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mumford-shah regularization in electrical
impedance tomography with complete electrode

model

Jyrki Jauhiainen∗ Tuomo Valkonen† Aku Seppänen‡

Abstract In electrical impedance tomography, we aim to solve the conductivity within a target

body through electrical measurements made on the surface of the target. This inverse conductivity

problem is severely ill-posed, especially in real applications with only partial boundary data

available. Thus regularization has to be introduced. Conventionally regularization promoting

smooth features is used, however, the Mumford–Shah regularizer familiar for image segmentation

is more appropriate for targets consisting of several distinct objects or materials. It is, however,

numerically challenging. We show theoretically through Γ-convergence that a modification of the

Ambrosio–Tortorelli approximation of the Mumford–Shah regularizer is applicable to electrical

impedance tomography, in particular the complete electrode model of boundary measurements.

With numerical and experimental studies, we confirm that this functional works in practice and

produces higher quality results than typical regularizations employed in electrical impedance

tomography when the conductivity of the target consists of distinct smoothly-varying regions.

1 introduction

Electrical impedance tomography (EIT) is an imaging modality where the electrical conductivity of

a target body is inferred from electrical boundary measurements. This problem is often called the

inverse conductivity problem or Calderon’s problem [8, 9]. In abstract terms, Calderon’s problem is to

determine the conductivity of the target from aDirichlet to NeumannmapΛ𝛾 : 𝐻 1/2(𝜕Ω) → 𝐻−1/2(𝜕Ω),
Λ𝛾 𝑓 = 𝛾 𝜕𝑢

𝜕𝜈
|𝜕Ω . Parametrized by the conductivity 𝛾 within the domain Ω ⊂ ℝ𝑁

, the latter maps the

electrical potentials at the boundary 𝜕Ω to electrical currents through the boundary. Inside the domain

Ω, the electric potentials 𝑢 and the conductivity 𝛾 are governed by the elliptic partial differential

equation (PDE)

(1.1)

{
∇ · 𝛾∇𝑢 = 0 𝑥 ∈ Ω

𝑢 = 𝑓 𝑥 ∈ 𝜕Ω.

In practice, EIT measurements are collected using finite-sized electrodes, modelled by 𝜕Ω𝑒𝑘 , on the

surface of the target body, performing current injections and measuring the potential differences due

to the current injection. This is the more common approach. An alternate approach, which we employ
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Figure 1: Illustration of the EIT measurement setup. The electrodes are sequentially set to potentials

𝑈
𝑗

𝑘
and the currents 𝐼

𝑗

𝑘
caused by the potential 𝑢 inside the domain Ω are measured. From the

measured currents 𝐼
𝑗

𝑘
, the conductivity 𝛾 inside the domain is reconstructed. The vector 𝜈 is

the outward normal of the boundary 𝜕Ω.

in this paper and that has previously been used in, e.g., [47, 48, 23, 22], is to measure the currents

𝐼 𝑗 = (𝐼 𝑗
1
, 𝐼
𝑗

2
, . . . , 𝐼

𝑗

𝑃1

) caused by the potential excitations 𝑈 𝑗 = (𝑈 𝑗

1
,𝑈

𝑗

2
. . . ,𝑈

𝑗

𝑃1

); see Figure 1. Usually,
multiple sets of potential excitations 𝑈 𝑗

and current measurements 𝐼 𝑗 , 𝑗 = 1, . . . , 𝑃2, are carried out.

To date, the most physically relevant model, adapting (1.1) to realistic boundary measurements, is the

so-called Complete Electrode Model (CEM) [13]

∇ · (𝛾 (𝑥)∇𝑢 𝑗 (𝑥)) = 0 for 𝑥 ∈ Ω,(1.2a)

𝑢 𝑗 (𝑥) + 𝜁𝑘𝛾 (𝑥)⟨∇𝑢 𝑗 (𝑥), 𝜈⟩ = 𝑈 𝑗

𝑘
for 𝑥 ∈ 𝜕Ω𝑒𝑘 , 𝑘 = 1, . . . , 𝑃1,(1.2b) ∫

𝜕Ω𝑒𝑘

𝛾 (𝑥)⟨∇𝑢 𝑗 (𝑥), 𝜈⟩ 𝑑𝑆 = −𝐼 𝑗
𝑘

for 𝑘 = 1, . . . , 𝑃1,(1.2c)

𝛾 (𝑥)⟨∇𝑢 𝑗 (𝑥), 𝜈⟩ = 0 for 𝑥 ∈ 𝜕Ω \ (𝜕Ω𝑒1
∪ . . . ∪ 𝜕Ω𝑒𝑃

1

),(1.2d)

where 𝜁𝑘 is the contact impedance of an electrode 𝑘 , i.e. the impedance caused by the interface between

the electrode and the medium of the target, and 𝜈 is a unit normal pointing out of Ω. Typically, a weak
formulation is employed.

Due to the ill-posedness of the inverse conductivity problem, regularization methods [15] need to be

employed to obtain a solution with desired characteristics. While direct approaches such as Dbar [33]

exist, we concentrate on variational regularisation, which incolves an explicit regularizer 𝐹 constructed

to promote desired solution features. The corresponding minimization problem needs to be solved

with iterative optimization methods. To form the variational model, letℐ = (ℐ1, . . . ,ℐ𝑃2) ∈ ℝ𝑀 be

the measured currents during multiple different potential excitations𝑈 1, . . . ,𝑈 𝑃2 ∈ ℝ𝑃1
. It may be that

𝑀 < 𝑃1𝑃2 if the measurement device does not measure all the currents ℐ
𝑗

𝑘
during an excitation 𝑗 . Let

𝐼 (𝛾) ∈ ℝ𝑀 be the corresponding electric currents 𝐼
𝑗

𝑘
obtained by solving (1.2) for given conductivity 𝛾 .

Our variational problem is to find 𝛾 solving

(1.3) min

𝛾𝑚≤𝛾≤𝛾𝑀
𝐹 (𝛾) +𝐺 (𝛾),

where 𝛾𝑚 and 𝛾𝑀 are the bounds for positive and finite electrical conductivity: 𝐹 is the regularization

functional, and the data fidelity is

(1.4) 𝐺 (𝛾) = 1

2𝑎
∥𝑊 (𝐼 (𝛾) −ℐ)∥2

2
.
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We write 𝑎 > 0 for the regularization parameter and include the weight matrix𝑊 ∈ ℝ𝑀×𝑀
to account

for the noise of each measured current.

The choice of regularization functional 𝐹 has a significant impact on the solution of the inverse EIT

problem, e.g., the squared norm of the gradient will impose smooth solutions. However, in practice the

target often contains several smoothly-varying materials with distinct edges. An example of such an

application is the imaging of concrete structures; the metallic reinforcements [28] and cracks [27] are

sharp features while the moisture distribution is spatially smooth [40]. Another example application

is in the industrial process tomography; phase boundaries and diffusive processes, respectively, cause

sharp and smooth variations in the conductivity. Total variation (TV) regularization, i.e., 1-norm of the

(distributional) image gradient, allows sharp edges between materials, but generally suffers from the

stair-casing effect: it imposes piecewise constant solutions everywhere. Total generalized variation

(TGV) [5, 7] can be used to avoid the stair-casing effect while maintaining other desirable characteristics

of TV [45, 6]. It has been applied to EIT in [39]. In practice, however, neither TV nor TGV may not

sufficiently well recover edges and distinct objects from very incomplete data.

The Mumford–Shah (M-S) regularizer [34], familiar from image segmentation, promotes a small

number of distinct smoothly-varying objects with sharp edges to a much higher extent than TV or

TGV do. It does this by only penalising the length of object edges instead of the height of the edges. It

is defined by

(1.5) 𝐹 (𝛾) = ∥|∇𝛾 |∥2

2
+ 𝛼ℋ𝑁−1(𝑆𝛾 ).

in the space of (generalized) special functions of bounded variation [1]. This space concerns functions

that admit an approximate differential ∇𝛾 outside a jump set or the approximate discontinuity set 𝑆𝛾 .
Controlled by the parameter 𝛼 > 0, in (1.5) we penalize the length (𝑁 = 2) or area (𝑁 = 3) of the jump

set using the Hausdorff measureℋ
𝑁−1

of dimension 𝑁 − 1.

For more general settings, Ambrosio and Tortorelli [2] showed that as 𝑘→∞, the functionals

(1.6) 𝐹𝑘 (𝛾, 𝑧) =
∫
Ω

(
( |∇𝛾 |2 + |∇𝑧 |2) (1 − 𝑧2)2𝑘 + 1

4

(𝛼𝑘𝑧)2

)
𝑑𝑥 (𝑘 > 0)

approximate 𝐹 defined in (1.5) in the sense of Γ-convergence with the underlying topology given by

convergence in measure. We refer to [4] for an introduction to Γ-convergence. The variable 𝑧 in (1.6)

plays the role of a control variable for the gradient of 𝛾 and the minimization is done with respect to

the both variables 𝛾 and 𝑧; that is, the approximate problem is

(1.7) min

𝛾,𝑧
𝐺 (𝛾) + 𝐹𝑘 (𝛾, 𝑧) .

The question then is, do the solutions 𝛾𝑘 of the approximate problems (1.7) converge to a solution 𝛾

of the original problem (1.3)? For continuous𝐺 , the Γ-convergence of 𝐹𝑘 readily implies that of𝐺 + 𝐹𝑘 .
If {𝐺 + 𝐹𝑘 }𝑘∈ℕ are “equi-mild coercive”, it is also possible to show that the solutions converge; see [4].

In [2], Ambrosio and Tortorelli showed directly for the denoising data term 𝐺 (𝛾) =
∫
Ω
|𝛾 − 𝛾𝑀 |𝑝 𝑑𝑥

with 𝛾𝑀 ∈ 𝐿∞(Ω) that solutions to (1.7) approximate solution to the problem

(1.8) min

𝛾
𝐺 (𝛾) + 𝐹 (𝛾)

More general data terms, such as (1.4), were not treated. In [3], Ambrosio and Tortorelli briefly discussed

their treatment, and showed the Γ-convergence of the alternative approximating functionals

(1.9) 𝐹𝜆 (𝛾, 𝑧) =
∫
Ω

[
𝜆 |∇𝑧 |2 + 𝛼 (𝑧2 + 𝑜𝜆) |∇𝛾 |2 +

(𝑧 − 1)2

4𝜆

]
𝑑𝑥,
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where the approximation takes place as 𝑜𝜆 → 0, 𝜆 → 0 and 𝛾 → 0 in 𝐿2
topology. The benefit of this

functional is that it simplifies the numerical implementation. In contrast to the original approximation

(1.6), for which (1.7) may have no solutions, the 𝑜𝜆 term in (1.9) together with the 𝐿2
-coercivity of 𝐺

guarantees the existence of solutions to the approximating problems. The approach, however, still

has one difficulty with application to the EIT problem: 𝐺 given by (1.4) can only be proven to be

continuous if 𝛾𝑚 ≤ 𝛾 ≤ 𝛾𝑀 for some constants 𝛾𝑀 > 𝛾𝑚 > 0, whereas the Γ-convergence proofs of
[2, 3] specifically depend on 𝛾 being equal to zero on subdomains. We will, therefore, further need to

adapt those proofs.

The Mumford–Shah regularizer and Ambrosio–Tortorelli approximation have previously been

studied for the continuum model of EIT in [38]. In this work, a very strict “Q-property” is imposed

on the conductivities 𝛾 and the aforementioned difficulty with the Γ-convergence proofs regarding
the continuity of 𝐺 when 𝛾 = 0 is circumvented by replacing 𝐺 (𝛾) by 𝐺 (𝛾) for a suitably “forced”

𝛾 , and introducing an additional 𝐿2
penalty. Moreover, a drawback of the continuum model of EIT

compared to CEM is that it models neither the electrodes nor the contact impedances. In [21], a

reconstruction approach was proposed based on CEM and a regularizer with close appearances to the

Ambrosio–Tortorelli functional. However, this approach is based on the linearization of 𝐺 and the

control variable 𝑧 is to be obtained a priori, either from example from a photograph, or from an initial

reconstruction. As such, an asymptotic theory, and the theoretical properties of the Mumford–Shah

functional are not available to judge theoretical reconstruction qualities. Nevertheless, the numerical

studies suggest that the proposed method outperforms TV.

Optimization problems involving the Mumford-Shah regularizer (1.5) are in general very challenging

due to a high level of nonsmoothness and nonconvexity. Effective algorithms have been developed

for the restriction to piecewise constant functions, also known as the Potts model [18, 42, 43, 14]. For

separating two objects, the Chan–Vese convex relaxation [12] can also be efficiently solved. Moreover,

in [20] the Alternating Directions Method of Multipliers (ADMM) is applied to Mumford–Shah regu-

larized problems with non-linear forward operators. Through a regular finite differences discretisation,

the generally expensive ADMM subproblems become a series of one-dimensional Mumford–Shah

problems that can be solved efficiently. However, they require that the data term satisfies the coercivity

assumption 𝐺 (𝛾) → ∞ as 𝛾 → ∞. This is not the case for the EIT/CEM data term. Moreover, the

finite differences discretisation is severely limiting when the forward operator involves PDEs on

non-rectangular domains.

The aim of this paper is to apply the Ambrosio–Tortorelli approximation (1.6) of the Mumford–Shah

regularization functional to the complete electrode model of EIT, solving for the control variable 𝑧

simultaneously with the conductivity 𝛾 . In Section 3, we show the Γ-convergence and the convergence
of solutions for the approximate EIT problems (1.7). To ensure the continuity of CEM and the existence

of solutions to the approximating problems (1.7), we will modify 𝐹𝑘 slightly by imposing constraints

𝛾𝑚 ≤ 𝛾 ≤ 𝛾𝑀 and 0 ≤ 𝑧 ≤ 1−𝜖𝑘 . The constraint 𝑧 ≤ 1−𝜖𝑘 serves a similar purpose as 𝑜𝜆 in (1.9). Before

we embark on proving Γ-convergence, we first show in Section 2 the continuity of𝐺 in measure when

𝛾 is bounded away from zero. We finish in Section 4 by evaluating the practical performance of the

approach numerically and experimentally. Table 1 shows explains the notation used in the manuscript.

To keep the length of this manuscript manageable, we do not discuss the Γ-convergence of finite
element approximations to the original problem or the function space Ambrosio–Tortorelli approxima-

tions. Discretisation and application of the Mumford–Shah functional to piecewise constant (Potts

model) and piecewise affine functions are studied in [19, 10, 11, 37, 32, 29, 17]. Of these works, [37, 32]

also discuss applications to computerized and single photon emission tomography. Further in the theme

of applications of the Mumford–Shah functional to inverse problems, a level set approach method is

presented in [36] for X-ray tomography. Finally, [49] study algorithms for discretised Mumford–Shah

regularisation with manifold-valued data.
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Table 1: Common symbols used in the manuscript.

Symbol Explanation Symbol Explanation

𝛾 Electrical conductivity Ω Domain representing the monitored object

𝑢 The electric potential inside Ω 𝜁𝑘 The contact impedance of the electrode 𝑘

𝑈
𝑗

𝑘
The potential of the electrode 𝑘 at excitation 𝑗 𝐼

𝑗

𝑘
The current through the electrode 𝑘 at excitation 𝑗

𝑃1 The number of excitations 𝑃2 The number of electrodes

ℐ The vector of measured currents 𝑊 The weight matrix of the measurements

𝐹 The M-S functional with 𝛾 constraints 𝐺 The data fidelity term

ℋ The Hausdorff measure 𝑆𝛾 The jump set of 𝛾

ℬ The space of Borel functions 𝛼 Jump set regularization parameter

𝑧 An auxiliary jump set control variable 𝑘, 𝜆 Jump set control parameter

𝐹𝑘 , 𝐹𝜆 A-T approximation of M-S functional 𝐹𝑘 The modified A-T functional

𝐷𝑘,𝑁 The space of the functionals 𝐹𝑘
¯𝐷𝑘,𝑁 The space of the functionals

¯𝐹𝑘
𝛾𝑚, 𝛾𝑀 The conductivity constraints 𝜖𝑘 An additional constraint variable for 𝑧

𝐻 Hilbert space H The weak solution space of CEM

𝐵 Bilinear form associated with CEM 𝐿 Linear form associated with CEM

∥ · ∥2

𝜁 ∗ A norm associated withH ℒ Lebesgue measure

𝐺ℎ The data term of the FE approximation of CEM 𝑎 Typical regularization parameter

𝑁𝑛 The number of nodes in the FE mesh 𝑁𝑒 The number of nodes in the FE mesh

𝜙 A linear FE basis function 𝛿 The indicator function

𝑓 ∗ The convex conjugate of 𝑓 prox The proximal mapping

𝑡𝑖 , 𝑠𝑖 The step parameters of the NLPDPS 𝑤, 𝛽 The step parameters of the RIPGN

2 basic properties

In this section, we study basic properties of the EIT data term 𝐺 given by (1.4), as well as the corre-

sponding approximation problems (1.7). Specifically, we show that 𝐺 is continuous in the topology

of convergence in measure, as long as 0 < 𝛾𝑚 ≤ 𝛾𝑀 < ∞ almost everywhere. This readily follows

from the continuity of each of the individual the currents 𝐼 𝑗 , ( 𝑗 = 1, . . . , 𝑃2). Without loss of generality,

we therefore concentrate on 𝑃2 = 1, and for brevity drop the measurement setup indicator 𝑗 from the

potentials and currents 𝑢 𝑗 , 𝐼 𝑗 , and𝑈 𝑗
.

2.1 the complete electrode model

We work with the weak formulation of the PDE (1.2). Given a domain Ω ⊂ ℝ𝑁
, we define the spaceH

of weak solutions, consisting of both the inner potential 𝑢 and the currents 𝐼 , as

H(Ω) := 𝐻 1(Ω) ⊕ ℝ𝑃1 .

