥) such that ⟨𝑥∗, 𝑧⟩𝑋 ≥ 𝜀 and ∥𝑥∗∥𝑋 ∗ ≤ 1.

Proof. We define the convex and increasing real function 𝜑 (𝑡) ≔
√

1 + 𝑡2 and pick arbitrary

(18.19) 𝜀 ∈ (𝜀, 𝜀), 0 < 𝜌 <
𝜑 (𝜀) − 𝜀

2 + 𝜀 , and 0 < 𝛿 < 𝜑 (𝜀) − 𝜑 (𝜀).

The upper bound on 𝜌 is without loss of generality for (ii) because 𝑁 𝜌

𝐶
(𝑥) ⊂ 𝑁

𝜌 ′
𝐶
(𝑥) for

𝜌′ ≥ 𝜌 . Then we define 𝐹,𝐺 : 𝑋 ×ℝ → ℝ by

𝐹 (𝑥, 𝜃 ) ≔ 𝜑 (𝜀)𝜃 + 𝜑 (∥(𝑥 + 𝜃𝑧) − (𝑥 + 𝑧)∥𝑋 ) and 𝐺 (𝑥, 𝜃 ) ≔ 𝛿𝐶 (𝑥) + 𝛿 [0,∞) (𝜃 ).

The function 𝐹 + 𝐺 is proper and coercive, hence inf (𝐹 + 𝐺) > −∞. However, it may
not admit a minimizer. Nevertheless, the approximate Fermat principle of Theorem 17.13
produces an approximate minimizer (𝑥, 𝜃 ) ∈ 𝐶 × [0,∞) with
(a) [𝐹 +𝐺] (𝑥, 𝜃 ) ≤ inf [𝐹 +𝐺] + 𝛿 ,
(b) [𝐹 +𝐺] (𝑥, 𝜃 ) < [𝐹 +𝐺] (𝑥, 𝜃 ) + 𝜌 ∥𝑥 − 𝑥 ∥𝑋 + 𝜌 |𝜃 − 𝜃 | for all (𝑥, 𝜃 ) ≠ (𝑥, 𝜃 ), and
(c) 0 ∈ 𝜕𝜌 [𝐹 +𝐺] (𝑥, 𝜃 ).

Let again 𝑦 := (𝑥 + 𝜃𝑧) − (𝑥 + 𝑧).
(i): We first prove 𝜃 ∈ (0, 𝜑 (𝜀)

𝜑 (𝜀) ], which will in particular imply that 𝜃 ∈ (0, 1 + 𝜀). Suppose
𝜃 = 0. Since 𝑥 ∈ 𝐶 , using (18.18) and the convexity of 𝜑 , we obtain

[𝐹 +𝐺] (𝑥, 0) − 𝛿 = 𝜑 (∥𝑥 − (𝑥 + 𝑧)∥𝑋 ) − 𝛿 ≥ 𝜑 (𝜀) − 𝛿 > 𝜑 (𝜀) = [𝐹 +𝐺] (𝑥, 1)
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18 tangent and normal cones

in contradiction to (a). Thus 𝜃 ≠ 0. Likewise,

𝜑 (𝜀)𝜃 + 𝜑 (∥𝑦 ∥𝑋 ) = [𝐹 +𝐺] (𝑥, 𝜃 ) ≤ [𝐹 +𝐺] (𝑥, 1) + 𝛿 = 𝜑 (𝜀) + 𝛿 < 𝜑 (𝜀).

where both terms on the left-hand side are nonnegative. Hence 𝜃 ≤ 𝜑 (𝜀)
𝜑 (𝜀) . By monotonicity

of 𝜑 , this also verifies the claim ∥𝑦 ∥𝑋 ≤ 𝜀.
We still need to prove the claim on the tangent cone. Letting 𝑦 ≔ (𝑥 + 𝜃𝑧) − (𝑥 + 𝑧), we
rearrange (b) as

(18.20) 𝜑 (𝜀) (𝜃 − 𝜃 ) − 𝜌 |𝜃 − 𝜃 | ≤ 𝜑 (∥𝑦 ∥𝑋 ) − 𝜑 (∥𝑦 ∥𝑋 ) + 𝜌 ∥𝑥 − 𝑥 ∥𝑋
Using the convexity of 𝜑 , we also have

𝜑 (∥𝑦 ∥𝑋 ) − 𝜑 (∥𝑦 ∥𝑋 ) ≤ 1
𝜑 (∥𝑦 ∥𝑋 ) (∥𝑦 ∥𝑋 − ∥𝑦 ∥𝑋 ) ≤ ∥𝑦 − 𝑦 ∥𝑋 = ∥𝑥 − 𝑥 − (𝜃 − 𝜃 )𝑧∥𝑋

Further estimating ∥𝑥 − 𝑥 ∥𝑋 ≤ ∥𝑥 − 𝑥 − (𝜃 − 𝜃 )𝑧∥𝑋 + |𝜃 − 𝜃 |, (18.20) now yields

[𝜑 (𝜀) − 2𝜌] (𝜃 − 𝜃 ) ≤ (1 + 𝜌)∥𝑥 − 𝑥 − (𝜃 − 𝜃 )𝑧∥𝑋 (𝜃 ∈ [0, 𝜃 ), 𝑥 ∈ 𝐶).
Dividing by (1 + 𝜌) (𝜃 − 𝜃 ) and using (18.19) (for the first inequality), we obtain that

𝜀 ≤ 𝜑 (𝜀) − 2𝜌
1 + 𝜌 ≤ inf

𝑥∈𝐶, 𝜃∈[0,𝜃 )

𝑥 − 𝑥
𝜃 − 𝜃 − 𝑧


𝑋

.

This shows infΔ𝑥∈𝑇𝐶 (𝑥) ∥Δ𝑥 − 𝑧∥𝑋 ≥ 𝜀.
(ii): By Lemma 3.4 (iv),𝐹 is convex. Furthermore int(dom 𝐹 ) = 𝑋×ℝ, and hence 𝐹 is Lipschitz
near (𝑥, 𝜃 ) by Theorem 3.13. Using Theorems 4.6, 4.17, and 4.19 with 𝐾 (𝑥, 𝜃 ) ≔ 𝑥 + 𝜃𝑧, it
follows that

𝜕𝐹 (𝑥, 𝜃 ) =
{(

𝜑′(∥𝑦 ∥𝑋 )𝑦∗
𝜑 (𝜀) + 𝜑′(∥𝑦 ∥𝑋 )⟨𝑧, 𝑦∗⟩𝑋

) ���� ⟨𝑦∗, 𝑦⟩𝑋 = ∥𝑦 ∥𝑋 , ∥𝑦∗∥𝑋 ∗ = 1 if 𝑦 ≠ 0
∥𝑦∗∥𝑋 ∗ ≤ 1 if 𝑦 = 0

}
.(18.21)

Again, 𝜕𝐹 (𝑥, 𝜃 ) is a singleton by Lemma 17.7 and the assumption that 𝑋 is Gâteaux smooth.

We can thus apply the 𝜀-sum rule (Lemma 17.2) in (c) to deduce 0 ∈ 𝜕𝐹 (𝑥, 𝜃 ) + 𝜕𝜌𝐺 (𝑥, 𝜃 ).
Since 𝜃 > 0, we have 𝜕𝜌𝐺 (𝑥, 𝜃 ) = 𝑁 𝜌

𝐶
(𝑥) × {0}, which implies that

(18.22) −𝜑′(∥𝑦 ∥𝑋 )𝑦∗ ∈ 𝑁 𝜌

𝐶
(𝑥) and 𝜑 (𝜀) + 𝜑′(∥𝑦 ∥𝑋 )⟨𝑧, 𝑦∗⟩𝑋 = 0.

Since 𝜑 (𝜀) > 0, the second equation in (18.22) yields 𝜑′(∥𝑦 ∥𝑋 ) ≠ 0 as well. As 𝜑′(𝑡) ∈ (0, 1)
and 𝜑 (𝑡) > 𝑡 for all 𝑡 > 0, we can set 𝑥∗ ≔ −𝜑′(∥𝑦 ∥𝑋 )𝑦∗ to obtain 𝑥∗ ∈ 𝑁

𝜌

𝐶
(𝑥) with

∥𝑥∗∥𝑋 ∗ ≤ 1 and ⟨𝑧, 𝑥∗⟩𝑋 = 𝜑 (𝜀)
𝜑 ′ (∥𝑦 ∥𝑋 ) ≥ 𝜑 (𝜀) ≥ 𝜀. □

Remark 18.17. If 𝑋 is in addition reflexive, we can use the Eberlein–S̆mulyan Theorem 1.9 to pass to
the limit as 𝜌→ 0 in Lemma 18.16 and produce 𝑥∗ ∈ 𝑁𝐶 (𝑥) satisfying the other claims of the lemma.
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18 tangent and normal cones

Lemma 18.18. Let 𝑋 be a Banach space and 𝐶 ⊂ 𝑋 be closed near 𝑥 ∈ 𝐶 . If 𝑧 ∉ 𝑇𝐶 (𝑥), then
there exist 𝜀 > 0 and a sequence 𝐶 ∋ 𝑥𝑘 → 𝑥 such that for all 𝑘 ∈ ℕ,

(i) infΔ𝑥𝑘∈𝑇𝐶 (𝑥𝑘 ) ∥Δ𝑥𝑘 − 𝑧∥𝑋 ≥ 𝜀;
(ii) if 𝑋 is Gâteaux smooth, there exists 𝑥∗

𝑘
∈ 𝑁𝐶 (𝑥𝑘) with ∥𝑥∗

𝑘
∥𝑋 ∗ ≤ 1 and ⟨𝑥∗

𝑘
, 𝑧⟩𝑋 ∗ ≥ 𝜀.

Proof. The assumption 𝑧 ∉ 𝑇𝐶 (𝑥) implies by (18.10) the existence of 𝜀 > 0,𝐶 ∋ 𝑥𝑘 → 𝑥 , and
𝜏𝑘→ 0 such that

inf
𝑥∈𝐶

𝑥−𝑥𝑘𝜏𝑘
− 𝑧


𝑋
≥ 𝜀 (𝑘 ∈ ℕ).

This implies that
int𝔹(𝑥𝑘 + 𝜏𝑘𝑧, 𝜏𝑘𝜀) ∩𝐶 = ∅.

Since the argument is local, by taking 𝜏𝑘 small enough – i.e., 𝑘 ∈ ℕ large enough – we
may without loss of generality assume that 𝐶 is closed. For any 𝜀 ∈ (0, 𝜀) and every 𝑘 ∈ ℕ,
Lemma 18.16 now produces 𝑥𝑘 ∈ 𝐶 and 𝜃𝑘 ∈ (0, 1] satisfying
(i’) ∥(𝑥𝑘 + 𝜃𝑘𝜏𝑘𝑧) − (𝑥 + 𝜏𝑘𝑧)∥𝑋 ≤ 𝜀𝜏𝑘 and infΔ𝑥𝑘∈𝑇𝐶 (𝑥𝑘 ) ∥Δ𝑥𝑘 − 𝜏𝑘𝑧∥𝑋 ≥ 𝜀𝜏𝑘 ;
(ii’) if 𝑋 is Gâteaux smooth, there exists 𝑥∗

𝑘
∈ 𝑁

𝜀𝜏𝑘
𝐶

(𝑥𝑘) such that ⟨𝑥∗
𝑘
, 𝜏𝑘𝑧⟩𝑋 ≥ 𝜏𝑘𝜀 and

∥𝑥∗
𝑘
∥𝑋 ∗ ≤ 1.

We readily obtain (i) from (i’) and (ii) from (ii’). Since (i’) also shows that 𝑥𝑘 → 𝑥 as 𝜏𝑘→ 0,
this finishes the proof. □

Theorem 18.19. Let 𝑋 be a reflexive and Gâteaux smooth Banach space and let 𝐶 ⊂ 𝑋 be
closed near 𝑥 ∈ 𝐶 . Then

𝑇𝐶 (𝑥) = 𝑁𝐶 (𝑥)◦.

Proof. By Lemma 18.12, we only need to prove 𝑇𝐶 (𝑥) ⊃ 𝑁𝐶 (𝑥)◦. Let 𝑧 ∉ 𝑇𝐶 (𝑥). Then
Lemma 18.18 yields a sequence {𝑥∗

𝑘
}𝑘∈ℕ ⊂ 𝔹𝑋 ∗ such that 𝑥∗

𝑘
∈ 𝑁𝐶 (𝑥𝑘) and ⟨𝑥∗

𝑘
, 𝑧⟩𝑋 ≥ 𝜀.

Since 𝑋 is reflexive, 𝑋 ∗ is reflexive as well, and so we can apply Theorem 1.9 to extract a
subsequence of {𝑥∗

𝑘
}𝑘∈ℕ that converges weakly and thus, again by reflexivity, also weakly-∗

to some 𝑥∗ ∈ 𝑁𝐶 (𝑥) (by definition of the limiting normal cone) with ⟨𝑥∗, 𝑧⟩𝑋 ≥ 𝜀 > 0. □

the clarke tangent cone

We can now show the promised alternative characterization of the Clarke tangent cone
𝑇𝐶 (𝑥) as the inner limit of tangent cones.
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18 tangent and normal cones

Corollary 18.20. Let 𝑋 be a reflexive Banach space and let 𝐶 ⊂ 𝑋 be closed near 𝑥 ∈ 𝑋 . Then

(18.23) lim inf
𝐶∋𝑥→𝑥

𝑇𝐶 (𝑥) ⊂ 𝑇𝐶 (𝑥) ⊂ lim inf
𝐶∋𝑥→𝑥

𝑇𝑤𝐶 (𝑥) .

In particular, if 𝑋 is finite-dimensional, then

𝑇𝐶 (𝑥) = lim inf
𝐶∋𝑥→𝑥

𝑇𝐶 (𝑥).

Proof. We have already proved the second inclusion of (18.23) in Lemma 18.11. For the first
inclusion, suppose 𝑧 ∉ 𝑇𝐶 (𝑥). Then Lemma 18.18 yields an 𝜀 > 0 and a sequence𝐶 ∋ 𝑥𝑘 → 𝑥

such that infΔ𝑥𝑘∈𝑇𝐶 (𝑥𝑘 ) ∥Δ𝑥𝑘 −𝑧∥𝑋 ≥ 𝜀 for all 𝑘 . This shows that 𝑧 ∉ lim inf𝐶∋𝑥→𝑥 𝑇𝐶 (𝑥). □

Remark 18.21. Lemma 18.18 and thus the first inclusion of (18.23) do not actually require the reflexivity
of 𝑋 . In contrast , Lemma 18.11 and thus the second inclusion of (18.23) do not require the local
closedness assumption. Besides 𝑋 being reflexive, it holds more generally if 𝑋 has the Radon–Riesz
property and is Fréchet smooth; see [Mordukhovich, 2006, Theorem 1.9] and compare Remark 17.5.

18.4 regularity

It stands to reason that without any assumptions on the set𝐶 ⊂ 𝑋 such as convexity, there
is little hope of obtaining precise characterizations or exact transformation rules for the
various cones. Similarly, precise characterizations or exact calculus rules for the derivatives
of set-valued mappings – which, respectively, we will derive from the former – require
strong assumptions on these mappings. This is especially true of the limiting cones. As
befitting the introductory character of this textbook, we will therefore only develop calculus
for the derivatives based on the limiting cones when they are equal the corresponding
basic cones. This will allow deriving exact results that are nevertheless applicable to the
situations we have been focusing on in the previous parts, such as problems of the form (P).
These conditions can be compared to constraint qualifications in nonlinear optimization
that guarantee that the tangent cone coincides with the linearization cone. However, “fuzzy”
results are available undermore general assumptions, for which we refer to the monographs
[Aubin and Frankowska, 1990; Mordukhovich, 2006, 2018; Rockafellar and Wets, 1998].

Specifically, we say that 𝐶 ⊂ 𝑋 is tangentially regular at 𝑥 ∈ 𝐶 if 𝑇𝐶 (𝑥) = 𝑇𝐶 (𝑥), and
normally regular at 𝑥 if 𝑁𝐶 (𝑥) = 𝑁𝐶 (𝑥). We call 𝐶 regular at 𝑥 if 𝐶 is both normally and
tangentially regular.

Example 18.22. With 𝐶 ⊂ ℝ2 as in Example 18.1, we see that 𝐶 = 𝔹(0, 1) and 𝐶 = [0, 1]2

are regular at every 𝑥 ∈ 𝐶 , while 𝐶 = [0, 1]2 \ [ 1
2 , 1]2 is regular everywhere except at

𝑥 = ( 1
2 ,

1
2 ).
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18 tangent and normal cones

In finite dimensions, the two concepts of regularity are equivalent and have various char-
acterizations. By Lemma 18.6, these hold in particular for closed convex sets.

Theorem 18.23. Let 𝐶 ⊂ ℝ𝑁 be closed near 𝑥 . Then the following conditions are equivalent:

(i) 𝐶 is normally regular at 𝑥 ;

(ii) 𝐶 is tangentially regular at 𝑥 ;

(iii) 𝑁𝐶 is outer semicontinuous at 𝑥 ;

(iv) 𝑇𝐶 is inner semicontinuous at 𝑥 (relative to 𝐶).

In particular, if any of these hold, 𝐶 is regular at 𝑥 .

Proof. (i) ⇔ (ii): If (i) holds, then by Theorems 1.8, 18.5, and 18.15 and Lemma 18.10

𝑇𝐶 (𝑥) ⊂ 𝑇𝐶 (𝑥)◦◦ = 𝑁𝐶 (𝑥)◦ = 𝑁𝐶 (𝑥)◦ = 𝑇𝐶 (𝑥) ⊂ 𝑇𝐶 (𝑥),

which shows (ii). The other direction is completely analogous, exchanging the roles of “𝑁 ”
and “𝑇 ” to obtain

𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥)◦◦ = 𝑇𝐶 (𝑥)◦ = 𝑇𝐶 (𝑥)◦ = 𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥).

(i)⇔ (iii): If (i) holds, then the outer semicontinuity of 𝑁𝐶 (Corollary 18.9) and the inclu-
sion 𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥) from Theorem 18.5 show that lim sup𝑥→𝑥 𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥), i.e., the
outer semicontinuity of 𝑁𝐶 . Conversely, the outer semicontinuity of 𝑁𝐶 and the defini-
tion 𝑁𝐶 (𝑥) = lim sup𝑥→𝑥 𝑁𝐶 (𝑥) show that 𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥). Combined with the inclusion
𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥) from Theorem 18.5, we obtain (i).

(ii) ⇔ (iv): To show that (iv) implies (ii), recall from Corollary 18.20 that

(18.24) 𝑇𝐶 (𝑥) = lim inf
𝐶∋𝑥→𝑥

𝑇𝐶 (𝑥).

By the assumed inner semicontinuity and the definition of the inner limit, we thus obtain
that 𝑇𝐶 (𝑥) = lim inf𝐶∋𝑥→𝑥 𝑇𝐶 (𝑥) = 𝑇𝐶 (𝑥). For the other direction, we simply use 𝑇𝐶 (𝑥) =
𝑇𝐶 (𝑥) in (18.24). □

Combining the previous result with Lemma 18.10 and Theorem 18.15, we deduce the follow-
ing.

Corollary 18.24. If 𝐶 ⊂ ℝ𝑁 is regular at 𝑥 and closed near 𝑥 , then both 𝑇𝐶 (𝑥) and 𝑁𝐶 (𝑥) are
convex. Furthermore,

(i) 𝑁𝐶 (𝑥) = 𝑇𝐶 (𝑥)◦;
(ii) 𝑇𝐶 (𝑥) = 𝑁𝐶 (𝑥)◦.
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18 tangent and normal cones

In infinite dimensions, our main equivalent characterization of normal regularity is the
following. (We do not have a similar characterization of tangential regularity.)

Theorem 18.25. Let 𝑋 be a reflexive and Gâteaux smooth Banach space. Then 𝐶 ⊂ 𝑋 is
normally regular at 𝑥 ∈ 𝐶 if and only if 𝑇𝐶 (𝑥) = 𝑁𝐶 (𝑥)◦.

Proof. Suppose first that 𝑇𝐶 (𝑥) = 𝑁𝐶 (𝑥)◦. Since 𝑇𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥)◦ by Lemma 18.12, we
have 𝑁𝐶 (𝑥)◦ ⊂ 𝑁𝐶 (𝑥)◦. Furthermore, Theorem 18.5 (ii) yields 𝑁𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥) and thus
𝑁𝐶 (𝑥)◦ ⊃ 𝑁𝐶 (𝑥)◦ by Theorem 1.8. It follows that 𝑁𝐶 (𝑥)◦ = 𝑁𝐶 (𝑥)◦. We now recall from
Theorem 18.8 that 𝑁𝐶 (𝑥) is closed and convex. Hence 𝑥∗ ∈ 𝑁𝐶 (𝑥) \ 𝑁𝐶 (𝑥) implies by
Theorem 1.13 that there exists 𝑥 ∈ 𝑋 and 𝜆 ∈ ℝ such that

⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥⟩𝑋 (𝑥∗ ∈ 𝑁𝐶 (𝑥)) .
Since 𝑁𝐶 (𝑥) is a cone, this is only possible for 𝜆 ≥ 0. Thus the first inequality shows that
𝑥 ∈ 𝑁𝐶 (𝑥)◦ and the second that 𝑥 ∉ 𝑁𝐶 (𝑥)◦. This is in contradiction to 𝑁𝐶 (𝑥)◦ = 𝑁𝐶 (𝑥)◦.
Hence 𝑁𝐶 (𝑥) = 𝑁𝐶 (𝑥), i.e., 𝐶 is normally regular at 𝑥 .

Conversely, if 𝐶 is normally regular at 𝑥 , we obtain using Lemma 18.12 that

𝑇𝐶 (𝑥) ⊂ 𝑁𝐶 (𝑥)◦ = 𝑁𝐶 (𝑥)◦.
By Lemma 18.10 (i), Theorem 18.5 (i), and Theorem 1.8 using the fact that 𝑇𝐶 (𝑥) is a closed
convex cone by Theorem 18.8, we also have

𝑁𝐶 (𝑥)◦ ⊃ 𝑇𝐶 (𝑥)◦◦ ⊃ 𝑇𝐶 (𝑥)◦◦ = 𝑇𝐶 (𝑥).
Therefore 𝑇𝐶 (𝑥) = 𝑁𝐶 (𝑥)◦ as claimed. □

In sufficiently regular spaces, normal regularity implies tangential regularity of closed
sets.

Lemma 18.26. Let 𝑋 be a reflexive and Gâteaux smooth Banach space and let𝐶 ⊂ 𝑋 be closed
near 𝑥 ∈ 𝐶 . If 𝐶 is normally regular at 𝑥 , then 𝐶 is tangentially regular at 𝑥 .

Proof. Arguing as in the proof of Theorem 18.23 (i)⇔ (ii), by Theorems 1.8, 18.5, and 18.19
and Lemma 18.10 we have

𝑇𝐶 (𝑥) ⊂ 𝑇𝑤𝐶 (𝑥) ⊂ 𝑇𝑤𝐶 (𝑥)◦◦ = 𝑁𝐶 (𝑥)◦ = 𝑁𝐶 (𝑥)◦ = 𝑇𝐶 (𝑥) ⊂ 𝑇𝐶 (𝑥).
This shows that 𝑇𝐶 (𝑥) = 𝑇𝐶 (𝑥). □

From Lemmas 18.6 and 18.26, we immediately obtain the following regularity result.

Corollary 18.27. Let 𝑋 be a Gâteaux smooth Banach space and let𝐶 ⊂ 𝑋 be nonempty, closed,
and convex. Then 𝐶 is normally regular at every 𝑥 ∈ 𝐶 . If 𝑋 is additionally reflexive, then 𝐶
is also tangentially regular at every 𝑥 ∈ 𝐶 .
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19 TANGENT AND NORMAL CONES OF

POINTWISE-DEFINED SETS

As we have seen in Chapter 18, the relationships between the different tangent and normal
cones are less complete in infinite-dimensional spaces than in finite-dimensional ones. In
this chapter, however, we show that certain pointwise-defined sets on 𝐿𝑝 (Ω) for 𝑝 ∈ (1,∞)
largely satisfy the finite-dimensional relations. We will use these results in Chapter 21 to
derive expressions for generalized derivatives of pointwise-defined set-valued mappings,
in particular for subdifferentials of integral functionals. As mentioned in Section 18.4, these
relations are less satisfying for the limiting cones than for the basic cones. To treat the
limiting cones, we will therefore assume the regularity of the underlying pointwise sets. For
the basic cones, we also require an assumption, which however is weaker than (tangential)
regularity.

19.1 derivability

We start with the fundamental regularity assumption. Let 𝑋 be a Banach space and 𝐶 ⊂ 𝑋 .
We then say that a tangent vector Δ𝑥 ∈ 𝑇𝐶 (𝑥) at 𝑥 ∈ 𝐶 is derivable if there exists an 𝜀 > 0
and a curve 𝜉 : [0, 𝜀] → 𝐶 that generates Δ𝑥 at 0, i.e.,

(19.1) 𝜉 (0) = 𝑥 and Δ𝑥 = lim
𝜏→ 0

𝜉 (𝜏) − 𝜉 (0)
𝜏

= 𝜉′(0).

Note that we do not make any assumptions on the differentiability or continuity of 𝜉
except at 𝜏 = 0. We say that 𝐶 is geometrically derivable at 𝑥 ∈ 𝐶 if every Δ𝑥 ∈ 𝑇𝐶 (𝑥) is
derivable.

As the next lemma shows, the point of this definition is that derivable tangent vectors are
characterized by a full limit instead of just an inner limit; this additional property will
allow us to construct tangent vectors in 𝐿𝑝 (Ω) from pointwise tangent vectors, similarly
to how Clarke regularity was used to obtain equality in the pointwise characterization of
Clarke subdifferentials of integral functionals in Theorem 13.9.
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19 tangent and normal cones of pointwise-defined sets

Lemma 19.1. Let𝐶 ⊂ 𝑋 and 𝑥 ∈ 𝐶 . Then the set𝑇 0
𝐶
(𝑥) of derivable tangent vectors is given by

(19.2) 𝑇 0
𝐶 (𝑥) = lim inf

𝜏→ 0

𝐶 − 𝑥
𝜏

.

Proof. We first recall that by definition of the inner limit, Δ𝑥 is an element of the set on the
right-hand side if for every sequence 𝜏𝑘→ 0 there exist 𝑥𝑘 ∈ 𝐶 such that (𝑥𝑘 − 𝑥)/𝜏𝑘 → Δ𝑥 .
For a derivable tangent vector Δ𝑥 ∈ 𝑇 0

𝐶
(𝑥) and any 𝜏𝑘→ 0, we can simply take 𝑥𝑘 = 𝜉 (𝜏𝑘).

For the converse inclusion, let Δ𝑥 be an element of the right-hand side set. Let now 𝜏𝑘→ 0
be given and take 𝑥𝑘 ∈ 𝐶 realizing the inner limit. Since 𝜏𝑘→ 0 was arbitrary, setting
𝜉 (𝜏𝑘) ≔ 𝑥𝑘 for all 𝑘 ∈ ℕ defines a curve 𝜉 : [0, 𝜀] → 𝐶 for some 𝜀 > 0, and hence
Δ𝑥 ∈ 𝑇 0

𝐶
(𝑥). □

By taking 𝑥 ≡ 𝑥 constant in (18.10) and comparing with (19.2), we immediately obtain that
all Clarke tangent vectors are derivable.

Corollary 19.2. Let 𝐶 ⊂ 𝑋 and 𝑥 ∈ 𝐶 . Then every Δ𝑥 ∈ 𝑇𝐶 (𝑥) is derivable.

Clearly, if 𝐶 is tangentially regular at 𝑥 , then also every tangent vector is derivable.

Corollary 19.3. If 𝐶 ⊂ 𝑋 is tangentially regular at 𝑥 ∈ 𝐶 , then every Δ𝑥 ∈ 𝑇𝐶 (𝑥) is derivable.

However, a set can be geometrically derivable without being tangentially regular.

Example 19.4. Let 𝐶 ≔ ( [0,∞) × {0}) ∪ ({0} × [0,∞)) ⊂ ℝ2. Then we obtain directly
from the definition of the tangent cone that

𝑇𝐶 (𝑥1, 𝑥2) =


𝐶, if (𝑥1, 𝑥2) = (0, 0),
ℝ × {0}, if 𝑥1 = 0, 𝑥2 > 0,
{0} ×ℝ, if 𝑥1 > 0, 𝑥2 = 0,
∅, otherwise.

However, it follows from Corollary 18.20 that 𝑇𝐶 (0, 0) = {(0, 0)}. Thus 𝐶 is not tangen-
tially regular at (0, 0).
On the other hand, for any Δ𝑥 = (𝑡1, 0) ∈ 𝑇𝐶 (0, 0), 𝑡1 ∈ ℝ, setting 𝜉 (𝑠) := (𝑠𝑡1, 0)
yields 𝜉 (0) = (0, 0) and 𝜉′(0) = (𝑡1, 0) = Δ𝑥 . Hence Δ𝑥 is derivable. Similarly, setting
𝜉 (𝑠) := (0, 𝑠𝑡2) shows that Δ𝑥 = (0, 𝑡2) ∈ 𝑇𝐶 (0, 0) is derivable for every 𝑡2 ∈ ℝ. Thus 𝐶
is geometrically derivable at (0, 0).

267



19 tangent and normal cones of pointwise-defined sets

19.2 tangent and normal cones

As the goal is to define derivatives of set-valued mappings 𝐹 : 𝑋 ⇒ 𝑌 via tangent cones to
their epigraphs epi 𝐹 ⊂ 𝑋 ×𝑌 , we need to consider product spaces of 𝑝-integrable functions
(with possibly different 𝑝). Let therefore Ω ⊂ ℝ𝑑 be an open and bounded domain. For
®𝑝 ≔ (𝑝1, . . . , 𝑝𝑚) ∈ (1,∞)𝑚 , we then define

𝐿
®𝑝 (Ω) ≔ 𝐿𝑝1 (Ω) × · · · × 𝐿𝑝𝑚 (Ω),

endowed with the canonical euclidean product norm, i.e.,

∥𝑢∥𝐿 ®𝑝 ≔

√︄
𝑚∑︁
𝑘=1

∥𝑢𝑘 ∥2
𝐿𝑝𝑘

(𝑢 = (𝑢1, . . . , 𝑢𝑚) ∈ 𝐿 ®𝑝).

We will need the case 𝑚 = 2 in Chapter 21; on first reading of the present chapter, we
recommend picturing𝑚 = 1, i.e., 𝐿 ®𝑝 (Ω) = 𝐿𝑝 (Ω) for some 𝑝 ∈ (1,∞). We further denote
by 𝑝∗ the conjugate exponent of 𝑝 ∈ (1,∞), defined as satisfying 1/𝑝 + 1/𝑝∗ = 1, and write
®𝑝∗ ≔ (𝑝∗1 , . . . , 𝑝∗𝑚) so that 𝐿 ®𝑝 (Ω)∗ � 𝐿 ®𝑝∗ (Ω). Note that 𝐿 ®𝑝 (Ω) is reflexive and Gâteaux
smooth as the product of reflexive and Gâteaux smooth spaces; cf. Example 17.6. Finally, we
will write L(Ω) for the 𝑑-dimensional Lebesgue measure of Ω and recall the characteristic
function 𝟙𝑈 of a set 𝑈 ⊂ 𝐿 ®𝑝 (Ω), which satisfies 𝟙𝑈 (𝑢) = (1, . . . , 1) ∈ ℝ𝑚 if 𝑢 ∈ 𝑈 and
𝟙𝑈 (𝑢) = 0 ∈ ℝ𝑚 otherwise.

We then call a set𝑈 ⊂ 𝐿 ®𝑝 (Ω) for ®𝑝 ∈ (1,∞)𝑚 pointwise defined if

𝑈 ≔
{
𝑢 ∈ 𝐿 ®𝑝 (Ω) | 𝑢 (𝑥) ∈ 𝐶 (𝑥) for a.e. 𝑥 ∈ Ω

}
for a Borel-measurable mapping 𝐶 : Ω ⇒ ℝ𝑚 with 𝐶 (𝑥) ⊂ ℝ𝑚 . We say that𝑈 is pointwise
derivable if 𝐶 (𝑥) is geometrically derivable at every 𝜉 ∈ 𝐶 (𝑥) for almost every 𝑥 ∈ Ω.

the fundamental cones

We now derive pointwise characterizations of the fundamental cones to pointwise defined
sets, starting with the tangent cone.

Theorem 19.5. Let𝑈 ⊂ 𝐿 ®𝑝 (Ω) be pointwise derivable. Then for every 𝑢 ∈ 𝑈 ,

(19.3) 𝑇𝑈 (𝑢) =
{
Δ𝑢 ∈ 𝐿 ®𝑝 (Ω)

�� Δ𝑢 (𝑥) ∈ 𝑇𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}
.

Proof. The inclusion “⊂” follows from (18.1) and the fact that a sequence convergent in
𝐿 ®𝑝 (Ω) for ®𝑝 ∈ (1,∞) converges, after possibly passing to a subsequence, pointwise almost
everywhere.
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19 tangent and normal cones of pointwise-defined sets

For the converse inclusion, we take for almost every 𝑥 ∈ Ω a tangent vector Δ𝑢 (𝑥) ∈
𝑇𝐶 (𝑥) (𝑢 (𝑥)) at 𝑢 (𝑥) ∈ 𝐶 (𝑥). We only need to consider the case Δ𝑢 ∈ 𝐿 ®𝑝 (Ω). By geometric
derivability, we may find for almost every 𝑥 ∈ Ω an 𝜀 (𝑥) > 0 and a curve 𝜉 ( · , 𝑥) :
[0, 𝜀 (𝑥)] → 𝐶 (𝑥) such that 𝜉 (0, 𝑥) = 𝑢 (𝑥) and 𝜉′+(0, 𝑥) = Δ𝑢 (𝑥). In particular, for any
given 𝜌 > 0, we may find 𝜀𝜌 (𝑥) ∈ (0, 𝜀 (𝑥)] such that

(19.4) |𝜉 (𝑡, 𝑥) − 𝜉 (0, 𝑥) − Δ𝑢 (𝑥)𝑡 |2
𝑡

≤ 𝜌 (𝑡 ∈ (0, 𝜀𝜌 (𝑥)], a.e. 𝑥 ∈ Ω).

For 𝑡 > 0, let us set
𝐸𝜌,𝑡 ≔ {𝑥 ∈ Ω | 𝑡 ≤ 𝜀𝜌 (𝑥)}

and define

�̃�𝜌,𝑡 (𝑥) ≔
{
𝜉 (𝑡, 𝑥) if 𝑥 ∈ 𝐸𝜌,𝑡 ,
𝑢 (𝑥) if 𝑥 ∈ Ω \ 𝐸𝜌,𝑡 .

Writing 𝜉 = (𝜉1, . . . , 𝜉𝑚) and Δ𝑢 = (Δ𝑢1, . . . ,Δ𝑢𝑚), we have from (19.4) that

(19.5)
|𝜉 𝑗 (𝑡, 𝑥) − 𝜉 𝑗 (0, 𝑥) − Δ𝑢 𝑗 (𝑥)𝑡 |

𝑡
≤ 𝜌 ( 𝑗 = 1, . . . ,𝑚, 𝑡 ∈ (0, 𝜀𝜌 (𝑥)] for a.e. 𝑥 ∈ Ω).

Therefore, using the elementary inequality (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2, we obtain

(19.6) ∥�̃�𝜌,𝑡 − 𝑢∥2
𝐿 ®𝑝 =

𝑚∑︁
𝑗=1

∥ [�̃�𝜌,𝑡
𝑗

− 𝑢] 𝑗 ∥2
𝐿
𝑝 𝑗

≤
𝑚∑︁
𝑗=1

(∫
Ω
𝑡𝑝 𝑗 (𝜌 + |Δ𝑢 𝑗 (𝑥) |)𝑝 𝑗 𝑑𝑥

)2/𝑝 𝑗

≤
𝑚∑︁
𝑗=1

(
𝑡𝜌L(Ω)1/𝑝 𝑗 + 𝑡 ∥Δ𝑢 𝑗 ∥𝐿𝑝 𝑗

)2

≤ 2𝑡2
𝑚∑︁
𝑗=1

(
𝜌L(Ω)1/𝑝 𝑗

)2
+ 2𝑡2∥Δ𝑢∥2

𝐿 ®𝑝 .

Similarly, (19.5) and the same elementary inequality together with Minkowski’s inequality
in the form (𝑎𝑝 + 𝑏𝑝)1/𝑝 ≤ |𝑎 | + |𝑏 | yield

(19.7)
∥�̃�𝜌,𝑡 − 𝑢 − 𝑡Δ𝑢∥2

𝐿 ®𝑝

𝑡2 =
𝑚∑︁
𝑗=1

1
𝑡2

(∫
𝐸𝜌,𝑡

|𝜉 𝑗 (𝑡, 𝑥) − 𝜉 𝑗 (0, 𝑥) − 𝑡Δ𝑢 𝑗 (𝑥) |𝑝 𝑗 𝑑𝑥

+
∫
Ω\𝐸𝜌,𝑡

|Δ𝑢 𝑗 (𝑥)𝑡 |𝑝 𝑗 𝑑𝑥
)2/𝑝 𝑗

≤
𝑚∑︁
𝑗=1

(
𝜌𝑝 𝑗L(Ω) + ∥Δ𝑢𝟙Ω\𝐸𝜌,𝑡 ∥

𝑝 𝑗

𝐿 ®𝑝

)2/𝑝 𝑗

≤ 2
𝑚∑︁
𝑗=1

(
𝜌L(Ω)1/𝑝 𝑗

)2
+ 2∥Δ𝑢𝟙Ω\𝐸𝜌,𝑡 ∥2

𝐿 ®𝑝 .
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19 tangent and normal cones of pointwise-defined sets

Now for each 𝑘 ∈ ℕ, we can find 𝑡𝑘→ 0 such that ∥Δ𝑢𝟙Ω\𝐸1/𝑘,𝑡𝑘
∥𝐿 ®𝑝 ≤ 1/𝑘 . This follows from

Lebesgue’s dominated convergence theorem and the fact that L(Ω \ 𝐸𝜌,𝑡 ) → 0 as 𝑡 → 0.
The estimates (19.6) and (19.7) with 𝜌 = 1/𝑘 and 𝑡 = 𝑡𝑘 thus show for 𝑢𝑘 ≔ �̃�1/𝑘,𝑡𝑘 that
𝑢𝑘 → 𝑢 and (𝑢𝑘 − 𝑢)/𝑡𝑘 → Δ𝑢, i.e., Δ𝑢 ∈ 𝑇𝑈 (𝑢). □

We next consider the Fréchet normal cone.

Theorem 19.6. Let𝑈 ⊂ 𝐿 ®𝑝 (Ω) be pointwise derivable. Then for every 𝑢 ∈ 𝑈 ,

(19.8) 𝑁𝑈 (𝑢) =
{
𝑢∗ ∈ 𝐿 ®𝑝∗ (Ω)

�� 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}
.

Proof. Recalling the definition of 𝑁𝑈 (𝑢) from (18.7), we need to find all 𝑢∗ ∈ 𝐿 ®𝑝∗ (Ω) satis-
fying for every given sequence𝑈 ∋ 𝑢𝑘 → 𝑢

(19.9) 0 ≥ lim sup
𝑘→∞

⟨𝑢∗, 𝑢𝑘 − 𝑢⟩𝐿 ®𝑝

∥𝑢𝑘 − 𝑢∥𝐿 ®𝑝
=: lim sup

𝑘→∞
𝐿𝑘 .

Let 𝜀 > 0 be arbitrary and set 𝑣𝑘 ≔ 𝑢 − 𝑢𝑘 as well as
(19.10a) 𝑍 1

𝑘
≔ {𝑥 ∈ Ω | |𝑣𝑘 (𝑥) |2 ≤ 𝜀−1∥𝑣𝑘 ∥𝐿 ®𝑝 } (𝑘 ∈ ℕ).

Furthermore, let 𝑍 2 ⊂ Ω be such that

𝑢∗ is bounded on 𝑍 2,(19.10b)
L(𝑍 1

𝑘
\ 𝑍 2) ≤ 𝜀 (𝑘 ∈ ℕ).(19.10c)

Using Hölder’s inequality, (19.10a), and (19.10c), we then estimate for 𝑘 = 1, . . . ,𝑚

𝐿𝑘 =

∫
Ω\(𝑍 1

𝑘
∩𝑍 2) ⟨𝑢∗(𝑥), 𝑣𝑘 (𝑥)⟩2 𝑑𝑥

∥𝑣𝑘 ∥𝐿 ®𝑝
+

∫
𝑍 1
𝑘
∩𝑍 2 ⟨𝑢∗(𝑥), 𝑣𝑘 (𝑥)⟩2 𝑑𝑥

∥𝑣𝑘 ∥𝐿 ®𝑝

≤
∥𝟙Ω\(𝑍 1

𝑘
∩𝑍 2)𝑢∗∥𝐿 ®𝑝∗ ∥𝑣𝑘 ∥𝐿 ®𝑝

∥𝑣𝑘 ∥𝐿 ®𝑝
+

∫
𝑍 1
𝑘
∩𝑍 2

⟨𝑢∗(𝑥), 𝑣𝑘 (𝑥)⟩2
|𝑣𝑘 (𝑥) |2

· |𝑣𝑘 (𝑥) |2∥𝑣𝑘 ∥𝐿 ®𝑝
𝑑𝑥

≤ ∥𝟙Ω\(𝑍 1
𝑘
∩𝑍 2)𝑢

∗∥𝐿 ®𝑝∗ + 𝜀−1
∫
𝑍 2

max
{
0, ⟨𝑢

∗(𝑥), 𝑣𝑘 (𝑥)⟩2
|𝑣𝑘 (𝑥) |2

}
𝑑𝑥 .

If now for almost every𝑥 ∈ Ωwe have that𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)), then also ⟨𝑢∗(𝑥), 𝑣𝑘 (𝑥)⟩2 ≤
0 for almost every 𝑥 ∈ Ω. It follows using (19.10b) and the reverse Fatou inequality in the
previous estimate that

(19.11) lim sup
𝑘→∞

𝐿𝑘 ≤ lim sup
𝑘→∞

∥𝟙Ω\(𝑍 1
𝑘
∩𝑍 2)𝑢

∗∥𝐿 ®𝑝∗ .

Since |𝑣𝑘 (𝑥) |2 ≥ 𝜀−1∥𝑣𝑘 ∥𝐿 ®𝑝 for 𝑥 ∈ Ω \ 𝑍𝑞
𝑘
, we have

∥𝑣𝑘 ∥𝐿 ®𝑝 ≥ ∥𝟙Ω\𝑍 1
𝑘
𝑣𝑘 ∥𝐿 ®𝑝 ≥ (𝜀−𝑝L(Ω \ 𝑍 1

𝑘
))1/𝑝 ∥𝑣𝑘 ∥𝐿 ®𝑝 .
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19 tangent and normal cones of pointwise-defined sets

Hence L(Ω \ 𝑍 1
𝑘
) ≤ 𝜀𝑝 and L(Ω \ (𝑍 1

𝑘
∩ 𝑍2)) ≤ L(Ω \ 𝑍 1

𝑘
) + L(Ω \ 𝑍2) ≤ 𝐶𝜀 for some

constant 𝐶 > 0 and small enough 𝜀 > 0. It therefore follows from Egorov’s theorem that
𝟙Ω\(𝑍 1

𝑘
∩𝑍 2)𝑢∗ converge to 0 in measure as 𝑘 → ∞. Since𝑢∗ ∈ 𝐿 ®𝑝∗ (Ω) and 𝟙Ω\(𝑍 1

𝑘
∩𝑍 2)𝑢∗ ≤ 𝑢∗,

it follows fromVitali’s convergence theorem (see, e.g., [Fonseca and Leoni, 2007, Proposition
2.27]) that lim sup𝑘→∞ ∥𝟙Ω\(𝑍 1

𝑘
∩𝑍 2)𝑢∗∥𝐿 ®𝑝∗ = 0. Since 𝜀 > 0 was arbitrary, we deduce from

(19.11) that (19.9) holds and, consequently,

𝑁𝑈 (𝑢) ⊃ {𝑢∗ ∈ 𝐿 ®𝑝∗ (Ω) | 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω}.
This proves one direction of (19.8), which therefore holds even without geometric deriv-
ability.

For the converse inclusion, let 𝑢∗ ∈ 𝑁𝑈 (𝑢). We have to show that 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥))
for almost every 𝑥 ∈ Ω, which we do by contradiction. Assume therefore that the point-
wise inclusion does not hold. By the polarity relationship 𝑁𝐶 (𝑥) (𝑢 (𝑥)) = 𝑇𝐶 (𝑥) (𝑢 (𝑥))◦
from Lemma 18.10, we can find 𝛿 > 0 and a Borel set 𝐸 ⊂ Ω of finite positive Lebesgue
measure such that for each 𝑥 ∈ 𝐸, there exists 𝑤 (𝑥) ∈ 𝑇𝐶 (𝑥) (𝑢 (𝑥)) with |𝑤 (𝑥) |2 = 1
and ⟨𝑢∗(𝑥),𝑤 (𝑥)⟩2 ≥ 𝛿 . We may without loss of generality assume that 𝐶 (𝑥) is geo-
metrically derivable at 𝑤 (𝑥) for every 𝑥 ∈ 𝐸, i.e., for each 𝑥 ∈ 𝐸 there exists a curve
𝜉 ( · , 𝑥) : [0, 𝜀 (𝑥)] → 𝐶 (𝑥) such that 𝜉′+(0, 𝑥) = 𝑤 (𝑥) and 𝜉 (0, 𝑥) = 𝑢 (𝑥). Let now 𝑐 ∈ (0, 𝛿)
be arbitrary. By replacing 𝐸 by a subset of positive measure, we may by Egorov’s theorem
assume the existence of 𝜀 > 0 such that

(19.12) |𝜉 (𝑡, 𝑥) − 𝜉 (0, 𝑥) −𝑤 (𝑥)𝑡 |2 ≤ 𝑐𝑡 (𝑡 ∈ [0, 𝜀], 𝑥 ∈ 𝐸).

Let us define

�̃�𝑡 (𝑥) ≔
{
𝜉 (𝑡, 𝑥) if 𝑥 ∈ 𝐸,
𝑢 (𝑥) if 𝑥 ∈ Ω \ 𝐸.

Setting 𝑣𝑡 ≔ �̃�𝑡 −𝑢, we have 𝑣𝑡 (𝑥) = 𝜉 (𝑡, 𝑥) − 𝜉 (0, 𝑥) for 𝑥 ∈ 𝐸 and 𝑣𝑡 (𝑥) = 0 for 𝑥 ∈ Ω \ 𝐸.
Therefore, writing 𝑣𝑡 = (𝑣𝑡1, . . . , 𝑣𝑡𝑚),𝑤 = (𝑤1, . . . ,𝑤𝑚), and 𝜉 = (𝜉1, . . . 𝜉𝑚), we obtain using
(19.12) for 𝑡 ∈ (0, 𝜀] and some 𝑐′ > 0 that

∥𝑣𝑡 ∥2
𝐿 ®𝑝 =

𝑚∑︁
𝑗=1

(∫
𝐸

|𝜉 𝑗 (𝑡, 𝑥) − 𝜉 𝑗 (0, 𝑥) |𝑝 𝑗 𝑑𝑥
)2/𝑝 𝑗

≤
𝑚∑︁
𝑗=1

(∫
𝐸

( |𝑤 𝑗 (𝑥) |𝑡 + 𝑐𝑡)𝑝 𝑗 𝑑𝑥
)2/𝑝 𝑗

≤ 𝑐′𝑡2.

Likewise,

⟨𝑢∗(𝑥), 𝑣𝑡 (𝑥)⟩2 ≥ ⟨𝑢∗(𝑥),𝑤 (𝑥)⟩2 − |𝑢∗(𝑥) |2 · |𝜉 (𝑡, 𝑥) − 𝜉 (0, 𝑥) −𝑤𝑡 |2 ≥ 𝛿𝑡 − 𝑐𝑡 .
It follows that

lim sup
𝑡→ 0

∫
𝐸

⟨𝑢∗(𝑥), 𝑣𝑡 (𝑥)⟩2
∥𝑣𝑡 ∥𝐿 ®𝑝

𝑑𝑥 ≥ lim sup
𝑡→ 0

L(𝐸) (𝛿𝑡 − 𝑐𝑡)
𝑐′𝑡

=
L(𝐸) (𝛿 − 𝑐)

𝑐′
> 0.
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19 tangent and normal cones of pointwise-defined sets

Taking 𝑢𝑘 ≔ �̃�1/𝑘 for 𝑘 ∈ ℕ, we obtain lim𝑘→∞ 𝐿𝑘 > 0 and therefore 𝑢∗ ∉ 𝑁𝑈 (𝑢). By
contraposition, this shows that 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω. □

We can now derive a similar polarity relationships as to the finite-dimensional one in
Lemma 18.10.

Corollary 19.7. Let𝑈 ⊂ 𝐿 ®𝑝 (Ω) be pointwise derivable and 𝑢 ∈ 𝑈 . Then 𝑁𝑈 (𝑢) = 𝑇𝑈 (𝑢)◦.

Proof. By Theorems 19.5 and 19.6 and Lemma 18.10, we have

(19.13) 𝑢∗ ∈ 𝑁𝑈 (𝑢) ⇔ 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)) (a.e. 𝑥 ∈ Ω)
⇔ ⟨𝑢∗(𝑥),Δ𝑢 (𝑥)⟩2 ≤ 0 (a.e. 𝑥 ∈ Ω when Δ𝑢 (𝑥) ∈ 𝑇𝐶 (𝑥) (𝑢 (𝑥)))
⇒ ⟨𝑢∗,Δ𝑢⟩𝐿 ®𝑝 ≤ 0 (when Δ𝑢 ∈ 𝑇𝑈 (𝑢))
⇔ 𝑢∗ ∈ 𝑇𝑈 (𝑢)◦.

Hence 𝑁𝑈 (𝑢) ⊂ 𝑇𝑈 (𝑢)◦.
For the converse inclusion, we need to improve the implication in (19.13) to an equivalence.
We argue by contradiction. Assume that𝑢∗ ∈ 𝑇𝑈 (𝑢)◦ and that there exists some Δ𝑢 ∈ 𝑇𝑈 (𝑢)
and a subset 𝐸 ⊂ Ω with L(Ω \ 𝐸) > 0 and

⟨𝑢∗(𝑥),Δ𝑢 (𝑥)⟩2 > 0 (𝑥 ∈ 𝐸).

Taking 𝑢∗(𝑥) ≔ (1 + 𝑡𝟙𝐸 (𝑥))𝑢∗(𝑥), we obtain for sufficient large 𝑡 that ⟨𝑢∗,Δ𝑢⟩𝐿 ®𝑝 > 0. This
contradicts that 𝑢∗ ∈ 𝑇𝑈 (𝑢)◦. Hence 𝑁𝑈 (𝑢) ⊃ 𝑇𝑈 (𝑢)◦. □

the limiting cones

For the limiting cones, we in general only have an inclusion of the pointwise cones.

Theorem 19.8. Let𝑈 ⊂ 𝐿 ®𝑝 (Ω) be pointwise derivable. Then for every 𝑢 ∈ 𝑈 ,

𝑇𝑈 (𝑢) ⊃
{
Δ𝑢 ∈ 𝐿 ®𝑝 (Ω)

�� Δ𝑢 (𝑥) ∈ 𝑇𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}
.

Proof. Let Δ𝑢 ∈ 𝐿 ®𝑝Ω) with Δ𝑢 (𝑥) ∈ 𝑇𝐶 (𝑥) (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω and let 𝑢𝑘 → 𝑢 in
𝐿 ®𝑝 (Ω). In particular, we then have 𝑢𝑘 (𝑥) → 𝑢 (𝑥) for almost every 𝑥 ∈ Ω. Furthermore,
by the inner limit characterization of 𝑇𝐶 (𝑥) (𝑢 (𝑥)) in Corollary 18.20, there exist Δ�̃�𝑘 (𝑥) ∈
𝑇𝐶 (𝑥) (𝑢𝑘 (𝑥)) with Δ�̃�𝑘 (𝑥) → Δ𝑢 (𝑥). Egorov’s theorem, then yields for all ℓ ≥ 1 a Borel-
measurable set 𝐸ℓ ⊂ Ω such that L(Ω \ 𝐸ℓ) < 1/ℓ and Δ�̃�𝑘 → Δ𝑢 uniformly on 𝐸ℓ . Since
𝑇𝐶 (𝑥) (𝑢𝑘 (𝑥)) is a cone, we have 0 ∈ 𝑇𝐶 (𝑥) (𝑢𝑘 (𝑥)). It follows that

𝑇𝐶 (𝑥) (𝑢𝑘 (𝑥)) ∋ Δ𝑢ℓ,𝑘 (𝑥) ≔ 𝟙𝐸ℓ (𝑥)Δ�̃�𝑘 (𝑥).
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19 tangent and normal cones of pointwise-defined sets

In particular, (19.3) shows that Δ𝑢ℓ,𝑘 ∈ 𝑇𝑈 (𝑢𝑘) with Δ𝑢ℓ,𝑘 → Δ𝑢ℓ ≔ Δ𝑢𝟙𝐸ℓ in 𝐿 ®𝑝 (Ω) as
𝑘 → ∞. By Vitali’s convergence theorem (compare the proof of Theorem 19.6),Δ𝑢𝟙𝐸ℓ → Δ𝑢

in 𝐿 ®𝑝 (Ω) as ℓ → ∞. Therefore, we may extract a diagonal subsequence {Δ�̃�𝑘 ≔ Δ𝑢ℓ𝑘 ,𝑘}𝑘≥1
of {Δ𝑢ℓ,𝑘}𝑘,ℓ≥1 such that Δ�̃�𝑘 → Δ𝑢. Since 𝑢𝑘 → 𝑢 was arbitrary and Δ�̃�𝑘 ∈ 𝑇𝑈 (𝑢𝑘), we
deduce that Δ𝑢 ∈ 𝑇𝑈 (𝑢). □

Theorem 19.9. Let𝑈 ⊂ 𝐿 ®𝑝 (Ω) be pointwise derivable. Then for every 𝑢 ∈ 𝑈 ,

𝑁𝑈 (𝑢) ⊃
{
𝑢∗ ∈ 𝐿 ®𝑝∗ (Ω)

�� 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}
.

Proof. Let 𝑢∗ ∈ 𝐿 ®𝑝∗ (Ω) with 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω. Then by def-
inition, for almost all 𝑥 ∈ Ω there exist 𝐶 (𝑥) ∋ �̃�𝑘 (𝑥) → 𝑢 (𝑥) as well as 𝑁𝐶 (𝑥) (𝑢 (𝑥)) ∋
�̃�∗
𝑘
(𝑥) → 𝑢∗(𝑥). By Egorov’s theorem, for every ℓ ≥ 1 there exists a Borel-measurable set

𝐸ℓ ⊂ Ω such that L(Ω \ 𝐸ℓ) < 1/ℓ and �̃�∗
𝑘
→ 𝑢∗ as well as �̃�𝑘 → 𝑢 uniformly on 𝐸ℓ . We

set 𝑢ℓ,𝑘 ≔ 𝟙𝐸ℓ𝑢𝑘 + (1 − 𝟙𝐸ℓ )𝑢 and 𝑢∗
ℓ,𝑘

≔ 𝟙𝐸𝛿�̃�
∗
𝑘
. Then 𝑢∗

ℓ,𝑘
(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢ℓ,𝑘 (𝑥)) for almost

every 𝑥 ∈ Ω. By Vitali’s convergence theorem (compare the proof of Theorem 19.6), both
𝑢ℓ,𝑘 → 𝑢 in 𝐿 ®𝑝 (Ω) and 𝑢∗

ℓ,𝑘
→ 𝑢∗ℓ in 𝐿

®𝑝∗ (Ω) for 𝑢∗ℓ ≔ 𝟙𝐸ℓ𝑢
∗. Since 𝑢∗ℓ → 𝑢∗ in 𝐿 ®𝑝∗ (Ω), we

can extract a diagonal subsequence of {(𝑢ℓ,𝑘 , 𝑢∗ℓ,𝑘)}ℓ,𝑘≥1 to deduce that 𝑢∗ ∈ 𝑁𝑈 (𝑢). □

If the pointwise sets𝐶 (𝑥) are regular, we have the following polarity between the cones to
the pointwise-defined set𝑈 .

Lemma 19.10. Let 𝑈 ⊂ 𝐿 ®𝑝 (Ω) be pointwise derivable and 𝑢 ∈ 𝑈 . If 𝐶 (𝑥) is regular at 𝑢 (𝑥)
and closed near 𝑢 (𝑥) for almost every 𝑥 ∈ Ω, then 𝑇𝑈 (𝑢) = 𝑁𝑈 (𝑢)◦.

Proof. By the regularity of𝐶 (𝑥) at 𝑢 (𝑥) for almost every 𝑥 ∈ Ω and Theorem 19.6, we have

𝑁𝑈 (𝑢) =
{
𝑢∗ ∈ 𝐿 ®𝑝∗ (Ω)

�� 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}
.

By Theorem 18.15, 𝑁𝐶 (𝑥) (𝑢 (𝑥))◦ = 𝑇𝐶 (𝑥) (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω. Arguing as in the
proof of Corollary 19.7, we thus obtain

𝑁𝑈 (𝑢)◦ =
{
Δ𝑢 ∈ 𝐿 ®𝑝 (Ω)

�� Δ𝑢 (𝑥) ∈ 𝑇𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}
.

The regularity of 𝐶 (𝑥) also implies that 𝑇𝐶 (𝑥) (𝑢 (𝑥)) = 𝑇𝐶 (𝑥) (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω.
The claims now follow from Theorem 19.5. □

We can use this result to transfer the regularity of 𝐶 (𝑥) to𝑈 .

Lemma 19.11. Let 𝑈 ⊂ 𝐿 ®𝑝 (Ω) be pointwise derivable and 𝑢 ∈ 𝑈 . If 𝐶 (𝑥) is regular at 𝑢 (𝑥)
and closed near 𝑢 (𝑥) for almost every 𝑥 ∈ Ω, then𝑈 is regular at 𝑢 and

𝑇𝑤𝑈 (𝑢) = 𝑇𝑈 (𝑢) = 𝑇𝑈 (𝑢).
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19 tangent and normal cones of pointwise-defined sets

Proof. Since 𝐿 ®𝑝 (Ω) is reflexive, we have 𝑁𝑈 (𝑢) = 𝑇𝑤
𝑈
(𝑢)◦ by Lemma 18.10 (ii). This fact

together with Lemma 19.10 and Theorems 1.8 and 18.5 shows that

𝑇𝑤𝑈 (𝑢) ⊂ 𝑇𝑤𝑈 (𝑢)◦◦ = 𝑁𝑈 (𝑢)◦ = 𝑇𝑈 (𝑢) ⊂ 𝑇𝑤𝑈 (𝑢).

Furthermore, by the regularity and closedness assumptions, we obtain from Theorems 19.5
and 19.8 that 𝑇𝑈 (𝑢) = 𝑇𝑈 (𝑢), which also implies tangential regularity.

Since 𝐿 ®𝑝 (Ω) for ®𝑝 ∈ (1,∞)𝑚 is reflexive and Gâteaux smooth, normal regularity follows
from Theorem 18.25 together with Lemma 19.10. □

From this, we obtain pointwise expressions with equality. For the Clarke tangent cone, we
only require local closedness of the underlying sets.

Theorem 19.12. Let𝑈 ⊂ 𝐿 ®𝑝 (Ω) be pointwise derivable. If 𝐶 (𝑥) is closed near 𝑢 (𝑥) for almost
every 𝑥 ∈ Ω for every 𝑢 ∈ 𝑈 , then

𝑇𝑈 (𝑢) =
{
Δ𝑢 ∈ 𝐿 ®𝑝 (Ω)

�� Δ𝑢 (𝑥) ∈ 𝑇𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}
.

Proof. The inclusion “⊃” was already shown in Theorem 19.8. To prove the converse
inclusion when 𝐶 (𝑥) is closed near 𝑢 (𝑥) for almost every 𝑥 ∈ Ω, we only need to observe
from Lemma 18.12 and Theorem 19.9 and

𝑇𝐶 (𝑢) ⊂ 𝑁𝐶 (𝑢)◦ ⊂
{
𝑢∗ ∈ 𝐿 ®𝑝∗ (Ω)

�� 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}◦

=
{
Δ𝑢 ∈ 𝐿 ®𝑝 (Ω)

�� Δ𝑢 (𝑥) ∈ 𝑇𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}
,

where the last equality again follows from Theorem 18.15 together with an argument as in
the proof of Corollary 19.7. □

For the limiting normal cone, however, we do require regularity.

Theorem 19.13. Let𝑈 ⊂ 𝐿 ®𝑝 (Ω) be pointwise derivable. If 𝐶 (𝑥) is regular at 𝑢 (𝑥) and closed
near 𝑢 (𝑥) for almost every 𝑥 ∈ Ω, then for every 𝑢 ∈ 𝑈 ,

𝑁𝑈 (𝑢) =
{
𝑢∗ ∈ 𝐿 ®𝑝∗ (Ω)

�� 𝑢∗(𝑥) ∈ 𝑁𝐶 (𝑥) (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω
}
.

Proof. The inclusion “⊃” was already shown in Theorem 19.9. The converse inclusion for
regular and closed 𝐶 (𝑥) follows from Lemma 19.11 and Theorem 19.6. □
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19 tangent and normal cones of pointwise-defined sets

Remark 19.14. Theorems 19.5 and 19.6 on the fundamental cones are based on [Clason and Valkonen,
2017b]. Without regularity, the characterization of the limiting normal cone of a pointwise-defined
set is much more delicate. A full characterization was given in [Mehlitz andWachsmuth, 2018, 2019],
which showed that even for a closed nonconvex set, the limiting normal cone contains the convex
hull of the strong limiting normal cone (where the limit is taken with respect to strong convergence
instead of weak-∗ convergence) and is dense in the Dini normal cone 𝑇 ◦

𝐶 (𝑥) – in the words of the
authors, it may be “unpleasantly large”. This is due to an inherent convexifying effect of integration
with respect to the Lebesgue measure.

A characterization of specific pointwise-defined sets in Sobolev spaces was derived in [Harder and
Wachsmuth, 2018], with similar conclusions.
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20 DERIVATIVES AND CODERIVATIVES OF SET-VALUED

MAPPINGS

We are now ready to differentiate set-valued mappings; as already discussed, these gener-
alized derivatives are based on the tangent and normal cones of the previous Chapter 18.
To account for the changed focus, we will slightly switch notation and use in this and the
following chapters of Part IV uppercase letters for set-valued mappings and lowercase
letters for scalar-valued functionals such that, e.g., 𝐹 (𝑥) = 𝜕𝑓 (𝑥). We focus in this chapter
on examples, basic properties, and relationships between the various derivative concepts.
In the following Chapters 22 to 25, we then develop calculus rules for each of the different
derivatives and coderivatives.

20.1 definitions

To motivate the following definitions, it is instructive to recall the geometric intuition
behind the classical derivative of a scalar function 𝑓 as limit of a difference quotient: given
an (infinitesimal) change Δ𝑥 of the argument 𝑥 , it gives the corresponding (infinitesimal)
change Δ𝑦 of the value 𝑦 = 𝑓 (𝑥) required to stay on the graph of 𝑓 . In other words,
(Δ𝑥,Δ𝑦) is a tangent vector to graph 𝑓 . For a proper set-valued mapping 𝐹 , however, it
is also possible to remain on the graph of 𝐹 by varying 𝑦 without changing 𝑥 ; it thus
also makes sense to ask the “dual” question of, given a change Δ𝑦 in image space, what
change Δ𝑥 in domain space is required to stay inside the graph of 𝐹 . In geometric terms,
the answer is given by Δ𝑥 such that (Δ𝑥,−Δ𝑦) is a normal vector to graph 𝐹 . (Note that
normal vectors point away from a set, while we are trying to correct by moving towards it.
Recall also that (𝑓 ′(𝑥),−1) is normal to epi 𝑓 for a smooth function 𝑓 ; see Figure 20.1 and
compare Lemma 4.10 as well as Section 20.4 below.) In Banach spaces, of course, normal
vectors are subsets of the dual space.

We thus distinguish

(i) graphical derivatives, which generalize classical derivatives and are based on tangent
cones;

(ii) coderivatives, which generalize adjoint derivatives and are based on normal cones.
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20 derivatives and coderivatives of set-valued mappings

epi 𝑓

Δ𝑥 = 𝑥∗
Δ𝑦 = 𝑓 ′(𝑥)Δ𝑥

−𝑦∗ = −𝑥∗/𝑓 ′(𝑥)

𝑇graph 𝑓

𝑁graph 𝑓

Figure 20.1: Illustration why the coderivatives negate 𝑦∗ in comparison to the normal cone.

In each case, we can use either basic or limiting cones, leading to four different definitions.

Specifically, let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 ⇒ 𝑌 . Then we define

(i) the graphical derivative of 𝐹 at 𝑥 ∈ 𝑋 for 𝑦 ∈ 𝑌 as

𝐷𝐹 (𝑥 |𝑦) : 𝑋 ⇒ 𝑌, 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) ≔ {
Δ𝑦 ∈ 𝑌

�� (Δ𝑥,Δ𝑦) ∈ 𝑇graph 𝐹 (𝑥, 𝑦)
}

;

(ii) the Clarke graphical derivative of 𝐹 at 𝑥 ∈ 𝑋 for 𝑦 ∈ 𝑌 as

𝐷𝐹 (𝑥 |𝑦) : 𝑋 ⇒ 𝑌, 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) ≔
{
Δ𝑦 ∈ 𝑌

��� (Δ𝑥,Δ𝑦) ∈ 𝑇graph 𝐹 (𝑥, 𝑦)
}

;

(iii) the Fréchet coderivative of 𝐹 at 𝑥 ∈ 𝑋 for 𝑦 ∈ 𝑌 as

𝐷∗𝐹 (𝑥 |𝑦) : 𝑌 ∗ ⇒ 𝑋 ∗, 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) ≔
{
𝑥∗ ∈ 𝑋 ∗

��� (𝑥∗,−𝑦∗) ∈ 𝑁graph 𝐹 (𝑥, 𝑦)
}

;

(iv) the (basic or limiting or Mordukhovich) coderivative of 𝐹 at 𝑥 ∈ 𝑋 for 𝑦 ∈ 𝑌 as

𝐷∗𝐹 (𝑥 |𝑦) : 𝑌 ∗ ⇒ 𝑋 ∗, 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) ≔ {
𝑥∗ ∈ 𝑋 ∗ �� (𝑥∗,−𝑦∗) ∈ 𝑁graph 𝐹 (𝑥, 𝑦)

}
.

Observe how the coderivatives operate from 𝑌 ∗ to𝑋 ∗, while the derivatives operate from𝑋

to𝑌 . It is crucial that these are defined directly via (possibly nonconvex) normal cones rather
than via polarity from the corresponding graphical derivatives to avoid convexification.
This will allow for sharper results involving these coderivatives.

We illustrate these definitions with the simplest example of a single-valued linear opera-
tor.

Example 20.1 (single-valued linear operators). Let 𝐹 (𝑥) ≔ {𝐴𝑥} for 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and
𝑢 = (𝑥,𝐴𝑥) ∈ graph 𝐹 . Note that graph 𝐹 is a linear subspace of 𝑋 ×𝑌 . Since graph 𝐹 is
regular by Corollary 18.27, both of the tangent cones are given by

𝑇graph 𝐹 (𝑢) = 𝑇graph 𝐹 (𝑢) = graph 𝐹 = {(Δ𝑥,𝐴Δ𝑥) ∈ 𝑋 × 𝑌 | Δ𝑥 ∈ 𝑋 },
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20 derivatives and coderivatives of set-valued mappings

while the normal cones are given by

𝑁graph 𝐹 (𝑢) = 𝑁graph 𝐹 (𝑢) = {𝑢∗ ∈ 𝑋 ∗ × 𝑌 ∗ | 𝑢∗ ⊥ graph 𝐹 }
= {(𝑥∗, 𝑦∗) ∈ 𝑋 ∗ × 𝑌 ∗ | ⟨𝑥∗,Δ𝑥⟩𝑋 + ⟨𝑦∗, 𝐴Δ𝑥⟩𝑌 = 0 for all Δ𝑥 ∈ 𝑋 }
= {(𝐴∗𝑦∗,−𝑦∗) ∈ 𝑋 ∗ × 𝑌 ∗ | 𝑦∗ ∈ 𝑌 ∗}.

This immediately yields the graphical derivatives

𝐷𝐹 (𝑥 |𝐴𝑥) (Δ𝑥) = 𝐷𝐹 (𝑥 |𝐴𝑥) (Δ𝑥) = {𝐴Δ𝑥}

as well as the coderivatives

𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) = 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) = {𝐴∗𝑦∗}.

Using (18.1), we can also write the graphical derivative as

(20.1) 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) = lim sup
𝑡→ 0,Δ𝑥→Δ𝑥

𝐹 (𝑥 + 𝑡Δ𝑥) − 𝑦
𝑡

,

since
(Δ𝑥,Δ𝑦) ∈ lim sup

𝜏→ 0

graph 𝐹 − (𝑥, 𝑦)
𝜏

if and only if there exist 𝜏𝑘→ 0 and 𝑥𝑘 such that

(20.2) Δ𝑥 = lim
𝑘→∞

𝑥𝑘 − 𝑥
𝜏𝑘

and Δ𝑦 ∈ lim sup
𝑘→∞

𝐹 (𝑥𝑘) − 𝑦
𝜏𝑘

.

The former forces 𝑥𝑘 = 𝑥 − 𝜏𝑘Δ𝑥𝑘 for Δ𝑥𝑘 → Δ𝑥 , so the latter gives (20.1).

In infinite-dimensional spaces, we also have to distinguish the weak graphical derivative
𝐷𝑤𝐹 (𝑥 |𝑦) and the 𝜀-coderivative 𝐷∗

𝜀 𝐹 (𝑥 |𝑦), both constructed analogously from the weak
tangent cone 𝑇𝑤graph 𝐹 (𝑥, 𝑦) and the 𝜀-normal cone 𝑁 𝜀

graph 𝐹 (𝑥, 𝑦), respectively. However, we
will not beworking directlywith these and instead switch to the setting of the corresponding
cones when they would be needed.

Remark 20.2 (a much too brief history of various (co)derivatives). As for the various tangent
and normal cones, the (more recent) development of derivatives and coderivatives of set-valued
mappings is convoluted, and we do not attempt to give a full account, instead referring to the
commentaries to [Rockafellar and Wets, 1998, Chapter 8], [Mordukhovich, 2006, Chapter 1.4.12],
and [Mordukhovich, 2018, Chapter 1].

The graphical derivative goes back to Aubin [Aubin, 1981], who also introduced the Clarke graphical
derivative (under the name circatangent derivative) in [Aubin, 1984]. Coderivatives based on normal
cones were mainly treated there for mappings whose graphs are convex, for which these cones can
be defined as polars of the appropriate tangent cones. Graphical derivatives were further studied in
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20 derivatives and coderivatives of set-valued mappings

[Thibault, 1983]. In parallel, Mordukhovich introduced the (nonconvex) limiting coderivative via his
limiting normal cone in [Morduhovič, 1980], again stressing the need for a genuinely nonconvex
direct construction. The term coderivative was coined by Ioffe, who was the first to study these
mappings systematically in [Ioffe, 1984].

20.2 basic properties

We now translate various results of Chapter 18 on tangent and normal cones to the setting
of graphical derivatives and coderivatives. From Theorem 18.5, we immediately obtain

Corollary 20.3. For 𝐹 : 𝑋 ⇒ 𝑌 , 𝑥 ∈ 𝑋 , and 𝑦 ∈ 𝑌 , we have the inclusions
(i) 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) ⊂ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) ⊂ 𝐷𝑤𝐹 (𝑥 |𝑦) (Δ𝑥) for all Δ𝑥 ∈ 𝑋 ;
(ii) 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) ⊂ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) for all 𝑦∗ ∈ 𝑌 ∗.

Similarly, we obtain from Theorem 18.8 the following outer semicontinuity and convexity
properties.

Corollary 20.4. For 𝐹 : 𝑋 ⇒ 𝑌 , 𝑥 ∈ 𝑋 , and 𝑦 ∈ 𝑌 ,
(i) 𝐷𝐹 (𝑥 |𝑦), 𝐷𝐹 (𝑥 |𝑦), and 𝐷∗𝐹 (𝑥 |𝑦) are closed;
(ii) if 𝑋 and 𝑌 are finite-dimensional, then 𝐷∗𝐹 (𝑥 |𝑦) is closed;
(iii) 𝐷𝐹 (𝑥 |𝑦) and 𝐷∗𝐹 (𝑥 |𝑦) are convex.

Graphical derivatives and coderivatives behave completely symmetrically with respect
to inversion of a set-valued mapping (which we recall is always possible in the sense of
preimages).

Lemma 20.5. Let 𝐹 : 𝑋 ⇒ 𝑌 , 𝑥 ∈ 𝑋 , and 𝑦 ∈ 𝑌 . Then
Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) ⇔ Δ𝑥 ∈ 𝐷𝐹−1(𝑦 |𝑥) (Δ𝑦),
Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) ⇔ Δ𝑥 ∈ 𝐷𝐹−1(𝑦 |𝑥) (Δ𝑦),
𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) ⇔ −𝑦∗ ∈ 𝐷∗𝐹−1(𝑦 |𝑥) (−𝑥∗),
𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) ⇔ −𝑦∗ ∈ 𝐷∗𝐹−1(𝑦 |𝑥) (−𝑥∗).

Proof. We have

Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) ⇔ (Δ𝑥,Δ𝑦) ∈ 𝑇graph 𝐹 (𝑥, 𝑦)
⇔ (Δ𝑦,Δ𝑥) ∈ 𝑇graph 𝐹 −1 (𝑦, 𝑥)
⇔ Δ𝑥 ∈ 𝐷𝐹−1(𝑦 |𝑥) (Δ𝑦).

The proof for the regular derivative and the coderivatives is completely analogous. □
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adjoints of set-valued mappings

From the various relations between normal and tangent cones, we obtain corresponding
relations between these derivatives. To state these relationships, we need to introduce the
upper and lower adjoints of set-valued mappings. Let 𝐻 : 𝑋 ⇒ 𝑌 be a set-valued mapping.
Then the upper adjoint of 𝐻 is defined as

𝐻 ◦+(𝑦∗) ≔ {𝑥∗ | ⟨𝑥∗, 𝑥⟩𝑋 ≤ ⟨𝑦∗, 𝑦⟩𝑌 for all 𝑦 ∈ 𝐻 (𝑥), 𝑥 ∈ 𝑋 },

and the lower adjoint of 𝐻 as

𝐻 ◦−(𝑦∗) ≔ {𝑥∗ | ⟨𝑥∗, 𝑥⟩𝑋 ≥ ⟨𝑦∗, 𝑦⟩𝑌 for all 𝑦 ∈ 𝐻 (𝑥), 𝑥 ∈ 𝑋 }.

As the next example shows, these notions generalize the definition of the adjoint of a linear
operator.

Example 20.6 (upper and lower adjoints of linear mappings). Let 𝐻 (𝑥) ≔ {𝐴𝑥} for
𝐴 ∈ 𝕃(𝑋 ;𝑌 ). Then

𝐻 ◦+(𝑦∗) = {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, 𝑥⟩𝑋 ≤ ⟨𝑦∗, 𝑦⟩𝑌 for all 𝑦 = 𝐴𝑥, 𝑥 ∈ 𝑋 }
= {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, 𝑥⟩𝑋 ≤ ⟨𝑦∗, 𝐴𝑥⟩𝑌 for all 𝑥 ∈ 𝑋 }
= {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗ −𝐴∗𝑦∗, 𝑥⟩𝑋 ≤ 0 for all 𝑥 ∈ 𝑋 }
= {𝐴∗𝑦∗}.

Similarly, 𝐻 ◦−(𝑦∗) = {𝐴∗𝑦∗}.

For solution mappings of linear equations, we have the following adjoints.

Example 20.7 (upper and lower adjoints of solution maps to linear equations). Let
𝐻 (𝑥) ≔ {𝑦 | 𝐴𝑦 = 𝑥} for 𝐴 ∈ 𝕃(𝑋 ;𝑌 ). Then

𝐻 ◦+(𝑦∗) = {𝑥∗ | ⟨𝑥∗, 𝑥⟩ ≤ ⟨𝑦∗, 𝑦⟩ for all 𝐴𝑦 = 𝑥, 𝑥 ∈ 𝑋 }

If 𝑦∗ ∉ ran𝐴∗, then ran𝐴∗ ⊥ ker𝐴 ≠ ∅, so for every 𝑥∗ ∈ 𝑋 ∗ and 𝑥 ∈ 𝑋 we can choose
𝑦 ∈ 𝑌 such that the above condition is not satisfied. Therefore 𝐻 ◦+(𝑦) = ∅. Otherwise,
if 𝑦∗ = 𝐴∗𝑥∗, we continue to calculate

𝐻 ◦+(𝑦∗) = {𝑥∗ ∈ 𝑋 ∗ | ⟨𝑥∗, 𝑥⟩𝑋 ≤ ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝑋 } = {𝑥∗}.

Therefore
𝐻 ◦+(𝑦∗) = {𝑥∗ ∈ 𝑋 | 𝐴∗𝑥∗ = 𝑦∗}.

A similar argument shows that 𝐻 ◦−(𝑦∗) = 𝐻 ◦+(𝑦∗).
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These examples and Example 20.1 suggest the adjoint relationships of the next corollary.
Note that in infinite-dimensional spaces, we only have a relationship between the limiting
derivatives, i.e., between the Clarke graphical derivative and the limiting coderivative.

Corollary 20.8. Let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 ⇒ 𝑌 .

(i) If 𝑋 and 𝑌 are finite-dimensional, then

𝐷∗𝐹 (𝑥 |𝑦) = 𝐷𝐹 (𝑥 |𝑦)◦+.

(ii) If𝑋 and𝑌 are reflexive andGâteaux smooth (in particular, if they are finite-dimensional),
and graph 𝐹 is closed near (𝑥, 𝑦), then

𝐷𝐹 (𝑥 |𝑦) = 𝐷∗𝐹 (𝑥 |𝑦)◦−.

Proof. (i): Identifying 𝑋 ∗ with 𝑋 and 𝑌 ∗ with 𝑌 in finite dimension, we have by definition
that

𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) = {
Δ𝑦 ∈ 𝑌

�� (Δ𝑥,Δ𝑦) ∈ 𝑇graph 𝐹 (𝑥, 𝑦)
}

and
𝐷∗𝐹 (𝑥 |𝑦) (Δ𝑦) =

{
Δ𝑥 ∈ 𝑋

��� (Δ𝑥,−Δ𝑦) ∈ 𝑁graph 𝐹 (𝑥, 𝑦)
}
.

Using Lemma 18.10 (iii), we then see that

𝑥∗ ∈ 𝐷𝐹 (𝑥 |𝑦)◦+(𝑦∗) ⇔ ⟨𝑥∗,Δ𝑥⟩𝑋 ≤ ⟨𝑦∗,Δ𝑦⟩𝑌 for Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥)
⇔ ⟨𝑥∗,Δ𝑥⟩𝑋 + ⟨−𝑦∗,Δ𝑦⟩𝑌 ≤ 0 for (Δ𝑥,Δ𝑦) ∈ 𝑇graph 𝐹 (𝑥, 𝑦)
⇔ (𝑥∗,−𝑦∗) ∈ 𝑇graph 𝐹 (𝑥, 𝑦)◦ = 𝑁graph 𝐹 (𝑥, 𝑦)
⇔ 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗).

This proves the claim.

(ii): We proceed analogously to (i) using Theorem 18.19 (or Theorem 18.15 if 𝑋 and 𝑌 are
finite-dimensional):

Δ𝑦 ∈ 𝐷∗𝐹 (𝑥 |𝑦)◦−(Δ𝑥) ⇔ ⟨𝑦∗,Δ𝑦⟩𝑌 ≥ ⟨𝑥∗,Δ𝑥⟩𝑋 for 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗)
⇔ ⟨𝑥∗,Δ𝑥⟩𝑋 + ⟨−𝑦∗,Δ𝑦⟩𝑌 ≤ 0 for (𝑥∗,−𝑦∗) ∈ 𝑁graph 𝐹 (𝑥, 𝑦)
⇔ (Δ𝑥,Δ𝑦) ∈ 𝑁graph 𝐹 (𝑥, 𝑦)◦ = 𝑇graph 𝐹 (𝑥, 𝑦)
⇔ Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥). □
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limiting characterizations in finite dimensions

In finite dimensions, we can characterize the limiting coderivative and the Clarke derivative
directly as inner and outer limits, respectively.

