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Abstract

In this article, the denoising of smooth (H1-regular) images is considered. To reach
this objective, we introduce a simple and highly efficient over-relaxation technique for
solving the convex, non-smooth optimization problems resulting from the denoising
formulation. We describe the algorithm, discuss its convergence and present the results
of numerical experiments, which validate the methods under consideration with respect
to both efficiency and denoising capability. Several issues concerning the convergence
of an Uzawa algorithm for the solution of the same problem are also discussed.
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1 Introduction

In this article, we consider numerical methods for solving the following nonsmooth, strictly
convex optimization problem

min
v∈V
J (v), J (v) =

∫
Ω

[
|v − z|+ β1

2

∣∣∣∣ ∂v∂x1

∣∣∣∣2 + β2

2

∣∣∣∣ ∂v∂x2

∣∣∣∣2
]
dx, (1)

where Ω is a domain in R2 (a rectangle in many applications); β1, β2 > 0 denote regularization
parameters; dx = dx1dx2; and V is a closed vector or affine subspace of H1(Ω) (it can be
H1(Ω) itself).

As discussed and thoroughly tested in [11], the denoising approach based on formulation
(1) is very efficient in cases, where the noise contained in the original image (observation)
z is not due to a single normal distribution with fixed variance, but contains outliers and
other degradations due to mixed and varying characteristics of the noise distribution (e.g.
[8, 19, 18]). This case also includes the so-called “salt and pepper noise” [1].

To elucidate the practical usability of the considered formulation, let us give immediately
an example illustrated in Figure 1. The example is related to slow-combustion (smouldering)
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Figure 1: Front profiles of a lens-paper burn before (h(x, t)) and after (hfiltered(x, t)) filtering
the data [16].

fronts propagating in burning sheets of paper [16]. The process can be modelled using the
Kardar-Parisi-Zhang (KPZ) equation

∂th = c+ ν∆h+
λ

2
(∇h)2 + η, (KPZ)

where h ≡ h(x, t) is the height of the interface, c its zero-slope velocity, and η denotes the
effective noise [10]. In order to characterize the burning material using the model parameters
c, ν, and λ, the propagation of the emerging one-dimensional front was recorded with a CCD-
camera system. Outliers in the resulting image were caused by, e.g., ash particles detached
from the front. The denoising in this example turned out to be very successfull, because the
unrealistic points (pixel values) showing nonphysical decrease of the height of the burning
front were removed but the local variation remained, which allowed the estimation of the
unknown model parameters with a sufficient accuracy using local fitting techniques [16].
The numerical results in this paper are also based on a few real recordings related to this
application. Based on this real data, we present a comparison of the results based on (1)
with those obtained with some classical methods for image processing ([9, 15]) to validate
the approach here.

The basic difficulty concerning the image denoising problem with L1-fitting is its nondif-
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ferentiability in the classical sense, although the recent trend introducing even more severe
nonsmoothness in optimization based image restoration is to consider formulations with non-
smooth BV/TV-type regularization. For an excellent description of various formulations and
related algorithms, and a suggestion to determine an appropriate regularization parameter we
refer to [1] and articles therein. Properties related to the use of L1-norm for image denoising
have been studied in e.g. [18].

From an algorithmic point of view, we investigated and developed in [11] an active-set
method (ASM) for solving the discrete problem resulting from finite element discretization
of (1). Being able to solve problems with hundreds of thousands of unknowns, we feel that
this is a successfull method for a nonsmooth optimization problem. However, the efficiency
of ASM relies on the corresponding efficiency of a linear system solver for a Poisson problem
on a sequence of varying and highly irregular geometries. Both the geometrical reasons
(e.g. unstructured grid to capture corner singularities for complicated domains) and the
needed amount of memory (CG method with multigrid preconditioner, see [13, 12]) are both
good reasons to consider alternative solution methods for (1). The successive over-relaxation
methods discussed in this article for solving (1) are clearly related to the ones discussed in
[2, 3] and [5] for the solution of problems from nonsmooth mechanics. To the best of our
knowledge they have never been applied to image processing with L1-fitting.

The content of the article is as follows: In Section 2, assuming that V = H1
0 (Ω), we

provide several characterizations of the unique solution of problem (1) and discuss various
consequences, including some which have computational implications. In Section 3, we dis-
cuss the finite element approximation of problem (1). In Section 4, we discuss the iterative
solution of problem (1) and of its finite element analogues with a particular emphasis on
a SOR type algorithm; for this last algorithm we will introduce a strategy for varying the
relaxation parameter at each time step and will prove that it guarantees the convergence.
In Section 5, we will discuss the implications of taking V = H1(Ω) in (1), a reasonable as-
sumption indeed, from a practical point of view; we will show that we still have existence of
solutions, but that uniqueness is a problematic issue, that we will discuss with some details
in both the continuous and discrete cases. Finally, in Section 6 we present and discuss the
results of numerical experiments.

2 Existence, uniqueness and characterizations of the

solution to problem (1)

Suppose for simplicity that V = H1
0 (Ω) (the more complicated case V = H1(Ω) will be

considered in Section 5); suppose also that z ∈ L2(Ω) (which covers all practical applications).
Since Ω is bounded, the mapping

v 7→

√
β1

∥∥∥∥ ∂v

∂x1

∥∥∥∥2
L2(Ω)

+ β2

∥∥∥∥ ∂v

∂x2

∥∥∥∥2
L2(Ω)

: H1(Ω)→ R

defines over H1
0 (Ω) a Hilbertian norm, equivalent to the one induced by H1(Ω). The func-

tional v 7→ ∥v − z∥L1(Ω) is convex and continuous over L2(Ω), and therefore over H1
0 (Ω).
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From these properties, problem (1) (a classical problem from Calculus of Variations) has a
unique solution u characterized by (cf., e.g., [3, Lemma I.4.1], [5]):

u ∈ H1
0 (Ω),∫

Ω

[
β1

∂

∂x1

(v − u)
∂u

∂x1

+ β2
∂

∂x2

(v − u)
∂u

∂x2

]
dx+ j(v)− j(u) ≥ 0, ∀v ∈ H1

0 (Ω),
(2)

where

j(v) =

∫
Ω

|v − z|dx, ∀v ∈ L1(Ω) (⊃ H1
0 (Ω)).

Variational problems such as (2) are known as variational inequalities (of the second kind,
by some authors); constructive methods for the solution of a large selection of variational
inequalities (mostly from Mechanics and Physics) can be found in, e.g., [3], [5].

Remark 2.1. In the non-differentiable context associated with the functional j(·) relation
(2) plays the role of the Euler-Lagrange equations associated to the differentiable problems
from Calculus of Variations.

Remark 2.2. An equivalent formulation of (2) is provided by the following (multi-valued)
equation:

u ∈ H1
0 (Ω),

− β1
∂2u

∂x2
1

− β2
∂2u

∂x2
2

+ ∂j(u) ∋ 0,
(3)

where ∂j(u) is the sub-gradient of j(·) at u.
Another equivalent characterization of the solution is provided by

u ∈ H1
0 (Ω), λ ∈ Λ = {µ ∈ L2(Ω) | |µ(x)| ≤ 1 a.e. in Ω},

− β1
∂2u

∂x2
1

− β2
∂2u

∂x2
2

+ λ = 0 in Ω,

λ(u− z) = |u− z|,

(4)

which, in some sense, makes (3) more precise by identifying the unique element of ∂j(u)
(namely λ) for which the inclusion in (3) reduces to an equation in L∞(Ω). Incidentally, if
the boundary Γ of Ω is smooth and/or Ω is convex, the property λ ∈ Λ(⊂ L∞(Ω)) implies
u ∈ W 2,p(Ω) for all p ∈ [1,+∞), which implies in turn (from one of the Sobolev imbedding
theorems; see, e.g., [17]) that u ∈ C1,α(Ω̄) for all α ∈ [0, 1), i.e., it has “almost” the C2(Ω̄)-
regularity.

Remark 2.3. It can be shown (see, e.g., [3], [5]) that the system (4) characterizes the pair
{u, λ} as a saddle-point over H1

0 (Ω)× Λ of the Lagrangian functional L defined by:

L(v, µ) =
1

2

∫
Ω

(β1|∂v/∂x1|2 + β2|∂v/∂x2|2)dx+

∫
Ω

µ(v − z)dx.
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Following [3], [5] (see, also [4, Chapter 4]) the above observation suggests to solve problem
(1), via the equivalent system (4), using the Uzawa type algorithm of the form:

λ0 is given in Λ (λ0 = 0, for example). (5)

For n ≥ 0, λn being known, compute un and λn+1 as follows: solve

un ∈ H1
0 (Ω), −β1

∂2un

∂x2
1

− β2
∂2un

∂x2
2

+ λn = 0 in Ω, (6)

λn+1 = PΛ[(λ
n + ρ(un − z)], (7)

where PΛ, the orthogonal projection operator from L2(Ω) onto Λ, is defined by

PΛ(µ)(x) = inf[1, sup[−1, µ(x)]], a.e. in Ω, ∀µ ∈ L2(Ω).

We observe that, for obvious reasons, un has the same regularity properties as u, namely

un ∈ H1
0 (Ω) ∩W 2,p(Ω),∀p ∈ [1,+∞)

Theorem 2.1. Suppose that
0 < ρ < 2min(β1, β2)κ0, (8)

where, in (8), κ0 is the smallest eigenvalue of the operator −∆ in H1
0 (Ω). Then, for all

λ0 ∈ Λ, s < 2, and p ∈ [1,+∞), we have

lim
n→+∞

un = u in W s,p(Ω), (9)

where u is the solution of problem (1).

