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primal-dual block-proximal splitting for a class
of non-convex problems

Stanislav Mazurenko∗ Jyrki Jauhiainen† Tuomo Valkonen‡

Abstract We develop block structure adapted primal-dual algorithms for non-convex non-smooth

optimisation problems whose objectives can be written as compositions � (G) + � ( (G)) of non-

smooth block-separable convex functions� and � with a non-linear Lipschitz-di�erentiable op-

erator  . Our methods are re�nements of the non-linear primal-dual proximal splitting method

for such problems without the block structure, which itself is based on the primal-dual proximal

splitting method of Chambolle and Pock for convex problems. We propose individual step length

parameters and acceleration rules for each of the primal and dual blocks of the problem. This allows

them to convergence faster by adapting to the structure of the problem. For the squared distance

of the iterates to a critical point, we show local $ (1/# ), $ (1/# 2) and linear rates under varying

conditions and choices of the step lengths parameters. Finally, we demonstrate the performance

of the methods on practical inverse problems: di�usion tensor imaging and electrical impedance

tomography.

1 introduction

We want to solve in Hilbert spaces - and . the problem

(P0) min

G ∈-
� (G) + � ( (G)),

where � : - → ℝ and � : . → ℝ are convex, proper, and lower semicontinuous, but  ∈ �1(- ;. )
is possibly non-linear. The linear case has been considered frequently in the literature, while in our

earlier work [33, 11, 9] we have developed �rst-order primal-dual methods for the generally non-convex

problem with a non-linear  . We refer to [36] for a simpli�ed overview of such methods. In the present

work, still with a non-linear  , we consider problems of the more speci�c form

(P) min

G ∈-

<∑
9=1

� 9 (% 9G) +
=∑
ℓ=1

�ℓ (&ℓ (G)),

where for all 9 = 1, . . . ,< and ℓ = 1, . . . , =, the functions� 9 : - → ℝ and �ℓ : . → ℝ are convex, proper,

and lower semicontinuous, and %1, . . . , %< ∈ �(- ;- ) as well as &1, . . . , &= ∈ �(. ;. ) are mutually
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orthogonal families of linear projection operators. In other words,� and � are block-separable. More

speci�cally, we develop spatially adaptive and block-stochastic optimisation methods for the solution

of (P).

As observed in [35] for linear  , the adaptation of step lengths to individual blocks 9 and ℓ can

speed up the convergence of optimisation methods due to blockwise Lipschitz or strong convexity

factors being better than the global factor. Moreover, as now extensively studied, randomly sampling

the blocks to be updated on each step can also improve convergence on very large-scale problems, in

part due to the spatial adaptation, and in part due to being able to avoid communication in a cluster

implementation of the algorithm. For more on stochastic block coordinate descent type methods, we

refer to the review [42] and, among others, the original articles [23, 28, 16, 29, 46, 31, 13, 25, 2] on

forward–backward type methods, [8, 32, 45, 12, 4, 6, 15, 35] on primal-dual methods, and [27, 26] on

second-order methods, all in the convex case. For the non-convex case we point to [43, 44]. Compared

to the latter, we work in the primal-dual setting and aim for spatial adaptation also in the deterministic

setting. We also aim to prove convergence rates.

Several works consider, instead of a random selection of blocks, a random selection of terms of a

sum of functions. In the non-convex case, recent mathematical works in this area include [14, 22],

aside from more applied works in the area of neural networks. In our block-stochastic approach, for

non-convex �1
functions �ℓ , (ℓ = 1, . . . , =), we can with  (G) := (�1(G), . . . , �= (G)) and � (I) :=

∑=
ℓ=1
Iℓ

write

(1.1) min

G
� (G) +

=∑
ℓ=1

�ℓ (G) = min

G
� (G) + � ( (G)) .

To start describing our approach, using the conjugates � ∗ℓ of the convex, proper, lower semicontinuous

functions �ℓ , we reformulate (P) as the minmax problem

(S) min

G ∈-
max

H∈.

<∑
9=1

� 9 (% 9G) + 〈 (G), H〉 −
=∑
ℓ=1

� ∗ℓ (&ℓH) .

If  is linear, and the number of blocks = =< = 1, a popular algorithm for solving this formulation is

the primal-dual proximal splitting (PDPS) of Chambolle and Pock [7]. It consists of alternating proximal

steps with respect to the dual and primal variables, with the other variable �xed, and an over-relaxation

step that ensures convergence. Its extension to non-linear  (but still without blockwise structure)

iterates [33, 9] 
G8+1 := proxg8�

(G8 − g8∇ (G8)∗H8),
sG8+1 := G8+1 + l8 (G8+1 − G8),
H8+1 := proxf8+1� ∗ (H

8 + f8+1 (sG8+1))

for some step length and over-relaxation parameters g8 , f8+1, l8 and proxg8�
(G) := (� + g8m�)−1(G).

Our purpose in this work is to randomise and adapt the method to the multi-block structure of (S):

�rstly, on each step we will only update random subsets of either or both primal and dual blocks, and,

secondly, even when we deterministically update every block on each step, we adapt the step lengths

to the local structure of the problem in each block.

We organise our work as follows: �rst, in Section 2, we introduce general notations, concepts, and

the rough structure of the algorithm. In Section 3 we start the convergence proof by deriving several

technical estimates. In Section 4 we then use these estimates to derive convergence rates of more

speci�c algorithms when only the primal updates are randomised. Likewise, in Section 5 we study

the case when only the dual updates are randomised. We �nish our work in Section 6 with numerical

experience in di�usion tensor imaging (DTI) and electrical impedance tomography (EIT).

S. Mazurenko, J. Jauhiainen, and T. Valkonen Non-convex primal-dual block-proximal spli�ing



Manuscript, 2019-11-14 (revised 2020-04-22) page 3 of 42

2 notations, rough algorithm, and its testing

Throughout this paper, we write �(- ;. ) for the space of bounded linear operators between Hilbert

spaces - and . ; � is the identity operator; and 〈G, G ′〉 is the inner product in the corresponding space.

We write with P� for the power set of a set � and j� (0) for the indicator function that equals 1 if

0 ∈ � and 0 otherwise. We set 〈G, G ′〉) := 〈)G, G ′〉, and ‖G ‖) :=
√
〈G, G〉) , where in the latter we require

) ≥ 0. For ), ( ∈ �(- ;. ), the inequality ) ≥ ( means that ) − ( is positive semide�nite. If � is

a set-valued operator - ⇒ - , inequalities such as 〈� (G), G ′〉 ≥ 0 mean that 〈F, G ′〉 ≥ 0 for every

F ∈ � (G).
We write (Ω,O,ℙ) for the probability space consisting of a sample set Ω, a f-algebra O on Ω, and a

probability measure ℙ. We write R(O;+ ) for the space of + -valued O-measurable random variables.

R(O;* ⇒ * ) is therefore the space of O-measurable random variables whose values are set-valued

operators * ⇒ * . Due to the iterative nature of optimisation algorithms, we introduce a sequence

of f-algebras {O8}8∈ℕ such that O8 ⊆ O8+1 and O8 ⊆ O for any 8 ∈ ℕ. We use O8 to collect all the

information available before the (8 + 1):th iteration. We write E8 [ · ] := E[ · | O8] for the corresponding

conditional expectation.

Many conditions that we impose in the following sections only apply to the subspace on which the

operator  from the introduction acts non-linearly. Correspondingly, we introduce

.L := {H ∈ . | the map G ↦→ 〈H,  (G)〉 is linear} and .NL := .⊥
L
,

as well as the orthogonal projection %NL to .NL. See Section 6 for how such subspaces practically come

about in applications. We also use the short-hand notations

G 9 := % 9G and Hℓ := &ℓH.

2.1 abstract structure of the algorithm

We generally use the symbol G for primal variables (elements of - ), and symbol H for dual variables

(elements of . ). We group these variables together into D = (G, H) ∈ - × . . This applies to indexed

variables, D8 := (G8 , H8), critical points D̂ = (Ĝ, Ĥ), etc., without explicit introduction of the primal and

dual components in each case. We de�ne the set-valued operator � : - × . ⇒ - × . for D = (G, H) as

(2.1) � (D) :=

(
m� (G) + ∇ (G)∗H
m� ∗(H) −  (G)

)
with � (G) :=

<∑
9=1

� 9 (% 9G) and � ∗(H) :=

=∑
ℓ=1

� ∗ℓ (&ℓH).

Then 0 ∈ � (D̂) encodes the critical point conditions for (S). These will also become the �rst-order

necessary optimality conditions under a constraint quali�cation, e.g., when � is �1
and either the null

space of ∇ (G)∗ is trivial or dom � = - [30, Example 10.8].

Following the “testing” approach to convergence analysis from [34], we introduce the primal-dual

step length, testing, and preconditioning operators

(2.2) ,8+1 :=

(
)8 0

0 Σ8+1

)
, /8+1 :=

(
Φ8 0

0 Ψ8+1

)
, and "8+1 :=

(
� −Φ−1

8 Λ∗8
−Ψ−1

8+1Λ8 �

)
.

Here)8 ,Φ8 and Σ8+1,Ψ8+1 are the respective primal and dual step length and testing operators, and Λ8 is

a term that we will develop to suitably decouple the updates of the primal and dual variables. In the

deterministic case, )8 ,Φ8 ∈ �(- ;- ) and Σ8+1,Ψ8+1 ∈ �(. ;. ) as well as Λ8 ∈ �(- ;. ). Clearly, /8+1"8+1
is self-adjoint. For the stochastic setting we will impose our formal assumptions later in (3.17). We will

in particular require the tests Φ8 and Ψ8+1 to already be known before the start of the 8:th iteration

(calculatingD8 ), whereas the step lengths themselves will have to be known before the (8+1):th iteration

(calculating D8+1).
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Finally, we write our proposed algorithm in the implicit form

(PP) 0 ∈,8+1�̃8+1(D8+1) +"8+1(D8+1 − D8)

for

(2.3) �̃8+1(D8+1) := � (D8+1) +
(

[∇ (G8) − ∇ (G8+1)]∗H8+1
 (G8+1) −  (G8+1 + Ω8 (G8+1 − G8)) + ∇ (G8)Ω8 (G8+1 − G8)

)
and some over-relaxation operator Ω8 , which in the deterministic setting is in �(- ;- ). Here �̃8+1(D)
is a partial linearization of � (D) similar to [33]. It simpli�es to � (D) for a linear  . In the following,

by specifying the testing, step length, preconditioning, and over-relaxation operator, we develop more

explicit methods from this implicit formulation, which itself is more amenable to convergence analysis.

2.2 testing for convergence

The proximal point method iteratively solves D8+1 from

(2.4) 0 ∈ � (D8+1) + g−1(D8+1 − D8)

given a step length parameter g > 0. If � is a W-strongly monotone operator and D̂ ∈ �−1(0). Then

〈� (D8+1), D8+1 − D̂〉 ≥ W ‖D8+1 − D̂‖2. This suggest “testing” (2.4) by the application of 〈 · , D8+1 − D̂〉.
Subsequently to this testing, the strong monotonicity and Pythagoras’ identity

〈D8+1 − D8 , D8+1 − D̂〉 = 1

2

‖D8+1 − D8 ‖2 − 1

2

‖D8 − D̂‖2 + 1

2

‖D8+1 − D̂‖2,

applied to 0 ∈ 〈� (D8+1) + g−1(D8+1 − D8), D8+1 − D̂〉 yield

1 + 2Wg

2

‖D8+1 − D̂‖2 + 1

2

‖D8+1 − D8 ‖2 ≤ 1

2

‖D8 − D̂‖2.

Telescoping this inequality, it is clear thatD# → D̂ at the linear rate$ (1/(1+ 2Wg)# ). The next theorem

from [34] generalises these simple arguments to the more general algorithm (PP) in the stochastic

setting.

Theorem 2.1 ([34, Corollary 3.1]). On a Hilbert space* and a probability space (Ω,O), let �̃8+1 : R(O;* ⇒
* ), and"8+1, /8+1 ∈ R(O;�(* ;* )) for 8 ∈ ℕ. Suppose (PP) is solvable for {D8+1}8∈ℕ ⊂ R(O;* ). If for all
8 ∈ ℕ and almost all random events l ∈ Ω, (/8+1"8+1) (l) is self-adjoint, and the expected fundamental

condition

(2.5) E[〈,8+1�̃8+1(D8+1), D8+1 − D̂〉/8+1] ≥ E

[
1

2

‖D8+1 − D̂‖2/8+2"8+2−/8+1"8+1 −
1

2

‖D8+1 − D8 ‖2/8+1"8+1

]
holds, then so does the expected descent inequality

(2.6) E

[
1

2

‖D# − D̂‖2/# +1"# +1

]
≤ E

[
1

2

‖D0 − D̂‖2/1"1

]
(# ≥ 1) .

The condition (2.5) is simply a relaxation of the strong monotonicity we assumed above. It also

includes the term
1

2
‖D8+1 − D8 ‖/8+1"8+1 intended to be used with forward steps. In application to (2.4),

we have "8+1 = � , and we can take as the testing operator /8+1 = q8� with q8+1 = (1 + 2Wg)q8 and q0 = 1.

Thus /#+1"#+1 in (2.6) forms a local metric that measures rates of convergence. If we can ensure

/8+1"8+1 ≥ `8� for some deterministic `8→∞, then (2.6) shows E[‖D# − D̂‖2] to converge to zero at

the rate $ (1/`# ). We will in Section 3 develop lower bounds of this kind.
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2.3 blockwise algorithm structure

We now develop a more blockwise-re�ned structure of our proposed algorithm. Inserting (2.2), we can

expand (PP) as the pair of implicit updates (compare [35, §2.3])

(2.7)


G8+1 = (� +)8m�)−1(G8 + Φ−1

8 [Λ∗8 − Φ8)8∇ (G8)∗] (H8+1 − H8) −)8∇ (G8)∗H8),
H8+1 = (� + Σ8+1m� ∗)−1(H8 + Ψ−1

8+1 [Λ8 − Ψ8+1Σ8+1∇ (G8)Ω8] (G8+1 − G8)
+ Σ8+1 (G8+1 + Ω8 (G8+1 − G8))).

Due to the block-separable structure of � and � ∗ in (2.1), we take for all 8 ∈ ℕ,

)8 :=
∑
9 ∈( (8)

g89% 9 , Σ8+1 :=
∑

ℓ∈+ (8+1)
f8+1ℓ &ℓ , Ω8 :=

∑
9 ∈( (8)

l89% 9 ,(2.8a)

Φ8 :=

<∑
9=1

q89% 9 , Ψ8+1 :=

=∑
ℓ=1

k 8+1ℓ &ℓ , and Λ8 :=

<∑
9=1

=∑
ℓ=1

_8ℓ, 9&ℓ∇ (G8)% 9 ,(2.8b)

for some (random) subsets of indices ( (8) ⊆ {1, . . . ,<} and+ (8 + 1) ⊆ {1, . . . , =} and (random) parame-

ters g89 , q
8
9 , f

8+1
ℓ ,k 8+1ℓ > 0, and l89 , _

8
9,ℓ ∈ ℝ. We wait until (3.17) to specify the exact probabilistic setup,

which we do not need before that. Due to the block-separable structures of � and � ∗, the operators

(� +)8m�)−1
and (� + Σ8+1m� ∗)−1

are also block-separable.

We also pick further subsets of indices ˚( (8) ⊆ ( (8) and ˚+ (8 + 1) ⊂ + (8 + 1); the rough idea is that

G8+19 for 9 ∈ ˚( (8) is updated within each step of the algorithm independently of H8+1. In the linear- 

case of [35] also H8+1ℓ for ℓ ∈ ˚+ (8 + 1) would be updated independently of G8+1, but presently we are

not able to ensure that. However, we show at the end of this subsection that the primal blocks G8+19 for

9 ∈ ( (8) \ ˚( (8) still depend on H8+1ℓ only for ℓ ∈ ˚+ (8 + 1), as is the case for a linear  in [35]. Moreover

we require the “nesting conditions”

j
(̊ (8) ( 9) (1 − j+ (8+1) (ℓ)) = 0, (1 − j( (8) ( 9))j+̊ (8+1) (ℓ) = 0,(2.9a)

j
(̊ (8) ( 9)j+̊ (8+1) (ℓ) = 0, and j

( (8)\(̊ (8) ( 9)j+ (8+1)\+̊ (8+1) (ℓ) = 0(2.9b)

when

(2.9c) ℓ ∈ V8
9 := {ℓ ∈ {1, . . . , =} | &ℓ∇ (G8)% 9 ≠ 0}.

These conditions force those dual blocks that are “connected” by  to the “independently updated”

primal blocks
˚( (8) to also be (“dependently”) updated, and vice versa. They also disallow connections

between independently updated blocks and dependently updated blocks. Note that the last three

equations in (2.9) are tantamount to the single equality j+ (8+1) (ℓ)j( (8)/(̊ (8) ( 9) = j
+̊ (8+1) (ℓ): they follow

by multiplying the latter by 1− j( (8) , j(̊ (8) ( 9), and j
( (8)/(̊ (8) ( 9), respectively; and vice versa j

+̊ (8+1) (ℓ) =
j
+̊ (8+1) (ℓ)j( (8) ( 9) = j

+̊ (8+1) (ℓ)j( (8)/(̊ (8) ( 9) = j+ (8+1) (ℓ)j( (8)/(̊ (8) ( 9).

Example 2.2. We can trivially satisfy (2.9) by taking either + (8 + 1) = {1, . . . , =}, ˚+ (8 + 1) = ∅, and

˚( (8) = ( (8) or ( (8) = {1, . . . ,<}, ˚( (8) = ∅, and
˚+ (8 + 1) = + (8 + 1). We will consider these two cases in

the respective Section 4 (full dual update methods) and Section 5 (full primal update methods). We

may also alternate iterations between these two choices.

Following the notations for the subsets and their complements, we also write

˚%8 :=
∑
9 ∈(̊ (8)

% 9 , ˘%8 :=
∑

9 ∈( (8)\(̊ (8)

% 9 , ˚&8+1 :=
∑

ℓ∈+̊ (8+1)

&ℓ , and
˘&8+1 :=

∑
ℓ∈+ (8+1)\+̊ (8+1)

&ℓ .

S. Mazurenko, J. Jauhiainen, and T. Valkonen Non-convex primal-dual block-proximal spli�ing



Manuscript, 2019-11-14 (revised 2020-04-22) page 6 of 42

In (2.7), for the subsets ( (8) and + (8 + 1) to have the intended meaning that only the corresponding

blocks are updated, we need to ensure that % 9G
8+1 = % 9G8 for 9 ∉ ( (8) and&ℓH

8+1 = &ℓH8 for ℓ ∉ + (8 + 1).
This holds if % 9Λ

∗
8&ℓ = 0 whenever 9 ∉ ( (8), ℓ ∈ + (8 + 1) or 9 ∈ ( (8), ℓ ∉ + (8 + 1) or 9 ∉ ( (8), ℓ ∉ + (8 + 1).

Similarly, for
˚( (8) to have the intended meaning that G8+19 for 9 ∈ ˚( (8) does not depend on H8+1, studying

(2.7), we are also led to require

˚%8 [Λ∗8 − Φ8)8∇ (G8)∗]&ℓ = 0 for any ℓ ∈ + (8 + 1) .

Finally, since
˘%8G

8+1
may in (2.7) depend on H8+1, we require H8+1 to not depend on

˘%8G
8+1

:

[Λ8 − Ψ8+1Σ8+1∇ (G8)Ω8]%̆8 = 0 and [� + Ω8]%̆8 = 0.

Combining the above conditions on Λ8 and Ω8 , we arrive at

(2.10)


% 9Λ

∗
8&ℓ = 0 whenever either 9 ∉ ( (8) or ℓ ∉ + (8 + 1) or both,

˚%8 [Λ∗8 − Φ8)8∇ (G8)∗]&ℓ = 0 for ℓ ∈ + (8 + 1),
[Λ8 + Ψ8+1Σ8+1∇ (G8)]%̆8 = 0, and (Ω8 + � )%̆8 = 0.