Corollary 20.9. Let𝑋 and𝑌 be finite-dimensional and 𝐹 : 𝑋 ⇒ 𝑌 . Then for all (𝑥, 𝑦) ∈ 𝑋 ×𝑌
and all 𝑦∗ ∈ 𝑌 ,

𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) =
𝑥∗ ∈ 𝑋

������
there exists graph 𝐹 ∋ (𝑥, �̃�) → (𝑥, 𝑦)

and (𝑥∗, �̃�∗) → (𝑥∗, 𝑦∗)
with 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |�̃�) (�̃�∗)

 .(20.3)

If graph 𝐹 is closed near (𝑥, 𝑦), then for all Δ𝑥 ∈ ℝ𝑁

𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) =
Δ𝑦 ∈ 𝑌

������ for all graph 𝐹 ∋ (𝑥, �̃�) → (𝑥, 𝑦)
there exists (Δ𝑥,Δ�̃�) → (Δ𝑥,Δ𝑦)

with Δ�̃� ∈ 𝐷𝐹 (𝑥 |�̃�) (Δ𝑥)

 .(20.4)

Proof. The characterization (20.3) of the limiting coderivative is a direct application of the
definition of the limiting normal cone (18.3) as an outer limit of the Fréchet normal. The
characterization (20.4) of the Clarke graphical derivative follows from the characterization
of Corollary 18.20 of the Clarke tangent cone as an inner limit of (basic) tangent cones. □

regularity

Based on the regularity concepts of sets from Section 18.4, we can define concepts of
regularity of set-valued mappings. We say that 𝐹 at (𝑥, 𝑦) ∈ graph 𝐹 (or at 𝑥 for 𝑦 ∈ 𝐹 (𝑥))
is

(i) T-regular if 𝐷𝐹 (𝑥 |𝑦) = 𝐷𝐹 (𝑥 |𝑦) (i.e., if graph 𝐹 has tangential regularity);

(ii) N-regular , if 𝐷∗𝐹 (𝑥 |𝑦) = 𝐷∗𝐹 (𝑥 |𝑦) (i.e., if graph 𝐹 has normal regularity).

If 𝐹 is both T- and N-regular at (𝑥, 𝑦), we say that 𝐹 is graphically regular .

FromTheorem 18.25,we immediately obtain the following characterization of𝑁 -regularity.

Corollary 20.10. Let 𝑋,𝑌 be reflexive and Gâteaux smooth Banach spaces, 𝐹 : 𝑋 ⇒ 𝑌 , and
let (𝑥, 𝑦) ∈ graph 𝐹 with graph 𝐹 closed near (𝑥, 𝑦). Then 𝐹 is N-regular at (𝑥, 𝑦) if and only
if 𝐷𝐹 (𝑥 |𝑦) = [𝐷∗𝐹 (𝑥 |𝑦)]◦−.

Writing out various alternatives of Theorem 18.23 for set-valued mappings, we obtain full
equivalence of the notions and alternative characterizations in finite dimensions.
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Corollary 20.11. Let 𝑋,𝑌 be finite-dimensional and 𝐹 : 𝑋 ⇒ 𝑌 . If graph 𝐹 is closed near
(𝑥, 𝑦), then the following conditions are equivalent:

(i) 𝐹 is N-regular at 𝑥 for 𝑦 , i.e., 𝐷∗𝐹 (𝑥 |𝑦) = 𝐷∗𝐹 (𝑥 |𝑦);
(ii) 𝐹 is T-regular at 𝑥 for 𝑦 , i.e., 𝐷𝐹 (𝑥 |𝑦) = 𝐷𝐹 (𝑥 |𝑦);

(iii) 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) ⊃
𝑥∗ ∈ 𝑋

������
there exists graph 𝐹 ∋ (𝑥, �̃�) → (𝑥, 𝑦)

and (𝑥∗, �̃�∗) → (𝑥∗, 𝑦∗)
with 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |�̃�) (�̃�∗)

 ;

(iv) 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) ⊂
Δ𝑦 ∈ 𝑌

������ for all (𝑥, �̃�) → (𝑥, 𝑦)
there exists graph 𝐹 ∋ (Δ𝑥,Δ�̃�) → (Δ𝑥,Δ𝑦)

with Δ�̃� ∈ 𝐷𝐹 (𝑥 |�̃�) (Δ𝑥)

 .
In particular, if any of these hold, 𝐹 is graphically regular at 𝑥 for 𝑦 .

20.3 examples

As the following examples demonstrate, the graphical derivatives and coderivatives gener-
alize classical (sub)differentials.

single-valued mappings and their inverses

For the Clarke graphical derivative and the limiting coderivatives (which are obtained
as inner or outer limits), we have to require – just as for the Clarke subdifferential in
Theorem 13.5 – slightly more than just Fréchet differentiability.

Theorem 20.12. Let 𝑋,𝑌 be Banach spaces and let 𝐹 : 𝑋 → 𝑌 be single-valued and Fréchet-
differentiable at 𝑥 ∈ 𝑋 . Then

𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) =
{
{𝐹 ′(𝑥)Δ𝑥} if 𝑦 = 𝐹 (𝑥),
∅ otherwise,

and

𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) =
{
{𝐹 ′(𝑥)∗𝑦∗} if 𝑦 = 𝐹 (𝑥),
∅ otherwise.

If 𝐹 is continuously Fréchet-differentiable at 𝑥 , then 𝐹 is graphically regular at 𝑥 for 𝐹 (𝑥),
and hence the corresponding expressions also hold for 𝐷𝐹 (𝑥 |𝑦) and 𝐷∗𝐹 (𝑥 |𝑦).
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Proof. The graphical derivative: We have (Δ𝑥,Δ𝑦) ∈ 𝑇graph 𝐹 (𝑥, 𝑦) if and only if for some
𝑥𝑘 → 𝑥 , 𝑦𝑘 ≔ 𝐹 (𝑥𝑘), and 𝜏𝑘→ 0 there holds

Δ𝑥 = lim
𝑘→∞

𝑥𝑘 − 𝑥
𝜏𝑘

=: lim
𝑘→∞

Δ𝑥𝑘(20.5a)

and

Δ𝑦 = lim
𝑘→∞

𝑦𝑘 − 𝑦
𝜏𝑘

= lim
𝑘→∞

𝐹 (𝑥 + 𝜏𝑘Δ𝑥𝑘) − 𝐹 (𝑥)
𝜏𝑘

.(20.5b)

If Δ𝑥𝑘 = 0 for all sufficiently large 𝑘 ∈ ℕ, clearly both Δ𝑥 = 0 and Δ𝑦 = 0. This satisfies
the claimed expression. So we may assume that Δ𝑥𝑘 ≠ 0 for all 𝑘 ∈ ℕ. In this case, (20.5b)
holds if and only if

lim
𝑘→∞

𝐹 (𝑥 + ℎ𝑘) − 𝐹 (𝑥) − 𝜏𝑘Δ𝑦𝑘
∥ℎ𝑘 ∥𝑋

= 0

for ℎ𝑘 ≔ 𝜏𝑘Δ𝑥𝑘 and any Δ𝑦𝑘 → Δ𝑦 . Since 𝐹 is Fréchet differentiable, this clearly holds
with

Δ𝑦𝑘 ≔ 𝜏−1
𝑘
𝐹 ′(𝑥)ℎ𝑘 = 𝐹 ′(𝑥)Δ𝑥𝑘 → 𝐹 ′(𝑥)Δ𝑥 =: Δ𝑦.

This shows that 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) = {𝐹 ′(𝑥)Δ𝑥}.
The Clarke graphical derivative: To calculate 𝐷𝐹 (𝑥 |𝑦), we have to find all Δ𝑥 and Δ𝑦 such
that for every 𝜏𝑘→ 0 and (𝑥𝑘 , �̃�𝑘) → (𝑥, 𝑦) with �̃�𝑘 = 𝐹 (𝑥𝑘), there exists 𝑥𝑘 → 𝑥 with

Δ𝑥 = lim
𝑘→∞

𝑥𝑘 − 𝑥𝑘
𝜏𝑘

and Δ𝑦 = lim
𝑘→∞

𝐹 (𝑥𝑘) − 𝐹 (𝑥𝑘)
𝜏𝑘

.

Setting 𝑥𝑘 = 𝑥𝑘 + 𝜏𝑘Δ𝑥𝑘 with Δ𝑥𝑘 → Δ𝑥 , the second condition becomes

Δ𝑦 = lim
𝑘→∞

𝐹 (𝑥𝑘 + 𝜏𝑘Δ𝑥𝑘) − 𝐹 (𝑥𝑘)
𝜏𝑘

.

Taking 𝑥𝑘 = 𝑥 , arguing as for 𝐷𝐹 shows that Δ𝑦 = 𝐹 ′(𝑥)Δ𝑥 is the only candidate. It just
remains to show that any choice of 𝑥𝑘 gives the same limit, i.e., that

lim
𝑘→∞

𝐹 (𝑥𝑘 + 𝜏𝑘Δ𝑥𝑘) − 𝐹 (𝑥𝑘) − 𝜏𝑘𝐹 ′(𝑥)Δ𝑥
𝜏𝑘

= 0.

But this follows from the assumed continuous differentiability using Lemma 13.22. Thus
for 𝑦 = 𝐹 (𝑥),

𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) = {𝐹 ′(𝑥)Δ𝑥} = 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥).
This shows that 𝐹 is T-regular at 𝑥 for 𝑦 .

The Fréchet coderivative: The claim follows from proving that

(20.6) 𝐷∗
𝜀 𝐹 (𝑥 |𝑦) (𝑦∗) =

{
𝔹(𝐹 ′(𝑥)∗𝑦∗, 𝜀) if 𝑦 = 𝐹 (𝑥),
∅ otherwise,
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To show this, we note that 𝑥∗ ∈ 𝐷∗
𝜀 𝐹 (𝑥 |𝑦) (𝑦∗) if and only if for every sequence 𝑥𝑘 → 𝑥

with 𝐹 (𝑥𝑘) → 𝐹 (𝑥),

lim sup
𝑘→∞

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 − ⟨𝑦∗, 𝐹 (𝑥𝑘) − 𝐹 (𝑥)⟩𝑌√︃
∥𝑥𝑘 − 𝑥 ∥2

𝑋
+ ∥𝐹 (𝑥𝑘) − 𝐹 (𝑥)∥2

𝑌

≤ 𝜀.

Dividing both numerator and denominator by ∥𝑥𝑘 − 𝑥 ∥𝑋 > 0, we obtain the equivalent
condition that

lim sup
𝑘→∞

𝑞𝑘 ≤ 𝜀 for 𝑞𝑘 ≔
⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 − ⟨𝑦∗, 𝐹 (𝑥𝑘) − 𝐹 (𝑥)⟩𝑌

∥𝑥𝑘 − 𝑥 ∥𝑋
.

If we take 𝑥∗ ∈ 𝔹(𝐹 ′(𝑥)∗𝑦∗, 𝜀), this condition is verified by the Fréchet differentiability of
𝐹 at 𝑥 . Conversely, to show that this implies 𝑥∗ ∈ 𝔹(𝐹 ′(𝑥)∗𝑦∗, 𝜀), we take 𝑥𝑘 ≔ 𝑥 + 𝜏𝑘ℎ for
some 𝜏𝑘→ 0 and ℎ ∈ 𝑋 with ∥ℎ∥𝑋 = 1. Then again by the Fréchet differentiability of 𝐹 ,

𝜀 ≥ lim
𝑘→∞

𝑞𝑘 = ⟨𝑥∗, ℎ⟩ − ⟨𝑦∗, 𝐹 ′(𝑥)ℎ⟩.

Since ℎ ∈ 𝔹𝑋 was arbitrary, this shows that 𝑥∗ ∈ 𝔹(𝐹 ′(𝑥)∗𝑦∗, 𝜀).
The limiting coderivative: By the definition (18.8), the formula (20.6) for 𝜀-coderivatives,
and the continuous differentiability, we have

𝑁graph 𝐹 (𝑥, 𝐹 (𝑥)) = w-∗-lim sup
𝑥→𝑥, 𝜀→ 0

𝑁 𝜀
graph 𝐹 (𝑥, 𝐹 (𝑥))

= w-∗-lim sup
𝑥→𝑥 𝜀→ 0

{(𝑦∗, 𝐹 ′(𝑥)∗𝑦∗ + 𝑧∗) ∈ 𝑌 ∗ × 𝑋 ∗ | 𝑦∗ ∈ 𝑌 ∗, 𝑧∗ ∈ 𝔹(0, 𝜀)}

= w-∗-lim sup
𝑥→𝑥

{(𝑦∗, 𝐹 ′(𝑥)∗𝑦∗) ∈ 𝑌 ∗ × 𝑋 ∗ | 𝑦∗ ∈ 𝑌 ∗}

= {(𝑦∗, 𝐹 ′(𝑥)∗𝑦∗) ∈ 𝑌 ∗ × 𝑋 ∗ | 𝑦∗ ∈ 𝑌 ∗}.
This shows the claimed formula for the limiting coderivative and hence N- and therefore
graphical regularity. □

Remark 20.13. In finite dimensional spaces, it would be possible to more concisely prove the
expression for 𝐷𝐹 (𝑥 |𝑦) using Corollary 18.20. Likewise, we could use the polarity relationships
of Corollary 20.8 to obtain the expression for 𝐷∗𝐹 (𝑥 |𝑦). These approaches will, however, not be
possible in more general spaces.

Combining Theorem 20.12 with Lemma 20.5 allows us to compute the graphical derivatives
and coderivatives of inverses of single-valued functions.

Corollary 20.14. Let 𝑋,𝑌 be Banach spaces and let 𝐹 : 𝑋 → 𝑌 be single-valued and Fréchet-
differentiable at 𝑥 ∈ 𝑋 . Then

𝐷𝐹−1(𝑦 |𝑥) (Δ𝑦) =
{
{Δ𝑥 ∈ 𝑋 | 𝐹 ′(𝑥)Δ𝑥 = Δ𝑦} if 𝑦 = 𝐹 (𝑥),
∅ otherwise,
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and

𝐷∗𝐹−1(𝑦 |𝑥) (𝑥∗) =
{
{𝑦∗ ∈ 𝑌 ∗ | 𝐹 ′(𝑥)∗𝑦∗ = 𝑥∗} if 𝑦 = 𝐹 (𝑥),
∅ otherwise.

If 𝐹 is continuously Fréchet-differentiable at 𝑥 , then 𝐹−1 is graphically at 𝑦 = 𝐹 (𝑥) for 𝑥 , and
hence the corresponding expressions also hold for 𝐷𝐹−1(𝑦 |𝑥) and 𝐷∗𝐹−1(𝑦 |𝑥).

It is important that Theorem 20.12 concerns the strong graphical derivatives 𝐷𝐹 instead of
the weak graphical derivative𝐷𝑤𝐹 . Indeed, as the next counter-example demonstrates,𝐷𝑤𝐹
is more of a theoretical tool (with the important property in reflexive spaces that𝐷∗𝐹 (𝑥 |𝑦) =
𝐷𝑤𝐹 (𝑥 |𝑦)◦+ by Lemma 18.10 (ii)) which does not enjoy a rich calculus consistent with
conventional notions. In the following chapters, we will therefore not develop calculus
rules for the weak graphical derivative.

Example 20.15 (counter-example to single-valued weak graphical derivatives). Let
𝑓 ∈ 𝐶1(ℝ), Ω ⊂ ℝ𝑑 be open, and

𝐹 : 𝐿2(Ω) → ℝ, 𝐹 (𝑢) =
∫ 1

0
𝑓 (𝑢 (𝑥)) 𝑑𝑥.

Then by the above,

𝐷𝐹 (𝑢 |𝐹 (𝑢)) (Δ𝑢) =
{∫ 1

0
𝑓 ′(𝑢 (𝑥))Δ𝑢 (𝑥) 𝑑𝑥

}
.

In particular, 𝐷𝐹 (𝑢 |𝐹 (𝑢)) (0) = {0}.
However, choosing, e.g., 𝑓 (𝑡) =

√
1 + 𝑡2, Ω = (0, 1), and 𝑢𝑘 (𝑥) ≔ sign sin(2𝑘𝜋𝑥), we

have 𝑢𝑘 ⇀ 0 in 𝐿2(Ω) but |𝑢𝑘 (𝑥) | = 1 for a.e. 𝑥 ∈ [0, 1]. Take now �̃�𝑘 ≔ 𝛼𝜏𝑘𝑢𝑘 for any
given 𝜏𝑘→ 0 and 𝛼 > 0. Then �̃�𝑘 ⇀ 0 as well, while

𝐹 (�̃�𝑘) − 𝐹 (0) =
√︃

1 + 𝛼2𝜏2
𝑘
− 1 → 0.

Moreover, (�̃�𝑘 − 0)/𝜏𝑘 = 𝛼𝑢𝑘 ⇀ 0 and lim𝑘→∞
(√︃

1 + 𝛼2𝜏2
𝑘
− 1

)
/𝜏𝑘 = 𝛼2. As 𝛼 > 0 was

arbitrary, we deduce that 𝐷𝑤𝐹 (𝑢 |𝐹 (𝑢)) (0) ⊃ [0,∞).

derivatives and coderivatives of subdifferentials

We now apply these notions to set-valued mappings arising as subdifferentials of convex
functionals. First, we directly obtain from Theorem 20.12 an expression for the squared
norm in Hilbert spaces.
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Corollary 20.16. Let 𝑋 be a Hilbert space and 𝑓 (𝑥) = 1
2 ∥𝑥 ∥2

𝑋
for 𝑥 ∈ 𝑋 . Then

𝐷 [𝜕𝑓 ] (𝑥 |𝑦) (Δ𝑥) = 𝐷 [𝜕𝑓 ] (𝑥 |𝑦) (Δ𝑥) =
{
{Δ𝑥} if 𝑦 = 𝑥,

∅ otherwise,

and

𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦) (𝑦∗) = 𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦) (𝑦∗) =
{
{𝑦∗} if 𝑦 = 𝑥,

∅ otherwise.

In particular, 𝜕𝑓 is graphically regular at every 𝑥 ∈ 𝑋 .

Of course, we are more interested in subdifferentials of nonsmooth functionals. We first
study the indicator functional of an interval; see Figure 20.2.

Theorem 20.17. Let 𝑓 (𝑥) ≔ 𝛿 [−1,1] (𝑥) for 𝑥 ∈ ℝ. Then

𝐷 [𝜕𝑓 ] (𝑥 |𝑦) (Δ𝑥) =



ℝ if |𝑥 | = 1, 𝑦 ∈ (0,∞)𝑥, Δ𝑥 = 0,
[0,∞)𝑥 if |𝑥 | = 1, 𝑦 = 0, Δ𝑥 = 0,
{0} if |𝑥 | = 1, 𝑦 = 0, 𝑥Δ𝑥 < 0,
{0} if |𝑥 | < 1, 𝑦 = 0,
∅ otherwise,

(20.7)

𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦) (𝑦∗) =


ℝ, if |𝑥 | = 1, 𝑦 ∈ (0,∞)𝑥, 𝑦∗ = 0
[0,∞)𝑥 if |𝑥 | = 1, 𝑦 = 0, 𝑥𝑦∗ ≥ 0,
{0} if |𝑥 | < 1, 𝑦 = 0,
∅ otherwise,

(20.8)

𝐷 [𝜕𝑓 ] (𝑥 |𝑦) (Δ𝑥) =


ℝ if |𝑥 | = 1, 𝑦 ∈ (0,∞)𝑥, Δ𝑥 = 0,
{0} if |𝑥 | = 1, 𝑦 = 0, Δ𝑥 = 0,
{0} |𝑥 | < 1, 𝑦 = 0,
∅ if otherwise,

(20.9)

and

𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦) (𝑦∗) =



ℝ if |𝑥 | = 1, 𝑦 ∈ [0,∞)𝑥, 𝑦∗ = 0
[0,∞)𝑥 if |𝑥 | = 1, 𝑦 = 0, 𝑥𝑦∗ > 0,
{0} if |𝑥 | = 1, 𝑦 = 0, 𝑥𝑦∗ < 0,
{0} if |𝑥 | < 1, 𝑦 = 0,
∅ otherwise.

(20.10)

In particular, 𝜕𝑓 is graphically regular at 𝑥 for 𝑦 ∈ 𝜕𝑓 (𝑥) if and only if |𝑥 | < 1 or 𝑦 ≠ 0.
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Proof. We first of all recall from Example 4.9 that graph 𝜕𝑓 is closed with

(20.11) 𝜕𝑓 (𝑥) =

[0,∞)𝑥 if |𝑥 | = 1,
{0} if |𝑥 | < 1,
∅ otherwise.

We now verify (20.7). If 𝑦 ∈ 𝜕𝑓 (𝑥) and Δ𝑦 ∈ 𝐷 [𝜕𝑓 ] (𝑥 |𝑦) (Δ𝑥), there exist by (20.1) se-
quences 𝑡𝑘→ 0, 𝑥𝑘 → 𝑥 , and 𝑦𝑘 ∈ 𝜕𝑓 (𝑥 + 𝑡𝑘Δ𝑥𝑘) such that

(20.12) Δ𝑥 = lim
𝑘→∞

𝑥𝑘 − 𝑥
𝑡𝑘

and Δ𝑦 = lim
𝑘→∞

𝑦𝑘 − 𝑦
𝑡𝑘

.

We proceed by case distinction.

(i) |𝑥 | = 1, Δ𝑥 = 0, and 𝑦 ∈ (0,∞)𝑥 : Then choosing 𝑥𝑘 ≡ 𝑥 , any Δ𝑦 ∈ ℝ and 𝑘 large
enough, we can take 𝑦𝑘 = 𝑦 + 𝑡𝑘Δ𝑦 ∈ [0,∞)𝑥 = 𝜕𝑓 (𝑥). This yields the first case of
(20.7).

(ii) |𝑥 | = 1, Δ𝑥 = 0, but 𝑦 = 0: In this case, choosing 𝑥𝑘 ≡ 𝑥 , we can take any 𝑦𝑘 ∈ 𝜕𝑓 (𝑥 +
𝑡𝑘Δ𝑥𝑘) = 𝜕𝑓 (𝑥) = [0,∞)𝑥 . Picking any Δ𝑦 ∈ [0,∞)𝑥 and setting 𝑦𝑘 ≔ 𝑦 + 𝑡𝑘Δ𝑦 ,
we deduce that Δ𝑦 ∈ 𝐷 [𝜕𝑓 ] (𝑥 |𝑦) (Δ𝑥). Thus “⊃” holds in the second case of (20.7).
Since Δ𝑦 ∈ −(0,∞)𝑥 is clearly not obtainable with 𝑦𝑘 ∈ [0,∞)𝑥 , also “⊂” holds.

(iii) |𝑥 | = 1 and Δ𝑥 = 0, but 𝑦 ∈ −(0,∞)𝑥 : Then we have 𝑦𝑘 ∈ [0,∞)𝑥 for 𝑘 large enough
since in this case either 𝑥𝑘 = 𝑥 or 𝑥𝑘 ∈ (−1, 1). Thus |𝑦 − 𝑦𝑘 | ≥ |𝑦 | > 0, so the second
limit in (20.12) cannot exist. Therefore the coderivative is empty, which is covered
by the last case of (20.7).

(iv) |𝑥 | = 1 and 𝑥Δ𝑥 > 0: Then the first limit in (20.12) requires that 𝑥𝑘 ∉ dom 𝜕𝑓 , and
hence 𝜕𝑓 (𝑥𝑘) = ∅ for 𝑘 large enough. This is again covered by the last case of (20.7).

(v) |𝑥 | = 1 and 𝑥Δ𝑥 < 0 (the case 𝑥Δ𝑥 = 0 being covered by (i)–(iii)): Since Δ𝑥 ≠ 0 has a
different sign from 𝑥 , it follows from the first limit in (20.12) that 𝑥𝑘 ∈ (−1, 1) for 𝑘
large enough. Consequently, 𝜕𝑓 (𝑥𝑘) = {0}, i.e., 𝑦𝑘 = 0. The limit (20.12) in this case
only exists if 𝑦 = 0, in which case also Δ𝑦 = 0. This is covered by the third case
of (20.7), while 𝑦 ≠ 0 is covered by the last case.

(vi) |𝑥 | < 1: Then 𝑦 = 0 and necessarily 𝑦𝑘 = 0 for 𝑘 large enough. Therefore also Δ𝑦 = 0,
which yields the fourth case in (20.7).

(vii) |𝑥 | > 1: Then 𝜕𝑓 (𝑥) = ∅ and therefore the coderivative is empty as well, yielding
again the final case (20.7).

The expression for 𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦) can be verified using Corollary 20.8 (i). It can also be seen
graphically from Figure 20.2.

By the inner and outer limit characterizations of Corollary 20.9, we now obtain the ex-
pressions for the Clarke graphical derivative 𝐷 [𝜕𝑓 ] (𝑥 |𝑦) and the limiting coderivative
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𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦). Since graph 𝜕𝑓 is locally contained in an affine subspace outside of the “cor-
ner cases” (𝑥, 𝑦) ∈ {(1, 0), (−1, 0)}, only the latter need special inspection. For the Clarke
graphical derivative,we need to writeΔ𝑦 as the limit ofΔ𝑦𝑘 ∈ 𝐷 [𝜕𝑓 ] (𝑥𝑘 , 𝑦𝑘) (Δ𝑥𝑘) for some
Δ𝑥𝑘 → Δ𝑥 and all graph 𝜕𝑓 ∋ (𝑥𝑘 , 𝑦𝑘) → (𝑥, 𝑦). Consider for example (𝑥, 𝑦) = (−1, 0).
Trying both (𝑥𝑘 , 𝑦𝑘) = (−1+ 1/𝑘, 0) and (𝑥𝑘 , 𝑦𝑘) = (−1,−1/𝑘), we see that this is only possi-
ble for (Δ𝑥,Δ𝑦) = (Δ𝑥𝑘 ,Δ𝑦𝑘) = (0, 0). This yields the second case of (20.9). Conversely, for
the limiting coderivative, it suffices to find one such sequence from the Fréchet coderivative.
Choosing for (𝑥, 𝑦) = (−1, 0) again (𝑥𝑘 , 𝑦𝑘) = (−1 + 1/𝑘, 0) and (𝑥𝑘 , 𝑦𝑘) = (−1,−1/𝑘) as
well as the constant sequence (𝑥𝑘 , 𝑦𝑘) = (−1, 0) yields the second, third, and first case of
(20.16), respectively.

Finally, in finite dimensions themapping 𝜕𝑓 is graphically regular if and only if𝐷 [𝜕𝑓 ] (𝑥 |𝑦) =
𝐷 [𝜕𝑓 ] (𝑥 |𝑦) by Corollary 20.11, which is the case exactly when |𝑥 | < 1 or 𝑦 ≠ 0 as
claimed. □

In nonlinear optimization with inequality constraints, the case where 𝜕𝑓 is graphically
regular corresponds precisely to the case of strict complementarity of the minimizer 𝑥 and
the Lagrange multiplier 𝑦 for the constraint 𝑥 ∈ [−1, 1].
We next study the different derivatives and graphical regularity of the subdifferential of
the absolute value function; see Figure 20.3.

Theorem 20.18. Let 𝑓 (𝑥) ≔ |𝑥 | for 𝑥 ∈ ℝ. Then

𝐷 [𝜕𝑓 ] (𝑥 |𝑦) (Δ𝑥) =



{0} if 𝑥 ≠ 0, 𝑦 = sign𝑥,
{0} if 𝑥 = 0, Δ𝑥 ≠ 0, 𝑦 = signΔ𝑥,

(−∞, 0]𝑦 if 𝑥 = 0, Δ𝑥 = 0, |𝑦 | = 1,
ℝ if 𝑥 = 0, Δ𝑥 = 0, |𝑦 | < 1,
∅ if otherwise,

(20.13)

𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦) (𝑦∗) =


{0} if 𝑥 ≠ 0, 𝑦 = sign𝑥,
(−∞, 0]𝑦 if 𝑥 = 0, 𝑦𝑦∗ ≤ 0, |𝑦 | = 1,
ℝ if 𝑥 = 0, 𝑦∗ = 0, |𝑦 | < 1,
∅ otherwise,

(20.14)

𝐷 [𝜕𝑓 ] (𝑥 |𝑦) (Δ𝑥) =


{0} if 𝑥 ≠ 0, 𝑦 = sign𝑥,
{0} if 𝑥 = 0, Δ𝑥 = 0, |𝑦 | = 1,
ℝ if 𝑥 = 0, Δ𝑥 = 0, |𝑦 | < 1,
∅ otherwise,

(20.15)
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and

𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦) (𝑦∗) =



{0} if 𝑥 ≠ 0, 𝑦 = sign𝑥,
{0} if 𝑥 = 0, 𝑦𝑦∗ > 0, |𝑦 | = 1,
(−∞, 0]𝑦 if 𝑥 = 0, 𝑦𝑦∗ < 0, |𝑦 | = 1,
ℝ if 𝑥 = 0, 𝑦∗ = 0, |𝑦 | ≤ 1,
∅ otherwise.

(20.16)

In particular, 𝜕𝑓 is graphically regular if and only if 𝑥 ≠ 0 or |𝑦 | < 1.

Proof. To start with proving (20.13), we recall from Example 4.7 that

(20.17) 𝜕𝑓 (𝑥) = sign(𝑥) =

{1} if 𝑥 > 0
{−1} if 𝑥 < 0
[−1, 1] if 𝑥 = 0.

To calculate the graphical derivative, we use that if 𝑦 ∈ 𝜕𝑓 (𝑥) and Δ𝑦 ∈ 𝐷 [𝜕𝑓 ] (𝑥 |𝑦) (Δ𝑥),
there exist by (20.1) sequences 𝑡𝑘→ 0, 𝑥𝑘 → 𝑥 , and 𝑦𝑘 ∈ 𝜕𝑓 (𝑥 + 𝑡𝑘Δ𝑥𝑘) such that

(20.18) Δ𝑥 = lim
𝑘→∞

𝑥𝑘 − 𝑥
𝑡𝑘

and Δ𝑦 = lim
𝑘→∞

𝑦𝑘 − 𝑦
𝑡𝑘

.

We proceed by case distinction:

(i) 𝑥 ≠ 0 and 𝑦 ≠ sign𝑥 : Then 𝑦 ∉ 𝜕𝑓 (𝑥) and therefore 𝐷 [𝜕𝑓 ] (𝑥 |𝑦) = ∅, which is
covered by the last case of (20.13).

(ii) 𝑥 ≠ 0 and 𝑦 = sign𝑥 : Then for any 𝑥𝑘 → 𝑥 , we have that 𝜕𝑓 (𝑥𝑘) = 𝜕𝑓 (𝑥) = {sign𝑥}
for 𝑘 large enough. Therefore, for any Δ𝑥 ∈ ℝ we have that Δ𝑦 = 0, which is the
first case of (20.13).

(iii) 𝑥 = 0 and Δ𝑥 ≠ 0: Then 𝑥𝑘 ≠ 0 and 𝑦𝑘 = sign𝑥𝑘 = signΔ𝑥 . Therefore the limits in
(20.18) will only exist if |𝑦 | = 1, which holds from 𝑦 = signΔ𝑥 . Thus Δ𝑦 = 0, i.e., we
obtain the second case of (20.13).

(iv) 𝑥 = 0 and Δ𝑥 = 0: Then taking 𝑥𝑘 ≡ 𝑥 , we can choose 𝑦𝑘 ∈ [−1,−1] arbitrarily. If
|𝑦 | = 1, then (𝑦 − 𝑦𝑘) sign 𝑦 ≤ 0, so (20.18) shows that Δ𝑦 sign 𝑦 ≤ 0, which is the
third case of (20.13). If |𝑦 | < 1, we may obtain any Δ𝑦 ∈ ℝ by the limit in (20.18).
This is the fourth case of (20.13).

The expression for 𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦) can be verified using Corollary 20.8 (i). It can also be seen
graphically from Figure 20.3.

By the inner and outer limit characterizations of Corollary 20.9, we now obtain the ex-
pressions for the Clarke graphical derivative 𝐷 [𝜕𝑓 ] (𝑥 |𝑦) and the limiting coderivative
𝐷∗ [𝜕𝑓 ] (𝑥 |𝑦). Since graph 𝜕𝑓 is locally contained in an affine subspace outside of the “cor-
ner cases” (𝑥, 𝑦) ∈ {(0, 1), (0,−1)}, only the latter need special inspection. For the Clarke
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graphical derivative,we need to writeΔ𝑦 as the limit ofΔ𝑦𝑘 ∈ 𝐷 [𝜕𝑓 ] (𝑥𝑘 , 𝑦𝑘) (Δ𝑥𝑘) for some
Δ𝑥𝑘 → Δ𝑥 and all graph 𝜕𝑓 ∋ (𝑥𝑘 , 𝑦𝑘) → (𝑥, 𝑦). Consider for example (𝑥, 𝑦) = (0,−1).
Trying both (𝑥𝑘 , 𝑦𝑘) = (0,−1+ 1/𝑘) and (𝑥𝑘 , 𝑦𝑘) = (−1/𝑘,−1), we see that this is only possi-
ble for (Δ𝑥,Δ𝑦) = (Δ𝑥𝑘 ,Δ𝑦𝑘) = (0, 0). This yields the third case of (20.15). Conversely, for
the limiting coderivative, it suffices to find one such sequence from the Fréchet coderivative.
Choosing for (𝑥, 𝑦) = (0,−1) again (𝑥𝑘 , 𝑦𝑘) = (0,−1 + 1/𝑘) and (𝑥𝑘 , 𝑦𝑘) = (−1/𝑘, 1) as well
as the constant sequence (𝑥𝑘 , 𝑦𝑘) = (−1, 0) yields the fourth, second, and third case of
(20.16), respectively.

Finally, in finite dimensions themapping 𝜕𝑓 is graphically regular if and only if𝐷 [𝜕𝑓 ] (𝑥 |𝑦) =
𝐷 [𝜕𝑓 ] (𝑥 |𝑦) by Corollary 20.11, which is the case exactly when 𝑥 ≠ 0 or |𝑦 | < 1 as
claimed. □

20.4 relation to subdifferentials

All of the subdifferentials that we have studied in Part III can be constructed from the
corresponding normal cones to the epigraph of a functional 𝐽 : 𝑋 → ℝ as in the convex
case; see Lemma 4.10. For the Fréchet and limiting subdifferentials, it is easy to see the
relationships

𝜕𝐹 𝐽 (𝑥) = {𝑥∗ ∈ 𝑋 ∗ | (𝑥∗,−1) ∈ 𝑁epi 𝐽 (𝑥, 𝐽 (𝑥))},(20.19)
𝜕𝑀 𝐽 (𝑥) = {𝑥∗ ∈ 𝑋 ∗ | (𝑥∗,−1) ∈ 𝑁epi 𝐽 (𝑥, 𝐽 (𝑥))},(20.20)

from the corresponding definitions. For the Clarke subdifferential, however, we have to
work a bit harder.

First, we define for 𝐴 ⊂ 𝑋 and 𝑥 ∈ 𝑋 the Clarke normal cone

(20.21) 𝑁𝐶
𝐴 (𝑥) ≔ 𝑇𝐴 (𝑥)◦.

We can now extend the definition of the Clarke subdifferential to arbitrary functionals
𝐽 : 𝑋 → ℝ on Gâteaux smooth Banach spaces via the Clarke normal cone to their
epigraph.

Lemma 20.19. Let 𝑋 be a reflexive and Gâteaux smooth Banach space and let 𝐽 : 𝑋 → ℝ be
locally Lipschitz continuous around 𝑥 ∈ 𝑋 . Then

𝜕𝐶 𝐽 (𝑥) = {𝑥∗ ∈ 𝑋 ∗ | (𝑥∗,−1) ∈ 𝑁𝐶
epi 𝐽 (𝑥, 𝐽 (𝑥))}.

Proof. The Clarke tangent cone to epi 𝐽 by definition is

𝑇epi 𝐽 (𝑥, 𝐽 (𝑥)) =
(Δ𝑥,Δ𝑡) ∈ 𝑋 ×ℝ

������ for all 𝜏𝑘→ 0, 𝑥𝑘 → 𝑥, 𝐽 (𝑥𝑘) ≤ 𝑡𝑘 → 𝐽 (𝑥)
there exist 𝑥𝑘 ∈ 𝑋 and 𝑡𝑘 ≥ 𝐽 (𝑥𝑘)

with (𝑥𝑘 − 𝑥𝑘)/𝜏𝑘 → Δ𝑥 and (𝑡𝑘 − 𝑡𝑘)/𝜏𝑘 → Δ𝑡

 .
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If (Δ𝑥,Δ𝑡) ∈ 𝑇epi 𝐽 (𝑥, 𝐽 (𝑥)), then replacing 𝑡𝑘 by 𝑡𝑘 + 𝜏𝑘 (Δ𝑠 − Δ𝑡) ≥ 𝐽 (𝑥𝑘) shows that
also (Δ𝑥,Δ𝑠) ∈ 𝑇epi 𝐽 (𝑥, 𝐽 (𝑥)) for all Δ𝑠 ≥ Δ𝑡 . Thus we may make the minimal choices
𝑡𝑘 = 𝐽 (𝑥𝑘) and 𝑡𝑘 = 𝐽 (𝑥𝑘) to see that

𝑇epi 𝐽 (𝑥, 𝐽 (𝑥)) =
(Δ𝑥,Δ𝑡) ∈ 𝑋 ×ℝ

������ for all 𝜏𝑘→ 0, 𝑥𝑘 → 𝑥 there exist 𝑥𝑘 ∈ 𝑋
with (𝑥𝑘 − 𝑥𝑘)/𝜏𝑘 → Δ𝑥

and lim sup𝑘→∞(𝐽 (𝑥𝑘) − 𝐽 (𝑥𝑘))/𝜏𝑘 ≤ Δ𝑡

 .
Since 𝐽 is locally Lipschitz continuous, it suffices to take 𝑥𝑘 = 𝑥𝑘 + 𝜏𝑘Δ𝑥 to obtain

𝑇epi 𝐽 (𝑥, 𝐽 (𝑥)) = {(Δ𝑥,Δ𝑡) ∈ 𝑋 ×ℝ | 𝑥 ∈ 𝑋, Δ𝑡 ≥ 𝐽 ◦(𝑥 ;Δ𝑥)} = epi[𝐽 ◦(𝑥 ; · )] .

Hence (𝑥∗,−1) ∈ 𝑁𝐶
epi 𝐽 (𝑥, 𝐽 (𝑥)) = 𝑇epi 𝐽 (𝑥, 𝐽 (𝑥))◦ if and only if ⟨𝑥∗,Δ𝑥⟩𝑋 ≤ 𝐽 ◦(𝑥 ;Δ𝑥) for

all 𝑥 ∈ 𝑋 , which by definition is equivalent to 𝑥∗ ∈ 𝜕𝐶 𝐽 (𝑥). □

We furthermore have the following relationship between the Clarke and limiting normal
cones.

Corollary 20.20. Let 𝑋 be a reflexive and Gâteaux smooth Banach space and 𝐴 ⊂ 𝑋 be closed
near 𝑥 ∈ 𝐴. Then

𝑁𝐶
𝐴 (𝑥) = 𝑁𝐴 (𝑥)◦◦ = cl co∗ 𝑁𝐴 (𝑥),

where cl co∗ denotes the weak-∗ closed convex hull.

Proof. First, 𝑁𝐴 (𝑥) ≠ ∅ since 𝑥 ∈ 𝐴. Furthermore, cl co∗ 𝑁𝐴 (𝑥) is the smallest weak-∗-
closed and convex set that contains 𝑁𝐴 (𝑥), and therefore Theorem 1.8 and Lemma 1.10
imply 𝑁𝐴 (𝑥)◦◦ = cl co∗ 𝑁𝐴 (𝑥)◦◦ = cl co∗ 𝑁𝐴 (𝑥). The relationship 𝑁𝐶

𝐴
(𝑥) = 𝑁𝐴 (𝑥)◦◦ is an

immediate consequence of Theorem 18.19. □

Assuming that 𝑋 is Gâteaux smooth, we now have everything at hand to give a proof of
Theorem 16.10, which characterizes the Clarke subdifferential as the weak-∗ closed convex
hull of the limiting subdifferential.

Corollary 20.21. Let 𝑋 be a reflexive and Gâteaux smooth Banach space and 𝐽 : 𝑋 → ℝ be
locally Lipschitz continuous around 𝑥 ∈ 𝑋 . Then 𝜕𝐶 𝐽 (𝑥) = cl∗ co 𝜕𝑀 𝐽 (𝑥).

Proof. Together, Lemma 20.19 and Corollary 20.20 and (20.20) directly yield

𝜕𝐶 𝐽 (𝑥) = {𝑥∗ ∈ 𝑋 ∗ | (𝑥∗,−1) ∈ 𝑁𝐶
epi 𝐽 (𝑥, 𝐽 (𝑥))}

= {𝑥∗ ∈ 𝑋 ∗ | (𝑥∗,−1) ∈ cl∗ co𝑁epi 𝐽 (𝑥, 𝐽 (𝑥))}
= cl∗ co{𝑥∗ ∈ 𝑋 ∗ | (𝑥∗,−1) ∈ 𝑁epi 𝐽 (𝑥, 𝐽 (𝑥))}
= cl∗ co 𝜕𝑀 𝐽 (𝑥). □
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20 derivatives and coderivatives of set-valued mappings

(The Gâteaux smoothness of 𝑋 can be relaxed to 𝑋 being an Asplund space following
Remark 17.8.)

From the corresponding definitions, it also follows that

𝜕𝐹 𝐽 (𝑥) = 𝐷∗ [epif 𝐽 ] (𝑥 |𝐽 (𝑥)) (1),
𝜕𝑀 𝐽 (𝑥) = 𝐷∗ [epif 𝐽 ] (𝑥 |𝐽 (𝑥)) (1),

where the epigraphical function

epif 𝐽 (𝑥) ≔ {𝑡 ∈ ℝ | 𝑡 ≥ 𝐽 (𝑥)}

satisfies graph[epif 𝐽 ] = epi 𝐽 . Thus the results of the following Chapters 23 and 25 can be
used to derive the missing calculus rules for the Fréchet and limiting subdifferentials. In
particular, Theorem 25.14 will provide the missing proof of the sum rule (Theorem 16.13)
for the limiting subdifferential.
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20 derivatives and coderivatives of set-valued mappings

(a) graphical derivative 𝐷 [𝜕𝑓 ] (b) convex hull co𝐷 [𝜕𝑓 ] (c) Fréchet coderivative 𝐷∗ [𝜕𝑓 ]

(d) limiting coderivative
𝐷∗ [𝜕𝑓 ]

(e) convex hull co𝐷∗ [𝜕𝑓 ] (f) Clarke graphical derivative
𝐷 [𝜕𝑓 ]

Figure 20.2: Illustration of the different graphical derivatives and coderivatives of 𝜕𝑓 for
𝑓 = 𝛿 [−1,1] . The dashed line is graph 𝜕𝑓 . The dots indicate the base points (𝑥, 𝑦)
where 𝐷 [𝜕𝑓 ] (𝑥 |𝑦) is calculated, and the thick arrows and filled-in areas the di-
rections of (Δ𝑥,Δ𝑦) (resp. (Δ𝑥,−Δ𝑦) for the coderivatives) relative to the base
point. Observe that there is no graphical regularity at (𝑥, 𝑦) ∈ {(−1, 0), (1, 0)}.
Everywhere else, 𝜕𝑓 is graphically regular. Observe also that cones in the last
figures of each row are polar to the cones in the first and the second figures
on the same row.
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(a) graphical derivative 𝐷 [𝜕𝑓 ] (b) convex hull co𝐷 [𝜕𝑓 ] (c) Fréchet coderivative 𝐷∗ [𝜕𝑓 ]

(d) limiting coderivative
𝐷∗ [𝜕𝑓 ]

(e) convex hull co𝐷∗ [𝜕𝑓 ] (f) Clarke graphical derivative
𝐷 [𝜕𝑓 ]

Figure 20.3: Illustration of the different graphical derivatives and coderivatives of 𝜕𝑓 for
𝑓 = | · |. The dashed line is graph 𝜕𝑓 . The dots indicate the base points (𝑥, 𝑦)
where 𝐷 [𝜕𝑓 ] (𝑥 |𝑦) is calculated, and the thick arrows and filled-in areas the di-
rections of (Δ𝑥,Δ𝑦) (resp. (Δ𝑥,−Δ𝑦) for the coderivatives) relative to the base
point. Observe that there is no graphical regularity at (𝑥, 𝑦) ∈ {(0,−1), (0, 1)}.
Everywhere else, 𝜕𝑓 is graphically regular. Observe that cones in the last fig-
ures of each row are polar to the cones in the first and the second figures on
the same row.
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21 DERIVATIVES AND CODERIVATIVES OF

POINTWISE-DEFINED MAPPINGS

Just as for tangent and normal cones, the relationships between the basic and limiting
derivatives and coderivatives are less complete in infinite-dimensional spaces than in finite-
dimensional ones. In this chapter, we apply the results of Chapter 19 to derive pointwise
characterizations analogous to Theorem 4.11 for the basic derivatives of pointwise-defined
set-valued mappings, which (only) in the case of graphically regularity transfer to their
limiting variants.

21.1 proto-differentiability

For our superposition formulas, we need some regularity from the finite-dimensional
mappings. The appropriate notion is that of proto-differentiability, which corresponds to
the geometric derivability of the underlying tangent cone.

Let 𝑋,𝑌 be Banach spaces. We say that a set-valued mapping 𝐹 : 𝑋 ⇒ 𝑌 is proto-
differentiable at 𝑥 ∈ 𝑋 for 𝑦 ∈ 𝐹 (𝑥) if

for every Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) and 𝜏𝑘→ 0,(21.1a)

there exist 𝑥𝑘 ∈ 𝑋 with 𝑥𝑘 − 𝑥
𝜏𝑘

→ Δ𝑥 and 𝑦𝑘 ∈ 𝐹 (𝑥𝑘) with
𝑦𝑘 − 𝑦
𝜏𝑘

→ Δ𝑦.(21.1b)

In other words, in addition to the basic limit (20.1) defining 𝐷𝐹 (𝑥 |𝑦), a corresponding inner
limit holds in the graph space.

By application of Lemma 19.1 and Corollary 19.3, we immediately obtain the following
equivalent characterization.

Corollary 21.1. Let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 ⇒ 𝑌 . Then 𝐹 is proto-differentiable at
every 𝑥 ∈ 𝑋 for every 𝑦 ∈ 𝐹 (𝑥) if and only if graph 𝐹 is geometrically derivable at (𝑥, 𝑦). In
particular, if 𝐹 is graphically regular at (𝑥, 𝑦), then 𝐹 is proto-differentiable at 𝑥 for 𝑦 .

Clearly, differentiable single-valued mappings are proto-differentiable. Another large class
are maximally monotone set-valued mappings on Hilbert spaces.
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21 derivatives and coderivatives of pointwise-defined mappings

Lemma 21.2. Let 𝑋 be a Hilbert space and let 𝐴 : 𝑋 ⇒ 𝑋 be maximally monotone. Then 𝐴 is
proto-differentiable at any 𝑥 ∈ dom𝐴 for any 𝑥∗ ∈ 𝐴(𝑥).

Proof. Let Δ𝑥∗ ∈ 𝐷 [𝐴] (𝑥 |𝑥∗) (Δ𝑥). By definition, there then exist 𝜏𝑘→ 0 and (𝑥𝑘 , 𝑥∗𝑘 ) ∈
graph𝐴 such that (𝑥𝑘 − 𝑥)/𝜏𝑘 → Δ𝑥 and (𝑥∗

𝑘
− 𝑥∗)/𝜏𝑘 → Δ𝑥∗. To show that 𝐴 is proto-

differentiable, we will construct for an arbitrary sequence 𝜏𝑘→ 0 sequences (𝑥𝑘 , 𝑥∗𝑘 ) ∈
graph𝐴 such that (𝑥𝑘 − 𝑥)/𝜏𝑘 → Δ𝑥 and (𝑥∗

𝑘
− 𝑥∗)/𝜏𝑘 → Δ𝑥∗. We will do so using

resolvents. Similarly to Lemma 6.21, we have that

𝑥∗ ∈ 𝐴(𝑥) ⇔ 𝑥 ∈ 𝐴−1(𝑥∗) ⇔ 𝑥∗ + 𝑥 ∈ {𝑥∗} +𝐴−1(𝑥∗)
⇔ 𝑥∗ ∈ R𝐴−1 (𝑥∗ + 𝑥).

Since𝐴 is maximallymonotone and𝑋 is reflexive,𝐴−1 is maximallymonotone by Lemma 6.9
as well, and thus the resolvent R𝐴−1 is single-valued by Corollary 6.16. We therefore take

𝑥𝑘 ≔ 𝑥 + 𝜏𝑘
𝜏𝑘

(𝑥𝑘 − 𝑥) +
𝜏𝑘

𝜏𝑘
𝑥∗
𝑘
+

(
1 − 𝜏𝑘

𝜏𝑘

)
𝑥∗ − 𝑥∗

𝑘
and

𝑥∗
𝑘
≔ R𝐴−1

(
𝑥 + 𝜏𝑘

𝜏𝑘
(𝑥𝑘 − 𝑥) +

𝜏𝑘

𝜏𝑘
𝑥∗
𝑘
+

(
1 − 𝜏𝑘

𝜏𝑘

)
𝑥∗ − 𝜏𝑘 (Δ𝑥 + Δ𝑥∗)

)
+ 𝜏𝑘Δ𝑥∗

= R𝐴−1 (𝑥∗
𝑘
+ 𝑥𝑘 − 𝜏𝑘 (Δ𝑥 + Δ𝑥∗)) + 𝜏𝑘Δ𝑥∗.

Since resolvents of maximally monotone operators are 1-Lipschitz by Lemma 6.15, we have

lim
𝑘→∞

∥𝑥∗
𝑘
− 𝑥∗ − 𝜏𝑘Δ𝑥∗∥𝑋

𝜏𝑘
= lim
𝑘→∞

∥R𝐴−1 (𝑥∗
𝑘
+ 𝑥𝑘 − 𝜏𝑘 (Δ𝑥 + Δ𝑥∗)) − R𝐴−1 (𝑥∗ + 𝑥)∥𝑋

𝜏𝑘

≤ lim
𝑘→∞

∥(𝑥∗
𝑘
+ 𝑥𝑘 − 𝜏𝑘 (Δ𝑥 + Δ𝑥∗)) − (𝑥∗ + 𝑥)∥𝑋

𝜏𝑘

= lim
𝑘→∞

∥(𝑥𝑘 − 𝑥 − 𝜏𝑘Δ𝑥) + (𝑥∗
𝑘
− 𝑥∗ − 𝜏𝑘Δ𝑥∗)∥𝑋

𝜏𝑘
= 0.

Likewise, by inserting the definition of 𝑥𝑘 and using the triangle inequality, we obtain

lim
𝑘→∞

∥𝑥𝑘 − 𝑥 − 𝜏𝑘Δ𝑥 ∥𝑋
𝜏𝑘

≤ lim
𝑘→∞

∥(𝑥𝑘 − 𝑥 − 𝜏𝑘Δ𝑥) + (𝑥∗
𝑘
− 𝑥∗ − 𝜏𝑘Δ𝑥∗)∥𝑋

𝜏𝑘

+ lim
𝑘→∞

∥𝑥∗
𝑘
− 𝑥∗ − 𝜏𝑘Δ𝑥∗∥𝑋

𝜏𝑘

= 0.

This shows the claimed proto-differentiability. □

Since subdifferentials of convex and lower semicontinuous functionals on reflexive Banach
spaces are maximally monotone by Theorem 6.13, we immediately obtain the following.
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21 derivatives and coderivatives of pointwise-defined mappings

Corollary 21.3. Let 𝑋 be a Hilbert space and let 𝐽 : 𝑋 → ℝ be proper, convex, and lower
semicontinuous. Then 𝜕𝐽 is proto-differentiable at any 𝑥 ∈ dom 𝐽 for any 𝑥∗ ∈ 𝜕𝐽 (𝑥).

This corollary combined with Theorems 20.17 and 20.18 shows that proto-differentiability
is a strictly weaker property than graphical regularity.

21.2 graphical derivatives and coderivatives

As a corollary of the tangent and normal cone representations from Theorems 19.5 and 19.6,
we obtain explicit characterizations of the graphical derivative and the Fréchet coderivative
of a class of pointwise-defined set-valued mappings. In the following, let Ω ⊂ ℝ𝑑 be an
open and bounded domain and write again 𝑝∗ for the conjugate exponent of 𝑝 ∈ (1,∞)
satisfying 1/𝑝 + 1/𝑝∗ = 1.

Theorem 21.4. Let 𝐹 : 𝐿𝑝 (Ω) ⇒ 𝐿𝑞 (Ω) for 𝑝, 𝑞 ∈ (1,∞) have the form

𝐹 (𝑢) = {𝑤 ∈ 𝐿𝑞 (Ω) | 𝑤 (𝑥) ∈ 𝑓 (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω}

for some pointwise almost everywhere proto-differentiable mapping 𝑓 : ℝ ⇒ ℝ. Then for
every𝑤∗ ∈ 𝐿𝑞∗ (Ω) and Δ𝑢 ∈ 𝐿𝑝 (Ω),

𝐷∗𝐹 (𝑢 |𝑤) (𝑤∗) =
{
𝑢∗ ∈ 𝐿𝑝∗ (Ω)

���� 𝑢∗(𝑥) ∈ 𝐷∗𝑓 (𝑢 (𝑥) |𝑤 (𝑥)) (𝑤∗(𝑥))
for a.e. 𝑥 ∈ Ω

}
,(21.2a)

𝐷𝐹 (𝑢 |𝑤) (Δ𝑢) =
{
Δ𝑤 ∈ 𝐿𝑞 (Ω)

���� Δ𝑤 (𝑥) ∈ 𝐷𝑓 (𝑢 (𝑥) |𝑤 (𝑥)) (Δ𝑢 (𝑥))
for a.e. 𝑥 ∈ Ω

}
.(21.2b)

Moreover, if 𝑓 is graphically regular at 𝑢 (𝑥) for 𝑤 (𝑥) for almost every 𝑥 ∈ Ω, then 𝐹 is
graphically regular at 𝑢 for𝑤 and

𝐷𝐹 (𝑢 |𝑤) = 𝐷𝑤𝐹 (𝑢 |𝑤) = 𝐷𝐹 (𝑢 |𝑤),
𝐷∗𝐹 (𝑢 |𝑤) = 𝐷∗𝐹 (𝑢 |𝑤).

Proof. First, graph 𝑓 is geometrically derivable by Corollary 21.1 due to the assumed proto-
differentiability of 𝑓 . We further have

graph 𝐹 =
{(𝑢,𝑤) ∈ 𝐿𝑝 (Ω) × 𝐿𝑞 (Ω)

�� (𝑢 (𝑥),𝑤 (𝑥)) ∈ graph 𝑓 for a.e. 𝑥 ∈ Ω
}
.

Now (21.2b) and (21.2a) follow fromTheorems 19.5 and 19.6, respectively, for𝐶 : 𝑥 ↦→ graph 𝑓
and𝑈 = graph 𝐹 togetherwith definitions of the graphical derivative in terms of the tangent
cone the Fréchet coderivative in terms of the Fréchet normal cone. The remaining claims
under graphical regularity follow similarly from Lemma 19.11. □
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21 derivatives and coderivatives of pointwise-defined mappings

The above result directly applies to second derivatives of integral functionals.

Corollary 21.5. Let 𝐽 : 𝐿𝑝 (Ω) → ℝ for 𝑝 ∈ (1,∞) be given by

𝐽 (𝑢) =
∫
Ω
𝑗 (𝑢 (𝑥)) 𝑑𝑥

for some proper, convex, and lower semicontinuous integrand 𝑗 : ℝ → (−∞,∞]. Then

𝐷∗ [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) =
{
Δ𝑢∗ ∈ 𝐿𝑝∗ (Ω)

���� Δ𝑢∗(𝑥) ∈ 𝐷∗ [𝜕 𝑗] (𝑢 (𝑥) |𝑢∗(𝑥)) (Δ𝑢 (𝑥))
for a.e. 𝑥 ∈ Ω

}
,

𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) =
{
Δ𝑢∗ ∈ 𝐿𝑝∗ (Ω)

���� Δ𝑢∗(𝑥) ∈ 𝐷 [𝜕 𝑗] (𝑢 (𝑥) |𝑢∗(𝑥)) (Δ𝑢 (𝑥))
for a.e. 𝑥 ∈ Ω

}
.

Moreover, if 𝜕 𝑗 is graphically regular at 𝑢 (𝑥) for 𝑢∗(𝑥) for almost every 𝑥 ∈ Ω, then 𝜕𝐽 is
graphically regular at 𝑢 for 𝑢∗ and

𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) = 𝐷𝑤 [𝜕𝐽 ] (𝑢 |𝑢∗) = 𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗),
𝐷∗ [𝜕𝐽 ] (𝑢 |𝑢∗) = 𝐷∗ [𝜕𝐽 ] (𝑢 |𝑢∗).

Proof. By Corollary 21.3, 𝜕 𝑗 is proto-differentiable. Since

𝜕𝐽 (𝑢) =
{
𝑢∗ ∈ 𝐿𝑝∗ (Ω) | 𝑢∗(𝑥) ∈ 𝜕 𝑗 (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω

}
by Theorem 4.11 and therefore

graph[𝜕𝐽 ] =
{
(𝑢,𝑢∗) ∈ 𝐿𝑝 (Ω) × 𝐿𝑝∗ (Ω) | 𝑢∗(𝑥) ∈ 𝜕 𝑗 (𝑢 (𝑥)) for a.e. 𝑥 ∈ Ω

}
,

the remaining claims follow from Theorem 21.4 with 𝐹 = 𝜕𝐽 , 𝑓 = 𝜕 𝑗 , and 𝑞 = 𝑝∗. □

Remark 21.6. The case of vector-valued and spatially-varying set-valued mappings and convex
integrands can be found in [Clason and Valkonen, 2017b].

We illustrate this result with the usual examples. To keep the presentation simple, we focus
on the case 𝑝∗ = 𝑝 = 2 such that 𝐿2(Ω) is a Hilbert space and we can identify 𝑋 � 𝑋 ∗.

First, we immediately obtain from Corollary 20.16 together with Corollary 21.5

Corollary 21.7. Let 𝐽 : 𝐿2(Ω) → ℝ be given by

𝐽 (𝑢) ≔
∫
Ω

1
2 |𝑢 (𝑥) |

2 𝑑𝑥.

Then for 𝑢∗ = 𝑢 and all Δ𝑢 ∈ 𝐿2(Ω), we have
𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) = 𝐷𝑤 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) = 𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) = Δ𝑢,

𝐷∗ [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) = 𝐷∗ [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) = Δ𝑢.

If 𝑢∗ ≠ 𝑢, all the derivatives and coderivatives are empty.
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21 derivatives and coderivatives of pointwise-defined mappings

From Theorem 20.17, we also obtain expressions for the basic derivatives of indicator
functionals for pointwise constraints. For the limiting derivatives, we only obtain expres-
sions at points where graphical regularity (corresponding to strict complementarity) holds;
cf. Remark 19.14.

Corollary 21.8. Let 𝐽 : 𝐿2(Ω) → ℝ be given by

𝐽 (𝑢) ≔
∫
Ω
𝛿 [−1,1] (𝑢 (𝑥)) 𝑑𝑥.

Let 𝑢 ∈ dom 𝐽 and 𝑢∗ ∈ 𝜕𝐽 (𝑢). Then Δ𝑢∗ ∈ 𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) ⊂ 𝐿2(Ω) if and only if for
almost every 𝑥 ∈ Ω,

Δ𝑢∗(𝑥) ∈



ℝ if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) ∈ (0,∞)𝑢 (𝑥), Δ𝑢 (𝑥) = 0,
[0,∞)𝑢 (𝑥) if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) = 0, Δ𝑢 (𝑥) = 0,
{0} if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) = 0, 𝑢 (𝑥)Δ𝑢 (𝑥) < 0,
{0} if |𝑢 (𝑥) | < 1, 𝑢∗(𝑥) = 0,
∅ otherwise.

Similarly, Δ𝑢 ∈ 𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢∗) ⊂ 𝐿2(Ω) if and only if for almost every 𝑥 ∈ Ω,

Δ𝑢 (𝑥) ∈


ℝ, if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) ∈ (0,∞)𝑢 (𝑥),Δ𝑢∗(𝑥) = 0,
[0,∞)𝑢 (𝑥) if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) = 0, 𝑢 (𝑥)Δ𝑢∗(𝑥) ≥ 0,
{0} if |𝑢 (𝑥) | < 1, 𝑢∗(𝑥) = 0,
∅ otherwise.

If either |𝑢 (𝑥) | < 1 or 𝑢∗(𝑥) ≠ 0, then Δ𝑢∗ ∈ 𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) = 𝐷∗ [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) if and
only if for almost every 𝑥 ∈ Ω,

Δ𝑢∗(𝑥) ∈

ℝ if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) ∈ (0,∞)𝑢 (𝑥), Δ𝑢 (𝑥) = 0,
{0} if |𝑢 (𝑥) | < 1, Δ𝑢 (𝑥) ∈ ℝ,

∅ otherwise.

A similar characterization holds for the basic derivatives of the 𝐿1 norm (as a functional on
𝐿2(Ω)).

Corollary 21.9. Let 𝐽 : 𝐿2(Ω) → ℝ be given by

𝐽 (𝑢) ≔
∫
Ω
|𝑢 (𝑥) | 𝑑𝑥.
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21 derivatives and coderivatives of pointwise-defined mappings

Let 𝑢 ∈ dom 𝐽 and 𝑢∗ ∈ 𝜕𝐽 (𝑢). Then Δ𝑢∗ ∈ 𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) ⊂ 𝐿2(Ω) if and only if for
almost every 𝑥 ∈ Ω,

Δ𝑢∗(𝑥) ∈



ℝ if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) ∈ (0,∞)𝑢 (𝑥), Δ𝑢 (𝑥) = 0,
[0,∞)𝑢 (𝑥) if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) = 0, Δ𝑢 (𝑥) = 0,
{0} if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) = 0, 𝑢 (𝑥)Δ𝑢 (𝑥) < 0,
{0} if |𝑢 (𝑥) | < 1, 𝑢∗(𝑥) = 0,
∅ otherwise,

Similarly, Δ𝑢 ∈ 𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢∗) ⊂ 𝐿2(Ω) if and only if for almost every 𝑥 ∈ Ω,

Δ𝑢 (𝑥) ∈


ℝ, if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) ∈ (0,∞)𝑢 (𝑥),Δ𝑢∗(𝑥) = 0,
[0,∞)𝑢 (𝑥) if |𝑢 (𝑥) | = 1, 𝑢∗(𝑥) = 0, 𝑢 (𝑥)Δ𝑢∗(𝑥) ≥ 0,
{0} if |𝑢 (𝑥) | < 1, 𝑢∗(𝑥) = 0,
∅ otherwise,

If either 𝑢 (𝑥) ≠ 0 or |𝑢∗(𝑥) | < 1, then Δ𝑢∗ ∈ 𝐷 [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) = 𝐷∗ [𝜕𝐽 ] (𝑢 |𝑢∗) (Δ𝑢) if and
only if for almost every 𝑥 ∈ Ω,

Δ𝑢∗(𝑥) ∈

{0} if 𝑢 (𝑥) ≠ 0, 𝑢∗(𝑥) = sign𝑢 (𝑥), Δ𝑢 (𝑥) ∈ ℝ,

ℝ if 𝑢 (𝑥) = 0, |𝑢∗(𝑥) | < 1, Δ𝑢 (𝑥) = 0,
∅ otherwise.

Obtaining similar characterizations for derivatives of the Clarke subdifferential of integral
functions with nonsmooth nonconvex integrands requires verifying proto-differentiability
of the pointwise subdifferential mapping, which is challenging since the Clarke subdif-
ferential in general does not have the nice properties of the convex subdifferential as a
set-valued mapping. For problems of the form (P) in the introduction, it is therefore simpler
to first apply the calculus rules from the following chapters (assuming they are applicable)
and to then use the above results for the derivatives of the convex or smooth component
mappings.
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22 CALCULUS FOR THE GRAPHICAL DERIVATIVE

We now turn to calculus such as sum and product rules. We concentrate on the situation
where at least one of the mappings involved is classically differentiable, which allows exact
results and is already useful in practice. For a much fuller picture of infinite-dimensional
calculus in high generality, the reader is referred to [Mordukhovich, 2006]. For further
finite-dimensional calculus we refer to [Mordukhovich, 2018; Rockafellar andWets, 1998].

The rules we develop for the various (co)derivatives are in each case based on linear
transformation formulas of the underlying cones as well as on a fundamental composition
lemma. These fundamental lemmas, however, require further regularity assumptions that
are satisfied in particular by (continuously) Fréchet differentiable single-valued mappings
and their inverses. For the sake of presentation, we treat each derivative in its own chapter,
starting with the relevant regularity concept, then proving the fundamental lemmas, and
finally deriving the calculus rules. We start with the (basic) graphical derivative.

22.1 semi-differentiability

Let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 ⇒ 𝑌 . We say that 𝐹 is semi-differentiable at 𝑥 ∈ 𝑋 for
𝑦 ∈ 𝐹 (𝑥) if

for every Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) and 𝑥𝑘 → 𝑥, 𝜏𝑘→ 0 with 𝑥𝑘 − 𝑥
𝜏𝑘

→ Δ𝑥(22.1a)

there exist 𝑦𝑘 ∈ 𝐹 (𝑥𝑘) with 𝑦𝑘 − 𝑦
𝜏𝑘

→ Δ𝑦.(22.1b)

In other words, 𝐷𝐹 (𝑥 |𝑦) is a full limit.

Lemma 22.1. A mapping 𝐹 : 𝑋 ⇒ 𝑌 is semi-differentiable at 𝑥 ∈ 𝑋 for 𝑦 ∈ 𝑌 if and only if

(22.2) 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) = lim
𝜏→ 0,Δ𝑥→Δ𝑥

𝐹 (𝑥 + 𝜏Δ𝑥) − 𝑦
𝜏

(Δ𝑥 ∈ 𝑋 ).

Proof. First, note that (20.1) shows that 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) is the outer limit corresponding to
(22.2). Similarly, by (22.1), 𝐹 is semidifferentiable if 𝐷𝐹 (𝑥 |𝑦) is the corresponding inner
limit. (For any sequence 𝜏𝑘→ 0, we can relate 𝑥𝑘 in (22.1) and Δ𝑥 =: Δ𝑥𝑘 in (22.2) via
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22 calculus for the graphical derivative

Δ𝑥𝑘 = (𝑥𝑘 − 𝑥)/𝜏𝑘 .) Hence, 𝐹 is semidifferentiable if and only if the outer limit in (20.1) is a
full limit. □

Compared to the definition of proto-differentiability in Section 21.1, we now require that
Δ𝑦 can be written as the limit of a difference quotient taken from 𝐹 (𝑥𝑘) for any sequence
{𝑥𝑘} similarly realizing Δ𝑥 (while for proto-differentiability, this only has to be possible
for one such sequence). Hence, semi-differentiability is a stronger property than proto-
differentiability with the former implying the latter.

Example 22.2 (proto-differentiable but not semi-differentiable). Let 𝐹 : ℝ⇒ ℝ have
graph 𝐹 = ℚ × {0}. Then 𝐹 is proto-differentiable at any 𝑥 ∈ ℚ by the density of ℚ in
ℝ. However, 𝐹 is not semi-differentiable, as we can take 𝑥𝑘 ∉ ℚ in (22.1).

To characterize the semi-differentiability of the inverses of single-valued mappings, we
require the next lemma. We say that 𝐴 ∈ 𝕃(𝑌 ;𝑋 ) has a right-inverse 𝐴† ∈ 𝕃(𝑋 ;𝑌 ) if
𝐴𝐴† = Id. Then 𝐴∗ ∈ 𝕃(𝑌 ∗;𝑋 ∗) has the left-inverse 𝐴†∗ ∈ 𝕃(𝑋 ∗;𝑌 ∗), i.e., 𝐴†∗𝐴∗ = Id.

Lemma 22.3. On Banach spaces 𝑋 and 𝑌 , suppose 𝐹 : 𝑋 → 𝑌 is continuously differentiable
at 𝑥 and 𝐹 ′(𝑥) ∈ 𝕃(𝑋 ;𝑌 ) has a right-inverse 𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ). For 𝑃 ≔ Id − 𝐹 ′(𝑥)†𝐹 ′(𝑥),
define

𝐹 : 𝑋 → 𝑌 × ker 𝐹 ′(𝑥), 𝐹 (𝑥) ≔ (𝐹 (𝑥), 𝑃𝑥) for all 𝑥 ∈ 𝑋 .
Then 𝐹 is bijective in a neighborhood 𝑈 of 𝐹 (𝑥) with a continuously differentiable inverse
satisfying 𝐹−1(�̃�) ∈ 𝐹−1(�̃�) for all �̃� = (�̃�, 𝑞) ∈ 𝑈 as well as

(22.3) (𝐹−1)′(𝐹 (𝑥)) (Δ𝑦,Δ𝑞) = 𝐹 ′(𝑥)†Δ𝑦 + Δ𝑞 for all (Δ𝑦,Δ𝑥) ∈ 𝑌 × ker 𝐹 ′(𝑥).

Proof. Let 𝐴 ≔ 𝐹 ′(𝑥) and 𝐴† ≔ 𝐹 ′(𝑥)†. Then 𝑃 = Id − 𝐴†𝐴 is a projection into ker𝐴 =
ker 𝐹 ′(𝑥), in particular, 𝐴𝑃 = 0. We further define

𝑀 : 𝑌 × ker𝐴 → 𝑋, 𝑀 (�̃�, 𝑞) ≔ 𝐴†�̃� + 𝑞, for all �̃� ∈ 𝑌 and 𝑞 ∈ ker𝐴.

Then for all Δ𝑥 ∈ 𝑋 ,
𝑀𝐹 ′(𝑥)Δ𝑥 = 𝐴†𝐴Δ𝑥 + 𝑃Δ𝑥 = Δ𝑥 .

Thus 𝑀 is a left-inverse of 𝐹 ′(𝑥), and consequently ker 𝐹 ′(𝑥) = {0}. Since 𝐹 (𝑥)′Δ𝑥 =
(𝐴Δ𝑥, 𝑃Δ𝑥) for all Δ𝑥 ∈ 𝑋 , similarly, for all (�̃�, 𝑞) ∈ 𝑌 × ker𝐴, we have

𝐹 ′(𝑥)𝑀 (�̃�, 𝑞) = (𝐴𝐴†�̃� +𝐴𝑞, 𝑃𝐴†�̃� + 𝑃𝑞) = (𝐴𝐴†�̃�, 𝑃𝑞) = (�̃�, 𝑞),
which shows that 𝑀 is also the right-inverse of 𝐹 ′(𝑥) on 𝑌 × ker 𝐹 ′(𝑥). Hence 𝐹 ′(𝑥) is
bijective, (𝐹−1)′(𝐹 (𝑥)) = 𝑀 , and the construction of𝑀 establishes (22.3).

By the inverse function Theorem 2.8, a continuosly differentiable 𝐹−1 exists in a neigh-
borhood 𝑈 of 𝑤 = (𝑦, 𝑞) ≔ 𝐹 (𝑥) in 𝑌 × ker𝐴 with (𝐹−1)′(𝑤) = 𝑀 and 𝐹−1(𝑤) = 𝑥 . By
construction, 𝐹−1(�̃�) ∈ 𝐹−1(�̃�) for �̃� = (�̃�, 𝑞) ∈ 𝑈 . □
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22 calculus for the graphical derivative

Now, we have the following characterizations for the semi-differentiability of single-valued
mappings and their inverses.

Lemma 22.4. Let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 → 𝑌 .

(i) If 𝐹 is Fréchet differentiable at 𝑥 , then 𝐹 is semi-differentiable at 𝑥 for 𝑦 = 𝐹 (𝑥).
(ii) If 𝐹 is continuously differentiable at 𝑥 and 𝐹 ′(𝑥) ∈ 𝕃(𝑋 ;𝑌 ) has a right-inverse 𝐹 ′(𝑥)† ∈

𝕃(𝑌 ;𝑋 ), then 𝐹−1 : 𝑌 ⇒ 𝑋 is semi-differentiable at 𝑦 = 𝐹 (𝑥) for 𝑥 .

Proof. (i): This follows directly from the definition of semi-differentiability and the Fréchet
derivative.

(ii): By Corollary 20.14, 𝐷𝐹−1(𝑦 |𝑥) (Δ𝑦) = {Δ𝑥 ∈ 𝑋 | 𝐹 ′(𝑥)Δ𝑥 = Δ𝑦} for 𝑦 = 𝐹 (𝑥). Hence
(22.1) for 𝐹−1 requires showing that for all 𝜏𝑘→ 0 and 𝑦𝑘 ∈ 𝑌 with (𝑦𝑘 − 𝑦)/𝜏𝑘 → 𝐹 ′(𝑥)Δ𝑥 ,
there exist 𝑥𝑘 with 𝑦𝑘 = 𝐹 (𝑥𝑘) and (𝑥𝑘 − 𝑥)/𝜏𝑘 → Δ𝑥 . Let 𝐹 be given by Lemma 22.3. Since
𝐹 is invertible in a neighborhood of 𝐹 (𝑥) = (𝑦, 𝑞) =: 𝑤 for 𝑞 ≔ 𝑃𝑥 ∈ ker 𝐹 ′(𝑥), let us
take 𝑥𝑘 ≔ 𝐹−1(𝑦𝑘 , 𝑞 + 𝜏𝑘Δ𝑞) for Δ𝑞 ≔ 𝑃Δ𝑥 . Then, by construction, 𝐹 (𝑥𝑘) = (𝐹 (𝑥𝑘), 𝑃𝑥𝑘) =
(𝑦𝑘 , 𝑞 + 𝜏𝑘Δ𝑞), Moreover

lim
𝑘→∞

𝑥𝑘 − 𝑥
𝜏𝑘

= lim
𝑘→∞

𝐹−1(𝑦𝑘 , 𝑞 + 𝜏𝑘Δ𝑞) − 𝐹−1(𝑤)
𝜏𝑘

= (𝐹−1)′(𝑤) (Δ𝑦,Δ𝑞).

By (22.3),

(𝐹−1)′(𝑤) (Δ𝑦,Δ𝑞) = 𝐹 ′(𝑥)†Δ𝑦 + Δ𝑞 = 𝐹 ′(𝑥)†𝐹 ′(𝑥)Δ𝑥 + (Id − 𝐹 ′(𝑥)†𝐹 ′(𝑥))Δ𝑥 = Δ𝑥 .

This finishes the proof. □

Remark 22.5. In Lemma 22.4 (ii), if𝑋 is finite-dimensional, it suffices to assume that 𝐹 is continuously
differentiable with ker 𝐹 ′(𝑥)∗ = {0}. In this case we can take 𝐹 ′(𝑥)†∗ ≔ 𝐴∗(𝐴𝐴∗)−1 for 𝐴 ≔ 𝐹 ′(𝑥).

22.2 cone transformation formulas

At their heart, calculus rules for (co)derivatives of set-valued mappings derive from corre-
sponding transformation formulas for the underlying cones. To formulate these, let 𝐶 ⊂ 𝑌
and 𝑅 ∈ 𝕃(𝑌 ;𝑋 ). Take 𝑥 ∈ 𝑅𝐶 ≔ {𝑅𝑦 | 𝑦 ∈ 𝐶}. We then say that there exists a family of
continuous inverse selections

{𝑅−1
𝑦 : 𝑈𝑦 → 𝐶 | 𝑦 ∈ 𝐶, 𝑅𝑦 = 𝑥}

of 𝑅 to 𝐶 at 𝑥 ∈ 𝑅𝐶 if for each 𝑦 ∈ 𝐶 with 𝑅𝑦 = 𝑥 there exists a neighborhood 𝑈𝑦 ⊂ 𝑅𝐶

of 𝑥 = 𝑅𝑦 and a map 𝑅−1
𝑦 : 𝑈𝑦 → 𝐶 continuous at 𝑥 with 𝑅−1

𝑦 (𝑥) = 𝑦 and 𝑅𝑅−1
𝑦 (𝑥) = 𝑥 for

every 𝑥 ∈ 𝑈𝑥 a neighborhood of 𝑥 .
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22 calculus for the graphical derivative

Example 22.6. Let 𝐺 : ℝ𝑁−1 → ℝ be continuous at 𝑥 , and set 𝐶 ≔ epi𝐺 as well as
𝑅(𝑥, 𝑡) ≔ 𝑥 . Then by the classical inverse function Theorem 2.8,

{𝑅−1
(𝑥,𝑡) (𝑥) ≔ (𝑥, 𝑡 −𝐺 (𝑥) +𝐺 (𝑥)) | 𝑡 ≥ 𝐺 (𝑥)}

is a family of continuous inverse selections to 𝐶 at 𝑥 . If 𝐺 is Fréchet differentiable at 𝑥 ,
then so is 𝑅−1

(𝑡,𝑥) .

Lemma 22.7. Let𝑋,𝑌 be Banach spaces and assume there exists a family of continuous inverse
selections {𝑅−1

𝑦 : 𝑈𝑦 → 𝐶 | 𝑦 ∈ 𝐶, 𝑅𝑦 = 𝑥} of 𝑅 ∈ 𝕃(𝑌 ;𝑋 ) to 𝐶 ⊂ 𝑌 at 𝑥 ∈ 𝑋 . If each 𝑅−1
𝑦 is

Fréchet differentiable at 𝑥 , then

𝑇𝑅𝐶 (𝑥) =
⋃

𝑦 :𝑅𝑦=𝑥
𝑅𝑇𝐶 (𝑦).

Proof. We first prove “⊃”. Suppose Δ𝑦 ∈ 𝑇𝐶 (𝑦) for some 𝑦 ∈ cl𝐶 with 𝑅𝑦 = 𝑥 . Then
Δ𝑦 = lim𝑘→∞(𝑦𝑘 − 𝑦)/𝜏𝑘 for some 𝑦𝑘 ∈ 𝐶 and 𝜏𝑘→ 0. Consequently, since 𝑅 is bounded,
𝑅(𝑦𝑘 − 𝑦)/𝜏𝑘 → 𝑅Δ𝑦 . But 𝑅𝑦 ∈ cl𝑅𝐶 , so 𝑅Δ𝑦 ∈ 𝑇𝑅𝐶 (𝑥). On the other hand, if 𝑦 ∉ cl𝐶 ,
then 𝑇𝐶 (𝑦) = ∅ and thus there is nothing to show. Hence “⊃” holds.
To establish “⊂”, we first of all note that 𝑇𝑅𝐶 (𝑥) = ∅ if 𝑥 ∉ cl𝑅𝐶 . So suppose 𝑥 ∈ cl𝑅𝐶 and
Δ𝑥 ∈ 𝑇𝑅𝐶 (𝑥). Then 𝑥 = 𝑅𝑦 for some 𝑦 ∈ cl𝐶 . Since 0 ∈ 𝑇𝐶 (𝑦), we can concentrate on
Δ𝑥 ≠ 0. Then Δ𝑥 = lim𝑘→∞(𝑥𝑘 −𝑥)/𝜏𝑘 for some 𝑥𝑘 ∈ 𝑅𝐶 and 𝜏𝑘→ 0. We have 𝑥𝑘 = 𝑅𝑦𝑘 for
𝑦𝑘 ≔ 𝑅−1

𝑦 (𝑥𝑘). If we can show that (𝑦𝑘 − 𝑦)/𝜏𝑘 → Δ𝑦 for some Δ𝑦 ∈ 𝑌 , then Δ𝑦 ∈ 𝑇𝐶 (𝑦)
and Δ𝑥 = 𝑅Δ𝑦 . Since 𝑅−1

𝑦 is Fréchet differentiable at 𝑥 , letting ℎ𝑘 ≔ 𝑥𝑘 − 𝑥 and using that
(ℎ𝑘 − 𝜏𝑘Δ𝑥)/𝜏𝑘 = (𝑥𝑘 − 𝑥)/𝜏𝑘 − Δ𝑥 → 0 and ∥ℎ𝑘 ∥𝑋/𝜏𝑘 → ∥Δ𝑥 ∥𝑋 , indeed

lim
𝑘→∞

(
𝑦𝑘 − 𝑦
𝜏𝑘

− (𝑅−1
𝑦 )′(𝑥)Δ𝑥

)
= lim
𝑘→∞

𝑅−1
𝑦 (𝑥𝑘) − 𝑅−1

𝑦 (𝑥) − 𝜏𝑘 (𝑅−1
𝑦 )′(𝑥)Δ𝑥

𝜏𝑘

= lim
𝑘→∞

𝑅−1
𝑦 (𝑥 + ℎ𝑘) − 𝑅−1

𝑦 (𝑥) − (𝑅−1
𝑦 )′(𝑥)ℎ𝑘

𝜏𝑘
= 0.