We equip this space with the norm

(2.1) ∥(𝑣,𝑉 )∥2

H := ∥𝑣 ∥2

𝐻 1
+ ∥𝑉 ∥2

2
((𝑣,𝑉 ) ∈ H) ,

where ∥ · ∥𝐻 1 is the natural norm of the Hilbert space 𝐻 1(Ω). Now, following [46], see also [23], a weak
solution (𝑢, 𝐼 ) to (1.2) is characterized by

(2.2) 𝐵𝛾 ((𝑢, 𝐼 ), (𝑣,𝑉 )) = 𝐿(𝑣,𝑉 ), ((𝑣,𝑉 ) ∈ H) ,

where

(2.3) 𝐵𝛾 ((𝑢, 𝐼 ), (𝑣,𝑉 )) =
∫
Ω
𝛾 ⟨∇𝑢,∇𝑣⟩ 𝑑𝑥 +

𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑢𝑣𝑑𝑆

−
𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑢𝑉𝑘𝑑𝑆 +
𝑃1∑︁
𝑘

𝐼𝑘𝑉𝑘 ,
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and

𝐿(𝑣,𝑉 ) =
𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑈𝑘 (𝑣 −𝑉𝑘 ) 𝑑𝑆.

The well-posedness of this formulation has been shown in [41]; see also [23]. Here and throughout, we

write 𝑑𝑆 for integration on the boundary of the relevant domain with respect to the (𝑁 −1)-dimensional

Hausdorff measure. Likewise 𝑑𝑥 denotes integration with respect to the 𝑁 -dimensional Lebesgue

measure ℒ.

In the next subsection, we will analyze under what conditions the currents 𝐼 obtained from (2.2) are

continuous in measure. For this, it will be convenient to define some additional norms besides (2.1).

For 𝜁 = (𝜁1, . . . , 𝜁𝑃1
) ∈ (0,∞), we define

∥(𝑣,𝑉 )∥2

𝜁 ∗ := ∥∇𝑣 ∥2

2
+ ∥𝑣 ∥2

𝜕Ω𝑒𝜁
+ ∥𝑉 ∥2

2
, with ∥𝑣 ∥2

𝜕Ω𝑒𝜁
:=

𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑣2𝑑𝑆

with

∥∇𝑣 ∥2

2
:=

∫
Ω
|∇𝑣 |2 𝑑𝑥 :=

∫
Ω
⟨∇𝑣,∇𝑣⟩ 𝑑𝑥 .

Here | · | is to be understood as the spatial Euclidean norm at a point 𝑥 in the integration domain. If Ω
has Lipschitz boundary, then for some Λ, 𝜆 > 0, we have (compare [23])

(2.4) Λ∥(𝑣,𝑉 )∥𝜁 ∗ ≥ ∥(𝑣,𝑉 )∥H ≥ 𝜆∥(𝑣,𝑉 )∥𝜁 ∗ ((𝑣,𝑉 ) ∈ H) ,

We denote solutions to the weak formulation (2.2) of the EIT model by 𝑤 = (𝑢, 𝐼 ) and use the

inequalities

(2.5) ∥∇𝑢∥2 ≤ ∥𝑤 ∥𝜁 ∗ and ∥𝐼 ∥2 ≤ ∥𝑤 ∥𝜁 ∗

that follow from the definition of ∥𝑤 ∥2

𝜁 ∗.

2.2 continuity of the conductivity-to-current maps

Let (Ω, Σ, 𝜇) be a measure space, where Σ is 𝜎-algebra on Ω, and 𝜇 a measure on this 𝜎-algebra. We

say that 𝛾𝑘 → 𝛾 in measure if for every 𝜖 > 0,

lim

𝑘→∞
𝜇 ({𝑥 ∈ Ω | |𝛾 (𝑥) − 𝛾𝑘 (𝑥) | ≥ 𝜖}) = 0.

We generally take 𝜇 = ℒ the Lebesgue measure on Ω ⊂ ℝ𝑁
and Σ the Borel-measurable sets without

explicitly stating this. For 𝛾𝑀 > 𝛾𝑚 > 0, we write

[𝛾𝑚, 𝛾𝑀 ] := {𝛾 ∈ 𝐿∞(Ω) | 𝛾𝑚 ≤ 𝛾 ≤ 𝛾𝑀 a.e.},

where the “almost everywhere” or “a.e.” is also with respect to the Lebesgue measure on Ω. Then
assuming that 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ], we will show that the electrical currents 𝐼 (𝛾𝑘 ) ∈ ℝ𝑃1

converge to 𝐼 (𝛾) if
𝛾𝑘 → 𝛾 in (Lebesgue) measure. We initially work assuming the scaling condition 𝜁 −1

𝑘
𝑆 (𝜕Ω𝑒𝑘 ) ≤ 1, but

remove it at the end. We start by showing the coercivity of 𝐵 with respect to ∥ · ∥𝜁 ∗
Lemma 2.1. Suppose 0 < 𝛾𝑚 ≤ 𝛾 ∈ 𝐿∞(Ω) and 𝜁 −1

𝑘
𝑆 (𝜕Ω𝑒𝑘 ) ≤ 1 for all 𝑘 = 1, . . . , 𝑃1. Then there exists

𝐶1 > 0 independent of 𝛾 such that

(2.6) 𝐵𝛾 ((𝑣,𝑉 ), (𝑣,𝑉 )) ≥ 𝐶1∥(𝑣,𝑉 )∥2

𝜁 ∗ for all (𝑣,𝑉 ) ∈ H .
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Proof. Young’s inequality and 𝜁 −1

𝑘
𝑆 (𝜕Ω𝑒𝑘 ) ≤ 1 give

1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑣𝑉𝑘 𝑑𝑆 ≤ 1

2𝜁𝑘

∫
𝜕Ω𝑒𝑘

(
𝑣2 +𝑉 2

𝑘

)
𝑑𝑆 ≤ 1

2

(
1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑣2 𝑑𝑆 +𝑉 2

𝑘

)
.

Thus, taking 𝐶1 =
1

2
min {1, 𝛾𝑚}, we have

𝐵𝛾 ((𝑣,𝑉 ), (𝑣,𝑉 )) =
∫
Ω
𝛾 ⟨∇𝑣,∇𝑣⟩ 𝑑𝑥 +

𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑣2 𝑑𝑆 −
𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑣𝑉𝑘 𝑑𝑆 +
𝑃1∑︁
𝑘=1

𝑉 2

𝑘

≥ 𝐶1

(∫
Ω
⟨∇𝑣,∇𝑣⟩ 𝑑𝑥 +

𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑣2 𝑑𝑆 +
𝑃1∑︁
𝑘=1

𝑉 2

𝑘

)
= 𝐶1∥(𝑣,𝑉 )∥2

𝜁 ∗. □

We can now establish the well-posedness of (2.2).

Lemma 2.2. Suppose Ω ⊂ ℝ𝑁 has Lipschitz boundary, 𝛾𝑚 > 0, and 0 < 𝜁 −1

𝑘
𝑆 (𝜕Ω𝑒𝑘 ) ≤ 1 for all

𝑘 = 1, . . . , 𝑃1. Then for any 𝛾 ∈ 𝐿∞(Ω) with 𝛾 ≥ 𝛾𝑚 (a.e.), (2.2) has a unique solution𝑤 = (𝑢, 𝐼 ).

Proof. The equivalence (2.4) together with Lemma 2.1 establish the coercivity of 𝐵. As 𝐵 and 𝐿 are

clearly continuous by the same (2.4), the claim follows from the Lax–Milgram theorem. □

In the next lemma, we show that ∥∇𝑢∥2 for a solution (𝑢, 𝐼 ) of (2.2) has an upper bound independent

of the conductivity 𝛾 .

Lemma 2.3. Suppose 0 < 𝛾𝑚 ≤ 𝛾 ∈ 𝐿∞(Ω). a.e., Ω ⊂ ℝ𝑁 is a bounded Lipschitz domain, and
𝜁 −1

𝑘
𝑆 (𝜕Ω𝑒𝑘 ) ≤ 1 for all 𝑘 = 1, . . . , 𝑃1. Then there exists a constant 𝐶2 > 0, independent of 𝛾 , such

that any solution (𝑢, 𝐼 ) ∈ H of (2.2) satisfies

(2.7) ∥(𝑢, 𝐼 )∥𝜁 ∗ ≤ 𝐶2∥𝑈 ∥2,

Moreover, both ∥∇𝑢∥2, ∥𝐼 ∥2 ≤ 𝐶2∥𝑈 ∥2.

Proof. The assumption 𝜁 −1

𝑘
𝑆 (𝜕Ω𝑒𝑘 ) ≤ 1 for all 𝑘 = 1, . . . , 𝑃1, Young’s and Hölder’s inequalities give

(2.8)
1

𝜁𝑘

(∫
𝜕Ω𝑒𝑘

(𝑢 − 𝐼𝑘 ) 𝑑𝑆
)

2

≤ 2

𝜁𝑘

(∫
𝜕Ω𝑒𝑘

𝑢2 𝑑𝑆 + 𝐼 2

𝑘
𝑆 (𝜕Ω𝑒𝑘 )

)
≤ 2

(
1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑢2 𝑑𝑆 + 𝐼 2

𝑘

)
.

Now letting (𝑢, 𝐼 ) be a solution to (2.2), as exists by Lemma 2.2, and using Lemma 2.1 and (2.8) we

obtain

𝐶1∥(𝑢, 𝐼 )∥2

𝜁 ∗ ≤ 𝐵𝛾 ((𝑢, 𝐼 ), (𝑢, 𝐼 )) = 𝐿(𝑢, 𝐼 ) =
𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑈𝑘 (𝑢 − 𝐼𝑘 ) 𝑑𝑆

≤ ∥𝑈 ∥2

√√√
𝑃1∑︁
𝑘=1

1

𝜁𝑘

(∫
𝜕Ω𝑒𝑘

(𝑢 − 𝐼𝑘 )𝑑𝑆
)

2

≤ ∥𝑈 ∥2

√√√
𝑃1∑︁
𝑘=1

2

(
1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑢2 𝑑𝑆 + 𝐼 2

𝑘

)
.

Finally using 0 ≤
∫
Ω
∇𝑢 · ∇𝑢𝑑𝑥 gives

∥𝑈 ∥2

√√√
𝑃1∑︁
𝑘=1

2

(
1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑢2 𝑑𝑆 + 𝐼 2

𝑘

)
≤ ∥𝑈 ∥2

√√√
2

(∫
Ω
∇𝑢 · ∇𝑢𝑑𝑥 +

𝑃1∑︁
𝑘=1

(
1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑢2 𝑑𝑆 + 𝐼 2

𝑘

))
=
√

2∥𝑈 ∥2∥(𝑢, 𝐼 )∥𝜁 ∗.

Altogether, therefore we obtain (2.7) for 𝐶2 =
√

2

𝐶1

. The inequalities for ∥∇𝑢∥2 clearly follow from

(2.5). □
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Before showing the continuity of the electrical currents 𝐼 in measure, we establish twomore technical

auxiliary results.

Lemma 2.4. Suppose that 𝜁 −1

𝑘
𝑆 (𝜕Ω𝑒𝑘 ) ≤ 1 for all 𝑘 = 1, . . . , 𝑃1 and that Ω ⊂ ℝ𝑁 is a bounded Lipschitz

domain. Given solutions (𝑢1, 𝐼1), (𝑢2, 𝐼2) ∈ H of (2.2) for the respective conductivities 𝛾1 and 𝛾2, there
exists 𝐶3 > 0 independent of (𝑢1, 𝐼1), (𝑢2, 𝐼2) such that

(2.9)

����∫
Ω
𝛾 ⟨∇𝑢2,∇(𝑢2 − 𝑢1)⟩ 𝑑𝑥

���� ≤ 𝐶3∥𝛾 ∥∞ for all 𝛾 ∈ 𝐿∞(Ω).

Proof. Let (𝑢1, 𝐼1), (𝑢2,𝑈2) ∈ H (Ω). For vectors ∇𝑢1(𝑥),∇𝑢2(𝑥) ∈ ℝ𝑁
, the Cauchy-Schwartz gives

|⟨∇𝑢1(𝑥),∇𝑢2(𝑥)⟩| ≤ |∇𝑢1(𝑥) | |∇𝑢2(𝑥) |, and Young’s inequality gives |∇𝑢1(𝑥) | |∇𝑢2(𝑥) | ≤ 1

2
( |∇𝑢1(𝑥) |2+

|∇𝑢2(𝑥) |2) ≤ |∇𝑢1(𝑥) |2+|∇𝑢2(𝑥) |2. Thus, the triangle inequality and Lemma 2.3 yield for𝐶3 := 3𝐶2

2
∥𝑈 ∥2

2

that

(2.10)

����∫
Ω
𝛾 ⟨∇𝑢2,∇(𝑢2 − 𝑢1)⟩ 𝑑𝑥

���� ≤ ∥𝛾 ∥∞
(∫

Ω
|⟨∇𝑢2,∇(𝑢2 − 𝑢1)⟩| 𝑑𝑥

)
≤ ∥𝛾 ∥∞

(∫
Ω
|∇𝑢2 |2 + |∇𝑢2 |2 + |∇𝑢1 |2 𝑑𝑥

)
≤ ∥𝛾 ∥∞3𝐶2

2
∥𝑈 ∥2

2
= 𝐶3∥𝛾 ∥∞. □

Lemma 2.5. Suppose 𝑓 , 𝑔𝑘 : Ω → ℝ𝑁 are such that |𝑓 | ∈ 𝐿2(Ω) and {|𝑔𝑘 |}𝑘∈ℕ is bounded in 𝐿2. Let
Ω𝑘 ⊂ Ω is a sequence of measurable sets such that lim𝑘→∞ℒ(Ω𝑘 ) = 0. Then lim𝑘→∞

∫
Ω𝑘

|⟨𝑓 , 𝑔𝑘⟩| 𝑑𝑥 = 0.

Proof. Since {|𝑔𝑘 |}𝑘∈ℕ is bounded in 𝐿2
, there exists 𝐶 > 0 such that

∫
Ω
|𝑔𝑘 |2 𝑑𝑥 ≤ 𝐶 . Now write

𝜒Ω𝑘
for the {0, 1}-valued characteristic function of Ω𝑘 . Similarly to the proof of Lemma 2.4, the

Cauchy-Schwartz inequality gives |⟨𝑓 , 𝑔𝑘⟩| ≤
√︁
|𝑓 |2 |𝑔𝑘 |2. Further, Hölder’s inequality and the fact that∫

Ω𝑘
|𝑓 | |𝑔𝑘 | 𝑑𝑥 =

∫
Ω
𝜒Ω𝑘

|𝑓 | |𝑔𝑘 | 𝑑𝑥 gives∫
Ω𝑘

|⟨𝑓 , 𝑔𝑘⟩| 𝑑𝑥 ≤
∫
Ω

√︃
( |𝑓 |𝜒Ω𝑘

)2 |𝑔𝑘 |2 𝑑𝑥

≤

√︄∫
Ω
( |𝑓 |𝜒Ω𝑘

)2 𝑑𝑥

√︄∫
Ω
|𝑔𝑘 |2 𝑑𝑥 ≤

√︄∫
Ω𝑘

|𝑓 |2 𝑑𝑥
√
𝐶.

It is well-known (see Corollary 16.9 in [24]) that given a Lebesgue integrable function 𝑓 : Ω → [−∞,∞]
and a sequence of measurable sets Ω𝑘 ⊂ Ω such that lim𝑘→∞ℒ(Ω𝑘 ) = 0, then lim𝑘→∞

∫
Ω𝑘
𝑓 𝑑𝑥 = 0.

Now since lim𝑘→∞ℒ(Ω𝑘 ) = 0, the conditions of this result are satisfied for |𝑓 |2 and Ω𝑘 , and thus∫
Ω𝑘

|𝑓 |2 𝑑𝑥 → 0 as 𝑘 → ∞, meaning that also

√︃∫
Ω𝑘

|𝑓 |2 𝑑𝑥
√
𝐶 → 0 yielding

0 ≤ lim

𝑘→∞

∫
Ω𝑘

|⟨𝑓 , 𝑔𝑘⟩| 𝑑𝑥 ≤ lim

𝑘→∞

√︄∫
Ω𝑘

|𝑓 |2 𝑑𝑥
√
𝐶 = 0.

This finishes the proof. □

We are now ready to show the continuity of 𝐼 in measure.

Lemma 2.6. Suppose that 𝜁 −1

𝑘
𝑆 (𝜕Ω𝑒𝑘 ) ≤ 1 for all 𝑘 = 1, . . . , 𝑃1 and Ω ⊂ ℝ𝑁 is a bounded Lipschitz domain.

Let 𝛾,𝛾𝑘 ∈ [𝛾𝑚, 𝛾𝑀 ] be such that 𝛾𝑘 → 𝛾 in (Lebesgue) measure. Then 𝐼 (𝛾𝑘 ) → 𝐼 (𝛾).
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Proof. Let𝑤 := (𝑢, 𝐼 ) and𝑤𝑘 := (𝑢𝑘 , 𝐼𝑘 ) be the solutions to (2.2) for the respective conductivities 𝛾 and

𝛾𝑘 , as exist by Lemma 2.2. Then

(2.11) 𝐵𝛾𝑘 (𝑤 −𝑤𝑘 ,𝑤 −𝑤𝑘 ) = 𝐵𝛾𝑘 (𝑤,𝑤 −𝑤𝑘 ) − 𝐵𝛾𝑘 (𝑤𝑘 ,𝑤 −𝑤𝑘 )
= 𝐵𝛾𝑘 (𝑤,𝑤 −𝑤𝑘 ) − 𝐿(𝑤 −𝑤𝑘 )
= 𝐵𝛾𝑘 (𝑤,𝑤 −𝑤𝑘 ) − 𝐵𝛾 (𝑤,𝑤 −𝑤𝑘 )

=

∫
Ω
(𝛾𝑘 − 𝛾)⟨∇𝑢,∇(𝑢 − 𝑢𝑘 )⟩ 𝑑𝑥 .

By Lemma 2.1, (2.5), and (2.11),

(2.12) ∥𝐼 (𝛾) − 𝐼 (𝛾𝑘 )∥2

2
≤ ∥𝑤𝑘 −𝑤 ∥2

𝜁 ∗

≤ 𝐶−1

1
𝐵𝛾𝑘 (𝑤 −𝑤𝑘 ,𝑤 −𝑤𝑘 ) ≤ 𝐶−1

1

∫
Ω
|𝛾𝑘 − 𝛾 | |⟨∇𝑢,∇(𝑢 − 𝑢𝑘 )⟩| 𝑑𝑥 .

Let

Ω<
𝑘

:= {𝑥 ∈ Ω | |𝛾𝑘 − 𝛾 | < 𝜖0} and Ω≥
𝑘

:= {𝑥 ∈ Ω | |𝛾𝑘 − 𝛾 | ≥ 𝜖0}.