Proof. Denote un− u and λn− λ by ūn and λ̄n, respectively. From (6) and (7) we then have
by subtraction and since the operator PΛ is a contraction of L2(Ω):

ūn ∈ H1
0 (Ω), −β1

∂2ūn

∂x2
1

− β2
∂2ūn

∂x2
2

+ λ̄n = 0 in Ω, (10)

and ∥∥λ̄n+1
∥∥
0,Ω
≤
∥∥λ̄n + ρūn

∥∥
0,Ω

, (11)

where ∥ · ∥0,Ω = ∥ · ∥L2(Ω). Relations (10) and (11) imply in turn that∫
Ω

[
β1

∂ūn

∂x1

∂v

∂x1

+ β2
∂ūn

∂x2

∂v

∂x2

]
dx+

∫
Ω

λ̄nvdx = 0, ∀v ∈ H1
0 (Ω), (12)

and

∥λ̄n∥20,Ω − ∥λ̄n+1∥20,Ω ≥ −2ρ
∫
Ω

λ̄nūndx− ρ2∥ūn∥20,Ω. (13)

Taking v = ūn in (12) and combining with (13) and the well-known inequality

∥∇v∥20,Ω ≥ κ0∥v∥20,Ω, ∀v ∈ H1
0 (Ω),
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(where κ0 is the smallest eigenvalue of −∆ operating in H1
0 (Ω)) yields

∥λ̄n∥20,Ω − ∥λ̄n+1∥20,Ω ≥ ρ[2min(β1, β2)− κ−1
0 ρ]∥∇ūn∥20,Ω. (14)

Suppose that the condition (8) holds; then the sequence {∥λ̄n∥20,Ω}n≥0 is decreasing; since it
is bounded from below by 0, it converges to some (non-negative) limit, implying from (14)
that

lim
n→+∞

∇ūn = 0 in (L2(Ω))2,

i.e.
lim

n→+∞
un = u in H1

0 (Ω). (15)

Combining (15) and (10), we can show (we skip the details) that

λn → λ in H−1(Ω) ∩ (L∞(Ω) weak-*),

which implies in turn that

un → u weakly in W 2,p(Ω),∀p ∈ [1,+∞). (16)

The injection of W 2,p(Ω) into W s,p(Ω) being compact if s < 2, relation (16) implies the
convergence result (9), and also

un → u in C1,α(Ω̄), ∀α ∈ [0, 1).

This concludes Remark 2.3 (algorithm (5)-(7) deserves further comments, some of them
will be given in following remarks).

Remark 2.4. The equivalent system (4) has proved already quite useful by: (i) bringing
information on the regularity of the solution u of problem (1); (ii) leading us to an iterative
method quite easy to implement in order to compute the solution. Actually, system (4) can
tell us more. Indeed, suppose that

z ∈ W 2,∞(Ω) ∩H1
0 (Ω). (17)

(A very strong assumption, implying that there is no need for the problem (1) based L1-
smoothing, since, from (4), it does not bring more than the W 2,∞(Ω)-regularity, precisely.)
Multiplying by u− z both sides of the elliptic equation in (4), we obtain, after integration by
parts, that ∫

Ω

[
β1

∂u

∂x1

∂

∂x1

(u− z) + β2
∂u

∂x2

∂

∂x2

(u− z)

]
dx+ ∥u− z∥L1(Ω) = 0. (18)

Denote u− z by w. It follows then from (18) that∫
Ω

[
β1

∣∣∣∣ ∂w∂x1

∣∣∣∣2 + β2

∣∣∣∣ ∂w∂x2

∣∣∣∣2
]
dx+

∫
Ω

[
β1

∂w

∂x1

∂z

∂x1

+ β2
∂w

∂x2

∂z

∂x2

]
dx+ ∥w∥L1(Ω) = 0. (19)
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Integrating by parts in the second integral in the left-hand side of (19) we obtain:∫
Ω

[
β1

∣∣∣∣ ∂w∂x1

∣∣∣∣2 + β2

∣∣∣∣ ∂w∂x2

∣∣∣∣2
]
dx−

∫
Ω

[
β1

∂2z

∂x2
1

+ β2
∂2z

∂x2
2

]
wdx+ ∥w∥L1(Ω) = 0. (20)

Let us denote by β the vector {β1, β2} and by |β| =
√

β2
1 + β2

2 the Euclidian norm of this
vector. It follows from (20) and the Schwarz inequality in R2 and from the Young inequality
that∫

Ω

[
β1

∣∣∣∣ ∂w∂x1

∣∣∣∣2 + β2

∣∣∣∣ ∂w∂x2

∣∣∣∣2
]
dx+∥w∥L1(Ω)

(
1− |β|

√∥∥∥∥∂2z

∂x2
1

∥∥∥∥2
L∞(Ω)

+

∥∥∥∥∂2z

∂x2
2

∥∥∥∥2
L∞(Ω)

)
≤ 0. (21)

It then follows from (21) that

u = z if |β| ≤ 1/

√∥∥∥∥∂2z

∂x2
1

∥∥∥∥2
L∞(Ω)

+

∥∥∥∥∂2z

∂x2
2

∥∥∥∥2
L∞(Ω)

. (22)

For less smooth functions z, the relation u = z will take place, if and only if β = 0.

Remark 2.5. The numerical experiments reported in [11] show that the number of iterations
(nit) required for the convergence of the discrete analogue of the Uzawa algorithm (5)-(7)
increases with 1/ |β| (z staying the same). Actually, for “small” values of |β|, nit becomes
prohibitively large, making the active set method (ASM), thoroughly discussed in [11], a
very attractive alternative. As we will see in Section 4, one of the main features of the
over-relaxation method discussed here is that its performance improves as β gets smaller, a
behavior it shares with the ASM algorithms discussed in [11]. In order to comprehend why
the performances of the Uzawa algorithm (5)-(7) deteriorate when |β| gets smaller (z staying
the same) we are going to return to system (4), assuming that β1 = β2 = β, for simplicity.
First we observe that (4) implies

λ ∈ Λ, u = −β−1(−∆)−1λ (23)

and ∫
Ω

(z − u)(µ− λ)dx ≥ 0, ∀µ ∈ Λ. (24)

In (23), (−∆)−1 denotes the inverse of −∆ for the homogeneous Dirichlet boundary condi-
tions; from now on we will denote by G (for Green) the above operator (−∆)−1. Operator
G is self-adjoint, compact and positive definite over L2(Ω); if Γ is smooth enough and/or Ω
is convex, then G is an isomorphism from L2(Ω) onto H1

0 (Ω)∩H2(Ω). Combining (23) and
(24) yields

λ ∈ Λ,

∫
Ω

(β−1Gλ+ z)(µ− λ)dx ≥ 0, ∀µ ∈ Λ. (25)

The elliptic variational inequality (25) is one of the many dual problems of (1). Actually,
(25) characterizes λ as the solution of the following minimization problem:

λ ∈ Λ, J ∗(λ) ≤ J ∗(µ), ∀µ ∈ Λ (26)
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with

J ∗(µ) =
1

2
β−1

∫
Ω

(Gµ)µdx+

∫
Ω

zµdx, ∀µ ∈ L2(Ω). (27)

Problem (25), (26) is well-posed from the boundedness of Λ and from the continuity and
strict convexity of J ∗ over L2(Ω). Since the differential DJ ∗(µ) of J ∗ at µ verifies

DJ ∗(µ) = β−1Gµ+ z, ∀µ ∈ L2(Ω), (28)

it follows then from (24)-(28) that the Uzawa algorithm (5)-(7) can be rewritten as:

λ0 is given in Λ. (29)

For n ≥ 0, we obtain λn+1 from λn via

λn+1 = PΛ[λ
n − ρ(β−1Gλn + z)], (30)

i.e., algorithm (5)-(7) is a gradient method with projection. In order to study the dependence
in β of the convergence of algorithm (5)-(7), we introduce λβ = β−1λ, Λβ = {µ ∈ L2(Ω) |
|µ(x)| ≤ β−1 a.e. in Ω}, and, without loss of generality, replace ρ by βρ in (7) and (30).
With obvious notation, algorithm (5)-(7), (28)-(30) can be rewritten as

λ0
β is given in Λ; (31)

for n ≥ 0, we obtain λn+1
β from λn

β via

λn+1
β = PΛβ

[λn
β − ρ(β−1Gλn

β + z)]. (32)

Concerning the convergence of algorithm (31), (32), ∀β > 0, we have convergence of
{λn

β}n≥0 if the condition 0 < ρ < 2κ0 holds (where, as in (8), κ0 is the smallest eigenvalue
of −∆ in H1

0 (Ω)). Since operator G lacks the L2(Ω)-ellipticity property (i.e., there is no c
( > 0) such that

∫
Ω
(Gµ)µdx ≥ c ∥µ∥2L2(Ω) , ∀µ ∈ L2(Ω), we can not expect the convergence

to behave uniformly with respect to β; in that case, the factor dominating the convergence is
the “size” of Λβ, which increases with β−1, making the target λβ more costly to reach as β
decreases (actually, unless z ∈ H2(Ω)∩H1

0 (Ω), we can prove that limβ→0+ ∥λβ∥L2(Ω) = +∞).

Remark 2.6. Although this issue is of little interest with respect to L1-fitting, we can wonder
about the behavior of the solution of problem (1) when |β| → +∞. In that direction, we can
show that if u is the solution to problem (1), with V = H1

0 (Ω), then

lim
min{β1,β2}→+∞

u = 0 in H1
0 (Ω) ∩W 2,p(Ω), ∀p ∈ [1,+∞).

3 Finite element approximation of problem (1)

We suppose that Ω is a polygonal domain of R2. Next, we introduce a triangulation Th
of Ω whose vertices coincide with the original observation points, i.e., the pixel coordinates
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defining the image to be denoised. We approximate then H1
0 (Ω) by the finite element space

V0h defined as follows:

V0h = {v | v ∈ C0(Ω̄), v|T ∈ P1, ∀T ∈ Th, v = 0 on Γ}, (33)

where P1 is the space of polynomials in two variables of degree ≤ 1. Let Σ0h be the set
of the vertices of Th which do not belong to Γ. We suppose that Σ0h = {Pi}N0h

i=1 , where
N0h = Card(Σ0h). To Σ0h, we associate the following vector basis of V0h:

B0h = {wi}N0h
i=1 , (34)

where the wis are uniquely defined by

wi ∈ V0h, ∀i = 1, . . . , N0h,

wi(Pi) = 1, ∀i = 1, . . . , N0h;wi(Q) = 0, ∀Q vertex of Th, Q ̸= Pi.
(35)

We then have

v =

N0h∑
i=1

v(Pi)wi, ∀v ∈ V0h. (36)

Finally, we denote by αi the area of the polygonal domain which is the union of the triangles
of Th which have Pi as a common vertex.