Thus Δ𝑦 = (𝑅−1
𝑦 )′(𝑥)Δ𝑥 , which proves “⊂”. □

Remark 22.8 (qualification conditions in finite dimensions). If 𝑋 and 𝑌 are finite-dimensional, we
could replace the existence of the family of {𝑅−1

𝑦 } of continuous selections in Lemma 22.7 by the
more conventional qualification condition⋃

𝑦 :𝑅𝑦=𝑥
𝑇𝐶 (𝑦) ∩ ker𝑅 = {0}.

We do not employ such a condition, as the extension to Banach spaces would have to be based not
on 𝑇𝐶 (𝑦) but on the weak tangent cone 𝑇𝑤𝐶 (𝑦) that is difficult to compute explicitly.
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22 calculus for the graphical derivative

Webase all our calculus rules on the previous linear transformation lemma and the following
composition lemma for the tangent cone 𝑇𝐶 .

Lemma 22.9 (fundamental lemma on compositions). Let 𝑋,𝑌, 𝑍 be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦, 𝑧) | 𝑦 ∈ 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦)}
for 𝐹 : 𝑋 ⇒ 𝑌 , and 𝐺 : 𝑌 ⇒ 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 and either

(i) 𝐺 is semi-differentiable at 𝑦 for 𝑧, or

(ii) 𝐹−1 is semi-differentiable at 𝑦 for 𝑥 ,

then

(22.4) 𝑇𝐶 (𝑥, 𝑦, 𝑧) = {(Δ𝑥,Δ𝑦,Δ𝑧) | Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥), Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦)}.

Proof. We only consider the case (i); the case (ii) is shown analogously. By definition, we
have (Δ𝑥,Δ𝑦,Δ𝑧) ∈ 𝑇𝐶 (𝑥, 𝑦, 𝑧) if and only if for some (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) ∈ 𝐶 and 𝜏𝑘→ 0,

Δ𝑥 = lim
𝑘→∞

𝑥𝑘 − 𝑥
𝜏𝑘

, Δ𝑦 = lim
𝑘→∞

𝑦𝑘 − 𝑦
𝜏𝑘

, Δ𝑧 = lim
𝑘→∞

𝑧𝑘 − 𝑧
𝜏𝑘

.

On the other hand, we have Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) if and only if the first two limits hold for
some (𝑥𝑘 , 𝑦𝑘) ∈ graph 𝐹 and 𝜏𝑘→ 0. Likewise, we have Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦) if and only if
the last two limits hold for some (𝑦𝑘 , 𝑧𝑘) ∈ graph𝐺 . This immediately yields “⊂”.
To prove “⊃”, take 𝜏𝑘 > 0 and (𝑥𝑘 , 𝑦𝑘) ∈ graph 𝐹 such that the first two limits hold. By the
semi-differentiability of 𝐺 at 𝑦 for 𝑧, for any Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦) we can find 𝑧𝑘 ∈ 𝐺 (𝑦𝑘)
such that (𝑧𝑘 − 𝑧)/𝜏𝑘 → Δ𝑧. This shows the remaining limit. □

If one of the two mappings is single-valued, we can use Lemma 22.4 for verifying its
semi-differentiability and Theorem 20.12 for the expression of its graphical derivative to
obtain from Lemma 22.9 the following two special cases.

Corollary 22.10 (fundamental lemma on compositions: single-valued outer mapping). Let
𝑋,𝑌, 𝑍 be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦,𝐺 (𝑦)) | 𝑦 ∈ 𝐹 (𝑥)}
for 𝐹 : 𝑋 ⇒ 𝑌 and 𝐺 : 𝑌 → 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 and 𝐺 is Fréchet differentiable at 𝑦 , then

𝑇𝐶 (𝑥, 𝑦, 𝑧) = {(Δ𝑥,Δ𝑦,𝐺′(𝑦)Δ𝑦) | Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥)}.

Corollary 22.11 (fundamental lemma on compositions: single-valued inner mapping). Let
𝑋,𝑌, 𝑍 be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦, 𝑧) | 𝑦 = 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦)}
for 𝐹 : 𝑋 ⇒ 𝑌 and 𝐺 : 𝑌 → 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 , 𝐹 is continuously Fréchet differentiable at 𝑥
and 𝐹 ′(𝑥) has a right-inverse 𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ), then

𝑇𝐶 (𝑥, 𝑦, 𝑧) = {(Δ𝑥,Δ𝑦,Δ𝑧) | Δ𝑦 = 𝐹 ′(𝑥)Δ𝑥, Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦)}.
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22 calculus for the graphical derivative

22.3 calculus rules

Combining now the previous results, we quickly obtain various calculus rules. We begin
as usual with a sum rule.

Theorem 22.12 (addition of a single-valued differentiable mapping). Let 𝑋,𝑌 be Banach
spaces, let 𝐺 : 𝑋 → 𝑌 be Fréchet differentiable, and 𝐹 : 𝑋 ⇒ 𝑌 . Then for any 𝑥 ∈ 𝑋 and
𝑦 ∈ 𝐻 (𝑥) ≔ 𝐹 (𝑥) +𝐺 (𝑥),

𝐷𝐻 (𝑥 |𝑦) (Δ𝑥) = 𝐷𝐹 (𝑥 |𝑦 −𝐺 (𝑥)) (Δ𝑥) +𝐺′(𝑥)Δ𝑥 (Δ𝑥 ∈ 𝑋 ).

Proof. We have graph𝐻 = 𝑅𝐶 for

(22.5) 𝐶 ≔ {(𝑢, 𝑥,𝐺 (𝑥)) | 𝑥 ∈ 𝑋, 𝑢 ∈ 𝐹 (𝑥)} and 𝑅(𝑢, 𝑥, 𝑣) ≔ (𝑥,𝑢 + 𝑣).

We now use Lemma 22.7 to calculate 𝑇𝑅𝐶 . Accordingly, for all (𝑢, 𝑥,𝐺 (𝑥)) ∈ 𝐶 such that
𝑅(𝑢, 𝑥,𝐺 (𝑥)) = (𝑥, 𝑦) – i.e., only for 𝑥 = 𝑥 and 𝑢 = 𝑦 − 𝐺 (𝑥) – we define the inverse
selection

(22.6) 𝑅−1
(𝑢,𝑥,𝐺 (𝑥)) : 𝑅𝐶 → 𝐶, 𝑅−1

(𝑢,𝑥,𝐺 (𝑥)) (𝑥, �̃�) ≔ (�̃� −𝐺 (𝑥), 𝑥,𝐺 (𝑥)),

Then 𝑅−1
(𝑢,𝑥,𝐺 (𝑥)) (𝑥,𝑢 +𝐺 (𝑥)) = (𝑢, 𝑥,𝐺 (𝑥)) and 𝑅−1

(𝑢,𝑥,𝐺 (𝑥)) (𝑥, �̃�) ∈ 𝐶 for every (𝑥, �̃�) ∈ 𝑅𝐶 .
Furthermore, 𝑅−1

(𝑢,𝑥,𝐺 (𝑥)) is continuous and Fréchet differentiable at (𝑥, 𝑧).
Lemma 22.7 now yields

𝑇graph𝐻 (𝑥, 𝑦) = {(Δ𝑥,Δ𝑢 + Δ𝑣) | (Δ𝑢,Δ𝑥,Δ𝑣) ∈ 𝑇𝐶 (𝑦 −𝐺 (𝑥), 𝑥,𝐺 (𝑥))}.

Moreover, 𝐶 given in (22.5) coincides with the 𝐶 defined in Corollary 22.10 with 𝐹−1 in
place of 𝐹 . Thus, using the corollary and inserting the expression from Lemma 20.5 for
𝐷𝐹−1 into the result, it follows

𝑇𝐶 (𝑢, 𝑥, 𝑣) = {(Δ𝑢,Δ𝑥,𝐺′(𝑥)Δ𝑥) | Δ𝑢 ∈ 𝐷𝐹 (𝑥 |𝑢) (Δ𝑥)}.

Thus
𝐷𝐻 (𝑥 |𝑦) (Δ𝑥) = {Δ𝑢 + Δ𝑣 | (Δ𝑢,Δ𝑥,Δ𝑣) ∈ 𝑇𝐶 (𝑦 −𝐺 (𝑥), 𝑥,𝐺 (𝑥))}

= {Δ𝑢 +𝐺′(𝑥)Δ𝑥 | Δ𝑢 ∈ 𝐷𝐹 (𝑥 |𝑦 −𝐺 (𝑥)) (Δ𝑥)},
which yields the claim. □

We now turn to chain rules, beginning with the case that the outer mapping is single-
valued.
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22 calculus for the graphical derivative

Theorem 22.13 (outer composition with a single-valued differentiable mapping). Let 𝑋,𝑌
be Banach spaces, 𝐹 : 𝑋 ⇒ 𝑌 , and 𝐺 : 𝑌 → 𝑍 . Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝐹 (𝑥)) be
given. If 𝐺 is Fréchet differentiable at every 𝑦 ∈ 𝐹 (𝑥), left-invertible on ran𝐺 near 𝑧, and the
left-inverse 𝐺−1 is Fréchet differentiable at 𝑧, then

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) =
⋃

𝑦 :𝐺 (𝑦)=𝑧
𝐺′(𝑦)𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

Proof. Observing that graph𝐻 = 𝑅𝐶 for

(22.7) 𝐶 ≔ {(𝑥, �̃�,𝐺 (�̃�)) | �̃� ∈ 𝐹 (𝑥)} and 𝑅(𝑥, �̃�, 𝑧) ≔ (𝑥, 𝑧),
we again use Lemma 22.7 to calculate 𝑇𝑅𝐶 . Accordingly, we define for 𝑦 ∈ 𝐺−1(𝑧) ∩ 𝐹 (𝑥)
the family of inverse selections

(22.8) 𝑅−1
(𝑥,𝑦,𝑧) : 𝑅𝐶 → 𝐶, 𝑅−1

(𝑥,𝑦,𝑧) (𝑥, 𝑧) ≔ (𝑥,𝐺−1(𝑧), 𝑧).
Clearly, 𝑅−1

(𝑥,𝑦,𝑧) (𝑥, 𝑧) = (𝑥, 𝑦, 𝑧). Furthermore, 𝐺 is by assumption invertible on its range
near 𝑧 = 𝐺 (𝑦). Hence 𝐺−1(𝑧) ∈ 𝐹 (𝑥), and thus in fact 𝑅−1

(𝑥,𝑦,𝑧) (𝑥, 𝑧) ∈ 𝐶 for all (𝑥, 𝑧) ∈ 𝑅𝐶 .
Moreover, since 𝐺−1 has the same properties at 𝑧, 𝑅−1

(𝑥,𝑦,𝑧) is at (𝑥, 𝑧) continuous, Fréchet
differentiable, and locally Lipschitz with a factor independent of 𝑦 .

We are therefore justified in applying Lemma 22.7, which yields

𝑇graph𝐻 (𝑥, 𝑧) =
⋃

𝑦 :𝐺 (𝑦)=𝑧
{(Δ𝑥,Δ𝑧) | (Δ𝑥,Δ𝑦,Δ𝑧) ∈ 𝑇𝐶 (𝑥, 𝑦, 𝑧)}.

Using Corollary 22.10, we then obtain

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) =
⋃

𝑦 :𝐺 (𝑦)=𝑧
{Δ𝑧 | (Δ𝑥,Δ𝑦,Δ𝑧) ∈ 𝑇𝐶 (𝑥, 𝑦, 𝑧)}

=
⋃

𝑦 :𝐺 (𝑦)=𝑧
{𝐺′(𝑦)Δ𝑦 | Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥)}.

After further simplification, we arrive at the claimed expression. □

In particular, this result holds if𝐺 is Fréchet differentiable and𝐺′(𝑦) is bijective, since in this
case the inverse function Theorem 2.8 guarantees the local existence and differentiability
of 𝐺−1.

Another useful special case is when the mapping 𝐺 is linear.

Corollary 22.14 (outer composition with a linear operator). Let 𝑋,𝑌, 𝑍 be Banach spaces,
𝐴 ∈ 𝕃(𝑌 ;𝑍 ), and 𝐹 : 𝑋 ⇒ 𝑌 . If 𝐴 has a bounded left-inverse 𝐴†, then for any 𝑥 ∈ 𝑋 and
𝑧 ∈ 𝐻 (𝑥) := 𝐴𝐹 (𝑥),

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) = 𝐴𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) (Δ𝑥 ∈ 𝑋 )
for the unique 𝑦 ∈ 𝑌 such that 𝐴𝑦 = 𝑧.
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22 calculus for the graphical derivative

Proof. We apply Theorem 22.13 to𝐺 (𝑦) ≔ 𝐴𝑦 , which is clearly continuously differentiable
at every 𝑦 ∈ 𝐹 (𝑥). Since 𝐴 has a bounded left-inverse 𝐴†, 𝐺−1(𝑦) = 𝐴†𝑦 is an inverse of
𝐺 on 𝐺 (𝑦) = ran𝐴, which is also clearly differentiable. Moreover, {𝑦 | 𝐺 (𝑦) = 𝑧} is a
singleton, which removes the intersections and unions from the expressions provided by
Theorem 22.13. □

The assumption of left-invertibility is in particular satisfied if 𝑌 and 𝑍 are Hilbert spaces
and 𝐴 is injective and has closed range, since in this case we can take 𝐴† = (𝐴∗𝐴)−1𝐴∗𝑦
(the Moore–Penrose pseudoinverse of 𝐴) and 𝐴†∗ = (𝐴†)∗.
We next consider chain rules where the inner mapping is single-valued.

Theorem 22.15 (inner composition with a single-valued differentiable mapping). Let 𝑋,𝑌, 𝑍
be Banach spaces, 𝐹 : 𝑋 → 𝑌 and 𝐺 : 𝑌 ⇒ 𝑍 . Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) := 𝐺 (𝐹 (𝑥)). If 𝐹 is
continuously Fréchet differentiable near 𝑥 and 𝐹 ′(𝑥) has a right-inverse 𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ),
then

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) = 𝐷𝐺 (𝐹 (𝑥) |𝑧) (𝐹 ′(𝑥)Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

Proof. Observing that graph𝐻 = 𝑅𝐶 for

(22.9) 𝐶 ≔ {(𝑥, �̃�, 𝑧) | �̃� = 𝐹 (𝑥), 𝑧 ∈ 𝐺 (�̃�)} and 𝑅(𝑥, �̃�, 𝑧) ≔ (𝑥, 𝑧),

we again use Lemma 22.7 to compute 𝑇𝑅𝐶 . Accordingly, we define a family of inverse
selections for all (𝑥, �̃�, 𝑧) ∈ 𝐶 such that 𝑅(𝑥, �̃�, 𝑧) = (𝑥, 𝑧). The latter only holds for
(𝑥, �̃�, 𝑧) = (𝑥, 𝐹 (𝑥), 𝑧), and hence we only need

𝑅−1
(𝑥,𝐹 (𝑥),𝑧) : 𝑅𝐶 → 𝐶, 𝑅−1

(𝑥,𝐹 (𝑥),𝑧) (𝑥, 𝑧) ≔ (𝑥, 𝐹 (𝑥), 𝑧).

Clearly 𝑅−1
(𝑥,𝐹 (𝑥),𝑧) (𝑥, 𝑧) = (𝑥, 𝐹 (𝑥), 𝑧) and 𝑅−1

(𝑥,𝐹 (𝑥),𝑧) (𝑥, 𝑧) ∈ 𝐶 for (𝑥, 𝑧) ∈ 𝑅𝐶 . Moreover,
𝑅−1
(𝑥,𝐹 (𝑥),𝑧) is continuous and Fréchet differentiable at (𝑥, 𝑧).

Thus Lemma 22.7 yields

𝑇graph𝐻 (𝑥, 𝑧) = {(Δ𝑥,Δ𝑧) | (Δ𝑥,Δ𝑦,Δ𝑧) ∈ 𝑇𝐶 (𝑥, 𝐹 (𝑥), 𝑧)}.

On the other hand, due to the continuous differentiability of 𝐹 and the right-invertibility
of 𝐹 ′(𝑥), we can apply Corollary 22.11 to obtain

𝑇𝐶 (𝑥, 𝑦, 𝑧) = {(Δ𝑥,Δ𝑦,Δ𝑧) | Δ𝑦 = 𝐹 ′(𝑥)Δ𝑥, Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦)}.

Thus
𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) = {Δ𝑧 | (Δ𝑥,Δ𝑦,Δ𝑧) ∈ 𝑇𝐶 (𝑥, 𝐹 (𝑥), 𝑧)}

= {Δ𝑧 | Δ𝑦 = 𝐹 ′(𝑥)Δ𝑥, Δ𝑧 ∈ 𝐷𝐺 (𝐹 (𝑥) |𝑧) (Δ𝑦)},
which yields the claim. □
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22 calculus for the graphical derivative

Again, we can specialize this result to the case where the single-valued mapping is linear.

Corollary 22.16 (inner composition with a linear operator). Let 𝑋,𝑌, 𝑍 be Banach spaces,
𝐴 ∈ 𝕃(𝑋 ;𝑌 ), and 𝐺 : 𝑌 ⇒ 𝑍 . Let 𝐻 ≔ 𝐺 ◦ 𝐴 for 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and 𝐺 : 𝑌 ⇒ 𝑍 on
Banach spaces 𝑋,𝑌 , and 𝑍 . If 𝐴 has a right-inverse 𝐴† ∈ 𝕃(𝑌 ;𝑋 ), then for all 𝑥 ∈ 𝑋 and
𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝐴𝑥),

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) = 𝐷𝐺 (𝐴𝑥 |𝑧) (𝐴Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

We wish to apply these results to further differentiate the chain rules from Theorems 4.17
and 13.23. For the former, this is straight-forward based on the two corollaries so far
obtained.

Corollary 22.17 (second derivative chain rule for convex subdifferential). Let𝑋,𝑌 be Banach
spaces, let 𝑓 : 𝑌 → ℝ be proper, convex, and lower semicontinuous, and 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) be such
that 𝐴 has a right-inverse 𝐴† ∈ 𝕃(𝑌 ;𝑋 ), and ran𝐴 ∩ int dom 𝑓 ≠ ∅. Let ℎ ≔ 𝑓 ◦𝐴. Then for
any 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝜕ℎ(𝑥) = 𝐴∗𝜕𝑓 (𝐴𝑥),

𝐷 [𝜕ℎ] (𝑥 |𝑥∗) (Δ𝑥) = 𝐴∗𝐷 [𝜕𝑓 ] (𝐴𝑥 |𝑦∗) (𝐴Δ𝑥) (Δ𝑥 ∈ 𝑋 )

for the unique 𝑦∗ ∈ 𝑌 ∗ satisfying 𝐴∗𝑦∗ = 𝑥∗.

Proof. The expression for 𝜕ℎ(𝑥) follows from Theorem 4.17, to which we apply Corol-
lary 22.16 as well as Corollary 22.14 with 𝐴∗ in place of 𝐴, recalling that a right-inverse 𝐴†

of 𝐴 produces a left-inverse 𝐴†∗ of 𝐴∗. □

To further differentiate the result of applying a chain rule such as Theorem 13.23, we also
need a product rule for a single-valued mapping𝐺 and a set-valued mapping 𝐹 . In principle,
this could be obtained as a composition of 𝑥 ↦→ (𝑥1, 𝑥2), (𝑥1, 𝑥2) ↦→ {𝐺 (𝑥1)} × 𝐹 (𝑥2), and
(𝑦1, 𝑦2) ↦→ 𝑦1𝑦2; however, the last one of these mappings does not possess the left-inverse
required by Theorem 22.13. We therefore take another route, which starts with the following
lemma.

Lemma 22.18. Let 𝑋 and 𝑌 be Banach spaces, and 𝐹 : 𝑋 ⇒ 𝑌 . Define 𝐹 : 𝑋 ⇒ 𝑋 × 𝑌 by
𝐹 (𝑥) ≔ {𝑥} × 𝐹 (𝑥). Then, for all 𝑥,Δ𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐹 (𝑥), we have

𝐷𝐹 (𝑥 |𝑥, 𝑦) (Δ𝑥) = {Δ𝑥} × 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥).

Proof. We have

graph 𝐹 = 𝑅0 graph 𝐹 for 𝑅0(𝑥, �̃�) ≔ (𝑥, (𝑥, �̃�)) .
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22 calculus for the graphical derivative

Let now 𝑦 ∈ 𝐹 (𝑥). Clearly 𝑅−1
0,𝑣 (𝑥, (𝑥, �̃�)) ≔ (𝑥, �̃�), 𝑅−1

0,𝑣 : 𝑅0 graph 𝐹 → graph 𝐹 is a
Fréchet differentiable inverse selection of 𝑅0 at (𝑥, (𝑥, 𝑦)) ∈ 𝑅0 graph 𝐹 for the unique
𝑣 = (𝑥, 𝑦) ∈ graph 𝐹 with 𝑅0𝑣 = (𝑥, (𝑥, 𝑦)). Therefore, by Lemma 22.7, we have

𝑇𝑅0 graph 𝐹 (𝑥, (𝑥, 𝑦)) = {(Δ𝑥, (Δ𝑥,Δ𝑦)) | (Δ𝑥,Δ𝑦) ∈ 𝑇graph 𝐹 (𝑥, 𝑦)},

which establishes the claim. □

Theorem 22.19 (product rule). Let 𝑋,𝑌, 𝑍 be Banach spaces, let 𝐺 : 𝑋 → 𝕃(𝑌 ;𝑍 ) be Fréchet
differentiable, and 𝐹 : 𝑋 ⇒ 𝑌 . If 𝐺 (𝑥) ∈ 𝕃(𝑌 ;𝑍 ) has a left-inverse 𝐺 (𝑥)† ∈ 𝕃(𝑍 ;𝑌 )
for 𝑥 near 𝑥 ∈ 𝑋 and the mapping 𝑥 ↦→ 𝐺 (𝑥)† is Fréchet differentiable at 𝑥 , then for all
𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝑥)𝐹 (𝑥) ≔ ⋃

𝑦∈𝐹 (𝑥)𝐺 (𝑥)𝑦 ,

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) = [𝐺′(𝑥)Δ𝑥]𝑦 +𝐺 (𝑥)𝐷𝐹 (𝑥 |𝑦)Δ𝑥 (𝑧 ∈ 𝐻 (𝑥), Δ𝑥 ∈ 𝑋 )

for the unique 𝑦 ∈ 𝐹 (𝑥) satisfying 𝐺 (𝑥)𝑦 = 𝑧.

Proof. Let 𝐹 be as in Lemma 22.18. Then graph𝐻 = 𝑅1 graph(𝐺 ◦ 𝐹 ) for

𝐺 (𝑥, �̃�) = (𝑥,𝐺 (𝑥)�̃�) and 𝑅1(𝑥1, 𝑥2, 𝑧) ≔ (𝑥1, 𝑧),

where
graph(𝐺 ◦ 𝐹 ) = {(𝑥, 𝑥,𝐺 (𝑥)𝑦) | (𝑥, (𝑥, 𝑦)) ∈ graph 𝐹 }

= {(𝑥, 𝑥,𝐺 (𝑥)𝑦) | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝐹 (𝑥)}.

We now wish to apply Theorem 22.13 on 𝐺 ◦ 𝐹 . First, 𝐺 is single-valued and differentiable.
Since 𝐺 (𝑥) is assumed left-invertible for 𝑥 near 𝑥 , the mapping 𝑄 : (𝑥, 𝑧) ↦→ (𝑥,𝐺 (𝑥)†𝑧)
is a left-inverse of 𝐺 , which is Fréchet differentiable at (𝑥, 𝑧) since 𝑥 → 𝐺 (𝑥)† is Fréchet
differentiable at 𝑥 . Finally, we also have

𝐺′(𝑥, 𝑦) (Δ𝑥,Δ𝑦) = (Δ𝑥, [𝐺′(𝑥)Δ𝑥]𝑦 +𝐺 (𝑥)Δ𝑦) .

Thus Theorem 22.13 and Lemma 22.18 yield

𝐷 [𝐺 ◦ 𝐹 ] (𝑥 |𝑥, 𝑧) (Δ𝑥) =
⋃

𝑦 :𝐺 (𝑥,𝑦)=(𝑥,𝑧)
𝐺′(𝑥, 𝑦)𝐷𝐹 (𝑥 |𝑥, 𝑦) (Δ𝑥)

=
⋃

𝑦 :𝐺 (𝑥)𝑦=𝑧
𝐺′(𝑥, 𝑦) (Δ𝑥, 𝐷𝐹 (𝑥 |𝑦)Δ𝑥)

=
⋃

𝑦 :𝐺 (𝑥)𝑦=𝑧
{Δ𝑥} × ([𝐺′(𝑥)Δ𝑥]𝑦 +𝐺 (𝑥)𝐷𝐹 (𝑥 |𝑦)Δ𝑥).

It follows that

𝑇graph(𝐺◦𝐹 ) (𝑥, 𝑥, 𝑧) =
⋃

𝑦 :𝐺 (𝑥)𝑦=𝑧
{(Δ𝑥,Δ𝑥,Δ𝑧) | Δ𝑧 ∈ ([𝐺′(𝑥)Δ𝑥]𝑦 +𝐺 (𝑥)𝐷𝐹 (𝑥 |𝑦)Δ𝑥)}.

311



22 calculus for the graphical derivative

Observe then that 𝑅−1
1,𝑤 (𝑥1, 𝑧) ≔ (𝑥1, (𝑥1, 𝑧)), 𝑅−1

1,𝑤 : 𝑅1 graph(𝐺 ◦ 𝐹 ) → graph(𝐺 ◦ 𝐹 ) is a
Fréchet differentiable inverse selection of 𝑅1 at (𝑥,𝐺 (𝑥)𝑦) ∈ 𝑅0 graph(𝐺 ◦𝐹 ) for the unique
𝑤 = (𝑥, (𝑥,𝐺 (𝑥)𝑦)) ∈ graph(𝐺 ◦𝐹 ) with 𝑅1𝑤 = (𝑥,𝐺 (𝑥)𝑦). Therefore, another application
of Lemma 22.7 yields

𝑇graph𝐻 (𝑥, 𝑧) =
⋃

𝑦 :𝐺 (𝑥)𝑦=𝑧
{(Δ𝑥,Δ𝑧) | Δ𝑧 ∈ ([𝐺′(𝑥)Δ𝑥]𝑦 +𝐺 (𝑥)𝐷𝐹 (𝑥 |𝑦)Δ𝑥)}.

Since the 𝑦 is unique by our invertibility assumptions on𝐺 (𝑥) and exists due to 𝑧 ∈ 𝐻 (𝑥),
we obtain the claim. □

Corollary 22.20 (second derivative chain rule for Clarke subdifferential). Let𝑋,𝑌 be Banach
spaces, let 𝑓 : 𝑌 → 𝑅 be locally Lipschitz continuous, and let 𝑆 : 𝑋 → 𝑌 be twice continuously
differentiable. Set ℎ : 𝑋 → 𝑌 , ℎ(𝑥) ≔ 𝑓 (𝑆 (𝑥)). If there exists a neighborhood 𝑈 of 𝑥 ∈ 𝑋
such that

(i) 𝑓 is Clarke regular at 𝑆 (𝑥) for all 𝑥 ∈ 𝑈 ;

(ii) 𝑆′(𝑥) has a right-inverse 𝑆′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ) for all 𝑥 ∈ 𝑈 ;

(iii) the mapping 𝑥 ↦→ 𝑆′(𝑥)†∗ is Fréchet differentiable at 𝑥 ;
then for all 𝑥∗ ∈ 𝜕𝐶ℎ(𝑥) = 𝑆′(𝑥)∗𝜕𝐶 𝑓 (𝑆 (𝑥)),

𝐷 [𝜕𝐶ℎ] (𝑥 |𝑥∗) (Δ𝑥) = (𝑆′′(𝑥)Δ𝑥)∗𝑦∗ + 𝑆′(𝑥)∗𝐷 [𝜕𝐶 𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑆′(𝑥)Δ𝑥) (Δ𝑥 ∈ 𝑋 )

for the unique 𝑦∗ ∈ 𝜕𝐶 𝑓 (𝑆 (𝑥)) such that 𝑆′(𝑥)∗𝑦∗ = 𝑥∗.

Proof. The expression for 𝜕𝐶ℎ(𝑥) follows from Theorem 13.23. Let now 𝑆 : 𝑋 → 𝕃(𝑌 ∗;𝑋 ∗),
𝑆 (𝑥) ≔ 𝑆′(𝑥)∗. Then 𝑆 is Fréchet differentiable at 𝑥 , and has the left-inverse 𝑆′(𝑥)∗† for all
𝑥 ∈ 𝑈 . Together with assumption (iii) this allows us to apply Theorem 22.19 to obtain

𝐷 [𝜕𝐶ℎ] (𝑥 |𝑥∗) (Δ𝑥) = (𝑆′(𝑥)Δ𝑥)𝑦∗ + 𝑆′(𝑥)∗𝐷 [(𝜕𝐶 𝑓 ) ◦ 𝑆] (𝑥 |𝑥∗) (Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

Furthermore, since 𝑆′(𝑥) has a bounded right-inverse, we can apply Theorem 22.15 to obtain
for all 𝑥 ∈ 𝑈 and all 𝑥∗ ∈ 𝜕𝐶 𝑓 (𝑆 (𝑥))

𝐷 [(𝜕𝐶 𝑓 ) ◦ 𝑆] (𝑥 |𝑥∗) (Δ𝑥) = 𝐷 [𝜕𝐶 𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑆′(𝑥)Δ𝑥) (Δ𝑥 ∈ 𝑋 )

for the unique 𝑦∗ ∈ 𝜕𝐶 𝑓 (𝑆 (𝑥)) such that 𝑆′(𝑥)∗𝑦∗ = 𝑥∗. Finally, since the adjoint mapping
𝐴 ↦→ 𝐴∗ is linear and an isometry, it is straightforward to verify using the definition that
𝑆′(𝑥)Δ𝑥 = (𝑆′′(𝑥)Δ𝑥)∗, which yields the claim. □
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23 CALCULUS FOR THE FRÉCHET CODERIVATIVE

We continue with calculus rules for the Fréchet coderivative. As in Chapter 22, we start
with the relevant regularity concept, then prove the fundamental lemmas, and finally derive
the calculus rules.

23.1 semi-codifferentiability

Let 𝑋,𝑌 be Banach spaces. We say that 𝐹 is semi-codifferentiable at 𝑥 ∈ 𝑋 for 𝑦 ∈ 𝐹 (𝑥) if
for each 𝑦∗ ∈ 𝑌 ∗ there exists some 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) satisfying

(23.1) lim
graph 𝐹∋(𝑥𝑘 ,𝑦𝑘 )→(𝑥,𝑦)

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 − ⟨𝑦∗, 𝑦𝑘 − 𝑦⟩𝑌
∥(𝑥𝑘 − 𝑥, 𝑦𝑘 − 𝑦)∥𝑋×𝑌

= 0.

Recalling (18.7), this is equivalent to requiring that −𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−𝑦∗) as well. For
single-valued mappings and their inverses we have the following characterization.

Lemma 23.1. Let 𝑋,𝑌 be Banach spaces and let 𝐹 : 𝑋 → 𝑌 be single-valued. If 𝐹 is Fréchet
differentiable at 𝑥 ∈ 𝑋 , then

(i) 𝐹 is semi-codifferentiable at 𝑥 for 𝑦 = 𝐹 (𝑥).
If, moreover, 𝐹 ′(𝑥) ∈ 𝕃(𝑋 ;𝑌 ) has a left-inverse 𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ), then
(ii) 𝐹−1 is semi-codifferentiable at 𝑦 = 𝐹 (𝑥) for 𝑥 .

Proof. Recalling from Theorem 20.12 that 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) = {𝐹 ′(𝑥)∗𝑦∗} when 𝑦 = 𝐹 (𝑥), the
claim (i) follows immediately from the observation above that semi-codifferentiability is
equivalent to the existence for all 𝑦∗ of 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) such that−𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−𝑦∗)
as well.

As for (ii), recalling the inverse relationships of Lemma 20.5 and again using Theorem 20.12,
we have 𝐷∗𝐹−1(𝑦 |𝑥) (𝑥∗) = {𝑦∗ | 𝑥∗ = 𝐹 ′(𝑥)∗𝑦∗}. Moreover, we recall that for a left-inverse
𝐹 ′(𝑥)† of 𝐹 ′(𝑥), the operator 𝐹 ′(𝑥)†∗ is a right-inverse of 𝐹 ′(𝑥)∗. Thus, for any 𝑥∗, we have
𝑦∗ ≔ 𝐹 ′(𝑥)†∗𝑥∗ ∈ 𝐷∗𝐹−1(𝑦 |𝑥) (𝑥∗), and, by linearity, −𝑦∗ ∈ 𝐷∗𝐹−1(𝑦 |𝑥) (−𝑥∗). Hence 𝐹−1

is semi-codifferentiable at 𝑦 for 𝑥 . □
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23 calculus for the fréchet coderivative

23.2 cone transformation formulas

In the following, we consider more general 𝜀-normal cones for 𝜀 ≥ 0 as these results will
be needed later in Chapter 25 for proving the corresponding expressions for the limiting
normal cone. We refer to Section 22.2 for the definition of a family of continuous inverse
selections.

Lemma 23.2. Let 𝑋,𝑌 be Banach spaces, and assume there exists a family of continuous
inverse selections {𝑅−1

𝑦 : 𝑈𝑦 → 𝐶 | 𝑦 ∈ 𝐶, 𝑅𝑦 = 𝑥} of 𝑅 ∈ 𝕃(𝑌 ;𝑋 ) to𝐶 ⊂ 𝑌 at 𝑥 ∈ 𝑋 . If each
𝑅−1
𝑦 for all 𝑦 ∈ 𝐶 with 𝑅𝑦 = 𝑥 is locally Lipschitz at 𝑥 with the factor 𝐿𝑥 , then for all 𝜀 ≥ 0,

(23.2) 𝑁
𝜀/∥𝑅∥𝕃 (𝑌 ;𝑋 )
𝑅𝐶

(𝑥) ⊂
⋂

𝑦∈𝐶:𝑅𝑦=𝑥
{𝑥∗ ∈ 𝑋 ∗ | 𝑅∗𝑥∗ ∈ 𝑁 𝜀

𝐶 (𝑦)} ⊂ 𝑁
𝜀𝐿𝑥
𝑅𝐶

(𝑥).

In particular,
𝑁𝑅𝐶 (𝑥) =

⋂
𝑦∈𝐶:𝑅𝑦=𝑥

{𝑥∗ ∈ 𝑋 ∗ | 𝑅∗𝑥∗ ∈ 𝑁𝐶 (𝑦)}.

Proof. By (18.7), 𝑥∗ ∈ 𝑁 𝜀
𝑅𝐶
(𝑥) for a given 𝜀 > 0 if and only if

(23.3) lim sup
𝑅𝐶∋𝑅𝑦𝑘→𝑅𝑦

⟨𝑅∗𝑥∗, 𝑦𝑘 − 𝑦⟩𝑌
∥𝑅(𝑦𝑘 − 𝑦)∥𝑋

≤ 𝜀

for all 𝑦 ∈ 𝐶 such that 𝑅𝑦 = 𝑥 . The specific choice of 𝑦 is inconsequential; if the expression
holds for one, it holds for all. Since the expression inside the limit is invariant under
perturbations �̃� ∈ ker𝑅, the limit can be further be equivalently be written in terms of
𝐶 ∋ 𝑦𝑘 → 𝑦 . Thus we see that 𝑥∗ ∈ 𝑁 𝜀

𝑅𝐶
(𝑥) if and only if for every 𝜀′ > 𝜀 and all 𝑦 with

𝑅𝑦 = 𝑥 , there exists a 𝛿 > 0 such that

(23.4) ⟨𝑅∗𝑥∗, 𝑦𝑘 − 𝑦⟩𝑌 ≤ 𝜀′∥𝑅(𝑦𝑘 − 𝑦)∥𝑋 (𝑦𝑘 ∈ 𝔹(𝑦, 𝛿) ∩𝐶).
Similarly, 𝑅∗𝑥∗ ∈ 𝑁 𝜀

𝐶
(𝑦) if and only if

(23.5) lim sup
𝐶∋𝑦𝑘→𝑦

⟨𝑅∗𝑥∗, 𝑦𝑘 − 𝑦⟩𝑌
∥𝑦𝑘 − 𝑦 ∥𝑌

≤ 𝜀.

Now if 𝑥∗ ∈ 𝑁 𝜀
𝑅𝐶
(𝑥), then using (23.4) and estimating ∥𝑅(𝑦𝑘 − 𝑦)∥𝑋 ≤ ∥𝑅∥𝕃(𝑋 ;𝑌 ) ∥𝑦𝑘 − 𝑦 ∥𝑌

yields (23.5) for 𝜀 = 𝜀′∥𝑅∥𝕃(𝑋 ;𝑌 ) for all 𝜀′ > 𝜀. Hence the first inclusion in (23.2) holds by
taking 𝜀 = 𝜀/∥𝑅∥𝕃(𝑋 ;𝑌 ) and letting 𝜀′→ 𝜀

For the second inclusion, we first observe that equivalently to (23.3), 𝑥∗ ∈ 𝑁 𝜀
𝑅𝐶
(𝑥) if and

only if

(23.6) lim sup
𝑅𝐶∋𝑥𝑘→𝑥

⟨𝑅∗𝑥∗, 𝑅−1
𝑦 (𝑥𝑘) − 𝑅−1

𝑦 (𝑥)⟩𝑋
∥𝑥𝑘 − 𝑥 ∥𝑋

≤ 𝜀
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23 calculus for the fréchet coderivative

for all 𝑦 ∈ 𝐶 with 𝑅𝑦 = 𝑥 . Let 𝑦 ∈ 𝐶 with 𝑅𝑦 = 𝑥 be arbitrary, and 𝑅∗𝑥∗ ∈ 𝑁 𝜀
𝐶
(𝑦). Then

(23.5) holds for 𝑦𝑘 = 𝑅−1
𝑦 (𝑥𝑘) for any 𝑈𝑦 ∋ 𝑥𝑘 → 𝑥 . By the local Lipschitz assumption,

we have 𝐿𝑥 ≥ lim sup𝑘→∞ ∥𝑅−1
𝑦 (𝑥𝑘) − 𝑅−1

𝑦 (𝑥)∥𝑌/∥𝑥𝑘 − 𝑥 ∥𝑋 . Applying these choices and
estimates in (23.5), we obtain (23.6) for 𝜀 = 𝜀𝐿𝑥 . Since 𝑦 ∈ 𝐶 with 𝑅𝑦 = 𝑥 was arbitrary, we
conclude that 𝑥∗ ∈ 𝑁 𝜀

𝑅𝐶
(𝑥), which yields the second inclusion in (23.2). □

Remark 23.3 (polarity and qualification condition in finite dimensions). In finite dimensions,
Lemma 23.2 for 𝜀 = 0 could also be proved with the help of the polarity relationships 𝑁𝑅𝐶 (𝑥) =
𝑇𝑅𝐶 (𝑥)◦ and𝑁𝐶 (𝑦) = 𝑇𝐶 (𝑦)◦ from Lemma 18.10. Furthermore, the existence of a family of continuous
selections could be replaced by a qualification condition as in Remark 22.8.

We are now ready to prove the fundamental composition lemma, this time for the Fréchet
normal cone. We say that𝐺 : 𝑌 ⇒ 𝑍 is inner Lipschitz at 𝑦 for 𝑧 if for some 𝐿, 𝛿 > 0 and all
�̃� ∈ 𝐵(𝛿, 𝑦) we have

inf
𝑧∈𝐺 (�̃�)

∥𝑧 − 𝑧∥ ≤ 𝐿∥�̃� − 𝑦 ∥.

For single-valued mappings, this property obviously reduces to the Lipschitz-continuity
at 𝑦 . We return to futher, different, Lipschitz-like properties of set-valued mappings in
Chapter 27.

Lemma 23.4 (fundamental lemma on compositions). Let 𝑋,𝑌, 𝑍 be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦, 𝑧) | 𝑦 ∈ 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦)}

for 𝐹 : 𝑋 ⇒ 𝑌 , and 𝐺 : 𝑌 ⇒ 𝑍 . Let (𝑥, 𝑦, 𝑧) ∈ 𝐶 .
(i) If 𝐺 is semi-codifferentiable and inner Lipschitz at 𝑦 for 𝑧 with factor 𝐿 > 0, then

𝐾𝜀 ⊂ 𝑁 𝜀
𝐶 (𝑥, 𝑦, 𝑧) ⊂ 𝐾𝐿𝜀

for all 𝜀 ≥ 0 and

𝐾𝜀 ≔

{
(𝑥∗, 𝑦∗, 𝑧∗)

���� 𝑥∗ ∈ 𝐷∗
𝜀 𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗),

�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗), −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗)

}
.

(ii) If 𝐹−1 is semi-codifferentiable and inner Lipschitz at 𝑦 for 𝑥 with factor ℓ > 0, then

𝑄𝜀 ⊂ 𝑁 𝜀
𝐶 (𝑥, 𝑦, 𝑧) ⊂ 𝑄ℓ𝜀

for all 𝜀 ≥ 0 and

𝑄𝜀 ≔

{
(𝑥∗, 𝑦∗, 𝑧∗)

���� 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗), −𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (�̃�∗ + 𝑦∗),
−�̃�∗ ∈ 𝐷∗

𝜀𝐺 (𝑦 |𝑧) (−𝑧∗)

}
.
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Proof. We recall that (𝑥∗, 𝑦∗, 𝑧∗) ∈ 𝑁 𝜀
𝐶
(𝑥, 𝑦, 𝑧) if and only if

(23.7) lim sup
𝐶∋(𝑥𝑘 ,𝑦𝑘 ,𝑧𝑘 )→(𝑥,𝑦,𝑧)

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 + ⟨𝑦∗, 𝑦𝑘 − 𝑦⟩𝑌 + ⟨𝑧∗, 𝑧𝑘 − 𝑧⟩𝑍
∥(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) − (𝑥, 𝑦, 𝑧)∥𝑋×𝑌×𝑍 ≤ 𝜀.

In case (i), the semi-codifferentiability of 𝐺 implies that for some �̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗) we
have −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗) or equivalently

lim
graph𝐺∋(𝑦𝑘 ,𝑧𝑘 )→(𝑦,𝑧)

⟨�̃�∗, 𝑦𝑘 − 𝑦⟩𝑌 − ⟨𝑧∗, 𝑧𝑘 − 𝑧⟩𝑍
∥(𝑦𝑘 , 𝑧𝑘) − (𝑦, 𝑧)∥𝑌×𝑍 = 0.

Thus (23.7) holds if and only if for some �̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗) with −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗)
we have

(23.8) lim sup
𝐶∋(𝑥𝑘 ,𝑦𝑘 ,𝑧𝑘 )→(𝑥,𝑦,𝑧)

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 + ⟨�̃�∗ + 𝑦∗, 𝑦𝑘 − 𝑦⟩𝑌
∥(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) − (𝑥, 𝑦, 𝑧)∥𝑋×𝑌×𝑍 ≤ 𝜀.

But this follows from 𝑥∗ ∈ 𝐷∗
𝜀 𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗), which yields the first inclusion in (i). For

the second inclusion, taking large enough 𝑘 , we use the inner Lipschitz assumption to
choose 𝑧𝑘 ∈ 𝐺 (𝑦𝑘) such that ∥𝑧𝑘 − 𝑧∥ ≤ (𝐿 + 1/𝑘)∥𝑦𝑘 − 𝑦 ∥. Then (23.8) implies

lim sup
graph 𝐹∋(𝑥𝑘 ,𝑦𝑘 )→(𝑥,𝑦,𝑧)

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 + ⟨�̃�∗ + 𝑦∗, 𝑦𝑘 − 𝑦⟩𝑌
∥(𝑥𝑘 , 𝑦𝑘) − (𝑥, 𝑦)∥𝑋×𝑌 ≤ 𝐿𝜀,

which is to say 𝑥∗ ∈ 𝐷∗
𝐿𝜀
𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗).

In case (ii), the semi-codifferentiability of 𝐹−1 implies that there exists �̃�∗ ∈ −𝑦∗+𝐷∗𝐹−1(𝑦 |𝑥) (−𝑥∗),
i.e., satisfying 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗), such that also −𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (�̃�∗ + 𝑦∗). This is
again equivalently written as

lim
graph𝐺∋(𝑦𝑘 ,𝑥𝑘 )→(𝑦,𝑥)

−⟨�̃�∗ + 𝑦∗, 𝑦𝑘 − 𝑦⟩𝑌 − ⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋
∥(𝑦𝑘 , 𝑥𝑘) − (𝑦, 𝑥)∥𝑌×𝑋 = 0.

Thus (23.7) holds if and only if for some �̃�∗ we have both 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗) and
−𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (�̃�∗ + 𝑦∗), as well as

lim sup
𝐶∋(𝑥𝑘 ,𝑦𝑘 ,𝑧𝑘 )→(𝑥,𝑦,𝑧)

⟨𝑧∗, 𝑧𝑘 − 𝑧⟩𝑋 − ⟨�̃�∗, 𝑦𝑘 − 𝑦⟩𝑌
∥(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) − (𝑥, 𝑦, 𝑧)∥𝑋×𝑌×𝑍 ≤ 𝜀.

But this follows from −�̃�∗ ∈ 𝐷∗
𝜀𝐺 (𝑦 |𝑧) (−𝑧∗), which yields the first inclusion in (ii). For the

second inclusion, as in case (i), we use the inner Lipschitz assumption. □

For the remaining results, we fix 𝜀 = 0. If one of the two mappings is single-valued,
Lemma 23.4 yields the following two special cases.
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Corollary 23.5 (fundamental lemma on compositions: single-valued outer mapping). Let
𝑋,𝑌, 𝑍 be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦,𝐺 (𝑦)) | 𝑦 ∈ 𝐹 (𝑥)}

for 𝐹 : 𝑋 ⇒ 𝑌 and 𝐺 : 𝑌 → 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 and 𝐺 is Fréchet differentiable at 𝑦 , then

𝑁𝐶 (𝑥, 𝑦, 𝑧) = {(𝑥∗, 𝑦∗, 𝑧∗) | 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−[𝐺′(𝑦)]∗𝑧∗ − 𝑦∗), 𝑦∗ ∈ 𝑌 ∗}.

Proof. We first use Lemma 23.1 (i) to show the semi-codifferentiability of 𝐺 at 𝑦 for 𝑧. The
assumed Fréchet differentiability at 𝑦 implies that𝐺 is Lipschitz and hence inner Lipschitz
at 𝑦 for 𝑧 = 𝐺 (𝑦). Thus we may apply Lemma 23.4 (i) to get an expression for 𝑁𝐶 (𝑥, 𝑦, 𝑧).
We finish by inserting therein the expression given by Theorem 20.12 for𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗). □

The corresponding result for a single-valued inner mapping is not quite as straightforward,
unless we assume full (left and right) invertibility of 𝐹 ′(𝑥)−1. We first do so, and then relax
the assumption to mere right invertibility.

Corollary 23.6 (initial lemma on compositions: single-valued inner mapping). Let 𝑋,𝑌, 𝑍
be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦, 𝑧) | 𝑦 = 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦)}
for 𝐹 : 𝑋 → 𝑌 and 𝐺 : 𝑌 ⇒ 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 , 𝐹 is continuously Fréchet differentiable at 𝑥
and 𝐹 ′(𝑥) has an inverse 𝐹 ′(𝑥)−1 ∈ 𝕃(𝑌 ;𝑋 ), then

𝑁𝐶 (𝑥, 𝑦, 𝑧) = {(𝐹 ′(𝑥)∗(−�̃�∗ − 𝑦∗), 𝑦∗, 𝑧∗) | −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗); �̃�∗, 𝑦∗ ∈ 𝑌 ∗}.

Proof. Similarly to the previous proof, we apply Theorem 20.12 and Lemma 23.1 (ii) to 𝐹 to
prove its semi-codifferentiability and then use Lemma 23.4 (ii). To prove that 𝐹−1 is inner
Lipschitz at 𝑦 = 𝐹 (𝑥) for 𝑥 , we apply the Inverse Function Theorem 2.8, which shows that
𝐹−1 exists and is continuously differentiable. Then Lemma 2.11 shows that 𝐹−1 is locally
Lipschitz at 𝑦 , which implies that 𝐹−1 is inner Lipschitz, as required. □

Lemma 23.7 (fundamental lemma on compositions: single-valued inner mapping). Let
𝑋,𝑌, 𝑍 be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦, 𝑧) | 𝑦 = 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦)}

for 𝐹 : 𝑋 → 𝑌 and 𝐺 : 𝑌 ⇒ 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 , the mapping 𝐹 is continuously Fréchet
differentiable at 𝑥 , and 𝐹 ′(𝑥) has a right inverse 𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ), then

𝑁𝐶 (𝑥, 𝑦, 𝑧) = {(𝐹 ′(𝑥)∗(−�̃�∗ − 𝑦∗), 𝑦∗, 𝑧∗) | −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗); �̃�∗, 𝑦∗ ∈ 𝑌 ∗}.
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Proof. Let 𝐹 : 𝑋 → 𝑌 × ker 𝐹 ′(𝑥), 𝐹 (𝑥) ≔ (𝐹 (𝑥), 𝑃𝑥) for 𝑃 ≔ Id − 𝐹 ′(𝑥)†𝐹 ′(𝑥). Also let
𝐺 : 𝑌 × ker 𝐹 ′(𝑥) ⇒ 𝑍 be defined by𝐺 (𝑦, 𝑞) ≔ 𝐺 (𝑦). Then, by Lemma 22.3, 𝐹 is invertible,
and by either the proof of the lemma or by the Inverse Function Theorem 2.8, 𝐹 ′(𝑥) has
an inverse 𝐹 ′(𝑥)−1 ∈ 𝕃(𝑌 × ker 𝐹 ′(𝑥);𝑋 ). Directly from the definition, we deduce that for
every 𝑧∗ ∈ 𝑍 ∗,

𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗) = {(𝑧∗, 𝑞∗) ∈ 𝑍 ∗ × [ker 𝐹 ′(𝑥)]∗ | 𝑧∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗), 𝑞∗ = 0}.

We apply Corollary 23.6 to 𝐹 and 𝐺 to obtain for

𝐶 ≔ {(𝑥, (𝑦, 𝑞), 𝑧) | (𝑦, 𝑞) = 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦, 𝑞)}

the normal expression

𝑁𝐶 (𝑥, (𝑦, 𝑞), 𝑧)

=

{
(𝐹 ′(𝑥)∗(−�̃�∗ − 𝑦∗,−𝑞∗ − 𝑞∗), (𝑦∗, 𝑞∗), 𝑧∗)

���� −(�̃�∗, 𝑞∗) ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗);
�̃�∗, 𝑦∗ ∈ 𝑌 ∗; 𝑞∗, 𝑞∗ ∈ [ker 𝐹 ′(𝑥)]∗

}
=

(𝐹 ′(𝑥)∗(−�̃�∗ − 𝑦∗) + 𝑃∗(−𝑞∗ − 𝑞∗), (𝑦∗, 𝑞∗), 𝑧∗)
������ −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗);
�̃�∗, 𝑦∗ ∈ 𝑌 ∗;
𝑞∗ ∈ [ker 𝐹 ′(𝑥)]∗; 𝑞∗ = 0

 .
Now we write 𝐶 = 𝑅𝐶 for 𝑅(𝑥, (�̃�, 𝑞), 𝑧) ≔ (𝑥, �̃�, 𝑧), and observe that 𝑅−1

(𝑥,(𝑦,𝑞),𝑧) (𝑥, �̃�, 𝑧) ≔
(𝑥, (�̃�, 𝑃𝑥), 𝑧) for 𝑞 = 𝑃𝑥 is a Lipschitz inverse selection of 𝑅 at (𝑥, (𝑦, 𝑞), 𝑧) to𝐶 . Therefore
Lemma 23.2 establishes

𝑁𝐶 (𝑥, 𝑦, 𝑧) =
⋂

(𝑥,(�̃�,𝑞),𝑧)∈𝐶,𝑅(𝑥,(�̃�,𝑞),𝑧)=(𝑥,𝑦,𝑧)
{(𝑥∗, 𝑦∗, 𝑧∗) | (𝑥∗, (𝑦∗, 0), 𝑧∗) ∈ 𝑁𝐶 (𝑥, (�̃�, 𝑞), 𝑧)}

= {(𝐹 ′(𝑥)∗(−�̃�∗ − 𝑦∗), 𝑦∗, 𝑧∗) | −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗), 𝑦∗ ∈ 𝑌 ∗},

as claimed. □

23.3 calculus rules

Using the above lemmas, we again obtain calculus rules. The proofs are similar to those in
Section 22.3, and we only note the differences.

Theorem 23.8 (addition of a single-valued differentiable mapping). Let 𝑋,𝑌 be Banach
spaces,𝐺 : 𝑋 → 𝑌 be continuously Fréchet differentiable, and 𝐹 : 𝑋 ⇒ 𝑌 . Then for any 𝑥 ∈ 𝑋
and 𝑦 ∈ 𝐻 (𝑥) ≔ 𝐹 (𝑥) +𝐺 (𝑥),

𝐷∗𝐻 (𝑥 |𝑦) (𝑦∗) = 𝐷∗𝐹 (𝑥 |𝑦 −𝐺 (𝑥)) (𝑦∗) + [𝐺′(𝑥)]∗𝑦∗ (𝑦∗ ∈ 𝑌 ∗).
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Proof. We have graph𝐻 = 𝑅𝐶 for 𝐶 and 𝑅 given by (22.5) in the proof of Theorem 22.12.
Since 𝐺 is continuously Fréchet differentiable, it is locally Lipschitz by Lemma 2.11. As
shown in Theorem 22.12, the set of 𝑣 ∈ 𝐶 with 𝑅𝑣 = (𝑥, 𝑦) is a singleton. Consequently the
map 𝑅𝑣 given by (22.6) for the unique 𝑣 is locally Lipschitz with a factor 𝐿(𝑥,𝑦) . We may
therefore apply Lemma 23.2 in place of Lemma 22.7 in the proof of Theorem 22.12 to obtain

𝑁graph𝐻 (𝑥, 𝑦) = {(𝑥∗, 𝑦∗) | (𝑦∗, 𝑥∗, 𝑦∗) ∈ 𝑁𝐶 (𝑦 −𝐺 (𝑥), 𝑥,𝐺 (𝑥))}.

Moreover,𝐶 given in (22.5) coincides with the𝐶 defined in Corollary 23.5 with 𝐹−1 in place
of 𝐹 . Inserting the expression from Lemma 20.5 for 𝐷∗𝐹−1 into the result of the corollary, it
follows that

𝑁𝐶 (𝑢, 𝑥, 𝑣) = {(𝑢∗, 𝑥∗, 𝑣∗) ∈ 𝑌 ∗ × 𝑋 ∗ × 𝑌 ∗ | 𝑢∗ ∈ 𝐷∗𝐹−1(𝑢 |𝑥) (−[𝐺′(𝑦)]∗𝑣∗ − 𝑥∗)}
= {(𝑢∗, 𝑥∗, 𝑣∗) ∈ 𝑌 ∗ × 𝑋 ∗ × 𝑌 ∗ | [𝐺′(𝑥)]∗𝑣∗ + 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑢) (−𝑢∗)}.

Thus
𝐷∗𝐻 (𝑥 |𝑦) (𝑦∗) = {𝑥∗ | (−𝑦∗, 𝑥∗,−𝑦∗) ∈ 𝑁𝐶 (𝑦 −𝐺 (𝑥), 𝑥,𝐺 (𝑥))}

= {𝑥∗ | −[𝐺′(𝑥)]∗𝑦∗ + 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦 −𝐺 (𝑥)) (𝑦∗)},
which yields the claim. □

Theorem 23.9 (outer composition with a single-valued differentiable mapping). Let 𝑋,𝑌 be
Banach spaces, 𝐹 : 𝑋 ⇒ 𝑌 , and𝐺 : 𝑌 → 𝑍 . Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝐹 (𝑋 )) be given. If
𝐺 is Fréchet differentiable at every 𝑦 ∈ 𝐹 (𝑥), left-invertible on ran𝐺 near 𝑧, and the inverse
𝐺−1 is continuously Fréchet differentiable in a neighborhood 𝑧, then

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) =
⋂

𝑦 :𝐺 (𝑦)=𝑧
𝐷∗𝐹 (𝑥 |𝑦) ( [𝐺′(𝑦)]∗𝑧∗) (𝑧∗ ∈ 𝑍 ∗).

Proof. We have graph𝐻 = 𝑅𝐶 for 𝑅 and 𝐶 as given by (22.7) in the proof of Theorem 22.13.
Using the assumed continuous Fréchet differentiability of 𝐺−1 at 𝑧, Lemma 2.11 establishes
that𝐺−1 is Lipschitz at 𝑧. Consequently, so are the selections 𝑅−1

(𝑥,𝑦,𝑧) : 𝑅𝐶 → 𝐶 constructed
in (22.8) Applying Lemma 23.2 in place of Lemma 22.7 then yields

𝑁graph𝐻 (𝑥, 𝑧) =
⋂

𝑦 :𝐺 (𝑦)=𝑧
{(𝑥∗, 𝑧∗) | (𝑥∗, 0, 𝑧∗) ∈ 𝑁𝐶 (𝑥, 𝑦, 𝑧)}.

Corollary 23.5 then shows that

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) =
⋂

𝑦 :𝐺 (𝑦)=𝑧
{𝑥∗ | (𝑥∗, 0,−𝑧∗) ∈ 𝑁𝐶 (𝑥, 𝑦, 𝑧)}

=
⋂

𝑦 :𝐺 (𝑦)=𝑧
{𝑥∗ | 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) ( [𝐺′(𝑦)]∗𝑧∗)}.

After further simplification, we arrive at the claimed expression. □
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Corollary 23.10 (outer composition with a linear operator). Let 𝑋,𝑌, 𝑍 be Banach spaces,
𝐴 ∈ 𝕃(𝑌 ;𝑍 ), and 𝐹 : 𝑋 ⇒ 𝑌 . If 𝐴 has a bounded left-inverse 𝐴†, then for any 𝑥 ∈ 𝑋 and
𝑧 ∈ 𝐻 (𝑥) := 𝐴𝐹 (𝑥),

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) = 𝐷∗𝐹 (𝑥 |𝑦) (𝐴∗𝑧∗) (𝑧∗ ∈ 𝑍 ∗)
for the unique 𝑦 ∈ 𝑌 such that 𝐴𝑦 = 𝑧.

Proof. We only need to verify that 𝐺 (𝑦) ≔ 𝐴𝑧 satisfies the assumptions of Theorem 23.9,
which can be done exactly as in the proof of Corollary 22.14. □

Theorem 23.11 (inner composition with a single-valued mapping). Let 𝑋,𝑌, 𝑍 be Banach
spaces, 𝐹 : 𝑋 → 𝑌 and 𝐺 : 𝑌 ⇒ 𝑍 . Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) := 𝐺 (𝐹 (𝑥)). If 𝐹 is continuously
Fréchet differentiable in a neighborhood of 𝑥 and 𝐹 ′(𝑥) has a right-inverse 𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ),
then

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) = [𝐹 ′(𝑥)]∗𝐷∗𝐺 (𝐹 (𝑥) |𝑧) (𝑧∗) (𝑧∗ ∈ 𝑍 ∗).

Proof. We have graph𝐻 = 𝑅𝐶 for 𝐶 and 𝑅 as given by (22.9) in the proof of Theorem 22.15.
Similarly to the proof of continuity and Fréchet differentiability therein but now using the
continuous Fréchet differentiability assumption on 𝐹 and Lemma 2.11, we observe that 𝑅−1

𝑣

is locally Lipschitz at (𝑥, 𝑧) for the unique 𝑣 = (𝑥, 𝐹 (𝑥), 𝑧) ∈ 𝐶 with 𝑅𝑣 = (𝑥, 𝑧). We are
therefore justified in applying Lemma 23.2 in place of Theorem 22.15. It yields

𝑁graph𝐻 (𝑥, 𝑧) = {(𝑥∗, 𝑧∗) | (𝑥∗, 0, 𝑧∗) ∈ 𝑁𝐶 (𝑥, 𝐹 (𝑥), 𝑧)}.
On the other hand, since 𝐹 is continuously Fréchet differentiable, Lemma 23.7 implies that

𝑁𝐶 (𝑥, 𝑦, 𝑧) = {(𝐹 ′(𝑥)∗(−�̃�∗ − 𝑦∗), 𝑦∗, 𝑧∗) | −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗), 𝑦∗ ∈ 𝑌 ∗}.
Thus

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) = {𝑥∗ | (𝑥∗, 0,−𝑧∗) ∈ 𝑁𝐶 (𝑥, 𝐹 (𝑥), 𝑧)}
= {𝐹 ′(𝑥)∗�̃�∗ | �̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗)},

which yields the claim. □

Corollary 23.12 (inner composition with a linear operator). Let 𝑋,𝑌, 𝑍 be Banach spaces,
𝐴 ∈ 𝕃(𝑋 ;𝑌 ), and 𝐺 : 𝑌 ⇒ 𝑍 . Let 𝐻 ≔ 𝐺 ◦ 𝐴 for 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and 𝐺 : 𝑌 ⇒ 𝑍 on
Banach spaces 𝑋,𝑌 , and 𝑍 . If 𝐴 has a right-inverse 𝐴† ∈ 𝕃(𝑌 ;𝑋 ), then for all 𝑥 ∈ 𝑋 and
𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝐴𝑥),

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) = 𝐴∗𝐷∗𝐺 (𝐴𝑥 |𝑧) (𝑧∗) (𝑧∗ ∈ 𝑍 ∗).

We again apply this to the chain rule from Theorem 4.17. Compare the following expression
with that from Corollary 22.17, noting that 𝜕𝑓 : 𝑋 ⇒ 𝑋 ∗ in Banach spaces such that
𝐷∗ [𝜕𝑓 ] (𝑥 |𝑥∗) : 𝑋 ∗∗ → 𝑋 ∗.
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Corollary 23.13 (second derivative chain rule for convex subdifferential). Let𝑋,𝑌 be Banach
spaces, 𝑓 : 𝑌 → ℝ be proper, convex, and lower semicontinuous, and 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) be such
that 𝐴 has a right-inverse 𝐴† ∈ 𝕃(𝑌 ;𝑋 ), and ran𝐴 ∩ int dom 𝑓 ≠ ∅. Let ℎ ≔ 𝑓 ◦𝐴. Then for
any 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝜕ℎ(𝑥) = 𝐴∗𝜕𝑓 (𝐴𝑥),

𝐷∗ [𝜕ℎ] (𝑥 |𝑥∗) (𝑥∗∗) = 𝐴∗𝐷∗ [𝜕𝑓 ] (𝐴𝑥 |𝑦∗) (𝐴∗∗𝑥∗∗) (𝑥∗∗ ∈ 𝑋 ∗∗)

for the unique 𝑦∗ ∈ 𝑌 ∗ satisfying 𝐴∗𝑦∗ = 𝑥∗.

Proof. The expression for 𝜕ℎ(𝑥) follows from Theorem 4.17, to which we apply Corol-
lary 23.12 as well as Corollary 23.10 with 𝐴∗ in place of 𝐴, recalling that a right-inverse 𝐴†

for 𝐴 produces the left-inverse 𝐴†∗ for 𝐴∗. □

Hence if 𝑋 is reflexive, the expression for the coderivative is identical to that for the
graphical derivative.

For the corresponding result for the Clarke subdifferential, we again need a product rule.
We start with the following lemma.

Lemma 23.14. Let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 ⇒ 𝑌 . Define 𝐹 : 𝑋 ⇒ 𝑋 × 𝑌 by
𝐹 (𝑥) ≔ {𝑥} × 𝐹 (𝑥). Then, for all 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝐹 (𝑥), 𝑥∗ ∈ 𝑋 ∗, and 𝑦∗ ∈ 𝑌 ∗, we have

𝐷∗𝐹 (𝑥 |𝑥, 𝑦) (𝑥∗, 𝑦∗) = 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) + 𝑥∗.

Proof. The proof is analogous to Lemma 22.18 for the graphical derivative. We have

graph 𝐹 = 𝑅0 graph 𝐹 for 𝑅0(𝑥, �̃�) ≔ (𝑥, (𝑥, �̃�)) .

Clearly 𝑅−1
0,𝑣 (𝑥, (𝑥, �̃�)) ≔ (𝑥, �̃�), 𝑅−1

0,𝑣 : 𝑅0 graph 𝐹 → graph 𝐹 , is a Fréchet differentiable and
Lipschitz inverse selection of 𝑅0 at (𝑥, (𝑥, 𝑦)) ∈ 𝑅0 graph 𝐹 for the unique 𝑣 = (𝑥, 𝑦) ∈
graph 𝐹 with 𝑅0𝑣 = (𝑥, (𝑥, 𝑦)). Therefore, by Lemma 23.2, we have

𝑁𝑅0 graph 𝐹 (𝑥, (𝑥, 𝑦)) = {(𝑥∗0, (−𝑥∗,−𝑦∗)) | (𝑥∗0 − 𝑥∗,−𝑦∗) ∈ 𝑁graph 𝐹 (𝑥, 𝑦)},

which establishes the claim. □

Theorem 23.15 (product rule). Let 𝑋,𝑌, 𝑍 be Banach spaces, 𝐺 : 𝑋 → 𝕃(𝑌 ;𝑍 ) be Fréchet
differentiable, and 𝐹 : 𝑋 ⇒ 𝑌 . If𝐺 (𝑥) ∈ 𝕃(𝑌 ;𝑍 ) has a left-inverse𝐺 (𝑥)† ∈ 𝕃(𝑍 ;𝑌 ) for𝑥 near
𝑥 ∈ 𝑋 and the mapping 𝑥 ↦→ 𝐺 (𝑥)† is continuously Fréchet differentiable in a neighborhood
of 𝑥 , then for all 𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝑥)𝐹 (𝑥) ≔ ⋃

𝑦∈𝐹 (𝑥)𝐺 (𝑥)𝑦 ,

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) = 𝐷∗𝐹 (𝑥 |𝑦) (𝐺 (𝑥)∗𝑧∗) + ([𝐺′(𝑥) · ]𝑦)∗𝑧∗ (𝑧∗ ∈ 𝑍 ∗)

for the unique 𝑦 ∈ 𝐹 (𝑥) satisfying that 𝐺 (𝑥)𝑦 = 𝑧.
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Proof. The proof is analogous to Theorem 22.19 for the graphical derivative. We again have
graph𝐻 = 𝑅1 graph(𝐺 ◦ 𝐹 ) for 𝐹 as in Lemma 23.14,

𝐺 (𝑥, �̃�) = (𝑥,𝐺 (𝑥)�̃�), and 𝑅1(𝑥1, 𝑥2, 𝑧) ≔ (𝑥1, 𝑧).

We also have
𝐺′(𝑥, 𝑦)∗(𝑥∗0, 𝑧∗) = (𝑥∗0 + ([𝐺′(𝑥) · ]𝑦)∗𝑧∗,𝐺 (𝑥)∗𝑧∗).

We now apply Theorem 23.9, whose remaining assumptions are verified exactly as those
of Theorem 22.13 in Theorem 22.19, only now using the continuous Fréchet differentiability
of 𝑥 ↦→ 𝐺 (𝑥)†. This combined with Lemma 23.14 yields

𝐷∗ [𝐺 ◦ 𝐹 ] (𝑥 |𝑥, 𝑧) (𝑥∗0, 𝑧∗) =
⋂

𝑦 :𝐺 (𝑥,𝑦)=(𝑥,𝑧)
𝐷∗𝐹 (𝑥 |𝑥, 𝑦) (𝐺′(𝑥, 𝑦)∗(𝑥∗0, 𝑧∗))

=
⋂

𝑦 :𝐺 (𝑥)𝑦=𝑧
𝐷∗𝐹 (𝑥 |𝑥, 𝑦) (𝑥∗0 + ([𝐺′(𝑥) · ]𝑦)∗𝑧∗,𝐺 (𝑥)∗𝑧∗)

=
⋂

𝑦 :𝐺 (𝑥)𝑦=𝑧
𝑥∗0 + 𝐷∗𝐹 (𝑥 |𝑦) (𝐺 (𝑥)∗𝑧∗) + ([𝐺′(𝑥) · ]𝑦)∗𝑧∗.

It follows that

𝑁graph(𝐺◦𝐹 ) (𝑥, 𝑥, 𝑧) =
⋂

𝑦 :𝐺 (𝑥)𝑦=𝑧

{
(𝑥∗,−𝑥∗0,−𝑧∗)

���� 𝑥∗ − 𝑥∗0 ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝐺 (𝑥)∗𝑧∗)
+([𝐺′(𝑥) · ]𝑦)∗𝑧∗

}
.

Write 𝑤 ≔ (𝑥, (𝑥, 𝑧)) ∈ graph(𝐺 ◦ 𝐹 ). Since the inverse selection 𝑅−1
1,𝑤 constructed in

Theorem 22.19 is linear, it is Lipschitz. As 𝑤 is the unique point in graph(𝐺 ◦ 𝐹 ) with
𝑅1𝑤 = (𝑥, 𝑧), the entire family of inverse selections corresponding to (𝑥, 𝑧) ∈ 𝑅1 graph(𝐺◦𝐹 )
has a uniform Lipschitz factor. Therefore, another application of Lemma 23.2 yields

𝑁graph𝐻 (𝑥, 𝑧) =
⋂

𝑦 :𝐺 (𝑥)𝑦=𝑧
{(𝑥∗,−𝑧∗) | 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝐺 (𝑥)∗𝑧∗) + ([𝐺′(𝑥) · ]𝑦)∗𝑧∗}.

Since the 𝑦 is unique by our invertibility assumptions on𝐺 (𝑥) and exists due to 𝑧 ∈ 𝐻 (𝑥),
we obtain the claim. □

Corollary 23.16 (second derivative chain rule for Clarke subdifferential). Let 𝑋,𝑌 be Banach
spaces, let 𝑓 : 𝑌 → 𝑅 be locally Lipschitz continuous, and let 𝑆 : 𝑋 → 𝑌 be twice continuously
differentiable. Set ℎ : 𝑋 → 𝑌 , ℎ(𝑥) ≔ 𝑓 (𝑆 (𝑥)). If there exists a neighborhood 𝑈 of 𝑥 ∈ 𝑋
such that

(i) 𝑓 is Clarke regular at 𝑆 (𝑥) for all 𝑥 ∈ 𝑋 ;
(ii) 𝑆′(𝑥) has a right-inverse 𝑆′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ) for all 𝑥 ∈ 𝑈 ;

(iii) the mapping 𝑥 ↦→ 𝑆′(𝑥)†∗ is continuously Fréchet differentiable at 𝑥 ;
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then for all 𝑥∗ ∈ 𝜕𝐶ℎ(𝑥) = 𝑆′(𝑥)∗𝜕𝐶 𝑓 (𝑆 (𝑥)),

𝐷∗ [𝜕𝐶ℎ] (𝑥 |𝑥∗) (𝑥∗∗) = 𝑆 (𝑥)∗𝑥∗∗ + 𝑆′(𝑥)∗𝐷∗ [𝜕𝐶 𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑆′(𝑥)∗∗𝑥∗∗) (𝑥∗∗ ∈ 𝑋 ∗∗)

for the linear operator 𝑆 : 𝑋 → 𝕃(𝑋 ;𝑋 ∗), 𝑆 (𝑥)Δ𝑥 := (𝑆′′(𝑥)Δ𝑥)∗𝑦∗ and the unique 𝑦∗ ∈
𝜕𝐶 𝑓 (𝑆 (𝑥)) such that 𝑆′(𝑥)∗𝑦∗ = 𝑥∗.

Proof. The expression for 𝜕𝐶ℎ(𝑥) follows from Theorem 13.23. Let now 𝑆 : 𝑋 → 𝕃(𝑌 ∗;𝑋 ∗),
𝑆 (𝑥) ≔ 𝑆′(𝑥)∗. Then 𝑆 is Fréchet differentiable in𝑈 as well, which together with assump-
tion (iii) allows us to apply Theorem 23.15 to obtain

𝐷∗ [𝜕𝐶ℎ] (𝑥 |𝑥∗) (𝑥∗∗) = (𝑆′(𝑥)𝑦∗)∗𝑥∗∗ + 𝐷∗ [(𝜕𝐶 𝑓 ) ◦ 𝑆] (𝑥 |𝑦∗) (𝑆′(𝑥)∗∗𝑥∗∗) (𝑥∗∗ ∈ 𝑋 ∗∗) .

Furthermore, since 𝑆′(𝑥) has a bounded right-inverse, we can apply Theorem 23.11 to obtain
for all 𝑥∗ ∈ 𝜕𝐶 𝑓 (𝑆 (𝑥)) that

𝐷∗ [(𝜕𝐶 𝑓 ) ◦ 𝑆] (𝑥 |𝑦∗) (𝑦∗∗) = 𝑆′(𝑥)∗𝐷∗ [𝜕𝐶 𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑦∗∗) (𝑦∗∗ ∈ 𝑌 ∗∗)

for the unique 𝑦∗ ∈ 𝜕𝐶 𝑓 (𝑆 (𝑥)) such that 𝑆′(𝑥)∗𝑦∗ = 𝑥∗. The claim now follows again from
the fact that 𝑆′(𝑥)Δ𝑥 = (𝑆′′(𝑥)Δ𝑥)∗. □

Note that 𝑆 (𝑥)Δ𝑥 := (𝑆′′(𝑥)Δ𝑥)∗𝑦∗ also occurs in the corresponding Corollary 22.20 and
recall from Examples 20.1 and 20.6 and Theorem 20.12 that coderivatives for differentiable
single-valued mappings amount to taking adjoints of their Fréchet derivative.
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We now turn to the limiting (co)derivatives. Compared to the basic (co)derivatives, calculus
rules for these are much more challenging and require even more assumptions. In this chap-
ter, we consider the Clarke graphical derivative, where in addition to strict differentiability
we will for the sake of simplicity assume T-regularity of the set-valued mapping (so that
the Clarke graphical derivative coincides with the graphical derivative) and show that this
regularity is preserved under addition and composition with a single-valued mapping.

24.1 strict differentiability

The following concept generalizes the notion of strict differentiability for single-valued
mappings (see Remark 2.6) to set-valued mappings. Let 𝑋,𝑌 be Banach spaces. We say that
𝐹 : 𝑋 ⇒ 𝑌 is strictly differentiable at 𝑥 ∈ 𝑋 for 𝑦 ∈ 𝐹 (𝑥) if graph 𝐹 is closed near (𝑥, 𝑦)
and

for every Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥), 𝜏𝑘→ 0, 𝑥𝑘 → 𝑥 with 𝑥𝑘 − 𝑥𝑘
𝜏𝑘

→ Δ𝑥,

and �̃�𝑘 ∈ 𝐹 (𝑥𝑘) with �̃�𝑘 → 𝑦,

(24.1a)

there exist 𝑦𝑘 ∈ 𝐹 (𝑥𝑘) with 𝑦𝑘 − �̃�𝑘
𝜏𝑘

→ Δ𝑦.(24.1b)

Compared to semi-differentiability, strict differentiability requires that the limits realizing
the various directions are interchangeable with limits of the base points; in other words,
that the graphical derivative is itself an inner limit, i.e.,

(24.2) 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) = lim inf
𝜏→ 0,Δ𝑥→Δ𝑥

graph 𝐹∋(𝑥,�̃�)→(𝑥,𝑦)

𝐹 (𝑥 + 𝜏Δ𝑥) − �̃�
𝜏

(Δ𝑥 ∈ 𝑋 ).

Lemma 24.1. If 𝑋 and 𝑌 are finite-dimensional, then 𝐹 : 𝑋 ⇒ 𝑌 is strictly differentiable at
𝑥 ∈ 𝑋 for 𝑦 ∈ 𝑌 if and only if

(24.3) 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) = lim inf
graph 𝐹∋(𝑥,�̃�)→(𝑥,𝑦),

Δ𝑥→Δ𝑥, 𝐷𝐹 (𝑥 |�̃�) (Δ𝑥)≠∅
𝐷𝐹 (𝑥 |�̃�) (Δ𝑥) (Δ𝑥 ∈ 𝑋 ).
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Proof. We need to show that graph𝐷𝐹 (𝑥, 𝑦) = 𝐾 for

𝐾 ≔

(Δ𝑥,Δ𝑦)
�������Δ𝑦 ∈ lim inf

graph 𝐹∋(𝑥,�̃�)→(𝑥,𝑦),
Δ𝑥→Δ𝑥, 𝐷𝐹 (𝑥 |�̃�) (Δ𝑥)≠∅

𝐷𝐹 (𝑥 |�̃�) (Δ𝑥)
 .

We first show that graph𝐷𝐹 (𝑥, 𝑦) ⊂ 𝐾 . If (Δ𝑥,Δ𝑦) ∉ 𝐾 , then there exist graph 𝐹 ∋
(𝑥𝑘 , �̃�𝑘) → (𝑥, 𝑦) and Δ𝑥𝑘 → Δ𝑥 with 𝐷𝐹 (𝑥𝑘 |�̃�𝑘) (Δ𝑥𝑘) ≠ ∅ such that for some 𝜀 > 0 and
an infinite subset 𝑁 ⊂ ℕ,

inf
Δ𝑦𝑘∈𝐷𝐹 (𝑥𝑘 |�̃�𝑘 ) (Δ𝑥𝑘 )

∥Δ𝑦𝑘 − Δ𝑦 ∥ ≥ 2𝜀 (𝑘 ∈ 𝑁 ).

By the characterization (20.1) of 𝐷𝐹 (𝑥𝑘 |�̃�𝑘), this implies the existence of 𝜏𝑘→ 0 such that

lim sup
𝑘→∞

inf
𝑦𝑘∈𝐹 (𝑥𝑘+𝜏𝑘Δ𝑥𝑘 )

𝑦𝑘 − �̃�𝑘𝜏𝑘
− Δ𝑦

 ≥ 𝜀.

Thus (Δ𝑥,Δ𝑦) ∉ graph𝐷𝐹 (𝑥, 𝑦) and hence graph𝐷𝐹 (𝑥, 𝑦) ⊂ 𝐾 .

Rewriting then

𝐾 =

{
(Δ𝑥,Δ𝑦) ∈ 𝑋 × 𝑌

���� (𝑥, �̃�,Δ𝑥) → (𝑥, 𝑦,Δ𝑥) ⇒ ∃Δ�̃� → Δ𝑦
with Δ�̃� ∈ 𝐷𝐹 (𝑥 |�̃�) (Δ𝑥)

}
,

the characterization (20.4) of𝐷𝐹 (𝑥, 𝑦) provides the opposite inclusion graph𝐷𝐹 (𝑥, 𝑦) ⊂ 𝐾 .
Therefore (24.3) holds. □

In particular, single-valued continuously differentiable mappings and their inverses are
strictly differentiable.

Lemma 24.2. Let 𝑋,𝑌 be Banach spaces and let 𝐹 : 𝑋 → 𝑌 be single-valued.

(i) If 𝐹 is continuously differentiable at 𝑥 ∈ 𝑋 , then 𝐹 is strictly differentiable at 𝑥 for
𝑦 = 𝐹 (𝑥).

(ii) If 𝐹 is continuously differentiable near 𝑥 ∈ 𝑋 and 𝐹 ′(𝑥) has a right-inverse 𝐹 ′(𝑥)† ∈
𝕃(𝑌 ;𝑋 ), then 𝐹−1 is strictly differentiable at 𝑦 = 𝐹 (𝑥) for 𝑥 .

Proof. The proof is analogous to Lemma 22.4, since the inverse function Theorem 2.8
establishes the continuous differentiability of 𝐹−1 and hence strict differentiability. □

Remark 24.3. As in Remark 22.5, if 𝑋 is finite-dimensional, it suffices in Lemma 24.2 (ii) to assume
that 𝐹 is continuously differentiable with ker 𝐹 ′(𝑥)∗ = {0}.