Substituting (2.10) into the identity

Λ8 =
∑

ℓ∈+ (8+1)
&ℓΛ8 %̊8 +

∑
ℓ∉+ (8+1)

&ℓΛ8 ˚%8 + Λ8 ˘%8 +
∑
9∉( (8)

=∑
ℓ=1

&ℓΛ8% 9 ,

we are led to take

(2.11) Λ8 :=
∑

ℓ∈+ (8+1)
&ℓ∇ (G8)) ∗8 Φ∗8 ˚%8 − Ψ8+1Σ8+1∇ (G8) ˘%8 ,

which in terms of the components _8ℓ, 9 reads

(2.12) _8ℓ, 9 :=


g89q

8
9 ℓ ∈ + (8 + 1), 9 ∈ ˚( (8),

−f8+1ℓ k 8+1ℓ ℓ ∈ + (8 + 1), 9 ∈ ( (8) \ ˚( (8),
0 otherwise.

Using the coupling conditions (2.9) between
˚( (8) and

˚+ (8 + 1) in (2.11), we deduce

Λ8 = ∇ (G8)) ∗8 Φ∗8 ˚%8 − ˚&8+1Ψ8+1Σ8+1∇ (G8) .

Plugging Λ8 into (2.7), we get two cases for the primal variable. If 9 ∈ (̊ (8), we have

˚%8G
8+1 = (� + ˚)8m�)−1( ˚%8G8 − ˚)8∇ (G8)∗H8), where

˚)8 := ˚%8)8 .

If 9 ∈ ( (8) \ ˚( (8), given that Ω8 ˘%8 = − ˘%8 due to the last equality of (2.10), taking
˘)8 := ˘%8)8 , we have

%̆8G
8+1 = (� + )̆8m�)−1(%̆8G8 − )̆8∇ (G8)∗&̊8+1H8+1 − %̆8Φ−1

8 ∇ (G8)∗Σ∗8+1Ψ∗8+1 ˚&8+1(H8+1 − H8)) .

Also G8+1 = %̊8G8+1 + %̆8G8+1 + (� − %̊8 − %̆8)G8+1, therefore, for sG8+1 = G8+1 + Ω8 (G8+1 − G8) we can expand

G8+1 = ˚%8G
8+1 − Ω8 ˘%8G

8+1 + (� − ˚%8 − ˘%8)G8 = ˚%8G
8+1 + (� − ˚%8)G8 − Ω8 ˘%8 (G8+1 − G8). Consequently, the
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implicitly de�ned algorithm in (2.7) expands into the explicit successive updates for each of the involved

projections :

(2.13)



˚%8G
8+1

:= (� + ˚)8m�)−1( ˚%8G8 − ˚)8∇ (G8)∗H8),
sG8+1 := (� − ˚%8)G8 + ˚%8G

8+1 + ˚%8Ω8 ˚%8 (G8+1 − G8),

H8+1 := (� + Σ8+1m� ∗)−1

(
H8 + Σ8+1 (sG8+1)

+ ˘&8+1Ψ
−1

8+1 [∇ (G8)) ∗8 Φ∗8 − Ψ8+1Σ8+1∇ (G8)Ω8] ˚%8 (G8+1 − G8)
)
,

˘%8G
8+1

:= (� + ˘)8m�)−1

(
˘%8G

8 − ˘)8∇ (G8)∗ ˚&8+1H
8+1

− ˘%8Φ
−1

8 ∇ (G8)∗Σ∗8+1Ψ∗8+1 ˚&8+1(H8+1 − H8)
)
,

% 9G
8+1

:= % 9G
8

for 9 ∉ ( (8).

In the following sections we will further develop and simplify this algorithm by imposing additional

conditions on the step length and testing parameters through convergence analysis.

3 general estimates

With the estimate (2.6) in mind, our main task in this section is to prove (2.5). After introducing the

assumptions we need for this work in Section 3.1, and bounding /8+1"8+1 from below in Section 3.2, we

do the �rst stage of this estimation in Section 3.3 still deterministically. Then in Section 3.4 we re�ne

these estimates by taking the expectation. Finally in Section 3.5 we combine the various estimates and

state a self-contained result on the validity of (2.6).

3.1 assumptions

We will need  to be su�ciently smooth and to satisfy a somewhat technical “three-point” version of

standard second-order growth conditions:

Assumption 3.1 (Lipschitz ∇ (G)). For some ! ≥ 0 and a neighbourhood X 3 Ĝ ,

(3.1) ‖∇ (G) − ∇ (G ′)‖ ≤ !‖G − G ′‖ (G, G ′ ∈ X ) .

Using the equality

 (G ′) =  (G) + ∇ (G) (G ′ − G) +
∫

1

0

(∇ (G + B (G ′ − G)) − ∇ (G)) (G ′ − G)3B,

we obtain for any G, G ′ ∈ X and H ∈ dom � ∗ as a direct consequence of Assumption 3.1 that

(3.2) 〈 (G ′) −  (G) − ∇ (G) (G ′ − G), H〉 ≤ !
2

‖G − G ′‖2‖H ‖%NL
.

The norm of H only needs to be evaluated within .NL because G ↦→ (� − %NL) (G) is linear so the

corresponding inner product with the integral term is zero.

Assumption 3.2 (three-point condition on  ). For a neighbourhood X of Ĝ , some Γ =
∑<
9=1
W ,9% 9 ∈

�(- ;- ) with W ,9 ∈ ℝ, !3 ≥ 0, and ? ∈ [1, 2], for any � =
∑<
9=1
0 9% 9 ≥ 0 and some \� ≥ 0 the

following holds

(3.3) 〈[∇ (G) − ∇ (Ĝ)]∗Ĥ, G ′ − Ĝ〉�

≥ ‖G ′ − Ĝ ‖2�Γ + \�‖ (Ĝ) −  (G) − ∇ (G) (Ĝ − G)‖
? − !3

2

‖G ′ − G ‖2�, (G, G ′ ∈ X ) .
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This assumption is trivially satis�ed for W ,9 = !3 = 0 and any \� > 0 whenever G ↦→ 〈 (G), Ĥ〉 is

linear. In Appendix a we also provide the constants ensuring this assumption, e.g., whenever the latter

is block-separable and strongly-convex. For a less straight-forward example in the single-block case,

we refer to [9]. There we veri�ed the assumption for the reconstruction of the phase and amplitude of

a complex number from a noisy measurements. That example evidently applies to the present setting

in the single-block case or as a separable block of G ↦→ 〈 (G), Ĥ〉.
We also need pointwise monotonicity of m� and m� ∗ at a root D̂ ∈ �−1(0):

Definition 3.3. Let * be a Hilbert space, and Γ ∈ �(* ;* ), Γ ≥ 0. We say that the set-valued map

� : * ⇒ * is Γ-strongly monotone at D̂ for F̂ ∈ � (D̂) if there exists a neighbourhoodU 3 D̂ such that

for any D ∈ U andF ∈ � (D),

(3.4) 〈F − F̂,D − D̂〉 ≥ ‖D − D̂‖2Γ .

If Γ = 0, we say that � is monotone at D̂ for F̂ .

Assumption 3.4. For any F̂ = (â, b̂) ∈ � (D̂), the set-valued map m� is

∑<
9=1
W�,9% 9 -strongly monotone

at Ĝ for â − ∇ (Ĝ)∗Ĥ in the neighbourhood X� , and the set-valued map m� ∗ is

∑=
ℓ=1
W� ∗,ℓ&ℓ-strongly

monotone at Ĥ for b̂ +  (Ĝ) in the neighbourhood Y� ∗ , where the constants W�,9 , W� ∗,ℓ ≥ 0 for all

9 = 1, . . . ,< and ℓ = 1, . . . , =.

3.2 a lower bound on the local metric

To estimate/8+1"8+1 from below, we formulate a block-adapted version of the basic step length condition

gf ‖ ‖2 < 1 from [7]. The assumptions of the following lemma replace the more abstract constructions

of [35, De�nition 2.2 and Examples 2.3 and 2.4]. We recall from (2.9c) the “set of connections”V8
9 and

also introduce the set of “simultaneous connections”, �ltered by _8
:,9

, as

(3.5)
sV8
9 (ℓ) := {: ∈ {1, . . . , =} | &ℓ∇ (G8)% 9∇ (G8)∗&: ≠ 0, _8

:,9
≠ 0}.

Lemma 3.5. Let 8 ∈ ℕ and 0 ≤ X ≤ ^ < 1. For some factors F 8
9,ℓ,:

= 1/F 8
9,:,ℓ

> 0, (ℓ, : = 1, . . . , =;
9 = 1, . . . ,<), de�ne

F 89,ℓ := jV8
9
(ℓ)

∑
:∈ĎV8

9
(ℓ)
F 8
9,ℓ,:

(3.6)

and suppose

(1 − ^)k 8+1ℓ ≥





 <∑
9=1

|_8ℓ, 9 |
√
F 8
9,ℓ
/q8

9
&ℓ∇ (G8)% 9






2

(ℓ = 1, . . . , =) .(3.7)

Then

(3.8) /8+1"8+1 ≥
(
XΦ8 0

0
^−X
1−X Ψ8+1

)
.

Proof. Setting Zℓ, 9 := (q89 )−1(_8ℓ, 9 )2/(1−^), we use (3.7) and the orthogonality of the projections {% 9 }<9=1

to obtain for any H ∈ . that

=∑
ℓ=1

k 8+1ℓ ‖&ℓH ‖2 ≥
=∑
ℓ=1






 <∑
9=1

√
Zℓ, 9F

8
9,ℓ
&ℓ∇ (G8)% 9






2

‖&ℓH ‖2 ≥
=∑
ℓ=1






 <∑
9=1

√
Zℓ, 9F

8
9,ℓ
% 9∇ (G8)∗&ℓH






2

=

=∑
ℓ=1

<∑
9=1

Zℓ, 9F
8
9,ℓ ‖% 9∇ (G8)∗&ℓH ‖2 ≥

<∑
9=1

∑
ℓ∈V8

9

( ∑
:∈ĎV8

9
(ℓ)
F 8
9,ℓ,:

)
Zℓ, 9 ‖% 9∇ (G8)∗&ℓH ‖2.
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SinceF 8
9,:,ℓ

= 1/F 8
9,ℓ,:

, we continue to estimate by Young’s inequality

=∑
ℓ=1

k 8+1ℓ ‖&ℓH ‖2 ≥
<∑
9=1

=∑
:,ℓ=1

Z
1/2
ℓ, 9
Z

1/2
:,9
〈% 9∇ (G8)∗&ℓH,∇ (G8)∗&:H〉.

Here we also used (3.5) to convert the second sum to run over all :, ℓ = 1, . . . , =. As H ∈ . was arbitrary,

inserting Z:,9 and the structure (2.8) of Ψ8+1, Φ8 , and Λ8 , we deduce (1 − ^)Ψ8+1 ≥ Λ8Φ
−1

8 Λ∗8 .
On the other hand, applying Young’s inequality with the factor (1 − X) we deduce that

(3.9) /8+1"8+1 =

(
Φ8 −Λ∗8
−Λ8 Ψ8+1

)
≥

(
XΦ8 0

0 Ψ8+1 − 1

1−XΛ8Φ
−1

8 Λ∗8

)
Thus (3.8) holds.

�

The next example demonstrates a simple choice of the weightsF 9,:,ℓ that is likely to work if all the

dual blocks ℓ have similar roles in the problem. In Section 6 we will also consider other options when

some dual blocks have di�erent roles.

Example 3.6 (Equal weighting). Suppose V8
9 ⊂ V9 and

sV8
9 (ℓ) ⊂ sV9 (ℓ) where V9 and

sV9 (ℓ) do not

depend on the iteration. If we take F 8
9,ℓ,:
≡ 1, then F 9,ℓ = jV9 (ℓ)# sV9 (ℓ) counts the dual blocks

“simultaneously connected” with ℓ via the primal block 9 as de�ned by (3.5).

To provide further intuition into the result, let F 9,ℓ be as in Example 3.6. With only one primal

block ( 9,< = 1), and assuming full connectedness (F1,ℓ = = for all ℓ = 1, . . . , =), Lemma 3.5 requires

kℓ ≥ Z1,ℓ=‖&ℓ∇ (G8)‖2. Let 0 := 1

=

∑=
ℓ=1
‖&ℓ∇ (G8)‖2 = 1

=
‖∇ (G8)‖2. After plugging _8ℓ, 9 from (2.12)

into (3.7), the lemma then says that the step length parameters can be proportionally larger compared to

the single dual block case (= = 1) when ‖&ℓ∇ (G8)‖2 < 0, and have to be proportionally smaller when

‖&ℓ∇ (G8)‖2 > 0. In Section 4 and Section 5, we further transform (3.7) to obtain explicit step-length

conditions. But now, for the remainder of Section 3, we assume that (3.8) holds and derive su�cient

conditions to be able to apply Theorem 2.1.

3.3 initial non-stochastic estimates

The next lemma starts the veri�cation of (2.5).

Lemma 3.7. Suppose Assumptions 3.1 and 3.4 hold together with (3.8) for some ! ≥ 0, W�,9 , W� ∗,ℓ ≥ 0

( 9 = 1, . . . ,<, ℓ = 1, . . . , =), and 0 ≤ X ≤ ^ < 1. Then with �̃8+1 given by (2.3) and"8+1 given by (2.2), we
have

(3.10)

1

2

‖D8+1 − D8 ‖2/8+1"8+1 +
1

2

‖D8+1 − D̂‖2/8+1"8+1−/8+2"8+2 + 〈�̃8+1(D
8+1), D8+1 − D̂〉,8+1/8+1

≥ 1

2

‖G8+1 − G8 ‖2'G +
1

2

^ − X
1 − X ‖H

8+1 − H8 ‖2Ψ8+1 +
1

2

‖D8+1 − D̂‖2'′ + � 8 + �Λ
8 ,

where for an arbitrary Γ :=
∑<
9=1
W ,9% 9 ∈ �(- ;- ) for W ,9 ∈ ℝ we set

'G := XΦ8 − !‖Ω8 + � ‖2‖Ψ∗8+1Σ∗8+1(H8+1 − Ĥ)‖%NL
� ,(3.11a)

'′ :=

(
Φ8−Φ8+1+2

∑
9∈( (8 ) q

8
9
g8
9
(W�,9+W ,9 )% 9 0

0 Ψ8+1−Ψ8+2+2
∑
ℓ∈+ (8+1) k

8+1
ℓ f8+1ℓ W� ∗,ℓ&ℓ

)
,(3.11b)

�Λ
8 := 〈[Λ8+1 − Λ8] (G8+1 − Ĝ), H8+1 − Ĥ〉(3.11c)

+ 〈∇ (G8)∗(H8+1 − Ĥ), G8+1 − Ĝ〉Φ8)8−Σ∗8+1Ψ∗8+1, and

� 8 := 〈[∇ (G8) − ∇ (Ĝ)]∗Ĥ, G8+1 − Ĝ〉Φ8)8 − ‖G8+1 − Ĝ ‖2Φ8)8Γ (3.11d)

+ 〈 (Ĝ) −  (G8) − ∇ (G8) (Ĝ − G8), H8+1 − Ĥ〉Ψ8+1Σ8+1 .
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Proof. We bound from below all the terms on the left-hand side of (3.10). For the �rst term, we have

from (3.8) that

(3.12) /8+1"8+1 ≥
(
XΦ8 0

0
^−X
1−X Ψ8+1

)
.

For the second term we use the expansion

(3.13) /8+1"8+1 − /8+2"8+2 =

(
Φ8 − Φ8+1 Λ∗8+1 − Λ∗8
Λ8+1 − Λ8 Ψ8+1 − Ψ8+2

)
.

We need to work more to estimate the third term on the left-hand side of (3.10). Since 0 ∈ � (D̂), we

have m� (Ĝ) 3 I� := −∇ (Ĝ)∗Ĥ , and m� ∗(Ĥ) 3 I� ∗ :=  (Ĝ). We can therefore recall the de�nition of

� (D) from (2.1) and rewrite

〈� (D), D − D̂〉,8+1/8+1 = 〈m� (G) − I� , G − Ĝ〉Φ8)8 + 〈m� ∗(H) − I� ∗, H − Ĥ〉Ψ8+1Σ8+1
+ 〈∇ (G)∗H − ∇ (Ĝ)∗Ĥ, G − Ĝ〉Φ8)8 + 〈 (Ĝ) −  (G), H − Ĥ〉Ψ8+1Σ8+1 .

Recalling the de�nition of �̃8+1(D8+1) in (2.3), we therefore expand the third term of (3.10) as

〈�̃8+1(D8+1), D8+1 − D̂〉,8+1/8+1
= 〈m� (G8+1) − I� , G8+1 − Ĝ〉Φ8)8 + 〈m� ∗(H8+1) − I� ∗, H8+1 − Ĥ〉Ψ8+1Σ8+1
+ 〈∇ (G8+1)∗H8+1 − ∇ (Ĝ)∗Ĥ, G8+1 − Ĝ〉Φ8)8 + 〈 (Ĝ) −  (G8+1), H8+1 − Ĥ〉Ψ8+1Σ8+1
+ 〈[∇ (G8) − ∇ (G8+1)]∗H8+1, G8+1 − Ĝ〉Φ8)8
+ 〈 (G8+1) −  (G8+1 + Ω8 (G8+1 − G8)) + ∇ (G8)Ω8 (G8+1 − G8), H8+1 − Ĥ〉Ψ8+1Σ8+1 .

Due to Assumption 3.4 and (3.2), we have

�Γ
8 := 〈m� (G8+1) − I� , G8+1 − Ĝ〉Φ8)8 + ‖G8+1 − Ĝ ‖2Φ8)8Γ + 〈m�

∗(H8+1) − I� ∗, H8+1 − Ĥ〉Ψ8+1Σ8+1(3.14)

≥
∑
9 ∈( (8)

q89g
8
9 ‖G8+1 − Ĝ ‖2% 9 Γ�% 9 + ‖G

8+1 − Ĝ ‖2Φ8)8Γ +
∑

ℓ∈+ (8+1)
k 8+1ℓ f8+1ℓ ‖H8+1 − Ĥ ‖2&ℓ Γ� ∗&ℓ ,

and

�Ω
8 := 〈 (G8) −  (G8+1 + Ω8 (G8+1 − G8)) + ∇ (G8) (Ω8 + � ) (G8+1 − G8), H8+1 − Ĥ〉Ψ8+1Σ8+1(3.15)

≥ −!
2

‖Ω8 + � ‖2‖Ψ∗8+1Σ∗8+1(H8+1 − Ĥ)‖%NL
‖G8+1 − G8 ‖2.