Since ∥𝛾𝑘 − 𝛾 ∥∞ < 𝜖0 in Ω≥
𝑘
, by Lemma 2.4,

(2.13) 𝐶−1

1

∫
Ω<
𝑘

|𝛾𝑘 − 𝛾 | |⟨∇𝑢,∇(𝑢 − 𝑢𝑘 )⟩| 𝑑𝑥 < 𝐶−1

1
𝐶3𝜖0.

Further, in the set Ω≥
𝑘
, using triangle inequality and 𝛾,𝛾𝑘 ∈ [𝛾𝑚, 𝛾𝑀 ] a.e., we have that

(2.14) 𝐶−1

1

∫
Ω≥
𝑘

|𝛾𝑘 − 𝛾 | |⟨∇𝑢,∇(𝑢 − 𝑢𝑘 )⟩| 𝑑𝑥 ≤ 𝐶−1

1
|𝛾𝑀 − 𝛾𝑚 |

∫
Ω≥
𝑘

|⟨∇𝑢,∇(𝑢 − 𝑢𝑘 )⟩| 𝑑𝑥 .

Since 𝛾𝑘 → 𝛾 in measure, ℒ(Ω≥
𝑘
) → 0 as 𝑘 → ∞. Let then 𝑓 := 𝐶−1

1
|𝛾𝑀 − 𝛾𝑚 |∇𝑢 and 𝑔𝑘 := ∇(𝑢 − 𝑢𝑘 ).

Clearly 𝑓 ∈ 𝐿2(Ω) (since 𝑢 ∈ 𝐻 1(Ω)), moreover by triangle inequality, Hölder’s inequality, and

Lemma 2.3, we have that

|𝑔𝑘 | ≤ 2𝐶−1

1
|𝛾𝑀 − 𝛾𝑚 |ℒ(Ω)

√︁
𝐶2∥𝑈 ∥2,

Clearly the conditions of Lemma 2.5 are satisfied for ℒ(Ω≥
𝑘
), 𝑓 , and {𝑔𝑘 }𝑘∈ℕ meaning that for every

𝜖1 > 0 there exists a 𝑘1 so that𝐶
−1

1
|𝛾𝑀 −𝛾𝑚 |

∫
Ω≥
𝑘

|⟨∇𝑢,∇(𝑢 −𝑢𝑘 )⟩| 𝑑𝑥 < 𝜖1 when 𝑘 ≥ 𝑘1. Let 𝜖 > 0. Take

𝜖0 = 𝐶1𝜖
2/(2𝐶3), 𝜖1 = 𝜖

2/2 and let 𝑘 to be large enough so that 𝑘 ≥ 𝑘1. Combining (2.12)–(2.14)

∥𝐼 (𝛾) − 𝐼 (𝛾𝑘 )∥2

2
≤ ∥𝑤𝑘 −𝑤 ∥2

𝜁 ∗

≤ 𝐶−1

1

����∫
𝑀

(𝛾𝑘 − 𝛾)⟨∇𝑢,∇(𝑢 − 𝑢𝑘 )⟩ 𝑑𝑥
���� < 𝐶−1

1
𝐶3𝜖0 + 𝜖1 ≤ 𝜖2.

Since 𝜖 > 0 was arbitrary, we deduce, as claimed, that 𝐼 (𝛾𝑘 ) → 𝐼 (𝛾). □

It is easy to see that Lemma 2.1 does not hold in general; for example, take 𝜁 −1

𝑘
= 4,ℒ(𝜕Ω𝑒𝑘 ), 𝑣 = 1/2,

and 𝑉𝑘 = 1. Next, however, we will show that whenever we are concerned with solutions to (2.2),

the condition 𝜁 −1

𝑘
𝑆 (𝜕Ω𝑒𝑘 ) ≤ 1 is without loss of generality, as every solution in H(Ω) corresponds

to a solution inH(Ω̃) on a domain Ω̃ for which this condition holds. Next we use this argument to

generalize the results of Lemma 2.6. We note that the same argument can be also used to generalize

Lemmas 2.3 and 2.4 but doing so is not necessary for the continuity proof.

Theorem 2.7. Suppose that Ω ⊂ ℝ𝑁 is a bounded Lipschitz domain. Let 𝛾,𝛾𝑘 ∈ [𝛾𝑚, 𝛾𝑀 ] be such that
𝛾𝑘 → 𝛾 in (Lebesgue) measure. Then 𝐼 (𝛾𝑘 ) → 𝐼 (𝛾).
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Proof. Take Ω̃ = {𝑐𝑥 | 𝑥 ∈ Ω} for 𝑐 := ( ˇ𝜁 /𝑆)1/(𝑁−1)
with

ˇ𝜁 := min𝑘 𝜁𝑘 and 𝑆 := max𝑘 ℋ
N-1(𝜕Ω𝑒𝑘 ) .

Functions in 𝑢 ∈ 𝐻 1(Ω) are in one-to-one correspondence with functions 𝑢̃ ∈ 𝐻 1(Ω̃) through
the transformation 𝑢̃ = 𝑢 (𝑐−1𝑥), i.e., 𝑢̃ (𝑐𝑥) = 𝑢 (𝑥). So suppose (𝑢, 𝐼 ) solves (2.2) on H(Ω) for 𝛾 and

let 𝛾 (𝑥) = 𝑐𝛾 (𝑐−1𝑥). We will show that (𝑢̃, ˜𝐼 ) := (𝑢̃, 𝑐𝑁−1𝐼 ) ∈ H (Ω) solves (2.2) on H(Ω̃) for 𝛾 . Let
(𝑣,𝑉 ) ∈ H (Ω̃) be an arbitrary test function onH(Ω̃) and define 𝑣 (𝑥) = 𝑣 (𝑐−1𝑥) so that (𝑣,𝑉 ) ∈ H (Ω).
A change of variables shows that

𝐵𝛾 ((𝑢̃, ˜𝐼 ), (𝑣,𝑉 )) =
∫
Ω̃
𝛾 ⟨∇𝑢̃,∇𝑣⟩𝑑𝑥 +

𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω̃𝑒𝑘

𝑢̃𝑣𝑑 ˜𝑆 −
𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω̃𝑒𝑘

𝑢̃𝑉𝑘𝑑 ˜𝑆 +
𝑃1∑︁
𝑘

˜𝐼𝑘𝑉𝑘

=

∫
Ω
𝑐𝛾 ⟨𝑐−1∇𝑢, 𝑐−1∇𝑣⟩𝑐𝑁 𝑑𝑥 +

𝑃1∑︁
𝑘=1

𝑐𝑁 −1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑢𝑣 𝑑𝑆

−
𝑃1∑︁
𝑘=1

𝑐𝑁 −1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑢𝑉𝑘 𝑑𝑆 +
𝑃1∑︁
𝑘

𝑐𝑁−1𝐼𝑘𝑉𝑘

= 𝑐𝑁−1𝐵𝛾 ((𝑢, 𝐼 ), (𝑣,𝑉 ))
whereas

𝐿(𝑣,𝑉 ) =
𝑃1∑︁
𝑘=1

1

𝜁𝑘

∫
𝜕Ω̃𝑒𝑘

𝑈𝑘 (𝑣 −𝑉𝑘 )𝑑 ˜𝑆 =

𝑃1∑︁
𝑘=1

𝑐𝑁 −1

𝜁𝑘

∫
𝜕Ω𝑒𝑘

𝑈𝑘 (𝑣 −𝑉𝑘 ) 𝑑𝑆 = 𝑐𝑁−1𝐿(𝑣,𝑉 ) .

Since (𝑢, 𝐼 ) solves (2.2), 𝐵𝛾 ((𝑢, 𝐼 ), (𝑣,𝑉 )) = 𝐿(𝑣,𝑉 ) for any (𝑣,𝑉 ) ∈ H (Ω). Particularly this holds to

our choice (𝑣,𝑉 ) showing that 𝐵𝛾 ((𝑢̃, ˜𝐼 ), (𝑣,𝑉 )) = 𝐿(𝑣,𝑉 ). Since (𝑣,𝑉 ) ∈ H (Ω̃) was arbitrary, this
proves that (𝑢̃, ˜𝐼 ) solves (2.2) on H(Ω̃) for 𝛾 .
We have

𝜁 −1

𝑘
˜𝜉 (𝜕Ω̃𝑒𝑘 ) = 𝑐1−𝑁 𝜁 −1

𝑘
ℋ

N-1(𝜕Ω𝑒𝑘 )

≤ 𝑐1−𝑁 𝜁 −1

𝑚 ℋ
N-1(𝜕Ω𝑒𝑀 ) =

ˇ𝜁

𝑆
(min

𝑘
𝜁𝑘 )−1

𝑚 max

𝑘
ℋ

N-1(𝜕Ω𝑒𝑘 ) = 1.

Therefore Ω̃ satisfies the assumption 𝜁 −1

𝑘
˜𝜉 (𝜕Ω̃𝑒𝑘 ) ≤ 1 of Lemma 2.6 for all 𝑘 . Now, given that 𝛾𝑘 → 𝛾

in measure with 𝛾𝑘 , 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ], we have 𝑐𝛾𝑘 , 𝑐𝛾 ∈ [𝑐𝛾𝑚, 𝑐𝛾𝑀 ] and 𝑐𝛾𝑘 → 𝑐𝛾 in measure. Since

𝜁 −1

𝑘
˜𝜉 (𝜕Ω̃𝑒𝑘 ) ≤ 1 holds for all 𝑘 , Lemma 2.6 shows that 𝑐𝑁−1𝐼 (𝛾𝑘 ) → 𝑐𝑁−1𝐼 (𝛾), establishing the claim.

The well-posedness of (2.2) on Ω is established by instead supposing that (𝑢̃, 𝐼 ) solves (2.2) on H(Ω̃)
for 𝛾 and letting (𝑣,𝑉 ) ∈ H (Ω). □

Remark 2.8. It is a consequence of Theorem 2.7 that if 𝛾,𝛾𝑘 ∈ [𝛾𝑚, 𝛾𝑀 ], then 𝐼 is also continuous w.r.t.

∥ · ∥𝑝 , 1 ≤ 𝑝 ≤ ∞, since 𝐿𝑝 convergence implies convergence in measure (through Tchebychev’s

inequality).

3 approximation of the mumford–shah functional

In this section, we analyze the approximation (1.6) of the M-S regularizer (1.5) in the EIT reconstruction

problem. Recall that the data term reads

(3.1) 𝐺 (𝛾) := 1

2𝑎
∥𝑊 (𝐼 (𝛾) −ℐ)∥2

2
.

With 𝐹 given by (1.5), our goal is to show the convergence of solutions of the approximate problems

(3.2) min

𝛾,𝑧

¯𝐹𝑘 (𝛾, 𝑧) +𝐺 (𝛾), (𝑘 > 0)

to solutions of the target problem

(3.3) min

𝛾
𝐹 (𝛾) +𝐺 (𝛾) .

Jauhiainen, Valkonen, and Seppänen Mumford–Shah regularization in electrical impedance . . .
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3.1 setting up the approximation

We cannot use the results of Ambrosio and Tortorelli from [2] directly, since their work, in parts,

depends on the data fidelity term 𝐺 being a simple power-of-norm distance with no forward operator.

Further, [3], while amenable to the treatment of general smooth fidelities, doesn’t significantly help us,

as it still cannot directly handle the constraint 𝛾 ≥ 𝛾𝑚 > 0. We will, however, base our work on [2] as

far as possible, and adapt the rest. To do so, we replace the domain

𝐷𝑘,𝑁 (Ω) :=
{
(𝛾, 𝑧) ∈ ℬ(Ω) ×ℬ(Ω) | 𝜙 ◦ 𝑧 ∈ 𝐻 1(Ω),Ψ(𝑛 ∧ 𝛾 ∨ −𝑛, 𝑧) ∈ 𝐻 1(Ω) ∀𝑛 ∈ ℕ

}
,

where Ω ⊂ ℝ𝑁
, 𝜙 (𝑡) :=

∫
1

0
(1 − 𝑠2)𝑘𝑑𝑠 , and Ψ(𝑠, 𝑡) := 𝑠 (1 − 𝑡)ℎ+1

, of the approximating functionals 𝐹𝑘
of (1.6) by

¯𝐷𝑘,𝑁 (Ω) := {(𝛾, 𝑧) ∈ 𝐷𝑘,𝑁 (Ω) | 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ]}.
We also replace 𝐹𝑘 by the slightly modified

(3.4)
¯𝐹𝑘 (𝛾, 𝑧) :=

{∫
Ω
( |∇𝛾 |2 + |∇𝑧 |2) (1 − 𝑧2)2𝑘 + 1

4
(𝛼𝑘𝑧)2 𝑑𝑥, (𝛾, 𝑧) ∈ ¯𝐷𝑘 (Ω), 𝑧 ≤ 1 − 𝜖𝑘 ,

∞, otherwise,

where 𝑘 ∈ ℕ and 𝜖𝑘 > 0. This differes from 𝐹𝑘 of [2] only by the bounds 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ] and 𝑧 ≤ 1 − 𝜖𝑘 ,
and reduces to that when 𝛾 ∈ [𝛾𝑚, 𝛾𝑚] and 𝜖𝑘 = 0. These bounds are needed to ensure the existence

and boundedness of solutions to (3.2) with 𝐺 as in (3.1).

Since we need to restrict the conductivities 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ], we replace the space GSBV(Ω) of general-
ized functions of bounded variation, used in [2] by SBV(Ω), the space of special functions of bounded
variation, consisting of all functions of bounded variation 𝛾 ∈ BV(Ω) with zero Cantor part in the

distributional derivative. Indeed, GSBV(Ω) ∩ [𝛾𝑚, 𝛾𝑀 ] = SBV(Ω) ∩ [𝛾𝑚, 𝛾𝑀 ]. We refer to [1] for detailed

definitions of these spaces.

To expand 𝐹 of (1.5) to the space (𝛾, 𝑧) ∈ ℬ(Ω) ×ℬ(Ω), using (superfluous) control 𝑧 we define

(3.5) 𝐹 (𝛾, 𝑧) :=

{∫
Ω
|∇𝛾 |2 𝑑𝑥 + 𝛼ℋ𝑁−1(𝑆𝛾 ), 𝛾 ∈ 𝑆𝐵𝑉 (Ω), 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ], 𝑧 = 0

+∞, otherwise.

Before proving the Γ-convergence of ¯𝐹𝑘 +𝐺𝑘 to 𝐹 +𝐺 , we show that the approximating problems

have solutions.

Theorem 3.1. Suppose that Ω ⊂ ℝ𝑁 is a bounded Lipschitz domain. Fix 𝑘 ∈ ℕ and 0 < 𝜖𝑘 < 1. Let ¯𝐹𝑘 be
given by (3.4) and 𝐺 by (3.1). Then (3.2) has a solution in ¯𝐷𝑘,𝑁 (Ω).

Proof. Let 𝐽 (𝛾, 𝑧) := 𝐺 (𝛾) + ¯𝐹𝑘 (𝛾, 𝑧) and denote the 𝐺 (𝛾𝑚)-sublevel set of 𝐽 by

𝐾 :=
{
(𝛾, 𝑧) ∈ 𝐷𝑘,𝑁 (Ω) | 𝐽 (𝛾, 𝑧) ≤ 𝐺 (𝛾𝑚)

}
.

Then 𝐾 is non-empty since 𝐺 (𝛾𝑚) + 𝐹 (𝛾𝑚, 0) = 𝐺 (𝛾𝑚), i.e. (𝛾𝑚, 0) ∈ 𝐾 , and inf (𝛾,𝑧 ) ∈𝐾 𝐽 (𝛾, 𝑧) =

inf (𝛾,𝑧 ) ∈𝐷𝑘,𝑁 (Ω) 𝐽 (𝛾, 𝑧).
Let (𝛾, 𝑧) ∈ 𝐾 . Since𝐺 (𝛾) + ¯𝐹𝑘 (𝛾, 𝑧) ≤ 𝐺 (𝛾𝑚) < ∞, 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ] and 𝑧 ∈ [0, 1−𝜖𝑘 ]. Further, we have∫
Ω
( |∇𝛾 |2 + |∇𝑧 |2)𝜖2𝑘

𝑘
𝑑𝑥 =

∫
Ω
( |∇𝛾 |2 + |∇𝑧 |2) ((2 − 1)𝜖𝑘 )2𝑘 𝑑𝑥 ≤

∫
Ω
( |∇𝛾 |2 + |∇𝑧 |2) ((2 − 𝜖𝑘 )𝜖𝑘 )2𝑘 𝑑𝑥

=

∫
Ω
( |∇𝛾 |2 + |∇𝑧 |2) (1 − (1 − 𝜖𝑘 )2)2𝑘 𝑑𝑥 ≤

∫
Ω
( |∇𝛾 |2 + |∇𝑧 |2) (1 − 𝑧2)2𝑘 𝑑𝑥,

Due to the definition of 𝐾 , it follows∫
Ω
( |∇𝛾 |2 + |∇𝑧 |2) 𝑑𝑥 ≤ 𝜖−2𝑘

𝑘
(𝐹𝑘 (𝛾, 𝑧) +𝐺 (𝛾)) ≤ 𝐺 (𝛾𝑚)𝜖−2𝑘

𝑘
,
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implying that both 𝛾 and 𝑧 are bounded in 𝐻 1(Ω).
Let {(𝛾𝑖 , 𝑧𝑖)}𝑖∈ℕ ⊂ 𝐾 , be a minimizing sequence for 𝐽 , satisfying

𝐽 (𝛾𝑖 , 𝑧𝑖) − 1/𝑖 ≤ inf

(𝛾,𝑧 ) ∈𝐷𝑘,𝑁 (Ω)
𝐽 (𝛾, 𝑧) :=𝑚 for all 𝑖 ∈ ℕ.