325



24 calculus for the clarke graphical derivative

24.2 cone transformation formulas

The main aim in the following lemmas is to show that tangential regularity is preserved
under certain transformations. We do this by proceeding as in Section 22.2 to derive explicit
expressions for the transformed cones and then comparing them with the corresponding
expressions obtained there for the graphical derivative.

Lemma 24.4. Let𝑋,𝑌 be Banach spaces and assume there exists a family of continuous inverse
selections {𝑅−1

𝑦 : 𝑈𝑦 → 𝐶 | 𝑦 ∈ 𝐶, 𝑅𝑦 = 𝑥} of 𝑅 ∈ 𝕃(𝑌 ;𝑋 ) to 𝐶 ⊂ 𝑌 at 𝑥 ∈ 𝑋 . If each 𝑅−1
𝑦 is

Fréchet differentiable at 𝑥 and 𝐶 is tangentially regular at all 𝑦 ∈ 𝐶 with 𝑅𝑦 = 𝑥 , then 𝑅𝐶 is
tangentially regular at 𝑥 and

𝑇𝑅𝐶 (𝑥) =
⋃

𝑦 :𝑅𝑦=𝑥
𝑅𝑇𝐶 (𝑦).

Proof. We first prove “⊂”. Suppose Δ𝑦 ∈ 𝑇𝐶 (𝑦) for some 𝑦 ∈ 𝑌 with 𝑅𝑦 = 𝑥 . Then for
any 𝐶 ∋ �̃�𝑘 → 𝑦 there exist 𝑦𝑘 ∈ 𝐶 and 𝜏𝑘→ 0 such that Δ𝑦 = lim𝑘→∞(𝑦𝑘 − �̃�𝑘)/𝜏𝑘 .
Consequently, since 𝑅 is bounded, 𝑅(𝑦𝑘 − �̃�𝑘)/𝜏𝑘 → 𝑅Δ𝑦 . To show that 𝑅Δ𝑦 ∈ 𝑇𝑅𝐶 (𝑥), let
𝑅𝐶 ∋ 𝑥𝑘 → 𝑥 be given. Take now �̃�𝑘 = 𝑅−1

𝑦 (𝑥𝑘), which satisfies �̃�𝑘 → 𝑦 = 𝑅−1
𝑦 (𝑥) due to

𝑥𝑘 → 𝑥 . Then (𝑅𝑦𝑘 − 𝑥𝑘)/𝜏𝑘 = 𝑅(𝑦𝑘 − �̃�𝑘)/𝜏𝑘 → 𝑅Δ𝑦 , which shows “⊃”.
To prove “⊂”, suppose that Δ𝑥 ∈ 𝑇𝑅𝐶 (𝑥) and hence Δ𝑥 ∈ 𝑇𝑅𝐶 (𝑥) by Theorem 18.5. By
Lemma 22.7, Δ𝑥 = 𝑅Δ𝑦 for some 𝑦 ∈ 𝑌 with 𝑅𝑦 = 𝑥 and Δ𝑦 ∈ 𝑇𝐶 (𝑦) = 𝑇𝐶 (𝑦) by the
assumed tangential regularity of 𝐶 at 𝑦 . This shows “⊂”.
Comparing now the expression for𝑇𝑅𝐶 (𝑦) = 𝑇𝐶 (𝑦) with the expression for𝑇𝑅𝐶 (𝑥) provided
by Lemma 22.7 and using the tangential regularity of 𝐶 shows the claimed tangential
regularity of 𝑅𝐶 . □

Remark 24.5 (regularity assumptions). The assumption in Lemma 24.4 that𝐶 is tangentially regular
is not needed if ker𝑅 = {0} or, more generally, if 𝑅 is a continuously differentiable mapping with
ker∇𝑅(𝑦) = {0}; see [Mordukhovich, 1994, Corollary 5.4].

Lemma 24.6 (fundamental lemma on compositions). Let 𝑋,𝑌, 𝑍 be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦, 𝑧) | 𝑦 ∈ 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦)}

for 𝐹 : 𝑋 ⇒ 𝑌 , and 𝐺 : 𝑌 ⇒ 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 and either

(a) 𝐺 is inner semicontinuous, strictly differentiable, and T-regular at 𝑦 for 𝑧, or

(b) 𝐹−1 is inner semicontinuous, strictly differentiable, and T-regular at 𝑦 for 𝑥 ,
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then

(24.4) 𝑇𝐶 (𝑥, 𝑦, 𝑧) = {(Δ𝑥,Δ𝑦,Δ𝑧) | Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥), Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦)}.

Moreover, if 𝐹 is T-regular at 𝑥 for 𝑦 and 𝐺 is T-regular at 𝑦 for 𝑧, then 𝐶 is tangentially
regular at (𝑥, 𝑦, 𝑧).

Proof. We only consider the case (a) as the case (b) is again proved similarly. The proof
is analogous to Lemma 22.9, using in this case the strict differentiability of 𝐺 in place of
semi-differentiability. First, we observe that (Δ𝑥,Δ𝑦,Δ𝑧) ∈ 𝑇𝐶 (𝑥, 𝑦, 𝑧) if and only if for all
𝜏𝑘→ 0 and 𝐶 ∋ (𝑥𝑘 , �̃�𝑘 , 𝑧𝑘) → (𝑥, 𝑦, 𝑧), there exist (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) ∈ 𝐶 such that

Δ𝑥 = lim
𝑘→∞

𝑥𝑘 − 𝑥𝑘
𝜏𝑘

, Δ𝑦 = lim
𝑘→∞

𝑦𝑘 − �̃�𝑘
𝜏𝑘

, Δ𝑧 = lim
𝑘→∞

𝑧𝑘 − 𝑧𝑘
𝜏𝑘

.

Suppose (Δ𝑥,Δ𝑦,Δ𝑧) ∈ 𝑇𝐶 (𝑥, 𝑦, 𝑧). Taking (𝑥𝑘 , �̃�𝑘 , 𝑧𝑘) = (𝑥, 𝑦, 𝑧), it is immediate that
Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) and Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦). By the T-regularity of 𝐺 , it follows that
Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦). Now take any graph 𝐹 ∋ (𝑥𝑘 , �̃�𝑘) → (𝑥, 𝑦). By the assumption
that 𝐺 is inner semicontinuous, there exists some 𝐺 (�̃�𝑘) ∋ 𝑧𝑘 → 𝑧. Thus, by the above
characterization of (Δ𝑥,Δ𝑦,Δ𝑧) ∈ 𝑇𝐶 (𝑥, 𝑦, 𝑧), there exist (𝑥𝑘 , 𝑦𝑘) ∈ graph 𝐹 such that
(𝑥𝑘 − 𝑥𝑘)/𝜏𝑘 → Δ𝑥 and (𝑦𝑘 − �̃�𝑘)/𝜏𝑘 → Δ𝑦 . That is, (Δ𝑥,Δ𝑦) ∈ 𝑇graph 𝐹 (𝑥, 𝑦). This shows
“⊂” in (24.4).

To prove “⊃”, suppose Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) and Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦) and take 𝜏𝑘→ 0 and
𝐶 ∋ (𝑥𝑘 , �̃�𝑘 , 𝑧𝑘) → (𝑥, 𝑦, 𝑧). By definition of 𝐷𝐹 (𝑥 |𝑦), there then exist (𝑥𝑘 , 𝑦𝑘) ∈ graph 𝐹
such that the first two limits hold. By the strict differentiability of𝐺 at 𝑦 for 𝑧, we can also
find 𝑧𝑘 ∈ 𝐺 (𝑦𝑘) such that (𝑧𝑘 − 𝑧𝑘)/𝜏𝑘 → Δ𝑧. This shows the remaining limit.

Finally, the tangential regularity of 𝐶 follows from the assumed 𝑇 -regularities of 𝐹 and 𝐺
by comparing (24.4) with the corresponding expression (22.4). □

If one of the two mappings is single-valued, we can use Lemma 24.2 for verifying its
semi-differentiability and Theorem 20.12 for regularity and the expression of its graphical
derivative to obtain from Lemma 24.6 the following two special cases.

Corollary 24.7 (fundamental lemma on compositions: single-valued outer mapping). Let
𝑋,𝑌, 𝑍 be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦,𝐺 (𝑦)) | 𝑦 ∈ 𝐹 (𝑥)}

for 𝐹 : 𝑋 ⇒ 𝑌 and𝐺 : 𝑌 → 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 and𝐺 is continuously differentiable at 𝑦 , then

𝑇𝐶 (𝑥, 𝑦, 𝑧) = {(Δ𝑥,Δ𝑦,𝐺′(𝑦)Δ𝑦) | Δ𝑦 ∈ 𝐷𝐹 (𝑥 |𝑦) (Δ𝑥)}.

Moreover, if 𝐹 is T-regular at (𝑥, 𝑦), then 𝐶 is tangentially-regular at (𝑥, 𝑦,𝐺 (𝑦)).
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Corollary 24.8 (fundamental lemma on compositions: single-valued inner mapping). Let
𝑋,𝑌, 𝑍 be Banach spaces and

𝐶 ≔ {(𝑥, 𝑦, 𝑧) | 𝑦 = 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦)}
for 𝐹 : 𝑋 ⇒ 𝑌 and 𝐺 : 𝑌 → 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 , 𝐹 is continuously Fréchet differentiable at 𝑥 ,
and 𝐹 ′(𝑥) has a right-inverse 𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ), then

𝑇𝐶 (𝑥, 𝑦, 𝑧) = {(Δ𝑥,Δ𝑦,Δ𝑧) | Δ𝑦 = 𝐹 ′(𝑥)Δ𝑥, Δ𝑧 ∈ 𝐷𝐺 (𝑦 |𝑧) (Δ𝑦)}.
Moreover, if 𝐺 is T-regular at (𝑦, 𝑧), then 𝐶 is tangentially regular at (𝑥, 𝑦, 𝑧).

24.3 calculus rules

Using these lemmas, we again obtain calculus rules under the assumption that the involved
set-valued mapping is regular.

Theorem 24.9 (addition of a single-valued differentiable mapping). Let 𝑋,𝑌 be Banach
spaces, let𝐺 : 𝑋 → 𝑌 be Fréchet differentiable, and 𝐹 : 𝑋 ⇒ 𝑌 . If 𝐺 is continuously Fréchet
differentiable at 𝑥 ∈ 𝑋 and 𝐹 is T-regular at (𝑥, 𝑦 −𝐺 (𝑥)) for 𝑦 ∈ 𝐻 (𝑥) ≔ 𝐹 (𝑥) +𝐺 (𝑥), then
𝐻 is T-regular at (𝑥, 𝑦) and

𝐷𝐻 (𝑥 |𝑦) (Δ𝑥) = 𝐷𝐹 (𝑥 |𝑦 −𝐺 (𝑥)) (Δ𝑥) +𝐺′(𝑥)Δ𝑥 (Δ𝑥 ∈ 𝑋 ).

Proof. We construct 𝐻 from 𝐶 and 𝑅 as in Theorem 22.12. Due to the assumptions (noting
that continuous differentiability implies strict differentiability), 𝐶 and 𝑅𝐶 are tangentially
regular by Lemmas 24.4 and 24.6, respectively. We now obtain the claimed expression from
Theorem 22.12. □

Theorem 24.10 (outer composition with a single-valued differentiable mapping). Let𝑋,𝑌, 𝑍
be Banach spaces, 𝐹 : 𝑋 ⇒ 𝑌 , and𝐺 : 𝑌 → 𝑍 . Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝐹 (𝑋 )) be given.
If 𝐺 is continuously Fréchet differentiable at each 𝑦 ∈ 𝐹 (𝑥), invertible on ran𝐺 near 𝑧 with
Fréchet differentiable inverse at 𝑧, and 𝐹 is T-regular at (𝑥, 𝑦), then 𝐻 is T-regular at (𝑥, 𝑧)
and

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) =
⋃

𝑦 :𝐺 (𝑦)=𝑧
𝐺′(𝑦)𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

Proof. We construct 𝐻 from 𝐶 and 𝑅 as in Theorem 22.13. Due to the assumptions, 𝐶 and
𝑅𝐶 are tangentially regular by Corollary 24.7 and Lemma 24.4, respectively. We now obtain
the claimed expression from Theorem 22.13. □

The special case for a linear operator follows from this exactly as in the proof of Corol-
lary 22.14.
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Corollary 24.11 (outer composition with a linear operator). Let 𝑋,𝑌, 𝑍 be Banach spaces,
𝐴 ∈ 𝕃(𝑌 ;𝑍 ), and 𝐹 : 𝑋 ⇒ 𝑌 . If 𝐴 has a bounded left-inverse 𝐴† and 𝐹 is T-regular at (𝑥, 𝑦)
for 𝑥 ∈ 𝑋 and the unique 𝑦 ∈ 𝑌 with 𝐴𝑦 = 𝑧, then for any 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) := 𝐴𝐹 (𝑥),
then 𝐻 is T-regular at (𝑥, 𝑧) and

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) = 𝐴𝐷𝐹 (𝑥 |𝑦) (Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

Theorem 24.12 (inner composition with a single-valued differentiable mapping). Let𝑋,𝑌, 𝑍
be Banach spaces, 𝐹 : 𝑋 → 𝑌 and 𝐺 : 𝑌 ⇒ 𝑍 . Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) := 𝐺 (𝐹 (𝑥)). If 𝐹 is
continuously Fréchet differentiable near𝑥 such that 𝐹 ′(𝑥) has a right-inverse 𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 )
and 𝐺 is T-regular at (𝐹 (𝑥), 𝑧), then 𝐻 is T-regular at (𝑥, 𝑧) and

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) = 𝐷𝐺 (𝐹 (𝑥) |𝑧) (𝐹 ′(𝑥)Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

Proof. We construct 𝐻 from 𝐶 and 𝑅 as in Theorem 22.15. Due to the assumptions, 𝐶 and
𝑅𝐶 are tangentially regular by Corollary 24.8 and Lemma 24.4, respectively. We now obtain
the claimed expression from Theorem 22.15. □

Corollary 24.13 (inner composition with a linear operator). Let 𝑋,𝑌, 𝑍 be Banach spaces,
𝐴 ∈ 𝕃(𝑋 ;𝑌 ), and 𝐺 : 𝑌 ⇒ 𝑍 . Let 𝐻 ≔ 𝐺 ◦ 𝐴 for 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and 𝐺 : 𝑌 ⇒ 𝑍 on Banach
spaces 𝑋,𝑌 , and 𝑍 . If 𝐴 has a right-inverse 𝐴† ∈ 𝕃(𝑌 ;𝑋 ) and 𝐺 is T-regular at (𝐴𝑥, 𝑧) for
𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝐴𝑥), then 𝐻 is 𝑇 -regular at (𝑥, 𝑧) and

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) = 𝐷𝐺 (𝐴𝑥 |𝑧) (𝐴Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

As in Section 22.3, we can apply these results to chain rules for subdifferentials, this time
only at points where these subdifferentials are T-regular.

Corollary 24.14 (second derivative chain rule for convex subdifferential). Let𝑋,𝑌 be Banach
spaces, let 𝑓 : 𝑌 → ℝ be proper, convex, and lower semicontinuous, and 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) be such
that 𝐴 has a right-inverse 𝐴† ∈ 𝕃(𝑌 ;𝑋 ), and ran𝐴 ∩ int dom 𝑓 ≠ ∅. Let ℎ ≔ 𝑓 ◦𝐴. If 𝜕𝑓 is
T-regular at 𝐴𝑥 , 𝑥 ∈ 𝑋 , for 𝑦∗ ∈ 𝜕𝑓 (𝐴𝑥), then 𝜕ℎ is T-regular at 𝑥 for 𝑥∗ = 𝐴∗𝑦∗ and

𝐷 [𝜕ℎ] (𝑥 |𝑥∗) (Δ𝑥) = 𝐴∗𝐷 [𝜕𝑓 ] (𝐴𝑥 |𝑦∗) (𝐴Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

Theorem 24.15 (product rule). Let 𝑋,𝑌, 𝑍 be Banach spaces, let 𝐺 : 𝑋 → 𝕃(𝑌 ;𝑍 ) be Fréchet
differentiable, and 𝐹 : 𝑋 ⇒ 𝑌 . Assume that 𝐺 (𝑥) ∈ 𝕃(𝑌 ;𝑍 ) has a left-inverse 𝐺 (𝑥)† ∈
𝕃(𝑍 ;𝑌 ) for 𝑥 near 𝑥 ∈ 𝑋 and that the mapping 𝑥 ↦→ 𝐺 (𝑥)† is Fréchet differentiable at 𝑥 . Let
𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝑥)𝐹 (𝑥) ≔ ⋃

𝑦∈𝐹 (𝑥)𝐺 (𝑥)𝑦 . If 𝐹 is T-regular at 𝑥 for the unique
𝑦 ∈ 𝐹 (𝑥) satisfying 𝐺 (𝑥)𝑦 = 𝑧 and 𝐺 is continuously differentiable at 𝑦 , then 𝐻 is T-regular
at 𝑥 for 𝑧 and

𝐷𝐻 (𝑥 |𝑧) (Δ𝑥) = [𝐺′(𝑥)Δ𝑥]𝑦 +𝐺 (𝑥)𝐷𝐹 (𝑥 |𝑦)Δ𝑥 (Δ𝑥 ∈ 𝑋 ).
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Proof. We construct 𝐻 from 𝑅1 and graph(𝐺 ◦ 𝐹 ) as in Theorem 22.19. Due to the as-
sumptions, 𝐺 and 𝐹 are T-regular, and hence 𝐻 is tangentially regular by Theorem 24.10
and Lemma 24.4. We now obtain the claimed expression from Theorem 22.19. □

Corollary 24.16 (second derivative chain rule for Clarke subdifferential). Let𝑋,𝑌 be Banach
spaces, let 𝑓 : 𝑌 → 𝑅 be locally Lipschitz continuous, and let 𝑆 : 𝑋 → 𝑌 be twice continuously
differentiable. Set ℎ : 𝑋 → 𝑌 , ℎ(𝑥) ≔ 𝑓 (𝑆 (𝑥)). If there exists a neighborhood 𝑈 of 𝑥 ∈ 𝑋
such that

(i) 𝑓 is Clarke regular at 𝑆 (𝑥) for all 𝑥 ∈ 𝑋 ;
(ii) 𝑆′(𝑥) has a right-inverse 𝑆′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ) for all 𝑥 ∈ 𝑈 ;

(iii) the mapping 𝑥 ↦→ 𝑆′(𝑥)†∗ is Fréchet differentiable at 𝑥 ;
and 𝜕𝐶 𝑓 is T-regular at 𝑆 (𝑥) for 𝑦∗ ∈ 𝜕𝐶 𝑓 (𝑆 (𝑥)), then 𝜕𝐶ℎ is T-regular at 𝑥 for 𝑥∗ = 𝑆′(𝑥)∗𝑦∗
and

𝐷 [𝜕𝐶ℎ] (𝑥 |𝑥∗) (Δ𝑥) = (𝑆′′(𝑥)Δ𝑥)∗𝑦∗ + 𝑆′(𝑥)∗𝐷 [𝜕𝐶 𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑆′(𝑥)Δ𝑥) (Δ𝑥 ∈ 𝑋 ).
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25 CALCULUS FOR THE LIMITING CODERIVATIVE

The limiting coderivative is the most challenging of all the graphical and coderivatives,
and developing exact calculus rules for it requires the most assumptions. In particular,
we will here assume a stronger variant of the assumptions of Chapter 23 for the Fréchet
coderivative that also implies N-regularity of the set-valued mapping so that we can exploit
the stronger properties of the Fréchet coderivative. To prove the fundamental composition
lemmas, we will also need to introduce the concept of partial sequential normal compactness
that will be used to prevent certain unit-length coderivatives from converging weakly-∗ to
zero. This concept will also be needed in Chapter 27.

25.1 strict codifferentiability

Let 𝑋,𝑌 be Banach spaces. We say that 𝐹 is strictly codifferentiable at 𝑥 ∈ 𝑋 for 𝑦 ∈ 𝐹 (𝑥)
if

(25.1) 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) =
{
𝑥∗ ∈ 𝑋 ∗

���� ∀graph 𝐹 ∋ (𝑥𝑘 , 𝑦𝑘) → (𝑥, 𝑦), 𝜀𝑘→ 0 :
∃(𝑥∗

𝑘
, 𝑦∗
𝑘
) ∗⇀ (𝑥∗, 𝑦∗) with 𝑥∗

𝑘
∈ 𝐷∗

𝜀𝑘
𝐹 (𝑥𝑘 |𝑦𝑘) (𝑦∗𝑘 )

}
,

i.e., if (18.8) is a full weak-∗-limit. From Theorem 20.12 and Corollary 20.14, it is clear
that single-valued continuously differentiable mappings and their inverses are strictly
codifferentiable.

Lemma 25.1. Let 𝑋,𝑌 be Banach spaces, 𝐹 : 𝑋 → 𝑌 , 𝑥 ∈ 𝑋 , and 𝑦 = 𝐹 (𝑥).
(i) If 𝐹 is continuously differentiable at 𝑥 , then 𝐹 is strictly codifferentiable at 𝑥 for 𝑦 .

(ii) If 𝐹 is continuously differentiably near 𝑥 , then 𝐹−1 is strictly codifferentiable at 𝑦 for 𝑥 .

The next lemma and counterexample demonstrate that strict codifferentiability is a strictly
stronger assumption than N-regularity.

Lemma 25.2. Let 𝑋,𝑌 be Banach spaces and let 𝐹 : 𝑋 ⇒ 𝑌 be strictly codifferentiable at 𝑥 for
𝑦 . Then 𝐹 is N-regular at 𝑥 for 𝑦 .
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Proof. By Theorem 18.5, strict codifferentiability, and the definition of the inner limit,
respectively,

𝑁graph 𝐹 (𝑥, 𝑦) ⊂ 𝑁graph 𝐹 (𝑥, 𝑦)
= lim inf

graph 𝐹∋(𝑥,�̃�)→(𝑥,𝑦), 𝜀→ 0
𝑁 𝜀

graph 𝐹 (𝑥, �̃�)

⊂ 𝑁graph 𝐹 (𝑥, 𝑦).
Therefore 𝑁graph 𝐹 (𝑥, 𝑦) = 𝑁graph 𝐹 (𝑥, 𝑦), i.e., graph 𝐹 is normally regular at (𝑥, 𝑦). □

Example 25.3 (graphical regularity does not imply strict codifferentiability). Consider
𝐹 (𝑥) ≔ [|𝑥 |,∞),𝑥 ∈ ℝ. Then graph 𝐹 = epi | · | is a convex set and therefore graphically
regular at all points and

𝑁graph 𝐹 (𝑥, |𝑥 |) =
{
(sign𝑥,−1) [0,∞) if 𝑥 ≠ 0,
graph 𝐹 ◦ = {(𝑥∗, 𝑦∗) | −𝑦∗ ≥ |𝑥∗ |} if 𝑥 = 0.

Hence𝑁graph 𝐹 is not continuous and therefore, a fortiori, 𝐹 is not strictly codifferentiable
at (0, 0).

25.2 partial sequential normal compactness

One central difficulty in working with infinite-dimensional spaces is the need to distinguish
weak-∗ convergence and strong convergence. In particular, we need to prevent certain
sequences whose norm is bounded away from zero from weak-∗ converging to zero. As
we cannot guarantee this in general, we need to add this as an assumption. In our specific
setting, this is the partial sequential normal compactness (PSNC) of 𝐺 : 𝑌 ⇒ 𝑍 at 𝑦 for 𝑧,
which holds if

(25.2) 𝜀𝑘→ 0, (𝑦𝑘 , 𝑧𝑘) → (𝑦, 𝑧), 𝑦∗
𝑘

∗⇀ 0, ∥𝑧∗
𝑘
∥𝑍 ∗ → 0, and 𝑦∗

𝑘
∈ 𝐷∗

𝜀𝑘
𝐺 (𝑦𝑘 |𝑧𝑘) (𝑧∗𝑘)

⇒ ∥𝑦∗
𝑘
∥𝑌 ∗ → 0.

Obviously, if 𝑌 ∗ finite-dimensional, then every mapping 𝐺 : 𝑌 ⇒ 𝑍 is PSNC. To prove the
PSNC property of single-valued mappings and their inverses, we will need an estimate of
𝜀-coderivatives.

Lemma 25.4. Let 𝑋,𝑌 be Banach spaces and let 𝐹 : 𝑋 → 𝑌 be continuously differentiable at
𝑥 ∈ 𝑋 . Then for any 𝜀 > 0, 𝐿 ≔ ∥𝐹 ′(𝑥)∥𝕃(𝑋 ;𝑌 ) , and 𝑦 = 𝐹 (𝑥),

𝐷∗
𝜀 𝐹 (𝑥 |𝑦) (𝑦∗) ⊂ 𝔹(𝐹 ′(𝑥)∗𝑦∗, (𝐿 + 1)𝜀) (𝑦∗ ∈ 𝑌 ∗).
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Proof. By definition, 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) if and only if for every sequence 𝑥𝑘 → 𝑥 ,

(25.3) lim sup
𝑘→∞

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 − ⟨𝑦∗, 𝐹 (𝑥𝑘) − 𝐹 (𝑥)⟩𝑌√︃
∥𝑥𝑘 − 𝑥 ∥2

𝑋
+ ∥𝐹 (𝑥𝑘) − 𝐹 (𝑥)∥2

𝑌

≤ 𝜀.

Let ℓ > 𝐿. Then by the continuous differentiability and therefore local Lipschitz continuity
of 𝐹 at 𝑥 , we have ∥𝐹 (𝑥𝑘) − 𝐹 (𝑥)∥𝑌 ≤ ℓ ∥𝑥𝑘 − 𝑥 ∥𝑋 for large enough 𝑘 and therefore

lim sup
𝑘→∞

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 − ⟨𝑦∗, 𝐹 (𝑥𝑘) − 𝐹 (𝑥)⟩𝑌
∥𝑥𝑘 − 𝑥 ∥𝑋

≤ 𝜀 (ℓ + 1).

Furthermore, the Fréchet differentiability of 𝐹 implies that

lim sup
𝑘→∞

⟨𝐹 ′(𝑥)∗𝑦∗, 𝑥𝑘 − 𝑥⟩𝑋 − ⟨𝑦∗, 𝐹 (𝑥𝑘) − 𝐹 (𝑥)⟩𝑌
∥𝑥𝑘 − 𝑥 ∥𝑋

= 0

and hence that
lim sup
𝑘→∞

⟨𝑥∗ − 𝐹 ′(𝑥)∗𝑦∗, 𝑥𝑘 − 𝑥⟩𝑋
∥𝑥𝑘 − 𝑥 ∥𝑋

≤ 𝜀 (ℓ + 1).

Since 𝑥𝑘 → 𝑥 was arbitrary, this implies ∥𝑥∗ − 𝐹 ′(𝑥)∗𝑦∗∥𝑋 ∗ ≤ 𝜀 (ℓ + 1), and since ℓ > 𝐿 was
arbitrary, the claim follows. □

Lemma 25.5. Let 𝑌, 𝑍 be Banach spaces and 𝐺 : 𝑌 → 𝑍 . If either

(a) 𝐺 is continuously differentiable near 𝑦 ∈ 𝑌 or

(b) 𝑌 ∗ is finite-dimensional,

then 𝐺 is PSNC at 𝑦 for 𝑧 = 𝐺 (𝑦).

Proof. The finite-dimensional case (b) is clear from the definition (25.2) of the PSNC prop-
erty.

For case (a), we have from Lemma 25.4 that 𝐷∗
𝜀𝑘
𝐺 (𝑦𝑘 |𝑧𝑘) (𝑧∗𝑘) ⊂ 𝔹(𝐺′(𝑦𝑘)∗𝑧∗𝑘 , ℓ𝜀𝑘) for

any ℓ > ∥𝐺′(𝑦𝑘)∥𝕃(𝑌 ;𝑍 ) . By the continuous differentiability of 𝐺 , this will hold for ℓ >

∥𝐺′(𝑦)∥𝕃(𝑌 ;𝑍 ) and any 𝑘 ∈ ℕ large enough. Thus there exist 𝑑∗
𝑘
∈ 𝔹(0, ℓ𝜀𝑘) such that

𝑦∗
𝑘
= 𝐺′(𝑦𝑘)∗𝑧∗𝑘 + 𝑑∗𝑘 = 𝐺′(𝑦)∗𝑧∗

𝑘
+ [𝐺′(𝑦𝑘) −𝐺′(𝑦)]∗𝑧∗

𝑘
+ 𝑑∗

𝑘
→ 0

since 𝑑∗
𝑘
→ 0 (due to 𝜀𝑘→ 0), ∥𝑧∗

𝑘
∥𝑍 ∗ → 0, 𝑦𝑘 → 𝑦 , and 𝐺 is continuously differentiable

near 𝑦 . □

Lemma 25.6. Let 𝑌, 𝑍 be Banach spaces and 𝐺 : 𝑌 → 𝑍 . If either

(a) 𝐺 is continuously differentiable near 𝑦 ∈ 𝑌 and 𝐺′(𝑦) ∈ 𝕃(𝑌 ;𝑍 ) has a right-inverse
𝐺′(𝑦)† ∈ 𝕃(𝑍 ;𝑌 ), or
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(b) 𝑍 ∗ is finite-dimensional,

then 𝐺−1 is PSNC at 𝑧 = 𝐺 (𝑦) for 𝑦 .

Proof. The finite-dimensional case (b) is clear from the definition (25.2) of the PSNC prop-
erty.

For case (a), we have from the definition of 𝐷∗
𝜀 𝐹 via 𝑁 𝜀

graph 𝐹 that Δ𝑧
∗
𝑘
∈ 𝐷∗

𝜀𝐺
−1(𝑧𝑘 |𝑦𝑘) (Δ𝑦∗𝑘 )

if and only if Δ𝑦∗
𝑘
∈ 𝐷∗

𝜀𝐺 (𝑦𝑘 |𝑧𝑘) (Δ𝑧∗𝑘). We thus have to show that

𝜀𝑘→ 0, (𝑦𝑘 , 𝑧𝑘) → (𝑦, 𝑧), 𝑧∗
𝑘

∗⇀ 0, ∥𝑦∗
𝑘
∥𝑌 ∗ → 0, and 𝑦∗

𝑘
∈ 𝐷∗

𝜀𝑘
𝐺 (𝑦𝑘 |𝑧𝑘) (𝑧∗𝑘)

⇒ ∥𝑧∗
𝑘
∥𝑍 ∗ → 0.

From Lemma 25.4, it follows that 𝐷∗
𝜀𝑘
𝐺 (𝑦𝑘 |𝑧𝑘) (𝑧∗𝑘) ⊂ 𝔹(𝐺′(𝑦𝑘)∗𝑧∗𝑘 , ℓ𝜀𝑘)) for any ℓ >

∥𝐺′(𝑦𝑘)∥𝕃(𝑌 ;𝑍 ) . As in Lemma 25.5, we now deduce that 𝑦∗
𝑘
= 𝐺′(𝑦𝑘)∗𝑧∗𝑘 + 𝑑∗

𝑘
for some

𝑑∗
𝑘
∈ 𝔹(0, ℓ𝜀𝑘). Since 𝑦∗𝑘 − 𝑑∗

𝑘
→ 0, we also have 𝐺′(𝑦𝑘)∗𝑧∗𝑘 → 0 and thus 𝐺′(𝑦)∗𝑧∗

𝑘
+

[𝐺′(𝑦𝑘) −𝐺′(𝑦)]∗𝑧∗
𝑘
→ 0. Since {𝑧∗

𝑘
}𝑘∈ℕ is bounded by the continuous differentiability of

𝐺 and 𝑦𝑘 → 𝑦 , we obtain 𝐺′(𝑦)∗𝑧∗
𝑘
→ 0. Since 𝐺′(𝑦) is assumed to have a right-inverse,

𝐺′(𝑦)∗ has a left-inverse, Hence this implies 𝑧∗
𝑘
→ 0 as required. □

We will use PSNC to obtain the following partial compactness property for the limiting
coderivative, for which we need to assume reflexivity (or finite-dimensionality) of 𝑌 .

Lemma 25.7. Let 𝑌, 𝑍 be Banach spaces and 𝐺 : 𝑌 ⇒ 𝑍 . Let 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝐺 (𝑦) be given.
Assume 𝑦∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (0) implies 𝑦∗ = 0 and either

(a) 𝑌 is finite-dimensional or

(b) 𝑌 is reflexive and 𝐺 is PSNC at 𝑦 for 𝑧.

If
(𝑦𝑘 , 𝑧𝑘) → (𝑦, 𝑧), 𝑧∗

𝑘
∗⇀ 𝑧∗, 𝜀𝑘→ 0, and 𝑦∗

𝑘
∈ 𝐷∗

𝜀𝑘
𝐺 (𝑦𝑘 |𝑧𝑘) (𝑧∗𝑘),

then there exists a subsequence such that 𝑦∗
𝑘

∗⇀ 𝑦∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗).

Proof. We first show that {𝑦∗
𝑘
}𝑘∈ℕ is bounded. We argue by contradiction and suppose

that {𝑦∗
𝑘
}𝑘∈ℕ is unbounded. We may then assume that ∥𝑦∗

𝑘
∥𝑌 ∗ → ∞ by switching to an

(unrelabelled) subsequence. Since 𝐷∗
𝜀𝑘
𝐺 (𝑦𝑘 |𝑧𝑘) is formed from a cone, we also have

𝐵𝑌 ∗ ∋ 𝑦∗
𝑘
/∥𝑦∗

𝑘
∥𝑌 ∗ ∈ 𝐷∗

𝜀𝑘
𝐺 (𝑦𝑘 |𝑧𝑘) (𝑧∗𝑘/∥𝑦∗𝑘 ∥𝑌 ∗) .

Observe that ∥𝑧∗
𝑘
/∥𝑦∗

𝑘
∥𝑌 ∗ ∥𝑍 ∗ → 0 because {𝑧∗

𝑘
}𝑘∈ℕ is bounded. Since 𝑌 is reflexive, we can

use the Eberlein–S̆mulyan Theorem 1.9 to extract a subsequence such that 𝑦∗
𝑘
/∥𝑦∗

𝑘
∥𝑌 ∗ ∗⇀ 𝑦∗

for some 𝑦∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (0). If𝑌 is finite-dimensional, clearly 𝑦∗ ≠ 0. Otherwise we need to
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use the assumed PSNC property. If 𝑦∗ = 0, then (25.2) implies that 1 = ∥𝑦∗
𝑘
/∥𝑦∗

𝑘
∥𝑌 ∗ ∥𝑌 ∗ → 0,

which is a contradiction. Therefore 𝑦∗ ≠ 0. However, we have assumed 𝑦∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (0)
to imply 𝑦∗ = 0, so we obtain a contradiction.

Therefore {𝑦∗
𝑘
}𝑘∈ℕ is bounded, so we may again use the Eberlein–S̆mulyan Theorem 1.9

to extract a subsequence converging to some 𝑦∗ ∈ 𝑌 . By the definition of the limiting
coderivative, this implies 𝑦∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗) and hence the claim. □

Remark 25.8. The PSNC property, its stronger variant sequential normal compactness (SNC), and
their implications are studied in significant detail in [Mordukhovich, 2006].

25.3 cone transformation formulas

As in Section 24.2, we now show that normal regularity is preserved under certain trans-
formations by deriving explicit expressions for the transformed cones and then comparing
them with the corresponding expressions of the Fréchet coderivative.

Lemma 25.9. Let𝑋,𝑌 be Banach spaces and assume there exists a family of continuous inverse
selections {𝑅−1

𝑦 : 𝑈𝑦 → 𝐶 | 𝑦 ∈ 𝐶, 𝑅𝑦 = 𝑥} of 𝑅 ∈ 𝕃(𝑌 ;𝑋 ) to𝐶 ⊂ 𝑌 at 𝑥 ∈ 𝑋 . If each 𝑅−1
𝑦 for

all 𝑦 ∈ 𝐶 with 𝑅𝑦 = 𝑥 is locally Lipschitz at 𝑥 with the factor 𝐿𝑥 , and 𝐶 is normally regular
at all such 𝑦 , then 𝑅𝐶 is normally regular at 𝑥 and

𝑁𝑅𝐶 (𝑥) =
⋂

𝑦∈𝐶:𝑅𝑦=𝑥
{𝑥∗ ∈ 𝑋 ∗ | 𝑅∗𝑥∗ ∈ 𝑁𝐶 (𝑦)}.

Proof. We first prove “⊂”. Let 𝑥∗ ∈ 𝑁𝑅𝐶 (𝑥). By definition, this holds if and only if there
exist 𝜀𝑘→ 0 as well as 𝑥∗

𝑘

∗⇀ 𝑥∗ and 𝑥𝑘 → 𝑥 with 𝑥∗
𝑘
∈ 𝑁

𝜀𝑘
𝑅𝐶
(𝑥𝑘). Let 𝑦 ∈ 𝑌 be such that

𝑅𝑦 = 𝑥 . Defining 𝑦𝑘 ≔ 𝑅−1
𝑦 𝑥𝑘 , we have 𝑅𝑦𝑘 = 𝑥𝑘 and𝐶 ∋ 𝑦𝑘 → 𝑦 . Thus Lemma 23.2 yields

𝑅∗𝑥∗
𝑘
∈ 𝑁 𝜀𝑘𝐿

𝐶
(𝑦𝑘). By definition of the limiting coderivative, this implies that 𝑅∗𝑥∗ ∈ 𝑁𝐶 (𝑦).

Since this holds for all 𝑦 ∈ 𝑌 with 𝑅𝑦 = 𝑥 , we obtain “⊂”.
For “⊃”, Let 𝑥∗ ∈ 𝑋 ∗ be such that 𝑅∗𝑥∗ ∈ 𝑁𝐶 (𝑦) for all 𝑦 ∈ 𝑌 with 𝑅𝑦 = 𝑥 . Then the
assumption of regularity of 𝐶 at 𝑦 implies that 𝑅∗𝑥∗ ∈ 𝑁𝐶 (𝑦). Hence taking 𝑦𝑘 = 𝑦 ,
𝑥∗
𝑘
= 𝑥∗, and 𝑥𝑘 = 𝑥 , we deduce from Lemma 23.2 that 𝑥∗

𝑘
∈ 𝑁𝑅𝐶 (𝑥𝑘). Again by definition,

this implies that 𝑥∗ ∈ 𝑁𝑅𝐶 (𝑥).
Finally, the normal regularity of𝑅𝐶 at𝑥 is clear fromwriting𝑁𝐶 (𝑦) = 𝑁𝐶 (𝑦) and comparing
our expression for 𝑁𝑅𝐶 (𝑥) to the expression for 𝑁𝑅𝐶 (𝑥) provided by Lemma 23.2. □

Remark 25.10 (regularity assumptions). Again, the assumption in Lemma 24.4 that 𝐶 is normally
regular is not needed if ker𝑅 = {0} or, more generally, if 𝑅 is a continuously differentiable mapping
with ker∇𝑅(𝑦) = {0}.
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For the fundamental lemma for the limiting coderivative, we need to assume reflexivity of
𝑌 in order to apply the PSNC via Lemma 25.7.

Lemma 25.11 (fundamental lemma on compositions). Let 𝑋,𝑌, 𝑍 be Banach spaces with 𝑌
reflexive and

𝐶 ≔ {(𝑥, 𝑦, 𝑧) | 𝑦 ∈ 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦)}
for 𝐹 : 𝑋 ⇒ 𝑌 , and 𝐺 : 𝑌 ⇒ 𝑍 . Let (𝑥, 𝑦, 𝑧) ∈ 𝐶 .

(i) If 𝐺 is strictly codifferentiable and PSNC at 𝑦 for 𝑧, semi-codifferentiable near (𝑦, 𝑧) ∈
graph𝐺 , and 𝑦∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (0) implies 𝑦∗ = 0, then

𝑁𝐶 (𝑥, 𝑦, 𝑧) = {(𝑥∗, 𝑦∗, 𝑧∗) | 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗), �̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗)}.

(ii) If 𝐹−1 is strictly codifferentiable and PSNC at 𝑦 for 𝑥 , semi-codifferentiable near (𝑦, 𝑥) ∈
graph 𝐹−1, and 𝑦∗ ∈ 𝐷∗𝐹−1(𝑦 |𝑥) (0) implies 𝑦∗ = 0, then

𝑁𝐶 (𝑥, 𝑦, 𝑧) = {(𝑥∗, 𝑦∗, 𝑧∗) | 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗), −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗)}.

Moreover, if 𝐹 is N-regular at 𝑥 for 𝑦 and𝐺 is 𝑁 -regular at 𝑦 for 𝑧, then𝐶 is normally regular
at (𝑥, 𝑦, 𝑧).

Proof. Weonly consider the case (i); the case (ii) is shown analogously. To show the inclusion
“⊂”, let (𝑥∗, 𝑦∗, 𝑧∗) ∈ 𝑁𝐶 (𝑥, 𝑦, 𝑧), which by definition holds if and only if there exist 𝜀𝑘→ 0
as well as (𝑥∗

𝑘
, 𝑦∗
𝑘
, 𝑧∗
𝑘
) ∗⇀ (𝑥∗, 𝑦∗, 𝑧∗) and 𝐶 ∋ (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) → (𝑥, 𝑦, 𝑧) with (𝑥∗

𝑘
, 𝑦∗
𝑘
, 𝑧∗
𝑘
) ∈

𝑁
𝜀𝑘
𝐶
(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘). Since by assumption 𝐺 is semi-codifferentiable at (𝑦𝑘 , 𝑧𝑘) ∈ graph𝐺 for

𝑘 ∈ ℕ sufficiently large, we can apply Lemma 23.4 (i) to obtain a �̃�∗
𝑘
∈ 𝐷∗𝐺 (𝑦𝑘 |𝑧𝑘) (𝑧∗𝑘) such

that

(25.4) 𝑥∗
𝑘
∈ 𝐷∗

𝜀𝑘
𝐹 (𝑥𝑘 |𝑦𝑘) (−�̃�∗𝑘 − 𝑦∗𝑘 ).

Since 𝑧∗
𝑘

∗⇀ 𝑧∗, (𝑦𝑘 , 𝑧𝑘) → (𝑦, 𝑧), and 𝜀𝑘→ 0, we deduce from Lemma 25.7 that �̃�∗
𝑘

∗⇀ �̃�∗ (for
a subsequence) for some �̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗). Since also 𝑥∗

𝑘

∗⇀ 𝑥∗ and 𝑦∗
𝑘

∗⇀ 𝑦∗, by (25.4)
and the definition of the limiting coderivative, this implies that 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗).
To show “⊃”, let 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−�̃�∗ − 𝑦∗) and �̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (𝑧∗). We can then by the
definition of 𝐷∗𝐹 (𝑥 |𝑦) find 𝜀𝑘→ 0 as well as (𝑥𝑘 , 𝑦𝑘) → (𝑥, 𝑦) and (𝑥∗

𝑘
, 𝑦∗
𝑘
) ∗⇀ (𝑥∗, �̃�∗ + 𝑦∗)

with𝑥∗
𝑘
∈ 𝐷∗

𝜀𝑘
𝐹 (𝑥𝑘 |𝑦𝑘) (−𝑦∗𝑘 ). Since𝐺 is strictly codifferentiable at 𝑦 for𝑧, taking any𝑧𝑘 → 𝑧,

we can now find 𝑧∗
𝑘

∗⇀ 𝑧∗ and �̃�∗
𝑘

∗⇀ �̃�∗ with �̃�∗
𝑘
∈ 𝐷∗

𝜀𝑘
𝐺 (𝑦𝑘 |𝑧𝑘) (𝑧∗𝑘). Letting 𝑦∗𝑘 ≔ 𝑦∗

𝑘
− �̃�∗

𝑘
,

this implies that 𝑦∗
𝑘

∗⇀ 𝑦∗ and that 𝑥∗
𝑘
∈ 𝐷∗

𝜀𝑘
𝐹 (𝑥𝑘 |𝑦𝑘) (−�̃�∗𝑘 − 𝑦∗

𝑘
). By Lemma 23.4 (i), it

follows that (𝑥∗
𝑘
, 𝑦∗
𝑘
, 𝑧∗
𝑘
) ∈ 𝑁 𝜀𝑘

𝐶
(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘). The claim now follows again from the definition

of 𝑁𝐶 (𝑥, 𝑦, 𝑧) as the corresponding outer limit.

Finally, the normal regularity of𝐶 follows from the N-regularity of 𝐹 and𝐺 (via Lemma 25.2)
by comparing Lemma 23.4 with Lemma 23.4 (i) for 𝜀 = 0. □
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If one of the two mappings is single-valued, we can use Lemma 25.1 for verifying its semi-
differentiability and Theorem 20.12 for the expression of its graphical derivative to obtain
from Lemma 25.11 the following two special cases.

Corollary 25.12 (fundamental lemma on compositions: single-valued outer mapping). Let
𝑋,𝑌, 𝑍 be Banach spaces with 𝑌 reflexive and

𝐶 ≔ {(𝑥, 𝑦,𝐺 (𝑦)) | 𝑦 ∈ 𝐹 (𝑥)}

for 𝐹 : 𝑋 ⇒ 𝑌 and 𝐺 : 𝑌 → 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 and 𝐺 is continuously differentiable near 𝑦 ,
then

𝑁𝐶 (𝑥, 𝑦, 𝑧) = {(𝑥∗, 𝑦∗, 𝑧∗) | 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (−[𝐺′(𝑦)]∗𝑧∗ − 𝑦∗), 𝑦∗ ∈ 𝑌 ∗}.

Moreover, if 𝐹 is N-regular at (𝑥, 𝑦), then 𝐶 is normally regular at (𝑥, 𝑦,𝐺 (𝑦)).

Proof. We apply Lemma 25.11, where the strict and semi-codifferentiability requirements
on𝐺 are verified by Lemmas 23.1 and 25.1; the PSNC requirement follows from Lemma 25.5;
and the requirement of 𝑦∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (0) implying 𝑦∗ = 0 follows from the expression
of Theorem 20.12 for 𝐷∗𝐺 (𝑦 |𝑧) (0). The claimed normal regularity of 𝐶 for 𝑁 -regular 𝐹
follows from the 𝑁 -regularity of 𝐺 established by Theorem 20.12. □

Corollary 25.13 (fundamental lemma on compositions: single-valued inner mapping). Let
𝑋,𝑌, 𝑍 be Banach spaces with 𝑌 reflexive and

𝐶 ≔ {(𝑥, 𝑦, 𝑧) | 𝑦 = 𝐹 (𝑥), 𝑧 ∈ 𝐺 (𝑦)}

for 𝐹 : 𝑋 ⇒ 𝑌 and 𝐺 : 𝑌 → 𝑍 . If (𝑥, 𝑦, 𝑧) ∈ 𝐶 , 𝐹 is continuously differentiable near 𝑥 , and
either

(a) 𝐹 ′(𝑥) has a right-inverse 𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ) or
(b) 𝑌 ∗ is finite-dimensional,

then

𝑁𝐶 (𝑥, 𝑦, 𝑧) = {(𝐹 ′(𝑥)∗(−�̃�∗ − 𝑦∗), 𝑦∗, 𝑧∗) | −�̃�∗ ∈ 𝐷∗𝐺 (𝑦 |𝑧) (−𝑧∗), 𝑦∗ ∈ 𝑌 ∗}.

Moreover, if 𝐺 is N-regular at (𝑦, 𝑧), then 𝐶 is normally regular at (𝑥, 𝑦, 𝑧).

Proof. We apply Lemma 25.11, where the strict and semi-codifferentiability requirements on
𝐹−1 are verified by Lemmas 23.1 and 25.1; the PSNC requirement follows from Lemma 25.6;
and the requirement of 𝑦∗ ∈ 𝐷∗𝐹−1(𝑦 |𝑥) (0) implying 𝑦∗ = 0 follows from the expression
of Corollary 20.14 for 𝐷∗𝐹−1(𝑦 |𝑥) (0). The claimed normal regularity of 𝐶 for 𝑁 -regular 𝐺
follows from the 𝑁 -regularity of 𝐹 established by Theorem 20.12. □
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25.4 calculus rules

Using these lemmas, we obtain again calculus rules.

Theorem 25.14 (addition of a single-valued differentiable mapping). Let 𝑋,𝑌 be Banach
spaces with 𝑋 reflexive, let 𝐺 : 𝑋 → 𝑌 be Fréchet differentiable, and 𝐹 : 𝑋 ⇒ 𝑌 . If 𝐺
is continuously Fréchet differentiable at 𝑥 ∈ 𝑋 and 𝐹 is N-regular at (𝑥, 𝑦 − 𝐺 (𝑥)) for
𝑦 ∈ 𝐻 (𝑥) ≔ 𝐹 (𝑥) +𝐺 (𝑥), then 𝐻 is N-regular at (𝑥, 𝑦) and

𝐷∗𝐻 (𝑥 |𝑦) (𝑦∗) = 𝐷∗𝐹 (𝑥 |𝑦 −𝐺 (𝑥)) (𝑦∗) + [𝐺′(𝑥)]∗𝑦∗ (𝑦∗ ∈ 𝑌 ∗).

Proof. We follow Theorem 23.8 to construct 𝐻 from 𝐶 and 𝑅, and prove properties of the
inverse selections of 𝑅. Due to the assumptions (noting that continuous differentiability
implies strict differentiability), 𝐶 and 𝑅𝐶 are normally regular by Lemmas 25.9 and 25.11,
respectively. We now obtain the claimed expression from Theorem 23.8. □

Theorem 25.15 (outer composition with a single-valued differentiable mapping). Let 𝑋,𝑌, 𝑍
be Banach spaces with 𝑌 reflexive, 𝐹 : 𝑋 ⇒ 𝑌 , and 𝐺 : 𝑌 → 𝑍 . Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) ≔
𝐺 (𝐹 (𝑋 )) be given. If 𝐺 is continuously Fréchet differentiable at each 𝑦 ∈ 𝐹 (𝑥), invertible on
ran𝐺 near 𝑧 with Fréchet differentiable inverse at 𝑧, and 𝐹 is N-regular at (𝑥, 𝑦), then 𝐻 is
N-regular at (𝑥, 𝑧) and

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) =
⋂

𝑦 :𝐺 (𝑦)=𝑧
𝐷∗𝐹 (𝑥 |𝑦) ( [𝐺′(𝑦)]∗𝑧∗) (𝑧∗ ∈ 𝑍 ∗).

Proof. We follow the proof of Theorem 23.9 to construct 𝐻 from 𝐶 and 𝑅, and prove
properties of the inverse selections of 𝑅. Due to the assumptions, 𝐶 and 𝑅𝐶 are normally
regular by Corollary 25.12 and Lemma 25.9, respectively. We now obtain the claimed
expression from Theorem 23.9. □

Corollary 25.16 (outer composition with a linear operator). Let 𝑋,𝑌, 𝑍 be Banach spaces
with 𝑌 reflexive, 𝐴 ∈ 𝕃(𝑌 ;𝑍 ), and 𝐹 : 𝑋 ⇒ 𝑌 . If 𝐴 has a bounded left-inverse 𝐴† and 𝐹 is
N-regular at (𝑥, 𝑦) for 𝑥 ∈ 𝑋 and the unique 𝑦 ∈ 𝑌 with 𝐴𝑦 = 𝑧, then for any 𝑥 ∈ 𝑋 and
𝑧 ∈ 𝐻 (𝑥) := 𝐴𝐹 (𝑥), then 𝐻 is N-regular at (𝑥, 𝑧) and

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) = 𝐷∗𝐹 (𝑥 |𝑦) (𝐴∗𝑧∗) (𝑧∗ ∈ 𝑍 ∗).

Theorem 25.17 (inner composition with a single-valued differentiable mapping). Let 𝑋,𝑌, 𝑍
be Banach spaces with 𝑌 reflexive, 𝐹 : 𝑋 → 𝑌 and 𝐺 : 𝑌 ⇒ 𝑍 . Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) :=
𝐺 (𝐹 (𝑥)). If 𝐹 is continuously Fréchet differentiable near 𝑥 such that 𝐹 ′(𝑥) has a left-inverse
𝐹 ′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ) and 𝐺 is T-regular at (𝐹 (𝑥), 𝑧), then 𝐻 is T-regular at (𝑥, 𝑧) and

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) = [𝐹 ′(𝑥)]∗𝐷∗𝐺 (𝐹 (𝑥) |𝑧) (𝑧∗) (𝑧∗ ∈ 𝑍 ∗).

338



25 calculus for the limiting coderivative

Proof. We follow Theorem 23.11 to construct 𝐻 from 𝐶 and 𝑅, and prove properties of
the inverse selections of 𝑅. Due to the assumptions, 𝐶 and 𝑅𝐶 are normally regular by
Corollary 25.13 and Lemma 25.9, respectively. We now obtain the claimed expression from
Theorem 23.11. □

Corollary 25.18 (inner composition with a linear operator). Let𝑋,𝑌, 𝑍 be Banach spaces with
𝑌 reflexive, 𝐴 ∈ 𝕃(𝑋 ;𝑌 ), and 𝐺 : 𝑌 ⇒ 𝑍 . Let 𝐻 ≔ 𝐺 ◦ 𝐴 for 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and 𝐺 : 𝑌 ⇒ 𝑍

on Banach spaces 𝑋,𝑌 , and 𝑍 . If 𝐴 has a right-inverse 𝐴† ∈ 𝕃(𝑌 ;𝑋 ) and 𝐺 is N-regular at
(𝐴𝑥, 𝑧) for 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝐴𝑥), then 𝐻 is 𝑁 -regular at (𝑥, 𝑧) and

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) = 𝐴∗𝐷∗𝐺 (𝐴𝑥 |𝑧) (𝑧∗) (𝑧∗ ∈ 𝑍 ∗).

To apply these results for chain rules of subdifferentials, we now need to assume that both
spaces are reflexive in addition to N-regularity.

Corollary 25.19 (second derivative chain rule for convex subdifferential). Let𝑋,𝑌 be reflexive
Banach spaces, let 𝑓 : 𝑌 → ℝ be proper, convex, and lower semicontinuous, 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) be
such that 𝐴 has a right-inverse 𝐴† ∈ 𝕃(𝑌 ;𝑋 ), and ran𝐴 ∩ int dom 𝑓 ≠ ∅. Let ℎ ≔ 𝑓 ◦𝐴. If
𝜕𝑓 is N-regular at 𝐴𝑥 , 𝑥 ∈ 𝑋 , for 𝑦∗ ∈ 𝜕𝑓 (𝐴𝑥), then 𝜕ℎ is N-regular at 𝑥 for 𝑥∗ = 𝐴∗𝑦∗ and

𝐷∗ [𝜕ℎ] (𝑥 |𝑥∗) (Δ𝑥) = 𝐴∗𝐷∗ [𝜕𝑓 ] (𝐴𝑥 |𝑦∗) (𝐴Δ𝑥) (Δ𝑥 ∈ 𝑋 ).

Theorem 25.20 (product rule). Let 𝑋,𝑌, 𝑍 be Banach spaces with 𝑋,𝑌 reflexive, let 𝐺 : 𝑋 →
𝕃(𝑌 ;𝑍 ) be Fréchet differentiable, and 𝐹 : 𝑋 ⇒ 𝑌 . Assume that 𝐺 (𝑥) ∈ 𝕃(𝑌 ;𝑍 ) has a left-
inverse 𝐺 (𝑥)† ∈ 𝕃(𝑍 ;𝑌 ) for 𝑥 near 𝑥 ∈ 𝑋 and that the mapping 𝑥 ↦→ 𝐺 (𝑥)† is Fréchet
differentiable at 𝑥 . Let 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝐻 (𝑥) ≔ 𝐺 (𝑥)𝐹 (𝑥) ≔ ⋃

𝑦∈𝐹 (𝑥)𝐺 (𝑥)𝑦 . If 𝐹 is N-regular
at 𝑥 for the unique 𝑦 ∈ 𝐹 (𝑥) satisfying 𝐺 (𝑥)𝑦 = 𝑧 and 𝐺 is continuously differentiable at 𝑦 ,
then 𝐻 is N-regular at 𝑥 for 𝑧 and

𝐷∗𝐻 (𝑥 |𝑧) (𝑧∗) = 𝐷∗𝐹 (𝑥 |𝑦) (𝐺 (𝑥)∗𝑧∗) + ([𝐺′(𝑥) · ]𝑦)∗𝑧∗ (𝑧∗ ∈ 𝑍 ∗).

Proof. We follow Theorem 23.15 to construct 𝐻 from 𝑅1 and graph(𝐺 ◦ 𝐹 ), and prove
properties of the inverse selections of 𝑅. Due to the assumptions, 𝐺 and 𝐹 are T-regular,
and hence 𝐻 is tangentially regular by Theorem 25.15 and Lemma 25.9. We now obtain the
claimed expression from Theorem 23.15. □

Corollary 25.21 (second derivative chain rule for Clarke subdifferential). Let𝑋,𝑌 be reflexive
Banach spaces, let 𝑓 : 𝑌 → 𝑅 be locally Lipschitz continuous, and let 𝑆 : 𝑋 → 𝑌 be twice
continuously differentiable. Set ℎ : 𝑋 → 𝑌 , ℎ(𝑥) ≔ 𝑓 (𝑆 (𝑥)). If there exists a neighborhood𝑈
of 𝑥 ∈ 𝑋 such that

(i) 𝑓 is Clarke regular at 𝑆 (𝑥) for all 𝑥 ∈ 𝑋 ;
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(ii) 𝑆′(𝑥) has a right-inverse 𝑆′(𝑥)† ∈ 𝕃(𝑌 ;𝑋 ) for all 𝑥 ∈ 𝑈 ;

(iii) the mapping 𝑥 ↦→ 𝑆′(𝑥)†∗ is Fréchet differentiable at 𝑥 ;
and 𝜕𝐶 𝑓 is N-regular at 𝑆 (𝑥) for 𝑦∗ ∈ 𝜕𝐶 𝑓 (𝑆 (𝑥)), then 𝜕𝐶ℎ is N-regular at 𝑥 for 𝑥∗ = 𝑆′(𝑥)∗𝑦∗
and

𝐷∗ [𝜕𝐶ℎ] (𝑥 |𝑥∗) (𝑥∗∗) = 𝑆 (𝑥)∗𝑥∗∗ + 𝑆′(𝑥)∗𝐷∗ [𝜕𝐶 𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑆′(𝑥)∗∗𝑥∗∗) (𝑥∗∗ ∈ 𝑋 ∗∗).

Remark 25.22. Even in finite dimensions, calculus rules for the sum 𝐹 +𝐺 of arbitrary set-valued
mappings 𝐹,𝐺 : ℝ𝑁 ⇒ ℝ𝑀 or the composition 𝐹 ◦ 𝐻 for 𝐻 : ℝ𝑁 ⇒ ℝ𝑁 are much more limited,
and in general only yield inclusions of the form

𝐷∗ [𝐹 +𝐺] (𝑥 |𝑦) (𝑦∗) ⊂
⋃

𝑦=𝑦1+𝑦2,
𝑦1∈𝐹 (𝑥 ),
𝑦2∈𝐺 (𝑥 )

𝐷∗𝐹 (𝑥 |𝑦1) (𝑦∗) + 𝐷∗𝐺 (𝑥 |𝑦2) (𝑦∗),

and
𝐷∗ [𝐹 ◦ 𝐻 ] (𝑥 |𝑦) (𝑦∗) ⊂

⋃
𝑧∈𝐻 (𝑥 )∩𝐹 −1 (𝑦 )

𝐷∗𝐻 (𝑥 |𝑧) ◦ 𝐷∗𝐹 (𝑧 |𝑦) (𝑦∗) .

We refer to [Mordukhovich, 2018; Rockafellar and Wets, 1998] for these and other results.
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26 SECOND-ORDER OPTIMALITY CONDITIONS

We now illustrate the use of set-valued derivatives for optimization problems by showing
how these can be used to derive second-order (sufficient and necessary) optimality con-
ditions for non-smooth problems. Again, we do not aim for the most general or sharpest
possible results and focus instead on problems having the form (P) involving the com-
position of a nonsmooth convex functional with a smooth nonlinear operator. As in the
previous chapters, we will also assume a regularity conditions that allows for cleaner
results.

26.1 second-order derivatives

Let 𝑋 be a Banach space and 𝑓 : 𝑋 → ℝ. In this chapter, we set

𝜕𝐶 𝑓 (𝑥) ≔
{
𝑥∗ ∈ 𝑋 ∗

��� (𝑥∗,−1) ∈ 𝑁𝐶
epi 𝑓 (𝑥, 𝑓 (𝑥))

}
,

where𝑁𝐶
𝐴
≔ 𝑇 ◦

𝐴
is the Clarke normal cone. By Lemma 20.19, this coincides with the classical

Clarke subdifferential if 𝑓 : 𝑋 → ℝ is locally Lipschitz continuous.

As in the smooth case, second-order conditions are based on a local quadratic model built
from curvature information at a point. Since in the nonsmooth case, second derivatives,
i.e., graphical derivatives of the subdifferential, are no longer unique, we need to consider
the entire set of them when building this curvature information. We therefore need to
distinguish a lower curvature model at 𝑥 ∈ 𝑋 for 𝑥∗ ∈ 𝜕𝐶 𝑓 (𝑥) in direction Δ𝑥 ∈ 𝑋

𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) ≔ inf
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (Δ𝑥)

⟨Δ𝑥∗,Δ𝑥⟩𝑋

as well as an upper curvature model

𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) ≔ sup
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (Δ𝑥)

⟨Δ𝑥∗,Δ𝑥⟩𝑋 .

It turns out that even for Δ𝑥 ≠ 0, we need to consider the stationary upper model

𝑄
𝑓

0 (Δ𝑥 ;𝑥 |𝑥∗) ≔ sup
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (0)

⟨Δ𝑥∗,Δ𝑥⟩𝑋 ,
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which we use to define the extended upper model

�̂� 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) ≔ max
{
𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗), 𝑄 𝑓

0 (Δ𝑥 ;𝑥 |𝑥∗)
}

= sup
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (Δ𝑥)∪𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (0)

⟨Δ𝑥∗,Δ𝑥⟩𝑋 .

For smooth functionals, these models coincide with the usual Hessian.

Theorem 26.1. Let𝑋 be a Banach space and let 𝑓 : 𝑋 → ℝ be twice continuously differentiable.
Then for every 𝑥,Δ𝑥 ∈ 𝑋 ,

𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑓 ′(𝑥)) = 𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑓 ′(𝑥)) = ⟨𝑓 ′′(𝑥)Δ𝑥,Δ𝑥⟩𝑋
and

�̂� 𝑓 (Δ𝑥 ;𝑥 |𝑓 ′(𝑥)) = max {0, ⟨𝑓 ′′(𝑥)Δ𝑥,Δ𝑥⟩𝑋 } .

Proof. Since 𝜕𝐶 𝑓 (𝑥) = {𝑓 ′(𝑥)} by Theorem 13.5, it follows from Theorem 20.12 that

𝐷 [𝜕𝐶 𝑓 (𝑥)] (𝑥 |𝑥∗) (Δ𝑥) = ⟨𝑓 ′′(𝑥)Δ𝑥,Δ𝑥⟩𝑋
and in particular 𝐷 [𝜕𝐶 𝑓 (𝑥)] (𝑥 |𝑥∗) (0) = 0, which immediately yields the claim. □

We illustrate the nonsmooth case with the usual examples of the indicator functional of
the unit ball and the norm on ℝ.

Lemma 26.2. Let 𝑓 (𝑥) = 𝛿 [−1,1] (𝑥), 𝑥 ∈ ℝ. Then for every 𝑥∗ ∈ 𝜕𝑓 (𝑥) and Δ𝑥 ∈ ℝ,

𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) =

∞ if |𝑥 | = 1, 𝑥∗ = 0, 𝑥Δ𝑥 > 0,
∞ if |𝑥 | = 1, 𝑥∗ ∈ (0,∞)𝑥, Δ𝑥 ≠ 0,
0, otherwise,

𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) =

−∞ if |𝑥 | = 1, 𝑥∗ = 0, 𝑥Δ𝑥 > 0,
−∞ if |𝑥 | = 1, 𝑥∗ ∈ (0,∞)𝑥, Δ𝑥 ≠ 0,
0, otherwise,

and

�̂� 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) = 𝑄 𝑓

0 (Δ𝑥 ;𝑥 |𝑥∗) =


∞ if |𝑥 | = 1, 𝑥∗ ∈ (0,∞)𝑥,
∞ if |𝑥 | = 1, 𝑥∗ = 0, 𝑥Δ𝑥 > 0,
0 if |𝑥 | = 1, 𝑥∗ = 0, 𝑥Δ𝑥 ≤ 0,
0 if |𝑥 | < 1.

Proof. The claims follow directly from the expression (20.7) in Theorem 20.17 with sup ∅ =
−∞ and inf ∅ = ∞. □
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26 second-order optimality conditions

Lemma 26.3. Let 𝑓 (𝑥) = |𝑥 |, 𝑥 ∈ ℝ. Then for every 𝑥∗ ∈ 𝜕𝑓 (𝑥) and Δ𝑥 ∈ ℝ,

𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) =
{
∞ if 𝑥 = 0, Δ𝑥 ≠ 0, signΔ𝑥 ≠ 𝑥∗,
0 otherwise,

𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) =
{
−∞ if 𝑥 = 0, Δ𝑥 ≠ 0, signΔ𝑥 ≠ 𝑥∗,
0 otherwise,

and

�̂� 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) = 𝑄 𝑓

0 (Δ𝑥 ;𝑥 |𝑥∗) =


0 if 𝑥 ≠ 0, 𝑥∗ = sign𝑥,
0 if 𝑥 = 0, |𝑥∗ | = 1, 𝑥∗Δ𝑥 ≥ 0,
∞ if 𝑥 = 0, |𝑥∗ | = 1, 𝑥∗Δ𝑥 < 0,
∞ if 𝑥 = 0, |𝑥∗ | < 1.

Proof. The claims follow directly from the expression (20.13) in Theorem 20.18 with sup ∅ =
−∞ and inf ∅ = ∞. □

These results can be lifted to the corresponding integral functionals on 𝐿𝑝 (Ω) using the
results of Chapter 21. Similarly, we obtain calculus rules for the curvature functionals from
the corresponding results in Chapter 22.

Theorem 26.4 (sum rule). Let 𝑋 be a Banach space, let 𝑓 : 𝑋 → ℝ be locally Lipschitz
continuous, and let 𝑔 : 𝑋 → ℝ be twice continuously differentiable. Set 𝑗 (𝑥) ≔ 𝑓 (𝑥) + 𝑔(𝑥).
Then for every 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝜕𝐶 𝑓 (𝑥),

𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) = 𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) + ⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩𝑋 (Δ𝑥 ∈ 𝑋 ),
𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) = 𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) + ⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩𝑋 (Δ𝑥 ∈ 𝑋 ).

Proof. We only show the expression for the upper model, the lower model being analo-
gous. First, by Theorem 13.20, we have 𝜕𝐶 𝑗 (𝑥) = {𝑥∗ + 𝑔′(𝑥) | 𝑥∗ ∈ 𝜕𝐶 𝑓 (𝑥)}. The sum rule
Theorem 22.12 for the graphical derivative together with Theorem 20.12 then yields

𝐷 [𝜕𝐶 𝑗] (𝑥 |𝑥∗ + 𝑔′(𝑥)) (Δ𝑥) = 𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (Δ𝑥) + 𝑔′′(𝑥)Δ𝑥
and therefore

𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) = sup
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑗] (𝑥 |𝑥∗+𝑔′ (𝑥)) (Δ𝑥)

⟨Δ𝑥∗,Δ𝑥⟩𝑋

= sup
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (Δ𝑥)

⟨Δ𝑥∗,Δ𝑥⟩𝑋 + ⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩𝑋 . □

Theorem 26.5 (chain rule). Let 𝑋,𝑌 be Banach spaces, let 𝑓 : 𝑌 → ℝ be convex, and let
𝑆 : 𝑋 → 𝑌 be twice continuously differentiable. Set 𝑗 (𝑥) ≔ 𝑓 (𝑆 (𝑥)). If there exists a
neighborhood𝑈 of 𝑥 ∈ 𝑋 such that
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26 second-order optimality conditions

(i) 𝑓 is Clarke regular at 𝑆 (𝑥) for all 𝑥 ∈ 𝑋 ;
(ii) 𝑆′(𝑥)∗ has a bounded left-inverse 𝑆′(𝑥)∗† ∈ 𝕃(𝑋 ∗;𝑌 ∗) for all 𝑥 ∈ 𝑈 ;

(iii) the mapping 𝑥 ↦→ 𝑆′(𝑥)†∗ is Fréchet differentiable at 𝑥 ;
then for all 𝑥∗ ∈ 𝜕𝐶ℎ(𝑥) = 𝑆′(𝑥)∗𝜕𝐶 𝑓 (𝑆 (𝑥)),

𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗) = ⟨𝑦∗, [𝑆′′(𝑥)Δ𝑥]Δ𝑥⟩𝑌 +𝑄 𝑓 (𝑆′(𝑥)Δ𝑥 ; 𝑆 (𝑥) |𝑦∗) (Δ𝑥 ∈ 𝑋 ),
𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗) = ⟨𝑦∗, [𝑆′′(𝑥)Δ𝑥]Δ𝑥⟩𝑌 +𝑄 𝑓 (𝑆′(𝑥)Δ𝑥 ; 𝑆 (𝑥) |𝑦∗) (Δ𝑥 ∈ 𝑋 ),

for the unique 𝑦∗ ∈ 𝜕𝐶 𝑓 (𝑆 (𝑥)) such that 𝑆′(𝑥)∗𝑦∗ = 𝑥∗.

Proof. We again only consider the upper model 𝑄 𝑗 , the lower model being analogous. Due
to our assumptions, we can apply Corollary 24.16 to obtain

𝐷 [𝜕𝐶 (𝑓 ◦ 𝑆)] (𝑥 |𝑥∗) (Δ𝑥) = [𝑆′′(𝑥)∗Δ𝑥]𝑦∗ + 𝑆′(𝑥)∗𝐷 [𝜕𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑆′(𝑥)Δ𝑥),

where 𝑆′′ : 𝑋 → [𝑋 → 𝕃(𝑌 ∗;𝑋 ∗)]. Thus every Δ𝑥∗ ∈ 𝐷 [𝜕𝐶 (𝑓 ◦ 𝑆)] (𝑥 |𝑥∗) (Δ𝑥) can be
written for some Δ𝑦∗ ∈ 𝐷 [𝜕𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑆′(𝑥)Δ𝑥) as Δ𝑥∗ = [𝑆′′(𝑥)Δ𝑥]∗𝑦∗ + 𝑆′(𝑥)∗Δ𝑦∗.
Inserting this into the definition of 𝑄 𝑗 yields

𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗) = sup
Δ𝑦∗∈𝐷 [𝜕𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑆 ′ (𝑥)Δ𝑥)

⟨[𝑆′′(𝑥)Δ𝑥]∗𝑦∗ + 𝑆′(𝑥)∗Δ𝑦∗,Δ𝑥⟩𝑋

= ⟨𝑦∗, [𝑆′′(𝑥)Δ𝑥]Δ𝑥⟩𝑌 + sup
Δ𝑦∗∈𝐷 [𝜕𝑓 ] (𝑆 (𝑥) |𝑦∗) (𝑆 ′ (𝑥)Δ𝑥)

⟨Δ𝑦∗, 𝑆′(𝑥)Δ𝑥⟩𝑌 . □

26.2 subconvexity

We say that 𝑓 : 𝑋 → ℝ is subconvex near 𝑥 for 𝑥∗ ∈ 𝜕𝐶 𝑓 (𝑥) if for all 𝜌 > 0, there exists
𝜀 > 0 such that

(26.1) 𝑓 (𝑥)− 𝑓 (𝑥) ≥ ⟨𝑥∗, 𝑥−𝑥⟩𝑋 − 𝜌2 ∥𝑥−𝑥 ∥
2
𝑋 (𝑥, 𝑥 ∈ 𝔹(𝑥, 𝜀); 𝑥∗ ∈ 𝜕𝐶 𝑓 (𝑥)∩𝔹(𝑥∗, 𝜀)) .

We say that 𝑓 is subconvex at 𝑥 for 𝑥∗ if this holds with 𝑥 = 𝑥 fixed. It is clear that convex
functions are subconvex near any point for any subderivative. By extension, scalar functions
such as 𝑡 ↦→ |𝑡 |𝑞 for 𝑞 ∈ (0, 1) that are locally minorized by 𝑥 ↦→ 𝑓 (𝑥) + ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 at
points of nonsmoothness are also subconvex.

The sum of two subconvex functions for which the subdifferential sum rule holds is clearly
also subconvex. The next result shows that smooth functions simply need to have a non-
negative Hessian at the point 𝑥 to be subconvex. This is in contrast to the everywhere
non-negative Hessian of convex functions.
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Lemma 26.6. Let𝑋 be a Banach space and let 𝑓 : 𝑋 → ℝ be twice continuously differentiable.
If ⟨𝑓 ′′(𝑥)Δ𝑥,Δ𝑥⟩𝑋 ≥ 0 for all Δ𝑥 ∈ 𝑋 , then 𝑓 is subconvex near 𝑥 ∈ 𝑋 for 𝑓 ′(𝑥).

Proof. Fix 𝜌 > 0. We apply Theorem 2.10 first to 𝑓 to obtain for every 𝑥, ℎ ∈ 𝑋 that

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) =
∫ 1

0
⟨𝑓 ′(𝑥 + 𝑡ℎ), ℎ⟩𝑋 𝑑𝑡 .

Similarly, the same theorem applied to 𝑡 ↦→ ⟨𝑓 ′(𝑥 + 𝑡ℎ), ℎ⟩ for any 𝑥, ℎ ∈ 𝑋 yields

⟨𝑓 ′(𝑥 + 𝑡ℎ), ℎ⟩𝑋 − ⟨𝑓 ′(𝑥), ℎ⟩𝑋 =
∫ 1

0
⟨𝑓 ′′(𝑥 + 𝑠𝑡ℎ)ℎ,ℎ⟩𝑋 𝑑𝑠.

Combined these two expansions yield

(26.2) 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) = ⟨𝑓 ′(𝑥), ℎ⟩𝑋 +
∫ 1

0

∫ 1

0
⟨𝑓 ′′(𝑥 + 𝑠𝑡ℎ)ℎ,ℎ⟩𝑋 𝑑𝑠 𝑑𝑡 .

Since ⟨𝑓 ′′(𝑥)ℎ,ℎ⟩𝑋 ≥ 0, we have

⟨𝑓 ′′(𝑥 + 𝑞)ℎ,ℎ⟩𝑋 ≥ ⟨[𝑓 ′′(𝑥 + 𝑞) − 𝑓 ′′(𝑥)]ℎ,ℎ⟩𝑋 (𝑥, 𝑞, ℎ ∈ 𝑋 ).

Therefore, by the continuity of 𝑓 ′′, for any 𝜌 > 0 we can find 𝜀 > 0 such that

⟨𝑓 ′′(𝑥 + 𝑞)ℎ,ℎ⟩𝑋 ≥ −𝜌2 ∥ℎ∥
2
𝑋 (𝑞 ∈ 𝔹(0, 𝜀), 𝑥 ∈ 𝔹(𝑥, 𝜀), ℎ ∈ 𝑋 ).

Taking 𝑞 = 𝑠𝑡ℎ, this and (26.2) shows that

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) ≥ ⟨𝑓 ′(𝑥), ℎ⟩𝑋 − 𝜌

2 ∥ℎ∥
2
𝑋 .

The claim now follows by taking ℎ = 𝑥 − 𝑥 . □

Remark 26.7. Subconvexity,which to our knowledge has not previously been treated in the literature,
is a stronger condition than the prox-regularity introduced in [Poliquin and Rockafellar, 1996].
The latter requires (26.1) to hold merely for a fixed 𝜌 > 0. The definition in [Rockafellar and Wets,
1998] is slightly broader and implies the earlier one. Their definition is itself a modification of the
primal-lower-nice functions of [Thibault and Zagrodny, 1995]. Our notion of subconvexity is also
related to those of subsmooth sets and submonotone operators introduced in [Aussel et al., 2005]. An
alternative concept for functions, subsmoothness and lower-𝐶𝑘 , has been introduced in [Rockafellar,
1981].
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26 second-order optimality conditions

26.3 sufficient and necessary conditions

We start with sufficient conditions, which are based on the upper model.

Theorem 26.8. Let 𝑋 be a Banach space and 𝑓 : 𝑋 → ℝ. If for 𝑥 ∈ 𝑋 ,
(i) 𝑓 is subconvex near 𝑥 for 𝑥∗ = 0;

(ii) 0 ∈ 𝜕𝐶 𝑓 (𝑥);
(iii) there exists a 𝜇 > 0 such that

�̂� 𝑓 (Δ𝑥 ;𝑥 |0) ≥ 𝜇∥Δ𝑥 ∥2
𝑋 (Δ𝑥 ∈ 𝑋 );

then 𝑥 is a strict local minimizer of 𝑓 .

Proof. Let 𝑥∗ ≔ 0 and Δ𝑥 ∈ 𝑋 . By the assumed subconvexity, for every 𝜌 > 0 there exists
𝜀𝜌 > 0 such that for 𝑥 ∈ 𝔹(𝑥, 𝜀𝜌/2) and 𝑥∗ ∈ 𝜕𝐶 𝑓 (𝑥) ∩ 𝔹(𝑥∗, 𝜀𝜌), we have for every 𝑡 > 0
with 𝑡 ∥Δ𝑥 ∥𝑋 < 1

2𝜀𝜌 that

𝑓 (𝑥 + 𝑡Δ𝑥) − 𝑓 (𝑥) − 𝑡 ⟨𝑥∗,Δ𝑥⟩𝑋
𝑡2 ≥ ⟨𝑥∗ − 𝑥∗,Δ𝑥⟩𝑋

𝑡
− 𝜌

2 ∥Δ𝑥 ∥
2
𝑋 .

Since 𝜌 > 0 was arbitrary, we thus obtain for every Δ𝑥 ∈ 𝑋 and Δ𝑥∗ ∈ 𝐷 [𝜕𝑓 ] (𝑥 |𝑥∗) (Δ𝑥)
that

𝐴(Δ𝑥,Δ𝑥,Δ𝑥∗) ≔ lim inf
𝑡→ 0, (𝑥−𝑥)/𝑡→Δ𝑥

(𝑥∗−𝑥∗)/𝑡→Δ𝑥∗, 𝑥∗∈𝜕𝐶 𝑓 (𝑥)

𝑓 (𝑥 + 𝑡Δ𝑥) − 𝑓 (𝑥) − 𝑡 ⟨𝑥∗,Δ𝑥⟩𝑋
𝑡2

≥ lim inf
𝑡→ 0, (𝑥−𝑥)/𝑡→Δ𝑥

(𝑥∗−𝑥∗)/𝑡→Δ𝑥∗, 𝑥∗∈𝜕𝐶 𝑓 (𝑥)

⟨𝑥∗ − 𝑥∗,Δ𝑥⟩𝑋
𝑡

= ⟨Δ𝑥∗,Δ𝑥⟩𝑋 .

This implies that

sup
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (Δ𝑥)

𝐴(Δ𝑥,Δ𝑥,Δ𝑥∗) ≥ sup
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (Δ𝑥)

⟨Δ𝑥∗,Δ𝑥⟩𝑋 =: 𝐵(Δ𝑥,Δ𝑥).

Since 𝑥∗ = 0, we can fix 𝑥 = 𝑥 + 𝑡Δ𝑥 and Δ𝑥 = Δ𝑥 in the lim inf above and use (iii) to obtain

(26.3) lim inf
𝑡→ 0

𝑓 (𝑥 + 2𝑡Δ𝑥) − 𝑓 (𝑥 + 𝑡Δ𝑥)
𝑡2 ≥ 𝐵(Δ𝑥,Δ𝑥).

Similarly, fixing 𝑥 = 𝑥 and Δ𝑥 = 0 yields

(26.4) lim inf
𝑡→ 0

𝑓 (𝑥 + 𝑡Δ𝑥) − 𝑓 (𝑥)
𝑡2 ≥ 𝐵(Δ𝑥, 0) ≥ 0,

where the final inequality follows from the definition of 𝐵 by taking Δ𝑥∗ = 0 (which is
possible since 𝑥∗ ∈ 𝜕𝐶 𝑓 (𝑥)). We now make a case distinction.
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(I) 𝐵(Δ𝑥, 0) ≥ 𝜇∥Δ𝑥 ∥2
𝑋
. In this case, the lim inf is strictly positive for Δ𝑥 ≠ 0 and hence

𝑓 (𝑥 + 𝑡Δ𝑥) > 𝑓 (𝑥) for all 𝑡 > 0 sufficiently small.