Using the above space V0h, we approximate problem (1) associated to V = H1
0 (Ω) by

Find uh ∈ V0h such that Jh(uh) ≤ Jh(v),∀v ∈ V0h, (37)

where

Jh(v) =
1

2

∫
Ω

[
β1

∣∣∣∣ ∂v∂x1

∣∣∣∣2 + β2

∣∣∣∣ ∂v∂x2

∣∣∣∣2
]
dx+

1

3

N0h∑
i=1

αi |v(Pi)− zi| . (38)

Using, for example, the methods discussed in [3, Section I.6] and [5] we can prove that
the approximate problem (37) has a unique solution characterized by

uh ∈ V0h,∫
Ω

[
β1

∂uh

∂x1

∂(v − uh)

∂x1

+ β2
∂uh

∂x2

∂(v − uh)

∂x2

]
dx

+
1

3

[
N0h∑
i=1

αi |v(Pi)− zi| −
N0h∑
i=1

αi |uh(Pi)− zi|

]
≥ 0, ∀v ∈ V0h.

(39)

From the above two references we can also prove that if: (i) For example, zi = z(Pi)
with z ∈ C0(Ω̄); (ii) h is the length of the largest edge(s) of Th; (iii) ∀h, the angles of Th are
bounded from below by θ0 > 0, then

lim
h→0

uh = u in H1
0 (Ω), (40)

u being the solution of problem (1).
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Remark 3.1. If we fix h, then: limβ→0 uh =
∑N0h

i=1 ziwi.

Remark 3.2. In (39), assume that v =
∑N0h

i=1 viwi and uh =
∑N0h

i=1 uiwi, and denote {vi}N0h
i=1

and {ui}N0h
i=1 by v and u, respectively. The approximate problem (39) takes then the following

(equivalent) formula:

u ∈ RN0h ,

(β1A1 + β2A2)u · (v − u) + jh(v)− jh(u) ≥ 0, ∀v ∈ RN0h ,
(41)

where the matrices A1 and A2 are both symmetric and positive definite; x · y =
∑N0h

i=1 xiyi
∀x = {xi}N0h

i=1 and y = yi
N0h
i=1 ∈ RN0h; and we have

jh(v) =

N0h∑
i=1

αi |vi − zi| , ∀v = {vi}N0h
i=1 ∈ RN0h .

System (41) characterizes u as the unique solution of the following minimization problem
(equivalent to (37)):

min
v

[
1

2
(β1A1 + β2A2)v · v + jh(v)], with v ∈ RN0h . (42)

Remark 3.3. One can show (see, e.g., [11, Lemma 3.1]) that the solution u of problem (41),
(42) is characterized by the existence of λ = {λi}N0h

i=1 such that

(β1A1 + β2A2)u · v +

N0h∑
i=1

αiλivi = 0, ∀v = {vi}N0h
i=1 ∈ RN0h ,

|λi| ≤ 1, λi(ui − zi) = |ui − zi| , ∀i = 1, . . . N0h.

(43)

The system (43) is clearly a discrete analogue of (4). From (43), we can derive an Uzawa
algorithm for the solution of problem (41), (42); such an algorithm has been investigated in
[11]. An important consequence of (43) is that, in the discrete case, there is always a positive
number βmin, depending upon z = {zi}N0h

i=1 , such that

u = z if |β| ≤ βmin, with βmin ≥ Amin/

√
∥A1z∥2∞ + ∥A2z∥2∞, (44)

with Amin = mini αi, i = 1, . . . , N0h, and ∥y∥∞ = maxi |yi|, i = 1, . . . , N0h, ∀y = {yi}N0h
i=1 ∈

RN0h. Relation (44) (whose (easy) proof is left to the reader) is a discrete analogue of (22).
The lower bound of βmin in (44) depends on the smoothness of z (assuming that zi = z(Pi),
∀i = 1, . . . , N0h); it ranges, typically, from O(h4), if z is piecewise continuous, to O(1), if
z ∈ W 2,∞(Ω).

4 A point-wise over-relaxation method for the solution

of the approximate problem

4.1 Generalities

In ref. [11], we discussed the iterative solution of problem (37), (39) by an active set method
and by a discrete variant of the Uzawa algorithm (5)-(7). The results of the numerical experi-
ments presented in [11] show clearly the superiority of the active set approach, particularly as

10



β gets smaller. Our goal here is to discuss a third method, of the point-wise over-relaxation
type; see also [21]. After describing the algorithm (in Section 4.2), we will discuss its con-
vergence (in Section 4.3). The automatic adjustment of the relaxation parameter(s) will also
be addressed.

4.2 Description of the over-relaxation algorithm

The finite dimensional problem (41), (42) is a particular case of

u ∈ RN , J(u) ≤ J(v), ∀v ∈ RN , (45)

where J(v) = J0(v) + J1(v), with

J0(v) =
1

2
Av · v − b · v, ∀v ∈ RN , (46)

and

J1(v) =
N∑
i=1

αi |vi − zi| , ∀v = {vi}Ni=1 ∈ RN . (47)

We suppose, in (46), (47), that A is an N ×N matrix, symmetric and positive definite, that
b = {bi}Ni=1 ∈ RN , and that αi > 0, ∀i = 1, . . . , N . The minimization problem (45) has a
unique solution characterized by

u ∈ RN , (Au− b) · (v − u) + J1(v)− J1(u) ≥ 0, ∀v ∈ RN . (48)

Remark 4.1. Compared with problem (41), (42), we have included in (45) the linear func-
tional v 7→ b · v; this allows us to cover the situations where one wishes to make the change
of variables v ← v − z and/or solve (1) when V = H1

g (Ω) = {v ∈ H1(Ω) | v = g on Γ} with
g smooth enough (g ∈ C0(Γ) ∩H1/2(Γ), typically).

Following, e.g., [2, 3, 5], we advocate the following relaxation algorithm:

u0 = {u0
1, . . . , u

0
N} is given in Rn; (49)

for n ≥ 0, un = {un
1 , . . . , u

n
N} being known we compute un+1 = {un+1

1 , . . . , un+1
N } as follows :

For i = 1, . . . , N , solve the following one-dimensional minimization problem

u
n+1/2
i ∈ R,

J(un+1
1 , . . . , un+1

i−1 , u
n+1/2
i , un

i+1, . . . , u
n
N) ≤ J(un+1

1 , . . . , un+1
i−1 , v, u

n
i+1, . . . , u

n
N),∀vi ∈ R,

(50)

and compute
un+1
i = un

i + ωn
i (u

n+1/2
i − un

i ) (with ωn
i ∈ [1, 2)). (51)

A strategy for the choice of ωn
i , leading to the convergence of the relaxation algorithm,

will be provided below. Concerning the solvability of problem (50), it follows from, e.g,
[2, 3, 5], that problem (50) has a unique solution characterized by:

u
n+1/2
i ∈ R,
∂J0
∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1/2
i , un

i+1, . . . , u
n
N)(vi − u

n+1/2
i )

+ αi(|vi − zi| −
∣∣∣un+1/2

i − zi

∣∣∣) ≥ 0, ∀vi ∈ R.

(52)

11



A more explicit form of (52) being (with obvious notation):

u
n+1/2
i ∈ R,

(
i−1∑
j=1

aiju
n+1
j + aiiu

n+1/2
i +

N∑
j=i+1

aiju
n
j − bi)(vi − u

n+1/2
i )

+ αi(|vi − zi| −
∣∣∣un+1/2

i − zi

∣∣∣) ≥ 0, ∀vi ∈ R,

(52’)

Actually, from (52’), we can easily show that

u
n+1/2
i = min

(
b
n+1/2
i + αi

aii
,max(zi,

b
n+1/2
i − αi

aii
)

)
, (53)

with

b
n+1/2
i = bi −

i−1∑
j=1

aiju
n+1
j −

N∑
j=i+1

aiju
n
j . (54)

From the practical point of view, (53) and (54) are the two most important relations of

this article, since they allow explicit determinination of u
n+1/2
i . It follows from [2, 3, 5] that

if one takes ωn
i = 1 ∀i and n, the convergence of (the Gauß-Seidel type) algorithm (49)-(51)

is guaranteed. However, as usual with this type of algorithm, it is always tempting to speed
up the convergence through the use of ωn

i > 1, if feasible. In that direction, we suggest the
following adaptive strategy for the choice of ωn

i :

If (u
n+1/2
i − zi)(u

n
i − zi) ≤ 0, take ωn

i = 1, namely un+1
i = u

n+1/2
i , (55)

else

if
u
n+1/2
i − zi
un
i − zi

≥ 1, take ωn
i = ωf (with ωf ∈ (1, ωopt]), (56)

else (since 0 < (u
n+1/2
i − zi)/(u

n
i − zi) < 1) take

ωn
i = min

(
un
i − zi

un
i − u

n+1/2
i

, ωf

)
. (57)

In (56), ωopt (< 2) is the optimal relaxation parameter for the solution of the linear
systems associated to matrix A. The choice of ωf will be discussed in the following section.