Hence, recalling � 8 from (3.11d), we deduce

(3.16) 〈�̃8+1(D8+1), D8+1 − D̂〉,8+1/8+1
= 〈[∇ (G8) − ∇ (Ĝ)]∗Ĥ, G8+1 − Ĝ〉Φ8)8 − ‖G8+1 − Ĝ ‖2Φ8)8Γ 
+ 〈 (Ĝ) −  (G8) − ∇ (G8) (Ĝ − G8), H8+1 − Ĥ〉Ψ8+1Σ8+1
+ 〈m� (G8+1) − I� , G8+1 − Ĝ〉Φ8)8 + ‖G8+1 − Ĝ ‖2Φ8)8Γ + 〈m�

∗(H8+1) − I� ∗, H8+1 − Ĥ〉Ψ8+1Σ8+1
+ 〈 (G8) −  (G8+1 + Ω8 (G8+1 − G8)) + ∇ (G8) (Ω8 + � ) (G8+1 − G8), H8+1 − Ĥ〉Ψ8+1Σ8+1
+ 〈∇ (G8)∗(H8+1 − Ĥ), G8+1 − Ĝ〉Φ8)8 − 〈∇ (G8) (G8+1 − Ĝ), H8+1 − Ĥ〉Ψ8+1Σ8+1

= � 8 + �Γ
8 + �Ω

8 + 〈∇ (G8)∗(H8+1 − Ĥ), G8+1 − Ĝ〉Φ8)8−Σ∗8+1Ψ∗8+1 .
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Inserting the lower bounds from (3.12), (3.14), and (3.15) into (3.16), and using (3.11d) and (3.13), we

obtain

1

2

‖D8+1 − D8 ‖2/8+1"8+1 +
1

2

‖D8+1 − D̂‖2/8+1"8+1−/8+2"8+2 + 〈�̃8+1(D
8+1), D8+1 − D̂〉,8+1/8+1

≥ 1

2

‖G8+1 − G8 ‖2
XΦ8
+ 1

2

^ − X
1 − X ‖H

8+1 − H8 ‖2Ψ8+1 +
1

2

‖D8+1 − D̂‖2'′ + �Λ
8 + � 8

− !
2

‖Ω8 + � ‖2‖Ψ∗8+1Σ∗8+1(H8+1 − Ĥ)‖%NL
‖G8+1 − G8 ‖2

for �Λ
8 as in (3.11c). Finally, using the de�nitions of 'G in (3.11), we observe

1

2

‖G8+1 − G8 ‖2
XΦ8
− !‖Ω8 + � ‖2‖Ψ∗8+1Σ∗8+1(H8+1 − Ĥ)‖%NL

‖G8+1 − G8 ‖2 = ‖G8+1 − G8 ‖2'G .

This yields the claim. �

3.4 expectation estimates

To further estimate � 8 and �Λ
8 , we have to take the expectation with respect to O8−1. We will use a

split de�nition of the step lengths, writing

g89 =

{
g̊89 , 9 ∈ ˚( (8),
ğ89 , 9 ∈ ( (8) \ ˚( (8),

and f8+1ℓ =

{
f̊8+1ℓ , ℓ ∈ ˚+ (8 + 1),
f̆8+1ℓ , ℓ ∈ + (8 + 1) \ ˚+ (8 + 1),

where we make for all 8 ∈ ℕ the conditionality assumptions

q89 ,k
8+1
ℓ ∈ R(O8−1; (0,∞)), g̊89 , ğ

8
9 , f̊

8+1
ℓ , f̆8+1ℓ ∈ R(O8−1; (0,∞)),(3.17a)

( (8), ˚( (8) ∈ R(O8 ;P{1, . . . ,<}), and + (8 + 1), ˚+ (8 + 1) ∈ R(O8 ;P{1, . . . , =}).(3.17b)

Thus g̊89 always refers to what g89 would be if 9 ∈ ˚( (8), and similarly for the other variables. Moreover,

these step lengths are already known on iteration 8 − 1, prior to their use. The only part that is not

known about)8 and Σ8+1 before commencing iteration 8 are the subsets of blocks to be updated. Observe

that (3.17) and (2.13) imply

(3.18) G8+1 ∈ R(O8 ;- ) and H8+1 ∈ R(O8 ;. ) (8 ∈ ℕ) .

Also, for brevity, we write

c89 := ℙ[ 9 ∈ ( (8) | O8−1], c̊89 := ℙ[ 9 ∈ (̊ (8) | O8−1],
a8+1ℓ := ℙ[ℓ ∈ + (8 + 1) | O8−1], and å8+1ℓ := ℙ[ℓ ∈ ˚+ (8 + 1) | O8−1] .

Lemma 3.8. Suppose Assumption 3.2 and (3.17) hold for some !3 ≥ 0, ? ∈ [1, 2], and \� ≥ 0. For some
dℓ > 0 assume

(3.19) 1 = ℙ[‖H8+1ℓ − Ĥℓ ‖%NL
≤ dℓ | O8−1] (ℓ = 1, . . . ,<).

Then � 8 de�ned in (3.11c) satis�es for any Zℓ > 0 with
∑=
ℓ=1
a8+1ℓ k

8+1
ℓ f8+1ℓ Z

1−?
ℓ

d
2−?
ℓ
≤ ??E8−1 [\Φ8)8 ]the

lower bound

E8−1 [� 8 ] ≥ −
!3

2

E8−1 [‖G8+1 − G8 ‖2Φ8)8 ]

−
=∑
ℓ=1

E8−1

[
k 8+1ℓ f8+1ℓ (? − 1)Zℓ ‖H8+1ℓ − Ĥℓ ‖2%NL

]
.

(3.20)
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Proof. Setting � = Φ8)8 in Assumption 3.2, we obtain

〈[∇ (G8) − ∇ (Ĝ)]∗Ĥ, G8+1 − Ĝ〉Φ8)8

≥ ‖G8+1 − Ĝ ‖2Φ8)8Γ + \Φ8)8 ‖ (Ĝ) −  (G
8) − ∇ (G8) (Ĝ − G8)‖? − !3

2

‖G8+1 − G8 ‖2Φ8)8 .

Therefore, recalling the de�nition of � 
:

in (3.11d) and using (3.18),

(3.21) E8−1 [� 8 ] ≥ E8−1 [\Φ8)8 ] ‖ (Ĝ) −  (G8) − ∇ (G8) (Ĝ − G8)‖? −
!3

2

E8−1

[
‖G8+1 − G8 ‖2Φ8)8

]
+ 〈 (Ĝ) −  (G8) − ∇ (G8) (Ĝ − G8),E8−1 [Σ∗8+1Ψ∗8+1(H8+1 − Ĥ)]〉.

By Young’s inequality and (3.19) as in [9, (3.16) and (3.17)], for any Zℓ > 0,

〈 (Ĝ) −  (G8) − ∇ (G8) (Ĝ − G8), Σ∗8+1Ψ∗8+1(H8+1 − Ĥ)〉
≥ −

∑
ℓ∈+ (8+1)

k 8+1ℓ f8+1ℓ ‖H8+1ℓ − Ĥℓ ‖%NL
· ‖ (Ĝ) −  (G8) − ∇ (G8) (Ĝ − G8)‖

≥ −
∑

ℓ∈+ (8+1)
k 8+1ℓ f8+1ℓ (? − 1)Zℓ ‖H8+1ℓ − Ĥℓ ‖2%NL

−
=∑
8=1

j+ (8+1) (ℓ)k 8+1ℓ f8+1ℓ ‖H8+1ℓ − Ĥℓ ‖
2−?
%NL

??Z
?−1

ℓ

· ‖ (Ĝ) −  (G8) − ∇ (G8) (Ĝ − G8)‖? .

Taking the expectation E8−1, applying the assumption

∑=
ℓ=1
a8+1ℓ k

8+1
ℓ f8+1ℓ Z

1−?
ℓ

d
2−?
ℓ
≤ ??E8−1 [\Φ8)8 ], and

inserting the result in (3.21), we obtain the claim (3.20). �

Lemma 3.9. Suppose Assumption 3.1 and (3.17) are satis�ed for some ! ≥ 0, and the nesting conditions
(2.9) hold for any 9 and ℓ on both iterations 8 and 8 + 1. For some [8+1 > 0 assume

c̊8+19 q8+19 g̊
8+1
9 = [8+1 − j

( (8)\(̊ (8) ( 9)q
8
9 ğ
8
9 ,(3.22a)

å8+2ℓ k 8+2ℓ f̊8+2ℓ = [8+1 − j
+ (8+1)\ ˚+ (8+1) (ℓ)k

8+1
ℓ f̆8+1ℓ .(3.22b)

Then �Λ
8 de�ned in (3.11c) satis�es for any given UG , UH > 0 the lower bound

(3.23) E8 [�Λ
8 ] +

38+1

2

‖G8+1 − G8 ‖2 ≥ −UG
<∑
9=1

j
( (8)\ ˚( (8) ( 9)q

8
9 ğ
8
9 ‖G8+19 − Ĝ 9 ‖2

− UH
=∑
ℓ=1

j
+ (8+1)\+̊ (8+1) (ℓ)k

8+1
ℓ f̆8+1ℓ ‖H8+1ℓ − Ĥℓ ‖2%NL

,

where

38+1 :=
!2

2UG

©­«
∑

9 ∈( (8)\(̊ (8)

q89 ğ
8
9

ª®¬ ‖H8+1 − Ĥ ‖2%NL

+ !2

2UH

©­«
∑

ℓ∈+ (8+1)\+̊ (8+1)

k 8+1ℓ f̆8+1ℓ

ª®¬ ‖G8+1 − Ĝ ‖2.
Moreover, if

ℙ[‖G8+1 − Ĝ ‖ ≤ dG , ‖&ℓ (H8+1 − Ĥ)‖%NL
≤ dℓ , (ℓ = 1, . . . , =) | O8−1] = 1,(3.24)

then

E8−1 [38+1‖G8+1 − G8 ‖2] ≤ E8−1 [28∗‖G8+1 − G8 ‖2](3.25)
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for

28∗ :=
!2

2UGUH

(
UH

=∑
ℓ=1

d2

ℓ #(( (8) \ ˚( (8)) max

9=1,...,<
q89 ğ

8
9

+ UGd2

G#(+ (8 + 1) \ +̊ (8 + 1)) max

ℓ=1,...,=
k 8+1ℓ f̆8+1ℓ

)
.

(3.26)

Proof. We recall from (3.11c) that

�Λ
8 := 〈∇ (G8)∗(H8+1 − Ĥ), G8+1 − Ĝ〉Φ8)8−Σ∗8+1Ψ∗8+1

+
〈[ ∑
ℓ∈+ (8+2)

&ℓ∇ (G8+1)) ∗8+1Φ∗8+1 ˚%8+1 − Ψ8+2Σ8+2∇ (G8+1) ˘%8+1

]
(G8+1 − Ĝ), H8+1 − Ĥ

〉
−

〈[ ∑
ℓ∈+ (8+1)

&ℓ∇ (G8)) ∗8 Φ∗8 ˚%8 − Ψ8+1Σ8+1∇ (G8) ˘%8

]
(G8+1 − Ĝ), H8+1 − Ĥ

〉
.

De�ning for brevity

:ℓ, 9 := 〈∇ (G8)∗(H8+1ℓ − Ĥℓ ), G8+19 − Ĝ 9 〉 and :+ℓ, 9 := 〈∇ (G8+1)∗(H8+1ℓ − Ĥℓ ), G8+19 − Ĝ 9 〉,

and using (3.17), which implies q89g
8
9 ,k

8+1
ℓ f8+1ℓ ∈ R(O8 ; (0,∞)), we expand

E8 [�Λ
8 ] =

=∑
ℓ=1

<∑
9=1

[
(j( (8) ( 9)q89g89 − j+ (8+1) (ℓ)k 8+1ℓ f8+1ℓ ):ℓ, 9

+ E8 [j+ (8+2) (ℓ) (j ˚( (8+1) ( 9)q
8+1
9 g̊

8+1
9 − j( (8+1)\ ˚( (8+1) ( 9)k

8+2
ℓ f8+2ℓ ):+ℓ, 9 ]

− j+ (8+1) (ℓ) (j(̊ (8) ( 9)q
8
9 g̊
8
9 − j( (8)\(̊ (8) ( 9)k

8+1
ℓ f8+1ℓ ):ℓ, 9

]
.

Writing in the �rst term j( (8) ( 9)q89g89 = j
(̊ (8) ( 9)q

8
9 g̊
8
9 + j( (8)\(̊ (8) ( 9)q

8
9 ğ
8
9 , this rearranges as

E8 [�Λ
8 ] =

=∑
ℓ=1

<∑
9=1

( [
j
( (8)\(̊ (8) ( 9)q

8
9 ğ
8
9 + (1 − j+ (8+1) (ℓ))j(̊ (8) ( 9)q

8
9 g̊
8
9

+ j+ (8+1) (ℓ) (j( (8)\ ˚( (8) ( 9) − 1)k 8+1ℓ f8+1ℓ

]
:ℓ, 9

+ E8
[
j+ (8+2) (ℓ)j(̊ (8+1) ( 9)q

8+1
9 g̊

8+1
9

− j+ (8+2) (ℓ)j( (8+1)\(̊ (8+1) ( 9)k
8+2
ℓ f8+2ℓ

]
:+ℓ, 9

)
.

Using (2.9), we continue

E8 [�Λ
8 ] =

=∑
ℓ=1

<∑
9=1

(
[j
( (8)\(̊ (8) ( 9)q

8
9 ğ
8
9 − j+ (8+1)\+̊ (8+1) (ℓ)k

8+1
ℓ f̆8+1ℓ ]:ℓ, 9

+ E8 [j(̊ (8+1) ( 9)q
8+1
9 g̊

8+1
9 − j+̊ (8+2) (ℓ)k

8+2
ℓ f̊8+2ℓ ]:+ℓ, 9

)
,

after which a use of (3.22) rearranges this as

E8 [�Λ
8 ] =

=∑
ℓ=1

<∑
9=1

(c̊8+19 q8+19 g̊
8+1
9 − å8+2ℓ k 8+2ℓ f̊8+2ℓ ) (:+ℓ, 9 − :ℓ, 9 )

=

=∑
ℓ=1

<∑
9=1

(j
( (8)\(̊ (8) ( 9)q

8
9 ğ
8
9 − j+ (8+1)\+̊ (8+1) (ℓ)k

8+1
ℓ f̆8+1ℓ ) (:ℓ, 9 − :+ℓ, 9 ) .
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Expanding :ℓ, 9 −:+ℓ, 9 , using Assumption 3.1, and continuing with Young’s inequality, for any UG , UH > 0,

E8 [�Λ
8 ] =

=∑
ℓ=1

<∑
9=1

[
(j
( (8)\(̊ (8) ( 9)q

8
9 ğ
8
9 − j+ (8+1)\+̊ (8+1) (ℓ)k

8+1
ℓ f̆8+1ℓ )

· 〈H8+1ℓ − Ĥℓ , [∇ (G8) − ∇ (G8+1)] (G8+19 − Ĝ 9 )〉
]

≥ −
<∑
9=1

j
( (8)\(̊ (8) ( 9)q

8
9 ğ
8
9 · ‖H8+1 − Ĥ ‖%NL

!‖G8+1 − G8 ‖‖G8+19 − Ĝ 9 ‖

−
=∑
ℓ=1

j
+ (8+1)\+̊ (8+1) (ℓ)k

8+1
ℓ f̆8+1ℓ · ‖H8+1ℓ − Ĥℓ ‖%NL

!‖G8+1 − G8 ‖‖G8+1 − Ĝ ‖

≥ −
<∑
9=1

j
( (8)\(̊ (8) ( 9)q

8
9 ğ
8
9

(
UG ‖G8+19 − Ĝ 9 ‖2 +

!2

4UG
‖H8+1 − Ĥ ‖2%NL

‖G8+1 − G8 ‖2
)

−
=∑
ℓ=1

j
+ (8+1)\+̊ (8+1) (ℓ)k

8+1
ℓ f̆8+1ℓ

(
UH ‖H8+1ℓ − Ĥℓ ‖2%NL

+ !2

4UH
‖G8+1 − G8 ‖2‖G8+1 − Ĝ ‖2

)
.

This rearranges as (3.23). By (3.24), ℙ[38+1 ≤ 28∗ | O8−1] = 1. Hence (3.25) follows. �

Remark 3.10. For slightly stronger results, it would in (3.24) and throughout the rest of the manuscript,

be possible to take dG = d8+1G and dℓ = d
8+1
ℓ dependent on the iteration.

3.5 putting it all together

We are now ready to state our main generic result providing the tool to estimate convergence rates

based on growth rates of q89 andk 8+1ℓ .

Theorem 3.11. Suppose Assumptions 3.1, 3.2 and 3.4 hold for some 0 < X ≤ ^ < 1, W�,9 , W� ∗,ℓ ≥ 0, W ,9 ∈ ℝ
( 9 = 1, . . . ,<, ℓ = 1, . . . , =), !, !3 ≥ 0, ? ∈ [1, 2], \� ≥ 0 together with the nesting conditions (2.9), the
lower bound (3.8) on the local metric, and the conditionality assumptions (3.17) for all 8 ≤ # − 1. For some
sequence of [8+1 > 0 assume the coupling conditions

c̊8+19 q8+19 g̊
8+1
9 + j( (8)\(̊ (8) ( 9)q

8
9 ğ
8
9 = [

8+1 ( 9 = 1, . . . ,<) and(3.27a)

å8+2ℓ k 8+2ℓ f̊8+2ℓ + j+ (8+1)\ ˚+ (8+1) (ℓ)k
8+1
ℓ f̆8+1ℓ = [8+1 (ℓ = 1, . . . , =).(3.27b)

Also assume for some dG , dℓ ≥ 0 and Zℓ ≥ 0,

1 = ℙ[‖G8+1 − Ĝ ‖ ≤ dG , ‖&ℓ (H8+1 − Ĥ)‖%NL
≤ dℓ , (ℓ = 1, . . . , =) | O8−1] and(3.28a)

E8−1 [\Φ8)8 ] ≥ ?−?
∑=
ℓ=1
a8+1ℓ k

8+1
ℓ f8+1ℓ Z

1−?
ℓ

d
2−?
ℓ

(ℓ = 1, . . . , =) .(3.28b)

Finally, for 28∗ de�ned in (3.26) for some UG , UH > 0 let

!89 := !3 + (!‖Ω8 + � ‖2
∑<
ℓ=1
k 8+1ℓ f8+1ℓ dℓ + 28∗)/q89g89 ,(3.29)

sW8� ,9 := W�,9 + W ,9 − j( (8)\(̊ (8) ( 9)UG ,(3.30)

sW8+1� ∗,ℓ :=

{
W� ∗,ℓ , &ℓ%NL = 0,

W� ∗,ℓ − (? − 1)Zℓ − j+ (8+1)\ ˚+ (8+1) (ℓ)UH , &ℓ%NL ≠ 0.
(3.31)

Then

(3.32) X

<∑
9=1

E
[
q89 ‖% 9 (G# − Ĝ)‖2

]
+ ^ − X

1 − X

=∑
ℓ=1

E
[
k 8+1ℓ ‖&ℓ (H# − Ĥ)‖2

]
≤ E[‖D# − D̂‖2/# +1"# +1] ≤ E[‖D0 − D̂‖2/1"1

]
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holds provided for every 8 ≤ # − 1 both (i) and (ii) are true:

(i) Either of the primal test update conditions holds for every 9 = 1, . . . ,<:

(a) both q8+19 ≤ (1 + 2j( (8) ( 9)g89sW8� ,9 )q
8
9 and X ≥ j( (8) ( 9)!89g89 ; or

(b) for some W̃8
�,9
∈ R(O8−1,ℝ), g̃89 := (c̊89 g̊89 + (c89 − c̊89 )ğ89 )/c89 ,

q8+19 = (1 + 2g̃89W̃
8
�,9 )q

8
9 , g̃89W̃

8
�,9 < E8−1 [j( (8) ( 9)g89sW8� ,9 ], and(3.33a)

X ≥ j( (8) ( 9)
(
!89g

8
9 +

2(g89sW8� ,9 − E8−1 [j( (8) ( 9)g89sW8� ,9 ]) (g
8
9sW
8
� ,9
− g̃89W̃8�,9 )

E8−1 [j( (8) ( 9)g89sW8� ,9 ] − g̃
8
9
W̃8
�,9

)
.(3.33b)

(ii) Either of the dual test update conditions holds for every ℓ = 1, . . . , =:

(a) k 8+1ℓ ≤ (1 + 2j+ (8+1) (ℓ)f8+1ℓ sW8+1
� ∗,ℓ )k

8+1
ℓ ; or

(b) for some W̃8+1
� ∗,ℓ ∈ R(O8−1,ℝ), f̃8+1ℓ := (å8+1ℓ f̊8+1ℓ + (a8+1ℓ − å8+1ℓ )f̆8+1ℓ )/a8+1ℓ :

k 8+2ℓ = (1 + 2f̃8+1ℓ W̃8+1� ∗,ℓ )k
8+1
ℓ , f̃8+1ℓ W̃8+1� ∗,ℓ < E8−1 [j+ (8+1) (ℓ)f8+1ℓ sW8+1� ∗,ℓ ],(3.34a)

^ − X
1 − X ≥ 2(f8+1ℓ sW8+1� ∗,ℓ − E8−1 [j+ (8+1) (ℓ)f8+1ℓ sW8+1� ∗,ℓ ])

·
j+ (8+1) (ℓ) (f8+1ℓ sW8+1

� ∗,ℓ − f̃
8+1
ℓ W̃8+1

� ∗,ℓ )
E8−1 [j+ (8+1) (ℓ)f8+1ℓ

sW8+1
� ∗,ℓ ] − f̃

8+1
ℓ
W̃8+1
� ∗,ℓ

.