Since we have shown both {𝛾𝑖}𝑖∈ℕ and {𝑧𝑖}𝑖∈ℕ to be bounded in𝐻 1(Ω), {(𝛾𝑖 , 𝑧𝑖)}𝑖∈ℕ has a subsequence,

unrelabelled, convergent to some (𝛾, 𝑧) ∈ 𝐻 1(Ω) × 𝐻 1(Ω) a.e. and consequently also in measure [24,

Theorem 17.15]. The (almost everywhere) bounds 𝛾𝑖 ∈ [𝛾𝑚, 𝛾𝑀 ] and 𝑧𝑖 ∈ [0, 1 − 𝜖𝑖] ensure 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ]
and 𝑧 ∈ [0, 1 − 𝜖𝑘 ] (almost everywhere). Further, since 𝑧 ∈ 𝐻 1(Ω), 𝜙 (𝑠) =

∫ 𝑡
0
(1 − 𝑠2)𝑘 ∈ 𝐶1( [0, 1]),

𝜙 ′ ∈ 𝐿∞( [0, 1]), and 𝜙 (0) = 0 by [31, Lemma 1.25] 𝑓 ◦ 𝑧 ∈ 𝐻 1(Ω) so that (𝛾, 𝑧) ∈ ¯𝐷𝑘,𝑁 (Ω).
SinceΩ ⊂ ℝ𝑁

is a bounded Lipschitz domain,𝛾,𝛾𝑖 ∈ [𝛾𝑚, 𝛾𝑀 ], and𝛾𝑖 → 𝛾 in measure, by Theorem 2.7

𝐺 (𝛾𝑖) → 𝐺 (𝛾). Further, 𝛾,𝛾𝑖 ∈ [𝛾𝑚, 𝛾𝑀 ] and 𝑧, 𝑧𝑖 ∈ [0, 1 − 𝜖𝑘 ] ⊂ [0, 1) yield ¯𝐹𝑘 (𝛾, 𝑧) = 𝐹𝑘 (𝛾, 𝑧) and
¯𝐹𝑘 (𝛾𝑖 , 𝑧𝑖) = 𝐹𝑘 (𝛾𝑖 , 𝑧𝑖). Thus the lower semicontinuity of 𝐹𝑘 [2, Theorem 3.4] establishes the lower

semicontinuity of 𝐽 . By standard arguments 𝐽 (𝑦) =𝑚, establishing the claim. □

3.2 Γ-convergence of the regularization functionals

Next we disuss the Γ-convergence of ¯𝐹𝑘 to (the extended definition in (3.5) of) 𝐹 in ℬ(Ω) ×ℬ(Ω).
Together with the continuity of the currents, this property allows us to show the convergence of the

solutions of (3.2) to (3.3).

Γ-convergence means that so-called the Γ-liminf and the Γ-limsup inequalities hold for
¯𝐹𝑘 and 𝐹 .

The former is to say that for anyℬ(Ω) ×ℬ(Ω) ∋ (𝛾𝑘 , 𝑧𝑘 ) → (𝛾, 𝑧) ∈ ℬ(Ω) ×ℬ(Ω) (in measure) we

have

(3.6) lim inf

𝑘→∞
¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≥ 𝐹 (𝛾, 𝑧).

As for Γ-limsup, we require that for all (𝛾, 0) ⊂ ℬ(Ω) ×ℬ(Ω), there exists a reconstruction sequence

{(𝛾𝑘 , 𝑧𝑘 )}𝑘∈ℕ ⊂ ℬ(Ω) ×ℬ(Ω), such that (𝛾𝑘 , 𝑧𝑘 ) → (𝛾, 0) in measure and

(3.7) lim sup

𝑘→∞
¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≤ 𝐹 (𝛾, 0) .

We refer to [4] for a more comprehensive introduction to Γ-convergence.
The Γ-convergence of 𝐹𝑘 to 𝐹 , shown originally by Ambrosio and Tortorelli in [2], holds under the

following reflection condition:

Assumption 3.2. Ω ⊂ ℝ𝑁
is an open bounded Lipschitz domain and, moreover, there exists a neighbor-

hood𝑈 of 𝜕Ω and an injective bi-Lipschitz 𝜙 : 𝑈 ∩ Ω → 𝑈 \Ω̄ with

lim

𝑦→𝑥
𝜙 (𝑦) = 𝑥 for all 𝑥 ∈ 𝜕Ω.

This condition allows us to extend the domain of 𝛾 from Ω to Ω ∪𝑈 by reflecting the values of 𝛾 in

Ω∩𝑈 to𝑈 \Ω̄. It is satisfied e.g. by a ball inℝ𝑁
(𝜙 simply extends the radius) and𝐶2

domains in general.

In Appendix a, under Assumption 3.2, we provide proofs for the Γ-liminf and limsup inequalities. The

next corollary summarizes these proofs.

Corollary 3.3. Suppose that 𝛼 > 0, 𝜖𝑘→ 0, and that Assumption 3.2 holds. Then ¯𝐹𝑘 : ℬ(Ω) ×ℬ(Ω) → ¯ℝ,
defined by (3.4) Γ-converge to 𝐹 : ℬ(Ω) ×ℬ(Ω) → ¯ℝ defined by (3.5).

Proof. The Γ-liminf inequality (3.6) is given by Lemma a.1 and the Γ-limsup inequality (3.7) is given

by Lemma a.3. This finishes the proof. □
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3.3 convergence of solutions

Finally, we show the convergence of solutions of (3.2) to solutions of (3.3). We do this using the

continuity of the currents and Γ-convergence of ¯𝐹𝑘 to 𝐹 :

Theorem 3.4. Suppose that 𝛼 > 0, and that Assumption 3.2 holds. Let {(𝛾𝑘 , 𝑧𝑘 )} ⊂ ¯𝐷𝑘,𝑁 (Ω) be a sequence
of solutions to (3.2) so that 𝜖𝑘→ 0. Then there exists a subsequence (𝛾𝑘𝑙 , 𝑧𝑘𝑙 ) → (𝛾, 0) in measure so that
(𝛾, 0) solves (3.3).

Proof. By [2, Theorem 3.6], any sequence {(𝛾𝑘 , 𝑧𝑘 )} ⊂ 𝐷𝑘,𝑁 (Ω) such that

(3.8) 𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) +
∫
Ω
|𝛾𝑘 |2 𝑑𝑥 ≤ 𝐶 < ∞

has a subsequence (𝛾𝑘𝑙 , 𝑧𝑘𝑙 ) → (𝛾, 0) in measure. Since each (𝛾𝑘 , 𝑧𝑘 ) is a solution to (3.2),

𝐺 (𝛾𝑘 ) + ¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≤ ¯𝐺 (𝛾𝑚) + ¯𝐹𝑘 (𝛾𝑚, 0) = 𝐶1 < ∞.

Since

∫
Ω
|𝛾𝑘 |2 𝑑𝑥 ≤

∫
Ω
|𝛾𝑀 |2 𝑑𝑥 := 𝐶2 < ∞, (3.8) holds for (𝛾𝑘 , 𝑧𝑘 ) with 𝐶 = 𝐶1 + 𝐶2 and thus by [2,

Theorem 3.6], {(𝛾𝑘 , 𝑧𝑘 )} has a subsequence, unrelabelled, with (𝛾𝑘 , 𝑧𝑘 ) → (𝛾, 0) in measure.

Similarly to [2], next we show that

(3.9) 𝐹 (𝛾, 0) +𝐺 (𝛾) ≥ 𝐹 (𝛾, 0) +𝐺 (𝛾), for all 𝛾 ∈ SBV(Ω).

Assuming 𝐹 (𝛾, 0) is finite, 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ]. Let (𝛾𝑘 , 𝑧𝑘 ) → (𝛾, 0) be the reconstruction sequence of

Corollary 3.3 for the same 𝜖𝑘→ 0 so that 𝛾𝑘 ∈ [𝛾𝑚, 𝛾𝑀 ]. Then due to Γ-liminf and limsup inequalities,

lim𝑘→∞ ¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) = 𝐹 (𝛾, 0). Since Assumption 3.2 holds and 𝛾,𝛾𝑘 ∈ [𝛾𝑚, 𝛾𝑀 ], by Theorem 2.7, 𝐺 (𝛾) =
lim

𝑘→∞
𝐺 (𝛾𝑘 ) . Combining these yields

(3.10) 𝐹 (𝛾, 0) +𝐺 (𝛾) = lim

𝑘→∞
¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) +𝐺 (𝛾𝑘 ) .

Since {(𝛾𝑘 , 𝑧𝑘 )}𝑘∈ℕ solves (3.2), we have

(3.11) lim inf

𝑘→∞
¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) +𝐺 (𝛾𝑘 ) ≥ lim inf

𝑘→∞
¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) +𝐺 (𝛾𝑘 ) .

Clearly
¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) is finite,meaning that𝛾𝑘 ∈ [𝛾𝑚, 𝛾𝑀 ] and lim sup𝑘→∞ 𝛾𝑘 (𝑥) ≤ 𝛾𝑀 and lim inf𝑘→∞ 𝛾𝑘 (𝑥) ≥

𝛾𝑚 a.e. imply that 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ] so that 𝐺 (𝛾𝑘 ) → 𝐺 (𝛾) again by Theorem 2.7. In addition, by Corol-

lary 3.3, it holds that lim inf

𝑘→∞
𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≥ 𝐹 (𝛾, 0), hence

(3.12) lim inf

𝑘→∞
¯𝐹𝑘 (𝛾𝑘 ) +𝐺 (𝛾𝑘 ) ≥ 𝐹 (𝛾, 0) +𝐺 (𝛾) .

Combining (3.10)–(3.12) establishes (3.9), consequently proving the claim. □

4 numerical experiments

In this section, we numerically evaluate the performance of 𝐹𝜆 regularization in EIT with simulated

and experimental measurement data. In the following, each set of measurement data corresponding to

a different conductivity is called a Case. We consider eight test Cases. In Cases 1-7, we use synthetic

data while in Case 8, we use experimental measurement data.

In the numerical scheme, we employ a two-dimensional domain Ω ⊂ ℝ2
, and use Galerkin finite

element (FE) approximation 𝐺ℎ of the data term 𝐺 . We define it by

𝐺ℎ (𝛾) := 1

2𝑎
∥𝑊 (𝐼ℎ (𝛾) −ℐ)∥2

2
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with 𝐼ℎ (𝛾) = (𝐼 1

ℎ
(𝛾), . . . , 𝐼𝑃2

ℎ
(𝛾), ) consisting of the electric current vectors 𝐼 𝑗

ℎ
(𝛾) of𝑤ℎ (𝛾) := (𝑢 𝑗

ℎ
(𝛾), 𝐼 𝑗

ℎ
(𝛾)) ∈

Hℎ (Ω), corresponding to multiple potential arrangements𝑈 𝑗
. The space Hℎ (Ω) here denotes a finite

elements space Hℎ (Ω) ⊂ H (Ω) spanned by piecewise linear basis functions 𝜙𝑖 . In addition to 𝑢 𝑗 , we

also discretize the conductivity 𝛾 and the control parameter 𝑧 through the same basis so that

𝑢 𝑗 (𝑥) =
𝑁𝑛∑︁
𝑖=1

𝑢
𝑗

𝑖
𝜙 (𝑥), 𝛾 (𝑥) =

𝑁𝑛∑︁
𝑖=1

𝛾𝑖𝜙𝑖 (𝑥), and 𝑧 (𝑥) =
𝑁𝑛∑︁
𝑖=1

𝑧𝑖𝜙𝑖 (𝑥) .

To simplify the computations, instead of the approximating functions 𝐹𝑘 of (3.4), we use

(4.1) 𝐹𝜆 (𝛾, 𝑧) =
∫
Ω

[
𝜆 |∇𝑧 |2 + 𝑧2 |∇𝛾 |2 + 𝛼

2(𝑧 − 1)2

4𝜆

]
+ 𝛿 [𝜖𝜆,1] (𝑧) + 𝛿 [𝛾𝑚,𝛾𝑀 ] (𝛾) 𝑑𝑥

for some (0, 1) ∋ 𝜖𝜆→ 0. The function 𝛿 is the indicator function. This functional with 𝜖 = 0 was

suggested in a remark in [2] as an alternative to 𝐹𝑘 . Alternatively to the term 𝑜𝜆 |∇𝛾 |2 in [3], we use

𝜖𝜆 > 0 to ensure the existence of solutions. The Γ-convergence of 𝐹𝜆 to 𝐹 can be proved performing

similar modifications to the proof of Section 3 as was done to the proof of [2] in [3]. In numerical

practise, 𝜖𝜆 is unnecessary, so we set it to zero.

Since ∇𝜙 is constant within each element of the FE-mesh, 𝐹𝜆 admits a very simple form in the chosen

basis. Denoting 𝐸𝑖 ⊂ Ω as the element i of the FE mesh,𝐴𝑖 as the area of 𝐸𝑖 , and 𝜙𝑘 and 𝑧𝑘 , 𝑘 = 1, 2, 3, as

the three basis functions within 𝐸𝑖 , we have that |∇𝑧 |2 ≡ 𝑔𝑧,𝑖 := (𝑧1𝜕𝑥𝜙1 + 𝑧2𝜕𝑥𝜙2 + 𝑧3𝜕𝑥𝜙3)2 + (𝑧1𝜕𝑦𝜙1 +
𝑧2𝜕𝑦𝜙2 + 𝑧3𝜕𝑦𝜙3)2

and since the partial derivatives of 𝜙𝑖 are constant within an element,∫
𝐸𝑖

|∇𝑧 |2 𝑑𝑥 = 𝐴𝑖𝑔𝑧,𝑖 .

Further, simple computations show that∫
𝐸𝑖

𝑧2 |∇𝛾 |2 𝑑𝑥 = 𝐴𝑖𝑔𝛾,𝑖 (𝑧2

1
+ 𝑧2

2
+ 𝑧2

3
+ 𝑧1𝑧2 + 𝑧1𝑧3 + 𝑧2𝑧3)/12

and ∫
𝐸𝑖

(𝑧 − 1)2 𝑑𝑥 = 𝐴𝑖 ((𝑧2

1
+ 𝑧2

2
+ 𝑧2

3
+ 𝑧1𝑧2 + 𝑧1𝑧3 + 𝑧2𝑧3)/12 − (𝑧1 + 𝑧2 + 𝑧3)/3 + 1/2) .

Next we will lay out the plan to minimize 𝐹𝜆 (𝛾) +𝐺ℎ (𝛾).

4.1 solving the discretized problem

Our task therefore is to solve the problem

(4.2) min

𝛾,𝑧
𝐽 (𝛾, 𝑧), 𝐽 (𝛾, 𝑧) := 𝐹𝜆 (𝛾, 𝑧) +𝐺ℎ (𝛾) +

∫
Ω
𝛿 [𝛾𝑚,𝛾𝑀 ] (𝛾) + 𝛿 [0,1] (𝑧) 𝑑𝑥

in the above-constructed finite element spaces. We include the regularization parameter 𝑎 into𝑊 by

taking𝑊 =
√
𝑎 ˜𝑊 .

We base our iterative approach on the Relaxed Inexact Proximal Gauss-Newton (RIPGN) algorithm

of [22]. This method and Gauss–Newton type methods in general are based on the iterative solution

of convex subproblems obtained through the linearization of operators in the original problem. We

will deviate from this slightly, only linearizing in (4.2) the operator 𝐼ℎ within 𝐺ℎ , but retaining the

non-convexity of 𝐹𝜆 . Correspondingly, we also do not perform the relaxation step of the RIPGN on the

control variable 𝑧, only on 𝛾 . These choices are based on practical numerical experience, but make the

convergence theory of [22] inapplicable.
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Algorithm 1 Relaxed inexact proximal Gauss–Newton method (RIPGN) adapted to the problem (4.2).

Require: Proximal parameter 𝛽 ≥ 0 and relaxation parameter𝑤 > 0.

1: Choose an initial iterate (𝛾 1, 𝑧1) ∈ dom 𝐽 .

2: for all 𝑘 ≥ 1 do
3: Find an approximate solution (𝛾𝑘 , 𝑧𝑘 ) to (4.3)

4: Update 𝛾𝑘+1
:= (1 −𝑤)𝛾𝑘 +𝑤𝛾𝑘 and 𝑧𝑘+1

:= 𝑧𝑘

5: end for

Algorithm 2 Non-linear primal-dual proximal splitting for solving (4.3). We denote the convex

conjugate of 𝐹 by 𝐹 ∗ and 𝑞 = (𝑞1, 𝑞2)) such that 𝑞1 corresponds to 𝛾 and 𝑞2 corresponds to 𝑧.

Require: Convex, proper, lower semicontinuous 𝐹 : 𝑋 → ℝ, 𝐻 : 𝑌 → ℝ, and operator 𝐾 ∈ 𝐶2(𝑋 ;𝑌 ).
1: Choose step length parameters 𝑡 𝑗 , 𝑠 𝑗 > 0 satisfying 𝑠 𝑗 < 1/(𝑡 𝑗𝐿2) for some upper bounds 𝐿 ≥

sup𝑘=1,..., 𝑗 ∥∇𝐾 (𝑞𝑘 )𝑇 ∥.
2: Choose initial iterates 𝑞0

and 𝑦0
.

3: for all do 𝑗 ≥ 0 until a stopping criterion is satisfied

4: 𝑞 𝑗+1
:= prox𝑡𝑖𝐻

(
𝑞𝑖 − 𝑡 𝑗 ( [∇𝐾 (𝑞 𝑗 )]𝑦)

)
5: 𝑞 𝑗+1

:= 2𝑞 𝑗+1 − 𝑞 𝑗
6: 𝑦 𝑗+1

:= prox𝑠 𝑗𝐹 ∗
(
𝑦 𝑗 + 𝑠 𝑗𝐾 (𝑞 𝑗+1)

)
7: end for

Specifically, in Algorithm 1 we replace 𝐺ℎ on each iteration 𝑘 by

𝐺𝑘
ℎ
(𝛾) = 1

2𝑎
∥𝑊 [𝐼ℎ (𝛾𝑘 ) −ℐ + ∇𝐼ℎ (𝛾𝑘 )𝑇 (𝛾 − 𝛾𝑘 )] ∥2

2

and with a suitable algorithm solve the proximal-penalized partially linearised problem

(4.3) min

𝛾,𝑧
𝐹𝜆 (𝛾, 𝑧) +𝐺𝑘ℎ (𝛾) + 𝛿 [𝛾𝑚,𝛾𝑀 ] (𝛾) + 𝛿 [0,1] (𝑧) + 𝛽 ∥𝛾 − 𝛾𝑘 ∥2

2
.

Since 𝐹𝜆 is still nonconvex, we use the Nonlinear Primal-Dual Proximal Splitting (NL-PDPS) of [44].