4.3 Convergence of the relaxation algorithm

In this paragraph we are going to prove the convergence of the relaxation algorithm (49)-
(51), assuming that ωn

i is provided by (55)-(57). To prove the convergence, we will make a
systematic use of the following classical relation (which is nothing but a Taylor expansion
applied to the polynomial function J0(·)):

J0(w)− J0(v) = (Av − b) · (w − v) +
1

2
A(w − v) · (w − v), ∀v,w ∈ Rn. (58)

We are going to prove now the following convergence theorem

12



Theorem 4.1. Suppose that we use (55)-(57) to adjust ωn
i . Then, ∀u0 ∈ RN , we have

lim
n→+∞

un = u, (59)

u being the solution of problem (45), (48).

Proof. We divide the proof in two parts, the first one being dedicated to proving that if
(55)-(57) holds, then

lim
n→+∞

(un+1 − un) = 0. (60)

1) We have

J(un)− J(un+1)

=
N∑
i=1

[J(un+1
1 , . . . , un+1

i−1 , u
n
i , . . . , u

n
N)− J(un+1

1 , . . . , un+1
i−1 , u

n+1
i , un

i+1, . . . , u
n
N)]

=
N∑
i=1

[J0(u
n+1
1 , . . . , un+1

i−1 , u
n
i , . . . , u

n
N)− J0(u

n+1
1 , . . . , un+1

i−1 , u
n+1
i , un

i+1, . . . , u
n
N)

+ αi(|un
i − zi| −

∣∣un+1
i − zi

∣∣)] (61)

(i) Consider first those indices i for which (55) prevails; we have then ωn
i = 1 and un+1

i =

u
n+1/2
i and the corresponding terms in (61) verify from (58):

J(un+1
1 , . . . , un+1

i−1 , u
n
i , . . . , u

n
N)− J(un+1

1 , . . . , un+1
i−1 , u

n+1
i , un

i+1, . . . , u
n
N)

= J0(u
n+1
1 , . . . , un+1

i−1 , u
n
i , . . . , u

n
N)− J0(u

n+1
1 , . . . , un+1

i−1 , u
n+1
i , un

i+1, . . . , u
n
N)

+ αi(|un
i − zi| −

∣∣un+1
i − zi

∣∣)
=

∂J0
∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1
i , un

i+1, . . . , u
n
N)(u

n
i − un+1

i )

+
1

2
aii
∣∣un

i − un+1
i

∣∣2 + αi(|un
i − zi| −

∣∣un+1
i − zi

∣∣).
(62)

Since un+1
i = u

n+1/2
i it follows from (52) and (55) that (62) reduces to

J(un+1
1 , . . . , un+1

i−1 , u
n
i , . . . , u

n
N)− J(un+1

1 , . . . , un+1
i−1 , u

n+1
i , un

i+1, . . . , u
n
N) ≥

1

2
aii
∣∣un

i − un+1
i

∣∣2 .
(63)

(ii) The other two situations, namely the ones associated with (56) and (57) are easier to
handle since the mapping vi 7→ J(un+1

1 , . . . , un+1
i−1 , vi, u

n
i+1, . . . , u

n
N) is linear-quadratic when

restricted to the half-lines vi ≤ zi and vi ≥ zi, implying in particular that in the situations
(56) and (57) we have

∂J

∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1/2
i , un

i+1, . . . , u
n
N) = 0 (64)

since u
n+1/2
i ̸= zi; we also have

∂J

∂ui

(un+1
1 , . . . , un+1

i−1 , wi, u
n
i+1, . . . , u

n
N)−

∂J

∂ui

(un+1
1 , . . . , un+1

i−1 , vi, u
n
i+1, . . . , u

n
N) = aii(wi − vi),

(65)
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if vi and wi are on the same side of zi (which is the case of u
n+1/2
i ).

If (56) or (57) hold we have thus from (58), (64), and (65):

J(un+1
1 , . . . , un+1

i−1 , u
n
i , . . . , u

n
N)− J(un+1

1 , . . . , un+1
i−1 , u

n+1
i , un

i+1, . . . , u
n
N)

=
∂J

∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1
i , un

i+1, . . . , u
n
N)(u

n
i − un+1

i ) +
1

2
aii
∣∣un

i − un+1
i

∣∣2
= [

∂J

∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1
i , un

i+1, . . . , u
n
N)

− ∂J

∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1/2
i , un

i+1, . . . , u
n
N)](u

n
i − un+1

i ) +
1

2
aii
∣∣un

i − un+1
i

∣∣2
= aii(u

n+1
i − u

n+1/2
i )(un

i − un+1
i ) +

1

2
aii
∣∣un

i − un+1
i

∣∣2 .
(66)

Observe that we have, from (51), un+1
i − u

n+1/2
i =

ωn
i −1

ωn
i

(un+1
i − un

i ) which combined with

(66) yields

J(un+1
1 , . . . , un+1

i−1 , u
n
i , . . . , u

n
N)− J(un+1

1 , . . . , un+1
i−1 , u

n+1
i , un

i+1, . . . , u
n
N)

=
2− ωn

i

2ωn
i

aii
∣∣un+1

i − un
i

∣∣2 ≥ 2− ωf

2ωf

aii
∣∣un+1

i − un
i

∣∣2 , (67)

if (56) or (57) hold.
Since ωf ∈ [1, 2), we have 0 < (2 − ωf )/(2ωf ) ≤ 1. Combining (63) and (67) we obtain

by summation in i that

J(un)− J(un+1) ≥ 2− ωf

2ωf

N∑
i=1

aii
∣∣un+1

i − un
i

∣∣2 . (68)

It follows from (63) and (68) that the sequence {J(un)}n≥0 is decreasing; since it is
bounded from below by J(u), it converges to some limit, implying that the left and then
right side in (68) converge to zero as n → +∞. We have thus proved (60) since aii > 0,
∀i = 1, . . . , N .

2) To prove the convergence of {un}n≥0, we observe that (48) implies

(Au− b) · (un − u) +
N∑
i=1

αi[|un
i − zi| − |ui − zi|] ≥ 0,

which implies in turn that

(Aun − b) · (un − u) +
N∑
i=1

αi[|un
i − zi| − |ui − zi|]

=
N∑
i=1

∂J0
∂ui

(un)(un
i − u) +

N∑
i=1

αi[|un
i − zi| − |ui − zi|] ≥ A(un − u) · (un − u). (69)
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It follows from (69) that

N∑
i=1

[
∂J0
∂ui

(un)− ∂J0
∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1/2
i , un

i+1, . . . , u
n
N)](u

n
i − ui)

+
N∑
i=1

∂J0
∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1/2
i , un

i+1, . . . , u
n
N)(u

n
i − ui) +

N∑
i=1

αi[|un
i − zi| − |ui − zi|]

≥ A(un − u) · (un − u). (70)

Relation (70) can be rewritten as

N∑
i=1

[

i−1∑
j=1

aij(u
n
j − un+1

j ) + aii(u
n
i − u

n+1/2
i )](uni − ui)

+
N∑
i=1

∂J0
∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1/2
i , uni+1, . . . , u

n
N )(uni − u

n+1/2
i ) +

N∑
i=1

αi[|uni − zi| −
∣∣∣un+1/2

i − zi

∣∣∣]
≥

N∑
i=1

∂J0
∂ui

(un+1
1 , . . . , un+1

i−1 , u
n+1/2
i , uni+1, . . . , u

n
N )(ui − u

n+1/2
i )

+ αi[|ui − zi| −
∣∣∣un+1/2

i − zi

∣∣∣] +A(un − u) · (un − u).

Since from (68) the sequence {J(un)}n≥0 is bounded, it implies that the sequence {un}n≥0

is bounded in RN . Moreover, (51) and (60) imply limn→+∞(un+1/2 − un) = 0. Combining
these properties with the Lipschitz continuity of the function ξ → |ξ|, we can easily show
that the

left-hand side of (70) converges to zero as n→ +∞. (71)

Since, from (52), the first term in the right-hand side is ≥ 0, it follows from (70) and (71)
that

lim
n→+∞

A(un − u) · (un − u) = 0.

Matrix A being positive definite, the above relation implies limn→+∞ un = u, which
completes the proof of the theorem.

Remark 4.2 (On the choice of ωf ). Suppose that one applies algorithm (49)-(51) to the
solution of problem (1), using a single relaxation parameter ω, i.e., ω is independent of i and
n. On one hand, for the Gauß-Seidel type method with ω = 1, we surely have convergence.
On the other hand, for small h, ωopt is close to 2. These observations together suggest that
a universal candidate for optimal ω would be around 1.5. However, numerical tests suggest
that better and sharper way is to majorize ωn

i in (56), (57) by ωopt.
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5 Solving problem (1) in H1(Ω)

5.1 Generalities

There is no basic difficulty at generalizing the methodology discussed in the previous sections
to those cases where the set V in problem (1) is of the following type:

V = {v ∈ H1(Ω), v = g on Γ0}, (72)

where Γ0 is an open subset (not necessarily connected) of the boundary Γ of Ω (we have
thus

∫
Γ0
dΓ > 0); indeed, assuming that g is smooth enough (i.e., ∃g̃ ∈ H1(Ω) such that

g = g̃|Γ0) the affine space V is non-empty implying that the associated problem (1) has a
unique solution u verifying the variational inequality problem (2), with V replacing H1

0 (Ω).
Similarly, the solution u of the prob1em (1), (72) is characterized by the following variant of
system (4):

u ∈ V, λ ∈ Λ = {µ ∈ L2(Ω) | |µ(x)| ≤ 1, a.e. on Ω},

− β1
∂2u

∂x2
1

− β2
∂2u

∂x2
2

+ λ = 0 in Ω,

¯̄β∇u · n = 0 on Γ \ Γ0,

λ(u− z) = |u− z| ,

(73)

where, in (73), ¯̄β denotes the matrix

(
β1 0
0 β2

)
and n is the unit outward normal vector at

Γ, i.e., u verifies a Neumann boundary condition on Γ \ Γ0 and a Dirichlet one on Γ0. As
in Section 2 with (4), we can derive from (73) an Uzawa algorithm operating in V × Λ and
converging to {u, λ}, if the analogue of ρ in algorithm (5)-(7), is taken positive and small
enough. The finite element method discussed in Section 3 applies, after minor modifications,
to the approximation of the problem (1), (72). To solve the resulting finite dimensional
problem, we can use the relaxation method discussed in Section 4.