(3.34b)

Proof. We �rst apply Lemma 3.7. Recalling '′ from (3.11b), let us set

(3.35) '′′ := '′ − 2

( ∑<
9=1
g8
9
q8
9
j
( (8 )\(̊ (8 ) ( 9)UG% 9 0

0

∑=
ℓ=1
f8+1ℓ k 8+1ℓ (j+ (8+1) (ℓ) (?−1)Zℓ+j+ (8+1)\+̊ (8+1) (ℓ)UH )&ℓ%NL

)
=

(
Φ8−Φ8+1+2

∑
9∈( (8 ) q

8
9
g8
9
sW� ,9% 9 0

0 Ψ8+1−Ψ8+2+2
∑
ℓ∈+ (8+1) k

8+1
ℓ f8+1ℓ sW� ∗,ℓ&ℓ

)
=

( ∑<
9=1
@8
9
% 9 0

0

∑=
ℓ=1
ℎ8+1ℓ &ℓ

)
for

@89 := (1 + 2j( (8) ( 9)g89sW8� ,9 )q
8
9 − q8+19 and ℎ8+1ℓ := (1 + 2j+ (8+1) (ℓ)f8+1ℓ sW8+1� ∗,ℓ )k

8+1
ℓ −k 8+2ℓ .

Thus

(3.36) E8−1 [‖D8+1 − D̂‖2'′′] =
<∑
9=1

E8−1 [@89 ‖% 9 (G8+1 − Ĝ)‖2] +
=∑
ℓ=1

E8−1 [ℎ8+1ℓ ‖&ℓ (H8+1 − Ĥ)‖2] .

Estimation of @89 Suppose 9 ∈ {1, . . . ,<} satis�es (i)(a). Then @89 ≥ 0 and X ≥ j( (8) ( 9)!89g89 , so we

immediately estimate

(3.37) E8−1 [@89 ‖% 9 (G8+1 − Ĝ)‖2] ≥ −E8−1 [j( (8) ( 9) (Xq89 − !89q89g89 )‖% 9 (G8+1 − G8)‖2] .

Otherwise, if 9 ∈ {1, . . . ,<} satis�es (i)(b), using (3.18) and that @89 = E8 [@89 ] due to (3.17) and (3.30), we

decompose

E8−1 [@89 ‖% 9 (G8+1 − Ĝ)‖2] = E8−1

[
@89 ‖% 9 (G8+1 − G8)‖2 + E8−1 [@89 ] ‖% 9 (G8 − Ĝ)‖2

+ 2@89 〈% 9 (G8+1 − G8), G8 − Ĝ〉
]
.
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Using (1 − j( (8) ( 9))% 9 (G8+1 − G8) = 0 and Young’s inequality with the factor U > 0, we obtain

(3.38) E8−1

[
@89 ‖% 9 (G8+1 − Ĝ)‖2] ≥ E8−1 [j( (8) ( 9) (@89 − U |@89 |) ‖% 9 (G8+1 − G8)‖2

+ (E8−1 [@89 ] − j( (8) ( 9)U−1 |@89 |) ‖% 9 (G8 − Ĝ)‖2
]
.

Since q8+19 = (1 + 2g̃89W̃
8
�,9
)q89 with W̃8

�,9
∈ R(O8−1;ℝ), we have from (3.33a)

E8−1 [@89 ] = (1 + 2E8−1 [j( (8) ( 9)g89sW8� ,9 ])q
8
9 − E8−1 [q8+19 ] = 2q89 (E[j( (8) ( 9)g89sW8� ,9 ] − g̃

8
9W̃
8
�,9 ) > 0,

and rearranging (3.33b) for 9 ∈ ( (8):
@89 = 2q89 (j( (8) ( 9)g89sW8� ,9 − g̃

8
9W̃
8
�,9 ) ≥ (E8−1 [@89 ])−1 |@89 |2 − Xq89 + !89q89g89 .

Therefore, taking U := (E8−1 [@89 ])−1 |@89 | for 9 ∈ ( (8) in (3.38), we verify (3.37) for the case (i)(b) as well.

Estimation of ℎ8+1ℓ Similarly, if ℓ ∈ {1, . . . , =} satis�es (ii)(a), we have ℎ8+1ℓ ≥ 0, hence

(3.39) E8−1 [ℎ8+1ℓ ‖&ℓ (H8+1 − Ĥ)‖2] ≥ −E8−1

[
j+ (8+1) (ℓ)

^ − X
1 − X k

8+1
ℓ ‖&ℓ (H8+1 − H8)‖2

]
.

Otherwise, when ℓ ∈ {1, . . . , =} satis�es (ii)(b), using (3.18) and that ℎ8+1ℓ = E8 [ℎ8+1ℓ ] due to (3.17) and

(3.31), we estimate for arbitrary U > 0 that

(3.40) E8−1 [ℎ8+1ℓ ‖&ℓ (H8+1 − Ĥ)‖2] ≥ E8−1 [j+ (8+1) (ℓ) (ℎ8+1ℓ − U |ℎ8+1ℓ |) ‖&ℓ (H8+1 − H8)‖2

+ (E8−1 [ℎ8+1ℓ ] − j+ (8+1) (ℓ)U−1 |ℎ8+1ℓ |) ‖&ℓ (H8 − Ĥ)‖2] .

Sincek 8+2ℓ = (1 + 2f̃8+1ℓ W̃8+1
� ∗,ℓ )k

8+1
ℓ with W̃8+1

� ∗,ℓ ∈ R(O8−1;ℝ), from (3.34a) we have

E8−1 [ℎ8+1ℓ ] = (1 + 2E8−1 [j+ (8+1) (ℓ)f8+1ℓ sW8+1� ∗,ℓ ])k
8+1
ℓ − E8−1 [k 8+2ℓ ] > 0

and rearranging (3.34b) for ℓ ∈ + (8 + 1):

ℎ8+1ℓ ≥ (E8−1 [ℎ8+1ℓ ])−1 |ℎ8+1ℓ |2 −
^ − X
1 − X k

8+1
ℓ .

Consequently, taking U := (E8−1 [ℎ8+1ℓ ])−1 |ℎ8+1ℓ | for ℓ ∈ + (8 + 1) in (3.40), we obtain (3.39) for the case

(ii)(b) as well.

Combining the estimates Since (3.37) and (3.39) hold for all 9 = 1, . . . ,< and ℓ = 1, . . . , =, respectively,

continuing from (3.36), we get

E8−1 [‖D8+1 − D̂‖2'′′] ≥ −E8−1

[ <∑
9=1

(j( (8) ( 9) (Xq89 − !89q89g89 )‖% 9 (G8+1 − G8)‖2

+
=∑
ℓ=1

(
j+ (8+1) (ℓ)

^ − X
1 − X k

8+1
ℓ ‖&ℓ (H8+1 − H8)‖2

)]
.

Plugging !89 from (3.29), thus

E8−1 [‖D8+1 − D̂‖2'′′] ≥ −E8−1

[
<∑
9=1

j( (8) ( 9)
(
Xq89 − !‖Ω8 + � ‖2

<∑
ℓ=1

k 8+1ℓ f8+1ℓ dℓ

)
‖% 9 (G8+1 − G8)‖2

+
=∑
ℓ=1

(
j+ (8+1) (ℓ)

^ − X
1 − X k

8+1
ℓ ‖&ℓ (H8+1 − H8)‖2

)
−

<∑
9=1

(j( (8) ( 9) (!3q
8
9g
8
9 + 28∗)‖% 9 (G8+1 − G8)‖2

]
.
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By the de�nitions of 'G in (3.11) and dℓ in (3.28a), we continue

(3.41) E8−1 [‖D8+1 − D̂‖2'′′] ≥ −E8−1

[
‖G8+1 − G8 ‖2'G +

^ − X
1 − X ‖H

8+1 − H8 ‖2Ψ8+1

−
<∑
9=1

j( (8) ( 9) (!3q
8
9g
8
9 + 28∗)‖% 9 (G8+1 − G8)‖2

]
.

On the other hand, by the de�nition of '′′ in (3.35),

E8−1 [‖D8+1 − D̂‖2'′′] = E8−1

[
‖D8+1 − D̂‖2'′ − 2UG

<∑
9=1

g89q
8
9 j( (8)\(̊ (8) ( 9)‖% 9 (G

8+1 − Ĝ)‖2

− 2

=∑
ℓ=1

(j+ (8+1) (ℓ) (? − 1)Zℓ + j+ (8+1)\+̊ (8+1) (ℓ)UH )f
8+1
ℓ k 8+1ℓ ‖&ℓ (H8+1 − Ĥ)‖2%NL

]
.

Combining with (3.41) and rearranging the terms, we therefore have

(3.42) E8−1 [‖D8+1 − D̂‖2'′ + ‖G8+1 − G8 ‖2'G +
^ − X
1 − X ‖H

8+1 − H8 ‖2Ψ8+1] ≥ E8−1 [11 + 12]

for

11 :=

=∑
9=1

j( (8) ( 9)!3q
8
9g
8
9 ‖% 9 (G8+1 − G8)‖2 + 2

=∑
ℓ=1

f8+1ℓ k 8+1ℓ j+ (8+1) (ℓ) (? − 1)Zℓ ‖&ℓ (H8+1 − Ĥ)‖2%NL

,

and

12 := 2UG

<∑
9=1

g89q
8
9 j( (8)\(̊ (8) ( 9)‖% 9 (G

8+1 − Ĝ)‖2

+ 2UH

=∑
ℓ=1

f8+1ℓ k 8+1ℓ j
+ (8+1)\+̊ (8+1) (ℓ)‖&ℓ (H

8+1 − Ĥ)‖2%NL

+
=∑
9=1

j( (8) ( 9)28∗‖% 9 (G8+1 − G8)‖2.

Our conditions (3.28) and X ≥ j( (8) ( 9)!89g89 ensure the conditions of Lemmas 3.8 and 3.9. By Lemma 3.8

thus E8−1 [11 + 2� 8 ] ≥ 0 while using both (3.23) and (3.25) of Lemma 3.9 establishes E8−1 [12 + 2�Λ
8 ] =

E8−1 [12 + 2E8 [�Λ
8 ]] ≥ 0. Consequently (3.42) yields

E8−1 [‖D8+1 − D̂‖2'′ + ‖G8+1 − G8 ‖2'G +
^ − X
1 − X ‖H

8+1 − H8 ‖2Ψ8+1 + 2�Λ
8 + 2� 8 ] ≥ 0.

We now use Lemma 3.7 to verify (2.5). Minding that each /8+1"8+1 is self-adjoint by Lemma 3.5,

a referral to Theorem 2.1 establishes (2.6). Using (3.8) as well as q#9 ,k
#+1
ℓ ∈ R(O#−1; (0,∞)) and

D# ∈ R(O#−1;- × . ) that follow from (3.17), we estimate

E[‖D# − D̂‖2/# +1"# +1 | O#−1] = ‖D# − D̂‖2E[/# +1"# +1 |O#−1 ]

≥ X
<∑
9=1

q#9 ‖% 9 (G# − Ĝ)‖2 +
^ − X
1 − X

=∑
ℓ=1

k#+1ℓ ‖&ℓ (H# − Ĥ)‖2.

Taking the full expectation and using (2.6) establishes the claim. �

Remark 3.12. The conditions (i)(a) and (ii)(a) di�er from (i)(b) and (ii)(b) by larger sW8
� ,9

and sW8
� ∗,ℓ , and

updating q8+19 andk 8+2ℓ ∈ R(O8 ;ℝ) potentially non-deterministically.
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In Section 4 we have c̊89 = c
8
9 , g

8
9 = g̊

8
9 , å

8+1
ℓ = 0, and f8+1ℓ = f̆8+1ℓ . In Section 5 we take c̊89 = 0, g89 = ğ

8
9 ,

å8+1ℓ = a8+1ℓ , and f8+1ℓ = f̊8+1ℓ . Also (i)(b) and (ii)(b) then simplify for W̃8
�,9

< c89sW
8
� ,9

to

q8+19 = (1 + 2g89W̃
8
�,9 )q

8
9 , X ≥ j( (8) ( 9)g89

(
!89 + 2(1 − c89 )sW8� ,9

sW8
� ,9
− W̃8

�,9

c8
9
sW8
� ,9
− W̃8

�,9

)
(3.43a)

and, respectively, for W̃8+1
� ∗,ℓ < a

8+1
ℓ sW8+1

� ∗,ℓ to

k 8+2ℓ = (1 + 2f8+1ℓ W̃8+1� ∗,ℓ )k
8+1
ℓ ,

^ − X
1 − X ≥ 2j+ (8+1) (ℓ) (1 − a8+1ℓ )f8+1ℓ sW8+1� ∗,ℓ

sW8+1
� ∗,ℓ − W̃

8+1
� ∗,ℓ

a8+1
ℓ

sW8+1
� ∗,ℓ − W̃

8+1
� ∗,ℓ

.(3.43b)

Remark 3.13. Another quite restrictive requirement that we will need in the next sections is the almost

sure boundedness of the iterates in (3.28a). We already had this requirement in the deterministic

single-block algorithm in [9, Section 4.3] and [10, Section 5]. We veri�ed in [9, Proposition 4.8.] that

this requirement can be restated in terms of the su�ciently close initialisation of iterations to the

critical point, which is often required in non-convex optimisation.

In this work, the rates for convergence are in expectation, hence, the required boundedness is in the

almost sure terms. Moreover, in order to be able to update only some primal blocks on each iteration,

(3.28a) now also requires the primal variable to be bounded. Through the simpli�ed algorithms of

Sections 4 and 5, treating respective non-randomised dual updates and non-randomised primal updates,

we will somewhat relax these restrictions:

– Algorithm 4.2 of Section 4 will not require the dual variable to be bounded if Assumption 3.2

holds with ? = 2; see Corollaries 4.6 and 4.8.

– In Section 5, we will not require any bound on the primal variable.

In some cases, boundedness can, moreover, be checked analytically based on the explicit formula for � .

For example, for � (G) = |〈0, G〉| or � (G) = ‖0G ‖ the support of � ∗(H) is bounded by ‖0‖. Hence the

range of the corresponding proximal operator is also bounded. In particular, if the � is of such a form,

the boundedness assumptions of Section 5 are automatically satis�ed.

4 methods with full dual updates

We now develop more speci�c methods based on (2.13) and study their convergence based on Theo-

rem 3.11. In this section we take
˚+ (8 + 1) = ∅, + (8 + 1) = {1, . . . , =}, and

˚( (8) = ( (8) for all iterations 8 .

The nesting conditions (2.9) of Theorem 3.11 then hold, and the coupling conditions (3.27) become

(4.1) c̊8+19 q8+19 g̊
8+1
9 = [8+1 = k 8+1ℓ f̆8+1ℓ .

The dual update of (2.13) involves Ψ−1

8+1 [∇ (G8)) ∗8 Φ∗8 − Ψ8+1Σ8+1∇ (G8)Ω8], in scalar form

(4.2)

q89 g̊
8
9 − l89 f̆8+1ℓ k 8+1ℓ

k 8+1
ℓ

= f̆8+1ℓ

(
[8

c̊8
9
[8+1
− l89

)
= f̆8+1ℓ

(
sl8

c̊8
9

− l89

)
for sl8 :=

[8

[8+1
.

Therefore, with l89 =
sl8

c̊8
9

, the updates (2.13) simplify to those of Algorithm 4.1. Moreover, (2.12) reduces

to _89,ℓ = q
8
9g
8
9 j ˚( (8) ( 9). We thus verify (3.8) via:

Lemma 4.1. Suppose ˚+ (8 + 1) = ∅, + (8 + 1) = {1, . . . , =}, ˚( (8) = ( (8) for 8 ∈ ℕ; the coupling condition (4.1)

holds; sl8 ≤ 1; as well as, for all ℓ = 1, . . . , = and 9 = 1, . . . ,<,

(4.3) sl8f̆8+1ℓ g̊89 ≤ f̆0

ℓ g̊
0

9 and 1 − ^ ≥





 ∑
9 ∈(̊ (8)

√√
F 8
9,ℓ
f̆0

ℓ
g̊0

9

c̊8
9

&ℓ∇ (G8)% 9






2
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Algorithm 4.1 Full dual updates #1

Assume the problem structure (P), equivalently (S). For each iteration 8 ∈ ℕ, choose a sampling pattern

for generating the random set of updated primal blocks ( (8) ∈ R(O8 ;P{1, . . . ,<}) with corresponding

blockwise probabilities c̊89 := ℙ[ 9 ∈ ( (8) | O8−1] > 0. Also choose a rule for the iteration and

block-dependent step length parameters g̊89 , f̆
8
ℓ , sl8 > 0 from one of Theorem 4.5, 4.4, or 4.7. Pick an

initial iterate (G0, H0) and on each iteration 8 ∈ ℕ update all blocks G8+19 = % 9G
8+1

, ( 9 = 1, . . . ,<), and

H8+1ℓ = &ℓH
8+1

, (ℓ = 1, . . . , =), of G8+1 and H8+1 as:

G8+19 :=

{
(� + g̊89% 9 m� 9% 9 )−1(G89 − g̊89% 9∇ (G8)∗H8), 9 ∈ ( (8),
G89 , 9 ∉ ( (8),

sG8+19 :=

{
G8+19 + sl8 (G8+19 − G89 )/c̊89 , 9 ∈ ( (8),
G89 , 9 ∉ ( (8),

H8+1ℓ := (� + f̆8+1ℓ &ℓm�
∗
ℓ&ℓ )−1(H8ℓ + f̆8+1ℓ &ℓ (sG8+1)) .

for some 0 ≤ ^ ≤ 1 andF 9,ℓ,: = 1/F 9,:,ℓ > 0 such that

F 89,ℓ := jV8
9
(ℓ)

∑
:∈ĎV8

9
(ℓ)
F 9,ℓ,:(4.4a)

with
sV8
9 (ℓ) = {: ∈ {1, . . . , =} | &ℓ∇ (G8)% 9∇ (G8)∗&: ≠ 0, 9 ∈ ˚( (8)}.(4.4b)

Then the lower bound (3.8) holds.

Proof. By the �rst part of (4.3), (4.1), and _89,ℓ = q
8
9g
8
9 j(̊ (8) ( 9), we have

f̆0

ℓ g̊
0

9 ≥
[8f̆8+1ℓ g̊89

[8+1
=
c̊89q

8
9 (g̊89 )2

k 8+1
ℓ

=
c̊89 (_89,ℓ )2

k 8+1
ℓ
q8
9

( 9 ∈ ˚( (8)) .

By the orthogonality of the projections % 9 , we may insert this estimation into the second part of (4.3),

obtaining (3.7); compare the proof of Lemma 3.5. The de�nition of
sV8
9 (ℓ) in (3.5) also reduces to that

in (4.4b), while the de�nition ofF 89,ℓ in (4.4a) is exactly that in (3.6). We �nish by applying Lemma 3.5

to verify (3.8). �

Remark 4.2. The �rst part of (4.3) relaxes the property g8f8 = g0f0
of the basic PDPS [7].

Remark 4.3. With deterministic updates (c̊89 ≡ 1), (4.1) couples g̊89q
8
9 = f̆

8
ℓk
8
ℓ . Withk 8ℓ ≡ k 0

ℓ , (4.3) therefore

becomes a block-coupled variant of the condition g8f8 ‖ ‖2 < 1 from [7].

