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Abstract

In Part 1, we developed a new technique based on Lipschitz pushforwards for proving the jump set containment
property Hm−1(Ju \ Jf ) = 0 of solutions u to total variation denoising. We demonstrated that the technique also
applies to Huber-regularised TV. Now, in this Part 2, we extend the technique to higher-order regularisers. We
are not quite able to prove the property for total generalised variation (TGV) based on the symmetrised gradient
for the second-order term. We show that the property holds under three conditions: First, the solution u is locally
bounded. Second, the second-order variable is of locally bounded variation, w ∈ BVloc(Ω;Rm), instead of just
bounded deformation, w ∈ BD(Ω). Third, w does not jump on Ju parallel to it. The second condition can be
achieved for non-symmetric TGV. Both the second and third condition can be achieved if we change the Radon
(or L1) norm of the symmetrised gradient Ew into an Lp norm, p > 1, in which case Korn’s inequality holds. On
the positive side, we verify the jump set containment property for second-order infimal convolution TV (ICTV)
in dimension m = 2. We also study the limiting behaviour of the singular part of Du, as the second parameter of
TGV2 goes to zero. Unsurprisingly, it vanishes, but in numerical discretisations the situation looks quite different.
Finally, our work additionally includes a result on TGV-strict approximation in BV(Ω).
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1. Introduction

We introduced in Part 1 [38] the double-Lipschitz comparability condition of a regularisation functional R.
Roughly

R(γ#u) +R(γ#u)− 2R(u) ≤ Tγ,γ |Du|(clU), (1.1)
whenever γ, γ : Ω → Ω are bi-Lipschitz transformations reducing to the identity outside U ⊂ Ω. Constructing
specific Lipschitz shift transformations around a point x ∈ Ju, for which the constant Tγ,γ = O(ρ2) for ρ > 0
the size of the shift, we were able to prove the jump set containment

Hm−1(Ju \ Jf ) = 0 (J)

for u ∈ BV(Ω) the solution of the denoising or regularisation problem

min
u∈BV(Ω)

∫
Ω
φ(f(x)− u(x)) dx+R(u). (P)

The admissible fidelities φ include here φ(t) = tp for 1 < p < ∞. For p = 1 we produced somewhat weaker
results comparable to those for total variation (TV) in [23]. The admissible regularisers R included, obviously,
total variation, for which the property was already proved previously by level set techniques [14]. We also showed
the property for Huber-regularised total variation as a new contribution besides the technique. If non-convex
total variation models and the Perona-Malik anisotropic diffusion were well-posed, we demonstrated that the
technique would also apply to them.

The development of the new technique was motivated by higher-order regularisers, in particular by total
generalised variation (TGV, [9]), for which the level set technique is not available due to the lack of a co-
area formula. In this Part 2, we now aim to extend our Lipschitz pushforward technique to variants of TGV
as well as infimal convolution TV (ICTV, [15]). In order to do this, we need to modify the double-Lipschitz
comparability criterion (1.1) a little bit. Namely, we will in Section 3 introduce rigorously a partial double-
Lipschitz comparability condition of the form

R(γ#(u− v) + v) +R(γ#(u− v) + v)− 2R(u) ≤ Tγ,γ |D(u− v)|(clU) + small terms. (1.2)

Here, in comparison to (1.1), we have subtracted v from u before the pushforward. The idea is the same as in
the application the jump set containment result for TV to prove it for ICTV. As we may recall

ICTV~α(u) := min
v∈W 1,1(Ω),∇v∈BV(Ω;Rm)

α‖Du−∇v‖2,M(Ω;Rm) + β‖D∇v‖F,M(Ω;Rm×m),
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where ~α = (β, α). Now, if u solves (P) for R = ICTV~α, then u solves

min
u∈BV(Ω)

∫
Ω
φ(|f(x)− u(x)|) dx+ α‖Du−∇v‖2,M(Ω;Rm).

with v fixed. Otherwise written, ū = u− v solves for f̄ = f − v the total variation denoising problem

min
u∈BV(Ω)

∫
Ω
φ(|f̄(x)− ū(x)|) dx+ α‖Dū‖2,M(Ω;Rm).