(II) 𝐵(Δ𝑥, 0) < 𝜇∥Δ𝑥 ∥2
𝑋
. In this case, it follows from (iii) that

𝜇∥Δ𝑥 ∥2
𝑋 ≤ �̂� 𝑓 (Δ𝑥 ;𝑥 |0) = max{𝐵(Δ𝑥,Δ𝑥), 𝐵(Δ𝑥, 0)}

and hence that 𝐵(Δ𝑥,Δ𝑥) = �̂� 𝑓 (Δ𝑥 ;𝑥 |0) ≥ 𝜇∥Δ𝑥 ∥2
𝑋
. Summing (26.3) and (26.4) then

yields
lim inf
𝑡→ 0

𝑓 (𝑥 + 2𝑡Δ𝑥) − 𝑓 (𝑥)
𝑡2 ≥ 𝐵(Δ𝑥,Δ𝑥) ≥ 𝜇∥Δ𝑥 ∥2

𝑋 ,

which again implies for Δ𝑥 ≠ 0 that 𝑓 (𝑥 + 𝑡Δ𝑥) > 0𝑓 (𝑥) for all 𝑡 > 0 sufficiently
small.

Since Δ𝑥 ∈ 𝑋 was arbitrary, 𝑥 is by definition a strict local minimizer of 𝑓 . □

Remark 26.9. The use of the stationarity curvature model 𝑄 𝑓
0 in the second-order condition is

required since the upper curvature model may not provide any information about the growth of
𝑓 at 𝑥 in certain directions. However, since 𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (0) is a cone, if it contains any element
Δ𝑥∗ such that ⟨Δ𝑥∗,Δ𝑥⟩𝑋 > 0, then 𝐵(Δ𝑥, 0) = 𝑄 𝑓

0 (Δ𝑥 ;𝑥 |𝑥∗) = ∞, ensuring that the condition (iii)
holds in the direction Δ𝑥 for any 𝜇 > 0. For example, if 𝑓 (𝑥) = |𝑥 |, then Lemma 26.3 shows that
𝑄 𝑓 (Δ𝑥 ; 0|0) = 0 for Δ𝑥 ≠ 0, which indeed does not provide any information about the growth
of 𝑓 at 0. Conversely, 𝑄 𝑓

0 (Δ𝑥 ; 0|0) = ∞ for any Δ𝑥 ≠ 0, so the growth is more rapid than 𝑄 𝑓 can
measure.

Combining Theorem 26.8 with Theorem 26.1, we obtain the classical sufficient second-order
condition. (Recall that in infinite-dimensional spaces, positive definiteness and coercivity
are no longer equivalent, and the latter, stronger, property is usually required.)

Corollary 26.10. Let 𝑋 be a Banach space and let 𝑓 : 𝑋 → ℝ be twice continuously differen-
tiable. If for 𝑥 ∈ 𝑋 ,

(i) 𝑓 ′(𝑥) = 0;

(ii) there exists a 𝜇 > 0 such that

⟨𝑓 ′′(𝑥)Δ𝑥,Δ𝑥⟩𝑋 ≥ 𝜇∥Δ𝑥 ∥2
𝑋 (Δ𝑥 ∈ 𝑋 );

then 𝑥 is a local minimizer of 𝑓 .

Proof. To apply Theorem 26.8, it suffices to note that 𝜕𝐶 𝑓 (𝑥) = {𝑓 ′(𝑥)} by Theorem 13.5 and
that the second-order condition ensures subconvexity of 𝑓 at 𝑥 for 𝑥∗ = 0 by Lemma 26.6.

□
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For nonsmooth functionals, we merely illustrate the sufficient second-order condition with
a simple but nontrivial scalar example.

Corollary 26.11. Let 𝑋 = ℝ and 𝑗 ≔ 𝑓 + 𝑔 for 𝑔 : ℝ → ℝ twice continuously differentiable
and 𝑓 (𝑥) = |𝑥 |. Then the sufficient condition of Theorem 26.8 holds at 𝑥 ∈ ℝ if and only if
one of the following cases holds:

(a) 𝑥 = 0 and |𝑔′(𝑥) | < 1;

(b) 𝑥 = 0, |𝑔′(𝑥) | = 1, and 𝑔′′(𝑥) > 0; or

(c) 𝑥 ≠ 0, 𝑔′(𝑥) = − sign𝑥 , and 𝑔′′(𝑥) > 0.

Proof. We apply Theorem 26.8, for which we need to verify its conditions. First, note that
(ii) is equivalent to 0 = 𝑥∗ + 𝑔′(𝑥) for some 𝑥∗ ∈ 𝜕𝑓 (𝑥) = sign𝑥 by Theorem 13.20 and
Example 4.7.

We now verify the subconvexity of 𝑗 near 𝑥 for 𝑥∗ = 0. Expanding the definition (26.1), this
requires

(26.5) |𝑥 | − |𝑥 | + 𝑔(𝑥) − 𝑔(𝑥) ≥ ⟨𝑥∗ + 𝑔′(𝑥), 𝑥 − 𝑥⟩ − 𝜌

2 ∥𝑥 − 𝑥 ∥2

(𝑥, 𝑥 ∈ 𝔹(𝑥, 𝜀); 𝑥∗ ∈ 𝜕𝐶 | · | (𝑥) ∩ 𝔹(𝑥∗ − 𝑔′(𝑥), 𝜀)) .

In cases (b) and (c), we can apply Lemma 26.6 to deduce the subconvexity of 𝑔 and therefore
of 𝑗 = 𝑓 + 𝑔 since 𝑓 is convex. For case (a), we have 𝑥 = 0 with |𝑔′(𝑥) | < 1. Since 𝑔′ is
continuous, we consequently have 𝑥∗ −𝑔′(𝑥) = −𝑔′(𝑥) ∈ (−1, 1) when |𝑥 −𝑥 | = |𝑥 | is small
enough. Since 𝜕𝑓 (𝑥) ∈ {−1, 1} for 𝑥 ≠ 0, it follows that 𝜕𝐶 | · | (𝑥) ∩ 𝔹(𝑥∗ − 𝑔′(𝑥), 𝜀) = ∅ for
𝑥 ∈ 𝔹(𝑥, 𝜀) \ {𝑥} for small enough 𝜀 > 0. Therefore, for small enough 𝜀 > 0, the condition
(26.5) reduces to

(26.6) |𝑥 | +𝑔(𝑥) −𝑔(0) ≥ ⟨𝑥∗ +𝑔′(0), 𝑥⟩ − 𝜌2 |𝑥 |
2 (𝑥 ∈ [−𝜀, 𝜀], |𝑥∗ | ≤ 1, |𝑥∗ +𝑔′(0) | ≤ 𝜀).

Furthermore, |𝑔′(0) | < 1 implies that for every 𝜌 > 0 and 𝑐 > 0, we can find an 𝜀 > 0
sufficiently small that

(1 − 𝜀 − |𝑔′(0) |) |𝑥 | ≥ 𝑐 − 𝜌
2 |𝑥 |2 (𝑥 ∈ [−𝜀, 𝜀]) .

Since 𝑔 : ℝ → ℝ is twice continuously differentiable, we can apply a Taylor expansion in
𝑥 = 0 to obtain for some 𝑐 > 0 and |𝑥 | sufficiently small that

𝑔(0) ≤ 𝑔(𝑥) + ⟨𝑔′(0),−𝑥⟩ + 𝑐2 |𝑥 |
2.
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26 second-order optimality conditions

Adding this to the previous inequality, we obtain for sufficiently small 𝜀 > 0 and 𝑥∗ ∈ [−1, 1]
satisfying |𝑥∗ + 𝑔′(0) | ≤ 𝜀 that

|𝑥 | + 𝑔(𝑥) − 𝑔(0) ≥ (|𝑔′(0) | + 𝜀) |𝑥 | + ⟨𝑔′(0), 𝑥⟩ − 𝜌

2 |𝑥 |
2

≥ ⟨𝑥∗ + 𝑔′(0), 𝑥⟩ − 𝜌

2 |𝑥 |
2

for every |𝑥 | ≤ 𝜀, which is (26.6). Hence 𝑗 = 𝑓 +𝑔 is subconvex near 𝑥 = 0 for 0 = 𝑥∗ +𝑔′(0).
To verify (iii), we compute the upper curvature model. Let Δ𝑥 ∈ 𝑋 . Then by Theorems 26.1
and 26.4,

𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) = 𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) + ⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩,
𝑄
𝑗

0(Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) = 𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗),
where 𝑄 𝑓 is given by Lemma 26.3. It follows that

𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) =
{
−∞ if 𝑥 = 0, Δ𝑥 ≠ 0, signΔ𝑥 ≠ 𝑥∗,
⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩ otherwise,

and

𝑄
𝑗

0(Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) =


0 if 𝑥 ≠ 0, 𝑥∗ = sign𝑥,
0 if 𝑥 = 0, |𝑥∗ | = 1, 𝑥∗Δ𝑥 ≥ 0,
∞ if 𝑥 = 0, |𝑥∗ | = 1, 𝑥∗Δ𝑥 < 0,
∞ if 𝑥 = 0, |𝑥∗ | < 1.

Thus

�̂� 𝑗 (Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) =


max{0, ⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩} if 𝑥 ≠ 0, 𝑥∗ = sign𝑥,
max{0, ⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩} if 𝑥 = 0, |𝑥∗ | = 1, 𝑥∗Δ𝑥 ≥ 0,
∞ if 𝑥 = 0, |𝑥∗ | = 1, 𝑥∗Δ𝑥 < 0,
∞ if 𝑥 = 0, |𝑥∗ | < 1.

The condition (iii) is thus equivalent to

max{0, ⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩} ≥ 𝜇∥Δ𝑥 ∥2 when
{
𝑥 ≠ 0 or
𝑥 = 0, |𝑔′(𝑥) | = 1, and 𝑔′(𝑥)Δ𝑥 < 0.

The left inequality can only hold for arbitrary Δ𝑥 ∈ ℝ if 𝜇 = 𝑔′′(𝑥) > 0. Hence (ii) and (iii)
hold if and only if one of the cases (a)–(c) holds. □

Note that case (a) corresponds to the case of strict complementarity or graphical regularity
of 𝜕𝑓 in Theorem 20.18. Conversely, cases (b), and (c) imply that 𝑔 and therefore 𝑗 is locally
convex, recalling from Theorem 4.2 that for convex functionals, the first-order optimality
conditions are necessary and sufficient.

Now we formulate our necessary condition, which is based on the lower curvature model.
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26 second-order optimality conditions

Theorem 26.12. Let 𝑋 be a Banach space and 𝑓 : 𝑋 → ℝ. If 𝑥 ∈ 𝑋 is a local minimizer of 𝑓
and 𝑓 is locally Lipschitz continuous and subconvex at 𝑥 for 0 ∈ 𝑋 ∗, then

𝑄 𝑓 (Δ𝑥 ;𝑥 |0) ≥ 0 (Δ𝑥 ∈ 𝑋 ) .

Proof. We have from Theorem 13.4 that 𝑥∗ ≔ 0 ∈ 𝜕𝐶 𝑓 (𝑥). By the assumed subconvexity, for
every 𝜌 > 0 there exists 𝜀 > 0 such that for 𝑥 ∈ 𝔹(𝑥, 𝜀/2) and 𝑥∗𝑡 ∈ 𝜕𝐶 𝑓 (𝑥 + 𝑡Δ𝑥) ∩𝔹(𝑥∗, 𝜀),
we have for every 𝑡 > 0 with 𝑡 ∥Δ𝑥 ∥𝑋 < 𝜀/2 that

𝑓 (𝑥 + 𝑡Δ𝑥) − 𝑓 (𝑥) − 𝑡 ⟨𝑥∗,Δ𝑥⟩𝑋
𝑡2 ≤ ⟨𝑥∗𝑡 − 𝑥∗,Δ𝑥⟩𝑋

𝑡
+ 𝜌2 ∥Δ𝑥 ∥

2
𝑋 .

For every Δ𝑥∗ ∈ 𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (Δ𝑥), by definition there exist Δ𝑥 → Δ𝑥 and, for small
enough 𝑡 > 0, 𝑥∗𝑡 ∈ 𝜕𝐶 𝑓 (𝑥 + 𝑡Δ𝑥) ∩𝔹(𝑥∗, 𝜀) such that (𝑥∗𝑡 −𝑥∗)/𝑡 → Δ𝑥∗ ∈ 𝑋 ∗. Since 𝜌 > 0
was arbitrary and 𝑥∗ = 0, it follows that

lim inf
Δ𝑥→Δ𝑥
𝑡→ 0

𝑓 (𝑥 + 𝑡Δ𝑥) − 𝑓 (𝑥)
𝑡2 ≤ lim inf

Δ𝑥→Δ𝑥
𝑡→ 0

( ⟨𝑥∗𝑡 − 𝑥∗,Δ𝑥⟩𝑋
𝑡

+ ⟨𝑥∗𝑡 − 𝑥∗,Δ𝑥 − Δ𝑥⟩𝑋
𝑡

)
= lim inf

𝑡→ 0

⟨𝑥∗𝑡 − 𝑥∗,Δ𝑥⟩𝑋
𝑡

≤ inf
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑓 ] (𝑥 |𝑥∗) (Δ𝑥)

⟨Δ𝑥∗,Δ𝑥⟩𝑋
= 𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) = 𝑄 𝑓 (Δ𝑥 ;𝑥 |0).

Since 𝑥 is a local minimizer, we have 𝑓 (𝑥) ≤ 𝑓 (𝑥 + 𝑡Δ𝑥) for 𝑡 > 0 sufficiently small and
Δ𝑥 sufficiently close to Δ𝑥 . Rearranging and passing to the limit thus yields the claimed
nonnegativity of 𝑄 𝑓 (Δ𝑥 ;𝑥 |0). □

Remark 26.13. Compared to the sufficient condition of Theorem 26.8, the necessary condition does
not involve a stationary lower model

𝑄 𝑓 ,0(Δ𝑥 ;𝑥 |0) ≔ inf
Δ𝑥∗∈𝐷 [𝜕𝐶 𝑓 ] (𝑥 |0) (0)

⟨Δ𝑥∗,Δ𝑥⟩𝑋 .

In fact, 𝑄 𝑓 ,0(Δ𝑥 ;𝑥 |0) ≥ 0 is not a necessary optimality condition: let 𝑓 (𝑥) = |𝑥 |, 𝑥 ∈ ℝ, and 𝑥 = 0.
Then by Theorem 20.18, 𝐷 [𝜕𝑓 ] (0|0) (0) = ℝ and hence 𝑄 𝑓 ,0(Δ𝑥 ; 0|0) = −∞ for all Δ𝑥 ≠ 0.

For smooth functions, we recover the usual second-order necessary condition from Theo-
rem 26.1.

Corollary 26.14. Let 𝑋 be a Banach space and let 𝑓 : 𝑋 → ℝ be twice continuously differen-
tiable. If 𝑥 ∈ 𝑋 is a local minimizer of 𝑓 , then

⟨𝑓 ′′(𝑥)Δ𝑥,Δ𝑥⟩𝑋 ≥ 0 (Δ𝑥 ∈ 𝑋 ) .
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26 second-order optimality conditions

We again illustrate the nonsmooth case with a scalar example.

Corollary 26.15. Let𝑋 = ℝ and 𝑗 ≔ 𝑓 +𝑔 for𝑔 : ℝ → ℝ twice continuously differentiable and
𝑓 (𝑥) = |𝑥 |. Then the necessary condition of Theorem 26.12 holds at 𝑥 if and only if 𝑔′′(𝑥) ≥ 0.

Proof. We apply Theorem 26.12, for which we need to verify its conditions. Both 𝑓 and 𝑔
are locally Lipschitz continuous by Theorem 3.13 and Lemma 2.11, respectively, and hence
so is 𝑗 . We have already verified the subconvexity of 𝑗 in Corollary 26.11.

By Theorems 13.4 and 13.20 and Example 4.7, we again have 0 = 𝑥∗ + 𝑔′(𝑥) for some
𝑥∗ ∈ 𝜕𝑓 (𝑥) = sign𝑥 . It remains to compute the lower curvature model. Let Δ𝑥 ∈ 𝑋 . By
Theorems 26.1 and 26.4,

𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) = 𝑄 𝑓 (Δ𝑥 ;𝑥 |𝑥∗) + ⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩,

where 𝑄 𝑓 is given by Lemma 26.3. It follows that

𝑄 𝑗 (Δ𝑥 ;𝑥 |𝑥∗ + 𝑔′(𝑥)) =
{
∞ if 𝑥 = 0, Δ𝑥 ≠ 0, signΔ𝑥 ≠ 𝑥∗,
⟨𝑔′′(𝑥)Δ𝑥,Δ𝑥⟩ otherwise.

Hence the condition 𝑄 𝑗 (Δ𝑥 ;𝑥 |0) ≥ 0 for all Δ𝑥 ∈ 𝑋 reduces to 𝑔′′(𝑥) ≥ 0. □

Remark 26.16. Second-order optimality conditions can also be based on epigraphical derivatives,
which were introduced in [Rockafellar, 1985, 1988]; we refer to [Rockafellar and Wets, 1998] for a
detailed discussion. A related approach based on second-order directional curvature functionals
was used in [Christof andWachsmuth, 2018] for deriving necessary and sufficient second-order opti-
mality conditions for smooth optimization problems subject to nonsmooth and possibly nonconvex
constraints.
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27 LIPSCHITZ-LIKE PROPERTIES

A related issue to second-order conditions is that of stability of the solution to optimization
problems under perturbation. To motivate the following, let 𝑓 : 𝑋 → ℝ and suppose we
wish to find 𝑥 ∈ 𝑋 such that 0 ∈ 𝜕𝑓 (𝑥) for a suitable subdifferential. Suppose further that
we are given some 𝑥 ∈ 𝑋 with𝑤 ∈ 𝜕𝑓 (𝑥) with ∥𝑤 ∥𝑋 ∗ ≤ 𝜀 – say, from one of the algorithms
in Chapter 8. A natural question is then for an error estimate ∥𝑥 −𝑥 ∥𝑋 in terms of 𝜀. Clearly,
if 𝜕𝑓 has a single-valued and Lipschitz continuous inverse, this is the case since then

∥𝑥 − 𝑥 ∥𝑋 = ∥(𝜕𝑓 )−1(0) − (𝜕𝑓 )−1(𝑤)∥𝑋 ≤ 𝐿∥𝑤 ∥𝑋 ∗ .

Of course, the situation is much more complicated in the set-valued case. To treat this, we
first have to define suitable notions of Lipschitz-like behavior of set-valuedmappings,which
we then characterize using coderivatives (generalizing the characterization of the Lipschitz
constant of a differentiable single-valued mapping through the norm of its derivative). We
return to the question of stability of minimizers in the more general context of perturbations
of parametrized solution mappings in Chapter 28.

27.1 lipschitz-like properties of set-valued mappings

To set up the definition of Lipschitz-like properties for set-valued mappings, it is helpful to
recall from Section 1.1 for single-valued functions the distinction between (point-based)
local Lipschitz continuity at a point and (neighborhood-based) local Lipschitz continuity
near a point. (Figure 27.2b below shows a function that is locally Lipschitz at but not
near the give point.) Similarly, we will have to distinguish for set-valued mappings the
corresponding notions of Aubin property (which is point-based) and calmness (which is
neighborhood-based). If these properties hold for the inverse of a mapping, we will call
the mapping itself metrically regular and metrically subregular , respectively. These four
properties are illustrated in Figure 27.1.

Recall also from Lemma 17.4 the definition of the distance of a point 𝑥 ∈ 𝑋 to a set 𝐴 ⊂ 𝑋 ,
which we here write for the sake of convenience as

dist(𝐴, 𝑥) ≔ dist(𝑥,𝐴) ≔ 𝑑𝐴 (𝑥) = inf
𝑥∈𝐴

∥𝑥 − 𝑥 ∥𝑋 .
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27 lipschitz-like properties

(𝑥, 𝑓 (𝑥))
(a) locally Lipschitz 𝑓

(𝑦, 𝑓 −1(𝑦))

(b) locally Lipschitz 𝑓 −1

(𝑥, 𝑦)

(𝑥, 𝑦)

(c) Aubin property of 𝐹

(𝑥, 𝑦)

(𝑥, 𝑦)

(d) metric regularity of 𝐹

(𝑥, 𝑦)

(𝑥, 𝑦)

(e) calmness of 𝐹

(𝑥, 𝑦)

(𝑥, 𝑦)

(f) metric subregularity of 𝐹

Figure 27.1: Illustration of Lipschitz-like properties using cones. The thick lines are the
graph of the function; if this graph is locally contained in a filled cone, the prop-
erty holds, while a cross-hatched cone indicates that the property is violated.

We then say that 𝐹 : 𝑋 ⇒ 𝑌 has the Aubin or pseudo-Lipschitz property at 𝑥 for 𝑦 if graph 𝐹
is closed near (𝑥, 𝑦) and there exist 𝛿, 𝜅 > 0 such that

(27.1) dist(𝑦, 𝐹 (𝑥)) ≤ 𝜅 dist(𝐹−1(𝑦), 𝑥) (𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑦 ∈ 𝔹(𝑦, 𝛿)) .
We call the infimum of all 𝜅 > 0 for which (27.1) holds for some 𝛿 > 0 the graphical modulus
of 𝐹 at 𝑥 for 𝑦 , written lip 𝐹 (𝑥 |𝑦).
When we are interested in the stability of the optimality condition 0 ∈ 𝐹 (𝑥), it is typically
more beneficial to study the Aubin property of the inverse 𝐹−1. This is called the metric
regularity of 𝐹 at a point (𝑥, 𝑦) ∈ graph 𝐹 , which holds if there exist 𝜅, 𝛿 > 0 such that

(27.2) dist(𝑥, 𝐹−1(𝑦)) ≤ 𝜅 dist(𝑦, 𝐹 (𝑥)) (𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑦 ∈ 𝔹(𝑦, 𝛿)) .
We call the infimum of all 𝜅 > 0 for which (27.2) holds for some 𝛿 > 0 themodulus of metric
regularity of 𝐹 at 𝑥 for 𝑦 , written reg 𝐹 (𝑥 |𝑦).

353



27 lipschitz-like properties

The metric regularity and Aubin property are too strong to be satisfied in many applications.
A weaker notion is provided by (metric) subregularity at (𝑥, 𝑦) ∈ graph 𝐹 , which holds if
there exist 𝜅, 𝛿 > 0 such that

(27.3) dist(𝑥, 𝐹−1(𝑦)) ≤ 𝜅 dist(𝑦, 𝐹 (𝑥)) (𝑥 ∈ 𝔹(𝑥, 𝛿)) .

Compared to metric regularity, this allows much more leeway for 𝐹 by fixing 𝑦 = 𝑦 ∈ 𝐹 (𝑥)
(while still allowing 𝑥 to vary). We call the infimum of all 𝜅 > 0 for which (27.3) holds for
some 𝛿 > 0 for themodulus of (metric) subregularity of 𝐹 at 𝑥 for 𝑦 , written subreg 𝐹 (𝑥 |𝑦).
The counterpart of metric subregularity that relaxes the Aubin property is known as
calmness. We say that 𝐹 : 𝑋 ⇒ 𝑌 is calm at 𝑥 for 𝑦 if there exist 𝜅, 𝛿 > 0 such that

(27.4) dist(𝑦, 𝐹 (𝑥)) ≤ 𝜅 dist(𝑥, 𝐹−1(𝑦)) (𝑦 ∈ 𝔹(𝑦, 𝛿)) .

We call the infimum of all 𝜅 > 0 for which (27.4) holds for some 𝛿 > 0 the modulus of
calmness of 𝐹 at 𝑥 for 𝑦 , written calm 𝐹 (𝑥 |𝑦). Clearly the Aubin property implies calmness,
while metric regularity implies metric subregularity.

Unfortunately, the direct calculation of the different moduli is often infeasible in practice.
Much of the rest of this chapter concentrates on calculating the graphical modulus and the
modulus of metric regularity in special cases. We will consider metric subregularity (as well
as a related, weaker, notion of strong submonotonicity) in the following Section 29.1.

Remark 27.1. The Aubin property is due to [Aubin, 1984], whereas metric subregularity is due
to [Ioffe, 1979], first given the modern name in [Dontchev and Rockafellar, 2004]. Calmness was
introduced in [Robinson, 1981] as the upper Lipschitz property. Metric regularity is equivalent
to openness at a linear rate near (𝑢,𝑤) and holds for smooth maps by the classical Lyusternik–
Graves theorem. We refer in particular to [Dontchev and Rockafellar, 2014; Ioffe, 2017] for further
information on these and other related properties.

In particular, related to metric subregularity is the stronger concept of strong metric subregularity,
which was introduced in [Rockafellar, 1989] and requires the existence of 𝜅, 𝛿 > 0 such that

∥𝑥 − 𝑥 ∥𝑋 ≤ 𝜅 dist(𝑦, 𝐹 (𝑥)) (𝑥 ∈ 𝔹(𝑥, 𝛿)),

i.e., a bound on the norm distance to 𝑥 rather than the closest preimage of 𝑦 . Its many properties
are studied in [Cibulka et al., 2018], which also introduced 𝑞-exponent versions. Particularly worth
noting is that strong metric subregularity is invariant with respect to perturbations by smooth
functions, while metric subregularity is not.

Weaker and “partial” concepts of regularity have also been considered in the literature. Of particular
note is the directional metric subregularity of [Gfrerer, 2013]. The idea here is to study necessary
optimality conditions by requiring metric regularity or subregularity only along critical directions
instead of all directions. In [Valkonen, 2021c], by contrast, the norms in the definition of subregularity
are made operator-relative to study the partial subregularity on subspaces; compare the testing of
algorithms for structured problems in Section 10.2.
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𝑥

(a) oscillating single-valued function

𝐹 (𝑥) + 𝔹(0, ℓ ∥𝑥 − 𝑥 ∥𝑋 )𝐹 (𝑥)

𝑥 𝑥

(b) graph of 𝑥 ↦→ 𝐹 (𝑥) + 𝔹(0, ℓ ∥𝑥 − 𝑥 ∥𝑋 )

Figure 27.2: The oscillating example in (a) illustrates a function 𝑓 that is locally Lipschitz
(or calm) at 𝑥 , but not locally Lipschitz (or does not have the Aubin property)
near the same point: the graph of the function stays in the cone formed by
the thick lines and based at (𝑥, 𝑓 (𝑥)) ∈ graph 𝑓 . If, however, we move the
cone locally along the graph, even increasing its width, the graph will not be
contained the cone. In (b) we illustrate the “fat cone” structure graph(𝑥 ↦→
𝐹 (𝑥) + 𝔹(0, ℓ ∥𝑥 − 𝑥 ∥𝑋 )) appearing on the right-hand-side in Theorem 27.2 (i),
and varying with the second base point 𝑥 around 𝑥 . This is to be contrasted
with the leaner cone graph(𝑥 ↦→ 𝑓 (𝑥)+𝔹(0, ℓ ∥𝑥−𝑥 ∥𝑋 )) bounding the function
in (a).

We now provide alternative characterizations of the Aubin property and of calmness. These
extend to metric regularity and subregularity, respectively, by application to the inverse.

The right-hand-side of the set-inclusion characterization (i) in the next theorem forms a
“fat cone” that we illustrate in Figure 27.2b. It should locally at each base point 𝑥 around 𝑥
bound 𝐹 for the Aubin property to be satisfied. Based on the formulation (i), we illustrate
in Figure 27.3 the satisfaction and dissatisfaction of the Aubin property. The other two new
characterizations show that we do not need to restrict 𝑥 to a tiny neighborhood of 𝑥 in
neither (i) nor the original characterization (27.1).

Theorem 27.2. Let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 ⇒ 𝑌 . Then the following are equivalent
for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐹 (𝑥):

(i) There exists 𝜅, 𝛿 > 0 such that

𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ) (𝑥, 𝑥 ∈ 𝔹(𝑥, 𝛿)) .

(ii) There exists 𝜅, 𝛿 > 0 such that

𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ) (𝑥 ∈ 𝔹(𝑥, 𝛿); 𝑥 ∈ 𝑋 ).

(iii) The Aubin property (27.1).

(iv) There exists 𝜅, 𝛿 > 0 such that

dist(𝑦, 𝐹 (𝑥)) ≤ 𝜅 dist(𝐹−1(𝑦) ∩ 𝔹(𝑥, 𝛿), 𝑥) (𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑦 ∈ 𝔹(𝑦, 𝛿)) .

355
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The infimum of 𝜅 > 0 for which each of these characterizations holds is equal to the graphical
modulus lip 𝐹 (𝑥 |𝑦). (The radius of validity 𝛿 > 0 for any given 𝜅 > 0 may be distinct in each
of the characterizations, however.)

Proof. (i) ⇔ (ii): Clearly (ii) implies (i) with the same 𝜅, 𝛿 > 0. To show the implication in
the other direction, we start by applying (i) with 𝑥 = 𝑥 , which yields

𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ) (𝑥 ∈ 𝔹(𝑥, 𝛿)) .

Taking 𝑥 ∈ 𝔹(𝑥, 𝛿′) for some 𝛿′ ∈ (0, 𝛿], we thus deduce that

𝑦 ∈ 𝐹 (𝑥) + 𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅𝛿′).

In particular, for any 𝜀′ > 0, we have

(27.5) 𝔹(𝑦, 𝜀′) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅𝛿′ + 𝜀′).

For 𝑥 ∈ 𝔹(𝑥, 𝛿), (ii) is immediate from (i), so we may concentrate on 𝑥 ∈ 𝑋 \ 𝔹(𝑥, 𝛿). Then

∥𝑥 − 𝑥 ∥𝑋 ≥ ∥𝑥 − 𝑥 ∥𝑋 − ∥𝑥 − 𝑥 ∥𝑋 ≥ 𝛿 − 𝛿′.

If we pick 𝜀′, 𝛿′ > 0 such that 𝜅𝛿′ + 𝜀′ ≤ 𝜅 (𝛿 − 𝛿′), it follows

𝜅𝛿′ + 𝜀′ ≤ 𝜅∥𝑥 − 𝑥 ∥𝑋 .

Thus (27.5) gives, as illustrated in Figure 27.4,

𝐹 (𝑥) ∩ 𝔹(𝑦, 𝜀′) ⊂ 𝔹(𝑦, 𝜀′) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅𝛿′ + 𝜀′) ⊂ 𝐹 (𝑥) + 𝜅𝔹(0, ∥𝑥 − 𝑥 ∥𝑋 ),

which is (ii).

(ii)⇔ (iii): We expand (ii) as

{�̃�} ∩ 𝔹(𝑦, 𝛿) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ) (�̃� ∈ 𝐹 (𝑥);𝑥 ∈ 𝔹(𝑥, 𝛿); 𝑥 ∈ 𝑋 ).

By rearranging and taking the infimum over all 𝑦 ∈ 𝐹 (𝑥), this yields

inf
𝑦∈𝐹 (𝑥)

∥�̃� − 𝑦 ∥𝑌 ≤ 𝜅∥𝑥 − 𝑥 ∥𝑋 (�̃� ∈ 𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿); 𝑥 ∈ 𝔹(𝑥, 𝛿); 𝑥 ∈ 𝑋 ).

This may further be rewritten as

inf
𝑦∈𝐹 (𝑥)

∥�̃� − 𝑦 ∥𝑌 ≤ inf
𝑥∈𝐹 −1 (�̃�)

𝜅∥𝑥 − 𝑥 ∥𝑋 (𝑥 ∈ 𝔹(𝑥, 𝛿); �̃� ∩ 𝔹(𝑦, 𝛿)) .

Thus (iii) is equivalent to (i).

(iii) ⇒ (iv): This is immediate from the definition of dist, which yields

dist(𝐹−1(𝑦), 𝑥) ≤ dist(𝐹−1(𝑦) ∩ 𝔹(𝑥, 𝛿), 𝑥) .
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𝐹
𝑥𝑥

𝔹(𝑦, 𝜌)

𝔹(𝑥, 𝛿)
(a) property is satisfied

𝐹

𝑥 𝑥

𝔹(𝑦, 𝜌)

𝔹(𝑥, 𝛿)
(b) property is not satisfied

Figure 27.3: Illustration of satisfaction and dissatisfaction of the Aubin property for 𝑥 = 𝑥 .
The dashed lines indicate 𝔹(𝑦, 𝜌), and the dot marks (𝑥, 𝑦), while the dark gray
thick lines indicate 𝐹 (𝑥) ∩ 𝔹(𝑦, 𝜌). It should remain within the bounds of the
black thick lines indicating “fat” cone 𝐹 (𝑥) +𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ). The violation of
the bounds at the bottom in (a) does not matter, because we are only interested
in the area between the dashed lines.

(iv)⇒ (i): We express (iv) as

inf
�̃�∈𝐹 (𝑥)

∥𝑦 − �̃� ∥𝑌 ≤ 𝜅∥𝑥 − 𝑥 ∥𝑋 (𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑦 ∈ 𝔹(𝑦, 𝛿), 𝑥 ∈ 𝐹−1(𝑦) ∩ 𝔹(𝑥, 𝛿)) .

This can be rearranged to imply that

{𝑦} ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ) (𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑦 ∈ 𝔹(𝑦, 𝛿) ∩ 𝐹 (𝑥), 𝑥 ∈ 𝔹(𝑥, 𝛿)),

which can be further rewritten as

𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ) (𝑥, 𝑥 ∈ 𝔹(𝑥, 𝛿)),

yielding (i). □

We have similar characterizations of calmness. The proof is analogous, simply fixing
𝑥 = 𝑥 .

Corollary 27.3. Let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 ⇒ 𝑌 . Then the following are equivalent
for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝐹 (𝑥):

(i) There exists 𝜅, 𝛿 > 0 such that

𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ) (𝑥 ∈ 𝔹(𝑥, 𝛿)) .

(ii) There exists 𝜅, 𝛿 > 0 such that

𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿) ⊂ 𝐹 (𝑥) + 𝔹(0, 𝜅∥𝑥 − 𝑥 ∥𝑋 ) (𝑥 ∈ 𝑋 ) .
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(𝑥, 𝑦)

𝔹(𝑥, 𝛿)
𝔹(𝑥, 𝛿 ′)

𝑥
𝐹 (𝑥) + 𝜅𝔹(0, ∥𝑥 − 𝑥 ∥𝑋 )

{𝑥} × 𝔹(𝑦, 𝜀′)

(a) illustration of technique (b) critical areas

Figure 27.4: (a) Illustration of the technique in Theorem 27.2 to prove the equivalence of
the two set inclusion formulations of the Aubin property. For 𝑥 outside the
ball 𝔹(𝑥, 𝛿), the set 𝔹(𝑦, 𝜀′) indicated by the thick dark gray line, is completely
contained in the fat-cone structure 𝐹 (𝑥) + 𝜅𝔹(0, ∥𝑥 − 𝑥 ∥𝑋 ) of Figure 27.2b,
indicated by the thick black and dotted lines. Closer to 𝑥 , within 𝔹(𝑥, 𝛿), this
is not the case, although 𝐹 (𝑥) ∩𝔹(𝑦, 𝜀′) itself is still contained in the structure.
(b) highlights in darker color the areas that are critical for the Aubin property
to hold.

(iii) Calmness (27.4).

(iv) There exists 𝜅, 𝛿 > 0 such that

dist(𝑦, 𝐹 (𝑥)) ≤ 𝜅 dist(𝐹−1(𝑦) ∩ 𝔹(𝑥, 𝛿), 𝑥) (𝑦 ∈ 𝔹(𝑦, 𝛿)) .

The infimum of 𝜅 > 0 for which each of these characterizations holds is equal to the modulus
of calmness calm 𝐹 (𝑥 |𝑦). (The radius of validity 𝛿 > 0 for any given 𝜅 > 0 may be distinct in
each of the characterizations, however.)

27.2 neighborhood-based coderivative criteria

Our goal is now to relate the Aubin property to “outer norms” of limiting coderivatives,
just as the Lipschitz property of differentiable single-valued functions can be related to
norms of their derivatives. Before embarking on this in the next section, as a preparatory
step we relate in this section the Aubin property to neighborhood-based criteria on Fréchet
coderivatives. To this end, we define for a set-valued mapping 𝐹 : 𝑋 ⇒ 𝑌 , (𝑥, 𝑦) ∈ graph 𝐹 ,
and 𝛿, 𝜀 > 0

(27.6) 𝜅𝜀
𝛿
(𝑥 |𝑦) ≔ sup

{
∥𝑥∗∥𝑋 ∗

���� 𝑥∗ ∈ 𝐷∗
𝜀 𝐹 (𝑥 |𝑦) (𝑦∗), ∥𝑦∗∥𝑌 ∗ ≤ 1,

𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑦 ∈ 𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿)
}
,
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27 lipschitz-like properties

which measures locally the opening of the cones 𝑁 𝜀
graph 𝐹 (𝑥 |𝑦) around (𝑥, 𝑦); for smooth

functions and 𝜀 = 0, it coincides with the local supremum of ∥𝐷𝐹 (𝑥)∥𝕃(𝑋 ;𝑌 ) around (𝑥, 𝐹 (𝑥))
(cf. Theorem 20.12). The next lemma bounds these openings in terms of the graphical
modulus.

Lemma 27.4. Let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 ⇒ 𝑌 . If graph 𝐹 is closed near (𝑥, 𝑦), then

inf
𝛿>0

𝜅𝛿
𝛿
(𝑥 |𝑦) ≤ inf

𝛿>0
𝜅0
𝛿
(𝑥 |𝑦) ≤ lip 𝐹 (𝑥 |𝑦).

Proof. Since 𝐷∗
𝜀 𝐹 (𝑥 |𝑦) (𝑦∗) ⊂ 𝐷∗(𝑥 |𝑦) (𝑦∗), we always have 𝜅𝛿

𝛿
(𝑥 |𝑦) ≤ 𝜅0

𝛿
(𝑥 |𝑦). It hence

suffices to prove for any choice of 𝜀 (𝛿) ∈ [0, 𝛿] that

𝜅 ≔ inf
𝛿>0

𝜅𝛿
𝜀 (𝛿) (𝑥 |𝑦) ≤ lip 𝐹 (𝑥 |𝑦) .

We may assume that lip 𝐹 (𝑥 |𝑦) < ∞, since otherwise there is nothing to prove. This
implies in particular that the Aubin property holds, so the definition (27.1) yields for any
𝜅′ > lip 𝐹 (𝑥 |𝑦) a 𝛿′ > 0 such that

(27.7) inf
�̃�∈𝐹 (𝑥)

∥�̃� − 𝑦 ∥𝑌 ≤ 𝜅′∥𝑥 − 𝑥 ∥𝑋 , (𝑦 ∈ 𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿′), 𝑥 ∈ 𝔹(𝑥, 𝛿′)) .

Pick �̃� ∈ (0, 𝜅) and 𝛿 ∈ (0, 𝛿′). By the definition of 𝜅𝜀 (𝛿)
𝛿

(𝑥 |𝑦), there exist 𝑥 ∈ 𝔹(𝑥, 𝛿),
𝑦 ∈ 𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿), and (𝑥∗,−𝑦∗) ∈ 𝑁 𝜀 (𝛿)

graph 𝐹 (𝑥, 𝑦) such that ∥𝑥∗∥𝑋 ∗ ≥ �̃� and ∥𝑦∗∥𝑌 ∗ ≤ 1.
Theorem 1.4 then yields a Δ𝑥 ∈ 𝑋 such that

(27.8) ⟨𝑥∗,Δ𝑥⟩𝑋 = ∥𝑥∗∥𝑋 ∗ and ∥Δ𝑥 ∥𝑋 = 1.

Let 𝜏𝑘→ 0 with 𝜏𝑘 ≤ 𝛿 and set 𝑥𝑘 ≔ 𝑥 + 𝜏𝑘Δ𝑥 . Then taking 𝑥 = 𝑥𝑘 in (27.7), we can take
𝑦𝑘 ∈ 𝐹 (𝑥𝑘) such that

(27.9) lim inf
𝑘→∞

𝜏−1
𝑘
∥𝑦𝑘 − 𝑦 ∥𝑌 ≤ 𝜅′∥Δ𝑥 ∥𝑋 .

In particular, after passing to a subsequence if necessary, we may assume that 𝑦𝑘 → 𝑦

strongly in 𝑌 . Using (27.8), ∥𝑥∗∥𝑋 ∗ ≥ �̃�, and ∥𝑦∗∥𝑌 ∗ ≤ 1, this leads to

(27.10) lim sup
𝑘→∞

𝜏−1
𝑘

(⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 − ⟨𝑦∗, 𝑦𝑘 − 𝑦⟩𝑌 )

= lim sup
𝑘→∞

(⟨𝑥∗,Δ𝑥⟩𝑋 − 𝜏−1
𝑘
⟨𝑦∗, 𝑦𝑘 − 𝑦⟩𝑌

)
≥ (∥𝑥∗∥𝑋 ∗ − 𝜅′)∥Δ𝑥 ∥𝑋 ≥ �̃� − 𝜅′.

By (27.9) (for the chosen subsequence) and the construction of 𝑥𝑘 , we have

(27.11) lim sup
𝑘→∞

𝜏−1
𝑘
∥(𝑥𝑘 , 𝑦𝑘) − (𝑥, 𝑦)∥𝑋×𝑌 ≤ (1 + 𝜅′)∥Δ𝑥 ∥𝑋 = 1 + 𝜅′.
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Since (𝑥∗,−𝑦∗) ∈ 𝑁 𝜀 (𝛿)
graph 𝐹 (𝑥, 𝑦), the defining equation (18.7) of 𝑁 𝜀 (𝛿)

graph 𝐹 (𝑥, 𝑦) we have

(27.12) lim sup
𝑘→∞

⟨𝑥∗, 𝑥𝑘 − 𝑥⟩𝑋 − ⟨𝑦∗, 𝑦𝑘 − 𝑦⟩𝑌
∥(𝑥𝑘 , 𝑦𝑘) − (𝑥, 𝑦)∥𝑋×𝑌 ≤ 𝜀 (𝛿).

Therefore, (27.10), (27.11), and (27.12) together yield

(1 + 𝜅′)𝜀 (𝛿) ≥ �̃� − 𝜅′.
Taking the infimum over 𝛿 > 0, it follows that �̃� ≥ 𝜅′. Since 𝜅′ > lip 𝐹 (𝑥 |𝑦) and �̃� < 𝜅

were arbitrary, we obtain 𝜅 ≤ lip 𝐹 (𝑥 |𝑦) as desired. □

For the next theorem, recall the definition of Gâteaux smooth spaces from Section 17.2.

Theorem 27.5. Let 𝑋,𝑌 be Gâteaux smooth Banach spaces and let 𝐹 : 𝑋 ⇒ 𝑌 be such that
graph 𝐹 is closed near (𝑥, 𝑦) ∈ 𝑋 ×𝑌 . Then 𝐹 has the Aubin property at 𝑥 for 𝑦 if and only if
𝜅𝛿
𝛿
(𝑥 |𝑦) < ∞ or 𝜅0

𝛿
(𝑥 |𝑦) < ∞ for some 𝛿 > 0. Furthermore, in this case

(27.13) inf
𝛿>0

𝜅𝛿
𝛿
(𝑥 |𝑦) = inf

𝛿>0
𝜅0
𝛿
(𝑥 |𝑦) = lip 𝐹 (𝑥 |𝑦).

Proof. By Lemma 27.4, it suffices to show that

𝜅 ≔ inf
𝛿>0

𝜅𝛿
𝛿
(𝑥 |𝑦) ≥ lip 𝐹 (𝑥 |𝑦).

We may assume that lip 𝐹 (𝑥 |𝑦) > 0 as otherwise there is nothing to show. Our plan is now
to take arbitrary 0 < �̃� < lip 𝐹 (𝑥 |𝑦) and show that 𝜅 ≥ �̃�. This implies 𝜅 ≥ lip 𝐹 (𝑥 |𝑦) as
desired.

To show that 𝜅 ≥ �̃�, it suffices to show that 𝜅𝛿
𝛿
(𝑥 |𝑦) ≥ �̃� for all 𝛿 > 0. To do this, for

a parameter 𝑡→ 0, we take 𝜀𝑡→ 0 and (𝑥𝑡 , 𝑦𝑡 ) → (𝑥, 𝑦) as 𝑡→ 0 as well as 𝜀𝑡 -normals
(𝑥∗𝑡 ,−𝑦∗𝑡 ) ∈ 𝑁 𝜀𝑡

graph 𝐹 (𝑥𝑡 , 𝑦𝑡 ) that satisfy lim inf𝑡→0 ∥𝑥∗𝑡 ∥𝑋 ∗ ≥ �̃� and lim sup𝑡→0 ∥𝑦∗𝑡 ∥𝑌 ∗ ≤ 1.
By the definition of 𝜅𝛿

𝛿
(𝑥 |𝑦) in (27.6), taking for each 𝛿 > 0 the index 𝑡 > 0 such that

max{𝜀𝑡 , ∥𝑥𝑡 − 𝑥 ∥𝑋 , ∥𝑦𝑡 − 𝑦 ∥𝑌 } ≤ 𝛿 , this shows as claimed that 𝜅𝛿
𝛿
(𝑥 |𝑦) ≥ �̃� . The rough idea

is to construct the 𝜀𝑡 -normals by projecting points not in graph 𝐹 back onto this set. There
are, however, some technical difficulties along our way. We divide the construction into
three steps.

Step 1: setting up the projection problem. Let 0 < �̃� < lip 𝐹 (𝑥 |𝑦). Since then the Aubin
property does not hold for �̃�, by the characterization of Theorem 27.2 (iv) there exist

(27.14) �̃�𝑡 ∈ 𝐹 (𝑥𝑡 ) ∩ 𝔹(𝑦, 𝑡) and 𝑥𝑡 , 𝑥𝑡 ∈ 𝔹(𝑥, 𝑡) for all 𝑡 > 0

such that

(27.15) inf
𝑦𝑡∈𝐹 (𝑥𝑡 )

∥𝑦𝑡 − �̃�𝑡 ∥𝑌 > �̃�∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 .
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Since inf𝑦𝑡∈𝐹 (𝑥𝑡 ) ∥𝑦𝑡 − �̃�𝑡 ∥𝑌 = 0, this implies that 𝑥𝑡 ≠ 𝑥𝑡 and (𝑥𝑡 , �̃�𝑡 ) ∉ graph 𝐹 . We want to
locally project (𝑥𝑡 , �̃�𝑡 ) back onto graph 𝐹 . However, the nondifferentiability of the distance
function ∥ · − �̃�𝑡 ∥𝑌 at �̃�𝑡 would cause difficulties, so – similarly to the proof of Lemma 18.13
– we modify the projection by composing the norm with the “smoothing function”

(27.16) 𝜑𝜇 (𝑟 ) ≔
√︁
𝜇2 + 𝑟 2 − 𝜇.

By Theorems 4.5, 4.6, and 4.19 and the assumed differentiability of ∥ · ∥𝑌 away from the
origin, 𝜑𝜇 (∥ · ∥𝑌 ) is convex and has a single-valued subdifferential mapping with elements
of norm less than one. Hence this smoothed distance function is Gâteaux differentiable by
Lemma 13.7. Due to (27.16), for every 𝑡 > 0 and 𝜇𝑡 > 0, we further have

(27.17) ∥𝑦 − �̃�𝑡 ∥𝑌 − 𝜇𝑡 ≤ 𝜑𝜇𝑡 (∥𝑦 − �̃�𝑡 ∥𝑌 ) ≤ ∥𝑦 − �̃�𝑡 ∥𝑌 (𝑦 ∈ 𝑌 ).
To locally project (𝑥𝑡 , �̃�𝑡 ) onto graph 𝐹 , we thus seek to minimize the function

(27.18) 𝜓𝑡 (𝑥, 𝑦) ≔ 𝛿𝐶𝑡 (𝑥, 𝑦) + �̃�∥𝑥 − 𝑥𝑡 ∥𝑋 + 𝜑𝜇𝑡 (∥𝑦 − �̃�𝑡 ∥𝑌 )
for

𝐶𝑡 ≔ [𝔹(𝑥, 𝑡 + 2�̃�) × 𝔹(𝑦, 𝑡 + 2�̃�)] ∩ graph 𝐹 .
Clearly,𝜓𝑡 is bounded from below by −𝜇𝑡 as well as coercive since 𝐶𝑡 is bounded. If 𝑡 is is
small enough, then 𝐶𝑡 is closed by the local closedness of graph 𝐹 . Therefore𝜓𝑡 is lower
semicontinuous (but not weakly lower semicontinuous since graph 𝐹 need not be convex).

Step 2: finding approximate minimizers.We would like to find a minimizer of𝜓𝑡 , but the lack
of weak lower semicontinuity prevents the use of Tonelli’s direct method of Theorem 2.1.
We therefore use Ekeland’s variational principle (Theorem 2.16) to find an approximate
minimizer. Towards this end, choose for every 𝑡 > 0

(27.19) 𝜇𝑡 ≔ 𝑡−1/2�̃�∥𝑥𝑡 − 𝑥𝑡 ∥2
𝑋 ≤ �̃�𝑡 1/2∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 and 𝜆𝑡 ≔ ∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 + 𝑡 1/2 ≤ 𝑡 + 𝑡 1/2,

where the inequalities hold due to (27.14). Then

(27.20) 𝜓𝑡 (𝑥𝑡 , �̃�𝑡 ) = �̃�∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 ≤ (�̃�∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 + 𝜇𝑡 ) + inf𝜓𝑡 .

Therefore, applying Theorem 2.16 for 𝜆 = 𝜆𝑡 and

𝜀 = �̃�∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 + 𝜇𝑡 = �̃�∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 𝑡−1/2𝜆𝑡 =
𝜇𝑡𝜆𝑡

∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 ,

we obtain for each 𝑡 > 0 a strict minimizer (𝑥𝑡 , 𝑦𝑡 ) of

𝜓𝑡 (𝑥, 𝑦) ≔ 𝜓𝑡 (𝑥, 𝑦) + 𝜇𝑡

∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 (∥𝑥 − 𝑥𝑡 ∥𝑋 + ∥𝑦 − 𝑦𝑡 ∥𝑌 )(27.21a)

with
𝜓𝑡 (𝑥𝑡 , 𝑦𝑡 ) + 𝜇𝑡

∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 (∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 + ∥�̃�𝑡 − 𝑦𝑡 ∥𝑌 ) ≤ 𝜓𝑡 (𝑥𝑡 , �̃�𝑡 ) = 𝜅∥𝑥𝑡 − 𝑥𝑡 ∥𝑋(27.21b)
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and
∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 + ∥𝑦𝑡 − �̃�𝑡 ∥𝑌 ≤ 𝜆𝑡 .(27.21c)

We claim that 𝑥𝑡 ≠ 𝑥𝑡 , which we show by contradiction. Assume therefore that 𝑥𝑡 = 𝑥𝑡 .
Then 𝑦𝑡 ∈ 𝐹 (𝑥𝑡 ), and (27.17) yields

𝜓𝑡 (𝑥𝑡 , 𝑦𝑡 ) = 𝜑𝜇𝑡 (∥𝑦𝑡 − �̃�𝑡 ∥𝑌 ) ≥ ∥𝑦𝑡 − �̃�𝑡 ∥𝑌 − 𝜇𝑡 .

Thus by (27.20) and (27.21b),

∥𝑦𝑡 − �̃�𝑡 ∥𝑌 ≤ ∥𝑦𝑡 − �̃�𝑡 ∥𝑌 − 𝜇𝑡 + 𝜇𝑡

∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 (∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 + ∥�̃�𝑡 − 𝑦𝑡 ∥𝑌 ) ≤ �̃�∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 .

But this contradicts (27.15) as 𝑦𝑡 ∈ 𝐹 (𝑥𝑡 ).
Step 3: constructing 𝜀-normals.We are now ready to construct the desired 𝜀-normals. We
write

(27.22) 𝜓𝑡 (𝑥𝑡 , 𝑦𝑡 ) = 𝛿𝐶𝑡 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦)

for the convex and Lipschitz continuous function

𝐹 (𝑥, 𝑦) ≔ �̃�∥𝑥 − 𝑥𝑡 ∥𝑋 + 𝜑𝜇𝑡 (∥𝑦 − �̃�𝑡 ∥𝑌 ) + 𝜇𝑡

∥𝑥𝑡 − 𝑥𝑡 ∥𝑋 (∥𝑥 − 𝑥𝑡 ∥𝑋 + ∥𝑦 − �̃�𝑡 ∥𝑌 ) .

Since we assume 𝑋 to be Gâteaux smooth, 𝑥 ↦→ �̃�∥𝑥 − 𝑥𝑡 ∥𝑌 is Gâteaux differentiable at
𝑥𝑡 ≠ 𝑥𝑡 . Furthermore, 𝑦 ↦→ 𝜑𝜇𝑡 (∥𝑦 − �̃�𝑡 ∥𝑌 ) is by construction Gâteaux differentiable for all
𝑦 . By (27.19), we have 𝜇𝑡

∥𝑥𝑡−𝑥𝑡 ∥𝑋 ≤ 𝑡 1/2�̃� . Since 𝑥𝑡 ≠ 𝑥𝑡 , Theorems 4.6, 4.14, and 4.19 now yield

(27.23) 𝜕𝐹 (𝑥𝑡 , 𝑦𝑡 ) ⊂ 𝔹((−𝑥∗𝑡 , 𝑦∗𝑡 ), 𝑡 1/2�̃�) for
{
−𝑥∗𝑡 = �̃�𝐷 [∥ · − 𝑥𝑡 ∥𝑋 ] (𝑥𝑡 ),
𝑦∗𝑡 = 𝐷 [𝜑′𝜇𝑡 (∥ · − �̃�𝑡 ∥𝑌 )] (𝑦𝑡 ).

Since 𝑥𝑡 ≠ 𝑥𝑡 , we have ∥𝑥∗𝑡 ∥𝑋 ∗ = �̃� by Theorem 4.6. Moreover, ∥𝑦∗𝑡 ∥𝑌 ∗ ≤ 1 as observed in
Step 1. Theorem 16.2 further yields 0 ∈ 𝜕𝐹𝜓𝑡 (𝑥𝑡 , 𝑦𝑡 ).
Due to (27.22) and (27.23), Lemma 17.2 now shows that

(𝑥∗𝑡 ,−𝑦∗𝑡 ) ∈ 𝑁 𝜀𝑡
𝐶𝑡
(𝑥𝑡 , 𝑦𝑡 ), i.e., 𝑥∗𝑡 ∈ 𝐷∗

𝜀𝑡
𝐹 (𝑥𝑡 |𝑦𝑡 ) (𝑦∗𝑡 ) for 𝜀𝑡 ≔ 𝑡 1/2�̃� .

We illustrate this construction in Figure 27.5. Since 𝜆𝑡 ≤ 𝑡 + 𝑡 1/2 by (27.19), it follows from
(27.21c) that ∥𝑥𝑡−𝑥 ∥𝑋 , ∥𝑦𝑡−𝑦 ∥𝑌 ≤ 2𝑡+𝑡 1/2 and hence that (𝑥𝑡 , 𝑦𝑡 ) → (𝑥, 𝑦) as 𝑡→ 0. We also
have both lim inf𝑡→ 0 ∥𝑥∗𝑡 ∥𝑋 ∗ ≥ �̃� and lim sup𝑡→ 0 ∥𝑦∗𝑡 ∥𝑌 ∗ ≤ 1. Thus we have constructed
the desired sequence of 𝜀𝑡 -normals. □
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𝐹

(𝑥, 𝑦)

(𝑥𝑡 , �̃�𝑡 )

(𝑥𝑡 , 𝑦𝑡 )

(𝑥𝑡 , �̃�𝑡 )

(𝑥𝑡 , 𝑦𝑡 ) = proj(𝑥𝑡 , �̃�𝑡 )

𝑑

≥ �̃�𝑑

≥ �̃�𝑛𝑦

𝑛𝑦

Figure 27.5: The construction in the final part of the proof of Theorem 27.5. The dotted arrow
indicates how 𝑦𝑡 minimizes the distance to �̃�𝑡 within 𝐹 (𝑥𝑡 ), which ensures that
∥𝑦𝑡 − �̃�𝑡 ∥𝑌 ≥ �̃�𝑑 for 𝑑 ≔ ∥𝑥𝑡 −𝑥𝑡 ∥𝑋 . The point (𝑥𝑡 , �̃�𝑡 ) is outside graph 𝐹 ; when
projected back as (𝑥𝑡 , 𝑦𝑡 ), the normal vector to graph 𝐹 indicated by the solid
arrow has 𝑥-component larger than the 𝑦-component 𝑛𝑦 by the factor �̃�. The
dashed arrow indicates the convergence of the other points to (𝑥, 𝑦) as 𝑡→ 0.

Remark 27.6. Our proof of Theorem 27.5 differs from those in [Mordukhovich, 2006, 2018] by the
specific construction of the point (�̃�𝑡 , 𝑥𝑡 ) ∉ graph 𝐹 and the use of the smoothed distance 𝜑𝜀𝑡 (∥ · ∥𝑋 ).
In contrast, the earlier proofs first translate the Aubin property (or metric regularity) into a covering
or linear openness property to construct the point outside graph 𝐹 that is to be projected back onto
this set. In finite dimensions, [Mordukhovich, 2018] develops calculus for the limiting subdifferential
of Section 16.3 to avoid the lack of calculus for the Fréchet subdifferential; we instead apply the
fuzzy calculus of Lemma 17.2 to the smoothed distance function 𝜑𝜀𝑡 (∥ · ∥𝑋 ). A further alternative in
finite dimensions involves the proximal subdifferentials used in [Rockafellar and Wets, 1998]. In
infinite dimensions, [Mordukhovich, 2006] develops advanced extremal principles to work with
the Fréchet subdifferential.

Remark 27.7 (relaxation of Gâteaux smoothness). The assumption that 𝑌 (or, with somewhat more
work, 𝑋 ) is Gâteaux smooth in Theorem 27.5 may be replaced with the assumption of the existence
of a family {𝜃𝜇 : 𝑌 → ℝ}𝜇>0 of Gâteaux differentiable norm approximations satisfying

∥𝑦 ∥𝑌 − 𝜇 ≤ 𝜃𝜇 (𝑦) ≤ ∥𝑦 ∥𝑌 (𝑦 ∈ 𝑌 ) .
Then (27.17) holds with 𝜃𝜇𝑡 (𝑦 − �̃�𝑡 ) in place of 𝜑𝜇𝑡 (∥𝑦 − �̃�𝑡 ∥𝑌 ). For example, with 𝜑𝜇 as in (27.16),
in 𝐿𝑝 (Ω) we can set

𝜃𝜇 (𝑦) ≔ ∥𝜑𝜇 ( |𝑦 (𝜉) |)∥𝐿𝑝 (Ω) (𝑦 ∈ 𝐿1(Ω)) .
With somewhat more effort, the Gâteaux smoothness of 𝑋 can be similarly relaxed.

27.3 point-based coderivative criteria

We will now convert the neighborhood-based criterion of Lemma 27.4 and Theorem 27.5
into a simpler point-based criterion. For the statement, we need to introduce a new smaller
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𝐻

[−1, 1]

(𝑤, 𝑧)

(0, 0)

(a) general set-valued mapping 𝐻

𝐻

[−1, 1]

(𝑤, 𝑧)

(0, 0)

(b) mapping whose graph𝐻 is a cone

Figure 27.6: Points (𝑤, 𝑧) achieving the supremum in the expression of the outer norm |𝐻 |+.

coderivative of 𝐹 : 𝑋 ⇒ 𝑌 at 𝑥 for 𝑦 , the mixed (limiting) coderivative 𝐷∗
𝑀
𝐹 (𝑥 |𝑦) : 𝑌 ∗ ⇒

𝑋 ∗,

(27.24) 𝐷∗
𝑀𝐹 (𝑥 |𝑦) (𝑦∗) ≔ w-∗-lim sup

(𝑥,�̃�)→(𝑥,𝑦)
�̃�∗→𝑦∗, 𝜀→ 0

𝐷∗
𝜀 𝐹 (𝑥 |�̃�) (�̃�∗),

which differs from the “normal” coderivative

(27.25) 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) = w-∗-lim sup
(𝑥,�̃�)→(𝑥,𝑦)
�̃�∗ ∗⇀𝑦∗, 𝜀→ 0

𝐷∗
𝜀 𝐹 (𝑥 |�̃�) (�̃�∗),

by the use of weak-∗ convergence in 𝑋 ∗ and strong convergence in 𝑌 ∗ instead of weak-∗
convergence in both. (The mixed coderivative is not obtained directly from any of the
usual normal cones, although one can naturally define corresponding mixed normal cones
on product spaces.)

We further define for any 𝐻 :𝑊 ⇒ 𝑍 the outer norm

|𝐻 |+ ≔ sup{∥𝑧∥𝑍 | 𝑧 ∈ 𝐻 (𝑤), ∥𝑤 ∥𝑊 ≤ 1}.

We illustrate the outer norm by two examples in Figure 27.6. We are mainly interested in
the outer norms of coderivatives, in particular of

(27.26) |𝐷∗
𝑀𝐹 (𝑥 |𝑦) |+ = sup{∥𝑥∗∥𝑋 ∗ | 𝑥∗ ∈ 𝐷∗

𝑀𝐹 (𝑥 |𝑦) (𝑦∗), ∥𝑦∗∥𝑌 ∗ ≤ 1}.

Recalling Theorem 18.5, we have

(27.27) 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) ⊂ 𝐷∗
𝑀𝐹 (𝑥 |𝑦) (𝑦∗) ⊂ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗),

so the outer norms satisfy

|𝐷∗
𝑀𝐹 (𝑥 |𝑦) |+ ≤ |𝐷∗𝐹 (𝑥 |𝑦) |+.

364



27 lipschitz-like properties

We say that 𝐹 is coderivatively normal at 𝑥 for 𝑦 if |𝐷∗
𝑀
𝐹 (𝑥 |𝑦) |+ = |𝐷∗𝐹 (𝑥 |𝑦) |+. Of course,

if 𝑌 is finite-dimensional, then 𝐷∗
𝑀
𝐹 (𝑥 |𝑦) = 𝐷∗𝐹 (𝑥 |𝑦) and thus 𝐹 is always coderivatively

normal. Note that |𝐷∗𝐹 (𝑥 |𝑦) |+ can be directly related to the neighborhood-based 𝜅𝛿
𝛿
de-

fined in (27.6). In particular, it measures the opening of the cone 𝑁graph 𝐹 (𝑥, 𝑦); compare
Figure 27.6b.

As the central result of this chapter, we now use this connection to derive a characterization
of the Aubin property and the graphical modulus (and hence also of metric regularity and
the modulus of metric regularity) through the outer norm of the mixed limiting coderivative.
ThisMordukhovich criterion generalizes the classical relation between the Lipschitz constant
of a 𝐶1 function and the norm of its derivative.

Lemma 27.8 (Mordukhovich criterion in general Banach spaces). Let 𝑋,𝑌 be Banach spaces
and let 𝐹 : 𝑋 ⇒ 𝑌 be such that graph 𝐹 is closed near (𝑥, 𝑦) ∈ 𝑋 × 𝑌 . If 𝐹 has the Aubin
property at 𝑥 for 𝑦 , then

(27.28) 𝐷∗
𝑀𝐹 (𝑥 |𝑦) (0) = {0}

and

(27.29) |𝐷∗
𝑀𝐹 (𝑥 |𝑦) |+ ≤ lip 𝐹 (𝑥 |𝑦).

Proof. As the first step, we show that the Aubin property implies (27.29) and hence that
𝜅 ≔ |𝐷∗

𝑀
𝐹 (𝑥 |𝑦) |+ < ∞. Let 𝜌 > 0. By the definition of𝐷∗

𝑀
𝐹 (𝑥 |𝑦) in (27.24), there then exist

𝛿 ∈ (0, 𝜌), 𝑥 ∈ 𝔹(𝑥, 𝜌), and 𝑦 ∈ 𝐹 (𝑥) ∩ 𝔹(𝑦, 𝜌) as well as 𝑦∗ ∈ 𝑌 ∗ and 𝑥∗ ∈ 𝐷∗
𝛿
𝐹 (𝑥 |𝑦) (𝑦∗)

such that ∥𝑦∗∥𝑌 ∗ ≤ 1 + 𝜌 and ∥𝑥∗∥𝑋 ∗ ≥ 𝜅 (1 − 𝜌)2. (The upper bound on ∥𝑦∗∥𝑌 ∗ is why
we need the mixed coderivative, since ∥ · ∥𝑌 ∗ is continuous only in the strong topology.
For the lower bound on ∥𝑥∗∥𝑋 ∗ , in contrast, the weak-∗ lower semicontinuity of ∥ · ∥𝑋 ∗ is
sufficient.) Since 𝐷∗

𝛿
𝐹 (𝑥 |𝑦) is formed from a cone, we may divide 𝑥∗ and 𝑦∗ by 1 + 𝜌 and

thus assume that ∥𝑦∗∥𝑌 ∗ ≤ 1 and ∥𝑥∗∥𝑋 ∗ ≥ 𝜅 (1 − 𝜌). Consequently

𝜅 (1 − 𝜌) ≤ 𝜅𝛿
𝛿
(𝑥 |𝑦) = sup

{
∥𝑥∗∥𝑋 ∗

���� 𝑥∗ ∈ 𝐷∗
𝛿
𝐹 (𝑥 |𝑦) (𝑦∗), ∥𝑦∗∥𝑌 ∗ ≤ 1,

𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑦 ∈ 𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿)
}
.

Taking the infimum over 𝛿 > 0 and letting 𝜌→ 0 thus shows

𝜅 ≤ inf
𝛿>0

𝜅𝛿
𝛿
(𝑥 |𝑦).

It now follows from Lemma 27.4 that 𝜅 ≤ lip 𝐹 (𝑥 |𝑦), which yields (27.29).

As the second step, we prove that the Aubin property implies (27.28). We argue by con-
traposition. First, note that since graph𝐷∗

𝑀
𝐹 (𝑥 |𝑦) is a cone, 0 ∈ 𝐷∗

𝑀
𝐹 (𝑥 |𝑦) (0). Hence if

(27.28) does not hold, there exists 𝑥∗ ∈ 𝑋 ∗ \ {0} such that

𝑥∗ [0,∞) ⊂ 𝐷∗
𝑀𝐹 (𝑥 |𝑦) (0).

By (27.26) and the first step, this implies that∞ = 𝜅 ≤ lip 𝐹 (𝑥 |𝑦) and hence that the Aubin
property of 𝐹 at 𝑥 for 𝑦 is violated. □
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Applied to 𝐹−1, we obtain a corresponding result for metric regularity.

Corollary 27.9 (Mordukhovich criterion for metric regularity in general Banach spaces). Let
𝑋,𝑌 be Banach spaces and let 𝐹 : 𝑋 ⇒ 𝑌 be such that graph 𝐹 is closed near (𝑥, 𝑦) ∈ 𝑋 × 𝑌 .
If 𝐹 is metrically regular at (𝑥, 𝑦), then

(27.30) 0 ∈ 𝐷∗
𝑀𝐹 (𝑥 |𝑦) (𝑦∗) ⇒ 𝑦∗ = 0

and

(27.31) |𝐷∗
𝑀𝐹

−1(𝑦 |𝑥) |+ ≤ reg 𝐹 (𝑥 |𝑦).

Proof. We apply Lemma 27.8 to 𝐹−1, observing that (27.28) applied to 𝐹−1 is (27.30). □

Under stronger assumptions on the spaces and the set-valued mapping, we obtain equiva-
lence. For the following theorem, recall the definition of partial sequential normal com-
pactness (PSNC) from Section 25.2.

Theorem 27.10 (Mordukhovich criterion in smooth Banach spaces). Let 𝑋,𝑌 be Gâteaux
smooth Banach spaces with 𝑋 reflexive and let 𝐹 : 𝑋 ⇒ 𝑌 be such that graph 𝐹 is closed near
(𝑥, 𝑦) ∈ 𝑋 × 𝑌 . If 𝐹 is PSNC at 𝑥 for 𝑦 , then the following are equivalent:

(i) the Aubin property of 𝐹 at 𝑥 for 𝑦 ;

(ii) the implication (27.28);

(iii) |𝐷∗
𝑀
𝐹 (𝑥 |𝑦) |+ < ∞.

Proof. Due to Lemma 27.8, it suffices to show that (iii)⇒ (ii)⇒ (i). We start with the second
implication. Since 𝑋 and 𝑌 are Gâteaux smooth, Theorem 27.5 yields

(27.32) lip 𝐹 (𝑥 |𝑦) = �̃� ≔ inf
𝛿>0

sup
{
∥𝑥∗∥𝑋 ∗

���� 𝑥∗ ∈ 𝐷∗
𝛿
𝐹 (𝑥 |𝑦) (𝑦∗), ∥𝑦∗∥𝑌 ∗ ≤ 1,

𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑦 ∈ 𝐹 (𝑥) ∩ 𝔹(𝑦, 𝛿)
}

and that the Aubin property holds if �̃� < ∞. We now argue by contradiction. Assume
that the Aubin property does not hold. Then �̃� = ∞ and hence we can find (𝑥𝑘 , 𝑦𝑘) →
(𝑥, 𝑦), 𝜀𝑘→ 0, and 𝑥∗

𝑘
∈ 𝐷∗

𝜀𝑘
𝐹 (𝑥𝑘 |𝑦𝑘) (𝑦∗𝑘 ) with ∥𝑦∗

𝑘
∥𝑌 ∗ ≤ 1 and ∥𝑥∗

𝑘
∥𝑋 ∗ → ∞. In particular,

𝑦∗
𝑘
/∥𝑥∗

𝑘
∥𝑋 ∗ → 0. Since 𝑋 is reflexive, we can apply the Eberlein–S̆mulyan Theorem 1.9 to

extract a subsequence (not relabelled) such that 𝑥∗
𝑘
/∥𝑥∗

𝑘
∥𝑋 ∗ ∗⇀ 𝑥∗ for some 𝑥∗ ∈ 𝑋 ∗. Since

graph𝐷∗
𝜀𝑘
𝐹 (𝑥𝑘 |𝑦𝑘) is a cone, we also have

𝑥∗
𝑘
/∥𝑥∗

𝑘
∥𝑋 ∗ ∈ 𝐷∗

𝜀𝑘
𝐹 (𝑥𝑘 |𝑦𝑘) (𝑦∗𝑘/∥𝑥∗𝑘 ∥𝑋 ∗).
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27 lipschitz-like properties

By the definition (27.24) of the mixed coderivative, we deduce that 𝑥∗ ∈ 𝐷∗
𝑀
𝐹 (𝑥 |𝑦) (0).

We now make a case distinction: If 𝑥∗ ≠ 0, then this contradicts the qualification con-
dition (27.28). On the other hand, if 𝑥∗ = 0, the PSNC of 𝐹 at 𝑥 for 𝑦 , implies that
1 = ∥𝑥∗

𝑘
/∥𝑥∗

𝑘
∥𝑋 ∗ ∥𝑋 ∗ → 0, which is also a contradiction. Therefore (27.28) implies the

Aubin property.

It remains to show that (iii)⇒ (ii). First, since graph𝐷∗
𝑀
𝐹 (𝑥 |𝑦) is a cone, 𝐷∗

𝑀
𝐹 (𝑥 |𝑦) (0) is a

cone as well. Hence by (27.26), |𝐷∗
𝑀
𝐹 (𝑥 |𝑦) |+ < ∞ implies that 𝐷∗

𝑀
𝐹 (𝑥 |𝑦) (0) = {0}, which

is (27.28). □

Again, applying Theorem 27.10 to 𝐹−1 yields a characterization of metric regularity.

Corollary 27.11 (Mordukhovich criterion for metric regularity in smooth Banach spaces).

Let 𝑋,𝑌 be Gâteaux smooth Banach spaces with 𝑋 reflexive and let 𝐹 : 𝑋 ⇒ 𝑌 be such
that graph 𝐹 is closed near (𝑥, 𝑦) ∈ 𝑋 × 𝑌 . If 𝐹−1 is PSNC at 𝑦 for 𝑥 , then the following are
equivalent:

(i) the metric regularity of 𝐹 at (𝑥, 𝑦);
(ii) the implication (27.30);

(iii) |𝐷∗
𝑀
𝐹−1(𝑦 |𝑥) |+ < ∞.

Remark 27.12 (separable and Asplund spaces). The reflexivity of 𝑋 (resp. 𝑌 ) was used to obtain the
weak-∗ compactness of the unit ball in 𝑋 ∗ via the Eberlein–S̆mulyan Theorem 1.9 applied to 𝑋 ∗.
Alternatively, this can be obtained by assuming separability of 𝑋 and using the Banach–Alaoglu
Theorem 1.11. More generally, dual spaces of Asplund spaces have weak-∗-compact unit balls; we
refer to [Mordukhovich, 2006] for the full theory in Asplund spaces.

In finite dimensions, we have a full characterization of the graphical modulus via the outer
norm of the limiting coderivative (which here coincides with the mixed coderivative).

Corollary 27.13 (Mordukhovich criterion for the graphical modulus in finite dimensions).

Let 𝑋,𝑌 be finite-dimensional Gâteaux smooth Banach spaces and let 𝐹 : 𝑋 ⇒ 𝑌 be such that
graph 𝐹 is closed near (𝑥, 𝑦) ∈ 𝑋 × 𝑌 . Then

lip 𝐹 (𝑥 |𝑦) = |𝐷∗𝐹 (𝑥 |𝑦) |+.

Proof. Due to Lemma 27.8, we only have to show that

(27.33) lip 𝐹 (𝑥 |𝑦) ≤ |𝐷∗𝐹 (𝑥 |𝑦) |+.

As in the proof of Theorem 27.10, the smoothness of𝑋 and 𝑌 allows applying Theorem 27.5
to obtain that lip 𝐹 (𝑥 |𝑦) = �̃� given by (27.32). It therefore suffices to show that �̃� ≤
|𝐷∗𝐹 (𝑥 |𝑦) |+. Let 𝜅′ < �̃� be arbitrary. By (27.32), we can then find (𝑥𝑘 , 𝑦𝑘) → (𝑥, 𝑦) and
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𝐹

(a) property is satisfied

𝐹

(b) property is not satisfied

Figure 27.7: Illustration of |𝐷∗𝐹 (𝑥 |𝑦) |+ = sup{∥𝑥∗∥𝑋 ∗ | (𝑥∗,−𝑦∗) ∈
𝑁graph 𝐹 (𝑥, 𝑦), ∥𝑦∗∥𝑌 ∗ ≤ 1}, where the arrows denote the directions
contained in the normal cone. In (a), −𝑦∗ ∈ [0,∞) but 𝑥∗ = 0, hence
|𝐷∗𝐹 (𝑥 |𝑦) |+ = 0 and the Aubin property is satisfied. In (b), we can take for
𝑦∗ = 0 any 𝑥∗ ∈ (−∞, 0], hence |𝐷∗𝐹 (𝑥 |𝑦) |+ = ∞ and the Aubin property is
not satisfied.

𝜀𝑘→ 0 as well as 𝑥∗
𝑘
∈ 𝐷∗

𝜀𝑘
𝐹 (𝑥𝑘 |𝑦𝑘) (𝑦∗𝑘 ) with ∥𝑦∗

𝑘
∥𝑌 ∗ ≤ 1, and �̃� ≥ ∥𝑥∗

𝑘
∥ ≥ 𝜅′. Since 𝑋

and 𝑌 are finite-dimensional, we can apply the Heine–Borel Theorem to extract strongly
converging subsequences (not relabelled) such that 𝑥∗

𝑘
→ 𝑥∗ with ∥𝑥∗∥𝑋 ∗ ≥ 𝜅′ and 𝑦∗

𝑘
→

𝑦∗ with ∥𝑦∗∥𝑌 ∗ ≤ 1. Since strongly converging sequences also converge weakly-∗, the
expression (27.25) for the normal coderivative implies that 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗) and that
|𝐷∗𝐹 (𝑥 |𝑦) |+ ≥ ∥𝑥∗∥𝑋 ∗ ≥ 𝜅′. Since 𝜅′ < �̃� was arbitrary, we obtain (27.33). □

We illustrate in Figure 27.7 how the outer norm of the coderivative relates to the Aubin
property.

Corollary 27.14 (Mordukhovich criterion for the modulus of metric regularity in finite

dimensions). Let𝑋,𝑌 be finite-dimensional Gâteaux smooth Banach spaces and let 𝐹 : 𝑋 ⇒ 𝑌

be such that graph 𝐹 is closed near (𝑥, 𝑦) ∈ 𝑋 × 𝑌 . Then

reg 𝐹 (𝑥 |𝑦) = |𝐷∗𝐹 (𝑥 |𝑦)−1 |+.

Proof. By Lemma 20.5, we have

|𝐷∗𝐹−1(𝑦 |𝑥) |+ = sup{∥𝑦∗∥𝑌 ∗ | −𝑦∗ ∈ 𝐷∗𝐹−1(𝑦 |𝑥) (−𝑥∗), ∥𝑥∗∥𝑋 ∗ ≤ 1}
= sup{∥𝑦∗∥𝑌 ∗ | 𝑥∗ ∈ 𝐷∗𝐹 (𝑥 |𝑦) (𝑦∗), ∥𝑥∗∥𝑋 ∗ ≤ 1}
= | [𝐷∗𝐹 (𝑥 |𝑦)]−1 |+.

The claim now follows by applying Corollary 27.13 to 𝐹−1 together with Corollary 27.9. □

Remark 27.15. Derivative-based characterizations of calmness and metric subregularity are signifi-
cantly more involved than those of the Aubin property and metric regularity discussed above. We
refer to [Gfrerer, 2011; Gfrerer and Outrata, 2016; Henrion et al., 2002; Zheng and Ng, 2010] to a
few characterizations in special cases.
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To close this section, we relate the Mordukhovich criterion to the classical inverse function
theorem (Theorem 2.8).

Corollary 27.16 (inverse function theorem). Let𝑋,𝑌 be reflexive and Gâteaux smooth Banach
spaces and let 𝐹 : 𝑋 → 𝑌 be continuously differentiable around 𝑥 ∈ 𝑋 . If 𝐹 ′(𝑥)∗ ∈ 𝕃(𝑌 ∗;𝑋 ∗)
has a left-inverse 𝐹 ′(𝑥)∗† ∈ 𝕃(𝑋 ∗;𝑌 ∗), then there exist 𝜅 > 0 and 𝛿 > 0 such that for all
𝑦 ∈ 𝔹(𝐹 (𝑥), 𝛿) there exists a single-valued selection 𝐽 (𝑦) ∈ 𝐹−1(𝑦) with

∥𝑥 − 𝐽 (𝑦)∥𝑋 ≤ 𝜅∥𝐹 (𝑥) − 𝑦 ∥𝑌 .

Proof. Let 𝑦 ≔ 𝐹 (𝑥). By Theorem 20.12 and the reflexivity of 𝑋 and 𝑌 ,

(27.34) 𝐷∗𝐹 (𝑥 |𝑦) = 𝐷∗𝐹 (𝑥 |𝑦) = {𝐹 ′(𝑥)∗}.

We have both𝐷∗𝐹−1(𝑦 |𝑥) = [𝐷∗𝐹 (𝑥 |𝑦)]−1 and𝐷∗𝐹−1(𝑦 |𝑥) = [𝐷∗𝐹 (𝑥 |𝑦)]−1 by Lemma 20.5.
Due to (27.27), this then implies that 𝐷∗

𝑀
𝐹−1(𝑦 |𝑥) ⊂ 𝐷∗𝐹−1(𝑦 |𝑥) = [𝐷∗𝐹 (𝑥 |𝑦)]−1. The

existence of a left-inverse implies that 𝐹 ′(𝑥)∗ is injective, which together with (27.34) yields
(27.30).

By the continuity of 𝐹 , graph 𝐹−1 is closed near (𝑦, 𝑥). By Lemma 25.6, 𝐹−1 is PSNC at 𝑦
for 𝑥 . Consequently, Corollary 27.14 shows that 𝐹 is metrically regular at 𝑥 for 𝑦 . By the
definition (27.2) of metrical regularity, there thus exists for any �̃� > reg 𝐹 (𝑥 |𝑦) a 𝛿 > 0
such that

inf
𝑥∈𝐹 −1 (𝑦)

∥𝑥 − 𝑥 ∥𝑋 ≤ �̃�∥𝐹 (𝑥) − 𝑦 ∥𝑌 (𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑦 ∈ 𝔹(𝑦, 𝛿)) .