Finally, we also remind that (3.30) and (3.31) for this section simplify to

(4.5) sW8� ,9 ≡ sW� ,9 := W�,9 + W ,9 , and sW8+1� ∗,ℓ ≡ sW� ∗,ℓ :=

{
W� ∗,ℓ , &ℓ%NL = 0,

W� ∗,ℓ − (? − 1)Zℓ − UH , &ℓ%NL ≠ 0.

4.1 accelerated rates

We start with simple step length rules for $ (1/# ) rates on the blocks admitting second-order growth

(W�,9 +W ,9 > 0 for primal blocks 9 or W� ∗,ℓ > 0 for dual blocks ℓ). Throughout, for simplicity, we assume

iteration-independent probabilities, c̊89 = c
8
9 ≡ c̊ 9 for all 8 ∈ ℕ.
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Theorem 4.4. Suppose Assumptions 3.1, 3.2 and 3.4 hold with !, !3 ≥ 0; ? ∈ [1, 2]; W�,9 + W ,9 ≥ 0,
( 9 = 1, . . . ,<), and sW� ∗,ℓ ≥ 0, (ℓ = 1, . . . , =), for some UH , Zℓ ≥ 0 as de�ned in (4.5). Let the iterates
{D8 = (G8 , H8)}8∈ℕ be generated by Algorithm 4.1 with iteration-independent probabilities c̊89 ≡ c̊ 9 and
step length parameters

f̆8+1ℓ :=
f̆8ℓ

1 + 2f̆8
ℓ
sW� ∗,ℓ

, sl8 ≡ 1, and g̊8+19 :=
g̊89

1 + 2g̊8
9
W̃�,9

,(4.6a)

with either 0 ≤ W̃�,9 < c̊ 9 (W�,9 + W ,9 ) or W̃�,9 = W�,9 + W ,9 = 0 for each 9 = 1, . . . ,<; and initial
g̊0

9 , f̆
0

ℓ > 0 satisfying for some 0 < X < ^ < 1, dG , dℓ ≥ 0, (ℓ = 1, . . . , =), and F 89,ℓ as in (4.4) the bounds
(8 ∈ ℕ; 9 = 1, . . . ,<)

1 − ^ ≥







 ∑
9 ∈(̊ (8)

√
F 8
9,ℓ
f̆0

ℓ
g̊0

9

c̊ 9
&ℓ∇ (G8)% 9








2

(4.7a)

and

X ≥ g̊0

9
s! + g̊0

9 ·
{

2(1 − c̊ 9 ) (W�,9 + W ,9 )
W�,9+W ,9−W̃�,9

c̊ 9 (W�,9+W ,9 )−W̃�,9 W�,9 + W ,9 > 0

0 W�,9 + W ,9 = 0

(4.7b)

with
s! := !3 + !

(
max

9=1...<

(
1

c̊ 9
+ 1

)
2 ∑=

ℓ=1
dℓ + =!

2UH
d2

G

)
.(4.7c)

Assume for � :=
∑
9 ∈( (8) (c̊ 9 )−1% 9 that

E8−1 [\�] ≥ ?−?
∑=
ℓ=1
Z

1−?
ℓ

d
2−?
ℓ

and(4.8a)

1 = ℙ[‖G8+1 − Ĝ ‖ ≤ dG , ‖&ℓ (H8+1 − Ĥ)‖%NL
≤ dℓ , (ℓ = 1, . . . , =) | O8−1] .(4.8b)

Then E[‖% 9 (G# − Ĝ)‖2] → 0 at the rate$ (1/# ) for all 9 such that W̃�,9 > 0 and E[‖&ℓ (H# − Ĥ)‖2] → 0

at the rate $ (1/# ) for all ℓ such that sW� ∗,ℓ > 0.

Proof. We use Theorem 3.11 whose conditions we need to verify. We have already veri�ed the nesting

condition (2.9) for
˚+ (8 + 1) = ∅, + (8 + 1) = {1, . . . , =}, and

˚( (8) = ( (8) in Algorithm 4.1. The coupling

condition (3.27) we have reduced to (4.1), which we now verify. For some [0 > 0 we set [8 ≡ [0
,

q0

9 := [0(c̊ 9 g̊0

9 )−1
, andk 0

ℓ := [0/f̆0

ℓ . Then we update

(4.9) q8+19 = (1 + 2g̊89W̃�,9 )q89 , k 8+2ℓ = (1 + 2f̆8+1ℓ sW� ∗,ℓ )k 8+1ℓ .

By (4.6), consequently, f̆8+1ℓ k 8+1ℓ = [8+1 = c̊ 9q
8+1
9 g̊

8+1
9 for all ℓ and 9 . Consequently (4.1) holds. Clearly

so does (3.17) due the deterministic step length and testing parameter updates. The conditions (3.28)

follow from (4.8) given that \Φ8)8 = [
8\� = [8+1\� = f̆8+1ℓ k 8+1ℓ \�.

The step length parameters g̊89 and f̆8+1ℓ are non-increasing in 8 by the de�ning (4.6). Also using (4.7a),

we thus verify (4.3). Now Lemma 4.1 veri�es (3.8).

We still need to verify Theorem 3.11 (i) and (ii). Regarding the latter,k 8+2ℓ ≤ (1+2f̆8+1ℓ sW8+1
� ∗,ℓ )k

8+1
ℓ trivially

as long as sW8+1
� ∗,ℓ ≥ 0, which follows from the assumptions on W� ∗,ℓ . Therefore Theorem 3.11 (ii) option (a)

holds. Regarding Theorem 3.11 (i), we �rst of all observe that (3.26) reduces to 28∗ = =!
2[8+1d2

G/(2UH ).
Moreover, in Algorithm 4.1 we took l89 := sl8/c̊ 9 = 1/c̊ 9 by (4.6). Consequently (3.29) becomes

!89 := !3 +
(
! max

9 ∈( (8)
(l89 + 1)2 ∑<

ℓ=1
k 8+1ℓ f̆8+1ℓ dℓ + =!

2[8+1d2

G

2UH

)
1

q8
9
g̊8
9

= !3 + !c̊ 9
(

max

9 ∈( (8)
(1/c̊ 9 + 1)2 ∑=

ℓ=1
dℓ + =!

2UH
d2

G

)
[8+1

[8
≤ s!.

(4.10)

We now consider two cases for the satisfaction of Theorem 3.11 (i) option (a) or (b):
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(A) If W�,9 + W ,9 = 0, then W̃�,9 = 0 and q8+19 = q89 by (4.9), so option (a) holds.

(B) If W�,9 + W ,9 > 0, then (4.7b), (4.10), and g̊89 ≤ g̊0

9 show (3.43a), hence (b).

We can now apply Theorem 3.11 to obtain (3.32). From (4.9) we have

q8+19 = q89 + 2W̃�,9[
8/c̊ 9 = q89 + 2W̃�,9[

1/c̊ 9 = . . . = q 1

9 + 28W̃�,9[
1/c̊ 9 and

k 8+2ℓ = k 8+1ℓ + 2sW� ∗,ℓ[
8+1 = k 8+1ℓ + 2sW� ∗,ℓ[

1 = . . . = k 1

ℓ + 2(8 + 1)sW� ∗,ℓ[1.

Therefore, for any 9 such that W̃�,9 > 0 and ℓ such that sW� ∗,ℓ > 0, q#9 and k#+1ℓ grow as Ω(# ). This

together with (3.32) gives the claim. �

We can improve the convergence to $ (1/# 2) in the primal variable if all the primal blocks exhibit

second-order growth. This is achieved by making the dual step lengths grow as in the basic single-block

convex case of [7].

Theorem 4.5. Suppose Assumptions 3.1, 3.2 and 3.4 hold with !, !3 ≥ 0; ? ∈ [1, 2]; W�,9 + W ,9 > 0,
( 9 = 1, . . . ,<), and sW� ∗,ℓ ≥ 0, (ℓ = 1, . . . , =), for some UH , Zℓ ≥ 0 as de�ned in (4.5). Let the iterates
{D8 = (G8 , H8)}8∈ℕ be generated by Algorithm 4.1 with iteration-independent probabilities c̊89 ≡ c̊ 9 and
step length parameters

f̆8+1ℓ :=
f̆8ℓ

sl8
, g̊8+19 :=

1

1 + 2g̊8
9
W̃�,9

g̊89

sl8
, and sl8 := max

9=1,...,<

1√
1 + 2g̊8

9
W̃�,9

(4.11)

with 0 < W̃�,9 < c̊ 9 (W�,9 + W ,9 ); and initial g̊0

9 , f̆
0

ℓ > 0 satisfying for some 0 < X ≤ ^ < 1, dG , dℓ ≥ 0,
(ℓ = 1, . . . , =), andF 89,ℓ as in (4.4) the bounds

1 − ^ ≥







 ∑
9 ∈(̊ (8)

√
F 8
9,ℓ
f̆0

ℓ
g̊0

9

c̊ 9
&ℓ∇ (G8)% 9








2

(8 ∈ ℕ) and(4.12a)

X ≥ g̊0

9

(
s! + 2(1 − c̊ 9 ) (W�,9 + W ,9 )

W�,9 + W ,9 − W̃�,9
c̊ 9 (W�,9 + W ,9 ) − W̃�,9

)
with(4.12b)

s! := !3 +
!

sl0

(
max

9=1...<

(
1

c̊ 9
+ 1

)
2 ∑=

ℓ=1
dℓ + =!

2UH
d2

G

)
.(4.12c)

Assume for � :=
∑
9 ∈( (8) (c̊ 9 )−1% 9 that

E8−1 [\�] ≥ ?−?
∑=
ℓ=1
Z

1−?
ℓ

d
2−?
ℓ
/sl0 and(4.13a)

1 = ℙ[‖G8+1 − Ĝ ‖ ≤ dG , ‖&ℓ (H8+1 − Ĥ)‖%NL
≤ dℓ , (ℓ = 1, . . . , =) | O8−1] .(4.13b)

Then E[‖% 9 (G# − Ĝ)‖2] → 0 at the rate $ (1/# 2) for all 9 .

Proof. We use Theorem 3.11 whose conditions we need to verify. We have already veri�ed the nesting

conditions (2.9) for the choices
˚+ (8 + 1) = ∅,+ (8 + 1) = {1, . . . , =}, and

˚( (8) = ( (8) in Algorithm 4.1. The

coupling condition (3.27) we have reduced to (4.1). To verify (4.1), we initialise q0

9 := [0(c̊0

9 g̊
0

9 )−1
and

k 0

ℓ := [0/f̆0

ℓ for some [0 > 0, and update

(4.14) q8+19 := (1 + 2g̊89W̃�,9 )q89 , k 8+1ℓ := k 8ℓ , and [8+1 := [8/sl8 .

Then from (4.11),k 8+1ℓ f̆8+1ℓ = k 8ℓ f̆
8
ℓ/sl8 and q8+19 g̊

8+1
9 = q89 g̊

8
9/sl8 . Therefore, (4.1) holds by induction. Clearly

also (3.17) holds due to the step length and testing parameters being updated deterministically. The
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conditions (3.28) follow from (4.13) and (4.1) given that g̊89 decreases so sl8 ≥ sl0 and \Φ8)8 = [
8\� =

[8+1 sl8\�.

We now verify (3.8). By (4.11) and (4.14), we get q8+19 (g̊8+19 )2 ≤ q89 (g̊89 )2. This and (4.1) yield

sl8f̆8+1ℓ g̊89 =
[8g̊89

k 8+1
ℓ

=
q89 (g̊89 )2

k 8+1
ℓ
c̊ 9
≤
q0

9 (g̊0

9 )2

k 8+1
ℓ
c̊ 9

=
[0g̊0

9

k 0

ℓ

= f̆0

ℓ g̊
0

9 .

Combining this estimate with (4.12a) we verify (4.3). Thus Lemma 4.1 establishes (3.8).

We still need to verify Theorem 3.11 (i) and (ii). Regarding the dual test, k 8+2ℓ = k 8+1ℓ ≤ (1 +
2f̆8+1ℓ sW8+1

� ∗,ℓ )k
8+1
ℓ trivially as long as sW8+1

� ∗,ℓ ≥ 0, which follows from the assumptions on W� ∗,ℓ . There-

fore Theorem 3.11 (ii) option (a) holds. As far as Theorem 3.11 (i) is concerned, we observe that (3.26)

reduces to 28∗ = =!
2[8+1d2

G/(2UH ). Consequently (3.29) becomes

(4.15) !89 := !3 + !c̊ 9 (max

9 ∈( (8)
(l89 + 1)2 ∑=

ℓ=1
dℓ + =!

2UH
d2

G )[8+1/[8 ≤ s!

thanks to l89 := sl8/c̊ 9 ≤ 1/c̊ 9 and sl8 ≥ sl0
. Also, with W̃8

�,9
< (c̊ 9W�,9 +W ,9 ), (4.12b), (4.15), and g̊89 ≤ g̊0

9

show (3.43a), hence, (3.33). Therefore, Theorem 3.11(i) option (b) holds for every 9 = 1, . . . ,<.

We can thus apply Theorem 3.11 to obtain (3.32). Multiplying the g update of (4.11) by 2W̃�,9 , plugging

in sl8 , and taking the inverse, we have

(2g̊8+19 W̃�,9 )−1 =
1 + 2g̊89W̃�,9

2g̊8
9
W̃�,9

√
1 +min9=1...< (2g̊89W̃�,9 )

=
1 + (2g̊89W̃�,9 )−1√

1 + (max9=1...< (2g̊89W̃�,9 )−1)−1

We now apply Lemma b.1 with I89 = (2g̊89W̃�,9 )−1
to get max9=1...< (2g̊#9 W̃�,9 )−1 ≤ sI0 + # /2 with sI0 > 0.

Then from (4.14), we have

q#+19 ≥ (1 + min

9=1...<
(2g̊89W̃�,9 ))q#9 ≥

(
1 + 1

sI0 + # /2

)
q#9 =

2sI0 + # + 2

2sI0 + #
q#9

=
2sI0 + # + 2

2sI0 + #
2sI0 + # + 1

2sI0 + # − 1

q#−1

9 = . . . =
(2sI0 + # + 2) (2sI0 + # + 1)

2sI0(2sI0 + 1) q0

9 .

Therefore, q#9 grows as Ω(# 2), and we obtain the claimed convergence rates from (3.32). �

In Algorithm 4.1, we chose l89 to eliminate the ∇ (G8) term from the dual step. Selecting l89 = −1

keeps this term, but eliminates the necessity to have a �nite dℓ as long as ? = 2 as (3.29) and (3.28b)

will no longer depend on it. This yields Algorithm 4.2 and the following:

Corollary 4.6. Theorems 4.4 and 4.5 apply to Algorithm 4.2 if Assumption 3.2 holds with ? = 2, and instead
of (4.7c), (4.12c), (4.8b), and (4.13b), we assume

s! := !3 + =!2d2

G/(2UH ) and ℙ[‖G8+1 − Ĝ ‖ ≤ dG | O8−1] = 1.

Proof. The proof remains exactly the same those of Theorems 4.4 and 4.5. Inserting l89 = −1, (4.10)

and (4.15) as well as (4.8a) and (4.13a) lose their dependency on dℓ . Hence dℓ can be taken in�nitely

large. �

4.2 linear convergence

If all the primal and dual blocks exhibit second-order growth, i.e., sW� ∗,ℓ > 0 and W�,9 + W ,9 > 0, we

obtain linear convergence:
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Algorithm 4.2 Full dual updates #2

Assume the problem structure (P), equivalently (S). . For each iteration 8 ∈ ℕ, choose a sampling

pattern for generating the random set of updated dual blocks + (8 + 1) ∈ R(O8 ;P{1, . . . , =}) with

corresponding blockwise probabilities c̊89 := ℙ[ 9 ∈ ( (8) | O8−1] > 0. Choose a rule for the iteration and

block-dependent step length parameters g̊89 , f̆
8+1
ℓ , sl8 > 0 based on one of Theorem 4.5, 4.4, or 4.7. Pick

an initial iterate (G0, H0) and on each iteration 8 ∈ ℕ update all blocks G8+19 = % 9G
8+1

, ( 9 = 1, . . . ,<), and

H8+1ℓ = &ℓH
8+1

, (ℓ = 1, . . . , =), of G8+1 and H8+1 as:

G8+19 :=

{
(� + g̊89% 9 m� 9% 9 )−1(G89 − g̊89% 9∇ (G8)∗H8), 9 ∈ ( (8),
G89 , 9 ∉ ( (8),

H8+1ℓ := (� + f̆8+1ℓ &ℓm�
∗
ℓ&ℓ )−1

(
H8ℓ + f̆8+1ℓ &ℓ (G8) + f̆8+1ℓ

∑
9 ∈( (8)

(
sl8

c̊8
9

+ 1

)
&ℓ∇ (G8) (G8+19 − G89 )

)
.

Theorem 4.7. Suppose Assumptions 3.1, 3.2 and 3.4 hold with !, !3 ≥ 0; ? ∈ [1, 2]; W�,9 + W ,9 > 0,
( 9 = 1, . . . ,<), and sW� ∗,ℓ > 0, (ℓ = 1, . . . , =), for some UH , Zℓ ≥ 0 as de�ned in (4.5). Let the iterates
{D8 = (G8 , H8)}8∈ℕ be generated by Algorithm 4.1 with iteration-independent probabilities c̊89 ≡ c̊ 9 and
step length parameters

g̊8+19 :=
g̊89

(1 + 2g̊8
9
W̃�,9 )sl

, f̆8+1ℓ :=
f̆8ℓ

(1 + 2f̆8
ℓ
sW� ∗,ℓ )sl

, and(4.16a)

sl8 ≡ sl := max

{
max

9=1...<

1

1 + 2g̊0

9
W̃�,9

, max

ℓ=1...=

1

1 + 2f̆0

ℓ
sW� ∗,ℓ

}
(4.16b)

with 0 < W̃�,9 < c̊ 9 (W�,9 + W ,9 ); and initial g̊0

9 , f̆
0

ℓ > 0 satisfying for some 0 < X < ^ < 1, dG , dℓ ≥ 0,
(ℓ = 1, . . . , =), andF 89,ℓ as in (4.4) the bounds

1 − ^ ≥







 ∑
9 ∈(̊ (8)

√
F 8
9,ℓ
f̆0

ℓ
g̊0

9

c̊ 9
&ℓ∇ (G8)% 9








2

(8 ∈ ℕ) and(4.17a)

X ≥ g̊0

9

(
s! + 2(1 − c̊ 9 ) (W�,9 + W ,9 )

W�,9 + W ,9 − W̃�,9
c̊ 9 (W�,9 + W ,9 ) − W̃�,9

)
( 9 ∈ ( (8)), with(4.17b)

s! := !3 +
!

sl

(
max

9=1...<

(
sl

c̊ 9
+ 1

)
2 ∑=

ℓ=1
dℓ + =!

2UH
d2

G

)
.(4.17c)

Further assume for � :=
∑
9 ∈( (8) (c̊ 9 )−1% 9 that

E8−1 [\�] ≥ ?−?
∑=
ℓ=1
Z

1−?
ℓ

d
2−?
ℓ
/sl and(4.18a)

1 = ℙ[‖G8+1 − Ĝ ‖ ≤ dG , ‖&ℓ (H8+1 − Ĥ)‖%NL
≤ dℓ , (ℓ = 1, . . . , =) | O8−1] .(4.18b)

Then E[‖% 9 (G# − Ĝ)‖2] and E[‖&ℓ (H# − Ĥ)‖2] converge to zero at the linear rate $ ((1/sl)# ) for all
9 ∈ {1, . . . ,<} and ℓ ∈ {1, . . . , =}.

Proof. We use Theorem 3.11 whose conditions we need to verify. We have already veri�ed the nesting

condition (2.9) for the choices
˚+ (8 + 1) = ∅, + (8 + 1) = {1, . . . , =}, and

˚( (8) = ( (8) in Algorithm 4.1. The
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coupling condition (3.27) we have reduced to (4.1). To verify (4.1), we initialise q0

9 := [0(c̊0

9 g̊
0

9 )−1
and

k 0

ℓ := [0/f̆0

ℓ for some [0 > 0, and update

(4.19) q8+19 := (1 + 2g̊89W̃�,9 )q89 , k 8+1ℓ := (1 + 2f̆8ℓsW� ∗,ℓ )k 8ℓ , and [8+1 := [8/sl.