In this section we are going to address the case where in problem (1) we have:

V = H1(Ω). (74)

Such a choice makes sense from a practical point of view; it avoids in particular the pre-
processing of the boundary data as described in Section 6.1. From a mathematical point
of view, problem (1) is a little more complicated with V defined by (74) than by (72),
concerning in particular the uniqueness of the solution. This increase in complexity persists
at the discrete level.

5.2 Formulation of the variational problem. Existence and unique-
ness of solutions

With J (·) still defined by

J (v) =
∫
Ω

[
|v − z|+ 1

2
β1

∣∣∣∣ ∂v∂x1

∣∣∣∣2 + 1

2
β1

∣∣∣∣ ∂v∂x2

∣∣∣∣2
]
dx,
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we consider the following problem from Calculus of Variations :

Find u ∈ H1(Ω) such that J (u) ≤ J (v),∀v ∈ H1(Ω). (75)

We will start our discussion on the existence of solutions to problem (75) by proving the
following

Lemma 5.1. The functional

v 7→ [∥v∥2L1(Ω) +

∫
Ω

|∇v|2 dx]1/2 (76)

defines over H1(Ω) a norm equivalent to the (usual) H1(Ω)-norm

v 7→ [∥v∥2L2(Ω) +

∫
Ω

|∇v|2 dx]1/2.

Proof. Let us denote by ∥|·|∥ the functional in (76); this functional is clearly a norm over
H1(Ω). Moreover, since Ω is bounded we have (from the Schwarz inequality in L2(Ω))

∥v∥L1(Ω) ≤ |Ω|
1/2 ∥v∥L2(Ω) , ∀v ∈ L2(Ω) (⊃ H1(Ω)), (77)

with |Ω| = measure(Ω). Combining (76) with (77) yields

∥|v|∥ ≤ max(1, |Ω|1/2) ∥v∥H1(Ω) ,∀v ∈ H1(Ω). (78)

Suppose that there is no positive constant γ such that

∥v∥H1(Ω) ≤ γ ∥|v|∥ , ∀v ∈ H1(Ω). (79)

This implies the existence of a sequence {vn}n≥0 such that

vn ∈ H1(Ω) with ∥vn∥H1(Ω) = 1,∀n ≥ 0, (80)

lim
n→+∞

∥|vn|∥ = 0. (81)

Relation (81) implies

lim
n→+∞

∥vn∥L1(Ω) = lim
n→+∞

∫
Ω

|∇vn|2 dx = 0. (82)

Combining (80) with (82) yields

lim
n→+∞

∥vn∥L2(Ω) = 1. (83)

The sequence {vn}n≥0 being bounded in (the Hilbert space) H1(Ω), we can extract from it a
subsequence – still denoted by {vn}n≥0 – such that

lim
n→+∞

vn = w weakly in H1(Ω). (84)
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Since Ω is bounded, it follows from the celebrated Kondrachev theorem (see, e.g., [17])
that the injection from H1(Ω) into L2(Ω) (and therefore into L1(Ω)) is compact. We have
thus, from (84),

lim
n→+∞

vn = w in L2(Ω),

which combined with (82) and (83) yields

∥w∥L1(Ω) = 0 and ∥w∥L2(Ω) = 1. (85)

The first relation in (85) implying w = 0, the second one makes no sense, which implies that
sequences verifying (80) and (81) do not exist, which implies in turn the existence of γ > 0
such that relation (79) holds true. Inequalities (78) and (79) imply the equivalence of the
two norms.

Equipped with Lemma 5.1, we can easily prove the following

Theorem 5.1. Suppose that z ∈ L2(Ω); then, the variational problem (75) has at least one
solution. Moreover, the solutions of problem (75) are characterized by

u ∈ H1(Ω),

∫
Ω

¯̄β∇u ·∇(v − u)dx+ j(v)− j(u) ≥ 0,∀v ∈ H1(Ω), (86)

where

j(v) =

∫
Ω

|v − z| dx, ∀v ∈ L1(Ω)(⊃ H1(Ω)).

Proof. Observe that the functional J (·) being convex and continuous over H1(Ω) is weakly
lower semi-continuous on that space. Next, consider a minimizing sequence {un}n≥0 for
problem (75); we have thus

un ∈ H1(Ω), ∀n ≥ 0, and

lim
n→+∞

J (un) = inf
v∈H1(Ω)

J (v) ≥ 0. (87)

We clearly have

∥un∥L1(Ω) ≤ C and

∫
Ω

|∇un|2 dx ≤ C, ∀n ≥ 0,

for some constant C(> 0), which implies, from Lemma 5.1, that the sequence {un}n≥0 is
bounded in H1(Ω). We can extract thus from {un}n≥0 a subsequence – still denoted by
{un}n≥0 – such that

lim
n→+∞

un = u weakly in H1(Ω).

From the weak lower semi-continuity property mentioned above, we have

inf J (v) ≤ J (u) ≤ lim inf
n→+∞

J (un) = lim
n→+∞

J (un) = inf
v∈H1(Ω)

J (v),

a chain of relations showing that J (u) = infv∈H1(Ω) J (v).
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Since J (·) = J0(·) + j(·), where

J0(v) =
1

2

∫
Ω

[
β1

∣∣∣∣ ∂v∂x1

∣∣∣∣2 + β2

∣∣∣∣ ∂v∂x2

∣∣∣∣2
]
dx (=

1

2

∫
Ω

¯̄β∇v ·∇vdx),∀v ∈ H1(Ω),

the variational inequality characterization (86) follows classically (see, e.g., [3, Lemma I.4.1],
[5]) from the convexity of j(·) and J0(·) and from the differentiability of J0(·).

Now that the existence of solutions to problem (75) has been “secured”, we are going to
investigate the uniqueness (or non-uniqueness) properties of the solution(s). A first step in
that direction is provided by the following

Theorem 5.2. All the solutions to problem (75) have the same component in H1(Ω)∩L2
0(Ω)

in the decomposition H1(Ω) = (H1(Ω)∩L2
0(Ω))⊕R, where L2

0(Ω) = {v ∈ L2(Ω) |
∫
Ω
vdx = 0}.

Proof. Suppose that both u1 and u2 are solutions to problem (75); it follows then from (86)
that ∫

Ω

¯̄β∇u1 ·∇(u2 − u1)dx+ j(u2)− j(u1) ≥ 0

and ∫
Ω

¯̄β∇u2 ·∇(u1 − u2)dx+ j(u1)− j(u2) ≥ 0.

The above two relations imply by addition that

min(β1, β2)

∫
Ω

|∇(u2 − u1)|2 dx ≤
∫
Ω

¯̄β∇(u2 − u1) ·∇(u2 − u1)dx ≤ 0,

which implies in turn that ∇(u2 − u1) = 0 on Ω, i.e., u2 − u1 = constant, which proves the
theorem.

In order to push our analysis further, we are going to take advantage of the fact that the
solutions to problem (75) verify the following variant of the characterization (4) (which was
obtained for V = H1

0 (Ω) in (1)):

u ∈ V, λ ∈ Λ = {µ ∈ L2(Ω) | |µ(x)| ≤ 1 a.e. on Ω},

− β1
∂2u

∂x2
1

− β2
∂2u

∂x2
2

+ λ = 0 in Ω,

¯̄β∇u · n = 0 on Γ,

λ(u− z) = |u− z| .

(88)

It follows from (88) and classical regularity results for the solution of elliptic equations with
constant coefficients (see, e.g., [17, 7]) that if Ω is convex and/or Γ smooth enough, then
u ∈ W 2,p(Ω),∀p ∈ [1,+∞) (which implies that u ∈ C1,α(Ω̄), ∀α ∈ [0,+∞), i.e., u has
“almost” the C2(Ω̄-regularity). Another implication of (88) and Theorem 5.2 is that all the
solutions to problem (75) “share” the same λ. We are going to use the characterization (88)
to identify a particular problem (75), which has multiple (in fact an infinity of) solutions if
β1 is large enough:
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Take Ω = (−a, a)× (0, b), where a and b are both positive, and z defined as follows:

z(x) =

{
0, if x ∈ (−a, 0)× (0, b),

1, if x ∈ (0, a)× (0, b).
(89)

Using (88), one easily verifies that the solutions of problem (75), (89) are given
(i) if β1 > a2, by

u(x1, x2) = u0(x1, x2) + c, ∀{x1, x2}(= x) ∈ Ω, (90)

with

u0(x1, x2) =
1

2
+

1

2β1

x1(2a− |x1|)

and

c ∈
[
−1

2
(1− a2

β1

),
1

2
(1− a2

β1

)

]
.

Problem (75) has thus in infinite family of solutions parametrized by c if β1 > a2.
(ii) if 0 < β1 ≤ a2 by

u(x1, x2) =


0 if {x1, x2} ∈ (−a,−

√
β1]× (0, b)

1
2
+ 1

2β1
x1(2
√
β1 − |x1|), if {x1, x2} ∈ [−

√
β1,
√
β1]× (0, b),

1 if {x1, x2} ∈ [
√
β1, a)× (0, b).

(91)

Problem (75), (89) has thus a unique solution “as soon as” 0 < β1 ≤ a2.
The particular problem (75) that we are presently discussing is exemplary in the sense

that z defined by (89) is a “pure” jumping function (clearly related to the Heaviside step
function); it may be therefore instructive to study the behavior of u as β → 0. Taking
advantage of the representation (91), we can easily show that

∥u− z∥L1(Ω) = b

√
β1

3
and ∥u− z∥L2(Ω) =

√
b

4
√
β1√
10

. (92)

To conclude this uniqueness related discussion we are going to complete Theorem 5.1 by
proving the following

Theorem 5.3. Suppose that z ∈ C0(Ω̄); then the corresponding problem (75) has a unique
solution.