Taking in particular 𝑥 = 𝑥 yields

inf
𝑥∈𝐹 −1 (𝑦)

∥𝑥 − 𝑥 ∥𝑋 ≤ �̃�∥𝐹 (𝑥) − 𝑦 ∥𝑌 (𝑦 ∈ 𝔹(𝐹 (𝑥), 𝛿)) .

Although the infimum might not be attained, this implies that we can take arbitrary 𝜅 > �̃�

to obtain for any 𝑦 ∈ 𝔹(𝐹 (𝑥), 𝛿) the existence of some 𝐽 (𝑦) ≔ 𝑥 ∈ 𝐹−1(𝑦) satisfying
∥𝑥 − 𝑥 ∥𝑋 ≤ 𝜅∥𝐹 (𝑥) − 𝑦 ∥𝑌 , which is the claim. □
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28 STABILITY WITH RESPECT TO PERTURBATIONS

We now apply the Lipschitz-like properties of Chapter 27 to study the stability of optimiza-
tion problems under perturbations. As a motivating problem, we recall the introductory
problem (P) and consider the mapping

𝑗 (𝑥 ; 𝑦, 𝛼) ≔ 1
2 ∥𝐴𝑥 − 𝑦 ∥2

𝑌 + 𝛼𝑔(𝑥).

Assuming that a minimizer 𝑥 = 𝑥 (𝑦, 𝛼) of 𝑥 ↦→ 𝑗 (𝑥, 𝑦, 𝛼) exists, we can ask further
questions about stability, i.e., the dependence of 𝑥 on 𝑦 and 𝛼 , in particular whether 𝑥
depends (Lipschitz-)continuously on these parameters. This is of particular relevance in
inverse problems, which study the solution of ill-posed operator equations 𝐴𝑥 = 𝑦 via
families of approximate well-posed problems. The central question of regularization theory
is whether 𝑥 (�̃�, 𝛼) converges to a solution 𝑥 of the operator equation 𝐴𝑥 = 𝑦 as 𝑦 → 𝑦

and 𝛼 → 0.

We study the question of stability in Section 28.1. After deriving in Section 28.2 a conve-
nient characterization of the metric subregularity of convex subdifferentials, we prove the
convergence of minimizers in the sense of regularization theory.

28.1 stability with respect to perturbations

Let 𝑋, 𝑃 be Banach spaces and 𝑓 : 𝑋 × 𝑃 → ℝ. We then consider for some parameter 𝑝 ∈ 𝑃
the parametric optimization problem

min
𝑥∈𝑋

𝑓 (𝑥 ;𝑝)

and study how a minimizer (or critical point) 𝑥 ∈ 𝑋 behaves under perturbations of 𝑝 .
For this purpose, we introduce the set-valued solution mapping (or, if 𝑥 ↦→ 𝑓 (𝑥 ;𝑝) is not
convex, critical point mapping)

(28.1) 𝑆 : 𝑃 ⇒ 𝑋, 𝑆 (𝑝) ≔ {𝑥 ∈ 𝑋 | 0 ∈ 𝜕𝑓 (𝑥 ;𝑝)},
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where 𝜕 is a suitable (convex or Clarke) subdifferential with respect to 𝑥 for fixed 𝑝 . We
apply the concepts from Section 27.1 to this problem. Specifically, if 𝑆 has the Aubin property
at 𝑝 for 𝑥 , then we can take 𝑦 = 𝑦 in (27.1) to obtain

inf
𝑥∈𝑆 (𝑝)

∥𝑥 − 𝑥 ∥𝑋 ≤ 𝜅∥𝑝 − 𝑝∥𝑃 (𝑝 ∈ 𝔹(𝑝, 𝛿))

for some 𝛿, 𝜅 > 0. In other words, the Aubin property of the solution mapping 𝑆 at 𝑝 for 𝑥
implies the local Lipschitz stability of solutions 𝑥 = 𝑆 (𝑝) under perturbations 𝑝 around
the parameter 𝑝 . This of course begs the question when a solution mapping has the Aubin
property.

We start with a simple special case. Returning to the motivation at the beginning of this
chapter,𝑤 ∈ 𝜕𝑓 (𝑥) is of course equivalent to 0 ∈ 𝜕𝑓 (𝑥) − {𝑤} = 𝜕(𝑓 − ⟨𝑤, · ⟩𝑋 ) (𝑥) since
continuous linear mappings are differentiable. Such a perturbation of 𝑓 is called a tilt
perturbation, with𝑤 ∈ 𝑋 ∗ called tilt parameter .

To make this more precise, let 𝑔 : 𝑋 → ℝ be locally Lipschitz. For a tilt parameter 𝑝 ∈ 𝑋 ∗,
we then define

(28.2) 𝑓 (𝑥 ;𝑝) = 𝑔(𝑥) − ⟨𝑝, 𝑥⟩𝑋
and refer to the stability of minimizers (or critical points) of 𝑓 with respect to 𝑝 as tilt
stability. By Theorems 13.4 and 13.20, the solution mapping for 𝑓 is

𝑆 (𝑝) = {𝑥 ∈ 𝑋 | 𝑝 ∈ 𝜕𝐶𝑔(𝑥)} = (𝜕𝑔𝐶)−1(𝑝),
which thus has the Aubin property – and 𝑓 is tilt-stable – if and only if 𝜕𝐶𝑔 is metrically
regular at 𝑥 for 0, i.e., by (27.2) that there exist 𝜅, 𝛿 > 0 such that

(28.3) dist(𝑥, (𝜕𝐶𝑔)−1(𝑥∗)) ≤ 𝜅 dist(𝜕𝐶𝑔(𝑥), 𝑥∗) (𝑥∗ ∈ 𝔹(0, 𝛿); 𝑥 ∈ 𝔹(𝑥, 𝛿)) .

We illustrate this with two examples. The first concerns data stability of least squares
fitting, which in Hilbert spaces can be formulated as tilt stability.

Example 28.1 (data stability of least squares fitting). Let 𝑋,𝑌 be Hilbert spaces and
𝑔(𝑥) = 1

2 ∥𝐴𝑥 − 𝑦 ∥2
𝑌
for some 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and 𝑦 ∈ 𝑌 . Taking 𝑝 = 𝐴∗Δ𝑦 for some

Δ𝑦 ∈ 𝑌 , we can write this in the form of (28.2) via

𝑓 (𝑥 ;𝑝) = 𝑔(𝑥) − ⟨𝐴∗Δ𝑦, 𝑥⟩𝑋 =
1
2 ∥𝐴𝑥 − (𝑦 + Δ𝑦)∥2

𝑌 − 1
2 ∥Δ𝑦 ∥

2
𝑌 .

Data stability thus follows from the metric regularity of 𝜕𝑔 at a minimizer 𝑥 of the
convex functional 𝑔. We have 𝜕𝐶𝑔(𝑥) = {𝐴∗(𝐴𝑥 − 𝑦)}, so

(𝜕𝑔)−1(𝑥∗) = {𝑥 ∈ 𝑋 | 𝐴∗𝐴𝑥 = 𝐴∗𝑦 + 𝑥∗}.
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28 stability with respect to perturbations

Therefore (28.3) is equivalent to

inf
𝑥∈𝑋

{∥𝑥 − 𝑥 ∥𝑋 | 𝐴∗𝐴𝑥 = 𝐴∗𝑦 + 𝑥∗} ≤ 𝜅∥𝐴∗𝐴𝑥 − (𝐴∗𝑦 + 𝑥∗)∥𝑋
(𝑥∗ ∈ 𝔹(0, 𝛿); 𝑥 ∈ 𝔹(𝑥, 𝛿)) .

If𝐴∗𝐴 has a bounded inverse (𝐴∗𝐴)−1 ∈ 𝕃(𝑋 ;𝑋 ), then we can take 𝜅 = ∥(𝐴∗𝐴)−1∥𝕃(𝑋 ;𝑋 )
for any 𝛿 > 0. On the other hand, if 𝐴∗𝐴 is not surjective, then there cannot be metric
regularity (simply take an appropriate choice of 𝑥∗ ∉ ran𝐴∗𝐴).

For a genuinely nonsmooth example, we consider the (academic) problem of minimizing
the (non-squared) norm on a Hilbert space.

Example 28.2 (tilt stability of least norm fitting). Let 𝑋 be a Hilbert space and 𝑔(𝑥) =
∥𝑥 −𝑧∥𝑋 for some 𝑧 ∈ 𝑋 . To show tilt stability, we have to verify (28.3) for some 𝜅, 𝛿 > 0.
For 𝑥 ≠ 𝑧, we have 𝜕𝑔(𝑥) = {(𝑥 − 𝑧)/∥𝑥 − 𝑧∥𝑋 }, and for 𝑥 = 𝑧, we have 𝜕𝑔(𝑥) = 𝔹(0, 1).
Thus (28.3) reads

dist(𝑥, (𝜕𝑔)−1(𝑥∗)) ≤ 𝜅
{ 𝑥−𝑧

∥𝑥−𝑧∥𝑋 − 𝑥∗

𝑋

if 𝑥 ≠ 𝑧,

dist(𝑥∗,𝔹(0, 1)) if 𝑥 = 𝑧,
(28.4)

for all 𝑥∗ ∈ 𝔹(0, 𝛿) and 𝑥 ∈ 𝔹(𝑥, 𝛿) where

dist(𝑥, (𝜕𝑔)−1(𝑥∗)) =


dist(𝑥 − 𝑧, 𝑥∗ [0,∞)) if ∥𝑥∗∥𝑋 = 1,
∥𝑥 − 𝑧∥𝑋 if ∥𝑥∗∥𝑋 < 1,
∞ if ∥𝑥∗∥𝑋 > 1.

As the inequality cannot hold if ∥𝑥∗∥𝑋 > 1, we take 𝛿 ∈ (0, 1] to ensure that this does
not happen. If 𝑥 = 𝑧, then (28.4) trivially holds for any 𝜅 > 0, both sides being zero. For
𝑥∗ ∈ 𝔹(0, 𝛿) and 𝑥 ∈ 𝔹(𝑥, 𝛿) \ {𝑧}, the inequality (28.4) reads

𝜅

 𝑥 − 𝑧
∥𝑥 − 𝑧∥𝑋 − 𝑥∗


𝑋

≥
{

dist(𝑥 − 𝑧, 𝑥∗ [0,∞)) if ∥𝑥∗∥𝑋 = 1,
∥𝑥 − 𝑧∥𝑋 if ∥𝑥∗∥𝑋 < 1.

Choosing 𝑥∗ = 𝜆(𝑥 − 𝑧)/∥𝑥 − 𝑧∥𝑋 , and letting 𝜆→1, we see that the inequality cannot
hold unless 𝛿 ∈ (0, 1) (which prevents 𝜆→1). Thus, taking the infimum of the left-hand
side over ∥𝑥∗∥𝑋 ≤ 𝛿 < 1 and the supremum of the right-hand side over 𝑥 ∈ 𝔹(𝑥, 𝛿),
the inequality holds if 𝜅 (1 − 𝛿) ≥ 𝛿 . This can be satisfied for any 𝜅 > 0 for sufficiently
small 𝛿 ∈ (0, 1).
Since 𝑥∗ ∈ 𝑋 is comparable to the tilt parameter 𝑝 ∈ 𝑋 , this says that we can only
stably “tilt” 𝑔 by an amount ∥𝑝 ∥𝑋 < 1. If we tilt with ∥𝑝∥𝑋 > 1, the tilted function has
no minimizer, while for ∥𝑝∥𝑋 = 1, every 𝑥 = 𝑧 + 𝑡𝑝 for 𝑡 ≥ 0 is a minimizer.
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28 stability with respect to perturbations

We now return to the general solution mapping (28.1). The following proposition applied
to 𝐹 (𝑥, 𝑝) ≔ 𝜕𝑓 (𝑥 ;𝑝) provides a general tool for our analysis.

Theorem 28.3. Let 𝑃 , 𝑋 , and 𝑌 be reflexive and Gâteaux smooth Banach spaces. For 𝐹 :
𝑋 × 𝑃 → 𝑌 , let

𝑆 (𝑝) ≔ {𝑥 ∈ 𝑋 | 0 ∈ 𝐹 (𝑥, 𝑝)}.
Then 𝑆 has the Aubin property at 𝑝 for 𝑥 ∈ 𝑆 (𝑝) if

(28.5) (0, 𝑝∗) ∈ 𝐷∗
𝑁 𝐹 (𝑥, 𝑝 |0) (𝑦∗) ⇒ 𝑦∗ = 0, 𝑝∗ = 0

and
𝑄 (𝑦, 𝑝) ≔ {𝑥 ∈ 𝑋 | 𝑦 ∈ 𝐹 (𝑥, 𝑝)}.

is PSNC at (𝑦, 𝑝) for 𝑥 .

Proof. We have 𝑆 (𝑝) = 𝑄 (0, 𝑝). Hence if we can show that 𝑄 has the Aubin property at
(0, 𝑝) for 𝑥 , this will imply the Aubin property of 𝑆 at 𝑝 for 𝑥 by simple restriction of the
free variables in Theorem 27.2 (i) to the subspace {0} × 𝑃 .
We do this by applying Theorem 27.10 to 𝑄 , which holds if we can show that

𝐷∗
𝑀𝑄 (0, 𝑝 |𝑥) (0) = {0}.

By (27.27), a sufficient assumption for this is that

𝐷∗𝑄 (0, 𝑝 |𝑥) (0) = {0},

which can equivalently be expressed as

(28.6) (𝑦∗, 𝑝∗, 0) ∈ 𝑁graph𝑄 (0, 𝑝, 𝑥) ⇒ 𝑦∗ = 0, 𝑝∗ = 0.

Now
graph𝑄 = {(𝑦, 𝑝, 𝑥) | 𝑦 ∈ 𝐹 (𝑥, 𝑝)} = 𝜋 graph 𝐹

for the permutation 𝜋 (𝑥, 𝑝, 𝑦) ≔ (𝑦, 𝑝, 𝑥) (which applied to a set should be understood as
applied to every element of that set). We thus also have

𝑁graph𝑄 (𝑦, 𝑝, 𝑥) = 𝜋𝑁graph 𝐹 (𝜋 (𝑦, 𝑝, 𝑥)) .

In particular, (28.6) becomes

(0, 𝑝∗, 𝑦∗) ∈ 𝑁graph 𝐹 (𝑥, 𝑝, 0) ⇒ 𝑦∗ = 0, 𝑝∗ = 0.

But this is equivalent to (28.5). □
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Remark 28.4. Theorem 28.3 is related to the classical implicit function theorem. If 𝐹 is graphically
regular at (𝑥, 𝑝, 0), it is also possible derive explicit characterizations of 𝐷𝑆 such as

𝐷𝑆 (𝑝 |𝑥) (Δ𝑝) = {Δ𝑥 ∈ 𝑋 | 𝐷𝐹 (𝑥, 𝑝 |0) (Δ𝑥,Δ𝑝) ∋ 0}.

For details in finite dimensions, we refer to [Rockafellar and Wets, 1998, Theorem 9.56 & Proposition
8.41].

We close this section by illustrating the requirements of Theorem 28.3 for the stability of
specific problems of the form (P) with respect to the penalty parameter 𝛼 . (Naturally, these
can be relaxed or made further explicit in more concrete situations.) We consider for 𝛼 > 0
and ℎ,𝑔 : 𝑋 → ℝ the problem

min
𝑥∈𝑋

ℎ(𝑥) + 𝛼𝑔(𝑥).
For this problem, we define the Clarke-critical point mapping

(28.7) 𝑆 (𝛼) ≔ {𝑥 ∈ 𝑋 | 0 ∈ 𝜕𝐶 (ℎ + 𝛼𝑔) (𝑥)}.

When the problem is convex, this coincides with the solution mapping. Subject to a
non-degeneracy condition, the next theorem yields a stability estimate for convex 𝑔 and
smooth ℎ.

Theorem 28.5. Let 𝑋 be a finite-dimensional and Gâteaux smooth Banach space and let
ℎ : 𝑋 → ℝ be twice continuously differentiable and 𝑔 : 𝑋 → ℝ be convex, proper, and lower
semicontinuous. Suppose

(28.8) 0 ∈ ℎ′′(𝑥)∗𝑦 + 𝛼𝐷∗ [𝜕𝑔] (𝑥 | − 𝛼−1ℎ′(𝑥)) (𝑦) ⇒ 𝑦 = 0.

Then 𝑆 has the Aubin property at 𝛼 for any 𝑥 ∈ 𝑆 (𝛼).

Proof. By Theorems 13.4, 13.5, and 13.20, we can expand

𝑆 (𝛼) = {𝑥 ∈ 𝑋 | 0 ∈ 𝐹 (𝑥 ;𝛼)} for 𝐹 (𝑥 ;𝛼) ≔ ℎ′(𝑥) + 𝛼𝜕𝑔(𝑥).

To apply Theorem 28.3 to prove the Aubin property, we need to verify its assumptions.
First, by Theorems 25.14 and 25.20, we have

𝐷∗𝐹 (𝑥 ;𝛼 |0) (𝑦) =
(
ℎ′′(𝑥)∗𝑦 + 𝛼𝐷∗ [𝜕𝑔] (𝑥 | − 𝛼−1ℎ′(𝑥)) (𝑦)

−⟨ℎ′(𝑥), 𝑦⟩𝑋

)
.

Thus (28.5) holds by (28.8). Furthermore, since𝑋 ∗×ℝ is finite-dimensional, the PSNC holds
at every (𝑦, 𝛼) with 𝑦 ∈ 𝐹 (𝑥, 𝛼) and 𝛼 > 0 by Lemma 25.5. Hence Theorem 28.3 is indeed
applicable and implies that 𝑆 has the Aubin property at 𝛼 . □
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Corollary 28.6. Under the assumptions of Theorem 28.5,

inf
𝑥∈𝑆 (𝛼)

∥𝑥 − 𝑥 ∥𝑋 ≤ 𝜅 |𝛼 − 𝛼 |

for some 𝜅 > 0 and all 𝛼 sufficiently close to 𝛼 .

Proof. The claim follows directly from the definition (27.1) of the Aubin property for 𝑆
given by (28.7) in 𝑦 = 𝑥 ∈ 𝑆 (𝛼), which yields

inf
𝑥∈𝑆 (𝛼)

∥𝑥 − 𝑥 ∥𝑋 = dist(𝑥, 𝑆 (𝛼)) ≤ 𝜅 dist(𝑆−1(𝑥), 𝛼) = 𝜅 |𝛼 − 𝛼 |. □

28.2 metric subregularity of convex subdifferentials

We recall from (27.3) that a set-valued mapping 𝐻 : 𝑋 ⇒ 𝑋 ∗ is metrically subregular at
𝑥 ∈ 𝑋 for𝑤 ∈ 𝑋 ∗ if there exist 𝛿 > 0 and 𝜅 > 0 such that

dist(𝑥, 𝐻−1(𝑤)) ≤ 𝜅 dist(𝑤,𝐻 (𝑥)) (𝑥 ∈ 𝔹(𝑥, 𝛿)) .

We also recall that the infimum of all 𝜅 > 0 for which this inequality holds for some 𝛿 > 0
is denoted by subreg𝐻 (𝑥 |𝑤), the modulus of (metric) subregularity of 𝐻 at 𝑥 for𝑤 . In the
following, we will also make use of the squared distance of 𝑥 ∈ 𝑋 to a set 𝐴 ⊂ 𝑋 ,

dist2(𝑥,𝐴) ≔ inf
𝑥∈𝐴

∥𝑥 − 𝑥 ∥2
𝑋 .

We then have the following characterization of metric subregularity of convex function-
als.

Theorem 28.7. Let 𝑔 : 𝑋 → ℝ be convex, proper, and lower semicontinuous and let 𝑥 ∈ 𝑋
with 0 ∈ 𝜕𝑔(𝑥). If there exist 𝛾 > 0 and 𝛿 > 0 such that

(28.9) 𝑔(𝑥) ≥ 𝑔(𝑥) + 𝛾 dist2(𝑥, [𝜕𝑔]−1(0)) (𝑥 ∈ 𝔹𝑋 (𝑥, 𝛿)),

then 𝜕𝑔 is metrically subregular at 𝑥 for 0 with 𝜅 = 𝛾−1 and the same 𝛿 .

Conversely, if 𝜕𝑔 is metrically subregular at 𝑥 for 0 with some 𝜅, 𝛿 > 0, then (28.9) holds for
any 𝛾 ∈ (0, 1/(4𝜅)).

Proof. Let first (28.9) hold for 𝛾, 𝛿 > 0. We need to show that

(28.10) 𝛾 dist(𝑥, [𝜕𝑔]−1(0)) ≤ dist(0, 𝜕𝑔(𝑥)) (𝑥 ∈ 𝔹(𝑥, 𝛿)) .

To that end, let 𝑥 ∈ 𝔹(𝑥, 𝛿). Clearly, if 𝜕𝑔(𝑥) = ∅, there is nothing to prove. So assume that
there exists an 𝑥∗ ∈ 𝜕𝑔(𝑥). Then 𝑥 ∈ dom𝑔, so that (28.9) shows that dist2(𝑥, [𝜕𝑔]−1(0)) <
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∞. Consequently [𝜕𝑔]−1(0) ≠ ∅. For each 𝜀 > 0, by the definition of the set-distance, we
can therefore find 𝑥𝜀 ∈ [𝜕𝑔]−1(0) such that

(28.11) ∥𝑥 − 𝑥𝜀 ∥𝑋 ≤ dist(𝑥, [𝜕𝑔]−1(0)) + 𝜀.
By the definition of the convex subdifferential and 𝑥, 𝑥𝜀 ∈ arg min𝑔, we have

⟨𝑥∗, 𝑥 − 𝑥𝜀⟩𝑋 ≥ 𝑔(𝑥) − 𝑔(𝑥𝜀) = 𝑔(𝑥) − 𝑔(𝑥) .
Combined with (28.9) and (28.11), this yields

𝛾 dist2(𝑥, [𝜕𝑔]−1(0)) ≤ ⟨𝑥∗, 𝑥 − 𝑥𝜀⟩𝑋
≤ ∥𝑥∗∥𝑋 ∗ ∥𝑥 − 𝑥𝜀 ∥𝑋 ≤ ∥𝑥∗∥𝑋 ∗ (dist(𝑥, [𝜕𝑔]−1(0)) + 𝜀).

Since 𝜀 > 0 was arbitrary and ∥𝑥∗∥𝑋 ∗ ≤ dist(0, 𝜕𝑔(𝑥)), we obtain (28.10).

Conversely, let 𝜕𝑔 be metrically subregular at 𝑥 for 0 for some parameters 𝜅, 𝛿 > 0. Take
any 𝛾 ∈ (0, 1/(4𝜅)). We argue by contradiction. Assume that (28.9) does not hold. Then we
can find some 𝑥 ∈ 𝔹(𝑥, 2𝛿/3) such that

(28.12) 𝑔(𝑥) < 𝑔(𝑥) + 𝛾 dist2(𝑥, [𝜕𝑔]−1(0)) .
However, 𝑥 is a minimizer of 𝑔, so necessarily 𝛾 dist2(𝑥, [𝜕𝑔]−1(0)) > 0. By Ekeland’s
variational principle (Theorem 2.16), we can thus find 𝑦 ∈ 𝑋 satisfying

(28.13) ∥𝑦 − 𝑥 ∥𝑋 ≤ 1
2 dist(𝑥, [𝜕𝑔]−1(0))

and for all 𝑥 ∈ 𝑋 that

𝑔(𝑥) ≥ 𝑔(𝑦) − 𝛾 dist2(𝑥, [𝜕𝑔]−1(0))
1
2 dist(𝑥, [𝜕𝑔]−1(0)) ∥𝑥 − 𝑦 ∥𝑋 = 𝑔(𝑦) − 2𝛾 dist(𝑥, [𝜕𝑔]−1(0))∥𝑥 − 𝑦 ∥𝑋 .

In follows that 𝑦 minimizes 𝑔 + 2𝛾 dist(𝑥, [𝜕𝑔]−1(0))∥ · − 𝑦 ∥𝑋 , which by Theorems 4.2, 4.6,
and 4.14 is equivalent to 0 ∈ 𝜕𝑔(𝑦) + 2𝛾 dist(𝑥, [𝜕𝑔]−1(0))𝔹𝑋 ∗ . Hence we can find some
𝑦∗ ∈ 𝜕𝑔(𝑦) satisfying ∥𝑦∗∥𝑋 ∗ ≤ 2𝛾 dist(𝑥, [𝜕𝑔]−1(0)) . Using (28.13), we now obtain

2𝜅 dist(0, 𝜕𝑔(𝑦)) < (2𝛾)−1 dist(0, 𝜕𝑔(𝑦))
≤ (2𝛾)−1∥𝑦∗∥𝑋 ∗ ≤ dist(𝑥, [𝜕𝑔]−1(0))
= 2 dist(𝑥, [𝜕𝑔]−1(0)) − dist(𝑥, [𝜕𝑔]−1(0))
≤ 2∥𝑦 − 𝑥 ∥𝑋 + 2 dist(𝑦, [𝜕𝑔]−1(0)) − dist(𝑥, [𝜕𝑔]−1(0))
≤ 2 dist(𝑦, [𝜕𝑔]−1(0)) .

By (28.13) and our choice of 𝑥 ∈ 𝔹(𝑥, 2𝛿/3),

∥𝑦 − 𝑥 ∥𝑋 ≤ ∥𝑦 − 𝑥 ∥𝑋 + ∥𝑥 − 𝑥 ∥𝑋 ≤ 3
2 ∥𝑥 − 𝑥 ∥𝑋 ≤ 𝛿.

Therefore 𝑦 ∈ 𝔹(𝑥, 𝛿) violates the assumed metric subregularity (28.10) with the factor 𝛾 ,
and hence (28.9) holds. □
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Applying Theorem 28.7 to 𝑥 ↦→ 𝑔(𝑥) + ⟨𝑥∗, 𝑥⟩𝑋 now yields the following characterization
due to [Aragón Artacho and Geoffroy, 2014].

Corollary 28.8. Let 𝑔 : 𝑋 → ℝ be convex, proper, and lower semicontinuous and let 𝑥 ∈ 𝑋
and 𝑥∗ ∈ 𝜕𝑔(𝑥). If there exist 𝛾 > 0 and 𝛿 > 0 such that

(28.14) 𝑔(𝑥) ≥ 𝑔(𝑥) + ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 + 𝛾 dist2(𝑥, [𝜕𝑔]−1(𝑥∗)) (𝑥 ∈ 𝔹𝑋 (𝑥, 𝛿)),

then 𝜕𝑔 is metrically subregular at 𝑥 for 𝑥∗ with 𝜅 = 𝛾−1 and the same 𝛿 .

Conversely, if 𝜕𝑔 is metrically subregular at 𝑥 for 𝑥∗ with some 𝜅, 𝛿 > 0, then (28.9) holds for
any 𝛾 ∈ (0, 1/(4𝜅)).

If we denote by 𝛾 (𝑥 |𝑥∗) the supremum of 𝛾 > 0 for which (28.14) holds for some 𝛿 > 0,
then we obtain the following estimate involving the modulus of subregularity.

Corollary 28.9. Let 𝑔 : 𝑋 → ℝ be convex, proper, and lower semicontinuous and let 𝑥 ∈ 𝑋
and 𝑥∗ ∈ 𝜕𝑔(𝑥). Then

subreg 𝜕𝑔(𝑥 |𝑥∗) ≤ 𝛾 (𝑥 |𝑥∗)−1 ≤ 4 subreg 𝜕𝑔(𝑥 |𝑥∗).

Remark 28.10 (strongmetric subregularity). As in Remark 27.1,we can also characterize strongmetric
subregularity using a strong notion of local subdifferentiability. In the setting of Corollary 28.8, it
was shown in [Aragón Artacho and Geoffroy, 2014] that strong metric subregularity of 𝜕𝑔 at 𝑥 for
𝑥∗ is equivalent to

(28.15) 𝑔(𝑥) ≥ 𝑔(𝑥) + ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 + 𝛾 ∥𝑥 − 𝑥 ∥2
𝑋 (𝑥 ∈ 𝔹𝑋 (𝑥, 𝛿)),

i.e., a local form of strong subdifferentiability. Compared to the characterization of metric sub-
regularity in (28.14), intuitively the strong version does not “squeeze” [𝜕𝑔]−1(𝑥∗) into a single
point.

Strong metric subregularity may almost trivially be used in the convergence proofs of Part II
and Chapter 15 as a relaxation of strong convexity; compare [Clason et al., 2020]. Also observe that
(28.15) can be expressed in terms of the Bregman divergence (see Section 11.1) as

𝐵𝑥
∗
𝑔 (𝑥, 𝑥) ≥ 𝛾 ∥𝑥 − 𝑥 ∥2

𝑋 (𝑥 ∈ 𝔹𝑋 (𝑥, 𝛿)),

i.e., that 𝐵𝑥∗𝑔 is elliptic at 𝑥 in the sense of [Valkonen, 2021a]. In optimization methods based on
preconditioning by Bregman divergences instead of the linear preconditioner 𝑀 as discussed in
Section 11.1, this generalizes the positive definiteness requirement on𝑀 .
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28.3 tikhonov-type regularization of inverse problems

Let now the data 𝑦𝛿 depend on a noise level 𝛿 > 0, and consider for a corresponding
parameter 𝛼𝛿 > 0 the problem

(28.16) min
𝑥∈𝑋

1
2 ∥𝐴𝑥 − 𝑦𝛿 ∥2

𝑌 + 𝛼𝛿𝑔(𝑥),

where𝐴 ∈ 𝕃(𝑋 ;𝑌 ) between a Banach space𝑋 and a Hilbert space 𝑌 . This problem is called
a Tikhonov-type regularization of the inverse problem 𝐴𝑥 = 𝑦𝛿 . If 𝑔(𝑥) = 1

2 ∥ · ∥2
𝑋
with 𝑋 a

Hilbert space, we talk simply of Tikhonov regularization.

We assume for some true data 𝑦 that

(28.17) ∥𝑦 − 𝑦 ∥𝑌 ≤ 𝛿.

Suppose there exists a solution 𝑥 to the problem

(28.18) min
𝑥∈𝐶

𝑔(𝑥) where 𝐶 ≔ {𝑥 ∈ 𝑋 | 𝐴𝑥 = 𝑦}.

Denote by 𝑋 the set of solutions to (28.18). In inverse problems, the question whether
solutions 𝑥𝛿 to the Tikhonov-type problem (28.16) converge to some 𝑥 ∈ 𝑋 is a topic of
regularization theory. The condition (28.19) of the next lemma is known as a source condition
in that context.

Lemma 28.11. Suppose 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and that 𝑔 : 𝑋 → ℝ is convex, proper, and lower
semicontinuous with int dom𝑔 ∩𝐶 ≠ ∅. We have 𝑥 ∈ 𝑋 if and only if there exists �̂� ∈ 𝑌 such
that

(28.19) 𝐴𝑥 = 𝑦 and −𝐴∗�̂� ∈ 𝜕𝑔(𝑥),

Proof. The condition int dom𝑔 ∩𝐶 ≠ ∅ guarantees that the sum rule Theorem 4.14 holds
as an equality for 𝛿𝐶 + 𝑔. Writing 𝛿𝐶 (𝑥) = 𝛿{𝑦} (𝐴𝑥), and using the chain rule (4.17) and the
fact that

𝛿{𝑦} (𝑦) =
{
𝑌 𝑦 = 𝑦,

∅, otherwise

we therefore obtain

𝜕[𝛿𝐶 + 𝑔] (𝑥) = 𝐴∗𝑌 + 𝜕𝑔(𝑥) whenever 𝐴𝑥 = 𝑦.

Thus 0 ∈ 𝜕[𝛿𝐶 + 𝑔] (𝑥) whenever (28.19) holds. Now the Fermat principle of Theorem 4.2
establishes the claim. □
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The next result characterizes convergence. For brevity we write

𝑓𝛿 (𝑥) ≔
1
2 ∥𝐴𝑥 − 𝑦𝛿 ∥2

𝑌 .

The condition (28.20) in the next theorem is satisfied in particular if 𝑥𝛿 is an 𝑒𝛿 -minimizer
of 𝑓𝛿 + 𝛼𝛿𝑔. Observe that the right-hand side of (28.20) does not depend on the choice of
𝑥 ∈ 𝑋 . We directly assume the characterization (28.14) of metric subregularity to be able to
use an optimal modulus 𝛾 for which the characterization holds.

Theorem 28.12. Let𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and 𝑔 : 𝑋 → ℝ be convex, proper, and lower semicontinuous
with int dom𝑔∩𝐶 ≠ ∅. Suppose (28.17) holds, 𝑥 ∈ 𝑋 satisfies (28.19), and that for every 𝛿 > 0,
for some 𝑒𝛿 > 0 there exists 𝑥𝛿 ∈ 𝑋 satisfying

(28.20) [𝑓𝛿 + 𝛼𝛿𝑔] (𝑥𝛿 ) ≤ [𝑓𝛿 + 𝛼𝛿𝑔] (𝑥) + 𝑒𝛿 .
Suppose for some 𝛿 > 0 and �̃� ⊂ 𝑋 that for all 𝛿 ∈ (0, 𝛿) and 𝑥 ∈ �̃� , the subdifferential
mapping 𝜕[𝑓𝛿+𝛼𝛿𝑔] satisfies (28.9) at𝑥 for 𝑓 ′𝛿 (𝑥)−𝛼𝛿𝐴∗�̂� in the neighborhood𝑈𝑥 (independent
of 𝛿) with the factor 𝛾 > 0 (independent of both 𝛿 and 𝑥) with respect to the norm

∥𝑥 ∥𝛿 ≔
√︃
∥𝐴𝑥 ∥2

𝑌
+ 𝛼𝛿 ∥𝑥 ∥2

𝑋
(𝑥 ∈ 𝑋 ) .

Assume further for some 𝜌 > 0 that

(28.21)
⋃̃
𝑥∈�̃�

𝑈𝑥 ⊃ 𝑈𝜌 ≔ {𝑥 ∈ 𝑋 | ∥𝐴(𝑥 − 𝑥)∥ ≤ 𝜌, 𝑅(𝑥) ≤ 𝑅(𝑥) + 𝜌}.

Then there exists 𝛿 > 0 such that

dist2(𝑥𝛿 , 𝑋 ) ≤
𝑒𝛿

𝛾𝛼𝛿
+ 𝛿2

2𝛾2𝛼𝛿
+ 𝛼𝛿

2𝛾2 ∥�̂� ∥2
𝑌 (𝛿 ∈ (0, 𝛿)) .

Proof. Since 𝐴𝑥 = 𝑦 , using Young’s inequality, (28.20), and (28.17), we have
1
2 ∥𝐴(𝑥𝛿 − 𝑥)∥

2
𝑌 + 2𝛼𝛿𝑔(𝑥𝛿 ) ≤ ∥𝐴𝑥𝛿 − 𝑦𝛿 ∥2

𝑌 + 2𝛼𝛿𝑔(𝑥𝛿 ) + ∥𝑦𝛿 − 𝑦 ∥2
𝑌

≤ 2𝑒𝛿 + 2∥𝑦𝛿 − 𝑦 ∥2
𝑌 + 2𝛼𝛿𝑔(𝑥)

≤ 2(𝑒𝛿 + 𝛿2 + 𝛼𝛿𝑔(𝑥)) .
Thus both

∥𝐴(𝑥𝛿 − 𝑥)∥2
𝑌 ≤ 4(𝑒𝛿 + 𝛿 + 𝛼𝛿𝑔(𝑥)) and 𝑔(𝑥𝛿 ) ≤ 𝑔(𝑥) +

𝑒𝛿 + 𝛿2

𝛼𝛿
.

This implies the existence of 𝛿 ∈ (0, 𝛿] such that 𝑥𝛿 ∈ 𝑈𝜌 for 𝛿 ∈ (0, 𝛿). Consequently
(28.21) establishes for every such 𝛿 an element 𝑥𝛿 ∈ 𝑋 such that 𝑥𝛿 ∈ 𝑈𝑥𝛿 . By 𝑓𝛿 + 𝛼𝛿𝑔
satisfying (28.14) at 𝑥𝛿 for 𝑓 ′𝛿 (𝑥) − 𝛼𝛿𝐴∗�̂� for such 𝛿 , therefore

(28.22) [𝑓𝛿 + 𝛼𝛿𝑔] (𝑥𝛿 ) − [𝑓𝛿 + 𝛼𝛿𝑔] (𝑥𝛿 ) ≥ ⟨𝑓 ′
𝛿
(𝑥𝛿 ) − 𝛼𝛿𝐴∗�̂�, 𝑥𝛿 − 𝑥𝛿⟩𝑋 + 𝛾 dist2

𝛿
(𝑥𝛿 , 𝑋 ),
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28 stability with respect to perturbations

where dist𝛿 denotes the distance-to-set function with respect to ∥ · ∥𝛿 .
We next expand

𝑓 ′
𝛿
(𝑥𝛿 ) − 𝛼𝛿𝐴∗�̂� = 𝐴∗(𝐴𝑥𝛿 − 𝑦𝛿 − 𝛼𝛿�̂�) = 𝐴∗(𝑦 − 𝑦𝛿 − 𝛼𝛿�̂�).

Hence (28.19) and (28.22) establish

𝑒𝛿 ≥ ⟨𝑓 ′
𝛿
(𝑥𝛿 ) − 𝛼𝛿𝐴∗�̂�, 𝑥𝛿 − 𝑥⟩𝑋 + 𝛾 dist2

𝛿
(𝑥𝛿 , 𝑋 )

= ⟨𝑦 − 𝑦𝛿 − 𝛼𝛿�̂�, 𝐴(𝑥𝛿 − 𝑥𝛿 )⟩𝑌 + 𝛾 inf
𝑥∈𝑋

(∥𝐴(𝑥𝛿 − 𝑥)∥2
𝑌 + 𝛼𝛿 ∥𝑥𝛿 − 𝑥 ∥2

𝑋

)
.

Since𝐴𝑥 = 𝐴𝑥𝛿 due to 𝑋 ⊂ 𝐶 , distributing the inf over the entire right-hand side and using
Young’s inequality establishes

𝑒𝛿 ≥ inf
𝑥∈𝑋

(
⟨𝑦 − 𝑦𝛿 − 𝛼𝛿�̂�, 𝐴(𝑥𝛿 − 𝑥)⟩𝑌 + 𝛾 ∥𝐴(𝑥𝛿 − 𝑥)∥2

𝑌 + 𝛾𝛼𝛿 ∥𝑥𝛿 − 𝑥 ∥2
𝑋

)
≥ inf
𝑥∈𝑋

(
− 1

4𝛾 ∥𝑦 − 𝑦𝛿 − 𝛼𝛿�̂� ∥2
𝑌 + 𝛾𝛼𝛿 ∥𝑥𝛿 − 𝑥 ∥2

𝑋

)
.

Thus, again using Young’s inequality and (28.17), we obtain

dist2(𝑥𝛿 , 𝑋 ) ≤
𝑒𝛿

𝛾𝛼𝛿
+ 1

4𝛾2𝛼𝛿
∥𝑦 − 𝑦𝛿 − 𝛼𝛿�̂� ∥2

𝑌 ≤ 𝑒𝛿

𝛾𝛼𝛿
+ 𝛿2

2𝛾2𝛼𝛿
+ 𝛼𝛿

2𝛾2 ∥�̂� ∥2
𝑌 .

This is the claim. □

Immediately we obtain the following characterization of convergence of regularized solu-
tions.

Corollary 28.13. Under the assumptions of Theorem 28.12, if

lim
𝛿→ 0

(
𝛼𝛿 ,

𝛿2

𝛼𝛿
,
𝑒𝛿

𝛼𝛿

)
= 0,

then
lim
𝛿→ 0

dist(𝑥𝛿 , 𝑋 ) = 0.

Remark 28.14. For an introduction to inverse problems, we refer to [Clason, 2020b; Hanke, 2017;
Mueller and Siltanen, 2012]; a classical treatise on regularization theory is [Engl et al., 1996] with
Banach spaces and other advanced aspects covered in [Ito and Jin, 2014; Kaltenbacher et al., 2008;
Schuster et al., 2012]; see also Chapters 30 to 32 and the remarks therein. Our specialized account is
based on [Valkonen, 2021b],which also shows that using strongmetric subregularity in Theorem 28.12
in place of metric subregularity yields convergence to a specific 𝑥 ∈ 𝑋 instead of the set 𝑋 . Those
results also relax the requirement ⋃�̃�∈�̃� 𝑈�̃� ⊃ 𝑈𝜌 through assumptions of weak(-∗) closedness and
openness.
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29 SPLITTING METHODS: FASTER CONVERGENCE FROM

REGULARITY

As we have seen in Chapter 10, proximal point and splitting methods can be accelerated if at
least one of the involved functionals is strongly convex. However, this can be a too strong
requirement, and we will show in this chapter how faster convergence (even without
acceleration) can be shown under the weaker requirements of metric subregularity or
strong submonotonicity. We begin in Section 29.1 by introducing the latter notion before
illustrating in Section 29.2 the effect of the two properties on splitting methods by showing
local linear convergence of forward-backward splitting.

29.1 submonotonicity of convex subdifferentials

Throughout this section, let 𝑋 be a Banach space and 𝐺 : 𝑋 → ℝ be convex, proper, and
lower semicontinuous. Our goal is now to give conditions for metric subregularity and
strong submonotonicity of 𝜕𝐺 : 𝑋 ⇒ 𝑋 ∗ at a critical point 𝑥 ∈ 𝑋 with 0 ∈ 𝜕𝐺 (𝑥).
Recall the characterization of metric subregularity of a convex subdifferential shown in
Section 28.2. As a weaker alternative to that result, we now relax the strong monotonicity
assumption of Chapter 10 more directly. We say that a set-valued mapping 𝐻 : 𝑋 ⇒ 𝑋 ∗ is
(𝛾, 𝜃 )-strongly submonotone at 𝑥 for 𝑥∗ ∈ 𝐻 (𝑥) with 𝜃 ≥ 𝛾 > 0 if there exists 𝛿 > 0 such
that for all 𝑥 ∈ 𝔹𝑋 (𝑥, 𝛿) and 𝑥∗ ∈ 𝐻 (𝑥) ∩ 𝔹𝑋 ∗ (𝑥∗, 𝛿),

(29.1) inf
𝑥∈𝐻−1 (𝑥∗)

(⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 + (𝜃 − 𝛾)∥𝑥 − 𝑥 ∥2
𝑋

) ≥ 𝜃 dist2(𝑥, 𝐻−1(𝑥∗)) .

If this only holds for 𝜃 ≥ 𝛾 = 0, then we call 𝐻 submonotone at 𝑥 for 𝑥∗.

Clearly, (strong) monotonicity (see Lemma 7.4) implies (strong) submonotonicity at any
𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝐻 (𝑥). However, subdifferentials of convex functionals need not be strongly
monotone. The next theorem shows that local second-order growth away from the set of
minimizers implies strong submonotonicity of such subdifferentials at any minimizer 𝑥
for 𝑥∗ = 0, which is the monotonicity-based analogue of the characterization of metric
subregularity in Theorem 28.7.
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29 splitting methods: faster convergence from regularity

Theorem 29.1. Let 𝐺 : 𝑋 → ℝ be convex, proper, and lower semicontinuous and let 𝑥 ∈ 𝑋
with 0 ∈ 𝜕𝐺 (𝑥). If there exists 𝛿 > 0 such that

(29.2) 𝐺 (𝑥) ≥ 𝐺 (𝑥) + 𝛾 dist2(𝑥, [𝜕𝐺]−1(0)) (𝑥 ∈ 𝔹𝑋 (𝑥, 𝛿)),

then 𝜕𝐺 is (𝛾, 𝜃 )-strongly submonotone at 𝑥 for 0 for any 𝜃 ≥ 𝛾 .

Proof. Since 𝜃 ≥ 𝛾 , (29.2) is equivalent to

(29.3) inf
𝑥∈[𝜕𝐺]−1 (0)

(
𝐺 (𝑥) −𝐺 (𝑥) + (𝜃 − 𝛾)∥𝑥 − 𝑥 ∥2

𝑋

) ≥ 𝜃 dist2(𝑥, [𝜕𝐺]−1(0))

for all 𝑥 ∈ 𝔹𝑋 (𝑥, 𝛿). By the definition of the convex subdifferential, we have for all 𝑥 ∈
[𝜕𝐺]−1(0) and 𝑥∗ = 0 that

⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 ≥ 𝐺 (𝑥) −𝐺 (𝑥) = 𝐺 (𝑥) −𝐺 (𝑥).

Inserting this into (29.3) yields the definition (29.1) of strong submonotonicity for 𝐻 =
𝜕𝐺 . □

Together with Theorem 28.7, this shows that for convex subdifferentials, metric subregu-
larity implies strong submonotonicity, which is thus a weaker property.

We conclude this section by showing that the subdifferentials of the indicator functional
of the finite-dimensional unit ball and of the absolute value function are both subreg-
ular and strongly submonotone. Note that neither of these subdifferentials is strongly
monotone in the conventional sense. Here we restrict ourselves to showing (𝛾,𝛾)-strong
submonotonicity for some (𝑥, 𝑥∗) ∈ graph 𝜕𝐺 , i.e., that there exists 𝛿 > 0 such that

(29.4) ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩𝑋 ≥ 𝛾 dist2(𝑥, [𝜕𝐺]−1(𝑥∗)) (𝑥 ∈ 𝔹(𝑥, 𝛿), 𝑥∗ ∈ 𝜕𝐺 (𝑥)).

Lemma 29.2. Let 𝐺 ≔ 𝛿𝔹(0,𝛼) on (ℝ𝑁 , ∥ · ∥2) and (𝑥, 𝑥∗) ∈ graph 𝜕𝐺 . Then 𝜕𝐺 is

(i) metrically subregular at 𝑥 for 𝑥∗ for any 𝛿 ∈ (0, 𝛼] and

𝜅 ≥
{

2𝛼/∥𝑥∗∥2 if 𝑥∗ ≠ 0,
0 if 𝑥∗ = 0;

(ii) (𝛾,𝛾)-strongly submonotone at 𝑥 for 𝑥∗ for any 𝛿 > 0 and

𝛾 ≤
{
∥𝑥∗∥2/(2𝛼) if 𝑥∗ ≠ 0,
∞ if 𝑥∗ = 0.
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29 splitting methods: faster convergence from regularity

Proof. We first verify (28.14) for 𝛿 = 𝛼 and 𝛾 = 𝜅−1 as stated. To that end, let 𝑥 ∈ 𝔹(0, 𝛼). If
𝑥∗ = 0, then (28.14) trivially holds by the subdifferentiability of𝐺 and dist2(𝑥, [𝜕𝐺]−1(𝑥∗)) =
dist2(𝑥,𝔹(0, 𝛼)) = 0. Let therefore 𝑥∗ ≠ 0. Then [𝜕𝐺]−1(𝑥∗) = {𝑥} as well as ∥𝑥 ∥2 = 𝛼 and
𝑥∗ = 𝛽𝑥 for 𝛽 = ∥𝑥∗∥2/∥𝑥 ∥2. Since 𝛾 ≤ ∥𝑥∗∥2/(2𝛼), we have 𝛽 ≥ 2𝛾 . Then ∥𝑥 ∥2 ≤ 𝛼 yields

𝛾 dist2(𝑥, [𝜕𝐺]−1(𝑥∗)) = 𝛾 ∥𝑥 − 𝑥 ∥2
2

≤ 𝛽 ⟨𝑥, 𝑥 − 𝑥⟩2 − 𝛽

2 ∥𝑥 ∥
2
2 +

𝛽

2 ∥𝑥 ∥
2
2

≤ 𝛽 ⟨𝑥, 𝑥 − 𝑥⟩2

= ⟨𝑥∗, 𝑥 − 𝑥⟩2

≤ ⟨𝑥∗, 𝑥 − 𝑥⟩2 +𝐺 (𝑥) −𝐺 (𝑥).

Since dom𝐺 = 𝔹(0, 𝛼), this shows that (28.14) holds for any 𝛿 > 0.

Corollary 28.8 now yields (i). Adding

𝐺 (𝑥) −𝐺 (𝑥) ≥ ⟨𝑥∗, 𝑥 − 𝑥⟩2 (𝑥∗ ∈ 𝜕𝐺 (𝑥))

to (28.14), we also obtain (29.4) and thus (ii). □

Lemma 29.3. Let 𝐺 ≔ | · | on ℝ and (𝑥, 𝑥∗) ∈ graph 𝜕𝐺 . Then 𝜕𝐺 is

(i) metrically subregular at 𝑥 for 𝑥∗ for any 𝜅 > 0 and

𝛿 ≤
{

2𝜅 if 𝑥∗ ∈ {1,−1},
𝜅 if |𝑥∗ | < 1;

(ii) (𝛾,𝛾)-strongly submonotone at 𝑥 for 𝑥∗ for any 𝛾 > 0 and

𝛿 ≤
{

2𝛾−1 if 𝑥∗ ∈ {1,−1},
𝛾−1 if |𝑥∗ | < 1.

Proof. We first verify (28.14) for any 𝛿 > 0 and 𝛾 = 𝜅−1 as stated. Suppose first that 𝑥∗ = 1
so that 𝑥 ∈ [𝜕𝐺]−1(𝑥∗) = [0,∞). This implies that 𝑥 = |𝑥 |, and hence (28.14) becomes

|𝑥 | ≥ 𝑥 + 𝛾 inf
𝑥≥0

(𝑥 − 𝑥)2 ( |𝑥 − 𝑥 | ≤ 𝛿).

If 𝑥 ≥ 0, this trivially holds by taking 𝑥 = 𝑥 . If 𝑥 ≤ 0, the right-hand side is minimized by
𝑥 = 0, and thus the inequality holds for 𝑥 ≥ −2𝛾−1. Since 𝑥 ≥ 0, this is guaranteed by our
bound on 𝛿 . The case 𝑥∗ = −1 is analogous.

If |𝑥∗ | < 1, then 𝑥 ∈ [𝜕𝐺]−1(𝑥∗) = {0}, and hence (28.14) becomes

|𝑥 | ≥ 𝛾 |𝑥 |2 ( |𝑥 | ≤ 𝛿).

383



29 splitting methods: faster convergence from regularity

This again holds by our choice of 𝛿 .

Corollary 28.8 now yields (i). Adding

𝐺 (𝑥) −𝐺 (𝑥) ≥ ⟨𝑥∗, 𝑥 − 𝑥⟩ (𝑥∗ ∈ 𝜕𝐺 (𝑥))

to (28.14), we also obtain (29.4) and thus (ii). □

Remark 29.4. If we allow in the definition of subregularity or submonotonicity an arbitrary neigh-
borhood of 𝑥 instead of a ball, then Lemma 29.3 holds in a much larger neighborhood.

29.2 local linear convergence of explicit splitting

Returning to the notation used in Chapters 8 to 12, we now assume throughout that 𝑋 is a
Hilbert space, 𝐹,𝐺 : 𝑋 → ℝ are convex, proper, and lower semicontinuous, and that 𝐹 is
Fréchet differentiable and has a Lipschitz continuous gradient ∇𝐹 with Lipschitz constant
𝐿 ≥ 0. Let further an initial iterate 𝑥0 ∈ 𝑋 and a step size 𝜏 > 0 be given and let the sequence
{𝑥𝑘}𝑘∈ℕ be generated by the forward-backward splitting method (or basic proximal point
method if 𝐹 = 0), i.e., by solving for 𝑥𝑘+1 in

(29.5) 0 ∈ 𝜏 [𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘)] + (𝑥𝑘+1 − 𝑥𝑘).

We also write 𝐻 ≔ 𝜕𝐺 + ∇𝐹 : 𝑋 ⇒ 𝑋 . Finally, it is worth recalling the approach of
Chapter 10 for encoding convergence rate into “testing” parameters 𝜑𝑘 > 0.

We start our analysis by adapting the proofs of Theorems 10.2 and 11.4 to employ the
squared distance function 𝑥 ↦→ dist2(𝑥 ;𝑋 ) to the entire solution set 𝑋 = 𝐻−1(0) in place
of the squared distance function 𝑥 ↦→ ∥𝑥 − 𝑥 ∥2

𝑋
to a fixed 𝑥 ∈ 𝐻−1(0).

Lemma 29.5. Let 𝑋 ⊂ 𝑋 . If for all 𝑘 ∈ ℕ and𝑤𝑘+1 ≔ −∇𝐹 (𝑥𝑘) − 𝜏−1(𝑥𝑘+1 − 𝑥𝑘) ∈ 𝜕𝐺 (𝑥𝑘+1),

(29.6) inf
𝑥∈𝑋

(𝜑𝑘
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 + 𝜑𝑘𝜏 ⟨𝑤𝑘+1 + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋
)

≥ 𝜑𝑘+1
2 dist2(𝑥𝑘+1, 𝑋 ) − 𝜑𝑘

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ,

then

(29.7) 𝜑𝑁

2 dist2(𝑥𝑁 , 𝑋 ) ≤ 𝜑1
2 dist2(𝑥0, 𝑋 ) (𝑁 ≥ 1).
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29 splitting methods: faster convergence from regularity

Proof. Inserting (29.5) into (29.6) yields

(29.8) inf
𝑥∈𝐻−1 (0)

𝜑𝑘

(
1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 + 1

2 ∥𝑥
𝑘+1 − 𝑥 ∥2

𝑋 − ⟨𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥⟩𝑋
)

≥ 𝜑𝑘+1
2 dist2(𝑥𝑘+1;𝐻−1(0)) .

Using the three-point formula (9.1), we can then rewrite (29.8) as

𝜑𝑘

2 dist2(𝑥𝑘 ;𝐻−1(0)) ≥ 𝜑𝑘+1
2 dist2(𝑥𝑘+1;𝐻−1(0)) .

The claim now follows by a telescoping sum over 𝑘 = 0, . . . , 𝑁 − 1. □

rates from error bounds and metric subregularity

Our first approach for the satisfaction of (29.6) is based on error bounds, which we will
prove using metric subregularity. The essence of error bounds is to prove for some 𝜃 > 0
that

∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 ≥ 𝜃 ∥𝑥𝑘+1 − 𝑥 ∥𝑋 .
We slightly weaken this condition, and assume the bound to be relative to the entire solution
set, i.e.,

(29.9) ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≥ 𝜃 dist2(𝑥𝑘+1;𝐻−1(0)) .

This bound holds under metric subregularity. We first need the following technical lemma
on the iteration (29.5).

Lemma 29.6. If 0 < 𝜏𝐿 < 1, then

1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≥ 𝜏2

4(1 + 𝐿2𝜏2) dist2(0, 𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘+1)) .

Proof. Since −(𝑥𝑘+1 − 𝑥𝑘) ∈ 𝜏 [𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘)] by (29.5), we have

(29.10) 1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 =

1
2 dist2(0, {−(𝑥𝑘+1 − 𝑥𝑘)}) ≥ 1

2 dist2(0, 𝜏 [𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘)]).
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29 splitting methods: faster convergence from regularity

The generalized Young’s inequality for any 𝛼 ∈ (0, 1) then yields

1
2 dist2(0, 𝜏 [𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘)])

=
𝜏2

2 dist2(∇𝐹 (𝑥𝑘+1) − ∇𝐹 (𝑥𝑘), 𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘+1))

= inf
𝑞∈𝜕𝐺 (𝑥𝑘+1)

𝜏2

2 ∥(∇𝐹 (𝑥𝑘+1) − ∇𝐹 (𝑥𝑘)) − (𝑞 + ∇𝐹 (𝑥𝑘+1))∥2
𝑋

≥ 𝜏2(1 − 𝛼−1)
2 ∥∇𝐹 (𝑥𝑘+1) − ∇𝐹 (𝑥𝑘)∥2

𝑋 + inf
𝑞∈𝜕𝐺 (𝑥𝑘+1)

𝜏2(1 − 𝛼)
2 ∥𝑞 + ∇𝐹 (𝑥𝑘+1)∥2

𝑋

≥ 𝜏2(1 − 𝛼−1)𝐿2

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 + 𝜏

2(1 − 𝛼)
2 dist2(0, 𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘+1)),

where we have used in the last step that 1 − 𝛼−1 < 0 and that ∇𝐹 is Lipschitz continuous.
Combining this estimate with (29.10), we obtain that

1 − 𝜏2(1 − 𝛼−1)𝐿2

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≥ 𝜏2(1 − 𝛼)

2 dist2(0, 𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘+1)) .

Rearranging and using that 1 > 𝜏2(1 − 𝛼−1)𝐿2 by assumption then yields

1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≥ 𝜃

2 dist2(0, 𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘+1)) .

for
𝜃 ≔

𝜏2(1 − 𝛼)
1 − 𝜏2(1 − 𝛼−1)𝐿2 ,

which for 𝛼 = 1/2 yields the claim. □

Metric subregularity then immediately yields the error bound (29.9).

Lemma 29.7. Let𝐻 be metrically subregular at 𝑥 for𝑤 = 0 for 𝜅 > 0 and 𝛿 > 0. If 0 < 𝜏𝐿 ≤ 2
and 𝑥𝑘+1 ∈ 𝔹(𝑥, 𝛿), then (29.9) holds with 𝜃 = 𝜏2

2𝜅2 (1+𝐿2𝜏2) .

Proof. Combining Lemma 29.6 and the definition of metric subregularity yields

1
2 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 ≥ 𝜏2

4(1 + 𝐿2𝜏2) dist2(0, 𝐻 (𝑥𝑘+1)) ≥ 𝜏2

4𝜅2(1 + 𝐿2𝜏2) dist2(𝑥𝑘+1, 𝐻−1(0)) . □

From this lemma,we now obtain local linear convergence of the forward-backward splitting
method when 𝐻 is metrically subregular at a solution.

386



29 splitting methods: faster convergence from regularity

Theorem 29.8. Let 𝐻 be metrically subregular at 𝑥 ∈ 𝐻−1(0) for𝑤 = 0 for 𝜅 > 0 and 𝛿 > 0.
If 0 < 𝜏𝐿 ≤ 2 and 𝑥𝑘 ∈ 𝔹(𝑥, 𝛿) for all 𝑘 ∈ ℕ, then (29.7) holds for 𝜑𝑘+1 ≔ 𝜑𝑘 (1 + 𝜃 ) and
𝜑0 = 1 with 𝜃 = 𝜏2

2𝜅2 (1+𝐿2𝜏2) . In particular, dist2(𝑥𝑁 ;𝐻−1(0)) → 0 at a linear rate.

Proof. Let 𝑥 ∈ 𝐻−1(0) and𝑤𝑘+1 ∈ 𝜕𝐺 (𝑥𝑘+1) as in Lemma 29.5. From (10.11) in the proof of
Theorem 10.2 and using 𝜏𝐿 ≤ 2, we obtain

⟨𝑤𝑘+1 + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ −𝐿4 ∥𝑥
𝑘+1 − 𝑥𝑘 ∥2

𝑋 ≥ − 1
2𝜏 ∥𝑥

𝑘+1 − 𝑥𝑘 ∥2
𝑋 .

Lemma 29.7 now yields the error bound (29.9) and hence for all 𝑥 ∈ 𝐻−1(0) that
𝜑𝑘

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 + 𝜑𝑘+1 − 𝜑𝑘𝜃

2 ∥𝑥𝑘+1 − 𝑥 ∥𝑋 ≥ 𝜑𝑘+1
2 dist2(𝑥𝑘+1;𝐻−1(0)) .

Summing these two estimates yields

𝜑𝑘

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 + 𝜑𝑘2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 + 𝜑𝑘𝜏 ⟨𝑤𝑘+1 + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋
≥ 𝜑𝑘+1

2 dist2(𝑥𝑘+1, 𝐻−1(0)) .

Taking the infimum over 𝑥 ∈ 𝐻−1(0), we obtain (29.6) for 𝑋 = 𝐻−1(0). The claim now
follows from Lemma 29.5 and the exponential growth of 𝜑𝑘 . □

The convergence is local due to the requirement 𝑥𝑘+1 ∈ 𝔹(𝑥, 𝛿) for applying subregularity.
In finite dimensions, the weak convergence result of Theorem 9.6 of course guarantees
that the iterates enter and remain in this neighborhood after a finite number of steps.

rates from strong submonotonicity

If 𝐻 is instead strongly submonotone, we can (locally) ensure (29.6) directly.

Theorem 29.9. Let 𝐻 be (𝛾/2, 𝜃/2)-strongly submonotone at 𝑥 ∈ 𝐻−1(0) for𝑤 = 0 for 𝛿 > 0.
If 𝛾 > 𝜃 + 𝐿2𝜏 and 𝑥0 ∈ 𝔹(𝑥, 𝜀) for some 𝜀 > 0 sufficiently small, then (29.7) holds for
𝜑𝑘+1 ≔ 𝜑𝑘 (1 + (𝛾 − 𝐿2𝜏)𝜏) and 𝜑0 = 1. In particular, dist2(𝑥𝑁 ;𝐻−1(0)) → 0 at a linear rate.

Proof. Let𝑤𝑘+1 ≔ −𝜏−1(𝑥𝑘+1 − 𝑥𝑘) − ∇𝐹 (𝑥𝑘) ∈ 𝜕𝐺 (𝑥𝑘+1) by (29.5). By (9.9) in the proof of
Theorem 9.6, if 𝑥0 ∈ 𝔹(𝑥, 𝜀) for 𝜀 > 0 small enough, then ∥𝑥𝑘+1 − 𝑥𝑘 ∥𝑋 ≤ 𝛿/(𝐿 + 𝜏−1) for
all 𝑘 ∈ ℕ such that the Lipschitz continuity of ∇𝐹 yields

∥∇𝐹 (𝑥𝑘+1) − ∇𝐹 (𝑥𝑘) − 𝜏−1(𝑥𝑘+1 − 𝑥𝑘)∥𝑋 ≤ 𝛿.
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Thus 𝑤𝑘+1 ∈ 𝜕𝐺 (𝑥𝑘+1) ∩ 𝔹(−∇𝐹 (𝑥𝑘+1), 𝛿) and 𝑥𝑘+1 ∈ 𝔹(𝑥, 𝛿) for all 𝑘 ∈ ℕ. Now, for all
𝑥 ∈ 𝐻−1(0), the strong submonotonicity of 𝐻 at 𝑥 for 0 implies that

𝜑𝑘𝜏 ⟨𝑤𝑘+1 + ∇𝐹 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑋 + (𝜃 − 𝛾)𝜑𝑘𝜏
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 ≥ 𝜃𝜑𝑘𝜏

2 dist2(𝑥𝑘+1;𝐻−1(0))

for all 𝑘 ∈ ℕ. Cauchy’s inequality and the Lipschitz continuity of ∇𝐹 then yields

𝜑𝑘𝜏 ⟨∇𝐹 (𝑥𝑘) − ∇𝐹 (𝑥𝑘+1), 𝑥𝑘+1 − 𝑥⟩𝑋 ≥ −𝜑𝑘2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 − 𝜑𝑘𝜏

2𝐿2

2 ∥𝑥𝑘+1 − 𝑥 ∥2
𝑋 .

We now sum the last two inequalities to obtain

𝜑𝑘

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 + 𝜑𝑘𝜏 ⟨𝑤𝑘+1 + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋

≥ 𝜃𝜑𝑘𝜏

2 dist2(𝑥𝑘+1;𝐻−1(0)) + (𝛾 − 𝜃 − 𝐿2𝜏)𝜑𝑘𝜏
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 .

Using that 𝜃 − 𝛾 + 𝐿2𝜏 < 0 and taking the infimum over all 𝑥 ∈ 𝐻−1(0) then yields

inf
𝑥∈𝐻−1 (0)

(𝜑𝑘
2 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 + 𝜑𝑘𝜏 ⟨𝑤𝑘+1 + ∇𝐹 (𝑥𝑘), 𝑥𝑘+1 − 𝑥⟩𝑋
)

≥ (𝛾 − 𝐿2𝜏)𝜑𝑘𝜏 + 𝜑𝑘
2 dist2(𝑥𝑘+1;𝐻−1(0)) − 𝜑𝑘

2 ∥𝑥𝑘+1 − 𝑥𝑘 ∥2
𝑋 .

Since 𝛾 − 𝐿2𝜏 > 0 and 𝜑𝑘+1 = 𝜑𝑘 (1 + (𝛾 − 𝐿2𝜏)𝜏), this shows (29.6) with 𝑋 = 𝐻−1(0). The
claim now follows from Lemma 29.5 and the exponential growth of 𝜑𝑘 . □

Remark 29.10. Similarly to Theorem 10.1 (ii), if 𝐹 ≡ 0 we can let 𝜏→∞ to obtain local superlinear
convergence of the proximal point method under strong submonotonicity of 𝜕𝐺 at the solution.

Remark 29.11 (local linear convergence). Local linear convergencewas first derived from error bounds
in [Luo and Tseng, 1992] for matrix splitting problems and was studied for other methods, including
the ADMM and the proximal point method among others, in [Aspelmeier et al., 2016; Han and
Yuan, 2013; Leventhal, 2009; Li and Mordukhovich, 2012]. An alternative approach to the proximal
point method was taken in [Aragón Artacho and Gaydu, 2012] based on Lyusternik–Graves-style
estimates, while [Adly et al., 2015] presented an approach based on metric regularity to Newton’s
method for variational inclusions. Furthermore, [Zhou and So, 2017] proposed a unified approach
to error bounds for generic smooth constrained problems. Finally, [Liu et al., 2018; Valkonen, 2021c]
introduced partial or subspace versions of error bounds and showed the fast convergence of only
some variables of structured algorithms such as the ADMM or PDPS. The relationships between
error bounds and metric subregularity is studied in more detail in [Dontchev and Rockafellar, 2014;
Gfrerer, 2011; Ioffe, 2017; Kruger, 2015; Ngai and Théra, 2008]. Submonotonicity was introduced in
[Valkonen, 2021c].
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30 SPARSE REGULARIZATION

In this and the following chapters, we illustrate the application of the results and methods
of the previous parts to selected nonsmooth optimization problems.

We first study the application of the optimization theory and methods that we have devel-
oped to the solution of some inverse problems, including imaging problems, which we treat
in finite dimensions to avoid technical difficulties unrelated to nonsmooth optimization. In
a nutshell, inverse problems consist in trying to obtain quantities of interest that are not
directly accessible by combining measured (incomplete, noisy) data with a mathematical
model linking the desired quantity to the predicted measurements. Such problems are
usually ill-posed in the sense that a solution may not exist, may not be unique, or may not
be stable with respect to perturbations of the data. Hence one needs to apply regularization
to obtain a stable approximation. For an introduction to the regularization of inverse
problems, we refer the reader to the seminal work [Engl et al., 1996] as well as to the more
recent [Clason, 2020b; Ito and Jin, 2014]. One particular approach is Tikhonov regularization,
which consists in solving an optimization problem that involves the sum of (a) a data term
that matches the model prediction against available data and of (b) a regularization term
that attempts to promote expected and desirable features in the reconstruction (and is
typically required to obtain well-posedness of the regularized problem). An increasingly
popular class of regularization terms promotes “sparsity” of the solution in the sense that it
can explain the data with a minimal number of features; as we will see, such terms require
nonsmooth optimization. This class (and nonsmooth optimization in general) is particularly
relevant in the context of mathematical image processing, where the quantity of interest is
an image rather than an abstract physical parameter; see, e.g., [Bredies and Lorenz, 2018;
Scherzer et al., 2009].

In this chapter we start with perhaps the simplest nonsmooth regularization of an inverse
problem: ℓ1-regularized data-fitting, sometimes known as the Lasso problem. The starting
point is linear regression, but we wish to explain the data “in simple terms” only through
its most important features. We then move on to signal recovery applications in the next
Chapters 31 and 32.
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30.1 problem description

Let 𝑏𝑖 ∈ ℝ be a single measurement of an unknown signal 𝑥 ∈ ℝ𝑀 through the filter
𝑎𝑖 ∈ ℝ𝑀 . Without the presence of noise, 𝑏𝑖 = 𝑎𝑇𝑖 𝑥 for the 𝑖 = 1, . . . , 𝑁 measurements. In
statistical contexts, 𝑏𝑖 is known as a dependent variable and 𝑎𝑖 as a data vector. Since each
𝑏𝑖 and 𝑎𝑖 may be noisy, and the system

𝑎𝑇𝑖 𝑥 = 𝑏𝑖, (𝑖 = 1, . . . , 𝑁 ),

may be over- or under-determined, direct solution of 𝑥 from this system is not in general
well-posed. Basic linear regression instead seeks the least squares solution 𝑥 through
solution of the optimization problem

(30.1) min
𝑥∈ℝ𝑀

1
𝑁

𝑁∑︁
𝑖=1

1
2 (𝑏𝑖 − 𝑎

𝑇
𝑖 𝑥)2.

To explain the data {(𝑎𝑖, 𝑏𝑖)} through its most important features, we want 𝑥 to be sparse,
i.e., to have many zero elements, and few nonzero elements. For example, 𝑎𝑖 might be the
attributes (genre, length, etc.) of a film, and 𝑏𝑖 its rating. A sparse vector 𝑥 would then
contain only the most relevant attributes for the rating and their relative weighting. To
perform such sparse regression, let us add to the data fitting term of (30.1) the regularization
term 𝑔(𝑥) = 𝜆∥𝑥 ∥1. Then we obtain the so-called Lasso problem

(30.2) min
𝑥∈ℝ𝑀

1
𝑁

𝑁∑︁
𝑖=1

1
2 (𝑏𝑖 − 𝑎

𝑇
𝑖 𝑥)2 + 𝜆∥𝑥 ∥1

The hope is that to explain the data, the ℓ1-norm regularization termwill cause theminimizer
to select more relevant features from the data, ignoring irrelevant ones.

In the following, we write (30.2) more succinctly as

(30.3) min
𝑥∈ℝ𝑀

𝐽 (𝑥) for 𝐽 (𝑥) ≔ 𝐹 (𝑥) +𝐺 (𝑥),

where

𝐴 ≔ (𝑎1, . . . , 𝑎𝑁 )𝑇 ∈ ℝ𝑁×𝑀 , 𝐹 (𝑥) ≔ 1
2 ∥𝐴𝑥 − 𝑏∥2

2, and 𝐺 (𝑦) ≔ 𝜆∥𝑥 ∥1.

30.2 optimality conditions

Our first result characterizes the solutions of (30.3).
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Theorem 30.1. The vector 𝑥 ∈ ℝ𝑀 is a solution to (30.2) if and only if there exists a 𝑝 ∈ ℝ𝑀

such that

(30.4) −𝐴∗(𝐴𝑥 − 𝑏) = 𝜆𝑝 and 𝑝𝑖 ∈

{1} if 𝑥𝑖 > 0,
{−1} if 𝑥𝑖 < 0,
[−1, 1] if 𝑥𝑖 = 0.

Proof. Since 𝐴 is linear and 𝐹 and 𝐺 are convex, 𝐽 is convex as well. Therefore the convex
Fermat principle of Theorem 4.2 is an equivalent characterization of solutions to (30.2) as
those 𝑥 satisfying 0 ∈ 𝜕𝐽 (𝑥). Since both 𝐹 and𝐺 have full domain and are proper and lower
semicontinuous, we may further use the subdifferential sum rule of Theorem 4.14 to deduce
for all 𝑥 ∈ ℝ𝑀 that 𝜕𝐽 (𝑥) = 𝜕𝐹 (𝑥) + 𝜕𝐺 (𝑥). Since 𝐹 is differentiable, using Theorem 4.5 we
therefore characterize the solutions as those points 𝑥 satisfying

(30.5) −∇𝐹 (𝑥) ∈ 𝜕𝐺 (𝑥).

Since 𝐹 is smooth, expanding ∇𝐹 (𝑥) = 𝐴∗(𝐴𝑥 − 𝑏) and using Example 4.7 to calculate
𝜕𝐺 (𝑥) componentwise yields (30.4). □

Note the complementarity between the primal variable 𝑥 and the dual variable 𝑝 , which
yields the desired sparsity: a component 𝑥𝑖 is zero if the corresponding scaled and “back-
propagated” residual 𝑝𝑖 is smaller than 1 in magnitude. However, 𝑥𝑖 can be zero even if
|𝑝𝑖 | = 1; if this case can be excluded, we say that strict complementarity holds, i.e.,

(30.6) either 𝑥𝑖 ≠ 0 or |𝑝𝑖 | < 1, (𝑖 = 1, . . . , 𝑀).

Thus strict complementarity avoids, whenever 𝑥𝑖 = 0, the boundary cases |𝑝𝑖 | = 1 that
happen when 𝑥 ≠ 0.

30.3 algorithms

The starting point for deriving implementable algorithms for the solution of (30.2) is the
following reformulation of the optimality conditions using the proximal point mapping.

Lemma 30.2. The vector 𝑥 ∈ ℝ𝑀 is a solution to (30.2) if and only if

(30.7) 𝑥 = prox𝜏𝐺 (𝑥 − 𝜏𝐴∗(𝐴𝑥 − 𝑏)) .

Proof. Applying Lemma 6.21 to 𝐺 , we may rewrite (30.5) for any 𝜏 > 0 as

𝑥 = prox𝜏𝐺 (𝑥 − 𝜏∇𝐹 (𝑥)),

which after inserting ∇𝐹 (𝑥) = 𝐴∗(𝐴𝑥 − 𝑏) yields (30.7). □
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forward-backward splitting

The forward-backward or explicit splitting method of (8.6) is our first iterative method for
solving (30.2). As we did in the general setting in Chapter 8, the method can be directly
developed from the proximal-form optimality conditions (30.7). First, using Example 6.25 (ii)
we write the proximal map of 𝐺 in terms of the soft-thresholding operator as

prox𝜏𝐺 (𝑥) = (soft𝜆𝜏 (𝑥1), . . . , soft𝜆𝜏 (𝑥𝑀 )) for soft𝜃 (𝑡) ≔

𝑡 − 𝜃 if 𝑡 > 𝜃,
0 if 𝑡 ∈ [−𝜃, 𝜃 ],
𝑡 + 𝜃 if 𝑡 < −𝜃 .

Then (8.6) becomes

(30.8) 𝑥𝑘+1 ≔ prox𝜏𝐺 (𝑥𝑘 − 𝜏∇𝐹 (𝑥𝑘))
= soft𝜆𝜏 ((Id − 𝜏𝐴∗𝐴)𝑥𝑘 + 𝜏𝐴∗𝑏).

Under mild conditions, the iterates converge.

Theorem 30.3. Suppose 𝜏 ∥𝐴∥2 < 2. Then for any starting point 𝑥0 ∈ ℝ𝑀 , the iterates {𝑥𝑘}𝑘∈ℕ
generated by (30.8) converge to a solution 𝑥 of (30.3).

Proof. The Lipschitz factor of ∇𝐹 (𝑥) = 𝐴∗(𝐴𝑥 − 𝑏) is ∥𝐴∥2. Therefore, the claim follows
from Theorem 9.6. □

Convergence of function values can be similarly deduced from Theorem 11.4.

Theorem 30.3 provides no convergence rates as, indeed, no rates for iterates are in general
known for forward-backward splitting without some sort of stronger growth assumptions.
However, Theorem 30.10 in Section 30.4 below will show that 𝜕[𝐹 +𝐺] is metrically regular
at 𝑥 for 0, provided that the strict complementarity condition (30.6) holds. Since this implies
metric subregularity, Theorem 29.8 can be used to demonstrate the local linear convergence
of (30.8) near a strictly complementary solution.

We can also apply the inertial FISTA method of (12.35) to (30.3). Based on the basic explicit
splitting (30.8), this method becomes

𝑥𝑘+1 = soft𝜆𝜏 ((Id − 𝜏𝐴∗𝐴)𝑥𝑘 + 𝜏𝐴∗𝑏),
𝛼𝑘+1 ≔ 𝜆𝑘+1(𝜆−1

𝑘
− 1),

𝑥𝑘+1 ≔ (1 + 𝛼𝑘+1)𝑥𝑘+1 − 𝛼𝑘+1𝑥
𝑘 .

The initial inertial parameter 𝜆0 = 1, while 𝑥0 ∈ ℝ𝑀 can be chosen freely. Since 𝛼1 = 0, 𝑥0

is never used. Regarding convergence, Theorem 12.12 readily gives the following result.
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Theorem 30.4. Suppose 𝜏 ∥𝐴∥2 ≤ 1. Then for any starting point 𝑥0 ∈ ℝ𝑀 , the iterates {𝑥𝑘}𝑘∈ℕ
generated by (30.3) satisfy 𝐽 (𝑥𝑘) → min 𝐽 at the rate 𝑂 (1/𝑘2).

In fact, under strict complementarity, zeroes are identified in a finite number of steps.

Theorem 30.5. Assume the solution 𝑥 ∈ ℝ𝑀 to (30.2) is unique and satisfies strict comple-
mentarity. Then there exists 𝐾 ∈ ℕ such that the iterates {𝑥𝑘}𝑘∈ℕ generated by (30.3) satisfy
𝑥𝑘𝑖 = 𝑥𝑖 for all 𝑘 ≥ 𝐾 and 𝑖 = 1, . . . , 𝑁 with 𝑥𝑖 = 0.

Proof. Indeed, forward-backward splitting for min𝑥 (𝐹 + 𝐺) and a step length 𝜏 > 0 by
definition satisfies

(30.9) 0 ∈ 𝜕𝐺 (𝑥𝑘+1) + ∇𝐹 (𝑥𝑘) + 𝜏 (𝑥𝑘+1 − 𝑥𝑘).

Following the proof of Theorem 9.6, we have ∥𝑥𝑘+1 − 𝑥𝑘 ∥ → 0 and 𝑥𝑘+1 → 𝑥 provided the
solution 𝑥 is unique. It follows that ∇𝐹 (𝑥𝑘) → ∇𝐹 (𝑥). Furthermore, strict complementarity
yields −[∇𝐹 (𝑥)]𝑖 ∈ (−𝜆, 𝜆) for all 𝑖 with 𝑥𝑖 = 0, and hence for those same 𝑖 it holds that
−[∇𝐹 (𝑥𝑘)]𝑖 ∈ (−𝜆, 𝜆) for all 𝑘 ≥ 𝐾 for some 𝐾 ∈ ℕ. By (30.9) and ∥𝑥𝑘+1 − 𝑥𝑘 ∥ → 0, it is
then necessary that [𝜕𝐺 (𝑥𝑘+1)]𝑖 contains a point in (−𝜆, 𝜆). This is only possible if 𝑥𝑘+1

𝑖 = 0
after a finite number of steps. □

Remark 30.6 (unconditional linear convergence and activity identification). It is shown in [Bolte
et al., 2017] through error bounds that forward-backward splitting for the Lasso problem converges
linearly without any assumptions. Error bounds can also be proved more generally based on
piecewise polynomial properties derived in [Li, 2013]. These are used in [Garrigos et al., 2020]
to obtain error bounds in separable Hilbert spaces. This follows earlier works such as [Bredies
and Lorenz, 2008] with stricter assumptions. In the former also a “finite identification property” is
studied following earlier efforts in [Lewis, 2002; Liang et al., 2014], among others; it can be shown
that the forward-backward splitting and other methods converge in a finite number of steps to a
smooth submanifold. As verified by elementary analysis in Theorem 30.5, in the case of the Lasso
problem, forward-backward splitting identifies the strictly complementary zeroes in a finite number
of steps.

semismooth newton method

By Theorem 30.1, we know that minimizers 𝑥 of (30.3) satisfy

𝑥 − prox𝛾𝐺 (𝑥 − 𝛾∇𝐹 (𝑥)) = 0

for any 𝛾 > 0. We therefore look for a root of

𝐻 (𝑥) ≔ 𝑥 − prox𝛾𝐺 (𝑥 − 𝛾∇𝐹 (𝑥)) .
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If we can produce an invertible and well-conditioned Newton derivative 𝐷𝑁𝐻 (𝑥) for all 𝑥
in a sufficiently large neighborhood of 𝑥 , this can be done with the semismooth Newton
method (14.4), i.e., solving 𝑠𝑘 from 𝐷𝑁𝐻 (𝑥𝑘)𝑠𝑘 = −𝐻 (𝑥𝑘) and updating 𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘 .
In fact, let𝑇 (𝑥) ≔ 𝑥 −𝛾∇𝐹 (𝑥) and consider the composition prox𝛾𝐺 ◦𝑇 . We may use Theo-
rem 14.3 to obtain 𝐷𝑁𝑇 (𝑥) = Id−𝛾∇2𝐹 (𝑥), and Example 14.10 (ii) to obtain 𝐷𝑁prox𝛾𝐺 . Both
𝐷𝑁prox𝛾𝐺 and 𝐷𝑁𝑇 are locally uniformly bounded (obviously from the characterization
and the continuous differentiability, respectively). Thus, we are justified in using the chain
rule from Theorem 14.4 on the composition to calculate

𝐷𝑁𝐻 (𝑥) = Id − 𝐷𝑁prox𝛾𝐺 (𝑇 (𝑥)) ◦ 𝐷𝑁𝑇 (𝑥)
= Id − 𝟙A(𝑥) [Id − 𝛾∇2𝐹 (𝑥)]
= 𝟙I(𝑥) + 𝛾𝟙A(𝑥)∇2𝐹 (𝑥),

where we have defined the inactive and active sets, respectively, as

(30.10) I(𝑥) ≔ {𝑖 ∈ {1, . . . , 𝑁 } | |𝑥𝑖 − 𝛾 [∇𝐹 (𝑥)]𝑖 | < 𝛾} , A(𝑥) ≔ {1, . . . , 𝑀} \ I(𝑥).
The matrix 𝐷𝑁𝐻 (𝑥) may in general not be invertible, or may be poorly conditioned on the
active components, as we will soon see in more detail. For some 𝜃 > 0, we therefore replace
it with the active-dampened matrix

(30.11) 𝑀 (𝑥) ≔ 𝟙I(𝑥) + 𝛾𝟙A(𝑥)∇2𝐹 (𝑥) + 𝜃𝟙A(𝑥) .