This algorithm applies to problems of the general form

(4.4) min

𝑞
𝐹 (𝐾 (𝑞)) + 𝐻 (𝑞)

where the operator 𝐾 is possibly non-linear, but 𝐹 and 𝐻 are convex but possibly nonsmooth. Algo-

rithm 2 writes out this method with dynamic adaptation of the dual step length parameters 𝑠 𝑗 and 𝑡 𝑗

to the step length conditions. To present the problem (4.3) in the form (4.4), we write

𝐺𝑘
ℎ
(𝛾) = 1

2
∥𝐾𝑘

1
𝛾 − 𝑏𝑘 ∥2

2
= 𝐹1(𝐾𝑘1 𝛾),

where 𝐾𝑘
1
=𝑊∇𝐼ℎ (𝛾𝑘 )𝑇 , 𝑏𝑘 = 𝐾𝑘

1
𝛾𝑘 −𝑊 (𝐼ℎ (𝛾𝑘 ) −ℐ), and 𝐹1(𝑦) = 1

2
∥𝑦 − 𝑏𝑘 ∥2

2
. Likewise, we write

𝐹𝜆 (𝛾, 𝑧) = 𝐹2(𝐾2(𝛾, 𝑧)) with 𝐾2(𝛾, 𝑧)𝑖 =
∫
𝐸𝑖

[
𝜆 |∇𝑧 |2 + 𝑧2 |∇𝛾 |2 + 𝛼

2(𝑧 − 1)2

4𝜆

]
𝑑𝑥, (𝑖 = 1, . . . , 𝑁𝑒)

for the components of non-linear function 𝐾2 : ℝ2𝑁𝑛 → ℝ𝑁𝑒
, and 𝐹2(𝑦) = ∥𝑦 ∥1. Finally, we set

𝐻 (𝛾, 𝑧) = 𝛿 [𝛾𝑚,𝛾𝑀 ] (𝛾) + 𝛿 [0,1] (𝑧).

Thus, defining 𝐾𝑘 (𝛾, 𝑧) = (𝐾𝑘
1
𝛾, 𝐾2(𝛾, 𝑧)) and 𝐹 (𝑦1, 𝑦2) = 𝐹1(𝑦1) + 𝐹2(𝑦2) (4.3) reads

min

𝛾,𝑧
𝐹 (𝐾𝑘 (𝛾, 𝑧)) + 𝐻 (𝛾, 𝑧) .
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Table 2: Description of the numerical and experimental test cases. Here, 𝛾bg is the background conduc-

tivity and 𝛾ci and 𝛾ri refer respectively to the non-smooth conductive and resistive inclusions

placed on the smooth/constant background. Note that Cases 1-7 use simulated data. Inclusion

𝛾ci and 𝛾ri in Case 8 describe cross-section of the objects.

𝛾
bg

𝛾ci 𝛾ri Purpose of the test

Case 1 Smoothly varying Circular 𝛾 = 10 S Square-shaped 𝛾 = 10
−4

S • Test effects of 𝛼 and 𝜆.

• Comparison with TV

and 𝐿2
.

Case 2 Smoothly varying Stadium-shaped 𝛾 = 7.5 S None • Test with fixed 𝛼 and 𝜆.

Case 3 Smoothly varying None Stadium-shaped 𝛾 = 10
−4

S • Test with fixed 𝛼 and 𝜆.

Case 4 Smoothly varying Triangular 𝛾 = 8.5 S Triangular 𝛾 = 10
−3

S • Test with fixed 𝛼 and 𝜆.

Case 5 Constant 𝛾 = 1 S None Circular 𝛾 = 10
−4

S • Test with fixed 𝛼 and 𝜆.

Case 6 Constant 𝛾 = 1 S Circular 𝛾 = 7.5 S None • Test with fixed 𝛼 and 𝜆.

Case 7 Smoothly varying None None • Test with fixed 𝛼 and 𝜆.

Case 8 Water Circular steel Circular plastic • Experimental tests

Table 3: Description of the non-linear color scale used in Figures 2 and 4 to 6.

Conductivity (S) 0 0.8 1.0 1.2 10

Color (R,G,B) 0, 0, 0 0.5, 0, 0 1, 0.7, 0 1, 1, 1 0, 1, 1

4.2 studies with synthetic data

In Case 1, we investigate the effects of the control parameter 𝜆 and the regularization parameter 𝛼 , and

further, we compare the results with these parameters to smooth regularization 𝐹∇ (𝛾) = ∥|∇𝛾 |∥2

2
and

TV regularized solutions. In Cases 2-7, with fixed 𝜆 and 𝛼 , which are chosen based on results in Case 1,

we will test Mumford–Shah regularization with multiple sets of measurement data generated with

varying conductivities, comparing it against TV regularization. The Cases 1-7 use simulated data.

Table 2 describes the selected true conductivity distribution in each test case as well as the purpose

of each test. In the simulated cases, the data represents electrical measurements collected on the

boundary of a disk shaped domain Ω (see Figure 2). The radius of the disk is 15 cm and it has 16 evenly

placed electrodes on the border. The length of an electrode is 1/32 of the border length. We draw the

smooth background conductivity from a Gaussian distribution with mean of 1 S and the so-called

squared distance covariance matrix with correlation length of 12 cm [26, 22]. Note that in Figure 2, we

use a highly nonlinear color scale (see Table 3 for exact values) — this helps to illustrate the smooth

variations of the conductivity in the background which vary in the range of 1 S ±0.2 S. With a linear

color scale the background would have almost constant color, since the inclusions of low and high

conductivity are 10
−4

and 10 S, respectively.

To simulate the EIT measurements, we set the contact impedances to 𝜁𝑖 = 10
−5 Ω, and use voltage

patterns 𝑈 𝑗
, 𝑗 = 1, 2, . . . , 16, where we set electrode 𝑗 to a known potential (𝑈 𝑗 ) 𝑗 = 1 V and ground

the others by setting (𝑈 𝑗 )𝑖 = 0 V for 𝑖 ≠ 𝑗 . From the simulated current vectors ℐ
𝑗
, we exclude

the 𝑗 ’th current, the injection current, as the EIT measurement devices do not usually measure this

current. Further, in these simulations we use a mesh that has 5039 nodes, and we add Gaussian

noise with 10
−4 | (ℐ 𝑗 )𝑖 | std to each simulated measurement (ℐ 𝑗 )𝑖 . Note that with this setup, ℐ =(

(ℐ1)2, (ℐ1)3, . . . , (ℐ16)15
)
, i.e., 𝑃1 = 𝑃2 = 16 while𝑀 = 𝑃2(𝑃1 − 1) = 240.

For the inversion, we use sparser mesh with 2917 nodes. We start each reconstruction iteration from

the best homogenous estimate [25] 𝛾 1 = 𝛾hmg of the conductivity and for the control variable we set

𝑧1 = 1, where 1 ∈ ℝ𝑁𝑛
is a vector of ones. The latter only has effect on the initial guess of 𝑧 at the first

outer iteration. We use the following parameter configuration for the RIPGN and the NL-PDPS:

Jauhiainen, Valkonen, and Seppänen Mumford–Shah regularization in electrical impedance . . .
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(a) Case 1

Figure 2: Conductivities used to simulate the measurement data in Cases 1.

𝐺
ℎ
(𝛾

𝑘
)+

𝐹
𝜆
(𝛾

𝑘
)

𝑘

Figure 3: Case 1. Convergence of the objective function 𝐺ℎ (𝛾) + 𝐹𝜆 (𝛾) with varying controls 𝜆.

• For the primal step length parameter 𝑡 𝑗 of NL-PDPS we set 𝑡 𝑗 = 0.01 for all 𝑗 ≥ 0.

• For the dual step length parameter 𝑠𝑖 of NL-PDPS we set 𝑠𝑖 = 1/(2𝑡 𝑗 (∥𝐾1∥2+(1.2∥∇𝐾2(𝑞𝑖)𝑇 ∥𝐹 )2)),
where ∥ · ∥𝐹 is the Frobenius norm. We only update 𝑠𝑖 between hundred iterations.

• In NL-PDPS, we use initial iterates 𝑞1

1
= 𝛾𝑘 , 𝑞1

2
= 3

4
1 + 1

4
𝑧𝑘 , and 𝑦 = 0; we assume that 𝛾𝑘 is close

to 𝛾𝑘 and the sharp edges in 𝛾𝑘 slightly resemble those of 𝛾𝑘 .

• For RIPGN, we set the proximal parameter to 𝛽 = 0.01 and the relaxation parameter𝑤 = 0.1. We

use these to reduce the length of the steps, i.e. ∥𝛾𝑘+1 − 𝛾𝑘 ∥2, to avoid using line search.

For further explanations of these choices, we refer to [22].

We do not assume to know neither the maximum nor the minimum conductivities precisely, and

thus we set the maximum conductivity to an arbitrary large number 𝛾𝑀 = 10
10
S, and the minimum

conductivity to 𝛾𝑚 = 10
−5𝛾hmg S. However, we do assume that we know the distribution of the noise

approximately, meaning that we compute the weighting matrix from the measurements by setting

˜𝑊𝑖, 𝑗 = 200/|ℐ𝑖 |𝛿𝑖, 𝑗 , where ℐ𝑖 is the 𝑖’th component of the measurement vector ℐ, and 𝛿𝑖, 𝑗 is the

Kronecker delta.

For a detailed explanation on the finite element approximation of (𝑢, 𝐼 ) and how the TV and 𝐹∇
regularized solutions are solved using RIPGN, we refer to [22, Section 4].

4.2.1 results: synthetic data

Figure 3 shows convergence of the objective function in Case 1 with the tested controls 𝜆. All recon-

structions converge properly; the values of the objective functionals drop to less that 1/1000 of the

Jauhiainen, Valkonen, and Seppänen Mumford–Shah regularization in electrical impedance . . .
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𝑧
𝛾

𝜆 = 10
−6 𝜆 = 10

−4 𝜆 = 10
−3 𝜆 = 10

−2 𝜆 = 10 𝐹∇, 𝑎 = 1

Figure 4: Case 1. Effects of the control parameter 𝜆. Top row, first 5 columns: 𝐹𝜆 regularized EIT

reconstructionswith control parameter values 𝜆 = 10
−6, 10−4, 10−3, 10−2, 10. The regularization

parameters are 𝛼 = 10
−2

and 𝑎 = 1. The last column shows 𝐹∇ regularized solution with 𝑎 = 1

for comparison. Bottom row: the respective reconstructions of the variable 𝑧. The color scale

on the left corresponds to values of 𝑧 and the right one corresponds to the values of 𝛾 .

initial value. Depending on the case and on the chosen parameters, the algorithm took from around

100 to 1000 iterations to stagnate
1
. Very large or small 𝜆 yield worse fit for the data, since they do not

allow the sharp edges to form properly in 𝛾 . Next, we will inspect this more closely.

Figure 4 shows the M-S regularized reconstructions with six values of the control parameter 𝜆 and

fixed 𝛼 = 10
−2

in Case 1. We fix 𝑎 = 1 for the 𝐹𝜆 regularizer throughout all the tests. For comparison,

the last column shows a solution computed with 𝐹∇ regularization.

Clearly, Figure 4 shows that the solutions tend towards the 𝐹∇ regularized solution if 𝜆 is either very

large or very small. The former behavior is obvious, since increasing 𝜆 increases the weight of the 𝐹∇
term of 𝑧 in (4.1), meaning that less spatial variation is expected in 𝑧 and thus 𝑧 ≈ 𝑎 = 1 everywhere and

no clear edges are formed in 𝛾 . The latter behavior, on the other hand, is caused by the discretization

of 𝑧; recall that for a reconstruction sequence, 𝑧 → 1 in measure as 𝜆→ 0, and thus the area in which

𝑧 < 1 tends to zero
2
. However, since 𝑧 is discretized, the smallest area in which it is possible to set

𝑧 < 1 is fixed, and thus, since this 𝑧 is a solution to (4.2), increasing 1/𝜆2
over a certain threshold has

to, instead, increase pointwise value of 𝑧 everywhere. This clearly means that the penalty of |∇𝛾 |2 will
tend to 1 everywhere reverting the reconstruction back to the 𝐹∇ regularized solution with 𝑎 = 1. This

observation suggests that 𝜆 should be chosen according to the discretization (i.e. the triangles sizes) of

𝑧. Based this test, we fix 𝜆 = 10
−3

for the following tests.

Figure 5 shows comparison between 𝐹𝜆 , TV, and 𝐹∇ regularizations with varying regularization

parameters 𝛼 and 𝑎. By Figure 5, as the regularization parameter 𝛼 increases, 𝑧 tends to 1, and the

solution becomes smooth, eventually approaching the 𝐹∇ solution with the same value of 𝑎 = 1. With

smaller regularization parameter values 𝛼 = 10
−4

and 𝛼 = 10
−3
, 𝑧 becomes more spatially varying

and in those areas where 𝑧 is small, edges are formed in 𝛾 . Setting 𝛼 too small (10
−5
) leads to a highly

unstable solution.

When compared to the 𝐹∇ reconstructions, 𝐹𝜆 reconstructions with 𝛼 = 10
−3

and 𝛼 = 10
−2

have

sharper edges in locations where 𝑧 is small. Indeed, these edges are clearly even sharper than those in

the TV regularized solution. Further, in locations where 𝑧 is closer to one, 𝐹𝜆 regularized reconstructions

have smooth variations, similar to those in 𝐹∇ reconstructions. These variations are not present in the

1
Ryzen 5950X with 32 GB of 3600 Mhz (16-19-19-39) DDR4 RAM, an iteration took 13.58 seconds to compute on average.

2
For functional (3.4), this is equivalent to 𝑘 → ∞ and 𝑧 → 0 in measure, and the area where 𝑧 > 0 tends to zero.
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𝐹
𝜆
,𝑧

𝐹
𝜆
,𝛾

T
V
,𝛾

𝐹
∇
,𝛾

𝑎 = 10
−4

𝛼 = 10
−5

𝑎 = 10
−1

𝛼 = 10
−3

𝑎 = 1

𝛼 = 10
−2

𝑎 = 10

𝛼 = 10
−1

𝑎 = 10
4

𝛼 = 10

Figure 5: Case 1. Effects of the regularisation parameter 𝛼 . First row: 𝐹∇ regularised solution. Second

row: 𝑇𝑉 regularised solution. Third and forth row: 𝐹𝜆 regularisation based solution of 𝛾 and

𝑧. Each column corresponds to a different regularisation parameter values and the control

parameter is 𝜆 = 10
−3
. Note that the regularisation parameter in TV and 𝐹∇ is the weight of

the gradient term, while on the other, in 𝐹𝜆 solution it is jump set regularization parameter.

TV reconstructions. Hence, in this case, where the sharp-edged inclusions are placed on a smoothly

varying background, 𝐹𝜆 provides more suitable regularization than TV and 𝐹∇ ; the relative error of
the best 𝐹𝜆 reconstruction, 𝛼 = 10

−2
, is RE= 21.00 %. For TV

3
, these values are 𝑎 = 10

−1
and RE=34.25

%. Based on this test, we fix 𝛼 = 10
−2

for 𝐹𝜆 regularization and 𝑎 = 10
−1

for TV.

In Figure 5, the reconstructions with parameters 𝛼 = 10
−3

to 𝛼 = 10 display artifacts on the border.

These artifacts are most probably caused by the modelling errors due to the differences between

the simulation and the inverse mesh. Similar artifacts are also visible in the 𝐹∇ and TV regularized

solutions, although they are more pronounced in the 𝐹𝜆 solutions. These errors could be mitigated, for

example, by the so-called approximation error method, but this would require Bayesian formulation of

the reconstruction problem, and is out of the scope of this paper [26, 35].

Figure 6 shows the results of Cases 2-7. When the true conductivity has non-homogenous background

and contains either a sharped-edged conductive inclusion, resistive inclusion or both (Cases 2-4), the

𝐹∇ reconstructions have similar features. Further, when the true conductivity has only sharp edges

inclusions (Cases 5-6) or only smooth inclusions (Cases 7), the 𝐹∇ reconstructions also reflect this.

In the TV reconstructions, the smooth inclusions are staircased, as expected. Table 4 reveals, however,

that the staircasing has insignificant impact on RE in Cases 3 and 7, resulting slightly better results with

TV regularization. In these Cases, with the chosen parameters, TV regularization better incorporates

the a priori information that the changes should be small. However, when the target conductivity has

3
For a TV reconstruction with 𝑎 = 10

−3
, which is not shown in Figure 5, RE=51.34 %.
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Table 4: Description of the numerical and experimental test cases. Here, 𝛾bg is the background conduc-

tivity and 𝛾ci and 𝛾ri refer respectively to the non-smooth conductive and resistive inclusions

placed on the smooth/constant background. Note that Cases 1-7 use simulated data. Inclusion

𝛾ci and 𝛾ri in Case 8 describe cross-section of the objects.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

RE (𝐹∇) 21.00 27.49 19.41 37.65 16.38 15.60 17.09

RE (TV) 34.25 38.83 19.20 41.72 17.76 28.55 16.82

significant contrast differences, like in Cases 2, 4, and 6, 𝐹∇ regularization clearly outperforms TV.

Note that there is some inhomogeneity in the background of Cases 6 and 7, where the true background

is constant. Again some errors are present due to the modelling errors.

Remark 4.1. The behavior observed in Figure 4 implies a mesh refinement scheme through the control

variable 𝜆. The idea is that, if the element sizes within the mesh are fixed, as 𝜆→ 0, the cost of setting

𝑧 = 0 within an element increases, meaning that in the reconstruction of 𝑧, the elements where 𝑧 = 0

will eventually disappear. Now comparing reconstructions of 𝑧 with two significantly different 𝜆 should

tell us where the element sizes are too large to set 𝑧 = 0, meaning that we need to subdivide these

elements. In principle, this can be repeated until numerical precision becomes an issue.

We tested this scheme in EIT, but due to relatively low spatial resolution of EIT, this had no noticeable

impact on the reconstruction quality. We presume, however, that other imaging modalities would

benefit from this scheme.