Proof. Observe first that it follows from (88) that∫
Ω

λdx = 0. (93)

Suppose that (75) has a solution u such that u− z ≥ 0. We have then, from (88), λ(x) ≥ 0
a.e. on Ω, which combined with (93) implies λ = 0. It follows then from (88) that u = z. If
w is also a solution of (75), it shares with u the same λ, implying, from (88), that |w − z| =
λ(w − z) = 0. We have thus w = z = u, i.e., the uniqueness of the solution if u − z ≥ 0.
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A similar conclusion holds if u− z ≤ 0. Suppose now that u− z changes sign over Ω; since
the functions u and z are both continuous, the sets Ω+ = {x ∈ Ω | u(x) − z(x) > 0} and
Ω− = {x ∈ Ω | u(x)− z(x) < 0} are both open subsets of Ω. Suppose now that there exists
a positive constant c such that u + c is also a solution of (75). Take now x0 ∈ ∂Ω− (the
boundary of Ω−); we have then u(x0)− z(x0) = 0 and u(x0) + c− z(x0) = c > 0. From the
continuity of the functions u− z and u+ c− z, there exists, “close to x0”, an open subset O
of Ω− such that (u− z)|O < 0 and (u+ c− z)|O > 0. The first inequality implies, from (88),
that λ = −1 on O, while the second inequality implies λ = 1 on O, which is contradictory,
implying that there is no positive c such as u + c solves (75). Using Ω+ this time, we can
prove similarly that there is no positive c such that u−c solves (75); u is therefore the unique
solution of (75).

Remark 5.1. This is the H1(Ω) analogue of Remark 2.6: if u is the solution of (75), we
can prove that

lim
min{β1,β2}→+∞

= c∞ in W 2,p(Ω), ∀p ∈ [1,+∞),

the function function c∞ being a constant, solution to the following one-dimensional mini-
mization problem:

c∞ ∈ R, ∥z − c∞∥L1(Ω) ≤ ∥z − c∥L1(Ω) , ∀c ∈ R.

Since the solution u to problem (75) and c∞ are not necessarily unique, the above convergence
result has to be understood in the sense of sub-sequences.

5.3 A brief discussion of the finite element approximation of prob-
lem (75)

We proceed as in Section 3, the main difference being that this time the fundamental discrete
space is

Vh = {v ∈ C0(Ω̄) | v|T ∈ P1,∀T ∈ Th}, (94)

with Th a triangulation of Ω. From the set Σk = {Pi}Nh
i=1 of the vertices of Th, we introduce

the following vector basis of Vh:
Bh = {wi}Nh

i=1,

with wi uniquely defined by

∀i = 1, . . . , Nh, wi ∈ Vh, wi(Pi) = 1, wi(Pj) = 0, ∀j = 1, . . . , Nh, j ̸= i.

We approximate problem (75) by

Find uh ∈ Vh such that Jh(uh) ≤ Jh(v),∀v ∈ Vh, (95)

where

Jh(v) =
1

2

∫
Ω

[
β1

∣∣∣∣ ∂v∂x1

∣∣∣∣2 + β2

∣∣∣∣ ∂v∂x2

∣∣∣∣2
]
dx+

1

2

Nh∑
i=1

αi |v(Pi)− zi| , (96)

with αi as in Section 3.
We can “easily” prove the following
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Theorem 5.4. The finite dimensional problem (95) has at least one solution. Moreover, the
solutions of (95) are characterized by

uh ∈ Vh,∫
Ω

[
β1

∂uh

∂x1

∂(v − uh)

∂x1

+ β2
∂uh

∂x2

∂(v − uh)

∂x2

]
dx

+
1

3

[
Nh∑
i=1

αi |v(Pi)− zi| −
Nh∑
i=1

αi |uh(Pi)− zi|

]
≥ 0, ∀v ∈ Vh,

(97)

and the existence of λh such that

uh ∈ Vh, λh ∈ Λh = {µ ∈ Vh | |µ(Pi)| ≤ 1, ∀i = 1, . . . , Nh},∫
Ω

[
β1

∂uh

∂x1

∂v

∂x1

+ β2
∂uh

∂x2

∂v

∂x2

]
dx+

1

3

Nh∑
i=1

αiλh(Pi)v(Pi) = 0, ∀v ∈ Vh,

λh(Pi)(uh(Pi)− zi) = |uh(Pi)− zi| ,∀i = 1, . . . , Nh.

(98)

Concerning the uniqueness property of the solutions to problem (95), we can show that,
as in the continuous case, if uh and u∗

h are both solutions of (95), then uh − u∗
h is a constant

and moreover
Nh∑
i=1

ai |uh(Pi)− zi| =
Nh∑
i=1

ai |u∗
h(Pi)− zi| . (99)

Suppose that uh is a solution to (95) and introduce the sets I+, I0, and I− defined by
I+ = {i ∈ {1, . . . , Nh} | uh(Pi) − zi > 0}, I0 = {i ∈ {1, . . . , Nh} | uh(Pi) − zi = 0}, and
I− = {i ∈ {1, . . . , Nh} | uh(Pi)− zi < 0}, respectively. Take now c ∈ R, sufficiently small, so
that uh(Pi) + c− zi > 0, ∀i ∈ I+, and uh(Pi) + c− zi < 0, ∀i ∈ I−. Suppose now that uh + c
is also a solution to (95); it follows then from (99), and from the definition of I+, I0, and I−,
that

Nh∑
i=1

αi |uh(Pi)− zi| =
Nh∑
i=1

αi |uh(Pi) + c− zi|

=
∑
i∈I+

αi(uh(Pi) + c− zi) +
∑
i∈I−

αi(zi − c− uh(Pi)) + |c|
∑
i∈I0

αi

= c(
∑
i∈I+

αi −
∑
i∈I−

αi) + |c|
∑
i∈I0

αi +

Nh∑
i=1

αi |uh(Pi)− zi| .

(100)

It follows from (99) and (100) that uh + c is a solution to (95) if and only if

c(
∑
i∈I+

αi −
∑
i∈I−

αi) + |c|
∑
i∈I0

αi = 0. (101)

It is pretty obvious that equation (101) has non-trivial solutions if and only if∣∣∣∣∣∣
∑
i∈I+

αi −
∑
i∈I−

αi

∣∣∣∣∣∣ =
∑
i∈I0

αi. (102)
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We have shown thus that if uh is a solution to (95), other solutions (in fact an infinity of
them) exist if and only if relation (102) holds.

Concerning the convergence of {uh}h when h → 0, it can proved, using the methods
discussed in, e.g., [3, 5], that if the angles of the triangulation Th are bounded from below,
uniformly in h by θ0 > 0, then we can extract from {uh}h sub-sequences converging in H1(Ω)
to solutions of problem (75). Actually, any converging sub-sequence extracted from {uh}h
converges (strongly in H1(Ω)) to a solution of problem (75).

There is more to say about the approximate problem (95), particularly its iterative so-
lution; this will be discussed in a forthcoming publication. We will conclude this section by
proving that if h being fixed, β is small enough, then uh = zh. In order to prove this result,
we will start from (98), rewritten in vector-matrix form, using the notation of Section 3,
Remarks 3.2 and 3.3; we have thus

(β1A1 + β2A2)u · v +Dλ · v = 0,

λi(ui − zi) = |ui − zi| , ∀i = 1, . . . , Nh.
(103)

In (103), the matrices A1, A2 are symmetric and positive definite, and D is the Nh×Nh

diagonal matrix defined by dii = αi. Taking v = u− z in (103), we obtain

(β1A1 + β2A2)(u− z) · (u− z) +

Nh∑
i=1

αi |ui − zi| = −(β1αi + β2A2)z · (u− z)

≤ |β|
√
∥A1z∥2∞ + ∥A2z∥2∞

Nh∑
i=1

|ui − zi| ,

which implies in turn that

(β1A1 + β2A2)(u− z) · (u− z)+

Nh∑
i=1

(
αi − |β|

√
∥A1z∥2∞ + ∥A2z∥2∞

)
|ui − zi| ≤ 0. (104)

Suppose that

|β| < ( min
i=1,...,Nh

αi)/

√
∥A1z∥2∞ + ∥A2z∥2∞; (105)

it follows then from (104) that u = z if relation (105) holds. The right-hand side in (105)
depends of the regularity of z; it ranges from O(h4) if z is piecewise continuous, to O(1) if
z ∈ W 2,∞(Ω).

6 Numerical experiments

In this section, we present the results of numerical experiments. The experiments were
performed on an HP9000/J280 workstation (180 MHz PA8000 CPU) and the 1-d and 2-
d variants of (49)–(51) as part of Algorithm 2 were implemented with C language. As
middleware for preparing the examples, calling the external C-routines and illustrating the
results we used Matlab.
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6.1 The denoising algorithm

To summarise the algorithmic results of earlier sections, the nonsmooth SOR (NSOR) algo-
rithm for solving (43) reads as follows:

Algorithm 1. Iterate (49)–(51), where A = β1A1 + β2A2 and u
n+1/2
i and ωn

i are computed
using (53) and (55)–(57), respectively, until∥∥uk+1 − uk

∥∥
∞ < ε. (106)

Here ε is a given stopping tolerance.

In practice, in the light of Remark 4.1 (cf. also Section 5.1), we consider the non-
homogeneous Dirichlet boundary condition. Our overall suggestion for a denoising algorithm
treats a two dimensional image data by first applying the technique of Section 4.2 on the
boundary, which is supposed to consist of individual strips, i.e. ∂Ω = ∪iΓi, i = 1, . . . , n.
For example, for Ω = (x0, x1) × (y0, y1) the natural division consists of Γ1 = (x0, x1) × y0,
Γ2 = (x0, x1)× y1, Γ3 = x0 × (y0, y1), and Γ4 = x1 × (y0, y1). The presmoothed values at the
boundaries are then used as a nonhomogeneous boundary condition in (43).