Then from (4.16),k 8+1ℓ f̆8+1ℓ = k 8ℓ f̆
8
ℓ/sl and q8+19 g̊

8+1
9 = q89 g̊

8
9/sl . Therefore, (4.1) holds by induction. Clearly

also (3.17) holds as the step length and testing parameters are updated deterministically. The conditions

(3.28) follow from (4.18) given that \Φ8)8 = [
8\� = sl[8+1\�.

We now prove (3.8). We start by proving by induction that

(4.20) sl = max

{
max

9=1...<

1

1 + 2g̊8
9
W̃�,9

, max

ℓ=1...=

1

1 + 2f̆8
ℓ
sW� ∗,ℓ

}
,

in other words

sl−1 = 1 +min

{
min

9=1...<
2g̊89W̃�,9 , min

ℓ=1...=
2f̆8ℓsW� ∗,ℓ

}
.

The inductive base for 8 = 0 is clear from (4.16b). Using (4.16a), we obtain

min

{
min

9=1...<
2g̊8+19 W̃�,9 , min

ℓ=1...=
2f̆8+1ℓ sW� ∗,ℓ

}
=

1

sl
min

{
min

9=1...<

1

1 + (2g̊8
9
W̃�,9 )−1

, min

ℓ=1...=

1

1 + (2f̆8
ℓ
sW� ∗,ℓ )−1

}
=

1

sl

1

1 +min
−1

{
min9=1...< 2g̊8

9
W̃�,9 ,minℓ=1...= 2f̆8

ℓ
sW� ∗,ℓ

} = min

{
min

9=1...<
2g̊89W̃�,9 , min

ℓ=1...=
2f̆8ℓsW� ∗,ℓ

}
,

This establishes the inductive step, hence (4.20). By (4.20) and (4.16a), g̊8+19 and f̆8+1ℓ are non-increasing

in 8 . Also using (4.17a), this veri�es (4.3). Thus Lemma 4.1 veri�es (3.8).

We need to verify Theorem 3.11 (i) and (ii). Option (a) of the latter is trivially satis�ed for every

ℓ = 1, . . . , = based on (4.19). Regarding Theorem 3.11 (i), we �rst of all observe that (3.26) reduces to

28∗ = =!
2[8+1d2

G/(2UH ). Consequently (3.29) becomes

(4.21) !89 := !3 + !c̊ 9 (max

9 ∈( (8)
(l89 + 1)2 ∑=

ℓ=1
dℓ + =!

2UH
d2

G )[8+1/[8 ≤ s!

for l89 := sl8/c̊ 9 as in Algorithm 4.1. And with W̃�,9 < c̊ 9 (W�,9 + W ,9 ), (4.17b), (4.21), and g̊8+19 ≤ g̊0

9 show

(3.43a). Therefore, Theorem 3.11(i) option (b) holds for every 9 = 1, . . . ,<.

We can now apply Theorem 3.11 to obtain (3.32). By (4.19) and (4.20) we have

q#+19 = (1 + 2g̊#9 W̃�,9 )q#9 ≥ q#9 /sl ≥ . . . ≥ q0

9 /sl#+1 and

k#+1ℓ = (1 + 2f̆#ℓ sW� ∗,ℓ )k#ℓ ≥ k#ℓ /sl ≥ . . . ≥ k 0

ℓ /sl#+1.

Applying these estimates in (3.32) establishes the claimed linear convergence rates. �

Similarly to Algorithm 4.2, we could in the derivation of Algorithm 4.1 set l89 = −1 to remove any

dependencies on dℓ from (4.17c) and (4.18a). This yields Algorithm 4.2 and:

Corollary 4.8. Theorem 4.7 applies to Algorithm 4.2 if Assumption 3.2 holds with ? = 2, and (4.17c) and
(4.18b) are replaced with

s! ≥ !3 + =!2d2

G/(2UH sl) and ℙ[‖G8+1 − Ĝ ‖ ≤ dG | O8−1] = 1.

Proof. The proof remains exactly the same as Theorem 4.7 given all l89 = −1 in (4.21) and (4.18a) no

longer depend on dℓ , hence dℓ can be taken in�nitely large. �
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Remark 4.9 (Stochastic block-coordinate forward–backward spli�ing). Let � (I) := I for I ∈ ℝ and

 ∈ �1(- ). Then � ∗(H) = X {1} (H). Taking = = 1 and &1 = � results in (� + f̆8+1
1
&1m�

∗&1)−1 ≡ 1.

Consequently H8 ≡ 1 on all iterations, so that the updates of Algorithms 4.1 and 4.2 reduce to

(4.22) G8+19 :=

{
(� + g̊89% 9 m� 9% 9 )−1(G89 − g̊89% 9∇ (G)), 9 ∈ ( (8),
G89 , 9 ∉ ( (8),

In the step length conditions of Theorems 4.4, 4.5 and 4.7, we can moreover take d1 = 0 and letW� ∗,1→∞,

consequently 0H→∞. In particular, in all the theorems, s! = !3, so that when c̊ 9 = 1, the upper bounds

on the primal step lengths reduce to X ≥ g̊0

9 !3 for some X ∈ (0, 1) similarly to the standard condition in

forward–backward splitting type methods. Moreover, by (a.1),W ,1 is simply a (reduced) factor of strong

monotonicity of  at Ĝ as de�ned in Assumption 3.4. Finally, since we can take f̆0

1
> 0 arbitrarily small

without a�ecting the updates (4.22), the conditions in the theorems corresponding to (3.7) become

irrelevant.

5 methods with full primal updates

We continue with developing more speci�c methods and their convergence results based on the

updates of (2.13) and the conditions of Theorem 3.11. We now take
˚( (8) = ∅, ( (8) = {1, . . . ,<}, and

˚+ (8 + 1) = + (8 + 1) for all iterations 8 . Then the nesting condition (2.9) of Theorem 3.11 holds and the

coupling condition (3.27) becomes

(5.1) q89 ğ
8
9 = [

8+1 = å8+2ℓ k 8+2ℓ f̊8+2ℓ .

Taking Ω8 = −� , the updates of (2.13) simplify to those of Algorithm 5.1 since for the last two terms in

the primal update

ğ89H
8+1
ℓ +

k 8+1ℓ f8+1ℓ

q8
9

(H8+1ℓ − H8ℓ ) = ğ89
(
H8+1ℓ +

sl8

å8+1
ℓ

(H8+1ℓ − H8ℓ )
)

for sl8 :=
[8

[8+1
.

Moreover, (2.12) reduces to _89,ℓ = −f8+1ℓ k 8+1ℓ . We thus verify (3.8) via:

Lemma 5.1. Suppose (̊ (8) = ∅, ( (8) = {1, . . . ,<}, and +̊ (8 + 1) = + (8 + 1) for 8 ∈ ℕ; the coupling condition
(5.1) holds; sl8 ≤ 1; as well as, for all ℓ = 1, . . . , =; 9 = 1, . . . ,<,

(5.2) f̊8+1ℓ ğ89 ≤ f̊ 1

ℓ ğ
0

9 , and 1 − ^ ≥







 <∑
9=1

√√
F 8
9,ℓ
f̊ 1

ℓ
ğ0

9

å8+1
ℓ

&ℓ∇ (G8)% 9








2

for some 0 ≤ ^ ≤ 1 andF 9,ℓ,: = 1/F 9,:,ℓ > 0 such that

F 89,ℓ := jV8
9
(ℓ)

∑
:∈ĎV8

9
(ℓ)
F 9,ℓ,:(5.3a)

with
sV8
9 (ℓ) = {: ∈ {1, . . . , =} | &ℓ∇ (G8)% 9∇ (G8)∗&: ≠ 0, ℓ ∈ ˚+ (8 + 1)}.(5.3b)

Then the lower bound (3.8) holds.

Proof. By the �rst part of (5.2), (5.1), and _89,ℓ = −f8+1ℓ k 8+1ℓ = −f̊8+1ℓ k 8+1ℓ , we have

f̊ 1

ℓ ğ
0

9 ≥ f̊8+1ℓ ğ89 =
(f̊8+1ℓ k 8+1ℓ )2ğ89
f̊8+1
ℓ
(k 8+1
ℓ
)2

=
(_89,ℓ )2å8+1ℓ

k 8+1
ℓ
q8
9

( 9 = 1, . . . ,<).
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Algorithm 5.1 Full primal updates

Assume the problem structure (P), equivalently (S). For each iteration 8 ∈ ℕ, choose a sampling pattern

for generating the random set of updated dual blocks+ (8 + 1) ∈ R(O8 ;P{1, . . . , =}) with corresponding

blockwise probabilities å8+1ℓ := ℙ[ℓ ∈ + (8 + 1) | O8−1] > 0. Also choose a rule for the iteration and

block-dependent step length parameters f̊8+1ℓ , ğ89 , sl8 > 0 from one of Theorem 5.3, 5.4 or 5.5. Pick an

initial iterate (G0, H0) and on each iteration 8 ∈ ℕ update all blocks G8+19 = % 9G
8+1

, ( 9 = 1, . . . ,<), and

H8+1ℓ = &ℓH
8+1

, (ℓ = 1, . . . , =), of G8+1 and H8+1 as:

H8+1ℓ :=

{
(� + f̊8+1ℓ &ℓm�

∗
ℓ&ℓ )−1(H8ℓ + f̊8+1ℓ &ℓ (G8)), ℓ ∈ + (8 + 1),

H8ℓ , ℓ ∉ + (8 + 1),

G8+19 := (� + ğ89% 9 m� 9% 9 )−1% 9

(
G89 − ğ89∇ (G8)∗

∑
ℓ∈+ (8+1)

(
H8+1ℓ +

sl8

å8+1
ℓ

(H8+1ℓ − H8ℓ )
))
.

By the orthogonality of the projections % 9 , we may insert this estimation into the second part of (5.2),

obtaining (3.7); compare the proof of Lemma 3.5. The de�nition of
sV8
9 (ℓ) in (3.5) also reduces to that

in (5.3b), while the de�nition ofF 89,ℓ in (5.3a) is exactly that in (3.6). We �nish by applying Lemma 3.5

to verify (3.8). �

Remark 5.2. The �rst part of (5.2) is a relaxation of the property g8f8+1 = g0f 1
that would be satis�ed

by a dual-�rst variant of the basic PDPS; compare Remark 4.2.

Finally, we also remind that (3.30) and (3.31) for this section simplify to

(5.4) sW8� ,9 := W�,9 + W ,9 − UG , and sW8+1� ∗,ℓ ≡ sW� ∗,ℓ :=

{
W� ∗,ℓ , &ℓ%NL = 0,

W� ∗,ℓ − (? − 1)Zℓ , &ℓ%NL ≠ 0.

5.1 accelerated rates

As in Section 4, we start with simple step length rules that yield $ (1/# ) convergence rates for those

blocks that exhibit second-order growth.

Theorem 5.3. Suppose Assumptions 3.1, 3.2 and 3.4 hold with !, !3 ≥ 0; ? ∈ [1, 2]; W�,9 + W ,9 > 0

( 9 = 1, . . . ,<); and W� ∗,ℓ ≥ (? − 1)Zℓ for some Zℓ ≥ 0 when &ℓ%NL ≠ 0, (ℓ = 1, . . . , =). Let the iterates
{D8 = (G8 , H8)}8∈ℕ be generated by Algorithm 5.1 with iteration-independent probabilities å8ℓ ≡ åℓ and step
lengths

(5.5) f̊8+1ℓ :=
f̊8ℓ

1 + 2f̊8
ℓ
W̃� ∗,ℓ

, sl8 ≡ 1, and ğ8+19 :=
ğ89

1 + 2ğ8
9
W̃�,9

with 0 ≤ W̃�,9 < W�,9 + W ,9 , ( 9 = 1, . . . ,<), and either 0 ≤ W̃� ∗,ℓ < åℓsW� ∗,ℓ or W̃� ∗,ℓ = sW� ∗,ℓ = 0 for
each ℓ = 1, . . . , =, sW� ∗,ℓ de�ned in (5.4); and initial ğ0

9 , f̊
1

ℓ > 0 satisfying for some dℓ ≥ 0, (ℓ = 1, . . . , =),
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0 < X < ^ < 1, andF 89,ℓ as in (5.3) the bounds

1 − ^ ≥







 <∑
9=1

√
F 8
9,ℓ
f̊ 1

ℓ
ğ0

9

åℓ
&ℓ∇ (G8)% 9








2

(5.6a)

X ≥ ğ0

9

(
!3 +

<!2

2 min9=1...< (W�,9 + W ,9 − W̃�,9 )

=∑
ℓ=1

d2

ℓ

)
, and(5.6b)

^ − X
1 − X ≥ 2j+ (8+1) (ℓ) (1 − åℓ )sW� ∗,ℓf̊ 1

ℓ

sW� ∗,ℓ − W̃� ∗,ℓ
åℓsW� ∗,ℓ − W̃� ∗,ℓ

(8 ∈ ℕ; 9 = 1, . . . ,<) .(5.6c)

Assume that

\� ≥ ?−?
∑=
ℓ=1
(åℓ )2Z 1−?

ℓ
d

2−?
ℓ

and(5.7a)

1 = ℙ[‖&ℓ (H8+1 − Ĥ)‖%NL
≤ dℓ , (ℓ = 1, . . . , =) | O8−1] .(5.7b)

Then E[‖% 9 (G# − Ĝ)‖2] → 0 at the rate$ (1/# ) for all 9 such that W̃�,9 > 0 and E[‖&ℓ (H# − Ĥ)‖2] → 0

at the rate $ (1/# ) for all ℓ such that W̃� ∗,ℓ > 0.

Proof. We will use Theorem 3.11, whose conditions we need to verify. With the choice of
˚( (8) = ∅,

( (8) = {1, . . . ,<}, and
˚+ (8 + 1) = + (8 + 1) in Algorithm 5.1, we have already veri�ed the nesting

conditions (2.9) and reduced the coupling conditions (3.27) to (5.1). To verify (5.1), we set q0

9 = [
1/ğ0

9 ,

k 2

ℓ = [1/(f̊2

ℓ åℓ ) for some [1 > 0, and update

(5.8) q8+19 = (1 + 2ğ89W̃�,9 )q89 , k 8+2ℓ = (1 + 2f̊8+1ℓ W̃� ∗,ℓ )k 8+1ℓ , and [8+1 := [8 .

Then åℓf̊
8+2
ℓ k 8+2ℓ = [8+1 = q89 ğ

8
9 due to (5.5) for all ℓ and 9 , and (5.1) follows. Clearly also (3.17) holds

because the step length and testing parameters are updated deterministically. The conditions (3.28)

follow from (5.7) given that in Assumption 3.2 we can take \Φ8)8 = [
8+1\� = [8\� = k 8+1ℓ f̆8+1ℓ \�/åℓ , and

dG can be taken in�nitely large.

The step length parameters f̊8+1 and ğ89 are non-increasing in 8 by the de�ning (5.5). Also using (5.6a),

we thus verify (5.2). Hence Lemma 5.1 establishes (3.8).

We still need to verify Theorem 3.11 (i) and (ii). As far as the former is concerned,q8+19 ≤ (1+2ğ89W̃�,9 )q89
from (5.8). Moreover, after applying (5.1), (3.26) and (3.29) reduce to

28∗ =
<!2[8+1

2UG

=∑
ℓ=1

d2

ℓ and !89 = !3 +
<!2

2UG

=∑
ℓ=1

d2

ℓ ,

which Thus, setting UG = min9=1...< (W�,9 +W ,9 − W̃�,9 ) > 0, Theorem 3.11 (i) option (a) follows for every

9 from (5.6b) and ğ8+19 being non-increasing. Regarding the dual test, we havek 8+2ℓ ≤ (1+ 2f̊8+1ℓ W̃8+1
� ∗,ℓ )k

8+1
ℓ

which together with (5.6c) leads to (3.43b). Therefore, Theorem 3.11 (ii) option (b) holds for every ℓ .

We can now apply Theorem 3.11 to obtain (3.32). From (5.8) we have

q8+19 = q89 + 2W̃�,9[
8+1 = q89 + 2W̃�,9[

1 = . . . = q0

9 + 28W̃�,9[
1

and

k 8+2ℓ = k 8+1ℓ + 2W̃� ∗,ℓ[
8/åℓ = k 8+1ℓ + 2W̃� ∗,ℓ[

1/åℓ = . . . = k 1

ℓ + 2(8 + 1)W̃� ∗,ℓ[1/åℓ .

Therefore, for any primal block 9 with W̃�,9 > 0 and dual block ℓ with W̃� ∗,ℓ > 0, q#9 andk#+1ℓ grow as

Ω(# ), respectively. This together with (3.32) gives the claim. �

We get improved $ (1/# 2) rates if all primal blocks exhibit second-order growth:
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Theorem 5.4. Suppose Assumptions 3.1, 3.2 and 3.4 hold with !, !3 ≥ 0; ? ∈ [1, 2]; W�,9 + W ,9 > 0,
( 9 = 1, . . . ,<); and W� ∗,ℓ ≥ (? − 1)Zℓ for some Zℓ when &ℓ%NL ≠ 0, (ℓ = 1, . . . , =). Let the iterates
{D8 = (G8 , H8)}8∈ℕ be generated by Algorithm 5.1 with iteration-independent probabilities å8ℓ ≡ åℓ and step
length parameters

(5.9) f̊8+2ℓ =
f̊8+1ℓ

sl8
, ğ8+19 =

1

1 + 2ğ8
9
W̃�,9

ğ89

sl8+1
, and sl8+1 := max

9=1...<

1√
1 + 2ğ8

9
W̃�,9

;

with 0 < W̃�,9 < W�,9 + W ,9 , ( 9 = 1, . . . ,<), and the initial sl0 = 1, ğ0

9 and f̊
1

ℓ satisfying for some dℓ ≥ 0,
(ℓ = 1, . . . , =), 0 < X ≤ ^ < 1, andF 89,ℓ as in (5.3) the bounds (8 ∈ ℕ; 9 = 1, . . . ,<)

(5.10) 1 − ^ ≥







 <∑
9=1

√
F 8
9,ℓ
f̊ 1

ℓ
ğ0

9

åℓ
&ℓ∇ (G8)% 9








2

X ≥ ğ0

9

(
!3 +

<!2

2 min9=1...< (W�,9 + W ,9 − W̃�,9 )

=∑
ℓ=1

d2

ℓ

)
.

Also assume

\� ≥ ?−?
∑=
ℓ=1
(åℓ )2Z 1−?

ℓ
d

2−?
ℓ

and(5.11a)

1 = ℙ[‖&ℓ (H8+1 − Ĥ)‖%NL
≤ dℓ , (ℓ = 1, . . . , =) | O8−1] .(5.11b)

Then E[‖% 9 (G# − Ĝ)‖2] → 0 at the rate $ (1/# 2) for all 9 .

Proof. We will use Theorem 3.11 whose conditions we need to verify. With the choice of
˚( (8) = ∅,

( (8) = {1, . . . ,<}, and +̊ (8 + 1) = + (8 + 1) in Algorithm 5.1, we have already veri�ed the nesting

conditions (2.9) and reduced the coupling conditions (3.27) to (5.1). To verify (5.1), we set q0

9 = [
1/ğ0

9

andk 2

ℓ := [1/(åℓf̊2

ℓ ) for some [1 > 0, and update

(5.12) q8+19 := (1 + 2ğ89W̃�,9 )q89 , k 8+1ℓ := k 8ℓ , and [8+1 = [8/sl8 .