Write 𝑃I(𝑥) and 𝑃A(𝑥) for the projections to the inactive and active components, so that
𝟙I(𝑥) = 𝑃∗I(𝑥)𝑃I(𝑥) , and likewise for the active components. Thus the active-dampened
semismooth Newton step 𝑠𝑘 is determined by

(30.12)
(
𝟙I(𝑥𝑘 ) + 𝛾𝟙A(𝑥𝑘 )∇2𝐹 (𝑥𝑘) + 𝜃𝟙A(𝑥𝑘 )

)
𝑠𝑘 = −𝑥𝑘 + prox𝛾𝐺 (𝑥𝑘 − 𝛾∇𝐹 (𝑥𝑘)) .

Since the proximal point mapping of 𝐺 is the soft shrinkage operator, we have using the
definition of the inactive set that

𝑃I(𝑥𝑘 )prox𝛾𝐺 (𝑥𝑘 − 𝛾∇𝐹 (𝑥𝑘)) = 0.

Hence, multiplying (30.12) from the left by 𝑃I(𝑥𝑘 ) , we deduce that 𝑃I(𝑥𝑘 )𝑠𝑘 = −𝑃I(𝑥𝑘 )𝑥𝑘 .
Thus 𝑠𝑘𝑖 = −𝑥𝑘𝑖 for the inactive components 𝑖 ∈ I(𝑥𝑘). It follows that 𝑥𝑘+1

𝑖 = 0 for 𝑖 ∈ I(𝑥𝑘).
On the other, writing 𝑠𝑘 = 𝟙A(𝑥𝑘 )𝑠𝑘 + 𝟙I(𝑥𝑘 )𝑠𝑘 = 𝑃∗A(𝑥𝑘 )𝑃A(𝑥𝑘 )𝑠𝑘 − 𝟙I(𝑥𝑘 )𝑥𝑘 and multiplying
(30.12) from the left by 𝑃A(𝑥𝑘 ) yields

(30.13) [𝛾𝑃A(𝑥𝑘 )∇2𝐹 (𝑥𝑘)𝑃∗A(𝑥𝑘 ) + 𝜃 Id]𝑃A(𝑥𝑘 )𝑠
𝑘

= 𝑃A(𝑥𝑘 ) (−𝑥𝑘 + prox𝛾𝐺 (𝑥𝑘 − 𝛾∇𝐹 (𝑥𝑘)) + 𝛾∇2𝐹 (𝑥𝑘)𝟙I(𝑥𝑘 )𝑥
𝑘) .

Since 𝑃A(𝑥𝑘 )∇2𝐹 (𝑥𝑘)𝑃∗A(𝑥𝑘 ) + 𝜃 Id is positive definite, we can solve this for 𝑃A(𝑥𝑘 )𝑠𝑘 . Alto-
gether, therefore, the semismooth Newton method for (30.3) becomes
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(i) form the inactive and active sets I(𝑥𝑘) and A(𝑥𝑘) following (30.10);
(ii) solve 𝑃A(𝑥𝑘 )𝑠𝑘 from (30.13);

(iii) update 𝑥𝑘+1 ≔ 𝟙A(𝑥𝑘 ) (𝑥𝑘 + 𝑠𝑘).
This coincides with an active set strategy similar to those used for solving quadratic sub-
problems in sequential programming methods with inequality constraints; cf. [Ito and
Kunisch, 2008, Chapter 8.4].

For convergence, we need to assume that 𝑃A(𝑥)∇2𝐹 (𝑥)𝑃∗A(𝑥) is invertible. Practically this
means that there are more measurements than attributes that describe the measurements.
Although superlinear convergence has superficially no stricter conditions than linear
convergence, the convergence radius can in practice be smaller, and hence convergence
may not hold for an arbitrary initial iterate 𝑥0.

To improve readability of the next theorem proving these properties, we recall the following
“operator Young’s inequality”.

Lemma 30.7. On Hilbert spaces 𝑋 and 𝑌 , let 𝐴 ∈ 𝕃(𝑋 ;𝑌 ) and 𝐵 ∈ 𝕃(𝑋 ;𝑌 ). Then for any
𝛽 > 0, we have

2𝐴∗𝐵 ⪯ 𝛽𝐴∗𝐴 + 𝛽−1𝐵∗𝐵,

where 𝐴 ⪯ 𝐵 means that 𝐵 −𝐴 is positive semi-definite.

Proof. Take any 𝑥 ∈ 𝑋 . Then using the Cauchy–Schwarz and Young’s inequality yields

2⟨𝑥,𝐴∗𝐵𝑥⟩𝑋 = 2⟨𝐴𝑥, 𝐵𝑥⟩𝑌 ≤ 𝛽 ∥𝐴𝑥 ∥2
𝑌 + 𝛽−1∥𝐵𝑥 ∥2

𝑌 = ⟨𝑥, (𝛽𝐴∗𝐴 + 𝛽−1𝐵∗𝐵)𝑥⟩𝑋 .

Since this holds for all 𝑥 ∈ 𝑋 , this means that (𝛽𝐴∗𝐴 + 𝛽−1𝐵∗𝐵) − 2𝐴∗𝐵 is positive semi-
definite. □

Theorem 30.8. Let𝑥 be a (unique) minimizer of (30.3). Let𝛾, 𝜃 > 0 satisfy 2(1−𝜃2) > 𝛾𝜃 ∥𝐴∥2,
and suppose that 𝑃A(𝑥)𝐴∗𝐴𝑃∗A(𝑥) is positive definite. If 𝑥

0 is sufficiently close to 𝑥 , then the
sequence {𝑥𝑘+1}𝑘∈ℕ generated by iterating (i)–(iii) above converges linearly to 𝑥 . If 𝜃 = 0, and
𝛾 > 0 is arbitrary, the convergence is superlinear.

Proof. We first consider linear convergence. Let𝑀 (𝑥) be given by (30.11). Then

∥𝑀 (𝑥) − 𝐷𝑁𝐻 (𝑥)∥𝕃(ℝ𝑁 ;ℝ𝑁 ) = ∥𝜃𝟙A(𝑥) ∥𝕃(ℝ𝑁 ;ℝ𝑁 ) ≤ 𝜃,

so the corresponding assumption of Theorem 14.2 (applied to 𝐻 in place of 𝐹 ) holds. To
apply the theorem, we still need to prove ∥𝑀 (𝑥)−1∥𝕃(ℝ𝑁 ;ℝ𝑁 ) ≤ 𝐶 for all 𝑥 ∈ 𝑈 for some
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neighborhood 𝑈 of 𝑥 and some 𝐶 > 0 with 𝐶𝜃 < 1. That is to say, 𝑀 (𝑥)∗𝑀 (𝑥) ⪰ 𝐶−2 Id.
We expand

(30.14) 𝑀 (𝑥)∗𝑀 (𝑥) = 𝟙I(𝑥) + 𝛾2𝐴∗𝐴𝟙A(𝑥)𝐴∗𝐴 + 𝜃𝛾𝟙A(𝑥)𝐴∗𝐴 + 𝜃𝛾𝐴∗𝐴𝟙A(𝑥) + 𝜃2𝟙A(𝑥)
= 𝟙I(𝑥) + 𝛾2𝐴∗𝐴𝟙A(𝑥)𝐴∗𝐴 + 2𝜃𝛾𝟙A(𝑥)𝐴∗𝐴𝟙A(𝑥) + 𝜃2𝟙A(𝑥)
+ 𝜃𝛾𝟙A(𝑥)𝐴∗𝐴𝟙I(𝑥) + 𝜃𝛾𝟙I(𝑥)𝐴∗𝐴𝟙A(𝑥) .

Eliminating the second term by positive semi-definiteness, and applying Lemma 30.7 to
the last two terms yields for any 𝛽 > 0 that

(30.15) 𝑀 (𝑥)∗𝑀 (𝑥) ⪰ 𝟙I(𝑥) + (2 − 𝛽)𝜃𝛾𝟙A(𝑥)𝐴∗𝐴𝟙A(𝑥) + 𝜃2𝟙A(𝑥) − 𝛽−1𝜃𝛾𝟙I(𝑥)𝐴∗𝐴𝟙I(𝑥) .

By assumption, 𝑃A(𝑥)𝐴∗𝐴𝑃∗A(𝑥) is positive definite and A(𝑥) = A(𝑥) for all 𝑥 in some
open neighborhood 𝑈 of 𝑥 . Therefore 𝟙A(𝑥)𝐴∗𝐴𝟙A(𝑥) ⪰ 𝜀𝟙A(𝑥) for some 𝜀 > 0 and all
𝑥 ∈ 𝑈 . Consequently, it follows from (30.15) that

𝑀 (𝑥)∗𝑀 (𝑥) ⪰ (1 − 𝛽−1𝛾𝜃 ∥𝐴∥2)𝟙I(𝑥) + ((2 − 𝛽)𝜃𝛾𝜀 + 𝜃2)𝟙A(𝑥) for all 𝑥 ∈ 𝑈 .

We have𝑀 (𝑥)∗𝑀 (𝑥) ≥ 𝐶−2 Id for some𝐶 > 0 with𝐶𝜃 < 1 if both factors in this expression
are strictly greater than 𝜃2. For the second factor, this follows from taking any 𝛽 ∈ (0, 2).
Minding our assumption 2(1 − 𝜃2) > 𝛾𝜃 ∥𝐴∥2, also the first factor is greater than 𝜃2 for
some 𝛽 ∈ (0, 2). The linear convergence claim now follows from Theorem 14.2.

To show superlinear convergence when 𝜃 = 0, we will use Theorem 14.1, which requires us
to show that ∥𝐷𝑁𝐻 (𝑥)−1∥𝕃(ℝ𝑛 ;ℝ𝑛) ≤ 𝐶 for some𝐶 > 0. Since now𝑀 = 𝐷𝑁𝐻 , this amounts
to showing 𝐶−2 Id ⪯ 𝑀 (𝑥)∗𝑀 (𝑥). We expand

𝐴∗𝐴𝟙A(𝑥)𝐴∗𝐴 = (𝟙A(𝑥)𝐴∗𝐴𝟙A(𝑥))2 + 𝟙A(𝑥)𝐴∗𝐴𝟙A(𝑥)𝐴∗𝐴𝟙I(𝑥)
+ 𝟙I(𝑥)𝐴∗𝐴𝟙A(𝑥)𝐴∗𝐴𝟙A(𝑥) + 𝟙I(𝑥)𝐴∗𝐴𝟙A(𝑥)𝐴∗𝐴𝟙I(𝑥) .

We then apply Lemma 30.7 to the middle terms and follow with 𝟙A(𝑥)𝐴∗𝐴𝟙A(𝑥) ≥ 𝜀𝟙A(𝑥)
to obtain for any 𝜇 > 0 the bound

𝛾2𝐴∗𝐴𝟙A(𝑥)𝐴∗𝐴 ⪰ (1 − 𝜇) (𝟙A(𝑥)𝐴∗𝐴𝟙A(𝑥))2 − (𝜇−1 − 1)𝟙I(𝑥)𝐴∗𝐴𝟙A(𝑥)𝐴∗𝐴𝟙I(𝑥)
⪰ (1 − 𝜇)𝜀2𝟙A(𝑥) − (1 − 𝜇−1)∥𝐴∥4𝟙I(𝑥) .

Inserting this lower bound into the expansion𝑀 (𝑥)∗𝑀 (𝑥) = 𝟙I(𝑥) +𝛾2𝐴∗𝐴𝟙A(𝑥)𝐴∗𝐴 from
(30.14), we deduce for some 𝜇 ∈ (0, 1) the existence of𝐶 > 0 such that𝐶−2 Id ⪯ 𝑀 (𝑥)∗𝑀 (𝑥).
Superlinear convergence now follows from Theorem 14.1. □

Remark 30.9. The superlinear convergence of semismooth Newton methods for (30.3) was proved
by [Griesse and Lorenz, 2008].
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numerical illustration

To give a practical perspective on the above algorithms, we illustrate their performance
on a simple numerical example. We take 𝑥 ∈ ℝ1024 and 𝐴 ∈ 𝕃(ℝ1024;ℝ128) as convolution
with a Gaussian kernel (standard deviation 𝜎 = 7 on the domain [0, 1024]) followed by
subsampling. To generate the data 𝑏, we apply𝐴 to the true solution depicted in Figure 30.1,
and apply normally distributed noise of variance 0.03. As regularization parameter, we
take 𝜆 = 0.008. For all algorithms, we use the initial iterate 𝑥0 = 0. For the first-order
methods we take the step length 𝜏 = 0.9/𝐿2, where 𝐿 is an estimate of ∥𝐴∥. For the SSN
method, we take the proximal parameter 𝛾 = 100/𝐿2. Since the basic SSN method (𝜃 = 0)
does not exhibit convergence, we use the active-dampened variant (𝜃 > 0). Further details
on the experimental setup can be found in the accompanying code [Clason and Valkonen,
2023].

We show the data and the reconstructions in Figure 30.1 and algorithm performance in
Figures 30.2 and 30.3. As predicted by the theory, the inertial acceleration of FISTA (30.3)
makes it faster than the unaccelerated forward-backward splitting method (30.8). Since
the SSN method has to be dampened and hence converges only linearly in this ill-posed
setting, it is clearly outperformed by FISTA.

30.4 stability under perturbations

We now study stability of solutions to the ℓ1-regularized least problem (30.3). We add a
further perturbation parameter 𝑝 ∈ ℝ𝑁 to 𝐽 , setting

𝐽 (𝑥 ;𝑝) ≔ 1
2 ∥𝐴𝑥 − 𝑏 − 𝑝 ∥2

2 + 𝜆∥𝑥 ∥1,

so that 𝐽 (𝑥) ≔ 𝐽 (𝑥 ; 0). Then
𝜕𝑥 𝐽 (𝑥 ;𝑝) = 𝐴∗(𝐴𝑥 − 𝑏 − 𝑝) + 𝜆𝜕∥ · ∥1(𝑥),

so that for perturbed data the solution mapping is given by

𝑆 (𝑝) ≔ {𝑥 ∈ ℝ𝑀 | 0 ∈ 𝜕𝑥 𝐽 (𝑥 ;𝑝)} = {𝑥 ∈ ℝ𝑀 | 𝐴∗𝑝 ∈ 𝜕𝐽 (𝑥)} = [(𝜕𝐽 )−1 ◦𝐴∗] (𝑝).

The next result shows that the Lasso problem is data-stable at the solution 𝑥 for data 𝑏 if (for
simplicity) the solution is strictly complementary, and the matrix 𝐴∗𝐴 is invertible on the
subspace corresponding to the active (i.e., explaining) features. This is the same condition
as in the convergence Theorem 30.8 for the SSN method. Indeed, due to optimality of
𝑥 and the strict complementarity of 𝑥 and 𝑝 , I is the same set as I(𝑥) defined for the
SSN method in (30.10). This can seen by using the proximal characterization (8.5) of the
optimality conditions, and the zero-projection properties of the soft-thresholding operator,
Example 6.25 (ii).
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Figure 30.1: Sparse reconstruction data and result.
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Figure 30.2: Sparse reconstruction algorithm performance: iterations versus function value.
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Figure 30.3: Sparse reconstruction algorithm performance: time (in seconds) versus func-
tion value.

Theorem 30.10. For (30.3), suppose 0 ∈ 𝜕𝐽 (𝑥) and that𝑥 and𝑝 ≔ −𝜆−1𝐴∗(𝐴𝑥−𝑏) ∈ 𝜕∥ · ∥1(𝑥)
satisfy the strict complementarity condition (30.6). Let

I ≔ {𝑖 ∈ {1, . . . , 𝑀} | 𝑥𝑖 = 0}
be the set of inactive indices, and set

𝑉 =
{
𝑥 ∈ ℝ𝑀

�� 𝑥𝑖 = 0 for 𝑖 ∈ I}
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Denote by 𝑃𝑉 the orthogonal projection onto 𝑉 . Then 𝑆 has the Aubin property at 0 for 𝑥 if
𝑃𝑉𝐴

∗𝐴𝑃∗
𝑉
is nonsingular on 𝑉 .

Proof. Since the solution mapping 𝑆 has the Aubin property at 0 for 𝑥 if 𝜕𝐽 is metrically
regular at 𝑥 for 0, we use Corollary 27.14 to verify the latter. To do so, we need an expression
for𝐷∗ [𝜕𝐽 ]. For simplicity of notation, we write𝑔 ≔ ∥ · ∥1, so that 𝐽 (𝑥) = 1

2 ∥𝐴𝑥−𝑏∥2
2+𝜆𝑔(𝑥).

Then Theorem 4.14 and Example 4.7 give

𝜕𝐽 (𝑥) = 𝐴𝑇 (𝐴𝑥 − 𝑏) + 𝜆𝜕𝑔(𝑥) for 𝜕𝑔(𝑥) =
𝑀∏
𝑖=1

{
sign𝑥𝑖 𝑥𝑖 ≠ 0,
[−1, 1] 𝑥𝑖 = 0.

To calculate 𝐷∗ [𝜕𝐽 ] (𝑥 |0), we need 𝜕𝑔 to be graphically regular at 𝑥 for 𝑝 . By Theorem 20.18,
this is equivalent to the strict complementarity assumed in (30.6).

Since the first part of 𝜕𝐽 (𝑥) is single-valued and linear, using Theorems 25.14 and 25.15
together with the assumption (30.6), we obtain for any 𝑝∗ ∈ ℝ𝑀 that

(30.16) 𝐷∗ [𝜕𝐽 ] (𝑥 |0) (𝑝∗) = 𝐴∗𝐴𝑝∗ + 𝜆𝐷∗ [𝜕𝑔] (𝑥 |𝑝) (𝑝∗).

In Theorem 20.18, for the strictly complementary cases (30.6), we have already calculated
that

𝐷∗ [𝜕𝑔] (𝑥 |𝑝) (𝑝∗) =
𝑀∏
𝑖=1


{0} if 𝑥𝑖 ≠ 0, 𝑝𝑖 = sign𝑥𝑖,
ℝ if 𝑥𝑖 = 0, [𝑝∗]𝑖 = 0, |𝑝𝑖 | < 1,
∅ otherwise.

From (30.16) we now obtain

𝐷∗ [𝜕𝐽 ] (𝑥 |0) (𝑝∗) =
{
𝐴∗𝐴𝑝∗ +𝑉⊥, 𝑝∗ ∈ 𝑉 ,
∅, 𝑝∗ ∉ 𝑉 .

Note how 𝜆 disappears from the expression, as 𝑉 and 𝑉⊥ are subspaces and thus invariant
under multiplication by 𝜆. We then calculate

|𝐷∗ [𝜕𝐽 ] (𝑥 |0)−1 |+ = sup{∥𝑝∗∥ | ∃Δ𝑝∗ ∈ 𝐷∗ [𝜕𝑔] (𝑥 |0) (𝑝∗), ∥𝑝∗∥ ≤ 1}
= sup{∥𝑝∗∥ | Δ𝑥 ∈ 𝑉 , 𝑧 ∈ 𝑉⊥ ∥𝐴∗𝐴𝑝∗ + 𝑧∥ ≤ 1}
= sup{∥𝑝∗∥ | Δ𝑥 ∈ 𝑉 , ∥𝑃𝑉𝐴∗𝐴𝑃∗𝑉𝑝

∗∥ ≤ 1}.

Thus Corollary 27.14 shows that 𝜕𝐽 is metrically regular at 𝑥 for 0. □

We can also prove sensitivity with respect to the regularization parameter under the exact
same conditions as in the previous theorem.
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Theorem 30.11. Suppose that the conditions of Theorem 30.10 hold and that 𝑃𝑉𝐴∗𝐴𝑃∗
𝑉
is

nonsingular on 𝑉 . Let

𝑍 (�̃�) ≔ {𝑥 ∈ ℝ𝑀 | 0 ∈ 𝜕𝐽 (𝑥 ; �̃�)} for 𝐽 (𝑥 ; �̃�) ≔ 1
2 ∥𝐴𝑥 − 𝑏∥2

2 + �̃�∥𝑥 ∥1.

Then 𝑍 has the Aubin property at 𝜆 for any 𝑥 ∈ 𝑍 (𝜆).

Proof. In Theorem 28.5, take 𝑔(𝑥) = ∥𝑥 ∥1 and ℎ(𝑥) = 1
2 ∥𝐴𝑥 − 𝑏∥2

2. If we verify (28.8), i.e.,

0 ∈ 𝐴∗𝐴𝑦 + 𝜆𝐷∗ [𝜕𝑔] (𝑥 | − 𝜆−1𝐴∗(𝐴𝑥 − 𝑏)) (𝑦) ⇒ 𝑦 = 0,

then Theorem 28.5 establishes that 𝑍 has the Aubin property at 𝜆. The strict complementar-
ity condition (30.6) implies that either 𝑥𝑖 ≠ 0 or | [𝜆−1𝐴∗(𝐴𝑥 − 𝑏)]𝑖 | < 1 for all components
𝑖 = 1, . . . , 𝑀 . Therefore, Theorem 20.18 shows that

𝐷∗ [𝜕𝑔] (𝑥 | − 𝜆−1𝐴∗(𝐴𝑥 − 𝑏)) (𝑦) = 𝑉⊥ ≠ ∅

if and only if 𝑦 ∈ 𝑉 . Consequently, (28.8) becomes

0 ∈ 𝐴∗𝐴𝑦 +𝑉⊥ and 𝑦 ∈ 𝑉 ⇒ 𝑦 = 0.

But this follows from the assumption that 𝑃𝑉𝐴∗𝐴𝑃∗
𝑉
is invertible on 𝑉 . □

Remark 30.12 (regularization theory). A proof of convergence of solutions to the sparse regulariza-
tion problems (30.3) in the sense of Section 28.3 as 𝜆→ 0 can be found in [Valkonen, 2021b].
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FITTING

Nonsmooth norms are not only useful as regularization terms. In (30.2), the use of the
sum of squares as a data fitting term was justified by statistical arguments: For Gaussian
noise, its minimizer coincides with themean of the signal, which is themaximum likelihood
estimator under this assumption. However, that connection is lost for non-Gaussian noise,
in particular if the data contains outliers (rare deviations of much larger magnitude than a
normal distribution would predict). A particular such error model is impulsive noise, which
is characterized by containing only outliers. Such errors are relevant in digital signal and
image processing, where they can arise from malfunctioning pixels in camera sensors,
faulty memory locations in hardware, or transmission in noisy channels. One particular
model is random-valued impulsive noise, which corresponds to additive errors of the form

𝜂 (𝑥) =
{
𝜉 with probability 𝑟,
0 with probability 1 − 𝑟,

where 𝑟 ∈ [0, 1] is the fraction of faulty channels and the normally distributed random
variable 𝜉 with mean 0 and variance 𝜎 > 0 is the (independent) noise on each affected
channel. A more extreme model is salt-and-pepper noise, where the data in each affected
channel is replaced by either 0 or 1 (modeling, e.g., pixels in CCD sensors that are either
defective or saturated by cosmic noise).

Statistically, a more robust estimator in the presence of outliers is the median, which
minimizes – instead of the sum of squares – the sum of absolute values; see [Gelman
et al., 2013; Huber, 2009]. This leads to replacing in (30.3) the squared ℓ2 norm by the
(nonsquared) ℓ1 norm. (Another motivation for this is that at least for impulsive noise, the
model output should match the data everywhere except for the outliers – i.e., that the
residual data mismatch is sparse.) Due to their relevance in signal and image processing,
such problems have attracted increasing interest in the last decade; here we only mention
[Clason et al., 2010; Kärkkäinen et al., 2005; Yang et al., 2009] as a sample of relevant
work. To avoid additional complexity, we here consider again the regression problem from
Chapter 30, where we now assume as in [Clason et al., 2010; Kärkkäinen et al., 2005] that
the noise is sparse but the solution is smooth.
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31.1 problem description

We consider for 𝐴 ∈ ℝ𝑁×𝑀 and 𝑏 ∈ ℝ𝑁 as in (30.3) the ℓ1-fitting problem

(31.1) min
𝑥∈ℝ𝑀

𝜆∥𝐴𝑥 − 𝑏∥1 + 1
2 ∥𝑥 ∥

2
2,

where 𝜆 > 0 is a (inverse) regularization parameter related to the noise level. (The benefit
of writing the problem in this form instead of using 𝛼 ≔ 𝜆−1 as in Chapter 30 will become
apparent in the following.) The regularization term is smooth to indicate no sparsity
requirements on the reconstructed signal, merely the desire for small values.

31.2 optimality conditions

Using the same approach as in Chapter 30, we obtain optimality conditions for (31.1). We
write the problem in the canonical form

min
𝑥∈ℝ𝑀

𝐽 (𝑥) where 𝐽 (𝑥) ≔ 𝐹 (𝐴𝑥) +𝐺 (𝑥)

by taking
𝐹 (𝑦) ≔ 𝜆∥𝑦 − 𝑏∥1 and 𝐺 (𝑥) ≔ 1

2 ∥𝑥 ∥
2
2.

We then have the following explicit optimality conditions.

Theorem 31.1. A vector 𝑥 ∈ ℝ𝑀 is a solution to (31.1) if and only if there exists 𝑦 ∈ ℝ𝑁 such
that

(31.2) −𝑥 = 𝐴∗𝑦 and 𝑦𝑖 ∈

{𝜆} if [𝐴𝑥 − 𝑏]𝑖 > 0,
{−𝜆} if [𝐴𝑥 − 𝑏]𝑖 < 0,
[−𝜆, 𝜆] if [𝐴𝑥 − 𝑏]𝑖 = 0.

Proof. Since 𝐹 and 𝐺 are convex and 𝐴 is linear, also 𝐽 is convex. Therefore the convex
Fermat principle of Theorem 4.2 characterizes the solution of (31.1) as those 𝑥 satisfying
0 ∈ 𝜕𝐽 (𝑥). Since both 𝐹 and𝐺 have full domains and are proper and lower semicontinuous,
we may further use the subdifferential sum rule of Theorem 4.14 and the chain rule of
Theorem 4.17 to calculate for all 𝑥 ∈ ℝ𝑚 that 𝜕𝐽 (𝑥) = 𝐴∗𝜕𝐹 (𝐴𝑥) + 𝜕𝐺 (𝑥). Since 𝐺 is
differentiable, using Theorem 4.5 we therefore characterize the solutions as those points 𝑥
satisfying

(31.3) −𝑥 ∈ 𝐴∗𝜕𝐹 (𝐴𝑥).

Using Example 4.7 to calculate 𝜕𝐹 (𝐴𝑥) componentwise, we obtain (31.2). □

403



31 ℓ1
fitting

Based on the Fenchel–Rockafellar Theorem 5.11, we may alternatively study optimality
conditions for the dual problem

min
𝑦∈ℝ𝑁

𝑄 (𝑦) ≔ 𝐹 ∗(𝑦) +𝐺∗(−𝐴∗𝑦).

We know from Lemma 5.4 that 𝐺∗(𝑥) = 1
2 ∥𝑥 ∥2

2. By Example 5.3 (ii) and Lemma 5.7 we also
calculate that

(31.4) 𝐹 ∗(𝑦) = 𝛿𝜆𝔹∞ (𝑦) + ⟨𝑏, 𝑦⟩.
Therefore, the dual problem is given by

(31.5) min
𝑦∈ℝ𝑁

𝛿𝜆𝔹∞ (𝑦) + ⟨𝑏, 𝑦⟩ + 1
2 ∥𝐴

∗𝑦 ∥2
2.

For this problem, we can also derive explicit optimality conditions.

Theorem 31.2. A vector 𝑦 ∈ ℝ𝑁 is a solution to (31.5) of (31.1) if and only if there exists a
𝑝 ∈ ℝ𝑁 such that

(31.6) −𝐴𝐴∗𝑦 = 𝑝 and [𝑝 − 𝑏]𝑖 ∈


[0,∞) if 𝑦𝑖 = 𝜆,
0 if 𝑦𝑖 ∈ (−𝜆, 𝜆),
(−∞, 0] if 𝑦𝑖 = −𝜆,
∅ otherwise.

Proof. Again, the Fermat principle characterizes the solutions via 0 ∈ 𝜕𝑄 (𝑦). Since 𝐺∗ has
a full domain and both 𝐹 ∗ and 𝐺∗ are proper and lower semicontinuous, we may further
use the subdifferential sum rule of Theorem 4.14 and the chain rule of Theorem 4.17 to
calculate for all 𝑦 ∈ ℝ𝑁 that 𝜕𝑄 (𝑦) = −𝐴𝜕𝐺∗(−𝐴∗𝑦) + 𝜕𝐹 ∗(𝑥). By the differentiability of
𝐺∗, again any dual solution 𝑦 is therefore characterized by

(31.7) −𝐴𝐴∗𝑦 = 𝐴∇𝐺∗(−𝐴∗𝑦) ∈ 𝜕𝐹 ∗(𝑦).
Using Example 4.9 the expression of the subdifferential of the indicator function of an
interval, we obtain (31.6). □

We can also characterize the primal and dual solutions through a primal-dual system.

Theorem 31.3. The solutions 𝑥 ∈ ℝ𝑀 and 𝑦 ∈ ℝ𝑁 to the primal problem (31.1) and the dual
problem (31.5) are simultaneously characterized by (31.2) or, equivalently,

(31.8) −𝐴∗𝑦 = 𝑥 and [𝐴𝑥 − 𝑏]𝑖 ∈


[0,∞) if 𝑦𝑖 = 𝜆,
0 if 𝑦 ∈ (−𝜆, 𝜆),
(−∞, 0] if 𝑦 = −𝜆,
∅ otherwise,

404



31 ℓ1
fitting

Proof. According to Theorem 5.11, the primal and dual solutions are characterized by

(31.9) 𝑦 ∈ 𝜕𝐹 (𝐴𝑥) and −𝐴∗𝑦 ∈ 𝜕𝐺 (𝑥).

This expands as (31.2) where 𝑦 is indeed the dual variable. By the Fenchel–Young Lemma 5.8,
the conditions (31.9) equivalently be written

𝐴𝑥 ∈ 𝜕𝐹 ∗(𝑦) and −𝐴∗𝑦 ∈ 𝜕𝐺 (𝑥).

Similarly to the proof of Theorem 31.2, this condition becomes (31.8). □

One may note that the primal-dual condition (31.8) implies the dual condition (31.6) with
𝑝 = 𝐴𝑥 .

31.3 algorithms

Once more, the starting point for implementable algorithms is the proximal point reformu-
lation of the optimality conditions, this time for the dual problem.

Lemma 31.4. A vector 𝑦 ∈ ℝ𝑁 is a solution to (31.5) of (31.1) if and only if

(31.10) 𝑦 = proj𝜆𝔹∞ (𝑦 − 𝜏 [𝐴𝐴∗𝑦 + 𝑏]).

Proof. Recalling Lemma 6.21, we may also rewrite (31.7) in terms of the proximal operator
of 𝐹 ∗, for any 𝜏 > 0 (we just multiply (31.3) by 𝜏) as

𝑦 = prox𝜏𝐹 ∗ (𝑦 + 𝜏𝐴∇𝐺∗(−𝐴∗𝑦)),

Using the expression for 𝐹 ∗ in (31.4) and the definition of the conjugate, we have for any 𝑦
that

prox𝜏𝐹 ∗ (𝑦) = prox𝜏𝛿𝜆𝔹∞ (𝑦 − 𝜏𝑏) = proj𝜆𝔹∞ (𝑦 − 𝜏𝑏).
Hence we obtain (31.10). □

dual forward-backward splitting

Following Section 8.2, we obtain from (31.10) the forward-backward splitting method

(31.11) 𝑦𝑘+1 ≔ proj𝜆𝔹∞ (𝑦𝑘 − 𝜏 [𝐴𝐴∗𝑦𝑘 + 𝑏]).

As an immediate consequence of Theorem 9.6, the iterates of (31.11) converge subject to a
bound on the step length parameter 𝜏 > 0.
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Theorem 31.5. Suppose 𝜏 ∥𝐴∥2 < 2. Then for any starting point 𝑦0 ∈ ℝ𝑁 , the iterates {𝑦𝑘}𝑘∈ℕ
generated by (31.11) converge to a solution 𝑦 of the dual problem (31.5).

By Theorem 31.3, the primal and dual solutions 𝑥 and 𝑦 to (31.1) satisfy 𝑥 = −𝐴∗𝑦 . We can
therefore recover a primal approximate solution 𝑥𝑘 = −𝐴∗𝑦𝑘 from a dual approximate
solution 𝑦𝑘 .

Convergence of function values can be obtained in a similar fashion from Corollary 11.5
under the stricter condition 𝜏 ∥𝐴∥2 ≤ 1. Under this condition, we also obtain from Theo-
rem 12.12 the 𝑂 (1/𝑘2) convergence of the inertial variant

(31.12)


𝑦𝑘+1 ≔ proj𝜆𝔹∞ (𝑦𝑘 − 𝜏 [𝐴𝐴∗𝑦𝑘 + 𝑏]).
𝛼𝑘+1 ≔ 𝜆𝑘+1(𝜆−1

𝑘
− 1),

𝑦𝑘+1 ≔ (1 + 𝛼𝑘+1)𝑦𝑘+1 − 𝛼𝑘+1𝑦
𝑘 .

Here the initial inertial parameter is initialized with 𝜆0 = 1, while 𝑦0 ∈ ℝ𝑁 can be chosen
freely. Since 𝛼1 = 0, the initial iterate 𝑦0 is in fact never used.

primal-dual proximal splitting

We can also apply the PDPS method (8.20) to (31.1) by taking

𝐹 (𝑥) = 1
2 ∥𝑥 ∥

2
2, 𝐺 (𝑧) = 1

2 ∥𝑧 − 𝑏∥1, 𝐾 = 𝐴,

in the canonical problem (8.12). Using Example 5.3 and Lemmas 5.4 and 5.7 we see that
𝐺∗(𝑦) = 𝛿𝜆𝔹∞ (𝑦) + ⟨𝑦,𝑏⟩. Consequently, it is not difficult to verify that we then have

prox𝜎𝐺∗ (𝑦) = proj𝜆𝔹∞ (𝑦 − 𝜎𝑏) .

The projection reduces to a simple componentwise “clamping” of values in the range
[−𝜆, 𝜆]. The PDPS method of (8.20) then becomes

(31.13)


𝑥𝑘+1 ≔

1
1 + 𝜏 (𝑥

𝑘 − 𝜏𝐴∗𝑦𝑘),
𝑥𝑘+1 ≔ 2𝑥𝑘+1 − 𝑥𝑘 ,
𝑦𝑘+1 ≔ proj𝜆𝔹∞ (𝑦𝑘 + 𝜎 (𝐴𝑥𝑘+1 − 𝑏)).

The method converges subject to a simple step length condition.

Theorem 31.6. Suppose 𝜏𝜎 ∥𝐴∥2 < 1. Then for any starting point (𝑥0, 𝑦0) ∈ ℝ𝑀 × ℝ𝑁 , the
iterates {(𝑥𝑘 , 𝑦𝑘)}𝑘∈ℕ generated by (31.13) converge to solutions 𝑥 and 𝑦 of (31.1) and (31.5),
respectively.
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Since 𝐹 is strongly convex with factor 𝛾 = 1, we can also apply the accelerated method of
(10.23), updating the step length parameter according to (10.25) in

(31.14)



𝜔𝑘 ≔ 1/
√︁

1 + 2𝜏𝑘 , 𝜏𝑘+1 ≔ 𝜏𝑘𝜔𝑘 , 𝜎𝑘+1 ≔ 𝜎𝑘/𝜔𝑘 ,
𝑥𝑘+1 ≔

1
1 + 𝜏𝑘

(𝑥𝑘 − 𝜏𝑘𝐴∗𝑦𝑘),

𝑥𝑘+1 ≔ (1 + 𝜔𝑘)𝑥𝑘+1 − 𝜔𝑘𝑥𝑘 ,
𝑦𝑘+1 ≔ proj𝜆𝔹∞ (𝑦𝑘 + 𝜎𝑘+1(𝐴𝑥𝑘+1 − 𝑏)) .

Theorem 10.8 immediately yields its convergence.

Theorem 31.7. Suppose 𝜏0𝜎0∥𝐴∥2 < 1. Then for any starting point (𝑥0, 𝑦0) ∈ ℝ𝑀 ×ℝ𝑁 , the
primal iterates {𝑥𝑘}𝑘∈ℕ generated by (31.14) converge to a minimizer 𝑥 of (31.1) at the rate
𝑂 (1/𝑘2).

Convergence of the Lagrangian duality gap can be obtained from Theorem 11.11 or, in the
accelerated case, Theorem 11.16, under the same conditions as for iterate convergence.

semismooth newton method

Similar to sparse regularization from Chapter 30, we apply a semismooth Newton method
to the proximal point reformulation (31.10) by looking for a root 𝑦 of

𝐻 (𝑦) := 𝑦 − proj𝜆𝔹∞ (𝑦 − 𝜏 (𝐴𝐴∗𝑦 + 𝑏))

with arbitrary 𝜏 > 0. From Example 14.10 (i) and the chain rule Theorem 14.4, a Newton
derivative in direction ℎ is given componentwise by

[𝐷𝑁𝐻 (𝑦)ℎ]𝑖 =
[
ℎ − 𝟙[−𝜆,𝜆] (𝑦 − 𝜏 (𝐴𝐴∗𝑦 + 𝑏)) ⊙ (ℎ − 𝜏𝐴𝐴∗ℎ)]

𝑖

=

{
ℎ𝑖 if |𝑦𝑖 − 𝜏 [𝐴𝐴∗𝑦 + 𝑏]𝑖 | > 𝜆,
𝜏 [𝐴𝐴∗ℎ]𝑖 if |𝑦𝑖 − 𝜏 [𝐴𝐴∗𝑦 + 𝑏]𝑖 | ≤ 𝜆.

Here we recall the notation [𝑥 ⊙ 𝑦]𝑖 ≔ 𝑥𝑖𝑦𝑖 for the componentwise or Hadamard product
on ℝ𝑁 . We can write this concisely as

𝐷𝑁𝐻 (𝑦) = 𝟙A(𝑦𝑘 ) + 𝜏𝟙I(𝑦𝑘 )𝐴𝐴
∗

for the active and inactive sets

A(𝑦𝑘) ≔ {𝑖 ∈ {1, . . . , 𝑁 } | |𝑦𝑖 − 𝜏 [𝐴𝐴∗𝑦 + 𝑏]𝑖 | > 𝜆}, and(31.15a)
I(𝑦𝑘) ≔ {1, . . . , 𝑁 } \ A(𝑦𝑘).(31.15b)
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Thus the semismooth Newton algorithm is 𝑦𝑘+1 ≔ 𝑦𝑘 + 𝑠𝑘 , where we solve for 𝑠𝑘 in

(𝟙A(𝑦𝑘 ) + 𝜏𝟙I(𝑦𝑘 )𝐴𝐴
∗)𝑠𝑘 = −𝐻 (𝑦𝑘).

Proceeding as for (30.12),we deduce that 𝑠𝑘𝑖 = −𝐻 (𝑦𝑘)𝑖 = [proj𝜆𝔹∞ (𝑦𝑘−𝜏 (𝐴𝐴∗𝑦𝑘+𝑏))−𝑦𝑘]𝑖
for 𝑖 ∈ A(𝑦𝑘), hence

(31.16) 𝑦𝑘+1
𝑖 = [proj𝜆𝔹∞ (𝑦𝑘 − 𝜏 (𝐴𝐴∗𝑦𝑘 + 𝑏))]𝑖 for 𝑖 ∈ A(𝑦𝑘).

For 𝑖 ∈ I(𝑦𝑘), we have [proj𝜆𝔹∞ (𝑦𝑘 − 𝜏 (𝐴𝐴∗𝑦𝑘 + 𝑏))]𝑖 = [𝑦𝑘 − 𝜏 (𝐴𝐴∗𝑦𝑘 + 𝑏)]𝑖 . Hence, by
introducing the projection 𝑃I(𝑦𝑘 ) to the inactive set and writing

𝑠𝑘 = 𝑃∗I(𝑦𝑘 )𝑃I(𝑦𝑘 )𝑠
𝑘 + 𝟙A(𝑦𝑘 )𝑠

𝑘 = 𝑃∗I(𝑦𝑘 )𝑃I(𝑦𝑘 )𝑠
𝑘 − 𝟙A(𝑦𝑘 )𝐻 (𝑦𝑘)

we deduce as after (30.12) that the inactive components 𝑃I(𝑦𝑘 )𝑠𝑘 are characterized by

(31.17) 𝜏𝑃I(𝑦𝑘 )𝐴𝐴
∗𝑃∗I(𝑦𝑘 ) [𝑃I(𝑦𝑘 )𝑠

𝑘] = −𝑃I(𝑦𝑘 ) (Id − 𝜏𝐴𝐴∗𝟙A(𝑦𝑘 ))𝐻 (𝑦𝑘).

Altogether, therefore, the semismooth Newton method for the dual problem (31.5) iterates

(i) form the active and inactive sets A(𝑦𝑘) and I(𝑦𝑘) following (31.15);
(ii) update 𝑦𝑘+1

𝑖 for 𝑖 ∈ A(𝑦𝑘) by (31.16);

(iii) solve 𝑃I(𝑦𝑘 )𝑠𝑘 from (31.17);

(iv) update 𝑦𝑘+1
𝑖 ≔ 𝑦𝑘𝑖 + 𝑠𝑘𝑖 for 𝑖 ∈ I(𝑦𝑘).

From the dual iterate 𝑦𝑘 , an approximation of the corresponding primal solution can again
be recovered via 𝑥𝑘 := −𝐴∗𝑦𝑘 .

Completely analogously to the proof of superlinear convergence in Theorem 30.8, Theo-
rem 14.1 establishes the following covergence result.

Theorem 31.8. Let 𝑦 be a (unique) minimizer of the dual problem (31.5) to (31.1) and 𝛾 > 0.
Suppose that 𝑃I(𝑦)𝐴𝐴∗𝑃∗I(𝑦) is positive definite. If 𝑦

0 is sufficiently close to 𝑦 , then {𝑦𝑘+1}𝑘∈ℕ
generated by iterating (i)–(iv) above converge superlinearly to 𝑦 .

numerical illustration

Again we illustrate the performance of the aforementioned algorithms on a simple numer-
ical example. We take 𝑥 ∈ ℝ1024 and 𝐴 ∈ 𝕃(ℝ1024;ℝ128) as convolution with a Gaussian
kernel (standard deviation 𝜎 = 7 on the domain [0, 1024]) followed by subsampling. To
generate the data 𝑏, we apply 𝐴 to the true signal depicted in Figure 30.1, and follow with
salt-and-pepper noise of magnitude 1.8. As the inverse regularization parameter, we take
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Figure 31.1: ℓ1 fitting data and result.
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Figure 31.2: ℓ1 fitting reconstruction algorithm performance: iteration vs. function value.
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Figure 31.3: ℓ1 fitting reconstruction algorithm performance: time (in seconds) vs. function
value.

𝜆 = 6.5. For all algorithms, we use the initial iterate 𝑥0 = 0. For the forward-backward type
methods, we take the step length 𝜏 = 0.9/𝐿2, where 𝐿 is again an estimate of ∥𝐴∥. For the
PDPS method, we take the step lengths 𝜏 = 0.5/𝐿 and 𝜎 = 1.9/𝐿. For the SSN method, we
take the proximal parameter 𝛾 = 9/𝐿2. The precise experimental details can be found in
the accompanying code [Clason and Valkonen, 2023].

We illustrate the data and the reconstruction in Figure 31.1 and the convergence behavior
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in Figures 31.2 and 31.3. The latter clearly show that acceleration improves performances of
the first-order methods, but the superlinearly convergent SSN method requires significantly
fewer iterations than any first-order method. In fact, even though each iteration of the
former is much more expensive, the total time to reach the objective is still smaller. On
the other hand, first-order methods are much faster in reducing the objective value in the
beginning and therefore may be the method of choice if high accuracy is not desired.
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32 TOTAL VARIATION REGULARIZATION

We now turn to mathematical image processing, where the unknown to be reconstructed
from data is a digital image. The most basic mathematical image processing task is denoising,
i.e., removing the noise in an image (for example, a photograph taken in low light conditions),
which corresponds to taking the forward operator as the identity. More advanced image
processing tasks include inpainting, deblurring, and superresolution. These correspond
to filling in missing parts of an image, reducing blur caused by defocussed lenses or
motion, and recovering additional detail, and involve more complicated linear forward
operators. For an introduction to mathematical image processing, we refer to [Bredies and
Lorenz, 2018; Scherzer et al., 2009]. In true inverse imaging problems, the given data is
not itself an image but related to it via some mathematical model describing the physical
measurements; examples are magnetic resonance imaging (MRI), involving the Fourier
transform [Nishimura, 1996], or positron emission tomography (PET) and computed X-ray
tomography (CT), both involving the Radon transform [Natterer, 2001]. More challenging
imaging modalities such as electrical impedance tomography (EIT) and more advanced MRI
techniques require the forward operator 𝐴 to be nonlinear. We do not treat such operators
here, but point towards the primal-dual method of Chapter 15 as one possible solution
technique. Alternative Gauss–Newton type methods are introduced by [Jauhiainen et al.,
2020].

The salient point here is the particular structure of images, which requires an adapted regu-
larization term. The key observation here is that images contain sharp edges (representing
jumps in intensity) separating mostly smooth areas. Mathematically, this can be related
to requiring sparsity of the gradient of the image, rather than the image itself; the corre-
sponding sparse regularization of the gradient is called the total variation regularization,
which was introduced for denoising by [Rudin et al., 1992] and has become very popular
for other (inverse) imaging tasks such as the ones mentioned above.

Treating such problems in an infinite-dimensional function space framework is very chal-
lenging and requires the unknown to be considered in the space BV(Ω) of functions of
bounded variation on a domain Ω ⊂ ℝ2, which are characterized by their distributional
gradient being a Radon measure 𝑦 ∈ M(Ω;ℝ2). This is a nonreflexive Banach space
with a complicated structure; see [Ambrosio et al., 2000; Attouch et al., 2014] for the rich
functional analysis and geometric measure theory in this space. As our primary focus
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32 total variation regularization

here is on algorithms that require a Hilbert space structure, we will treat this problem in a
finite-dimensional discretized setting.

32.1 problem description

We consider the problem

(32.1) min
𝑥

1
2 ∥𝐴𝑥 − 𝑏∥2

2 + 𝛼 ∥𝐷𝑥 ∥1,2,

where 𝑥 ∈ ℝ𝑀 for𝑀 = 𝑛1𝑛2 is a vectorization of the two-dimensional image, consisting of
an 𝑛1 × 𝑛2 grid of components called pixels; 𝐴 ∈ ℝ𝑁×𝑀 for some 𝑁 is the linear forward
operator; and 𝐷 ∈ ℝ2𝑀×𝑀 is a discretization of the image gradient to be specified below.
We index 𝑥 ∈ ℝ𝑀 using two coordinates 𝑖 ∈ {1, . . . , 𝑛1} and 𝑗 ∈ {1, . . . , 𝑛2}, identifying
𝑥𝑖 𝑗 with 𝑥𝜄 (𝑖, 𝑗) for a suitable linear index 𝜄, for example 𝜄 (𝑖, 𝑗) = 𝑖 + 𝑛1( 𝑗 − 1). Likewise
we index variables 𝑦 ∈ ℝ2𝑀 with 𝑘 ∈ {1, 2} along with 𝑖 and 𝑗 , identifying 𝑦𝑘𝑖 𝑗 with
𝑦𝜄2 (𝑘,𝑖, 𝑗) for a suitable linear index 𝜄2, for example 𝜄2(𝑘, 𝑖, 𝑗) = 𝑘 + 2(𝜄 (𝑖, 𝑗) − 1). We also
write 𝑦 · 𝑖 𝑗 ≔ (𝑦1𝑖 𝑗 , 𝑦2𝑖 𝑗 ) ∈ ℝ2. When necessary for clarity, we insert commas between the
indices. As a discretized derivative, we take forward differences with Neumann boundary
conditions, which with the above notation corresponds to setting

[𝐷𝑢]1𝑖 𝑗 =

{
𝑢𝑖+1, 𝑗 − 𝑢𝑖, 𝑗 , 1 ≤ 𝑖 < 𝑛1, 1 ≤ 𝑗 ≤ 𝑛2,

0, 𝑖 = 𝑛1, 1 ≤ 𝑗 ≤ 𝑛2,

[𝐷𝑢]2𝑖 𝑗 =

{
𝑢𝑖, 𝑗+1 − 𝑢𝑖, 𝑗 , 1 ≤ 𝑖 ≤ 𝑛1, 1 ≤ 𝑗 < 𝑛2,

0, 1 ≤ 𝑖 ≤ 𝑛2, 𝑗 = 𝑛2.

It remains to discuss the vector-sparsity penalty

∥𝑦 ∥1,2 ≔
𝑛1∑︁
𝑖=1

𝑛2∑︁
𝑗=1

∥𝑦 · 𝑖 𝑗 ∥2 =
𝑛1∑︁
𝑖=1

𝑛2∑︁
𝑗=1

√︃
𝑦2

1𝑖 𝑗 + 𝑦2
2𝑖 𝑗 (𝑦 ∈ ℝ2𝑀 ) .

First, it is straightforward to verify that

(ℝ2𝑀 , ∥ · ∥1,2)∗ = (ℝ2𝑀 , ∥ · ∥∞,2),
where

∥𝑦 ∥∞,2 ≔ max 𝑖=1,...,𝑛1
𝑗=1,...,𝑛2∥𝑦 · 𝑖 𝑗 ∥2,

using that

⟨𝑦∗, 𝑦⟩1,2 ≔
𝑛1∑︁
𝑖=1

𝑛2∑︁
𝑗=1

2∑︁
𝑘=1

𝑦∗
𝑘𝑖 𝑗
𝑦𝑘𝑖 𝑗 ≤ ∥𝑦∗∥1,2∥𝑦 ∥∞,2.

This allows us to compute various objects by applying the convex analysis of Part II pixel-
wise, i.e., separately for each pair of pixel coordinates (𝑖, 𝑗). First, by applying Theorem 4.6,
we obtain an explicit expression for the subdifferential.
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Lemma 32.1. Let 𝑦, 𝑦∗ ∈ ℝ2𝑀 . Then 𝑦∗ ∈ 𝜕∥ · ∥1,2(𝑦) if and only if

(32.2) 𝑦∗· 𝑖 𝑗 ∈
{{

𝑦 · 𝑖 𝑗

∥𝑦 · 𝑖 𝑗 ∥2

}
if 𝑦 · 𝑖 𝑗 ≠ 0,

𝔹2 if 𝑦 · 𝑖 𝑗 = 0,

where 𝔹2 is the Euclidean unit ball in ℝ2.

By Example 5.3 (ii), the Fenchel conjugate of a norm is given by the indicator functional of
the dual unit ball, which in this case is

𝔹∞,2 ≔ {𝑦 ∈ ℝ2𝑀 | ∥𝑦 ∥∞,2 ≤ 1} = {𝑦 ∈ ℝ2𝑀 | 𝑦 · 𝑖 𝑗 ∈ 𝔹2 for each 𝑖, 𝑗}.
By Lemma 5.7 (i), we thus have

(𝛼 ∥ · ∥1,2)∗ = 𝛿𝛼𝔹∞,2 .

A case distinction similar to Example 4.9 then yields the following characterization of the
subdifferential.

Lemma 32.2. Let 𝑦, 𝑦∗ ∈ ℝ2𝑀 and 𝛼 > 0. Then 𝑦∗ ∈ 𝜕𝛿𝛼𝔹∞,2 (𝑦) if and only if

(32.3) 𝑦∗· 𝑖 𝑗 ∈

[0,∞)𝑦 · 𝑖 𝑗 if ∥𝑦 · 𝑖 𝑗 ∥2 = 𝛼,

0 if ∥𝑦 · 𝑖 𝑗 ∥2 < 𝛼,

∅ otherwise.

Finally, similar to Corollary 6.27 (iii) we can show that the corresponding proximal point
mapping for 𝛾 > 0 is given pixelwise by

(32.4) [proj𝛼𝔹∞,2 (𝑦)] · 𝑖 𝑗 = proj𝛼𝔹2 (𝑦 · 𝑖 𝑗 ) = 𝑦 · 𝑖 𝑗

{
𝛼

∥𝑦 · 𝑖 𝑗 ∥2
if ∥𝑦 · 𝑖 𝑗 ∥2 > 𝛼,

1 if ∥𝑦 · 𝑖 𝑗 ∥2 ≤ 𝛼.

32.2 optimality conditions

Our derivation of optimality conditions for (32.1) follows that for sparse regularization in
Chapter 30. Setting

𝐹 (𝑥) ≔ 1
2 ∥𝐴𝑥 − 𝑏∥2

2 and 𝐺 (𝑦) ≔ 𝛼 ∥𝑦 ∥1,2,

we can write (32.1) in canonical form as

(32.5) min
𝑥∈ℝ𝑀

𝐽 (𝑥) where 𝐽 (𝑥) ≔ 𝐹 (𝑥) +𝐺 (𝐷𝑥).

The following result characterizes the solutions of this convex problem.
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Theorem 32.3. Let 𝑥 ∈ ℝ𝑀 be a solution to (32.1). Then there exists a 𝑦 ∈ ℝ2𝑀 such that

(32.6) −𝐴∗(𝐴𝑥 − 𝑏) = 𝐷∗𝑦 and 𝑦 · 𝑖 𝑗 ∈
{
𝛼

{ [𝐷𝑥] · 𝑖 𝑗
∥ [𝐷𝑥] · 𝑖 𝑗 ∥2

}
if [𝐷𝑥] · 𝑖 𝑗 ≠ 0,

𝛼𝔹2 if [𝐷𝑥] · 𝑖 𝑗 = 0.

Proof. Since 𝐹 and𝐺 are convex, and 𝐷 is linear, 𝐽 is convex as well. Therefore the Fermat
principle of Theorem 4.2 characterizes the solution of (32.1) as those 𝑥 satisfying 0 ∈ 𝜕𝐽 (𝑥).
Since both 𝐹 and 𝐺 have full domains and are proper and lower semicontinuous, we may
further use the subdifferential sum rule of Theorem 4.14 and the chain rule of Theorem 4.17
to calculate for all 𝑥 ∈ ℝ𝑀 that 𝜕𝐽 (𝑥) = 𝜕𝐹 (𝑥) + 𝐷∗𝜕𝐺 (𝐷𝑥). Since 𝐹 is differentiable, we
can use Theorem 4.5 to characterize the solutions as those points 𝑥 satisfying

(32.7) −∇𝐹 (𝑥) ∈ 𝐷∗𝜕𝐺 (𝐷𝑥).
Together with (32.2), this yields (32.6). □

The expression for 𝑦 in (32.6) is difficult to work with in practice, in particular for deriving
algorithms. With the help of the Fenchel–Rockafellar Theorem 5.11, we may alternatively
study optimality conditions for the dual problem

(32.8) min
𝑦∈ℝ2𝑀

𝑄 (𝑦) ≔ 𝐹 ∗(−𝐷∗𝑦) +𝐺∗(𝑦),

where 𝐺∗ = 𝛿𝛼𝔹∞,2 . If 𝐴 = Id, we also obtain a simple expression for 𝐹 ∗, which yields the
following result.

Theorem 32.4. For 𝐴 = Id, the solutions 𝑦 ∈ ℝ2𝑀 to the dual problem (32.8) of (32.1) are
characterized by

(32.9) −𝐷 (𝐷∗𝑦 − 𝑏) = 𝑝 and 𝑝 · 𝑖 𝑗 ∈

[0,∞)𝑦 · 𝑖 𝑗 if ∥𝑦 · 𝑖 𝑗 ∥2 = 𝛼,

{0} if ∥𝑦 · 𝑖 𝑗 ∥2 < 𝛼,

∅ otherwise.

Proof. Again we can apply the Fermat principle. We calculate using Lemma 5.4 and 5.7 (ii)
for 𝐾 = Id that 𝐹 ∗(𝑦) = 1

2 ∥𝑦 ∥2
2 + ⟨𝑏, 𝑦⟩. Since 𝐹 ∗ has a full domain and both 𝐺∗ and 𝐹 ∗

are proper and lower semicontinuous, we may further use the subdifferential sum rule of
Theorem 4.14 and the chain rule of Theorem 4.17 to calculate for all 𝑦 ∈ ℝ2𝑀 that

𝜕𝑄 (𝑦) = −𝐷𝜕𝐹 ∗(−𝐷∗𝑦) + 𝜕𝐺∗(𝑦).
By the differentiability of 𝐹 ∗, the dual solutions 𝑦 are therefore characterized by

(32.10) 𝐷∇𝐹 ∗(−𝐷∗𝑦) ∈ 𝜕𝐺∗(𝑦).
Together with (32.3), this yields (32.9). □
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The Fenchel–Rockafellar Theorem 5.11 also gives a primal-dual characterization of optimal-
ity. In contrast to the primal result Theorem 32.3 and the dual result Theorem 32.4, it has
simple expressions for all variables even for 𝐴 ≠ Id.

Theorem 32.5. The solutions 𝑥 ∈ ℝ𝑀 and 𝑦 ∈ ℝ2𝑀 to the primal problem (32.1) and the dual
problem (32.8) are simultaneously characterized by (32.6) or, equivalently,

(32.11) −𝐷∗𝑦 = 𝐴∗(𝐴𝑥 − 𝑏) and [𝐷𝑥] · 𝑖 𝑗 ∈

[0,∞)𝑦 · 𝑖 𝑗 if ∥𝑦 · 𝑖 𝑗 ∥2 = 𝛼,

{0} if ∥𝑦 · 𝑖 𝑗 ∥2 < 𝛼,

∅ otherwise.

Proof. According to Theorem 5.11, the primal and dual solutions are characterized by

(32.12) 𝑦 ∈ 𝜕𝐺 (𝐷𝑥) and − 𝐷∗𝑦 = ∇𝐹 (𝑥).

This is simply (32.6), where 𝑦 is indeed the dual variable. By the Fenchel–Young Lemma 5.8,
the conditions (32.12) can equivalently be written

𝐷𝑥 ∈ 𝜕𝐺∗(𝑦) and − 𝐷∗𝑦 = ∇𝐹 (𝑥).

Together with (32.3) for an expression of 𝜕𝐺∗, this yields (32.11). □

32.3 algorithms

Following the approach established in the previous chapters, we now derive some algo-
rithms for (32.1) based on either the dual optimality conditions (32.9) or the primal-dual
optimality conditions (32.11). We start with the former and the corresponding forward-
backward type methods. We then move onto primal-dual splitting methods. As the dis-
cretized gradient𝐷 has a nontrivial kernel, semismooth Newton methods cannot be applied
directly without dampening as in Chapter 30, which would negate the performance advan-
tage over splitting methods. We will therefore focus here on splitting methods, but refer to
[Hintermüller and Stadler, 2006] for a modified semismooth Newton method that retains
superlinear convergence.

dual forward-backward splitting for denoising

For 𝐴 = Id, we can directly apply the forward-backward splitting method (8.6) to the dual
problem (32.8) by rewriting the optimality condition (32.10) using Lemma 6.21 for any 𝜏 > 0
as

0 = proj𝛼𝔹∞,2 (𝑦 − 𝜏𝐷 (𝐷∗𝑦 − 𝑏)) .
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We recall from the proof of Theorem 32.4 with𝐴 = Id that 𝐹 ∗(𝑦) = 1
2 ∥𝑦 ∥2

2+⟨𝑏, 𝑦⟩. Therefore,
we obtain the iteration

(32.13) 𝑦𝑘+1 ≔ prox𝜏𝐺∗ (𝑦𝑘 + 𝜏𝐷∗∇𝐹 ∗(−𝐷𝑦𝑘)) = proj𝛼𝔹∞,2 (𝑦𝑘 − 𝜏𝐷 (𝐷∗𝑦𝑘 − 𝑏)),

where the projection operator is given by (32.4).

By (32.12), the primal and dual solutions 𝑥 and 𝑦 satisfy −𝐷∗𝑦 ∈ ∇𝐹 (𝑥) = {𝑥 − 𝑏}, which
allows us to recover a primal solution from a dual solution 𝑦 via 𝑥 = 𝑏 − 𝐷∗𝑦 .

Again, the method converges subject to a simple step length bound.

Theorem 32.6. Suppose 𝜏 ∥𝐷 ∥2 < 2. Then for any starting point 𝑦0 ∈ ℝ2𝑀 , the iterates
{𝑦𝑘}𝑘∈ℕ generated by (32.13) converge to a solution 𝑦 of the dual problem (32.8).

Proof. The Lipschitz factor of ∇[𝐹 ∗ ◦ 𝐷] is ∥𝐷 ∥2, and hence the claim follows from Theo-
rem 9.6. □

Convergence of function values for the dual objective (31.5) can be obtained in a similar
fashion from Corollary 11.5 under the stricter condition 𝜏 ∥𝐷 ∥2 ≤ 1.

primal-dual proximal splitting for unitary-simple forward operators

Dual forward-backward splitting requires that we are able to compute ∇𝐹 ∗, which can
be difficult and numerically expensive for general 𝐴 ≠ Id; compare Lemma 5.7 (iii). Fur-
thermore, 𝐹 ∗ may not even be a smooth function when 𝐴 is not invertible. Similarly, the
primal-dual proximal splitting (8.20) for (32.5) is given by

(32.14)


𝑥𝑘+1 ≔ prox𝜏𝐹 (𝑥𝑘 − 𝜏𝐷∗𝑦𝑘),
𝑥𝑘+1 = 2𝑥𝑘+1 − 𝑥𝑘 ,
𝑦𝑘+1 ≔ proj𝛼𝔹∞,2 (𝑦𝑘 + 𝜎𝐷𝑥𝑘+1),

which still requires computing the proximal mapping of 𝐹 , which can in general be diffi-
cult.

However, suppose that 𝐴 = 𝑆𝑈 for an unitary operator 𝑈 and 𝑆 such that 𝜏𝑆∗𝑆 + Id has a
simple inverse. For example,𝑈 can be the Fourier transform and 𝑆 can be a sub-sampling
operator, in which case 𝜏𝑆∗𝑆 + Id is diagonal; such type of problems appear in magnetic
resonance imaging. In this case, we can write 𝑥 = prox𝜏𝐹 (𝑧) as

0 = 𝜏𝑈 ∗𝑆∗(𝑆𝑈𝑥 − 𝑏) + 𝑥 − 𝑧.

Multiplying by𝑈 , yields
𝜏𝑆∗𝑏 +𝑈𝑧 = (𝜏𝑆∗𝑆 + Id)𝑈𝑥.
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By assumption, we can solve this for

𝑥 = 𝑈 ∗(𝜏𝑆∗𝑆 + Id)−1(𝜏𝑆∗𝑏 +𝑈𝑧).

This shows that
prox𝜏𝐹 (𝑧) = 𝑈 ∗(𝜏𝑆∗𝑆 + Id)−1(𝑆∗𝑏 +𝑈𝑧).

In this case, (32.14) is practical to implement. In particular, for 𝑈 = 𝑆 = Id, i.e., for image
denoising, we have

(32.15) prox𝜏𝐹 (𝑧) =
1

1 + 𝜏 (𝑏 + 𝑧).

From Corollary 9.14, we directly obtain the following convergence result which even holds
for general 𝐴.

Theorem 32.7. Suppose 𝜏𝜎 ∥𝐷 ∥2 < 1. Then for any starting point (𝑥0, 𝑦0) ∈ ℝ𝑀 ×ℝ2𝑀 , the
iterates {(𝑥𝑘 , 𝑦𝑘)}𝑘∈ℕ generated by (32.14) converge to solutions 𝑥 and 𝑦 of (32.1) and (32.8).

If 𝐹 is 𝛾-strongly convex (in particular if 𝑈 = 𝑆 = Id, where 𝛾 = 1), we can apply the
accelerated variant (10.23) to obtain the iteration

(32.16)


𝜔𝑘 ≔ 1/

√︁
1 + 2𝛾𝜏𝑘 , 𝜏𝑘+1 ≔ 𝜏𝑘𝜔𝑘 , 𝜎𝑘+1 ≔ 𝜎𝑘/𝜔𝑘 ,

𝑥𝑘+1 ≔ prox𝜏𝑘𝐹 (𝑥𝑘 − 𝜏𝑘𝐷∗𝑦𝑘),
𝑥𝑘+1 = (1 + 𝜔𝑘)𝑥𝑘+1 − 𝜔𝑘𝑥𝑘 ,
𝑦𝑘+1 ≔ proj𝛼𝔹∞,2 (𝑦𝑘 + 𝜎𝑘+1𝐷𝑥

𝑘+1).

From Theorem 10.8, we then obtain convergence at the faster rate 𝑂 (1/𝑘2).

Theorem 32.8. Suppose 𝜏0𝜎0∥𝐷 ∥2 < 1 and that 𝐹 is 𝛾-strongly convex. Then for any starting
point (𝑥0, 𝑦0) ∈ ℝ𝑀 × ℝ2𝑀 , the primal iterates {𝑥𝑘}𝑘∈ℕ generated by (32.16) converge to a
minimizer 𝑥 of (32.1) at the rate 𝑂 (1/𝑘2).

Convergence of the Lagrangian duality gap can be obtained from Theorem 11.11 or in the
strongly convex case from Theorem 11.16.

primal-dual proximal splitting for general forward operators

If 𝐴 is a more complex operator, prox 𝜆
2 ∥𝐴 ·−𝑏∥2

2
in general cannot be computed efficiently.

To overcome this, we will split the problem in two different ways. First, as we observed in
Section 8.5, we can equivalently write (32.1) as

(32.17) min
𝑥∈ℝ𝑁

�̃� (𝑥) + 𝐹 (𝐾𝑥)
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32 total variation regularization

for
�̃� ≡ 0, 𝐹 (𝑦, 𝑧) ≔ 𝛼 ∥𝑦 ∥1 + 1

2 ∥𝑧 − 𝑏∥
2
2, and 𝐾𝑥 ≔ (𝐷𝑥,𝐴𝑥).

We write for brevity 𝐹0(𝑧) ≔ 1
2 ∥𝑧 − 𝑏∥2

2. By Lemma 6.24 (i) and Example 6.26 – or from
(32.15) – for any 𝛾 > 0, we have

prox𝛾𝐹0 (𝑧) = prox𝛾 1
2 ∥ · ∥2

2
(𝑧 − 𝑏) + 𝑏 =

1
1 + 𝛾 (𝑧 − 𝑏) + 𝑏 =

1
1 + 𝛾 (𝑧 + 𝛾𝑏)

Hence by Lemma 6.24 (ii),

prox𝜎𝐹 ∗0 (𝑧) = 𝑧 − 𝜎 prox𝜎−1𝐹 (𝜎−1𝑧)

= 𝑧 − 𝜎 1
1 + 𝜎−1 (𝜎−1𝑧 + 𝜎−1𝑏)

=
1

1 + 𝜎 (𝑧 − 𝜎𝑏).

By Lemma 6.24 (iii) we thus obtain

prox𝜎𝐹 ∗0 (𝑦, 𝑧) = (proj𝛼𝔹∞,2 (𝑦), prox𝜎𝐹 ∗0 (𝑧)) = (proj𝛼𝔹∞,2 (𝑦), 1
1+𝜎 (𝑧 − 𝜎𝑏)) .

Therefore the primal-dual proximal splitting method (8.20) for (32.17) is given by

(32.18)



𝑥𝑘+1 ≔ 𝑥𝑘 − 𝜏 [𝐷∗𝑦𝑘 +𝐴∗𝑧𝑘],
𝑥𝑘+1 = 2𝑥𝑘+1 − 𝑥𝑘 ,
𝑦𝑘+1 ≔ proj𝛼𝔹∞,2 (𝑦𝑘 + 𝜎𝐷𝑥𝑘+1),
𝑧𝑘+1 ≔

1
1 + 𝜎 (𝑧

𝑘 + 𝜎 [𝐴𝑥𝑘+1 − 𝑏]).

As before, we can apply the general convergence result from Corollary 9.14 to show that
the iterates converge to a solution of the problem (32.1).

Theorem 32.9. Suppose 𝜏𝜎 (∥𝐷 ∥2 + ∥𝐴∥2) < 1. For any starting point (𝑥0, 𝑦0, 𝑧0) ∈ ℝ𝑀+2𝑀+𝑁 ,
let the iterates {(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘)}𝑘∈ℕ be generated by (32.18). Then the primal iterates {𝑥𝑘}𝑘∈ℕ
converge to a minimizer of (32.1).

The convergence of a Lagrangian duality gap corresponding to the formulation (32.17) can
be obtained from Theorem 11.11.

primal-dual proximal splitting with a forward step

The dualization trick of the expanded PDPS method does not require the data term 𝐹 to be
differentiable; we could have derived (32.18) for an 𝐹 (𝑥) = 𝐹0(𝐴𝑥) for an arbitrary convex,
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32 total variation regularization

possibly nonsmooth 𝐹0. It does, however, require introducing the additional variable 𝑧,
which may come at the cost of performance. This can be avoided for smooth 𝐹 by using
the variant of the PDPS method with a forward step introduced in (9.29). To apply it, we
write (32.1) as

min
𝑥∈𝑋

𝐹0(𝑥) + 𝐸 (𝑥) +𝐺 (𝐾𝑥)
for

𝐹0 ≡ 0, 𝐸 (𝑥) = 1
2 ∥𝐴𝑥 − 𝑏∥2

2, 𝐺 (𝑥) = ∥ · ∥2,1, and 𝐾 = 𝐷.

Thus 𝐺 and 𝐾 are as in (32.14); however, the primal update becomes

𝑥𝑘+1 ≔ prox𝜏𝐹0 (𝑥𝑘 − 𝜏 [∇𝐸 (𝑥𝑘) + 𝐷∗𝑦𝑘])
We thus obtain from (9.29) the algorithm

(32.19)


𝑥𝑘+1 ≔ 𝑥𝑘 − 𝜏 [𝐴∗(𝐴𝑥𝑘 − 𝑏) + 𝐷∗𝑦𝑘],
𝑥𝑘+1 ≔ 2𝑥𝑘+1 − 𝑥𝑘 ,
𝑦𝑘+1 ≔ proj𝛼𝔹∞,2 (𝑦𝑘 + 𝜎𝐷𝑥𝑘+1).

We have the following convergence result.

Theorem 32.10. Suppose 1 > ∥𝐷 ∥2𝜏𝜎 + 𝜏
2 ∥𝐴∥2. Then for any starting point (𝑥0, 𝑦0) ∈ ℝ𝑀+2𝑀 ,

the iterates {(𝑥𝑘 , 𝑦𝑘)}𝑘∈ℕ generated by (32.19) converge a solution (𝑥, 𝑦) of the primal-dual
optimality conditions (32.11). In particular, the primal iterates {𝑥𝑘}𝑘∈ℕ converge to a minimizer
of (32.1).

Proof. Since ∇𝐸 is Lipschitz with constant 𝐿 = ∥𝐴∥2, the claim is a direct consequence of
Corollary 9.20. □

Again, convergence of the Lagrangian duality gap can be obtained from Theorem 11.11.
We can also apply acceleration similarly to (32.16), for which convergence rates can be
obtained from Theorems 10.8 and 11.16.

primal-dual explicit splitting

Just like the PDPS method with a forward step, the PDES method of (8.23) avoids the need
to introduce an additional variable. To apply the latter, we write the problem (32.1) in the
form min𝑥 𝐹 (𝑥) +𝐺 (𝐾𝑥) for 𝐹 (𝑥) = 1

2 ∥𝐴𝑥 − 𝑏∥2
2 and 𝐺 (𝑦) = 𝛼 ∥𝑦 ∥1,2. However, since the

convergence result from Corollary 9.18 has the restriction ∥𝐾 ∥ < 1, we rescale by taking
𝐺 = 𝛼𝜆∥ · ∥1,2 and 𝐾 = 𝜆−1𝐷 for some 𝜆 > ∥𝐷 ∥. Then the PDES method (8.23) becomes

(32.20)
{
𝑦𝑘+1 = proj𝜆𝛼𝔹∞,2 ((Id − 𝜆−2𝐷𝐷∗)𝑦𝑘 + 𝐾 (𝑥𝑘 −𝐴∗(𝐴𝑥𝑘 − 𝑏))),
𝑥𝑘+1 = 𝑥𝑘 −𝐴∗(𝐴𝑥𝑘 − 𝑏) − 𝜆−1𝐷∗𝑦𝑘+1.
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32 total variation regularization

(a) original (b) noisy (c) reconstruction

Figure 32.1: TV denoising data and result.

We have the following convergence result.

Corollary 32.11. For any initial iterate (𝑥0, 𝑦0) ∈ ℝ𝑀×2𝑀 , the sequence {𝑥𝑘 , 𝜆−1𝑦𝑘}𝑘∈ℕ con-
structed by (32.20) converges to a solution of the primal-dual optimality conditions (32.11). In
particular, the primal iterates {𝑥𝑘}𝑘∈ℕ converge to a minimizer of (32.1).

Proof. Since ∇𝐹 is Lipschitz with constant 𝐿 = ∥𝐴∥2 and ∥𝐾 ∥ < 1, Corollary 9.18 imme-
diately yields the convergence of {𝑥𝑘 , 𝜆−1𝑦𝑘}𝑘∈ℕ to some (𝑥, 𝑦) satisfying −𝐾∗𝑦 = ∇𝐹 (𝑥)
and 𝐾𝑥 ∈ 𝜕𝐺∗(𝑦), i.e., 𝑦 ∈ 𝜕𝐺 (𝐾𝑥). Since ∥ · ∥2,1 is positively homogeneous,

𝜕𝐺 (𝐾𝑥) = 𝛼𝜆𝜕∥ · ∥2,1(𝜆−1𝐷𝑥) = 𝛼𝜕∥ · ∥2,1(𝐷𝑥) .

Inserting the definition of 𝐾 = 𝜆−1𝐷 and dividing by 𝜆 > 0, respectively, we thus obtain
that as −𝐷∗(𝜆−1𝑦) = 𝐴∗(𝐴𝑥 − 𝑏) and (𝜆−1𝑦) ∈ 𝛼𝜕∥ · ∥2,1(𝐷𝑥). Hence (𝑥, 𝑦) := (𝑥, 𝜆−1𝑦)
satisfies (32.11). □

Convergence of the Lagrangian duality gap can be obtained from Theorem 11.10.

numerical illustration

We illustrate the performance of the various variants of the forward-backward splitting,
PDPS, and PDES methods on total variation denoising and superresolution.

We start with denoising. We include in our experiments the dual forward-backward splitting
(32.13), the PDPS method (32.14), the forward PDPS method (32.19), and their accelerated
variants. We use as 𝑏 the noisy image shown in Figure 32.1b, which was obtained from
the original (“ground-truth”) image in Figure 32.1a by applying normally-distributed noise
with mean 0 and standard deviation 0.1. As the regularization parameter, we take 𝛼 = 0.1;
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Figure 32.2: TV denoising algorithm performance: primal function value.
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Figure 32.3: TV denoising algorithm performance: dual function value.
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32 total variation regularization

the corresponding denoised image is shown in Figure 32.1c. For forward-backward splitting
and its inertial variant, we take 𝜏 = 0.99/𝑀2, where𝑀 is an estimate of ∥𝐷 ∥. For the basic
PDPS method and its accelerated variant we take 𝜏 = 1.99/𝑀 and 𝜎 = 0.5/𝑀 to satisfy
𝜏𝜎𝑀2 < 1. For the forward PDPS method and its accelerated variant we take 𝜏 = 0.35 · 2/𝐿
and 𝜎 = 0.95(1 − 𝜏𝐿/2)/(𝜏𝑀2) to satisfy (9.30), where 𝐿 = 1 is the Lipschitz factor of ∇𝐹 .
Further experimental details can be found in the accompanying code [Clason and Valkonen,
2023].

We plot the convergence behavior in Figure 32.2 with respect to the primal functional value
(32.1). For the primal-dual methods, we use the iterates 𝑥𝑘 to directly calculate the primal
function values. For the forward-backward methods, which do not directly generate primal
variables, we use the first part of the optimality conditions (32.11) (with 𝐴 = Id) to generate
𝑥𝑘 from 𝑦𝑘 . Although initially the accelerated variants seem to be slower, they eventually
outperform the unaccelerated variants, in line with their better asymptotic convergence
rates. The same phenomenon can be observed in relation to the different base algorithms:
Asymptotically, all algorithms converge at the same rate even though in the beginning, the
simpler dual forward-backward splitting outperforms the forward PDPS method which
outperforms the PDPS method.

The picture is clearer when considering convergence of the dual function values, which can
be directly calculated from all iterates, and for which Theorem 32.6 ensures convergence for
dual forward-backward splitting. Note that since all algorithms involve a dual projection
step, the dual iterates are feasible, so the dual functional reduces to the strongly convex
𝐹 ∗(𝑦) = 1

2 ∥𝑦 ∥2
2 + ⟨𝑏, 𝑦⟩. Here, Figure 32.3 shows the expected behavior of the algorithms,

with the PDPS method outperforming the dual forward-backward splitting method and the
forward PDPS method (albeit at the same asymptotic rate), and the accelerated variants
clearly outperforming the base algorithms (at a higher asymptotic rate).

For the superresolution demonstration, we consider the forward PDPS method (32.19),
the expanded PDPS method (32.18), and the PDES method (32.20). In this experiment,
the operator 𝐴 ∈ 𝕃(ℝ5122 ;ℝ642) performs convolution with a Gaussian kernel (standard
deviation 𝜎 = 5 on the domain Ω = [0, 512]2) followed by subsampling by factor of 8.
We illustrate the data and the reconstruction in Figure 32.4. The low-resolution data is
obtained from the original image by applying 𝐴 and adding normally-distributed noise of
mean 0 and standard deviation 0.001. As the regularization parameter, we take 𝛼 = 0.0001.
For the forward PDPS method, we take 𝜏 = 0.95 · 2/𝐿 and 𝜎 = 0.95(1 − 𝜏𝐿/2)/(𝜏𝑀2) to
satisfy (9.30), where 𝐿 is an upper estimate of the Lipschitz factor of ∇𝐹 , i.e., of ∥𝐴∥2. For
the expanded PDPS method, we take 𝜏 = 1.9/

√
𝑀2 + 𝐿 and 𝜎 = 0.5/

√
𝑀2 + 𝐿 to satisfy

𝜏𝜎 (∥𝐷 ∥2+∥𝐴∥2) < 1 via 𝜏𝜎 (𝑀2+𝐿) < 1. The PDESmethod has no step length parameters.