4.3 experimental studies

We also evaluate 𝐹𝜆 regularization with experimental measurement data (Case 8). The measurement

setup consists of a cylindrical tank that is filled with tap water. The height of the water is 7 cm and

the inner and the outer diameters of the tank are 28.3 cm and 31.3 cm. The tank also has a cylindrical

steel rod and a cylindrical plastic rod. The base areas of these cylinders are 7.21 cm
2
and 29.13 cm

2
,

respectively. Otherwise, this tank matches the geometry used in the numerical case; the 16 electrodes

are placed evenly on the border and the length of an electrode is around 1/32 of the border length (see

Figure 7).

The measurements are taken using an EIT device manufactured by Rocsole Ltd. This device se-

quentially excites each electrode to a predetermined potential, grounds the others, and measures the

currents caused by the potential difference. We used 56kHz excitation frequency. The device samples

the currents with 1 Mhz frequency, and automatically computes the current amplitudes from these

samples using FFT. The current amplitudes are read along with the excitation voltages from an ASCII

encoded text file.

To evaluate our numerical scheme in practice, we use exactly the same numerical setup as in Cases

2-7 to solve the conductivity and exactly the same parameters for 𝐹𝜆 . For comparison, we pick TV

with 𝑎 = 10
−5
, as this regularization parameter yielded reconstructions with to most accurately sized

inclusions. We also show the solution for 𝑎 = 10
−1
, which yielded the best results in Case 1 and was

subsequently used as a comparison in Cases 2-7.

To analyze the reconstructions, we compute the areas of the conductive and resistive inclusions. First

we use half width at half maximum (HWHM) to define the conductive inclusion and then removing the

areas associated with the conductive inclusion, we use HWHM again to define the resistive inclusion.
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Figure 6: Cases 2-7. Testing TV and 𝐹𝜆 with multiple sets of simulated data. The regularization parame-

ter for TV is 𝑎 = 10
−1

and the control parameter and the boundary regularization parameter of

𝐹𝜆 are 𝜆 = 10
−3

and 𝛼 = 10
−2
. First column: True conductivity. Second column: TV reconstruc-

tion. Third column: 𝐹𝜆 reconstruction of the conductivity. Last column: 𝐹𝜆 reconstruction of

the control variable.

4.3.1 results: experimental measurement data

Figure 7 shows an 𝐹𝜆 and two TV regularized (𝑎 = 10
−5

and 𝑎 = 10
−1
) solutions computed from

the measurement data (Case 8). The background conductivity in these reconstructions is slightly
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Photo of the measure-

ment setup

𝐹𝜆 solution

(𝛼 = 10
−2
, 𝜆 = 10

−3
)

TV solution (𝑎 = 10
−5
) TV solution (𝑎 = 10

−1
)

Figure 7: Case 8. A test with measurement data. Photo of the measurement setup (Left) and reconstruc-

tions with 𝐹𝜆 and TV regularization. Purple lines show where the diameters are measured.

Areas in 𝐹𝜆 reconstruction: The resistive inclusion: 28.15 cm
2
. The conductive inclusion: 7.58

cm
2
. Areas in TV reconstruction (𝑎 = 10

−5
): Resistive inclusion: 31.36 cm

2
. The conductive

inclusion: 21.28 cm
2
. Areas in TV reconstruction (𝑎 = 10

−1
): Resistive inclusion: 25.18 cm

2
.

The conductive inclusion: 51.81/673.69 cm
2
. Real values: Resistive inclusion: 29.13 cm

2
. The

conductive inclusion: 7.21 cm
2
.

inhomogeneous, although the true background was constant because the tank was filled with properly

mixed saline that was at the same temperature as the tank.

The maximum conductivity in the location of the steel bar is about five times larger in the M-S

reconstruction than in the TV reconstruction with 𝑎 = 10
−5

and around seven times larger than in the

TV reconstruction with 𝑎 = 10
−1
.

In 𝐹∇ reconstruction, the area of the conductive inclusion is 7.58 cm
2
and the area of the resistive

inclusion is 28.15 cm
2
. The values are 54.35/608.10 cm

2
, 25.18 cm

2
, 21.28 cm

2
, and 31.36 cm

2
for TV

reconstructions 𝑎 = 10
−1

and 𝑎 = 10
−5
, respectively. The conductive inclusion for TV with 𝑎 = 10

−1
has

two values; in the first one, the area is of the conductive inclusion is defined by 70 % of the maximum

value and is more in line with the visual shape, the latter one is almost the area of the whole domain

without the resistive inclusion.

The areas obtained for the resistive inclusion are accurate; within 15 % of the real value. In 𝐹∇ recon-

struction, the area of the conductivity inclusion is also in a similar range. For both TV reconstructions,

however, area of the conductive inclusion is significantly larger than the real one; in TV reconstruction

with 𝑎 = 10
−5

the inclusion it is around 3 times larger than the real one while with 𝑎 = 10
−1

it is around

seven times larger.

4.4 discussion

Based on these numerical tests, we conclude that 𝐹𝜆 is feasible for EIT in cases where the conductivity

is expected to contain both smooth and non-smooth inclusions. Especially high contrast inclusions

with sharp edges are reconstructed accurately. The 𝐹𝜆 regularizer seems suitable also when it is not

known beforehand which type of these inclusions the target conductivity has; in such cases, even

if the true background conductivity is homogenous, some smooth variations maybe still be present

in the reconstructions. Note also that in all test cases, the same value of parameter 𝑎 was used in 𝐹𝜆
regularization. Our numerical tests showed that the estimates were fairly robust with respect to the

choice of this parameter; for example, setting 𝑎 = 10 or 𝑎 = 10
−1

did not improve the image quality.

This was an expected result, because also the 𝐿2 regularized solutions tolerate about two orders of

magnitude variation in the regularization parameter without significant change in the reconstruction

quality (see Figure 5).
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5 conclusions

The M-S functional is a popular starting point for image segmentation: finding objects within an image.

Also in EIT, the object to be imaged can consist of sharp edged inclusions on a smoothly varying

background, or vice versa. Thus far, however, only a few approaches to reconstructing sharp and

smooth features in EIT simultaneously have been proposed, or thoroughly studied.

In this paper, we investigated the approximation of the M-S functional in EIT. We showed that, with

a small modification, the functional originally proposed by Ambrosio and Tortorelli is applicable to the

approximation of the M-S functional in combination with the EIT data fidelity based on the complete

electrode model. Through numerical and experimental studies we showed that the M-S regularization

and the approximating functional offer a viable alternative to conventional TV and smooth gradient

regularization if the target conductivity is expected to contain both smooth and non-smooth inclusions.

Further, the approach was shown to be feasible also when it is not known beforehand whether the

target has smooth or non-smooth inclusions.

appendix a the proofs of the Γ-liminf and Γ-limsup inequalities

In this section, we proved proofs for the Γ-liminf and Γ-limsup inequalities for
¯𝐹𝑘 . The next lemma

shows the Γ-liminf inequality.

Lemma a.1. Suppose that 𝛼 > 0, 𝜖𝑘 ∈ [0, 1], and Assumption 3.2 holds. Let {(𝛾𝑘 , 𝑧𝑘 )}𝑘∈ℕ ⊂ ℬ(Ω) ×ℬ(Ω)
so that (𝛾𝑘 , 𝑧𝑘 ) → (𝛾, 𝑧) ∈ ℬ(Ω) ×ℬ(Ω) in measure. Then the Γ-liminf inequality (3.6) holds.

Proof. Suppose that (𝛾𝑘 , 𝑧𝑘 ) → (𝛾, 𝑧) ∈ ℬ(Ω) × ℬ(Ω) in measure. We may also assume that

lim inf𝑘→∞ ¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) = 𝑚 < ∞ as otherwise the inequality holds trivially. Also 𝑚 ≥ 0, since

¯𝐹𝑘 (𝛾, 𝑧) ≥ 0 for any (𝛾, 𝑧). Since 0 ≤ 𝑚 < ∞, we can find a bounded subsequence { ¯𝐹𝑖 (𝛾𝑖 , 𝑧𝑖)}𝑖∈ℕ
such that lim𝑖→∞ 𝐹𝑖 (𝛾𝑖 , 𝑧𝑖) =𝑚 and 𝛾𝑖 → 𝛾 in measure. The boundedness of {𝐹𝑖 (𝛾𝑖 , 𝑧𝑖)}𝑖∈ℕ implies that

𝛾𝑖 ∈ [𝛾𝑚, 𝛾𝑀 ] (almost everywhere) which ensures that 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ]. Since 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ], the Γ-liminf

inequality holds for 𝐹𝑘 and 𝐹 by [2, Theorem 1.1]. Further, we also have
¯𝐹𝑘 (𝛾, 𝑧) ≥ 𝐹𝑘 (𝛾, 𝑧) for any

(𝛾, 𝑧) ∈ ℬ(Ω) ×ℬ(Ω) and 0 ≤ 𝜖𝑘 ≤ 1. Hence

lim inf

𝑘→∞
¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≥ lim inf

𝑘→∞
𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≥ 𝐹 (𝛾, 0) . □

Now it remains to prove the existence of a reconstruction sequence for the Γ-limsup inequality (3.7).

Ambrosio and Tortorelli show in [2, Proposition 5.1] that for any 𝛾 ∈ 𝑆𝐵𝑉 (Ω) ∩ 𝐿∞(Ω) and 𝑧 = 0 there

exist (𝑦𝑘 , 𝑧𝑘 ) ∈ (𝐻 1(Ω) × 𝐻 1(Ω)) ∩ ([−∞,∞] × [0, 1]) with (𝑦𝑘 , 𝑧𝑘 ) → (𝛾, 0) satisfying

(a.1) lim sup

𝑘→∞
𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≤

∫
Ω
|∇𝛾 |2 𝑑𝑥 + lim sup

𝜌→ 0

ℒ({𝑥 ∈ Ω | dist(𝑥, 𝑆𝛾 ) < 𝜌})
2𝜌

,

Then, under Assumption 3.2, they use this estimate to prove Γ-limsup inequality in [2, Proposition

5.2-5.3]. The restrictions 𝛾𝑘 ∈ [𝛾𝑚, 𝛾𝑀 ] and 𝑧𝑘 ∈ [0, 1−𝜖𝑘 ] do not hold for the reconstruction sequences

of [2] and therefore, to adapt the work of [2] to our modified
¯𝐹𝑘 we need to adapt the reconstruction

sequences and proof of [2, Proposition 5.1]. We do this in the next lemma.We can then use [2, Proposition

5.3] on this adapted sequence since they do not depend on the explicit form of the reconstruction

sequence.

Lemma a.2. Suppose Ω ⊂ ℝ𝑁 is an open bounded domain and that 𝛼 > 0. Given any 𝛾 ∈ 𝑆𝐵𝑉 (Ω) and
𝜖𝑘→ 0, there exists a sequence {(𝛾𝑘 , 𝑧𝑘 )}𝑘∈ℕ ⊂ ¯𝐷𝑘,𝑁 (Ω) with (𝛾𝑘 , 𝑧𝑘 ) → (𝛾, 0) in measure and

(a.2) lim sup

𝑘→+∞
𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≤

∫
Ω
|∇𝛾 |2 𝑑𝑥 + lim sup

𝜌→ 0

ℒ({𝑥 ∈ Ω | dist(𝑥, 𝑆𝛾 ) < 𝜌})
2𝜌

.
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Proof. For simplicity of notation, we assume that 𝛼 = 1. Moreover, we may assume that

(a.3) 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ], |∇𝛾 | ∈ 𝐿2(Ω), and 𝐿 := lim sup

𝜌→ 0

ℒ({𝑥 ∈ Ω | dist(𝑥, 𝑆𝛾 ) < 𝜌})
2𝜌

< ∞,

since otherwise (a.2) holds trivially. If 𝛾 ∈ 𝐻 1(Ω), we may simply choose 𝛾𝑘 ≡ 𝛾 and 𝑧𝑘 ≡ 0 for all

𝑘 ∈ ℕ. More generally, for 𝑆𝛾 the jumpset of 𝛾 , define the neighborhood

(𝑆𝛾 )𝑏𝑘 :=
{
𝑥 ∈ Ω | dist(𝑥, 𝑆𝛾 ) < 𝑏𝑘

}
.

For the reconstruction sequence of 𝑧, we simply restrict 𝑧𝑘 chosen by Ambrosio and Tortorelli [2,

Identity 5.5.] above by 1 − 𝜖𝑘 , taking

(a.4) 𝑧𝑘 = 1 − 𝜖𝑘 on (𝑆𝛾 )𝑏𝑘 , 𝜂𝑘 on Ω\(𝑆𝛾 )𝑎𝑘+𝑏𝑘 , and 𝑧𝑘 on (𝑆𝛾 )𝑎𝑘+𝑏𝑘\(𝑆𝛾 )𝑏𝑘 ,

where 𝑧𝑘 ∈ [0, 1−𝜖𝑘 ] will be defined later. We also confirm that 𝑧𝑘 ∈ 𝐻 1(Ω). Observe that the definition
of 𝑧𝑘 extends to Ω ∪ (𝑆𝛾 )𝑎𝑘+𝑏𝑘 . We utilize this property later. During the course of the proof, we will

choose the constants 𝑎𝑘 , 𝑏𝑘 , 𝜂𝑘 > 0 such that lim𝑘→∞ 𝑎𝑘 = 0,

(a.5) lim

𝑘→∞
𝑘2𝑏𝑘 = 0, and 𝜂𝑘 := 1

𝑘

√︄∫
1

0

(1 − 𝑠2)𝑘𝑑𝑠.

With these choices (a.3) gives

(a.6) lim sup

𝑘→∞
𝑘2

ℒ(𝑆𝛾 )𝑏𝑘 = 2𝑘2𝑏𝑘 ℒ(𝑆𝛾 )𝑏𝑘/(2𝑏𝑘 ) = 0 · 2𝐿 = 0.

Later we take a specific choice for 𝑎𝑘 which reveals the reasoning for the selection of 𝜂𝑘 .

For the reconstruction sequence of 𝛾 , we take

(a.7) 𝛾𝑘 := (1 − Ψ𝑘 )𝛾 + 𝛾𝑚Ψ𝑘 ,

for Ψ𝑘 ∈ 𝐻 1(Ω) satisfying

0 ≤ Ψ𝑘 ≤ 1, Ψ𝑘 = 1 on (𝑆𝛾 )𝑏𝑘/2, and Ψ𝑘 = 0 on Ω\(𝑆𝛾 )𝑏𝑘 .

This sequence differs from the one in [2, page 1025] by the term 𝛾𝑚Ψ𝑘 and by the fact that Ψ𝑘 is not
necessarily in 𝐶∞

0
(ℝ𝑁 ).

Now, since 𝛾𝑘 ∈ [𝛾𝑚, 𝛾𝑀 ] andℒ(𝑆𝛾 )𝑏𝑘/2 → 0 due to (a.6), we have 𝛾𝑘 = 𝛾 on Ω\(𝑆𝛾 )𝑏𝑘 , 𝛾𝑘 → 𝛾 in

measure. Further, since 𝛾 ∈ 𝐻 1(Ω\𝑆𝛾 ) ∩ 𝐿∞(Ω\𝑆𝛾 ) and Ψ𝑘 ∈ 𝐻 1(Ω) ∩ 𝐿∞(Ω), have 𝛾𝑘 ∈ 𝐻 1(Ω) [30,
Theorem 1.49]. By the same theorem, 𝛾Ψ𝑘 satisfies Leibniz rule.
We follow the Ambrosio’s and Tortorelli’s proof, however, the bound 𝑧𝑘 ≤ 1 − 𝜖𝑘 introduces ad-

ditional steps. With (𝛾𝑘 , 𝑧𝑘 ) given by (a.7) and (a.4), extending 𝑧𝑘 to Ω ∪ (𝑆𝛾 )𝑎𝑘+𝑏𝑘 , and estimating∫
Ω

1

4
(𝛼𝑘𝑧)2 𝑑𝑥 ≤

∫
Ω∪(𝑆𝛾 )𝑎𝑘+𝑏𝑘

1

4
(𝛼𝑘𝑧)2 𝑑𝑥 , etc., we expand

(a.8) 𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≤
∫
Ω\(𝑆𝛾 )𝑎𝑘+𝑏𝑘

|∇𝛾 |2(1 − 𝜂2

𝑘
)2𝑘 𝑑𝑥 +

∫
( (𝑆𝛾 )𝑎𝑘+𝑏𝑘 \(𝑆𝛾 )𝑏𝑘 )∩Ω

|∇𝛾 |2(1 − 𝑧2

𝑘
)2𝑘 𝑑𝑥

+
∫
( (𝑆𝛾 )𝑏𝑘 \(𝑆𝛾 )𝑏𝑘 /2

)∩Ω
|∇𝛾𝑘 |2(1 − (1 − 𝜖𝑘 )2)2𝑘 𝑑𝑥

+ 1

4
𝑘2𝜂2

𝑘
ℒ(Ω\(𝑆𝛾 )𝑎𝑘+𝑏𝑘 ) + 1

4
(1 − 𝜖𝑘 )2𝑘2

ℒ((𝑆𝛾 )𝑏𝑘 ) +𝐴𝑘 (𝑧𝑘 ),
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where the cost of transitioning from 𝜂𝑘 to 1 − 𝜖𝑘 in the neighborhood of 𝑆𝛾 is presented by the term

𝐴𝑘 (𝑧) :=

∫
(𝑆𝛾 )𝑎𝑘+𝑏𝑘 \(𝑆𝛾 )𝑏𝑘

|∇𝑧 |2(1 − 𝑧2)2𝑘 + 1

4

(𝑘𝑧)2 𝑑𝑥.

By closely following the proof of [2, Proposition 5.1], since 𝜂𝑘 → 0 and (1 − 𝜂2

𝑘
)2𝑘 → 1 and since

(a.3) implies that Ω ∩ ¯𝑆𝛾 is negligible, i.e. it has a zero (Lebesgue) measure, the first term of the RHS

converges to

∫
Ω
|∇𝛾𝑘 |2 𝑑𝑥 . Further, using (a.3), (a.6), (a.5) (i.e. 𝑏𝑘 → 0), 𝑎𝑘 → 0, we get

0 ≤ lim sup

𝑘→∞
ℒ((𝑆𝛾 )𝑎𝑘+𝑏𝑘\(𝑆𝛾 )𝑏𝑘 ) ≤ lim sup

𝑘→∞
(𝑎𝑘 + 𝑏𝑘 )

ℒ((𝑆𝛾 )𝑎𝑘+𝑏𝑘 )
𝑎𝑘 + 𝑏𝑘

= 0 · 2𝐿 = 0.