Then from (5.9), we inductively get åℓk
8+2
ℓ f̊8+2ℓ = åℓk

8+1
ℓ f̊8+1ℓ /sl8 = [8+1 for all ℓ . From (5.9), we also

have inductively for all 9 , q8+19 ğ
8+1
9 = q89 ğ

8
9/sl8+1 = [8+2. Therefore (5.1) holds. Then, the conditions (3.28)

follow from (5.11) given that sl8 ≤ 1 and in Assumption 3.2 we can take \Φ8)8 = [8+1\� = [8\�/sl8 =
k 8+1ℓ f8+1ℓ \�/(åℓ sl8), and dG can be taken in�nitely large. Clearly also (3.17) holds because the step length

and testing parameters are updated deterministically.

We now verify (3.8). From (5.9) we obtain

f̊8+2ℓ ğ8+19 =
f̊8+1ℓ ğ89

sl8 sl8+1(1 + 2W̃�,9 ğ
8
9
)
≤ f̊8+1ℓ ğ89

√√
1 + 2W̃�,9 ğ

8−1

9

1 + 2W̃�,9 ğ
8
9

≤ . . . ≤ f̊2

ℓ ğ
1

9

√√
1 + 2W̃�,9 ğ

0

9

1 + 2W̃�,9 ğ
8
9

= f̊ 1

ℓ ğ
0

9

1

sl 1

√
1 + 2W̃�,9 ğ

0

9

1

1 + 2W̃�,9 ğ
8
9

≤ f̊ 1

ℓ ğ
0

9 .

This and (5.10) verify (5.2). Thus Lemma 5.1 establishes (3.8).

We still need to verify Theorem 3.11 (i) and (ii). Regarding the former, q8+19 ≤ (1 + 2ğ89W̃�,9 )q89 from

(5.12). Moreover, after applying (5.1), equalities (3.26) and (3.29) reduce to

28∗ =
<!2[8+1

2UG

=∑
ℓ=1

d2

ℓ and !89 = !3 +
<!2

2UG

=∑
ℓ=1

d2

ℓ .

Thus, setting UG = min9=1...< (W�,9 + W ,9 − W̃�,9 ) > 0, Theorem 3.11 (i) option (a) follows for every 9

from the second inequality in (5.10) and ğ8+19 being decreasing. As for Theorem 3.11 (ii),k 8+1ℓ = k 8+2ℓ ≤
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(1 + 2j+ (8+1) (ℓ)f8+1ℓ sW8+1
� ∗,ℓ )k

8+1
ℓ trivially as we have assumed sW8+1

� ∗,ℓ ≥ 0. Thus Theorem 3.11 (ii) option (a)

holds for every ℓ .

We can now use Theorem 3.11 to verify (3.32). Multiplying the g update of (5.9) by 2W̃�,9 , plugging in

sl8+1, and taking the inverse, we get

(2ğ8+19 W̃�,9 )−1 =
1 + 2ğ89W̃�,9

2ğ8
9
W̃�,9

√
1 +min9=1...< (2ğ89W̃�,9 )

=
1 + (2ğ89W̃�,9 )−1√

1 + (max9=1...< (2ğ89W̃�,9 )−1)−1

.

We then apply Lemma b.1 with I89 = (2ğ89W̃�,9 )−1
to obtain max9=1...< (2ğ#9 W̃�,9 )−1 ≤ sI0+# /2 with sI0 > 0.

Then from (5.12), we have

q#+19 ≥ (1 + min

9=1...<
(2ğ89W̃�,9 ))q#9 ≥

(
1 + 1

sI0 + # /2

)
q#9 =

2sI0 + # + 2

2sI0 + #
q#9

=
2sI0 + # + 2

2sI0 + #
2sI0 + # + 1

2sI0 + # − 1

q#−1

9 = . . . =
(2sI0 + # + 2) (2sI0 + # + 1)

2sI0(2sI0 + 1) q0

9 .

Therefore, q#9 grows as Ω(# 2), and we obtain the claimed convergence rates from (3.32). �

5.2 linear convergence

If all the primal and dual blocks exhibit second-order growth, i.e., sW� ∗,ℓ > 0 and W�,9 + W ,9 > 0, we

obtain linear convergence:

Theorem 5.5. Suppose Assumptions 3.1, 3.2 and 3.4 hold with !, !3 ≥ 0; ? ∈ [1, 2]; W�,9 + W ,9 > 0,
( 9 = 1, . . . ,<). Let the iterates {D8 = (G8 , H8)}8∈ℕ be generated by Algorithm 5.1 with iteration-independent
å8ℓ ≡ åℓ and step lengths

ğ8+19 :=
ğ89

(1 + 2ğ8
9
W̃�,9 )sl

, f̊8+2ℓ :=
f̊8+1ℓ

(1 + 2f̊8+1
ℓ
W̃� ∗,ℓ )sl

, and(5.13a)

sl8 ≡ sl := max

{
max

9=1...<

1

1 + 2ğ0

9
W̃�,9

, max

ℓ=1...=

1

1 + 2f̊ 1

ℓ
W̃� ∗,ℓ

}
(5.13b)

with 0 < W̃�,9 < W�,9 + W ,9 , ( 9 = 1, . . . ,<), and 0 < W̃� ∗,ℓ < åℓsW� ∗,ℓ , (ℓ = 1, . . . , =), sW� ∗,ℓ de�ned in (5.4);
and initial ğ0

9 , f̊
1

ℓ > 0 satisfying for some 0 < X < ^ < 1, dℓ ≥ 0 (ℓ = 1, . . . , =), with F 89,ℓ as in (5.3) the
bounds

1 − ^ ≥







 <∑
9=1

√
F 8
9,ℓ
f̊ 1

ℓ
ğ0

9

åℓ
&ℓ∇ (G8)% 9








2

,(5.14a)

X ≥ ğ0

9

(
!3 +

<!2

2 min9=1...< (W�,9 + W ,9 − W̃�,9 )

=∑
ℓ=1

d2

ℓ

)
, and(5.14b)

^ − X
1 − X ≥ 2(1 − åℓ )sW� ∗,ℓ f̊ 1

ℓ

sW� ∗,ℓ − W̃� ∗,ℓ
åℓsW� ∗,ℓ − W̃� ∗,ℓ

(ℓ ∈ + (8 + 1); 9 = 1, . . . ,<; 8 ∈ ℕ).(5.14c)

Further assume that

\� ≥ ?−? sl
∑=
ℓ=1
(åℓ )2Z 1−?

ℓ
d

2−?
ℓ

and(5.15a)

1 = ℙ[‖&ℓ (H8+1 − Ĥ)‖%NL
≤ dℓ , (ℓ = 1, . . . , =) | O8−1] .(5.15b)

Then E[‖% 9 (G# − Ĝ)‖2] → 0 and E[‖&ℓ (H# − Ĥ)‖2] → 0 at the linear rate $ ((1/sl)# ) for all 9 ∈
{1, . . . ,<} and ℓ ∈ {1, . . . , =}.
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Proof. We will use Theorem 3.11, whose conditions we need to verify. With the choice of (̊ (8) = ∅,
( (8) = {1, . . . ,<}, and

˚+ (8 + 1) = + (8 + 1) in Algorithm 5.1, we have already veri�ed the nesting

conditions (2.9) and reduced the coupling conditions (3.27) to (5.1). To verify (5.1), we set q0

9 = [
1/ğ0

9

andk 2

ℓ := [1/(åℓf̊2

ℓ ) for some [1 > 0, and update

(5.16) q8+19 := (1 + 2ğ89W̃�,9 )q89 , k 8+1ℓ := (1 + 2f̊8ℓW̃� ∗,ℓ )k 8ℓ , and [8+1 = [8/sl.

Then from (5.13), we inductively get åℓk
8+2
ℓ f̊8+2ℓ = åℓk

8+1
ℓ f̊8+1ℓ /sl = [8+1 for all ℓ and q8+19 ğ

8+1
9 = q89 ğ

8
9/sl =

[8+2 for all 9 , therefore, (5.1) holds. Then, the conditions (3.28) follow from (5.15) given that in Assump-

tion 3.2 we can take \Φ8)8 = [
8+1\� = [8\�/sl = k 8+1ℓ f8+1ℓ \�/(åℓ sl), and dG can be taken in�nitely large.

Clearly also (3.17) holds because the step length and testing parameters are updated deterministically.

We now verify (3.8). We start by proving by induction that

(5.17) sl = max

{
max

9=1...<

1

1 + 2ğ8
9
W̃�,9

, max

ℓ=1...=

1

1 + 2f̊8+1
ℓ
W̃� ∗,ℓ

}
,

in other words

sl−1 = 1 +min

{
min

9=1...<
2ğ89W̃�,9 , min

ℓ=1...=
2f̊8+1ℓ W̃� ∗,ℓ

}
.

The inductive base for 8 = 0 holds by (5.13b). Using (5.13a),

min

{
min

9=1...<
2ğ8+19 W̃�,9 , min

ℓ=1...=
2f̊8+2ℓ W̃� ∗,ℓ

}
=

1

sl
min

{
min

9=1...<

1

1 + (2ğ8
9
W̃�,9 )−1

, min

ℓ=1...=

1

1 + (2f̊8+1
ℓ
W̃� ∗,ℓ )−1

}
=

1

sl

1

1 +min
−1

{
min9=1...< 2ğ8

9
W̃�,9 ,minℓ=1...= 2f̊8+1

ℓ
W̃� ∗,ℓ

} = min

{
min

9=1...<
2ğ89W̃�,9 , min

ℓ=1...=
2f̊8+1ℓ W̃� ∗,ℓ

}
.

This establishes the inductive step, hence (5.17), which in turn shows that ğ89 and f̊8+1ℓ as updated

according to (5.13a) are non-increasing in 8 . Also using (5.14), this proves (5.2). Thus Lemma 5.1 veri�es

(3.8).

We need to verify Theorem 3.11 (i) and (ii). As for the former, (3.26) and (3.29) reduce to

28∗ =
<!2

2UG

=∑
ℓ=1

d2

ℓ[
8+1

and !89 = !3 +
<!2

2UG

=∑
ℓ=1

d2

ℓ ,

so (5.14), together with non-increasing ğ89 and the update rule for q8+19 in (5.16), verify Theorem 3.11 (i)

option (a) for every 9 and UG = min9=1...< (W�,9 + W ,9 − W̃�,9 ). Regarding the latter, since we take

W̃� ∗,ℓ < åℓsW� ∗,ℓ , we obtain (3.43b) using the last inequality of (5.14) and that f̊8+1ℓ is non-increasing by

de�nition in (5.13). Hence Theorem 3.11 (ii) option (b) holds for every ℓ .

Therefore, we can apply Theorem 3.11 to obtain (3.32). By (5.16) and (5.17),

q#+19 = (1 + 2ğ#9 W̃�,9 )q#9 ≥ q#9 /sl ≥ . . . ≥ q0

9 /sl#+1 and

k#+1ℓ = (1 + 2f̊#ℓ W̃� ∗,ℓ )k#ℓ ≥ k#ℓ /sl ≥ . . . ≥ k 1

ℓ /sl# .

Applying these estimates in (3.32) establishes the claimed linear convergence rates. �

Remark 5.6 (Stochastic sum-sampling forward–backward spli�ing). Consider the problem (1.1) with

� ∗(H) = X {1} for 1 := (1, . . . , 1) ∈ ℝ= and ∇ (G)∗H =
∑=
ℓ=1
∇�ℓ (G)H (ℓ) with H = (H (1) , . . . , H (=) ). Taking

&ℓH := (0, . . . , 0, H (ℓ) , 0, . . . , 0), it follows that (� + f̆8+1ℓ &ℓm�
∗
ℓ&ℓ )−1 ≡ (0, . . . , 0, 1, 0, . . . , 0). Consequently

S. Mazurenko, J. Jauhiainen, and T. Valkonen Non-convex primal-dual block-proximal spli�ing



Manuscript, 2019-11-14 (revised 2020-04-22) page 31 of 42

H8 ≡ 1 on all iterations, so that with just a single primal block with corresponding step length ğ8 = ğ8
1
,

Algorithm 5.1 reduces to

G8+1 := (� + ğ8m�)−1

(
G8 − ğ8

∑
ℓ∈+ (8+1)

∇�ℓ (G8)
)
.

With random + (8 + 1), this is a forward–backward splitting method that stochastically samples

∑
ℓ �ℓ

in (1.1). We can take any W� ∗,ℓ ∈ (0,∞), which in Theorems 5.3 to 5.5 also allows us to take Zℓ arbitrarily

large and f̊8ℓ > 0 arbitrarily small. Consequently, the systems of step length bounds (5.6) and (5.14)

reduce to their second part (with �rst and third part unnecessary), and (5.10) reduces to its second part.

In other words, we only need to choose ğ0
su�ciently small.

6 numerical experience

We will now study the performance of our proposed methods on two application problems: di�usion

tensor imaging (DTI), which is a form of magnetic resonance imaging (MRI), and electrical impedance

tomography (EIT).

6.1 diffusion tensor imaging

Di�usion tensor imaging is covered by the Stejskal–Tanner equation: given a tensor �eld G : Ω →
Sym

2(ℝ3), associating each point on the domain Ω ⊂ ℝ3
with a of symmetric 2-tensor (presentable as

a symmetric 3 × 3 matrix), and a non-di�usion-weighted image B0 : Ω → ℝ, the di�usion-weighted

image B: : Ω → ℝ corresponding to a di�usion-sensitising gradient 1: ∈ ℝ3
is given by

(6.1) B: (b) = B0(b)4−〈G (b)1: ,1: 〉 (b ∈ Ω) .

At each spatial point b , the tensor G (b) models the covariance of a Gaussian probability distribution

for the spatial directions of the di�usion of water at that point. Models more advanced than DTI, such

as HARDI, consider composite probability distributions at each b . For our purposes a simpli�ed DTI

model will be su�cient. One can measure B: and B0 by suitable MRI pulse sequences, inversion of a

Fourier transform, and taking the absolute value of a complex number; for details we refer to [1, 19],

among others. We recommend [24] as an introduction to MRI.

We want to determine G from noisy measurements of B0 and B: , (: = 1, . . . , # ). Clearly, (6.1) can be

converted into an invertible system of linear equations with respect to G if # ≥ 6 and the tensors

1: ⊗1: are linearly independent. With noise involved, to get a good-quality image, we want to obtain a

regularised solution. We therefore consider a problem of the form (P0) where� is a data term modelling

(6.1) along with any noise, and � ◦  is the regulariser. Ideally, our data term would model the Rician

noise distribution, which is the distribution of the absolute value of a complex number when the latter

has Gaussian noise distribution. However, the numerical treatment of the Rician distribution is quite

involved – we refer to [20, 17] for some variational approaches – and instead of modelling it directly, a

more fruitful approach may be to work with complex data directly, even incorporating the Fourier

transform into our model. For the purposes of the present work, since we only use synthetic data,

we will therefore assume that the noise in B: is Gaussian. We note that (6.2) in in�nite dimensions

requires the use of the Banach space of functions of bounded deformation, so, since our algorithms

require Hilbert spaces, only discretised versions of the model can be considered. Consequently, taking

the discretised domain Ω3 := {1, . . . , =1} × {1, . . . , =2} × {1, . . . =3} and incorporating total deformation

regularisation with parameter U > 0, we seek to solve

(6.2) min

G :Ω3→Sym
2 (ℝ3)

1

2

‖) (G)‖2 + U ‖E3G ‖�,1, [) (G)]: := B: (b) − B0(b)4−〈G (b)1: ,1: 〉 (: = 1, . . . , # ) .
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(a) Original helix (b) Least squares reconstruction (c) Regularised reconstruction

Figure 1: Visualisation of original helix data (a) and the reconstruction from noisy di�usion-weighted measure-

ments. The reference least squares reconstruction in (b) is based on linearising (6.1) with respect to G by

taking the logarithm. The regularised reconstruction (c) is the numerical solution of (6.2) for U = 0.005

with the variant (d2) of our method after 10000 iterations. The visualisation, generated with Teem [40],

displays the tensor at each voxel of the 3D volume as a cuboid oriented along the eigenvectors of the

tensor, size of each side proportional to the corresponding eigenvalue. The cuboids are also colour-coded

based on the principal eigenvector. Tensors with too small eigenvalues are suppressed; in essence this

suppresses the background outside the helix, letting the latter to be inspected unobstructedly.

Here [E3G] (b) ∈ Sym
3(ℝ3) is forward–di�erences discretisation of the symmetrised gradient, a

symmetric third-order tensor. The �, 1-norm is based on taking pointwise the Frobenius norm of

[E3G] (b) and integration of the space (1-norm). This model is sightly simpli�ed from our previous

work in [37, 39, 38], where second-order total generalised variation regularisation was considered and

we included a positivity semi-de�niteness constraint on G (b).
To write (6.2) in the form (S), we take with H = (`, _) the functions

� (G) := 0,  (G) := (E3G,) (G)), � ∗(H) := � ∗` (`) + � ∗_ (_), �
∗
` (`) := XU�(`), � ∗_ (_) :=

1

2

‖_‖2.

Here � is the product of the voxelwise unit balls of Sym
3(ℝ3) over Ω3 . To better satisfy the conditions

of our convergence theorems, we replace � ∗` by � ∗`,W (`) := XU�(`) + WU−1‖`‖2 with W = 10
−9

. This is

the same as applying Moreau–Yosida regularisation to ‖ · ‖�,1 in (6.2).

We generated our test data, a simple helix depicted in Figure 1, with the Teem toolkit [40]. The

dimensions are =1 × =2 × =3 = 38 × 39 × 40. In the background, outside the helix, the tensors are fully

isotropic with the eigenvalues of 10% of the maximal eigenvalue of the tensors within the helix. The

exact generation details can be deciphered from our codes [21] written in Julia [3]. After generating

the helix data, we took B0(b) = ‖G (b)‖� . Then we generated B: , (: = 1, . . . , 6), from the Stejskal–

Tanner equation (6.1) with the di�usion-sensitising gradients 11 = (1, 0, 0), 12 = (0, 1, 0), 13 = (0, 0, 1),
14 = (

√
2,
√

2, 0), 15 = (
√

2, 0,
√

2), and 16 = (0,
√

2,
√

2). To these di�usion-weighted images we added

synthetic Gaussian noise of standard deviation 30% of the mean magnitude of B0. As the regularisation

parameter in the model (6.2) we took U = 0.005.

We only consider deterministic updates. We develop step length rules for Algorithm 4.1 based on

Theorem 4.4, however, although � ∗
_

is strongly convex, and the Moreau–Yosida regularisation makes

also � ∗`,W strongly convex, we generally do not employ acceleration and instead keep the step length

parameters �xed throughout the iterations. Therefore the theorem does not generally provide any

convergence claims.

For convenience, we will identify the linear primal indices 9 and dual indices ℓ (used for arbitrary

blocks) with symbolic indices corresponding to the di�erent variables G , `, _ and their sub-blocks (used
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(a) Multiple step length parametrisations of the non-block-

adapted reference algorithm (d1) to justify the choice g =

1/'.
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(d1)

(d2)

(d3)

(d4)

(b) Comparison of the algorithm variants (d1)–(d4). The dotted

lines show the e�ect of accelerating the dual blocks in (d3)

and (d4) following Theorem 4.4.

Figure 2: Reference algorithm step length justi�cation (a) and algorithm performance (b) on the DTI problem.

Function values are on the vertical axis, and iteration counts are on the horizontal axis. Based on

(a), we take g = 1/' in (b): g = 5/' appears to have convergence issues and g = 0.5/' yields slower

convergence.

for speci�c blocks). The primal variable will be just a single block “G”, or be divided into voxelwise blocks

“Gb ” for b ∈ Ω3 . The dual variable will consist of just a single block “H”, the two blocks corresponding

to the variables “`” and “_”, or “`” and the sub-blocks “_:,b ” over : = 1, . . . , # and b ∈ Ω3 .