Algorithm 2.

0o Initialization: Choose β1, β2 > 0 and ωf ∈ (1, 2).

1o Boundary fix: Solve the one-dimensional counterpart of (1) using Algorithm 1 sepa-
rately on the boundary strips Γi such that the change points between the strips are used
as a nonhomogenous boundary condition in the individual problems. Here one needs
to choose an appropriate single regularization parameter β̃, whose relation to β1, β2 de-
pends on the application1. For example, β̃ = 30 max(β1, β2) was applied in Figure 1
after some test runs.

2o Domain fix: Solve the 2-d problem (43) using Algorithm 1 with the values from Step 1
determining the nonhomogeneous Dirichlet boundary condition.

6.2 Comparison of restoration capability

As already mentioned in the introduction, the characteristic behaviour of the L1 method
(1) itself was thorouhly studied in [11] using simulated data and different analytical error
measures. Here, we first continue the exploration of such a denoising methodology by in-
troducing a brief comparison concerning the restoration properties of this method and a few
well-known, popular methods, based on real data related to the front propagation process as
presented in Section 1 (cf. Figure 1).

The denoising comparison is based on (pieces of) two samples from the burning front
image repository that has been collected as part of the research activities. These two different
sample images (data) are used in the following roles:

1Discretized two-dimensional problems have more supporting pixels for the unknown pointwise value to
be determined than in the corresponding one dimensional case (see, e.g., [12]): typically such a shortage of
information must be compensated with larger regularization parameter in 1-d for appropriate results.
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Figure 2: Test data image (left) and a local zoom (right).

1. Test data: The first image, illustrated in Figure 2, is used to fix the free parameters in
different denoising methods to be tested (cf. Table 1). The image contains first seventy
(70) burning fronts of an experiment.

2. Validation data: A second image is used to validate the results of different methods,
which are illustrated in the figures given in Appendix B (cf. Table 2). We also used
seventy (70) burning fronts from the initial image.

The two main goals and corresponding measures for denoising properties are the following:

Errors: The height of the propagating burning front should not decrease. To quantify this,
we calculate the number of points (pixels) in an image h ∈ Rm×n, where h(ti, xj)+tol <
h(ti−1, xj). Here ti denotes the ith front, i = 2, . . . ,m, (m = 70) and xj the jth pixel
j = 1, . . . , n, (n = 1000). tol denotes the tolerance related to the accumulation of
floating point errors, which was taken as 105 ·machine epsilon ∼ 10−11.

Distances: The local variation of the front shoud not be destroyed, i.e., the denoised image
should be as close as possible to the original one excluding the outlying values with
decreasing front. Moreover, to have a quantified possibility to compare the results of
different methods, we also need a distance measure between their results. For this
purpose, we compute the mean absolute deviation between two images (matrices) h1

and h2 according to
1

nm

m∑
i=1

n∑
j=1

|(h1)ij − (h2)ij|.

Let us next describe shortly the methods that are to be compared with the one considered
in this paper. Basically there exists numerous methods for image denoising and different
classifications of possible techniques can be given. One way to classify different possibilities
(cf., e.g., [14] and references therein) is to consider:
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Transform based methods, where the basic idea is to, first, make a linear transformation
of the given image (signal) to new basis, then decrease or remove the effect of coefficients
corresponding to “noisy” basis functions, and, finally, reconstruct the denoised signal
using the inverse transform with the modified coefficients/basis functions. Two of the
most popular methods from this family were chosen, namely the Fourier method, where
the transform is made to the frequency domain, and the Wavelet method where the
time-frequency (scale) domain is considered [15]. We further restrict ourselves to one-
dimensional methods, which are applied in a front-by-front fashion to raw images. Free
parameters for the Fourier method is to decide which frequency band is diminished to
suppress the noise, and for the Wavelet method to determine how the coefficients in
the time-frequency plane should be modified.

Kernel based methods, where the basic idea is to define a local kernel (usually a moving
window), which localizes the computation of a suitable statistical estimate representing
the local reconstruction of a noisy pixel value. Two of the most popular methods from
this family were chosen, namely the mean and median filter [6]. These methods become
well-defined as soon as the shape of the moving window, here the length and hight of
it in pixels, is given. Notice that pixels near the boundaries, where the mask refers to
nonexisting values, need a special treatment. Here we choose the simplest solution to
include in the computation of the estimate only those values that actually exist in the
image.

Optimization/PDE based methods, where the basic idea is to define a suitable cost
functional (or a PDE usually representing optimality condition of the corresponding
cost functional), whose minimizer represents the smoothed image. The method con-
sidered in this paper, clearly, belongs to this class. The free parameters to be fixed (cf.
Algorithm 2) are β1, β2 > 0, β̃ = f(β1, β2), and ω ∈ [1, 2).

Tables 1 and 2 in Appendix A contain the results (i.e., the errors and distances between
different reconstructions) of different methods for test and validation images, respectively.
The test data was used for hand-tuning the free parameters in different methods in such a
way that the unphysical errors of decreasing front in the test image were removed completely.
In practice, this yielded the following choices for different methods

Fourier: We used the middle-band-rejection strategy (see [20]), i.e. altogether 2.2% of the
tails of the frequency band (11 lowest and 11 highest) was kept and the middle-band
omitted.

Wavelet: We used 10th order Daubechies wavelet family with six levels of details (i.e.
seven decomposition levels altogether). The wavelet coeffients {clj}, l = 0, . . . , 6, j =
0, . . . , 1024, were modified using soft, adaptive thresholding strategy (see [15, Chapter
10]), i.e.

clj =

{
sign(clj) (|clj| − θl), |clj| ≥ θl,

0, |clj| < θl.

The levelwise thresholds {θl} were chosen as θmax · [0.01 0.02 0.03 0.04 0.05 0.05 0.01]
where θmax = maxlj |clj|.
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Mean and Median: 5x7 window (mask) size was used for both approaches.

L1-method: The parameters were chosen as β1 = 0.1, β2 =
β1

2
, β̃ = 30β1 for Γ1 ∪ Γ2 (the

x-boundary strips) and β̃ = 30β2 for Γ3 ∪ Γ4 (the y-boundary strips).

Figures 5-9 show the actual appearance of the results of different methods for the valida-
tion image. Both the whole result (i.e., the restored image) and a zoomed, local result are
given to illustrate the characteristic (qualitative) behavior of different methods.

Let us draw the following conclusions from these tests

• According to Tables 1 and 2 a cluster of quantitatively appropriate results (emphasized
with bold font in the tables) is given by median filter and L1 method. They both
remove almost all errors and remain sufficiently close to each other and the original
image. This result coincides with the basic charasteristic of the L1-norm based M-
estimate, the median, which can tolerate up to 50% of erroneous values [8]. As we
see this behaviour is also captured in the L1 method, which on the contrary to the
local, window-based median also smooths the overall appearance of the image due to
H1 smoothing. The smoothing effect is also supported by the closeness of distances
between the restorations of the mean filter and the L1 method. The plain median filter,
due to the discontinous character of the used statistical estimate, yields a staircase-like
structure along the front lines. This (qualitative) difference is clearly visible in Figures
8 (right) and 9 (right).

• The transform-based, linear methods dramatically oversmooth the results and are un-
able to generalize the removal of erroneous values to the validation image. Also the
mean filter yields some loss of details although the errors are well restored also in the
validation image.

6.3 Efficiency of NSOR

Next we consider the efficiency of nonsmooth SOR. Three different strategies for choosing
the over-relaxation parameter ω were tested and compared. The first approach (NSOR fix)
is to use a constant value (ω = 1 or ω = 1.5). The other approach (NSOR var) is to
have a variable choice according to (51). To this end, we also included in the comparison
a simple adaptive approach (NSOR ada), based on our numerical experience with NSOR.
The heuristic is based on the general observation that ω should be as large as possible
within the “convergence region” of the procedure. Hence, we start with a sufficient large
value (1.6-1.7 was used in the numerical experiments) and if the error tolerance in (106)
ek+1 = ∥uk+1 − uk∥∞ starts to increase, i.e. ek+1 > ek for k ≥ 1, during the iterations
(suggesting that the algorithm might be diverging), we decrease the current value of ω by
taking 0.97ω.

To compare the efficiency of different approaches, we use the whole recordings of same
two sample images as in the previous section, and study the number of iterations and the
actual CPU time. Notice, however, that because the CPU time is measured from Matlab
(tic. . . toc), the approach with varying ωn

i is not comparable with the other approaches. It’s
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Figure 3: Number of iterations over different values of β1 ≡ β2 in Tables 5-7 for Image 2 on
logarithmic scales.

CPU time per iteration is much larger, because it includes transform of the over-relaxation
vector {ωn

i }Ni=1 between Matlab and the C-routines via the Mex-interface, which according to
the numerical results seems to dominate the CPU usage. Hence, only number of iterations
allows a true comparison between the efficiency of the scalar and vector-valued over-relaxation
cases.

The results of these tests are reported in Tables 3-7 and illustrated in Figure 3. Based
on all this information we draw the following conclusions:

Convergence and comparison of variants: All three variants and four actual procedures
are able to solve the minimization problem and, from the denoising point of view, they
all work very well in the appropriate region of the values of β1, β2. Furthermore, as
illustrated in Figure 3, for small values of β the Gauss-Seidel type algorithm with
ω = 1 is very efficient, but its efficiency decreases dramatically as β increases. Both
fixed over-relaxation ω = 1.5 and the adaptive procedure stabilize the performance
of the method over a large interval of possible values of the regularization parameter.
As a whole, however, the most stable and efficent method is the one with varying ωn

i ,
whose convergence was also thoroughly analyzed in Section 4.3, because its number
of iterations both with respect to the number of unknowns (Tables 3–4) and different
values of regularization parameters (Tables 5–7) remains in the best overall level.