We illustrate the convergence behavior in Figure 32.5. As we can see, the expanded variant
of the PDPSmethod is slower than the other two algorithms that do not introduce additional
variables. Moreover, the accelerated algorithms eventually outperform all the unaccelerated
variants. The PDPS method with forward step is somewhat faster than the PDES method.
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(a) original (b) low-resolution data (c) reconstruction

Figure 32.4: TV superresolution data and result.
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Figure 32.5: TV superresolution algorithm performance.
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33 OPTIMAL CONTROL WITH CONSTRAINTS

We now illustrate the applications of the theory of Parts II and III in infinite-dimensional
spaces, in particular function spaces. Specifically, we consider optimal control problems,
where the solution of a (partial) differential equation – the state – is sought to be brought
as close as possible to a desired state by adjusting a relevant control. Typically this control
is the right-hand side, boundary conditions, or coefficients of the differential equation.
Optimal control problems occur in a wide variety of applications such as autonomous
vehicles, process engineering, and optimal design; they are also closely related to inverse
problems for partial differential equations. Typically, this involves minimizing a weighted
sum of a tracking term involving the state and a control cost involving the control; these
are linked through the differential equation as an equality constraint, and hence this is
also known as PDE-constrained optimization. Using the implicit function theorem, one can
use this constraint to define a control-to-state mapping; much of optimal control theory
is concerned with analyzing the properties (in particular regarding differentiability) of
this mapping, especially for (systems of) time-dependent and/or nonlinear equations or
controls appearing as the coefficients. On these and other issues, we refer the reader to the
seminal monograph [Lions, 1971], to the standard textbook [Tröltzsch, 2010], as well as to
[De los Reyes, 2015; Hinze et al., 2009] in particular regarding applications and numerical
methods.

Here we focus on dealing with optimal control problems where either the tracking term
or the control costs are nonsmooth, which allows imposing additional structure on the
optimal state or control. Correspondingly, such problems have received increasing attention
in recent years. To avoid unnecessary technical difficulties, we restrict ourselves to the
simplest possible partial differential equation: the Poisson equation with homogeneous
boundary conditions and the control appearing as a right-hand side. We briefly introduce
the required notation and refer to, e.g., [Tröltzsch, 2010] for details and proofs of the claimed
properties. Let Ω ⊂ ℝ𝑑 be a bounded domain with Lipschitz boundary. We then introduce
for 𝑘 ∈ ℕ and 1 < 𝑝 < ∞ the Sobolev space

𝑊 𝑘,𝑝 (Ω) ≔ {
𝑣 ∈ 𝐿𝑝 (Ω)

�� 𝐷𝛼𝑣 ∈ 𝐿𝑝 (Ω) for all |𝛼 | ≤ 𝑘} ,
where 𝐷𝛼𝑣 is the weak derivative of 𝑣 of order |𝛼 |. These are Banach spaces with the natural
norm; for 𝑝 = 2, 𝐻𝑘 (Ω) ≔ 𝑊 𝑘,𝑝 (Ω) is a Hilbert space. Under the assumptions on the
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33 optimal control with constraints

domain Ω, we have the continuous embeddings

𝑊 𝑘,𝑝 (Ω) ↩→ 𝐿𝑞 (Ω) for 1 ≤ 𝑞 ≤ 𝑑𝑝

𝑑 − 𝑘𝑝 (≔ ∞ if 𝑘𝑝 ≥ 𝑑),

𝑊 𝑘,𝑝 (Ω) ↩→ 𝐶 (Ω) for 𝑘𝑝 > 𝑑 ;

see, e.g., [Tröltzsch, 2010, Theorem 7.1]. Furthermore, the embedding𝑊 𝑘,𝑝 (Ω) ↩→ 𝐿𝑝 (Ω)
is compact for every 𝑘 ∈ ℕ and 1 < 𝑝 < ∞; see, e.g., [Tröltzsch, 2010, Theorem 7.4]. In
particular, weakly convergent sequences in𝑊 𝑘,𝑝 (Ω) for 𝑘 ≥ 2 converge strongly in 𝐿𝑝 (Ω).
Finally, we denote by𝑊 𝑘,𝑝

0 (Ω) the closure of𝐶∞
0 (Ω) with respect to the𝑊 𝑘,𝑝-norm, whose

elements have vanishing trace on the boundary of Ω.

We now consider for given 𝑢 ∈ 𝐿2(Ω) the weak formulation of the Poisson equation
−Δ𝑦 = 𝑢 with homogeneous boundary condition, i.e., we look for 𝑦 ∈ 𝐻 1

0(Ω) satisfying

(33.1)
∫
Ω
∇𝑦 (𝑥) · ∇𝑣 (𝑥) 𝑑𝑥 =

∫
Ω
𝑢 (𝑥)𝑣 (𝑥) 𝑑𝑥 for all 𝑣 ∈ 𝐻 1

0(Ω).

Under the assumptions on Ω, this equation admits a unique solution 𝑦 ∈ 𝐻 1
0(Ω) which

depends continuously on 𝑢; see, e.g., [Tröltzsch, 2010, Theorem 2.4]. This allows defining
a linear bounded control-to-state mapping 𝑆 : 𝐿2(Ω) → 𝐿2(Ω) (which is even compact
since the range ran 𝑆 ⊂ 𝐻 1

0(Ω) embeds compactly into 𝐿𝑝 (Ω) for any 1 < 𝑝 < ∞). If
𝑑 ≤ 3 and Ω ⊂ ℝ𝑑 is convex, we even have 𝑦 ∈ 𝐻 2(Ω) ↩→ 𝐶 (Ω); see [Grisvard, 2011,
Theorem 3.2.1.2].

We will also need the adjoint 𝑆∗ : 𝐿2(Ω) → 𝐿2(Ω) of 𝑆 . Using either the implicit function
theorem or formal Lagrange multiplier calculus, we can characterize 𝑝 ≔ 𝑆∗ℎ ∈ 𝐿2(Ω) for
given ℎ ∈ 𝐿2(Ω) as the unique solution to the adjoint equation

(33.2)
∫
Ω
∇𝑤 (𝑥) · ∇𝑝 (𝑥) 𝑑𝑥 =

∫
Ω
𝑤 (𝑥)ℎ(𝑥) 𝑑𝑥 for all𝑤 ∈ 𝐻 1

0(Ω);

see, e.g., [Tröltzsch, 2010, Lemma 2.24, Chapter 2.10] or [Hinze et al., 2009, Chapter 1.6].
This implies that ran 𝑆∗ ⊂ 𝐻 1

0(Ω) ↩→ 𝐿𝑝 (Ω) for any 1 < 𝑝 < ∞ as well.

33.1 control constraints

We start with the simplest nonsmooth optimal control problems: quadratic control problems
with pointwise constraints on the control or state. Although these problems can be treated
by well-known standard methods of constrained smooth optimization (cf., e.g., [Tröltzsch,
2010, Chapters 2 and 6.2], respectively), they serve well to illustrate the application of the
abstract results of Part II.
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33 optimal control with constraints

problem description

Let 𝑦𝑑 ∈ 𝐿2(Ω) be a desired state, 𝛼 > 0, and 𝑎 > 𝑏 be given. We then consider the “mother
problem”

min
𝑢∈𝐿2 (Ω),𝑦∈𝐻 1

0 (Ω)
1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝐿2 (Ω) +
𝛼

2 ∥𝑢∥
2
𝐿2 (Ω

subject to (33.1) and 𝑎 ≤ 𝑢 (𝑥) ≤ 𝑏 for almost every 𝑥 ∈ Ω.

Introducing the admissible set

𝑈ad ≔
{
𝑢 ∈ 𝐿2(Ω)

�� 𝑎 ≤ 𝑢 (𝑥) ≤ 𝑏 for almost every 𝑥 ∈ Ω
}

and using the control-to-state-mapping 𝑆 : 𝐿2(Ω) → 𝐿2(Ω), 𝑢 ↦→ 𝑦 solving (33.1), intro-
duced above, we can write this problem in reduced form as

(33.3) min
𝑢∈𝑈ad

1
2 ∥𝑆𝑢 − 𝑦𝑑 ∥2

𝐿2 (Ω) +
𝛼

2 ∥𝑢∥
2
𝐿2 (Ω) .

To apply the general theory of the previous parts, we write this as min𝑢∈𝐿2 (Ω) 𝐽 (𝑢) for
𝐽 = 𝐹 +𝐺 with

𝐹 (𝑢) ≔ 1
2 ∥𝑆𝑢 − 𝑦𝑑 ∥2

𝐿2 (Ω) +
𝛼

2 ∥𝑢∥
2
𝐿2 (Ω),

𝐺 (𝑢) ≔ 𝛿𝑈ad (𝑢).

existence

Since 𝑆 is linear and bounded (and hence weakly continuous) and the norm is weakly
lower semicontinuous by Corollary 2.4 and convex, it follows from Lemmas 2.3 and 3.4
that 𝐹 is weakly lower semicontinuous and convex; it is even strictly convex due to the
control costs. Furthermore, dom 𝐹 = 𝐿2(Ω) since 𝑆 is well-defined on this space. Similarly,
it can be shown that 𝑈ad ⊂ 𝐿2(Ω) is nonempty, closed, convex, and bounded and thus 𝐺 is
proper, lower semicontinuous, convex, and coercive by Lemma 2.5. We thus immediately
obtain from Theorem 3.8 the existence of a unique optimal control 𝑢 ∈ 𝑈ad as well as a
corresponding optimal state 𝑦 := 𝑆𝑢 ∈ 𝐻 1

0(Ω).

optimality conditions

To derive optimality conditions, we apply the Fermat principle as well as the calculus rules
from Chapter 4. Although dom𝐺 = 𝑈ad ⊂ 𝐿2(Ω) does not contain any interior points, we
have dom 𝐹 = 𝐿2(Ω) and hence we can still apply the sum rule from Theorem 4.14. In fact,
since the squared norm in the Hilbert space 𝐿2(Ω) (which we always identify with its dual
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33 optimal control with constraints

via the Fréchet–Riesz Theorem 1.14) is Fréchet differentiable, we obtain using the chain
rule from Theorem 2.7 that

∇𝐹 (𝑢) = 𝑆∗(𝑆𝑢 − 𝑦𝑑) + 𝛼𝑢.

Using Theorems 4.5 and 4.14 and Lemma 4.8 and introducing the adjoint state 𝑝 ∈ 𝐻 1
0(Ω),

we thus arrive at the primal-dual optimality conditions1

(33.4)
{
𝑝 = 𝑆∗(𝑆𝑢 − 𝑦𝑑),
(𝑝 + 𝛼𝑢 |𝑢 − 𝑢)𝐿2 (Ω) ≥ 0 for all 𝑢 ∈ 𝑈ad,

where the second relation is often called a variational inequality for the optimal control;
cf. [Tröltzsch, 2010, Theorem 2.25]. This relation, which is the explicit form of −𝑝 − 𝛼𝑢 ∈
𝜕𝛿𝑈ad (𝑢), can by Lemma 6.21 and Example 6.28 (iii) be written equivalently for any 𝛾 > 0
as

(33.5) 𝑢 = prox𝛾𝛿𝑈ad
(𝑢 + 𝛾 (−𝑝 − 𝛼𝑢)) .

Using the special choice 𝛾 = 𝛼−1 in the first expression as well as the pointwise characteri-
zation of proximal mappings on 𝐿2(Ω) from Corollary 6.27 together with Example 6.25 (iii),
we obtain the well-known projection formula

(33.6) 𝑢 (𝑥) = proj[𝑎,𝑏]
(
− 1
𝛼
𝑝 (𝑥)

)
=


𝑎 if − 1

𝛼
𝑝 (𝑥) < 𝑎,

− 1
𝛼
𝑝 (𝑥) if − 1

𝛼
𝑝 (𝑥) ∈ [𝑎, 𝑏],

𝑏 if − 1
𝛼
𝑝 (𝑥) > 𝑏;

cf. [Tröltzsch, 2010, Theorem 2.28].

Remark 33.1. The relation (33.6) could also have been obtained by recognizing that𝐺 (𝑢)+𝛼2 ∥𝑢∥2
𝐿2 (Ω) =

(𝐺∗
𝛼 )∗ by Theorem 7.11, where𝐺∗

𝛼 is the Moreau envelope of𝐺∗. We therefore obtain via Theorem 7.9{
𝑝 = 𝑆∗(𝑆𝑢 − 𝑦𝑑 ),
𝑢 = (𝜕𝐺∗)𝛼 (−𝑝),

where (𝜕𝐺∗)𝛼 is the Yosida approximation of 𝜕𝐺∗. Using its definition (7.18) togetherwith Lemma 6.24 (ii),
it is straightforward to verify that the second relation is in fact equivalent to (33.6).

1If the control-to-state mapping 𝑆 is nonlinear but continuously differentiable, we can proceed in exactly
the same fashion by using Theorems 13.5, 13.8, and 13.20 instead to arrive at (33.4) with 𝑆 ′ (𝑢)∗ in place
of 𝑆∗.
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33 optimal control with constraints

explicit splitting methods

Since 𝐹 and𝐺 are proper, convex, and lower semicontinuous, and 𝐹 is Fréchet differentiable
with Lipschitz continuous gradient (since ∇𝐹 (𝑢) is affine, it is globally Lipschitz with
constant 𝐿 ≔ ∥𝑆∗𝑆 +𝛼Id∥𝕃(𝐿2 (Ω);𝐿2 (Ω)) = ∥𝑆 ∥2

𝕃(𝐿2 (Ω);𝐿2 (Ω)) +𝛼), the optimal control 𝑢 can be
computed using the explicit splitting method (9.7). In our specific instance, this becomes
the projected gradient method: Choose 𝑢0 ∈ 𝐿2(Ω) (e.g., 𝑢0 = 0) and 𝜏 < 2𝐿−1 and compute
for 𝑘 = 0, . . .

(33.7)


𝑦𝑘+1 = 𝑆𝑢𝑘 by solving (33.1),
𝑝𝑘+1 = 𝑆∗(𝑦𝑘+1 − 𝑦𝑑) by solving (33.2) for ℎ = 𝑦𝑘+1 − 𝑦𝑑 ,
𝑢𝑘+1 = proj[𝑎,𝑏]

(
(1 − 𝜏𝛼)𝑢𝑘 − 𝜏𝑝𝑘+1

)
almost everywhere.

By Theorem 9.6, we then have 𝑢𝑘 ⇀ 𝑢 in 𝐿2(Ω). (Since 𝐺 is not strongly convex, we do
not obtain any rates.)

We can also apply the acceleration strategies from Chapter 12. Specifically, the inertial
projected gradient method for 𝑧0 = 𝑢0 ∈ 𝐿2(Ω), 𝜏 > 0, and 𝜆0 = 1 consists in computing for
𝑘 = 0, . . .

(33.8)



𝑦𝑘+1 = 𝑆𝑧𝑘 by solving (33.1),
𝑝𝑘+1 = 𝑆∗(𝑦𝑘+1 − 𝑦𝑑) by solving (33.2) for ℎ = 𝑦𝑘+1 − 𝑦𝑑 ,
𝑢𝑘+1 = proj[𝑎,𝑏]

(
(1 − 𝜏𝛼)𝑢𝑘 − 𝜏𝑝𝑘+1

)
almost everywhere,

𝜆𝑘+1 = 2
(
1 +

√︃
1 + 4𝜆−2

𝑘

)
, 𝛽𝑘+1 = 𝜆𝑘+1(𝜆−1

𝑘
− 1),

𝑧𝑘+1 = (1 + 𝛽𝑘+1)𝑢𝑘+1 − 𝛽𝑘+1𝑢
𝑘 .

By Theorem 12.12, we obtain the convergence of the function values 𝐽 (�̃�𝑘) → 𝐽 (𝑢) at the
rate 𝑂 (1/𝑘2) as 𝑘 → ∞ (for the nonergodic sequence).

Similarly, we could also derive the over-relaxed projected gradient method from (12.17);
however, since this method does not show any benefit over the projected gradient method
for this problem, this is left as an exercise to the reader.

Instead, we will consider an alternative splitting. Since the maximal step length is con-
strained by the Lipschitz constant of 𝐹 , it is beneficial to include as many parts of the
functional as possible in the proximal point mapping. We thus turn to the splitting

𝐹 (𝑢) ≔ 1
2 ∥𝑆𝑢 − 𝑦𝑑 ∥2

𝐿2 (Ω),

𝐺𝛼 (𝑢) ≔ 𝛿𝑈ad (𝑢) +
𝛼

2 ∥𝑢∥
2
𝐿2 (Ω) .
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To compute prox𝛾𝐺𝛼 , we first observe that completing the square yields the scalar equality

1
2𝛾 (𝑧 − 𝑡)

2 + 𝛼2𝑧
2 =

1 + 𝛼𝛾
𝛾

(
𝑧 − 1

1 + 𝛼𝛾 𝑡
)2

+ 𝛾

1 + 𝛼𝛾 𝑡
2.

By ignoring the constant term, we hence have pointwise almost everywhere that for all
𝛾 > 0 and 𝑣 ∈ 𝐿2(Ω),

[prox𝛾𝐺𝛼 (𝑣)] (𝑥) = arg min
𝑧∈[𝑎,𝑏]

1
2𝛾 (𝑧 − 𝑣 (𝑥))

2 + 𝛼2𝑧
2

= arg min
𝑧∈[𝑎,𝑏]

1 + 𝛼𝛾
𝛾

(
𝑧 − 1

1 + 𝛼𝛾 𝑣 (𝑥)
)2

= proj[𝑎,𝑏]
(

1
1 + 𝛼𝛾 𝑣 (𝑥)

)
.

In place of (33.5), we thus have the equivalent optimality conditions

(33.9) 𝑢 = prox𝛾𝛿𝑈ad

(
1

1 + 𝛼𝛾 (𝑢 − 𝛾𝑝)
)
.

From this, we obtain the corresponding (inertial) explicit splitting method for 𝐺𝛼 by re-
placing the update for 𝑢𝑘+1 in (33.7) (or (33.8) by

𝑢𝑘+1 = proj[𝑎,𝑏]
(

1
1 + 𝜏𝛼

(
𝑢𝑘 − 𝜏𝑝𝑘+1

))
almost everywhere,

where 𝜏 now is only constrained by the smaller Lipschitz constant 𝐿 = ∥𝑆 ∥2
𝕃(𝐿2 (Ω);𝐿2 (Ω)) ,

allowing larger steps.

In addition, since 𝐺𝛼 is now strongly convex, we even get from Theorem 10.2 strong
convergence of 𝑢𝑘 at a linear rate.

semismooth newton method

Using again the specific choice 𝛾 = 𝛼−1 and the definition of the adjoint state 𝑝 , we can
write (33.5) as the nonsmooth equation 𝐻 (𝑢) = 0 for

(33.10) 𝐻 : 𝐿2(Ω) → 𝐿2(Ω), 𝐻 (𝑢) = 𝑢 − proj𝑈ad

(
− 1
𝛼
𝑆∗(𝑆𝑢 − 𝑦𝑑)

)
.

Since ran 𝑆∗ ⊂ 𝐻 1
0(Ω) ↩→ 𝐿𝑝 (Ω) for any 𝑝 > 2 and 𝑦𝑑 ∈ 𝐿2(Ω), it follows from Exam-

ple 14.12 (i) together with the chain rule Theorem 14.4 (since both 𝐷𝑁proj𝑈ad
and 𝑆∗𝑆 are
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33 optimal control with constraints

clearly uniformly bounded) that 𝐻 is Newton differentiable with a Newton derivative
whose application to any 𝛿𝑢 ∈ 𝐿2(Ω) is given pointwise almost everywhere by

(33.11) [𝐷𝑁𝐻 (𝑢)𝛿𝑢] (𝑥) = 𝛿𝑢 (𝑥) + 1
𝛼
𝟙[𝑎,𝑏]

(
− 1
𝛼
[𝑆∗𝑆𝑢] (𝑥)

)
[𝑆∗𝑆𝛿𝑢] (𝑥),

where 𝟙[𝑎,𝑏] (𝑡) = 1 for 𝑡 ∈ [𝑎, 𝑏] and 0 else. Clearly, 𝐷𝑁𝐻 (𝑢) is self-adjoint. Furthermore,
since

(𝐷𝑁𝐻 (𝑢)𝛿𝑢 | 𝛿𝑢)𝐿2 (Ω) = ∥𝛿𝑢∥2
𝐿2 (Ω) +

1
𝛼

∫
{𝑥∈Ω | −𝛼−1 [𝑆∗𝑆𝑢] (𝑥)∈[𝑎,𝑏]}

| [𝑆𝛿𝑢] (𝑥) |2 𝑑𝑥

≥ ∥𝛿𝑢∥2
𝐿2 (Ω)

for any𝑢 ∈ 𝐿2(Ω),𝐷𝑁𝐻 (𝑢) is uniformly positive definite and hence invertible. Theorem 14.1
thus guarantees that for any 𝑢0 ∈ 𝐿2(Ω), the semismooth Newton iteration

(33.12) 𝑢𝑘+1 = 𝑢𝑘 − 𝐷𝑁𝐻 (𝑢𝑘)−1𝐻 (𝑢𝑘)

is locally superlinearly convergent. The properties of 𝐷𝑁𝐻 (𝑢) also imply that the Newton
step (33.12) can be solved efficiently using a matrix-free conjugate gradient (CG) method
(where for each CG iteration, one needs to solve two partial differential equations to apply
𝑆 and 𝑆∗, followed by setting the result to zero almost everywhere where 𝑢𝑘 (𝑥) ∉ [𝑎, 𝑏]).
We indicate the performance of the projected gradient method, the explicit splitting method
with 𝐺𝛼 , its inertial variant (FISTA), and the semismooth Newton (SSN) method for the
control constraints problem for the the control constraintsare [𝑎, 𝑏] = [−1, 1], the control
cost parameter 𝛼 = 0.005, and the target

(33.13) 𝑦𝑑 (𝑥1, 𝑥2) = 3
10 (4 − 6𝑥1)2𝑒−(6𝑥1−3)2−(6𝑥2−2)2

−
(

1
5 (6𝑥1 − 3) − (6𝑥1 − 3)3 − (6𝑥2 − 3)5

)
𝑒−(6𝑥1−3)2−(6𝑥2−3)2

− 1
30𝑒

−(6𝑥1−2)2−(6𝑥2−3)2 ;

see Figure 33.1, which also shows the corresponding computed optimal control and state.
Here and in the following, variables are discretized to a 𝑁 × 𝑁 grid for 𝑁 = 256. For the
splitting methods we take 𝜏 = 0.9/𝐿2, where 𝐿 an estimate of ∥𝑆 ∥. More details can again
be found in the accompanying code [Clason and Valkonen, 2023].

As function values are not meaningful in this problem (since they can be infinite for
infeasible controls), we compare the residual norm ∥𝐻 (𝑢𝑘)∥𝕃(𝐿2 (Ω);𝐿2 (Ω) for 𝐻 given by
(33.10); these are shown in Figure 33.2. FISTA turns out to be the slowest algorithm;
but this is not surprising since it only has a 𝑂 (1/𝑘2) rate of convergence, while for this
strongly convex problem, the explicit splitting method has linear convergence, and the
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33 optimal control with constraints

(a) target 𝑦𝑑

(b) optimal state 𝑦 (c) optimal control 𝑢

Figure 33.1: Control constraints: target and optimal control and state.

SSN method has superlinear convergence. The projected gradient method shows linear
convergence as well, albeit with a smaller constant than the explicit splitting method with
𝐺𝛼 . Theoretically, indeed, the iterates of both methods converge linearly due to the strongly
convex regularization term 𝛼

2 ∥𝑢∥2. For the explicit splitting method with𝐺𝛼 , this is a direct
consequence of Theorem 10.2. For the projected gradientmethod,where the strongly convex
term is in 𝐹 , we would need to adapt the proof to use Corollary 7.7 in place of Corollary 7.2.
That the projected gradient method is slightly slower than the explicit splitting method
with 𝐺𝛼 can be attributed to the fact that when the regularization term is included in 𝐹 ,
the Lipschitz factor 𝐿 of 𝐹 is higher, and consequently the step length parameter 𝜏 smaller.
When the proximal step can be easily calculated, it is often more efficient to do more in
the proximal step and less in the gradient step, as the former does not constrain the step
length parameter. Indeed, taking iteration-dependent step length parameters 𝜏𝑘 →∞, the
plain proximal point method converges by Theorem 10.1 superlinearly for strongly convex
objectives. Of course, its steps can be very expensive.

As in the ℓ1 fitting example, even though each SSN iteration involves solving a large
indefinite system, the total computational time for getting the residual to machine precision
is still lower than for the first-order splitting methods. Conversely, the (non-accelerated)
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Figure 33.2: Algorithm performance for the control constraints example. We plot the resid-
ual ∥𝐻 (𝑢𝑘)∥ for 𝐻 given by (33.10).
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Figure 33.3: Control constraints: SSN performance versus dimension 𝑁 . We plot the norm
of residual 𝐻 (𝑢𝑘).

432
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splitting methods are faster in achieving a higher tolerance of about 10−6 and hence again
may be preferable if high accuracy is not required.

Finally, as the convergence of these methods was shown on the infinite-dimensional level,
it can be expected that the number of iterations required to solve optimality conditions
for discretizations of the problem is independent of the fineness of the discretization.
This beneficial property is referred to as mesh independence; see, e.g., [Hintermüller and
Ulbrich, 2004] for its proof for a semismooth Newton method. We numerically indicate the
dimension independence of both the SSN and explicit splitting methods in Figure 33.3.

33.2 state constraints

problem description

There are also occasions when one wishes to put pointwise bounds on the state, for example
when looking for optimal heat sources to achieve on average a comfortable temperature
in a room without risking hot spots of a face-melting temperature. Staying in the current
setting otherwise, we thus want to solve for a given upper bound 𝑦max > 0 (for simplicity)
the state-constrained optimal control problem

min
𝑢∈𝐿2 (Ω),𝑦∈𝐻 1

0 (Ω)
1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝐿2 (Ω) +
𝛼

2 ∥𝑢∥
2
𝐿2 (Ω)

subject to (33.1) and 𝑦 (𝑥) ≤ 𝑦max for almost every 𝑥 ∈ Ω.

This has a similar structure as the control-constrained problem, and we will follow the
same general approach. However, this is more delicate here, since we now have to apply
the chain rule for the subdifferential of the indicator functional, which requires a nonempty
interior of the corresponding set – which does not hold in 𝐿2(Ω), and the dual space of
𝐿∞(Ω) is very difficult to characterize. We thus instead assume that Ω ⊂ ℝ𝑑 is convex for
𝑑 ≤ 3 so that the solutions to the state equation are continuous and we can impose the
state constraints everywhere. We then define the admissible set

𝑌ad ≔
{
𝑤 ∈ 𝐶 (Ω)

��� 𝑤 (𝑥) ≤ 𝑦max for all 𝑥 ∈ Ω
}

as well as
𝑆 : 𝐿2(Ω) → 𝐶 (Ω), 𝑢 ↦→ 𝑦 solving (33.1),

which is well-defined and continuous under our assumptions on Ω. The problem in reduced
form is then

(33.14) min
𝑢∈𝐿2 (Ω)

1
2 ∥𝑆𝑢 − 𝑦𝑑 ∥2

𝐿2 (Ω) +
𝛼

2 ∥𝑢∥
2
𝐿2 (Ω) + 𝛿𝑌ad (𝑆𝑢),

which has the general form 𝐽 = 𝐹 + �̃� with 𝐹 : 𝐿2(Ω) → ℝ as above and �̃� = 𝛿𝑌ad ◦ 𝑆 :
𝐿2(Ω) → 𝐶 (Ω).
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existence

Since 𝑆 is continuous, 𝑌ad clearly is nonempty, convex, and closed, and 𝐹 is coercive on
𝐿2(Ω) due to the control costs while �̃� is nonnegative, we immediately obtain the existence
of an optimal control 𝑢 ∈ 𝐿2(Ω) and an admissible optimal state 𝑦 ∈ 𝑌ad ∩ 𝐻 1

0(Ω) by
Theorem 2.1. Since 𝐹 is strictly convex, this control is again unique.

optimality conditions

Setting 𝐺 = 𝛿𝑌ad : 𝐶 (Ω) → ℝ, the problem (33.14) has the form min𝑢 𝐹 (𝑢) +𝐺 (𝑆𝑢). Since
we are working with continuous functions here and the state equation is linear, we have for
𝑢0 = 0 ∈ 𝐿2(Ω) that 𝑦0 ≔ 𝑆𝑢0 = 0 < 𝑦max and hence that 𝑦0 ∈ int𝑌ad. We can thus apply
the Fenchel–Rockafellar Theorem 5.11 to obtain the primal-dual optimality condition

(33.15)
{

𝜇 ∈ 𝜕𝛿𝑌ad (𝑆𝑢),
−𝑆∗𝜇 = 𝑆∗(𝑆𝑢 − 𝑦𝑑) + 𝛼𝑢,

where we have again used the fact that 𝐹 is Fréchet differentiable with the given gradient.
Since 𝜇 ∈ 𝜕𝛿𝑌ad ⊂ 𝐶 (Ω)∗ �M(Ω) is a Radon measure (cf. Example 1.3 (iv)), a more explicit,
“pointwise”, interpretation analogous to (33.4) and (33.5) is more involved and involves
results from measure theory.

First, by Lemma 4.8, 𝜇 ∈ M(Ω) and 𝑦 ∈ 𝐶 (Ω) satisfy∫
Ω
(�̃� (𝑥) − 𝑦 (𝑥)) 𝑑𝜇 (𝑥) ≤ 0 for all �̃� ≤ 𝑦max.

By a pointwise argument similar to Example 4.9, it follows that

(33.16) 𝜇 ≥ 0 and
∫
Ω
(𝑦 (𝑥) − 𝑦max) 𝑑𝜇 (𝑥) = 0,

i.e., that 𝜇 is a nonnegative Radon measure whose support is contained in the active set
{𝑥 ∈ Ω | 𝑦 (𝑥) = 𝑦max}.
Second, using the continuous (and dense) embedding of𝑊 1,𝑝 (Ω) ↩→ 𝐶 (Ω) for 𝑝 sufficiently
large, it is possible to show that any 𝜇 ∈ M(Ω) satisfies 𝑆∗𝜇 ∈𝑊 1,𝑞 (Ω) for some sufficiently
small 𝑞 > 1 and can therefore be characterized as the unique solution 𝑝 = 𝑆∗𝜇 to

(33.17)
∫
Ω
∇𝑤 (𝑥) · ∇𝑝 (𝑥) 𝑑𝑥 =

∫
Ω
𝑤 (𝑥) 𝑑𝜇 (𝑥) for all𝑤 ∈𝑊 1,𝑝

0 (Ω),

see, e.g., [Clason and Schiela, 2017; Meyer et al., 2011] and the references therein.
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Combining (33.1), (33.17) added to (33.2), and (33.16), we obtain from (33.15) the (suitably
interpreted) necessary and sufficient optimality conditions

(33.18)



𝛼𝑢 + 𝑝 = 0,
−Δ𝑦 = 𝑢,

−Δ𝑝 = 𝑦 − 𝑦𝑑 + 𝜇,
𝑦 ≤ 𝑦max, 𝜇 ≥ 0,

∫
Ω
(𝑦 (𝑥) − 𝑦max) 𝑑𝜇 (𝑥) = 0,

compare [Tröltzsch, 2010, Theorem 6.5]. (The last line corresponds again to the classical
complementarity conditions from nonlinear optimization.)

semismooth newton method

Since (33.18) cannot fully be expressed pointwise, a numerical solution is difficult. We thus
instead apply the Moreau–Yosida regularization from Section 7.3 to𝐺 , which entails replac-
ing 𝜕𝐺 : 𝐶 (Ω) ⇒ M(Ω) in (33.15) by its Yosida approximation (𝜕𝐺)𝛾 : 𝐿2(Ω) → 𝐿2(Ω)
for 𝛾 > 0 (and, as a consequence, 𝑆 by 𝑆). Following the computation in Example 7.10 (iii)
and using Corollary 6.27, we obtain the pointwise almost everywhere expression

[𝐻𝛾 (𝑦)] (𝑥) := [(𝜕𝐺)𝛾 (𝑦)] (𝑥) = 1
𝛾
(𝑦 (𝑥) − 𝑦max)+ ≔

1
𝛾

max{0, 𝑦 (𝑥) − 𝑦max}

and hence the regularized optimality conditions for (𝑢𝛾 , 𝑦𝛾 , 𝑝𝛾 )

(33.19)


𝛼𝑢𝛾 + 𝑝𝛾 = 0,

−Δ𝑦𝛾 = 𝑢𝛾 ,
−Δ𝑝𝛾 = 𝑦𝛾 − 𝑦𝑑 + 1

𝛾
(𝑦𝛾 − 𝑦max)+,

where we have used the single-valued regularized relation 𝜇𝛾 = 𝐻𝛾 (𝑦𝛾 ) to eliminate 𝜇𝛾 in
the last line. By Theorem 7.9 and the computation in Example 7.10 (iii), 𝑢𝛾 ∈ 𝐿2(Ω) is the
(unique) minimizer of

(33.20) min
𝑢∈𝐿2 (Ω)

1
2 ∥𝑆𝑢 − 𝑦𝑑 ∥2

𝐿2 (Ω) +
𝛼

2 ∥𝑢∥
2
𝐿2 (Ω) +

1
2𝛾 ∥(𝑆𝑢 − 𝑦max)+∥2

𝐿2 (Ω),

which guarantees the existence of a (unique) solution (𝑢𝛾 , 𝑦𝛾 , 𝑝𝛾 ) ∈ 𝐿2(Ω) ×𝐻 1
0(Ω) ×𝐻 1

0(Ω).
Of course, we cannot expect 𝑦𝛾 ∈ 𝑌ad in general; but a lower semicontinuity argument
as in Theorem 2.1 shows that 𝑢𝛾 → 𝑢 and 𝑦𝛾 → 𝑦 ∈ 𝑌ad strongly in 𝐿2(Ω) as 𝛾 → 0; see
[De los Reyes, 2015, Theorem 6.5]
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33 optimal control with constraints

To apply a semismooth Newton method, we first eliminate𝑢𝛾 = − 1
𝛼
𝑝𝛾 from the first relation

of (33.19) in the second relation to obtain the reduced optimality system

(33.21)


−Δ𝑦𝛾 + 1

𝛼
𝑝𝛾 = 0,

−Δ𝑝𝛾 − 𝑦𝛾 − 1
𝛾
(𝑦𝛾 − 𝑦max)+ + 𝑦𝑑 = 0,

which is a nonsmooth system of equations for (𝑝𝛾 , 𝑦𝛾 ). Since 𝑦𝛾 ∈ 𝐻 1
0(Ω) ↩→ 𝐿𝑟 (Ω) for

some 𝑟 > 2, the superposition operator 𝐻𝛾 : 𝑦 ↦→ 1
𝛾
(𝑦 − 𝑦max)+ is semismooth from

𝐿𝑟 (Ω) → 𝐿2(Ω) by Example 14.12 (i) with Newton derivative given pointwise almost
everywhere by

[𝐷𝑁𝐻𝛾 (𝑦)] (𝑥) = 1
𝛾
𝟙(𝑦max,∞) (𝑦 (𝑥)) .

A semismooth Newton step thus consists in solving for (𝛿𝑝, 𝛿𝑦) ∈ 𝐻 1
0(Ω) in

(33.22)
( 1
𝛼

Id −Δ
−Δ −Id − 1

𝛾
𝟙(𝑦max,∞) (𝑦𝑘)

) (
𝛿𝑝

𝛿𝑦

)
= −

( −Δ𝑦𝑘 + 1
𝛼
𝑝𝑘

−Δ𝑝𝑘 − 𝑦𝑘 − 1
𝛾
(𝑦𝑘 − 𝑦max)+ + 𝑦𝑑

)
and then setting 𝑝𝑘+1 := 𝑝𝑘 + 𝛿𝑝 , 𝑦𝑘+1 := 𝑦𝑘 + 𝛿𝑦 . The block operator on the left-hand side
of (33.22) is a self-adjoint block operator that can be shown to be boundedly invertible (by
using the fact that −Δ is a self-adjoint and positive definite operator) for any 𝑦 ∈ 𝐻 1

0(Ω).
Hence this semismooth Newton method converges locally superlinearly according to
Theorem 14.1.

Since the PDE constraint is linear, we can further rewrite the Newton step to avoid applying
differential operators when evaluating the right-hand side. Using 𝛿𝑝 = 𝑝𝑘+1 − 𝑝𝑘 and
similarly for 𝛿𝑦 , and writing (𝑦 − 𝑦max)+ = 𝟙(𝑦max,∞) (𝑦) (𝑦 − 𝑦max), we can rearrange the
Newton step as

(33.23)
( 1
𝛼

Id −Δ
−Δ −Id − 1

𝛾
𝟙(𝑦max,∞) (𝑦𝑘)

) (
𝑝𝑘+1

𝑦𝑘+1

)
=

(
0

−𝑦𝑑 − 1
𝛾
𝟙(𝑦max,∞) (𝑦𝑘)𝑦max

)
.

This is closely related to the primal-dual active set method for quadratic optimization
problems with box constraints; see [Hintermüller et al., 2002; Ito and Kunisch, 2008].
Furthermore, if

𝟙(𝑦max,∞) (𝑦𝑘+1) = 𝟙(𝑦max,∞) (𝑦𝑘)
almost everywhere, it is straightforward to verify that (33.23) coincides with the reduced
optimality conditions (33.21), which implies that 𝑢𝑘+1 := − 1

𝛼
𝑝𝑘+1 = −Δ𝑦𝑘+1 is the desired

optimal control. (This finite termination property of semismooth Newton methods for
quadratic optimization problems is one reason for its efficiency for such problems.)

In practice, the radius of convergence for the semismooth Newton method applied to such
a Moreau–Yosida regularization shrinks with 𝛾 → 0. A possible way of dealing with this
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33 optimal control with constraints

(a) optimal state 𝑦𝛾 (b) optimal control 𝑢𝛾

Figure 33.4: State constraints: optimal control and state for 𝛾 = 10−4.
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Figure 33.5: State constraints: SSN performance versus Moreau–Yosida parameter 𝛾 . We
plot the norm of residual, which corresponds to the left hand side of (33.21)
instantiated at (𝑝𝑘 , 𝑦𝑘).

is the following continuation strategy: Starting with a sufficiently large value of 𝛾 , solve
a sequence of problems with decreasing 𝛾 (e.g., 𝛾𝑘 = 𝛾0/2𝑘 ), taking the solution of the
previous problem as the starting point for the next (which is hopefully close enough to
the solution to lie within the convergence region; otherwise the continuation has to be
terminated or the reduction strategy for 𝛾 adapted).

Our target 𝑦𝑑 , dimension 𝑁 = 256, and control cost parameter 𝛼 = 0.005 are exactly the
same as for control constraints in the previous section. We take 𝑦max = 0.02; all other
details are specified in [Clason and Valkonen, 2023]. The optimal state, control, and adjoint
state for𝛾 = 10−4 are exemplarily shown in 33.4. We illustrate in Figure 33.5 the dependence
of the convergence speed of the SSN method on the Moreau–Yosida parameter 𝛾 .
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34 DISCRETE-VALUED OPTIMAL CONTROL

The final example illustrates the application to a challenging class of mixed-integer PDE-
constrained optimization problems, where the desired controls are functions that should
only take values from a specified discrete set. Such problems arise in, e.g., topology op-
timization, material parameter identification with a priori information, and joint image
reconstruction and segmentation. The purpose of this example is to demonstrate how
nonsmooth optimization can be used to impose strong, non-trivial, structural properties
on the solution.

Specifically, for a given set of values 𝑢1 < 𝑢2 < · · · < 𝑢𝑚 ∈ ℝ, we consider the admissible
set

𝑈ad ≔
{
𝑢 ∈ 𝐿2(Ω)

�� 𝑢 (𝑥) ∈ {𝑢1, . . . , 𝑢𝑚} for almost every 𝑥 ∈ Ω
}
.

This set is nonconvex and not weakly closed, which makes the standard theory inapplicable.
The usual approach of replacing𝑈ad with its closed convex hull

co𝑈ad =
{
𝑢 ∈ 𝐿2(Ω)

�� 𝑢 (𝑥) ∈ [𝑢1, 𝑢𝑚] for almost every 𝑥 ∈ Ω
}

however is insufficient as it loses information about the interior values 𝑢2, . . . , 𝑢𝑚−1. We
therefore proceed differently by first adding a pointwise quadratic penalty that promotes
discrete values of lower magnitude (assuming that lower magnitude is preferable, all other
things being equal), i.e., we consider instead of 𝛿{𝑢1,...,𝑢𝑚} the weighted indicator function

𝑔(𝑡) ≔ 1
2 |𝑡 |

2 + 𝛿{𝑢1,...,𝑢𝑚} (𝑡)

whose convex envelope is readily seen by graphical arguments to be

(34.1) 𝑔(𝑡) =
{

1
2 ((𝑢𝑖 + 𝑢𝑖+1)𝑡 − 𝑢𝑖𝑢𝑖+1) if 𝑡 ∈ [𝑢𝑖, 𝑢𝑖+1], 1 ≤ 𝑖 < 𝑚,
∞ else;

see Figure 34.1. (This will be rigorously verified in Remark 34.2 below.)
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34 discrete-valued optimal control

𝑔
𝑥2

Figure 34.1: Plot of 𝑔 given by (34.1) for 𝑢1, . . . , 𝑢5 = −1,−0.5, 0, 0.5, 1. The graph of 𝑥 ↦→ 𝑥2

is also drawn with a dashed line.

34.1 problem description

We now consider for given 𝑢1 < · · · < 𝑢𝑚 and 𝑦𝑑 ∈ 𝐿2(Ω) the model discrete-valued control
problem

(34.2) min
𝑢∈𝐿2 (Ω)

1
2 ∥𝑆𝑢 − 𝑦𝑑 ∥2

𝐿2 (Ω) + 𝛼𝐺 (𝑢),

where 𝑆 : 𝐿2(Ω) → 𝐿2(Ω) is again the control-to-state mapping for (33.1) introduced at
the beginning of Chapter 33, 𝛼 > 0, and

𝐺 : 𝐿2(Ω) → ℝ, 𝐺 (𝑢) ≔
∫
Ω
𝑔(𝑢 (𝑥)) 𝑑𝑥 .

Since 𝑔, given by (34.1), is proper, convex, and lower semicontinuous, so is𝐺 by Lemma 3.7.
We thus again obtain from Theorem 3.8 the existence of an optimal control 𝑢 ∈ 𝐿2(Ω) as
well as a corresponding optimal state 𝑦 ≔ 𝑆𝑢 ∈ 𝐻 1

0(Ω). (Since 𝐺 is convex but not strictly
convex, we cannot directly conclude uniqueness; however, since 𝐹 is strictly convex, the
optimal state 𝑦 = 𝑆𝑢 must be unique, which then yields uniqueness of 𝑢 by the continuous
invertibility of 𝑆 .)

Remark 34.1. In the special case that𝑚 = 3 and 𝑢1 = −𝑀 ≪ 𝑢2 = 0 ≪ 𝑢3 = 𝑀 , the convex penalty
(34.1) simplifies to

𝑔(𝑣) =
{
𝑀
2 |𝑡 | if |𝑡 | ≤ 𝑀,

∞ else.

In other words – after rescaling 𝛼 ↦→ 2
𝑀𝛼 – (34.2) becomes the sparse control problem

min
𝑢∈𝐿2 (Ω)

1
2 ∥𝑆𝑢 − 𝑦𝑑 ∥2

𝐿2 (Ω) + 𝛼 ∥𝑢∥𝐿1 + 𝛿{ [−𝑀,𝑀 ] } (𝑢),

which seeks to find a (bounded) optimal control that is zero on as large a part of the domain Ω
as possible; see [Stadler, 2009; Vossen and Maurer, 2006]. Hence all results in this chapter can be
specialized to this problem as well.
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34 discrete-valued optimal control

However, in the absence of the control constraints−𝑀 ≤ 𝑢 (𝑥) ≤ 𝑀 almost everywhere (or additional
𝐿2(Ω) regularization), the problem is no longer coercive in 𝐿1(Ω), and an optimal control must
be sought in the spaceM(Ω) of Radon measures [Bidaut, 1975]. In this case, it is still possible to
exploit similar arguments using the “preduality” of 𝐶0(Ω) and M(Ω); see Remark 5.12 and [Casas
et al., 2012; Clason and Kunisch, 2014; Clason and Schiela, 2017].

34.2 optimality conditions

Again we can derive optimality conditions from the Fermat principle together with calculus
rules. As in Chapter 33, Theorems 4.5 and 4.14 yield the primal-dual optimality conditions{

−𝑝 = 𝑆∗(𝑆𝑢 − 𝑦𝑑),
𝑝 ∈ 𝜕 (𝛼𝐺 (𝑢)) ,

for the adjoint state 𝑝 ∈ 𝐻 1
0(Ω). The last relation implies by Lemma 4.13 (i) that 𝑝 = 𝛼𝑞

for some 𝑞 ∈ 𝜕𝐺 (𝑢), i.e., 1
𝛼
𝑝 ∈ 𝜕𝐺 (𝑢). Further applying the “convex inverse function”

Lemma 5.8 leads to the equivalent optimality conditions

(34.3)


−𝑝 = 𝑆∗(𝑆𝑢 − 𝑦𝑑),

𝑢 ∈ 𝜕𝐺∗
(

1
𝛼
𝑝

)
.

To derive from this system some information on the structure of optimal controls, we need
to obtain an explicit representation for 𝜕𝐺∗, which we can do pointwise via Theorems 4.11
and 5.5.

We first compute the subdifferential 𝜕𝑔(𝑣) at a point 𝑣 ∈ [𝑢1, 𝑢𝑚]. To that end, we write

𝑔(𝑡) = 𝑔1(𝑡) + 𝛿 [𝑢1,𝑢𝑚]

for the real-valued extension

𝑔1 : ℝ → ℝ, 𝑔1(𝑡) =

𝑢1𝑡 − 1

2𝑢
2
1 if 𝑡 ≤ 𝑢1,

1
2 ((𝑢𝑖 + 𝑢𝑖+1)𝑡 − 𝑢𝑖𝑢𝑖+1) if 𝑡 ∈ [𝑢𝑖, 𝑢𝑖+1], 1 ≤ 𝑖 < 𝑚,
𝑢𝑚𝑡 − 1

2𝑢
2
𝑚 if 𝑡 ≥ 𝑢𝑚 .

This is a convex 𝑃𝐶1 function, hence by Theorems 13.8 and 14.8 we have that

𝜕𝑔1(𝑡) =



{𝑢1} if 𝑡 < 𝑢1,

[𝑢1,
1
2 (𝑢1 + 𝑢2)] if 𝑡 = 𝑢1,

{ 1
2 (𝑢𝑖 + 𝑢𝑖+1)} if 𝑡 ∈ (𝑢𝑖, 𝑢𝑖+1), 1 ≤ 𝑖 < 𝑚,[ 1
2 (𝑢𝑖−1 + 𝑢𝑖), 1

2 (𝑢𝑖 + 𝑢𝑖+1)
]

if 𝑡 = 𝑢𝑖, 1 ≤ 𝑖 < 𝑚,
[ 1

2 (𝑢𝑚−1 + 𝑢𝑚), 𝑢𝑚] if 𝑡 = 𝑢𝑚,
{𝑢𝑚} if 𝑡 > 𝑢𝑚 .
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𝑢1
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Figure 34.2: Plot of 𝜕𝑔∗ given by (34.5) for 𝑢1, . . . , 𝑢5 = −1,−0.5, 0, 0.5, 1.

Furthermore, since 𝑔1 is continuous in any 𝑡 ∈ ℝ, we can apply the sum rule Theorem 4.14
together with the characterization of the subdifferential of the indicator function as a
normal cone analogous to Example 4.9 to obtain

(34.4) 𝜕𝑔(𝑡) =



(−∞, 1
2 (𝑢1 + 𝑢2)] if 𝑡 = 𝑢1,

{ 1
2 (𝑢𝑖 + 𝑢𝑖+1)} if 𝑡 ∈ (𝑢𝑖, 𝑢𝑖+1), 1 ≤ 𝑖 < 𝑚,[ 1
2 (𝑢𝑖−1 + 𝑢𝑖), 1

2 (𝑢𝑖 + 𝑢𝑖+1)
]

if 𝑡 = 𝑢𝑖, 1 ≤ 𝑖 < 𝑚,
[ 1

2 (𝑢𝑚−1 + 𝑢𝑚),∞) if 𝑡 = 𝑢𝑚,
∅ else.

We can now simply appeal to Lemma 5.8 (keeping in mind that subdifferentials are always
closed) to obtain

(34.5) 𝜕𝑔∗(𝑞) ∈



{𝑢1} if 𝑞 ∈ (−∞, 1
2 (𝑢1 + 𝑢2)

)
,

[𝑢𝑖, 𝑢𝑖+1] if 𝑞 = 1
2 (𝑢𝑖 + 𝑢𝑖+1), 1 ≤ 𝑖 < 𝑚,

{𝑢𝑖} if 𝑞 ∈ ( 1
2 (𝑢𝑖−1 + 𝑢𝑖), 1

2 (𝑢𝑖 + 𝑢𝑖+1)
)
, 1 < 𝑖 < 𝑚,

{𝑢𝑑} if 𝑞 ∈ ( 1
2 (𝑢𝑚−1 + 𝑢𝑚),∞

)
,

∅ else.

We illustrate 𝜕𝑔∗ in Figure 34.2.

Applying (34.5) and Theorems 4.11 and 5.5 in (34.12), we now obtain the explicit primal-dual
optimality conditions

(34.6)


−𝑝 = 𝑆∗(𝑆𝑢 − 𝑦𝑑),

𝑢 (𝑥) ∈
{
{𝑢𝑖} if 𝑝 (𝑥) ∈ 𝑄𝑖,
[𝑢𝑖, 𝑢𝑖+1] if 𝑝 (𝑥) ∈ 𝑄𝑖,𝑖+1,

for the sets

𝑄𝑖 =
{
𝑞

�� 𝛼
2 (𝑢𝑖−1 + 𝑢𝑖) < 𝑞 < 𝛼

2 (𝑢𝑖 + 𝑢𝑖+1)
}
, 1 ≤ 𝑖 ≤ 𝑚,

𝑄𝑖,𝑖+𝑖 =
{
𝑞

�� 𝑞 = 𝛼
2 (𝑢𝑖 + 𝑢𝑖+1)

}
, 1 ≤ 𝑖 < 𝑚,
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34 discrete-valued optimal control

where we have set 𝑢0 = −∞ and 𝑢𝑚+1 = ∞ to avoid the need for further case distinctions.
This immediately implies that even after convex relaxation, the optimal control will take
on almost everywhere one of the prescribed discrete values except where the adjoint state
happens to attain one of the critical values 𝛼

2 (𝑢𝑖 + 𝑢𝑖+1), 𝑖 = 1, . . . ,𝑚. If this attainment can
be excluded – as in our case, where 𝑝 is harmonic as the solution of a Poisson equation and
thus cannot be constant on a set of positive measure unless it vanishes everywhere – the
relaxed control will still be admissible for the original nonconvex problem and thus locally
optimal for the (weighted) discrete problem. We also see the effect of 𝛼 on the control: the
larger 𝛼 , the more likely that 𝑝 (𝑥) ∈ 𝑄𝑖 corresponding to an 𝑢𝑖 of lower magnitude.

Remark 34.2. We point out that it was not necessary to derive the explicit form of the conjugate
itself in order to obtain explicit primal-dual optimality conditions. Nevertheless, this can be useful
for verifying that 𝑔 is indeed the convex envelope of 𝑔.

First, we have by definition that

𝑔∗(𝑞) ≔ sup
𝑡 ∈{𝑢1,...,𝑢𝑚 }

𝑞 · 𝑡 − 1
2 |𝑡 |

2 = 𝑢𝑖𝑞 − 1
2 |𝑢𝑖 |

2

for some 1 ≤ 𝑖 ≤ 𝑚. Since the 𝑢𝑖 are assumed to be ordered by increasing magnitude, it therefore
suffices to check for given 𝑞 ∈ ℝ whether

𝑢𝑖𝑞 − 1
2 |𝑢𝑖 |

2 ≤ 𝑢𝑖+1𝑞 − 1
2 |𝑢𝑖+1 |2

or, equivalently, whether
𝑞(𝑢𝑖+1 − 𝑢𝑖) ≤ 1

2 (𝑢
2
𝑖+1 − 𝑢2

𝑖 ).
Since by assumption 𝑢𝑖+1 − 𝑢𝑖 > 0, this in turn is equivalent to

𝑞 ≤ 1
2 (𝑢𝑖+1 + 𝑢𝑖) .

Hence

𝑔∗(𝑞) =

𝑞𝑢1 − 1

2𝑢
2
1 if 𝑞 ≤ 1

2 (𝑢1 + 𝑢2),
𝑞𝑢𝑖 − 1

2𝑢
2
𝑖 if 1

2 (𝑢𝑖−1 + 𝑢𝑖) ≤ 𝑞 ≤ 1
2 (𝑢𝑖 + 𝑢𝑖+1), 1 < 𝑖 < 𝑚,

𝑞𝑢𝑚 − 1
2𝑢

2
𝑚 if 1

2 (𝑢𝑚 + 𝑢𝑚−1) ≤ 𝑞.
A similar – albeit more tedious – calculation using the piecewise differentiability of 𝑔 shows that

𝑔∗(𝑞) = 𝑔∗(𝑞) .

By Theorem 5.1 and the convexity of 𝑔, we thus have

𝑔Γ = 𝑔∗∗ = (𝑔∗)∗ = (𝑔∗)∗ = 𝑔.

442



34 discrete-valued optimal control

34.3 algorithms

34.3.1 proximal gradient methods

As in Section 33.1, we can compute a solution to (34.2) via an explicit splitting method, for
which we only need an explicit characterization of the proximal point mapping prox𝛾 (𝛼𝐺) .
By Corollary 6.27, this is given pointwise almost everywhere by the proximal point mapping
for 𝛼𝑔, which we can derive analogously to Example 6.25 (ii). For the sake of presentation,
we fix 𝛼 = 1 for now.

By the definition of the proximal point mapping,𝑤 = prox𝛾𝑔 (𝑡) = (Id +𝛾𝜕𝑔)−1(𝑡) holds for
any 𝑡 ∈ ℝ if and only if 𝑡 ∈ {𝑤} + 𝛾𝜕𝑔(𝑤). Using (34.4), we thus distinguish the following
cases for𝑤 :

(i) 𝑤 = 𝑢1: In this case,

𝑡 ∈ {𝑤} + 𝛾 (−∞, 1
2 (𝑢1 + 𝑢2)

]
=

(−∞, (1 + 𝛾

2 )𝑢1 + 𝛾

2𝑢2
]
.

(ii) 𝑤 ∈ (𝑢𝑖, 𝑢𝑖+1) for 1 ≤ 𝑖 < 𝑚: In this case,

𝑡 ∈ {𝑤} + 𝛾{ 1
2 (𝑢𝑖 + 𝑢𝑖+1)},

which first can be solved for𝑤 to yield

𝑤 = 𝑡 − 𝛾

2 (𝑢𝑖 + 𝑢𝑖+1);
inserting this into𝑤 ∈ (𝑢𝑖, 𝑢𝑖+1) and simplifying then gives

𝑡 ∈ ((1 + 𝛾

2 )𝑢𝑖 +
𝛾

2𝑢𝑖+1,
𝛾

2𝑢𝑖 + (1 + 𝛾

2 )𝑢𝑖+1
)
.

(iii) 𝑤 = 𝑢𝑖 , 1 < 𝑖 < 𝑚: Proceeding as in the first case, we obtain

𝑡 ∈ [𝛾
2𝑢𝑖−1 + (1 + 𝛾

2 )𝑢𝑖, (1 +
𝛾

2 )𝑢𝑖 +
𝛾

2𝑢𝑖+1
]
.

(iv) 𝑤 = 𝑢𝑚: Similarly, this implies that

𝑡 ∈ [𝛾
2𝑢𝑚−1 + (1 + 𝛾

2 )𝑢𝑚,∞
)
.

Since this is a complete and disjoint case distinction for 𝑡 ∈ ℝ, we obtain that

(34.7) prox𝛾𝑔 (𝑡) =
{
𝑢𝑖 if 𝑡 ∈ [ (

1 + 𝛾

2
)
𝑢𝑖 + 𝛾

2𝑢𝑖−1,
(
1 + 𝛾

2
)
𝑢𝑖 + 𝛾

2𝑢𝑖+1
]
,

𝑡 − 𝛾

2 (𝑢𝑖 + 𝑢𝑖−1) if 𝑡 ∈ ( (
1 + 𝛾

2
)
𝑢𝑖−1 + 𝛾

2𝑢𝑖,
(
1 + 𝛾

2
)
𝑢𝑖 + 𝛾

2𝑢𝑖−1
)
,

again with the convention that 𝑢0 = −∞ and 𝑢𝑚+1 = ∞. The proximal point mapping
therefore has the form of a generalized shrinkage operator. We illustrate this mapping in
Figure 34.3.
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𝑢1

𝑢1

𝑢2

𝑢2

𝑢3

𝑢3

𝑢4

𝑢4

𝑢5

𝑢5

Figure 34.3: Plot of prox𝛾𝑔 given by (34.7) for 𝑢1, . . . , 𝑢5 = −1,−0.5, 0, 0.5, 1 and 𝛾 = 0.5.

Remark 34.3. In the special case of sparse control (𝑚 = 3 and 𝑢1 = −𝑀 ≪ 𝑢2 = 0 ≪ 𝑢3 = 𝑀), the
proximal point mapping reduces to a projection of the well-known soft-shrinkage operator from
Example 6.25.

Choosing 𝜏 < 2𝐿−1 for 𝐿 = ∥𝑆 ∥2
𝕃(𝐿2 (Ω);𝐿2 (Ω)) and 𝑢

0 = 𝑢𝑖 for some 1 ≤ 𝑖 ≤ 𝑚, we can thus
apply the proximal gradient method

(34.8)


𝑦𝑘+1 = 𝑆𝑢𝑘 by solving (33.1),
𝑝𝑘+1 = 𝑆∗(𝑦𝑑 − 𝑦𝑘+1) by solving (33.2) for ℎ = 𝑦𝑑 − 𝑦𝑘+1,

𝑢𝑘+1(𝑥) = prox(𝜏𝛼)𝑔
(
𝑢𝑘 (𝑥) + 𝜏𝑝𝑘+1(𝑥)

)
almost everywhere.

By Theorem 9.6, we then have 𝑢𝑘 ⇀ 𝑢 in 𝐿2(Ω). (Since 𝐺 is not strongly convex, we do
not obtain any rates.)

Similarly, we can apply the acceleration strategies from Chapter 12: The over-relaxed
proximal gradient method for 𝑧0 = 𝑢0 ∈ 𝐿2(Ω), 𝜏 > 0, and 𝜆 = 1

4 (1 +
√

1 + 8𝐿𝜏) consists in
computing for 𝑘 = 0, . . .

(34.9)



𝑦𝑘+1 = 𝑆𝑧𝑘 by solving (33.1),
𝑝𝑘+1 = 𝑆∗(𝑦𝑑 − 𝑦𝑘+1) by solving (33.2) for ℎ = 𝑦𝑑 − 𝑦𝑘+1,

𝑢𝑘+1(𝑥) = prox(𝜏𝛼)𝑔
(
𝑢𝑘 (𝑥) + 𝜏𝑝𝑘+1(𝑥)

)
almost everywhere,

𝑧𝑘+1 = 𝜆−1𝑢𝑘+1 − (𝜆−1 − 1)𝑧𝑘 .

By Theorem 12.4, we obtain the convergence of the function values 𝐽 (�̃�𝑁 ) → 𝐽 (𝑢) at the
rate 𝑂 (1/𝑁 ) as 𝑁 → ∞ for the ergodic sequence 𝑢𝑁 ≔ 1

𝑁

∑𝑁
𝑘=0𝑢

𝑘+1.

The inertial proximal gradient method for 𝑧0 = 𝑢0 ∈ 𝐿2(Ω), 𝜏 > 0, and 𝜆0 = 1 consists in
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computing for 𝑘 = 0, . . .

(34.10)



𝑦𝑘+1 = 𝑆𝑧𝑘 by solving (33.1),
𝑝𝑘+1 = 𝑆∗(𝑦𝑑 − 𝑦𝑘+1) by solving (33.2) for ℎ = 𝑦𝑑 − 𝑦𝑘+1,

𝑢𝑘+1(𝑥) = prox(𝜏𝛼)𝑔
(
𝑢𝑘 (𝑥) + 𝜏𝑝𝑘+1(𝑥)

)
almost everywhere,

𝑧𝑘+1 = (1 + 𝛽𝑘+1)𝑢𝑘+1 − 𝛽𝑘+1𝑢
𝑘 .

By Theorem 12.12, we obtain the convergence of the function values 𝐽 (�̃�𝑘) → 𝐽 (𝑢) at the
rate 𝑂 (1/𝑘2) as 𝑘 → ∞ (for the nonergodic sequence).

Note that in all these algorithms, the number𝑚 of desired values only enters (linearly!)
through the case distinction in (34.7) for the proximal point mapping. In particular, the cost
of each step – which in practice is dominated by computing the solutions 𝑦𝑘+1 and 𝑝𝑘+1

of the state and adjoint equation, respectively – is only mildly affected by𝑚. The convex
relaxation thus avoids the combinatorial complexity of classical (e.g., branch-and-bound)
approaches to mixed-integer optimization.

34.3.2 semismooth newton method

The starting point for applying a semismooth Newton method is again the Moreau–Yosida
regularization of (34.3), i.e., replacing the set-valued subdifferential 𝜕𝐺∗ by its single-valued
Yosida approximation

(𝜕𝐺∗)𝛾 = 1
𝛾

(
Id − prox𝛾𝐺∗

)
for some 𝛾 > 0. Again, we can exploit Corollary 6.27 for carrying out the computation
pointwise. By Lemma 6.24 (ii), we have that

prox𝛾𝑔∗ (𝑡) = 𝑡 − 𝛾prox𝛾−1𝑔 ( 1
𝛾
𝑡)

=

{
𝑡 − 𝛾𝑢𝑖 in case (i),
𝑡 − 𝛾

(
1
𝛾
𝑡 − 1

2𝛾 (𝑢𝑖 + 𝑢𝑖+1)
)
= 1

2 (𝑢𝑖 + 𝑢𝑖+1) in case (ii),

where case (i) corresponds to

1
𝛾
𝑡 ∈

[
1 + 1

2𝛾𝑢𝑖 + 1
2𝛾𝑢𝑖−1, (1 + 1

2𝛾 )𝑢𝑖 + 1
2𝛾𝑢𝑖+1

]
,

i.e.,
𝑡 ∈

[
𝛾𝑢𝑖 + 1

2 (𝑢𝑖−1 + 𝑢𝑖), 𝛾𝑢𝑖 + 1
2 (𝑢𝑖 + 𝑢𝑖+1)

]
;

and case (ii) corresponds to

1
𝛾
𝑡 ∈

(
1 + 1

2𝛾𝑢𝑖−1 + 1
2𝛾𝑢𝑖, (1 + 1

2𝛾 )𝑢𝑖 + 1
2𝛾𝑢𝑖−1

)
,
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i.e.,
𝑡 ∈

(
𝛾𝑢𝑖−1 + 1

2 (𝑢𝑖−1 + 𝑢𝑖), 𝛾𝑢𝑖 + 1
2 (𝑢𝑖−1 + 𝑢𝑖)

)
;

again with the convention 𝑢0 = −∞ and 𝑢𝑚+1 = ∞. Hence

𝐻𝛾 (𝑝) ≔ (𝜕𝐺∗)𝛾
( 1
𝛼
𝑝
)

is given pointwise almost everywhere by

(34.11) [𝐻𝛾 (𝑝)] (𝑥) = ℎ𝛾 (𝑝 (𝑥)) ≔
{
𝑢𝑖 if 𝑝 (𝑥) ∈ 𝑄𝛾

𝑖
,

1
𝛼𝛾

(
𝑝 (𝑥) − 𝛼

2 (𝑢𝑖−1 + 𝑢𝑖)
)

if 𝑝 (𝑥) ∈ 𝑄𝛾
𝑖,𝑖+1,

for

𝑄
𝛾

𝑖
≔

[
𝛼𝛾𝑢𝑖 + 𝛼2 (𝑢𝑖−1 + 𝑢𝑖), 𝛼𝛾𝑢𝑖 + 𝛼2 (𝑢𝑖 + 𝑢𝑖+1)

]
,

𝑄
𝛾

𝑖,𝑖+1 ≔
(
𝛼𝛾𝑢𝑖 + 𝛼2 (𝑢𝑖 + 𝑢𝑖+1), 𝛼𝛾𝑢𝑖+1 + 𝛼2 (𝑢𝑖 + 𝑢𝑖+1)

)
.

We illustrate 𝐻𝛾 in Figure 34.4. Replacing 𝜕𝐺∗( 1
𝛼
· ) by 𝐻𝛾 in (34.3) leads to the regularized

optimality conditions

(34.12)
{
−𝑝𝛾 = 𝑆∗(𝑆𝑢𝛾 − 𝑦𝑑),
𝑢𝛾 = 𝐻𝛾 (𝑝𝛾 ).

Comparing this system with the expansion (34.6) of (34.3), we see that the general structure
– in particular, the fact that 𝑢𝛾 (𝑥) = [𝐻𝛾 (𝑝𝛾 )] (𝑥) ∈ {𝑢1, . . . , 𝑢𝑚} in the first case – is
conserved; the main difference is that the set-valued second case at a point has been
replaced by an affine function (with slope 1

𝛾
) in an interval, for which the case distinctions

have been adjusted to make room. (This relates to the fact that by Theorem 7.11, the Moreau–
Yosida regularization (34.12) is equivalent to replacing 𝐺 in (34.2) by 𝐺 + 𝛾

2 ∥ · ∥2
𝐿2 , i.e., the

regularized problem still has the original nonsmooth structure and has merely been made
strongly convex.) Comparing (34.11) and (34.6), it is straightforward to verify that a solution
satisfying 𝑢𝛾 (𝑥) ∈ {𝑢1, . . . , 𝑢𝑚} for almost every 𝑥 ∈ Ω also satisfies the unregularized
optimality conditions (34.6) and is therefore optimal for (34.2) as well; in this sense, the
Moreau–Yosida regularization is an exact (dual) penalization.

We now derive the semismooth Newton iteration for solving (34.12). First, it is again
advantageous to reformulate the system using the definition of 𝑆 and 𝑆∗ as well as the
second equation to

(34.13)
{
−Δ𝑝𝛾 + 𝑦𝛾 − 𝑦𝑑 = 0,
−Δ𝑦𝛾 − 𝐻𝛾 (𝑝𝛾 ) = 0,
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Figure 34.4: Plot of ℎ𝛾 given by (34.11) for 𝑢1, . . . , 𝑢5 = −1,−0.5, 0, 0.5, 1 and 𝛾 = 0.5 and
𝛼 = 1.

cf. (33.21), which we can consider as a nonlinear equation 𝑇 (𝑦, 𝑝) = 0 for 𝑇 : 𝐻 1
0(Ω) ×

𝐻 1
0(Ω) → 𝐻 1

0(Ω)∗ × 𝐻 1
0(Ω)∗. (The corresponding optimal control can be recovered from

its solution via 𝑢𝛾 = 𝐻𝛾 (𝑝𝛾 ), which is a simple pointwise evaluation.)

To obtain a Newton derivative 𝐷𝑁𝑇 (𝑦, 𝑝), we clearly only need to compute one for 𝐻𝛾 ,
which we again do pointwise. First, it is straightforward to verify that ℎ𝛾 is continuous
and piecewise linear, so that by Theorems 14.8 and 14.9 we have that

(34.14) 𝐷𝑁ℎ𝛾 (𝑡) ≔
{

1
𝛼𝛾

if 𝑡 ∈ 𝑄𝛾
𝑖,𝑖+1,

0 else,

is a Newton derivative for ℎ𝛾 at 𝑡 . Clearly, this function is uniformly bounded by 1
𝛼𝛾
. For

fixed 𝛾 > 0, the intervals𝑄𝛾
𝑖,𝑖+1 are also separated, and hence 𝐷𝑁ℎ𝛾 is a Baire–Caratheodory

function. Since 𝑝𝛾 ∈ 𝐻 1
0(Ω) ↩→ 𝐿𝑟 (Ω) for some 𝑟 > 2, it thus follows from Theorem 14.11

that a Newton derivative of 𝐻𝛾 at 𝑝 in direction 𝛿𝑝 ∈ 𝐿𝑟 (Ω) is given pointwise almost
everywhere by

[𝐷𝑁𝐻𝛾 (𝑝)𝛿𝑝] (𝑥) =
{

1
𝛼𝛾
𝛿𝑝 (𝑥) if 𝑝 (𝑥) ∈ 𝑄𝛾

𝑖,𝑖+1,

0 else.

Setting 𝑄𝛾 ≔ ⋃𝑚
𝑖=1𝑄

𝛾

𝑖,𝑖+1, we thus obtain as a Newton derivative for 𝑇 at (𝑦, 𝑝) ∈ 𝐻 1
0(Ω) ×

𝐻 1
0(Ω)

𝐷𝑁𝑇 (𝑦, 𝑝) =
(

Id −Δ
−Δ − 1

𝛼𝛾
𝟙𝑄𝛾 (𝑝)

)
.

This is a self-adjoint operator that can be shown to be uniformly (with respect to 𝑝) bound-
edly invertible; see [Clason and Kunisch, 2014, Proposition 4.3]. Hence by Theorem 14.1,
the following semismooth Newton method converges locally superlinearly to a solution to
(34.13): Given (𝑝𝑘 , 𝑦𝑘) ∈ 𝐻 1

0(Ω) × 𝐻 1
0(Ω),
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(i) solve for (𝛿𝑝, 𝛿𝑦) ∈ 𝐻 1
0(Ω) × 𝐻 1

0(Ω) the coupled linear system

−Δ𝛿𝑝 + 𝛿𝑦 = 𝑦𝑑 − 𝑦𝑘 + Δ𝑝𝑘 ,

−Δ𝛿𝑦 − 1
𝛼𝛾

𝟙𝑄𝛾 (𝑝𝑘)𝛿𝑝 = 𝐻𝛾 (𝑝𝑘) + Δ𝑦𝑘 ,

(ii) set
𝑦𝑘+1 = 𝑦𝑘 + 𝛿𝑦, 𝑝𝑘+1 = 𝑝𝑘 + 𝛿𝑝.

Using the linearity of the state equation and comparing (34.11) with (34.14), this can again
be reformulated as a linear system for (𝑝𝑘+1, 𝑦𝑘+1). Similarly to the proximal gradient
methods, the number𝑚 of desired states only enters linearly via the case distinction in
𝑄𝛾 . In particular, the computation of the Newton step itself is independent of the value
of𝑚, hence avoiding combinatorial complexity. As in Section 33.2, this will in practice be
embedded in a continuation strategy for 𝛾 → 0.

We indicate the dependence of solutions to the model discrete-valued control problem (34.2)
on the set of allowed values 𝑢1, . . . , 𝑢𝑚 , by taking𝑚 = 3, 10, 20 equally spaced controls on
[𝑎, 𝑏] = [−1, 1]. Other than this restriction on the values of the control 𝑢, the experimental
setup is the same as for control constraints in Section 33.1. For the first-order methods,
we take the step length parameter 𝜏 = 0.9/𝐿2, where 𝐿 is an estimate of ∥𝑆 ∥. For the SSN
method, the Moreau–Yosida regularization parameter is set to 𝛾 = 10−6. The corresponding
optimal controls 𝑢𝛾 for this value of 𝛾 are verified to only take on admissible values
almost everywhere and thus are also optimal for (34.2); see Figure 34.5. Note also how
the discrete-valued controls better approximate the solution shown in Figure 33.1 as𝑚
increases. Regarding performance, the SSN method converges to near machine precision
within 15 iterations. The forward-backward splitting methods are significantly slower
both in number of iterations and actual runtime; see Figure 34.6. In fact, for the shown
parameters, all three methods will yield a control taking only allowed values only after
5000 iterations, at which the residual norm drops to machine precision similarly to the
SSN method.

Remark 34.4. The convex relaxation described in this chapter was first proposed in [Clason and
Kunisch, 2014] (corresponding to the formal limit 𝛽 → ∞ there) and later applied to topology
optimization [Clason and Kunisch, 2016; Clason et al., 2021a] and parameter identification [Clason
and Do, 2018] problems. Vector-valued problems were considered in [Clason et al., 2021b] and
[Clason et al., 2016], the latter treating the related problem of “switching controls”, where at most
one of a pair (𝑢, 𝑣) of distributed controls should be active at any point, i.e., 𝑢 (𝑥)𝑣 (𝑥) = 0 should
hold pointwise almost everywhere. The presentation here is condensed from [Clason and Do, 2018;
Clason and Kunisch, 2016; Clason et al., 2016, 2021a].

448



34 discrete-valued optimal control

(a) optimal state 𝑦 ,𝑚 = 3 (b) optimal control 𝑢,𝑚 = 3

(c) optimal state 𝑦 ,𝑚 = 10 (d) optimal control 𝑢,𝑚 = 10

(e) optimal state 𝑦 ,𝑚 = 20 (f) optimal control 𝑢,𝑚 = 20

Figure 34.5: Discrete control example control and state for 𝛾 = 10−6 and 𝑚 = 3, 10, 20.
The target 𝑦𝑑 is the same as for control constraints in Figure 33.1 and state
constraints in Figure 33.4.
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Figure 34.6: Algorithm performance for the discrete control problem,𝑚 = 10, 𝛾 = 10−6.
For the SSN method, we plot the residual ∥𝐻𝛾 (𝑝𝑘)∥2, while for the first-order
methods, with 𝛾 = 0, the residual is similarly given by the violation of (34.6).
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differentiable
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DRS, see method, Douglas–Rachford
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Baire–Carathéodory, 212
Carathéodory, 24
characteristic, 18n
epigraphical, 293
indicator, 18
of bounded variation, 411
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Lagrangian, 68, 150
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gradient, 22
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of an operator, 5

hull, convex, 4
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preconditioned, 124

inequality
Cauchy–Schwarz, 12

Fenchel–Young, 58
Polyak–Łojasewicz, 93
variational, 427

inertia, 104, 175
interior, 4

algebraic, 5
relative, 53
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of a set-valued mapping, 69
right-, 303

ISTA, see method, iterative
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iteration, see method

kernel, 5

Lagrangian, 110
augmented, 111

lemma
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Fenchel–Young, 63
Opial, 120

lifting, 54n
limit

inner, 70
weak, 70
weak-∗, 70

outer, 69
weak, 70
weak-∗, 70

line search, 181
Lipschitz constant, 5
Lipschitz neighborhood, 5, 185

mapping
coderivatively normal, 365
control-to-state, 424
critical point, 370
duality, 77
proximal point, 79
set-valued, 69
solution, 370
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mean, 402
measure, Radon, 7
median, 402
mesh independence, 433
method

alternating direction, 111
preconditioned, 112

Chambolle–Pock, 108
direct, 15
Douglas–Rachford splitting, 105
explicit splitting
inertial, 179
over-relaxed, 173
preconditioned, 110

forward-backward splitting, see
method, explicit splitting, 104

forward-reflexted-backward splitting,
124

iterative soft-thresholding, 104
fast, 180
generalized, 110

Krasnosel′skiı̆–Mann, 103, 135
primal-dual active set, 216, 436
primal-dual explicit splitting, 109,

131
primal-dual fixed point, 110
primal-dual hybrid gradient,

modified, 108
primal-dual proximal splitting, 108
over-relaxed, 174

projected gradient, 104, 428
inertial, 428
over-relaxed, 428

proximal alternating
predictor-corrector, 110

proximal gradient, 104, 444
inertial, 444
over-relaxed, 444

proximal point, 102
inertial, 178
over-relaxed, 173
preconditioned, 105, 124

semismooth Newton, 205

Vũ–Condat, 174
model

extended upper, 342
lower curvature, 341
stationary lower, 350
stationary upper, 341
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modulus
graphical, 353
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of metric regularity, 353
of metric subregularity, 354

monotone, 73
Γ-strongly, 141
maximally, 73
strongly, 92
three-point, 89, 130
with respect to operator, 130, 141

monotonicity
local, 217

multiplier, Lagrange, 111

N-regular, 282
Newton step, 204
noise

impulsive, 402
random-valued, 402

salt-and-pepper, 402
noise level, 378
norm, 2

equivalent, 3
Huber, 98
operator, 5
outer, 364

openness, at a linear rate, 354
operator

𝛼-averaged, 80
adjoint, 11
Hilbert space, 13

bounded linear, 5
Nemytskii, 24
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firmly, 80
positive definite, 13
positive semi-definite, 13
self-adjoint, 13
soft-shrinkage, 85, 444
soft-thresholding, see operator,

soft-shrinkage
step length, 140
superposition, 24
testing, 140

outliers, 402
over-relaxation, 170

PAPC, see method, proximal alternating
predictor-corrector

parameter
inertial, 175
testing, 138, 139
tilt, 371

partial sequential normal compactness,
331, 332

PDES, see method, primal-dual explicit
splitting

PDFP, see method, primal-dual fixed
point

PDHGM, see method, primal-dual hybrid
gradient, modified

PDPS, see method, primal-dual proximal
splitting

perturbation, tilt, 371
pixel, 412
point

Gâteaux, 228
interior, 4
proximal, 79
saddle, 67

positively homogeneous, 186
preconditioner, 105
preconjugate, Fenchel, 58
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primal-lower-nice, 345
principle

Fermat

approximate, 243
Clarke, 188
convex, 43
fuzzy, 239
smooth, 21

variational, 26
Borwein–Preiss, 28
Deville–Godefroy–Zizler, 30, 242
Ekeland, 26
fuzzy, 241
smooth, 28

problem
ℓ1-fitting, 403
deblurring, 411
denoising, 411
dual, 58, 65
ill-posed, 390
image processing, 390, 411
inpainting, 411
inverse, 370, 380, 390
inverse imaging, 411
Lasso, 390, 391
optimal control, 424
discrete-valued, 439
sparse, 439
state-constrained, 433

optimization
mixed-integer PDE-constrained,
438

parametric, 370
PDE-constrained, 424

predual, 67
primal, 65
reduced form, 426
saddle-point, 64, 113
sparse regression, 104, 391
superresolution, 411
well-posed, 370

product
Hadamard, 211
inner, 12
scalar, see product, inner

projection

473



index

approximate, 243
metric, 86

proper, 14
property

Aubin, 352, 353
finite termination, 436
linear openness, 363
pseudo-Lipschitz, 353
Radon–Riesz, 13
upper Lipschitz, 354

prox-simple, 103
PSNC, see partial sequential normal

compactness

range
of a set-valued mapping, 69
of an operator, 5

rate of growth, 136
regular, 190

graphically, 282
metrically, 352

regularity
metric, 353

regularization, 390
Moreau–Yosida, 96
theory of, 370, 378, 401
Tikhonov, 378, 390
Tikhonov-type, 378
total variation, 411

resolvent, 79
Riesz isomorphism, 13
Riesz representation, 13

semicontinuous
BCP outer, 75
inner, 71
lower, 15
weakly, 15
weakly-∗, 15

outer, 71
sequence

ergodic, 152
minimizing, 16

sequential normal compactness, 335
set

active, 395
admissible, 426, 438
bounded, 4
closed, 4
closed near a point, 259
compact, 4
convex, 4
feasible, vi
inactive, 395
index
active, 208

open, 4
regular, 263
normally, 263
tangentially, 263

sublevel, 34
sign, 47n
smooth, 88

three-point, 89
uniformly, 88

SNC, see sequential normal
compactness

space, 4
Asplund, 232n, 239
Banach, 4
bidual, 8
continuously embedded, 3
dual, 6
Gâteaux smooth, 237
Hilbert, 12
normed, 3
null, 5
reflexive, 8
Sobolev, 424

stability, 352
tilt, 371

state, 424
strategy

active set, 396
continuation, 437

subadditive, 186
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subconvex, 344
subderivative, 42
subdifferentiable

strongly, 92
subdifferential

𝜀-, 235
basic, 231
Bouligand, 228
Clarke, 187
convex, 42
elementary, 241
Fréchet, 229
limiting, 231
Mordukhovich, 231
regular, 229
trustworthy, 241

subgradient, 42
submonotone, 345, 381

strongly, 381
subregular, 352
subregularity, metric, 354

strong, 354, 377
subsmooth, 345
surjective, 69

T-regular, 282

term
control cost, 424
data, 390
regularization, 390
tracking, 424

theorem
Banach–Alaoglu, 11
bipolar, 9
Browder fixed-point, 133
Eberlein–S̆mulyan, 10
Eidelheit, 7
Fenchel–Moreau–Rockafellar, 59
Fenchel–Rockafellar, 65
Fréchet–Riesz, 12
Hahn–Banach, 7
inverse function, 21, 369
convex, 63

Minty, 77
Moreau, 83
Rademacher, 201
renorming, 238
Rockafellar, 76
separation, 7

weak formulation, 425
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