Of the conditions of Theorem 4.4, we will not seek to satisfy the boundedness (4.8); following

Remark 3.13 this seems likely to hold if we initialise close enough to a solution and take the primal

step length parameters g̊0

9 small enough. However, we do not know, how small and how close would

be theoretically required. Likewise, (4.7b), which with deterministic updates simpli�es to X ≥ g̊0

9
s!, is

satis�ed by taking g̊0

9 small enough. To do this exactly, we would need to calculate the constant ! that

satis�es the Lipschitz requirement of Assumption 3.1. Assumption 3.4 readily holds (with Moreau–

Yosida regularisation, as discussed above) with W�,G = 0 and any 0 ≤ W� ∗,` ≤ WU−1
and 0 ≤ W� ∗,_ ≤ 1.

We take the latter as well as UH and Zℓ such that (4.5) yields sW� ∗,ℓ ≡ 0 for all ℓ . Assumption 3.2 we do not

hope to verify in the con�nes of the present manuscript. With (4.7b) out of the way, for the calculation

of the step lengths, it would only be needed for the constants W ,9 . We simply make the reasonable

assumption that we start close enough to a local minimiser satisfying the “second-order necessary

condition” W�,9 + W ,9 ≥ 0, i.e., W ,9 ≥ 0. Then we may simply assume W ,9 = 0 and are justi�ed in

taking W̃�,9 = 0.

It remains to satisfy the relationship (4.7a) between the primal and dual step lengths. Taking the

weights F 9,ℓ,: = F 8
9,ℓ,:

and the set of connections
sV8
9 (ℓ) = sV9 (ℓ) given in (4.4b) independent of the

iteration and insertingF 9,: from (4.4a) into (4.7a), the latter holds if

(6.3) 1 − ^ ≥





 <∑
9=1

√
f̆0

ℓ g̊
0

9 jV89 (ℓ)
∑
ℓ′∈ĎV8

9
(ℓ) F 9,ℓ,ℓ′&ℓ∇ (G8)% 9






2

.

In particular, with just a single primal block G , we then satisfy (6.3) by taking

(6.4) f̆0

ℓ =
1 − ^

g̊0

G

∑
ℓ′∈ĎV9 (ℓ) FG,ℓ,ℓ′'

2

ℓ

where we need the estimate 'ℓ ≥ ‖&ℓ∇ (G8)‖.

Similarly to [5] we estimate ‖E3 ‖ ≤ 'E :=
√

12. Assuming that each G8 (b) for b ∈ Ω3 is positive
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semi-de�nite, we also estimate with A:,b := |B0(b) |‖1: ‖22 that

‖∇) (G8)‖ ≤ ') :=

√√√ #∑
:=1

∑
b ∈Ω3

A 2

:,b
and ‖∇ (G8)‖ ≤ ' :=

√
'2

E + '
2

)
.

We obtain 'ℓ for (6.4) from the same constituents A:,b and 'E , depending on the exact block structure.

It then remains to choose the primal step lengths and the weightsF 9,:,ℓ . We consider the following

four block structures and choices of weights:

(d1) As our reference case, corresponding to earlier non-block-adapted works [33, 9], a single primal

block G (< = 1) and a single dual block H (= = 1). Based on the rough optimisation of the step

length parameters illustrated in Figure 2a, for a range of g = g̊0

G with f̆0

H = f := (1 − ^)/(g'2)
with ^ = 0.05, we take g := 1/'.

(d2) A single primal block G (< = 1) and the two dual blocks ` and _ (= = 2). We take g = g̊0

1
as

in (d1) and withFG,_,` := 'E/(' − 'E) calculate from (6.4) the dual step length parameters as

f̆0

` = (1 − ^)/(g (1 +F−1

G,_,`
)'2

E) and f̆0

_
= (1 − ^)/(g (1 +FG,_,`)'2

)
). Thus f̆0

`'E equals f' of (d1).

(d3) A single primal block G (< = 1) and in addition to the dual block `, we split _ into voxelwise

and 1:-wise blocks _:,b (= = 1 + #=1=2=3) indexed by : = 1, . . . , # and b ∈ Ω3 . We still take

g = g̊0

1
as in (d1) and with FG,_(:,b ) ,` :=

∑
:′,b′ A:′,b′'E/((' − 'E)A:,b ) and FG,_(:,b ) ,_(:′,b′) ≡ 1

calculate from (6.4) the dual step length parameters as f̆0

` := (1 − ^)/(g (1 +∑
:,b F

−1

G,_(:,b ) ,`
)'2

E)
and f̆0

_:,b
:= (1 − ^)/(g (# +FG,_(:,b ) ,`)A 2

:,b
). This also keeps f̆0

`'E equal to f' of (d1).

(d4) Voxelwise primal blocks Gb for b ∈ Ω (= = =1=2=3) in addition to dual blocks as in (d3). We take the

blockwise primal step length parameters g̊0

b
= gb := 'g/(1+# max:=1,...,# A:,b ) for b ∈ Ω3 , where g

is as in (d1). Then we takeFGb ,_(:,b ) ,` := A:,b andFGb ,_(:,b ) ,_ (:′,b′) = 1. Observe that according to the

de�nition of the connection set
sV9 (ℓ) in (4.4b) that the dual block (:, b) is not connected by  to

(: ′, b ′) for b ′ ≠ b . Therefore, we satisfy (6.3) by taking f̆0

` = (1−^)/(maxb ∈Ω3 gb (1+
∑#
:=1

A:,b )'2

E)
and f̆0

_:,b
= (1 − ^)/(gb (# + A−1

:,b
)A 2

:,b
). The maximum comes from estimating the norm in (6.3).

We report in Figure 2b for the �rst 10000 iterations the function value achieved by each algorithm

variant. For (d3) and (d4) we also display the e�ect of the $ (1/# ) acceleration of Theorem 4.4; on (d1)

and (d2) this has no notable e�ect.

On a mid-2014 MacBook Pro with a 2.8GHz Intel Core i5 processor and 16GB RAM running Julia

1.1.0, each iteration of (d1)–(d3) takes roughly 0.048 seconds. For (d4) this is roughly 0.062 seconds

due to a more complicated primal update.
1

However, in terms of computational times, (d4) is clearly

much faster than the other variants: 0.77s against 14.7–19.2s for (d1) and 13.6–18.1s for (d2) and (d3)

to reach function value 50. The time ranges account for us sampling the function values only every

100 iterations after the �rst 100. The visual character of the approximate solution provided by (d4)

is on closer inspection slightly smoothed out compared to the other variants. This may be due to

non-optimal U in the model (6.2) or due to a di�erent local solution.

1
In the Julia code [21], we update G8+1 (b) := G8 (b) −gbΔG8 (b) and _8+1 (:, b) := (_8 (:, b) +f:,bΔ_8 (:, b))/(1+f:,b ) for some

temporary ΔG8 and Δ_8 and all b ∈ Ω3 and : = 1, . . . , # . The latter does not appear to cause a notable performance

penalty compared to a spatially constant f while the former does. However, each G8+1 (b) is a tensor consisting of multiple

�oating point numbers while _8+1 (:, b) is a single �oating point number. Our guess is that, due to uneven memory

indexing when g is spatially varying, the tensor update cannot make as good use of processor SIMD instructions.
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(a) Synthetic conductivity (b) Reconstructed conductivity (c) Finite element mesh

Figure 3: Synthetic true conductivity and reconstructed conductivity for the EIT example. The reconstruction is

the one obtained with the block structure and dual step length setup of (e3) with g = 500/' after 15000

iterations. The blue patches on the boundary of the domain indicate the electrodes. We display in (c)

the �nite element mesh used to represent the conductivity.

6.2 electrical impedance tomography

In this problem, we want to solve

(6.5) min

G ∈+

#∑
:=1

1

2

‖�: (G)‖2 + U ‖∇G ‖2,1

on a �nite-dimensional subspace + ⊂ !2(Ω) with Ω ⊂ ℝ2
and each �: : + → ℝ#

a non-linear

operator corresponding to the �t of the solution of a partial di�erential equation controlled by G to

measured data. We speci�cally use the complete electrode model of EIT [41]. Our implementation

of the model will be described in detail in [18]. The rough idea is that # electrodes are placed on the

boundary of the domain Ω inside which we want to reconstruct an unknown conductivity G ; see

Figure 3, which presents a synthetic 2D slice model of an object in a cylindrical water tank. As our

data, we only have # boundary measurements corresponding to exciting in turn each of the electrodes

: = 1, . . . , # with a positive electric potential. In each of these excitations, the remaining electrodes

are grounded, and the electric current generated by these excitations is measured at each electrode,

yielding # measurements. The operators �: correspond to each such excitation setup. In the example

of Figure 3, the number of electrodes # = 16.

We can again write this problem in the form (S) with

� (G) := 0,  (G) := (∇G,�1(G), . . . , �# (G)), and � ∗(H) = XU�(`) +
#∑
:=1

‖_: ‖22,

where H = (`, _1, . . . , _# ) and � is the product of the pointwise Euclidean unit balls of ℝ2
over Ω.

As a �rst case of the dual blocks, we take H0 corresponding to the total variation term, and the full

measurement vectors H: corresponding to each excitation : = 1, . . . , # . We estimate ‖∇‖ ≤ '∇ for '∇
being the largest singular value of ∇ on + . We do not have exact estimates on the norm of ∇�: (G8).
Therefore, we take a dynamic norm estimate A: = A: (8) over the last 100 iterations,

‖∇�: (G8)‖ ≤ A: := 1.05 max

max{8−99,0}≤]≤8
‖∇�: (G ])‖ (: = 1, . . . , # ) .

We may then estimate ‖∇ (G8)‖ ≤ ' :=

√
'2

∇ + A
2

1
+ · · · + A 2

#
. As a second case, we further split each

H: into sub-blocks H:,9 ∈ ℝ corresponding to each individual electrode 9 = 1, . . . , # being measured.
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We then take norm estimates A:,9 = A:,9 (8) over the last 100 iterations,

| [∇�: (G8)] 9 | ≤ A:,9 := 1.05 max

max{8−99,0}≤]≤8
| [∇�: (G ])] 9 | (:, 9 = 1, . . . , # ) .

We work in the setting of Section 5. Note that unlike Algorithm 4.1 in the DTI experiments of

Section 6.1, Algorithm 5.1 allows partial calculation of  in both the primal and dual updates, which

should in principle be bene�cial in stochastic methods. We develop step length rules for Algorithm 5.1

based on Theorem 5.3. Similarly to (6.4), with F 9,ℓ,: = F 8
9,ℓ,:

and
sV8
9 (ℓ) = sV9 (ℓ) independent of the

iteration, for non-stochastic methods with a single primal block G , (5.6a) in particular holds by taking

(6.6) f̊ 1

ℓ =
1 − ^

ğ0

G

∑
ℓ′∈ĎV9 (ℓ) FG,ℓ,ℓ′'

2

ℓ

where we estimate 'ℓ ≥ ‖&ℓ∇ (G8)‖.

Again, for convenience, we identify the linear primal indices 9 and dual indices ℓ and ℓ ′ with symbolic

indices G , `, and _: . It then remains to choose ğ0

G and the weights FG,ℓ,ℓ′ . For this we consider four

di�erent block and weight setups:

(e1) Again, as our reference case, corresponding to earlier non-block-adapted works [33, 9], a single

primal block G (< = 1) and a single dual block H (= = 1). Based on rough optimisation of the step

length parameters, illustrated in Figure 4a for a range of g = ğ0

G with f̊ 1

H = (1 − ^)/(g'2) with

^ = 0.05, we take g := 5/' for ' computed using just the initial iterate G0
as explained above.

(e2) A single primal block G (< = 1) and the dual blocks `, _1, . . . , _# . We take g = ğ0

G as in (e1) and

withFG,_? ,` :=
∑
: A:'∇/((' − '∇)A?) andFG,_? ,_: := 1 for ?, : = 1, . . . , # , solve from (6.6) that

f̊ 1

` := (1 − ^)/(g (1 +∑
: F
−1

G,_: ,`
)'2

∇) and f̊ 1

_?
:= (1 − ^)/(g (# +FG,_? ,`)A 2

?) for ? = 1, . . . , # . This

case and the step length rules are analogous to (d3) for DTI.

(e3) As (e2) but split each_? into further measurement-wise dual blocks H?,9 (?, 9 = 1, . . . , # ), replacing

in the expressions of (e2) the indices ? and : by (?, 9) and (:, 9 ′) with 9, 9 ′ ∈ {1, . . . , # }. Thus A:
becomes A:,9 ′ , etc.

(e4) Measurement-wise dual blocks as in (e3) butFG,_(?,9 ) ,` := A−1

?,9 .

The performance of the algorithm variants (e1)–(e4) is depicted in Figure 4, and a sample recon-

struction in Figure 3b. Observe how the block-adapted algorithms allow in practise larger g than the

reference algorithm without block-adaptation. This has signi�cant performance bene�ts: To reach and

stay below objective function value in the order 10
−7

, (e4) with g = 500/' requires 208 iterations while

(e1) with g = 10/' requires 906 iterations. (With g = 500/' the latter requires 3544 iterations, no longer

converging well with high g .) We also tested stochastic variants of the algorithms for the EIT problem,

updating on each iteration only a random subset of the dual blocks. This did not, however, o�er any

performance bene�ts over the block-adapted variants, neither in terms of epoch count (iteration count

scaled by the fraction of updated blocks) nor actual computational time.

7 conclusion

In this paper, we studied block-proximal primal-dual splitting methods for non-convex non-smooth

optimisation. From an abstract starting point—also able to model doubly-stochastic methods—we

derived explicit algorithms and step-length bounds for two particular cases: methods with full dual

updates and methods with full primal updates. For both of the cases, we derived rules ensuring local

$ (1/# ),$ (1/# 2) and linear rates under varying conditions and choices of the step lengths parameters.
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(c) Blocked algorithm (e4), multiple step lengths

Figure 4: EIT reconstruction performance: iteration

counts are on the G axis and primal objective

function values (6.5) are on the H axis. We

start with step length justi�cation for the non-

blocked reference algorithm (e1) in (a). Based

on this we use step length g = 10/' for the

reference algorithm as higher step lengths be-

come unstable. Comparison of the di�erent

blocked algorithm variants is given in (b) for

g = 500/': with lower parameters the dif-

ferences are less noticeable, and with higher

parameters insigni�cant improvement is ob-

tained. Based on this, in (c) we represent the

performance of (e4) for multiple step lengths.

We demonstrated the performance of the methods on practical inverse problems. Based on our

experience with both the DTI and EIT examples, the block-adaptation provides signi�cant performance

bene�ts. Random updates, by contrast, did not o�er bene�ts in our sample problems. We suspect they

might be more bene�cial on very large scale problems that do not share work between the blocks, yet

the blocks have overlapping information, or where communication delays within a computing cluster

become signi�cant. This may be one of the possible directions for further research on the presented

methods and their application.

a data statement for the epsrc

The codes and data for the DTI experiments are available at [21]. The codes for EIT, based on historical

work of several people, cannot be made available at this point.

appendix a satisfaction of the three-point condition

The following lemma provides simpli�ed conditions under which Assumption 3.2 holds, e.g., whenever

G ↦→ 〈 (G), Ĥ〉 is block-separable and strongly-convex.

Lemma a.1. Suppose Assumption 3.1 holds and the following is true for the given neighbourhood X of Ĝ ,
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Γ =
∑<
9=1
W ,9% 9 ∈ �(- ;- ), W ,9 ∈ ℝ, some WG > 0:

〈[∇ (G ′) − ∇ (Ĝ)]∗Ĥ, G ′ − Ĝ〉 ≥ ‖G ′ − Ĝ ‖2Γ + WG ‖G
′ − Ĝ ‖2,(a.1a)

〈[% 9∇ (G ′) − % 9∇ (Ĝ)]∗Ĥ, G ′9 − Ĝ 9 〉 ≥ W ,9 ‖G ′9 − Ĝ 9 ‖2 ( 9 = 1, . . . ,<) .(a.1b)

Let V1, V2 > 0, � =
∑<
9=1
0 9% 9 , and 0 := min9 0 9 . Then Assumption 3.2 holds for ? = 1 when

!\� ≤ 0(WG − V1) − V2 max

9
(0 9 − 0) and

!3 ≥ !2‖%NLĤ ‖(V−1

1
+ (V20)−1

∑<
9=1
(0 9 − 0))/2 + 2!\� .

Proof. We need to study (3.3). We have

' := 〈[∇ (G) − ∇ (Ĝ)]∗Ĥ, G ′ − Ĝ〉� − ‖G ′ − Ĝ ‖2�Γ 
= 0(〈[∇ (G) − ∇ (Ĝ)]∗Ĥ, G ′ − Ĝ〉 − ‖G ′ − Ĝ ‖2Γ )
+∑<

9=1
(0 9 − 0) (〈[∇ (G) − ∇ (Ĝ)]∗Ĥ, G ′9 − Ĝ 9 〉 − W ,9 ‖G ′9 − Ĝ 9 ‖2).

We now apply (a.1a), Young’s inequality with the factor V1 > 0, and Assumption 3.1 to bound

〈[∇ (G) − ∇ (Ĝ)]∗Ĥ, G ′ − Ĝ〉 − ‖G ′ − Ĝ ‖2Γ 
= 〈[∇ (G ′) − ∇ (Ĝ)]∗Ĥ, G ′ − Ĝ〉 − ‖G ′ − Ĝ ‖2Γ + 〈[∇ (G) − ∇ (G

′)]∗Ĥ, G ′ − Ĝ〉
≥ (WG − V1)‖G ′ − Ĝ ‖2 − !2‖%NLĤ ‖2(4V1)−1‖G ′ − G ‖2.

Similarly, for any V2 > 0, we have

〈[∇ (G) − ∇ (Ĝ)]∗Ĥ, G ′9 − Ĝ 9 〉
= 〈[% 9∇ (G ′) − % 9∇ (Ĝ)]∗Ĥ, G ′9 − Ĝ 9 〉 + 〈[∇ (G) − ∇ (G ′)]∗Ĥ, G ′9 − Ĝ 9 〉
≥ W ,9 ‖G ′9 − Ĝ 9 ‖2 − !2‖%NLĤ ‖2(4V2)−1‖G ′ − G ‖2 − V2‖G ′9 − Ĝ 9 ‖2.

Combining the two estimates, we arrive at

' ≥ 0(WG − V1)‖G ′ − Ĝ ‖2 − 0!2‖%NLĤ ‖2(4V1)−1‖G ′ − G ‖2

−∑<
9=1
(0 9 − 0) (V2‖G ′9 − Ĝ 9 ‖ + !2‖%NLĤ ‖2‖G ′ − G ‖2)

=
∑<
9=1
(0(WG − V1) − (0 9 − 0)V2)‖G ′9 − Ĝ 9 ‖2

− 0!2‖%NLĤ ‖(V−1

1
+ (V20)−1

∑<
9=1
(0 9 − 0))‖G ′ − G ‖2/4.

At the same time, using Assumption 3.1, we get for the right-hand side of (3.3) the bound

‖ (Ĝ) −  (G) − ∇ (G) (Ĝ − G)‖ ≤ !
2

‖G − Ĝ ‖2 ≤ !‖G ′ − Ĝ ‖2 + !‖G ′ − G ‖2.

So Assumption 3.2 holds if we take ? = 1, !\� ≤ min9 0(WG − V1) − (0 9 −0)V2, and !3 ≥ !2‖%NLĤ ‖(V−1

1
+

(V20)−1
∑<
9=1
(0 9 − 0))/2 + 2!\�. �

appendix b technical lemma

Lemma b.1. We have sI# ≤ sI0 + # /2 whenever I89 > 0, (8 = 1, . . . , # ; 9 = 1, . . . ,<) satisfy

(b.1) I8+19 =
1 + I89√
1 + sI−1

8

with sI8 := max

9=1,...,<
I89 .
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Proof. Taking max9=1...< on both sides of the �rst part of (b.1), we obtain

sI8+1 = (1 + sI8)
√

sI8

sI8 + 1

=

√
sI2

8
+ sI8 .

We thus obtain the claim by telescoping

sI8+1 − sI8 =

√
sI2

8
+ sI8 − sI8 =

sI8√
sI2

8
+ sI8 + sI8

=
1√

1 + sI−1

8
+ 1

≤ 1

2

. �
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