Overall efficiency: From the computational point of view, the nonsmooth SOR algorithm
is simpler but much more efficient and memory friendly than, e.g., the algorithm pre-
sented in [11]. More precisely, in the current implementation which is suitable for real
images the elements of the FE representations A1,A2, and {αi}N0h

i=1 are included in
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the procedure explicitly. This means that we do not need to allocate any additional
vectors in the code, since pointwise updates to {ui} (and {ωi} for NSOR var) and
also the monitoring of the error criterion can be implemented in an override fashion.
Moreover, this means that the number of iterations of the algorithm coincides precisely
with the number of sweeps through the data vectors. We feel that the efficiency of the
proposed methodology is very promising, especially, when noticing that we are solving
a nonsmooth optimization problem.

Effect of regularization: The algorithms are working better for smaller values of β1, β2,
where the nonsmooth term in the cost functional is more dominating. Moreover, as
illustrated in Table 6, too small values of the regularization parameters, where the
formulation will not change the observation z at all, are indicated by only one iteration.
This coincides with the analysis in Section 3 (Remarks 3.1 and 3.3) Hence, this allows
one to tune and monitor the appropriate values of βi, i = 1, 2, using visual inspection
or, e.g., the heuristics proposed in [11, 1].

6.4 Conclusions from the numerical experiments

As a whole, we obtained very promising results from all the tests that were performed. The
nonsmooth SOR procedure is simple to implement and it provides very efficient performance
with minimal memory consumption. Hence, it is a very good candidate for even larger
problems (with millions of pixels) where the overall smoothness is to be preserved, like in
our lens-paper burn example.
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A Tables

Errors Distances
Fourier Wavelet Mean Median L1

Original 373 0.5003 0.3796 0.1637 0.0104 0.0683
Fourier 0 0.4095 0.4872 0.4972 0.4844
Wavelet 0 0.3645 0.3765 0.3629
Mean 0 0.1583 0.0983
Median 0 0.0658

L1 0

Table 1: Errors and distances between the results of different methods for the test data
image.

Errors Distances
Fourier Wavelet Mean Median L1

Original 922 0.3147 0.3693 0.1950 0.0266 0.0918
Fourier 196 0.2967 0.2910 0.3062 0.2830
Wavelet 255 0.3409 0.3634 0.3400
Mean 16 0.1781 0.1094
Median 6 0.0824

L1 3

Table 2: Errors and distances between the results of different methods for the validation data
image.
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Image 1 Image 2
m n m ∗ n Iters. CPU ω Iters. CPU ω
50 25 1 250 22 0.03 1.4603 26 0.01 1.4603
100 50 5 000 29 0.02 1.5054 30 0.02 1.5054
150 75 11 250 32 0.05 1.5520 30 0.05 1.5054
200 100 20 000 32 0.08 1.5520 34 0.09 1.5520
250 125 31 250 29 0.12 1.5054 34 0.14 1.4603
300 150 45 000 36 0.22 1.5520 45 0.27 1.4603
350 175 61 250 39 0.33 1.5520 35 0.29 1.5520
400 200 80 000 40 0.46 1.5054 43 0.49 1.5520
450 225 101 250 37 0.55 1.5520 73 1.05 1.5054
500 250 125 000 37 0.69 1.5520 64 1.18 1.5520
550 275 151 250 61 1.38 1.4603 62 1.41 1.5520
600 300 180 000 53 1.42 1.5054 64 1.75 1.5520
650 325 211 250 53 1.68 1.5054 62 2.15 1.5520
700 350 245 000 46 1.70 1.5520 64 2.47 1.5520
750 375 281 250 53 2.22 1.5054 64 2.68 1.5520
800 400 320 000 42 2.05 1.5520 73 3.65 1.5054
850 425 361 250 53 2.94 1.5054 64 3.56 1.5520
900 450 405 000 53 3.33 1.5054 64 4.10 1.5520
950 475 451 250 53 3.78 1.5054 62 4.67 1.5520
1000 500 500 000 53 4.49 1.5054 64 5.26 1.5520

Table 3: Number of iterations, CPU time, and final value of ω for NSOR ada with, from the
restoration result point of view, good values β1 = 0.2 and β2 = 0.04; ε = 1e−5 and ω0 = 1.6.

Image 1 Image 2
m n m ∗ n Iters. CPU Iters. CPU
50 25 1 250 27 1.27 32 1.27
100 50 5 000 33 1.26 36 1.30
150 75 11 250 33 1.30 36 1.28
200 100 20 000 33 1.36 36 1.36
250 125 31 250 33 1.45 36 1.47
300 150 45 000 37 1.63 36 1.61
350 175 61 250 38 1.83 36 1.75
400 200 80 000 38 1.96 37 1.96
450 225 101 250 38 2.20 56 2.64
500 250 125 000 38 2.42 56 2.93
550 275 151 250 41 2.97 56 3.28
600 300 180 000 41 3.04 56 3.70
650 325 211 250 41 3.43 56 4.18
700 350 245 000 41 3.76 56 4.74
750 375 281 250 41 4.10 56 5.11
800 400 320 000 41 4.59 56 5.70
850 425 361 250 41 4.92 56 6.25
900 450 405 000 41 5.36 56 6.87
950 475 451 250 41 5.95 56 7.74
1000 500 500 000 41 6.46 56 8.29

Table 4: Same as Table 3, but using NSOR var; ωOpt = 1.6.
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Image 1 Image 2
ω = 1 ω = 1.5 ω = 1 ω = 1.5

β1 Iters. CPU Iters. CPU Iters. CPU Iters. CPU
5e-4 1 0.15 1 0.10 1 0.10 1 0.11
7e-4 2 0.18 17 1.17 2 0.19 18 1.22
9e-4 7 0.48 19 1.26 6 0.42 19 1.26
2e-3 10 0.71 26 1.80 11 0.76 25 1.69
4e-3 17 1.13 26 1.73 20 1.31 26 1.71
6e-3 18 1.24 27 1.94 22 1.50 26 1.77
8e-3 21 1.39 26 1.71 25 1.64 27 1.77
1e-2 28 2.03 27 1.88 28 1.90 28 1.91
3e-2 65 4.99 32 2.25 91 7.05 27 1.92
5e-2 108 9.44 33 2.49 153 13.14 54 4.20
7e-2 200 17.72 70 5.66 175 15.14 62 4.75
9e-2 208 19.12 73 5.91 210 18.73 76 6.05
2e-1 324 29.54 126 10.15 411 37.38 160 13.56
4e-1 764 68.77 293 25.36 607 55.89 236 20.31
6e-1 1193 104.67 457 40.24 804 71.96 333 28.43
8e-1 1616 132.57 636 60.28 1276 113.78 507 43.86
1 2104 178.14 840 71.81 1610 141.71 623 54.84

Table 5: Number of iterations and CPU time for NSOR fix with different values of β1 ≡ β2;
two fixed values of ω for ε = 1e− 5, largest 1000x500 images from Table 3.

Image 1 Image 2
β1 Iters. CPU ω Iters. CPU ω
5e-4 1 0.10 1.6000 1 0.10 1.6000
7e-4 20 1.16 1.5520 24 1.56 1.6000
9e-4 27 1.63 1.6000 26 1.54 1.6000
2e-3 26 1.53 1.5054 32 2.08 1.6000
4e-3 36 2.20 1.6000 24 1.43 1.4603
6e-3 24 1.42 1.4603 23 1.52 1.4603
8e-3 30 1.83 1.5520 28 1.67 1.5054
1e-2 31 1.85 1.5520 31 2.04 1.5520
3e-2 32 2.14 1.4603 27 1.79 1.5054
5e-2 33 2.34 1.5054 46 3.48 1.5520
7e-2 69 5.52 1.5054 53 4.12 1.5520
9e-2 72 5.97 1.5054 65 5.43 1.5520
2e-1 97 8.34 1.6000 140 12.44 1.5520
4e-1 225 20.07 1.6000 207 18.75 1.5520
6e-1 349 30.82 1.6000 297 26.92 1.5520
8e-1 493 42.85 1.6000 445 40.04 1.5520
1 659 56.75 1.6000 548 47.31 1.5520

Table 6: Number of iterations and CPU time for NSOR ada with different values of β1 ≡ β2;
ε = 1e− 5 and ω0 = 1.6, largest 1000x500 images from Table 3.
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Image 1 Image 2
β1 ωA

Opt Iters. CPU Iters. CPU

5e-4 1.0 1 1.41 1 1.47
7e-4 1.0 2 1.52 2 1.51
9e-4 1.0 7 1.98 6 1.89
2e-3 1.05 9 2.16 9 2.17
4e-3 1.09 14 2.63 16 2.81
6e-3 1.22 13 2.58 13 2.54
8e-3 1.24 13 2.60 15 2.76
1e-2 1.26 15 2.74 15 2.76
3e-2 1.51 28 4.40 27 4.31
5e-2 1.62 38 5.95 35 5.51
7e-2 1.63 47 7.17 38 6.03
9e-2 1.66 43 6.75 44 6.88
2e-1 1.76 67 9.81 67 9.88
4e-1 1.80 104 14.48 86 12.19
6e-1 1.84 126 17.16 115 15.93
8e-1 1.87 138 18.50 134 17.99
1 1.87 209 27.12 140 18.73

Table 7: ωOpt (seeked by hand), number of iterations, and CPU time for NSOR var with
different values of β1 ≡ β2 for the largest 1000x500 images from Table 3; ε = 1e− 5.
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B Figures
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Figure 4: Original validation image (left) and a local zoom (right).
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Figure 5: Denoised front profile using Fourier filter: restored validation image (left), local
zoom of the result (right).
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Figure 6: Denoised front profile using Wavelet filter: restored validation image (left), local
zoom of the result (right).
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Figure 7: Denoised front profile using mean filter: restored image (left), local zoom of the
result (right).
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Figure 8: Denoised front profile using median filter: restored image (left), local zoom of the
result (right).

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30

40

50

60

70

80

Figure 9: Denoised front profile using L1-filter: restored image (left), local zoom of the result
(right).
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