Consequently, ℒ((𝑆𝛾 )𝑎𝑘+𝑏𝑘 ) → 0. The facts |∇𝛾 | ∈ 𝐿2(Ω) and ℒ((𝑆𝛾 )𝑎𝑘+𝑏𝑘\(𝑆𝛾 )𝑏𝑘 ) → 0 imply that

(see Lemma 2.5 and [24, Corollary 16.9])

0 ≤
∫
(𝑆𝛾 )𝑎𝑘+𝑏𝑘 \(𝑆𝛾 )𝑏𝑘

|∇𝛾 |2(1 − 𝑧2

𝑘
)2𝑘 𝑑𝑥 ≤

∫
(𝑆𝛾 )𝑎𝑘+𝑏𝑘 \(𝑆𝛾 )𝑏𝑘

|∇𝛾 |2 𝑑𝑥 → 0.

The condition (a.6) shows that the fifth term of (a.8) also vanishes. The fourth term may be estimated

above by 𝑘2𝜂2

𝑘
ℒ(Ω), which also tends to zero by the definition of 𝜂𝑘 in (a.5). Thus we only have the

third and the last term to estimate.

We next show that lim sup𝑘→∞𝐴𝑘 (𝑧𝑘 ) ≤ 𝐿. For simplicity we write

𝐻𝑘 := (𝑆𝛾 )𝑎𝑘+𝑏𝑘\(𝑆𝛾 )𝑏𝑘 , 𝜏 (𝑥) := dist(𝑥, 𝑆𝛾 ), and ℋ(𝑡) := ℋ
𝑁−1({𝑦 ∈ Ω | 𝜏 (𝑦) = 𝑡}) .

We now take our specific choice of 𝑧𝑘 (see [2, 1028]), defined through the single variable function

(a.9) 𝑧𝑘 (𝑡) := 𝜃𝑘 (𝑎𝑘 + 𝑏𝑘 − 𝑡), 𝑡 ∈ [𝑏𝑘 , 𝑎𝑘 + 𝑏𝑘 ],

that we parametrize through the distance 𝑡 = 𝜏 (𝑦) from the jumpset 𝑆𝛾 . The function 𝜃𝑘 , in turn, we

define as the solution of the differential equation

(a.10) ∇𝜃𝑘 =
𝑘𝜃𝑘

2(1 − 𝜃2

𝑘
)𝑘
, 𝜃𝑘 (0) = 𝜂𝑘 .

Observe that 𝐴𝑘 only depends on 𝑧𝑘 via 𝑧𝑘 . By using the co-area formula, the fact that |∇𝜏 | = 1 a.e. [16,

Theorem 3.2.12 and Lemma 3.2.34], also [2, pages 1026-1028], we can expand 𝐴𝑘 (𝑧𝑘 ) as

(a.11) 𝐴𝑘 (𝑧𝑘 ) =
∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

∫
{𝑦 |𝜏 (𝑦 )=𝑡 }

( [
|∇𝑧𝑘 (𝑦) |2(1 − 𝑧2

𝑘
(𝑦))2𝑘 + 1

4
𝑘2𝑧2

𝑘
(𝑦)

]
𝑑ℋ𝑁−1(𝑦)

)
𝑑𝑡

=

∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

[
|∇𝑧𝑘 (𝑡) |2(1 − 𝑧2

𝑘
(𝑡))2𝑘 + 1

4
𝑘2𝑧2

𝑘
(𝑡)

] (∫
{𝑦 |𝜏 (𝑦 )=𝑡 }

𝑑ℋ𝑁−1(𝑦)
)
𝑑𝑡

=

∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

[
|∇𝑧𝑘 (𝑡) |2(1 − 𝑧2

𝑘
(𝑡))2𝑘 + 1

4
𝑘2𝑧2

𝑘
(𝑡)

]
ℋ(𝑡)𝑑𝑡 .

In the following, since 𝜂𝑘 → 0, we may assume that 𝑘 is large enough so that 𝜂𝑘 ≤ 1 − 𝜖𝑘 . By (a.4) and

(a.9), we have that 𝑧𝑘 (𝑎𝑘 + 𝑏𝑘 ) = 𝜃𝑘 (0) = 𝜂𝑘 and 𝑧 (𝑏𝑘 ) = 𝜃𝑘 (𝑎𝑘 ) = 1 − 𝜖𝑘 . Now dividing (a.10) by its

own right-hand side and separating the differential equation gives an implicit formula,∫ 𝑡

0

1𝑑𝑢 = 2

𝑘

∫ 𝜃𝑘 (𝑡 )

𝜂𝑘

1

𝑠
(1 − 𝑠2)𝑘𝑑𝑠.
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Further, using 𝜃𝑘 (𝑎𝑘 ) = 1 − 𝜖𝑘 gives

𝑎𝑘 =

∫ 𝑎𝑘

0

1𝑑𝑢 = 2

𝑘

∫
1−𝜖𝑘

𝜂𝑘

1

𝑠
(1 − 𝑠2)𝑘𝑑𝑠 ≤ 2

𝑘𝜂𝑘

∫
1−𝜖𝑘

𝜂𝑘

(1 − 𝑠2)𝑘𝑑𝑠

≤ 2

𝑘𝜂𝑘

∫
1

0

(1 − 𝑠2)𝑘𝑑𝑠 = 2

√︄∫
1

0

(1 − 𝑠2)𝑘𝑑𝑠,

where on the last equality we used the definition of 𝜂𝑘 . By change of variables and Hölder’s inequality

it is easy to see that 𝑎𝑘 → 0. Also note that as 𝑧𝑘 is decreasing, 𝑧𝑘 ∈ [𝜂𝑘 , 1 − 𝜖𝑘 ].
Using (a.10) gives (1 − 𝑧2

𝑘
)𝑘∇𝑧𝑘 = −𝑘𝑧/2, and plugging this into (a.11) gives

(a.12) 𝐴𝑘 (𝑧𝑘 ) =
∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

[
|∇𝑧𝑘 (𝑡) |2(1 − 𝑧2

𝑘
(𝑡))2𝑘 + 1

4
𝑘2𝑧2

𝑘
(𝑡)

]
ℋ(𝑡)𝑑𝑡 = 𝑘2

2

∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘
𝑧2

𝑘
(𝑡)ℋ(𝑡)𝑑𝑡 .

Similarly to [2], in the following, we will denote terms that vanish as 𝑘 → ∞ by 𝑜 (𝑘) and define

(a.13) A(𝑡) := ℒ({𝑥 ∈ Ω | dist(𝑥, 𝑆𝛾 ) < 𝑡}).

By [2, Identity 2.6], A ∈𝑊 1,1

loc
((0,∞)) and ∇A = ℋ almost everywhere (i.e. A(𝑠) =

∫ 𝑠
0
ℋ(𝑡)𝑑𝑡 ), so

that integration by parts gives

𝐴𝑘 (𝑧𝑘 ) = 𝑘2

2

(
𝑧2

𝑘
(𝑡) A(𝑡)

���𝑎𝑘+𝑏𝑘
𝑏𝑘

− 2

∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

𝑧𝑘 (𝑡) (∇𝑧𝑘 (𝑡)) A(𝑡)𝑑𝑡
)

Recalling that 𝑧𝑘 (𝑏𝑘 ) = 1 − 𝜖𝑘 and 𝑧𝑘 (𝑎𝑘 + 𝑏𝑘 ) = 𝜂𝑘 ,

𝐴𝑘 (𝑧𝑘 ) = 𝑘2

2

(
𝜂2

𝑘
A(𝑎𝑘 + 𝑏𝑘 ) − (1 − 𝜖𝑘 )2 A(𝑏𝑘 ) − 2

∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

𝑧𝑘 (∇𝑧𝑘 (𝑡)) A(𝑡)𝑑𝑡
)

≤ −𝑘2

∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

𝑧𝑘 (𝑡) (∇𝑧𝑘 (𝑡)) A(𝑡)𝑑𝑡 + 𝑜 (𝑘),

where the term 𝜂2

𝑘
A(𝑎𝑘 + 𝑏𝑘 ) is 𝑜 (𝑘) due to the definition of 𝜂𝑘 and −(1 − 𝜖𝑘 )2 A(𝑏𝑘 ) ≤ 0 (and 𝑜 (𝑘)).

Further, (a.3) ensures the existence of 𝜔𝑘 → 0 such that A(𝑡) ≤ 2𝑡 (𝐿 + 𝜔𝑘 ) for all 𝑡 ∈ [0, 𝑎𝑘 + 𝑏𝑘 ].
Indeed, take 𝜔𝑘 := 𝛽𝑘 − 𝐿 for 𝛽𝑘 := sup𝑠∈[0,𝑎𝑘+𝑏𝑘 ] A(𝑠)/(2𝑠). Since 𝑡 ∈ [0, 𝑎𝑘 + 𝑏𝑘 ], A(𝑡)/(2𝑡) ≤ 𝛽𝑘 ,

moreover, since 𝑎𝑘 + 𝑏𝑘 → 0, by (a.3) lim𝑘→∞ 𝛽𝑘 = lim sup𝑘→∞ A(𝑎𝑘 + 𝑏𝑘 )/(2(𝑎𝑘 + 𝑏𝑘 )) = 𝐿. Thus

𝜔𝑘 → 0. Now A(𝑡)/(2𝑡) − 𝛽𝑘 ≤ 0 if and only if 𝐴(𝑡) ≤ 2𝑡 (𝐿 + 𝜔𝑘 ). Since A(𝑡) ≤ 2𝑡 (𝐿 + 𝜔𝑘 ) for all
𝑡 ∈ [0, 𝑎𝑘 + 𝑏𝑘 ] and since ∇𝑧𝑘 (𝑡) ≤ 0 for a.e. 𝑡 ∈ [𝑏𝑘 , 𝑎𝑘 + 𝑏𝑘 ],

𝐴𝑘 (𝑧𝑘 ) ≤ −2(𝐿 + 𝜔𝑘 )𝑘2

∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

𝑧𝑘 (𝑡) (∇𝑧𝑘 (𝑡))𝑡𝑑𝑡 + 𝑜 (𝑘),

and integration by parts gives

𝐴𝑘 (𝑧𝑘 ) ≤ (𝐿 + 𝜔𝑘 )𝑘2

(
−𝜂2

𝑘
(𝑎𝑘 + 𝑏𝑘 ) + (1 − 𝜖𝑘 )2𝑏𝑘 +

∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

𝑧2

𝑘
(𝑡)𝑑𝑡

)
+ 𝑜 (𝑘)

= (𝐿 + 𝜔𝑘 )𝑘2

∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

𝑧2

𝑘
(𝑡)𝑑𝑡 + 𝑜 (𝑘),

where the first term is clearly below zero and the second term is 𝑜 (𝑘) due to the definition of 𝑏𝑘 . Finally

plugging in 𝑘𝑧𝑘 = −2(∇𝑧𝑘 ) (1 − 𝑧2

𝑘
)𝑘 from (a.10) gives

𝐴𝑘 (𝑧𝑘 ) ≤(𝐿 + 𝜔𝑘 )𝑘
∫ 𝑎𝑘+𝑏𝑘

𝑏𝑘

2𝑧𝑘 (𝑡) (−∇𝑧𝑘 (𝑡)) (1 − 𝑧2

𝑘
(𝑡))𝑘𝑑𝑡 + 𝑜 (𝑘)

=
(𝐿 + 𝜔𝑘 )𝑘
𝑘 + 1

(1 − 𝑧2

𝑘
(𝑡))𝑘+1

���𝑎𝑘+𝑏𝑘
𝑏𝑘

+ 𝑜 (𝑘)

=
(𝐿 + 𝜔𝑘 )𝑘
𝑘 + 1

(
(1 − 𝜂2

𝑘
)𝑘+1 − (𝜖𝑘 (2 − 𝜖𝑘 ))𝑘+1

)
+ 𝑜 (𝑘).
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Since 𝜔𝑘 → 0, 𝑘/(𝑘 + 1) → 1, (1 − 𝜂2

𝑘
)𝑘+1 → 1, and (𝜖𝑘 (2 − 𝜖𝑘 ))𝑘+1 → 0, we have confirmed that

lim sup𝑘→∞𝐴(𝑧𝑘 ) ≤ 𝐿. Since ∥𝑧𝑘 ∥2 and ∥∇𝑧𝑘 ∥2 are bounded, 𝑧𝑘 ∈ 𝐻 1(Ω). Further, by the same

reasoning as we used in Theorem 3.1, also 𝜙 ◦ 𝑧𝑘 ∈ 𝐻 1(Ω).
Next we show that also the third term in (a.8) vanishes. Denote 𝐾𝑘 := (𝑆𝛾 )𝑏𝑘\(𝑆𝛾 )𝑏𝑘/2. By construc-

tion 𝑧𝑘 = 1 − 𝜖𝑘 on (𝑆𝛾 )𝑏𝑘 . Thus using (a.7), Leibniz rule, and Young’s inequality gives

(a.14)

∫
𝐾𝑘∩Ω

|∇𝛾𝑘 |2(1 − 𝑧2

𝑘
)2𝑘 𝑑𝑥 =

∫
𝐾𝑘∩Ω

|∇𝛾𝑘 |2(2𝜖𝑘 − 𝜖2

𝑘
)2𝑘 𝑑𝑥

≤
∫
𝐾𝑘∩Ω

2( |∇𝛾 |2(1 − Ψ𝑘 )2 + (𝛾𝑚 − 𝛾)2 |∇Ψ𝑘 |2) (2𝜖𝑘 − 𝜖2

𝑘
)2𝑘 𝑑𝑥,

≤
∫
𝐾𝑘∩Ω

2( |∇𝛾 |2 + (𝛾𝑀 − 𝛾𝑚)2 |∇Ψ𝑘 |2) (2𝜖𝑘 − 𝜖2

𝑘
)2𝑘 𝑑𝑥.

Since by (a.3) |∇𝛾 | ∈ 𝐿2(𝐾𝑘 ∩Ω), and sinceℒ((𝑆𝛾 )𝑏𝑘 ) → 0, by [24, Corollary 16.9],

∫
𝐾𝑘∩Ω

2|∇𝛾 |2(2𝜖𝑘 −
𝜖2

𝑘
)2𝑘 𝑑𝑥 → 0, regardless of 𝜖𝑘 ∈ [0, 1). To simplify the notations we take 𝑐 := 2(𝛾𝑀 − 𝛾𝑚)2

and

ℯ𝑘 := 2𝜖𝑘 − 𝜖2

𝑘
.

Similarly to the construction of 𝑧𝑘 , we choose Ψ𝑘 to be only a function of 𝜏 on 𝐾𝑘 , Ψ𝑘 (𝑦) = Ψ̂𝑘 (𝜏 (𝑦))
for some Ψ̂𝑘 . Again using the co-area formula and |∇𝜏 (𝑥) | = 1 a.e., we again write

(a.15)

∫
𝐾𝑘∩Ω

|∇Ψ𝑘 (𝑥) |2ℯ2𝑘
𝑘
𝑑𝑥 ≤

∫
𝐾𝑘

|∇Ψ𝑘 (𝑥) |2ℯ2𝑘
𝑘
𝑑𝑥 = ℯ

2𝑘
𝑘

∫ 𝑏𝑘

𝑏𝑘/2

|∇Ψ̂𝑘 (𝑡) |2ℋ(𝑡)𝑑𝑡

where Ψ̂𝑘 is a locally Lipschitz function only depending on 𝑡 . Before writing explicit formula for Ψ𝑘 ,
let us examine the sequence 𝑏𝑘 . Note that 𝑏𝑘 is an arbitrary sequence that satisfies (a.5). It is easy to

see that this is satisfied by 𝑏𝑘 = 1/𝑘2+𝛿
with 𝛿 > 0, as soon as 𝑘 > 𝑘0 with large enough 𝑘0 so that

(𝑆𝛾 )𝑏𝑘 ⊂ Ω. We will fix 𝑏𝑘 := 1/𝑘2+𝛿
but we let 𝛿 > 0 to be arbitrary. We also assume that 𝑘 ≥ 𝑘0.

Now recall that Ψ𝑘 = 1 on (𝑆𝛾 )𝑏𝑘/2, Ψ𝑘 = 0 on Ω\(𝑆𝛾 )𝑏𝑘 , Ψ𝑘 ∈ 𝐻 1(Ω), and further, |∇Ψ𝑘 |2 has to be

locally Lipschitz due to the usage of the co-area formula. These conditions imply that ∇Ψ̂𝑘 |𝜕 (𝑆𝛾 )𝑏𝑘 /2
=

∇Ψ̂𝑘 |𝜕 (𝑆𝛾 )𝑏𝑘 = 0 a.e. and thus a simple choice that satisfies them is a piecewise polynomial function

(a.16) Ψ̂𝑘 (𝑡) :=


1, 𝑡 ∈ [0, 𝑏𝑘/2)
(4(𝑏𝑘 − 𝑡)2(4𝑡 − 𝑏𝑘 ))/𝑏3

𝑘
, 𝑡 ∈ [𝑏𝑘/2, 𝑏𝑘 ],

0, otherwise.

Again, since |∇𝜏 (𝑥) | = 1 a.e., |∇Ψ̂𝑘 (𝑡) | = (24(−𝑏2

𝑘
+ 3𝑏𝑘𝑡 − 2𝑡2))/𝑏3

𝑘
a.e. when 𝑡 ∈ [𝑏𝑘/2, 𝑏𝑘 ]. This

polynomial has maximum at
3

4
𝑏𝑘 , thus ∥|∇Ψ̂𝑘 |2∥𝐿∞ ( [𝑏𝑘/2,𝑏𝑘 ] ) = 9/𝑏2

𝑘
. Then

(a.17) 𝑐ℯ2𝑘
𝑘

∫ 𝑏𝑘

𝑏𝑘/2

|∇Ψ̂𝑘 (𝑡) |2ℋ(𝑡)𝑑𝑡 ≤
9𝑐ℯ2𝑘

𝑘

𝑏2

𝑘

∫ 𝑏𝑘

𝑏𝑘/2

ℋ(𝑡)𝑑𝑡 ≤
9𝑐ℯ2𝑘

𝑘

𝑏2

𝑘

∫ 𝑏𝑘

0

ℋ(𝑡)𝑑𝑡 =
9𝑐ℯ2𝑘

𝑘

𝑏2

𝑘

A(𝑏𝑘 ) .

since ∇A = ℋ a.e., and since by (a.3) A(0) = 0. Also by (a.3), lim sup𝑘→∞ A(𝑏𝑘 )/𝑏𝑘 = 𝐿, meaning

that need to only consider the term ℯ
2𝑘
𝑘
/𝑏𝑘 . Now let 𝑛 ∈ ℕ so that 𝑛 ≥ 𝛿 . Then 1/𝑏𝑘 = 𝑘2+𝛿 ≤ 𝑘2+𝑛

.

Since 𝜖𝑘 < 1, also ℯ𝑘 < 1, an application of L’Hôspital rule shows ℯ
2𝑘
𝑘
/𝑘−2−𝑛 → 0 as 𝑘 → ∞, i.e.,

lim sup

𝑘→∞
ℯ

2𝑘
𝑘
𝑐

∫
𝐾𝑘

|∇Ψ𝑘 |2 𝑑𝑥 ≤ lim sup

𝑘→∞
9𝑐𝑘2+𝑛

ℯ
2𝑘
𝑘

A(𝑏𝑘 )/𝑏𝑘 = 9𝑐 (0 · 𝐿) = 0.

Since all of the additional terms in
¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) vanish, we have shown that

lim sup

𝑘→∞
¯𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) = lim sup

𝑘→∞
𝐹𝑘 (𝛾𝑘 , 𝑧𝑘 ) ≤ 𝐹 (𝛾, 0),

as 𝜖𝑘→ 0. This finishes the proof. □

Jauhiainen, Valkonen, and Seppänen Mumford–Shah regularization in electrical impedance . . .



Manuscript, 2022-02-22 page 28 of 31

Lemma a.2 yields a reconstruction sequence for any 𝛾 ∈ SBV(Ω) for which the Minkowski upper limit

𝐿(𝑆𝛾 ) := lim sup

𝜌→ 0

ℒ({𝑥 ∈ Ω | dist(𝑥, 𝑆𝛾 ) < 𝜌})
2𝜌

satisfies 𝐿(𝑆𝛾 ) ≤ ℋ
𝑁−1(𝑆𝛾 ) or 𝐹 (𝛾) = ∞. Next we extend this to SBV(Ω) with arguments similar to

[2, Propositions 5.2-3].

Lemma a.3. Suppose that 𝛼 > 0, Ω ⊂ ℝ𝑁 is open and bounded, and that Assumption 3.2 holds. Then
given any 𝛾 ∈ 𝑆𝐵𝑉 (Ω) there exists a reconstruction sequence {(𝛾𝑘 , 𝑧𝑘 )}𝑘∈ℕ ⊂ ¯𝐷𝑘 (Ω) with 𝜖𝑘→ 0, such
that (3.7) holds.

Proof. We can focus on the case 𝛾 ∈ SBV(Ω) ∩ [𝛾𝑚, 𝛾𝑀 ] as otherwise 𝐹 (𝛾) = ∞. We define the class of

functions

ℱ(Ω) := {𝛾 ∈ GSBV(Ω) | 𝐹 (𝛾, 0) = ∞ or there exists {𝑣ℓ }ℓ∈ℕ ⊂ 𝑆𝐵𝑉 (Ω) ∩ 𝐿∞(Ω),
lim

ℓ→∞
𝐿(𝑆𝑣ℓ ) −ℋ

𝑁−1(𝑆𝑣ℓ ) = 0,
˜𝐹 (𝑣ℓ , 0) → ˜𝐹 (𝛾, 0),

and 𝑣ℓ → 𝛾 in measure.}

where 𝐹 is the Mumford-Shah functional without the constraints of 𝛾 . Since Assumption 3.2 holds,

[2, Proposition 5.3] gives ℱ(Ω) ∩ [𝛾𝑚, 𝛾𝑀 ] = SBV(Ω) ∩ [𝛾𝑚, 𝛾𝑀 ]. Indeed, the sequences {𝑣ℓ }ℓ∈𝑁 ⊂
SBV(Ω) ∩ 𝐿∞(Ω) with 𝑣ℓ → 𝛾 ∈ ℱ(Ω) that satisfy the conditions of ℱ(Ω) are solutions to

(a.18) min

𝑣∈𝑆𝐵𝑉 (Ω′ )

∫
Ω′

|∇𝑣 |2𝑑𝑥 +ℋ
𝑁−1(𝑆𝑣) + ℓ

∫
Ω′

|𝑣 − 𝛾 |2𝑑𝑥,

where Ω′ = Ω ∪𝑈 for𝑈 the neighbourhood from Assumption 3.2 and 𝛾 is extended to Ω′
be reflecting

with 𝜙 . Since 𝛾 ∈ [𝛾𝑚, 𝛾𝑀 ], also 𝑣ℓ ∈ [𝛾𝑚, 𝛾𝑀 ], meaning that
˜𝐹 (𝛾) = 𝐹 (𝛾) and ˜𝐹 (𝑣ℓ ) = 𝐹 (𝑣ℓ ).

Thus, for all 𝛾 ∈ SBV(Ω) ∩ [𝛾𝑚, 𝛾𝑀 ] we can find a sequence {𝑣ℓ }ℓ∈ℕ ⊂ SBV(Ω) ∩ [𝛾𝑚, 𝛾𝑀 ] such that

(a.19) 𝑣ℓ → 𝛾 in measure, lim

ℓ→∞
𝐿(𝑆𝑣ℓ ) −ℋ

𝑁−1(𝑆𝑣ℓ ) = 0, and 𝐹 (𝑣ℓ , 0) → 𝐹 (𝛾, 0) .

For each ℓ ∈ ℕ, Lemma a.2 now gives a sequence {(𝑣ℓ, 𝑗 , 𝑧ℓ, 𝑗 )} 𝑗∈ℕ ⊂ ¯𝐷𝑘,𝑁 (Ω) such that

(a.20) (𝑣ℓ, 𝑗 , 𝑧ℓ, 𝑗 ) → (𝑣ℓ , 0) and lim sup

𝑗→+∞
¯𝐹 𝑗 (𝑣ℓ, 𝑗 , 𝑧ℓ, 𝑗 ) ≤

∫
Ω
|∇𝑣ℓ |2 𝑑𝑥 + 𝐿(𝑆𝑣ℓ ).

Since convergence in measure is metrizable on bounded domains Ω, a diagonal argument now estab-

lishes a diagonal sequence {(𝛾𝑘 , 𝑧𝑘 )}𝑘∈ℕ, obtained for some {(ℓ𝑘 , 𝑗𝑘 )}𝑘∈ℕ as (𝛾𝑘 , 𝑧𝑘 ) := (𝑣ℓ𝑘 , 𝑗𝑘 , 𝑧ℓ𝑘 , 𝑗𝑘 ),
satisfying the Γ-limsup inequality. Indeed, by the metrizability, (𝑣ℓ𝑘 , 𝑗𝑘 , 𝑧ℓ𝑘 , 𝑗𝑘 ) → (𝛾, 0) while using
(a.20) and the definition ofℱ(Ω) and finishing with (a.19) yields

lim sup

𝑘→+∞
¯𝐹 𝑗 (𝑣ℓ𝑘 , 𝑗𝑘 , 𝑧ℓ𝑘 , 𝑗𝑘 ) ≤ lim sup

ℓ→+∞

(∫
Ω
|∇𝑣ℓ |2 𝑑𝑥 + 𝐿(𝑆𝑣ℓ )

)
= lim sup

ℓ→+∞

(∫
Ω
|∇𝑣ℓ |2 𝑑𝑥 +ℋ

𝑁−1(𝑆𝑣ℓ )
)
.

= lim sup

ℓ→+∞
𝐹 (𝑣ℓ , 0)

= 𝐹 (𝛾, 0) . □

Jauhiainen, Valkonen, and Seppänen Mumford–Shah regularization in electrical impedance . . .



Manuscript, 2022-02-22 page 29 of 31

references

[1] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity prob-
lems, Courier Corporation, 2000.

[2] L. Ambrosio and V.M. Tortorelli, Approximation of functional depending on jumps by elliptic

functional via Gamma-convergence, Communications on Pure and Applied Mathematics 43 (1990),
999–1036.

[3] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems, Bollettino
dell’Unione Matematica Italiana (1992).

[4] A. Braides, Gamma-convergence for Beginners, Oxford lecture series in mathematics and its appli-

cations, Oxford University Press, 2002.

[5] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM Journal on Imaging Sciences
3 (2011), 492–526, doi:10.1137/090769521.

[6] K. Bredies,K. Kunisch, andT. Valkonen,Properties of𝐿1
-TGV

2
: The one-dimensional case, Journal

of Mathematical Analysis and Applications 398 (2013), 438–454, doi:10.1016/j.jmaa.2012.08.053.

[7] K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation

constraints, in Proceedings of the 9th International Conference on Sampling Theory and Applications
(SampTA) 2011, Singapore, 2011, arXiv:2005.09725.

[8] A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its

Applications to Continuum Physics (Rio de Janerio), Soc, Brasileira de Mathematica (1980).

[9] A. P. Calderón, On an inverse boundary value problem, Computational & Applied Mathematics 25
(2006), 133–138.

[10] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional, ESAIM: Mathe-
matical Modelling and Numerical Analysis 33 (1999), 261–288.

[11] A. Chambolle and G. Dal Maso, Discrete approximation of the Mumford-Shah functional in

dimension two, ESAIM: Mathematical Modelling and Numerical Analysis 33 (1999), 651–672.

[12] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing
10 (2001), 266–277, doi:10.1109/83.902291.

[13] K. S. Cheng, D. Isaacson, J. Newell, and D. G. Gisser, Electrode models for electric current com-

puted tomography, IEEE Transactions on Biomedical Engineering 36 (1989), 918–924.

[14] C. Clason, S. Mazurenko, and T. Valkonen, Primal-dual proximal splitting and generalized con-

jugation in nonsmooth nonconvex optimization, Applied Mathematics and Optimization (2020),

doi:10.1007/s00245-020-09676-1, arXiv:1901.02746.

[15] H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Mathematics and Its

Applications, Springer, 2000.

[16] H. Federer, Geometric measure theory, Springer, 2014.

[17] M. Foare, N. Pustelnik, and L. Condat, Semi-linearized proximal alternating minimization for a

discrete Mumford–Shah model, IEEE Transactions on Image Processing 29 (2019), 2176–2189.

Jauhiainen, Valkonen, and Seppänen Mumford–Shah regularization in electrical impedance . . .

https://dx.doi.org/10.1137/090769521
https://dx.doi.org/10.1016/j.jmaa.2012.08.053
https://arxiv.org/abs/2005.09725
https://dx.doi.org/10.1109/83.902291
https://dx.doi.org/10.1007/s00245-020-09676-1
https://arxiv.org/abs/1901.02746


Manuscript, 2022-02-22 page 30 of 31

[18] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration

of images, IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (1984), 721–741, doi:
10.1109/tpami.1984.4767596.

[19] M. Gobbino, Finite difference approximation of the Mumford-Shah functional,Communications on
Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences
51 (1998), 197–228.

[20] K. Hohm, M. Storath, and A. Weinmann, An algorithmic framework for Mumford–Shah regular-

ization of inverse problems in imaging, Inverse Problems 31 (2015), 115011.

[21] M. Huska, D. Lazzaro, S. Morigi, A. Samorè, and G. Scrivanti, Spatially-adaptive variational re-

constructions for linear inverse electrical impedance tomography, Journal of Scientific Computing
84 (2020), 1–29.

[22] J. Jauhiainen, P. Kuusela, A. Seppänen, and T. Valkonen, Relaxed Gauss–Newton Methods with

Applications to Electrical Impedance Tomography, SIAM Journal on Imaging Sciences 13 (2020),
1415–1445.

[23] J. Jauhiainen, M. Pour-Ghaz, T. Valkonen, and A. Seppänen, Nonplanar sensing skins for struc-

tural health monitoring based on electrical resistance tomography, Computer-Aided Civil and
Infrastructure Engineering (2020).

[24] J. Jost, Postmodern analysis, Springer Science & Business Media, 2006.

[25] S. Järvenpää, A finite element model for the inverse conductivity problem, Phil. Lic., University of

Helsinki, 1996.

[26] J. Kaipio and E. Somersalo, Statistical and computational inverse problems, volume 160, Springer

Science & Business Media, 2006.

[27] K. Karhunen, A. Seppänen, A. Lehikoinen, J. Blunt, J. P. Kaipio, and P. J. Monteiro, Electrical

Resistance Tomography for Assessment of Cracks in Concrete., ACI Materials Journal 107 (2010).

[28] K. Karhunen, A. Seppänen, A. Lehikoinen, P. J. Monteiro, and J. P. Kaipio, Electrical resistance

tomography imaging of concrete, Cement and concrete research 40 (2010), 137–145.

[29] L. Kiefer, M. Storath, and A. Weinmann, An efficient algorithm for the piecewise affine-linear

Mumford-Shah model based on a Taylor jet splitting, IEEE Transactions on Image Processing 29

(2019), 921–933.

[30] J. Kinnunen, Lecture notes in Measure and Integral, 2020.

[31] J. Kinnunen, Lecture notes in Sobolev Spaces, 2020.

[32] E. Klann and R. Ramlau, Regularization Properties of Mumford–Shah-Type Functionals with

Perimeter and Norm Constraints for Linear Ill-Posed Problems, SIAM Journal on Imaging Sciences
6 (2013), 413–436.

[33] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications,
SIAM, 2012, doi:10.1137/1.9781611972344.

[34] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated

variational problems, Communications on Pure and Applied Mathematics 42 (1989), 577–685, doi:
10.1002/cpa.3160420503.

Jauhiainen, Valkonen, and Seppänen Mumford–Shah regularization in electrical impedance . . .

https://dx.doi.org/10.1109/TPAMI.1984.4767596
https://dx.doi.org/10.1109/TPAMI.1984.4767596
https://dx.doi.org/10.1137/1.9781611972344
https://dx.doi.org/10.1002/cpa.3160420503
https://dx.doi.org/10.1002/cpa.3160420503


Manuscript, 2022-02-22 page 31 of 31

[35] A. Nissinen, L. Heikkinen, V. Kolehmainen, and J. Kaipio, Compensation of errors due to dis-

cretization, domain truncation and unknown contact impedances in electrical impedance tomog-

raphy, Measurement Science and Technology 20 (2009), 105504.

[36] R. Ramlau and W. Ring, A Mumford–Shah level-set approach for the inversion and segmentation

of X-ray tomography data, Journal of Computational Physics 221 (2007), 539–557.

[37] R. Ramlau and W. Ring, Regularization of ill-posed Mumford–Shah models with perimeter penal-

ization, Inverse Problems 26 (2010), 115001.

[38] L. Rondi and F. Santosa, Enhanced electrical impedance tomography via the Mumford–Shah

functional, ESAIM: Control, Optimisation and Calculus of Variations 6 (2001), 517–538.

[39] Y. Shi, X. Zhang, Z. Rao, M. Wang, and M. Soleimani, Reduction of staircase effect with total

generalized variation regularization for electrical impedance tomography, IEEE Sensors Journal 19
(2019), 9850–9858.

[40] D. Smyl, M. Hallaji, A. Seppänen, and M. Pour-Ghaz, Quantitative electrical imaging of three-

dimensional moisture flow in cement-based materials, International Journal of Heat and Mass
Transfer 103 (2016), 1348–1358.

[41] E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode models for

electric current computed tomography, SIAM Journal on Applied Mathematics 52 (1992), 1023–1040.

[42] M. Storath, A. Weinmann, and L. Demaret, Jump-sparse and sparse recovery using Potts func-

tionals, IEEE Transactions on Signal Processing 62 (2014), 3654–3666, doi:10.1109/tsp.2014.2329263.

[43] M. Storath, A. Weinmann, J. Frikel, and M. Unser, Joint image reconstruction and segmentation

using the Potts model, Inverse Problems 31 (2015), 025003, doi:10.1088/0266-5611/31/2/025003.

[44] T. Valkonen, A primal-dual hybrid gradient method for non-linear operators with applications to

MRI, Inverse Problems 30 (2014), 055012, doi:10.1088/0266-5611/30/5/055012.

[45] T. Valkonen, The jump set under geometric regularisation. Part 2: Higher-order approaches,

Journal of Mathematical Analysis and Applications 453 (2017), 1044–1085, doi:10.1016/j.jmaa.2017.
04.037, arXiv:1407.2334.

[46] A. Voss, Imaging moisture flows in cement-based materials using electrical capacitance tomography,
PhD thesis, University of Eastern Finland, 2020.

[47] A. Voss, N. Hänninen, M. Pour-Ghaz, M. Vauhkonen, and A. Seppänen, Imaging of two-

dimensional unsaturated moisture flows in uncracked and cracked cement-based materials using

electrical capacitance tomography, Materials and Structures 51 (2018), 1–10.

[48] A. Voss, P. Hosseini, M. Pour-Ghaz, M. Vauhkonen, and A. Seppänen, Three-dimensional electri-

cal capacitance tomography–A tool for characterizing moisture transport properties of cement-

based materials, Materials & Design 181 (2019), 107967.

[49] A. Weinmann, L. Demaret, and M. Storath, Mumford–Shah and Potts regularization for manifold-

valued data, Journal of Mathematical Imaging and Vision 55 (2016), 428–445.

Jauhiainen, Valkonen, and Seppänen Mumford–Shah regularization in electrical impedance . . .

https://dx.doi.org/10.1109/TSP.2014.2329263
https://dx.doi.org/10.1088/0266-5611/31/2/025003
https://dx.doi.org/10.1088/0266-5611/30/5/055012
https://dx.doi.org/10.1016/j.jmaa.2017.04.037
https://dx.doi.org/10.1016/j.jmaa.2017.04.037
https://arxiv.org/abs/1407.2334

	Introduction
	Basic properties
	The complete electrode model
	Continuity of the conductivity-to-current maps

	Approximation of the Mumford–Shah functional
	Setting up the approximation
	Gamma-convergence of the regularization functionals
	Convergence of solutions

	Numerical experiments
	Solving the discretized problem
	Studies with synthetic data
	Results: Synthetic data

	Experimental studies
	Results: Experimental measurement data

	Discussion

	Conclusions
	The proofs of the Gamma-liminf and Gamma-limsup inequalities