Since v ∈W 1,1(Ω) has no jumps, Jf̄ = Jf , the property (J) that ICTV would introduce no jumps would follow
from the corresponding result for TV if we had further v ∈ L∞(Ω). We verify that this is indeed the case if
m ∈ {1, 2}, and consequently prove the jump set containment property for ICTV in these dimensions.

The idea with v in (1.2) is roughly the same as this: to remove the second-order information from the problem,
and reduce it into a first-order one. However, unlike in the case of ICTV, generally, we cannot reduce the problem
to TV. Indeed, written in the differentiation cascade formulation [11], second-order TGV reads as

TGV2
~α(u) := min

w∈BD(Ω)
α‖Du− w‖2,M(Ω;Rm) + β‖Ew‖F,M(Ω;Sym2(Rm)). (1.3)

Here BD(Ω) is the space of vector fields of bounded deformation on Ω, and Ew the symmetrised gradient. Now,
we do not generally have w = ∇v for any function v, which is the reason that the analysis is not as simple
as that of ICTV. Standard TGV2 is also significantly complicated by the symmetrised gradient Ew, and we
cannot obtain as strong results for it, our results depending on assumptions on w. Namely, we need that w is
“BV-differentiable”, or, in practise that w ∈ BVloc(Ω;Rm) instead of just w ∈ BD(Ω), and that the projection
P⊥zΓ(w+(x) − w−(x)) = 0, on a Lipschitz graph Γ, representing Ju, parametrised on the plane orthogonal to
zΓ ∈ Rm. These complications make us firstly consider the non-symmetric variant of TGV2, nsTGV2, where
Ew in (1.3) is replaced by Dw and w ∈ BV(Ω;Rm). Secondly, we consider variants of TGV2 employing for the
second-order term Lq energies, q > 1. These functionals

TGV2,q
~α,0(u) := min

w∈W 1,q
0 (Ω;Rm)

α‖Du− w‖2,M(Ω;Rm) + β‖Ew‖F,Lq(Ω;Sym2(Rm))

have the advantage that Korn’s inequality holds. Observe that since the first-order term is still L1-type, edges in
images can be preserved. In practise, as we demonstrate, denoising results also do not differ much from standard
TGV2. For this variant, only u ∈ L∞loc(Ω) remains to be verified for the satisfaction of the jump set containment
property Hm−1(Ju \ Jf ) = 0.

Our analysis of the specific regularisation functionals is in Section 5 after we study local approximability of
w ∈ BD(Ω) and approximability in terms of TGV-strict convergence in Section 4. The analysis of the fidelity
term

∫
Ω φ(|f(x)−u(x)|) dx is unchanged from Part 1 [38], and therefore the main lemma is only cited in Section

3, where we state our assumptions on R and φ, and prove (J) for (P) by combining the separate estimates for
the fidelity and regularity terms. We concentrate on p-increasing fidelities for 1 < p <∞. The case p = 1 from
Part 2 could also be extended, but we have chosen to concentrate on the case p > 1 where stronger results exist.
As an addendum to this qualitative study, we also study quantitatively in Section 6 the limiting behaviour of
the singular part Dsu of Du for TGV2 as β ↘ 0. The behaviour is quite surprising, as on the discrete scale
TGV2 appears to preserve jumps in the limit, but analysis shows that the jumps disappear.

The class of problems (P) is of importance, in particular, for image denoising. We wish to know the structure of
Ju in order to see that the denoising problem does not introduce undesirable artefacts, new edges, which in images
model different materials and depth information. Higher-order geometric and other recently introduced image
regularisers such a TGV [9], ICTV [15], Euler’s elastica [17, 36], and many other variants [31, 13, 35, 16, 20, 22, 5]
are, in fact, motivated by one serious artefact of the conventional total variation regulariser. This is the stair-
casing effect. Further, non-convex total variation schemes and “lower-order fidelities” such as Meyer’s G-norm
and the Kantorovich-Rubinstein norm, have recently received increased attention in an attempt to, respectively,
better model real image gradient statistics [29, 26, 27, 33, 28] or texture [32, 40, 30]. Very little is known about
any of these analytically. For TGV2 we primarily have the results on one-dimensional domains in [10, 34]. We
hope that our work in this pair of papers provides an impetus and roots for a technique for the study of many
of these and future approaches. We begin our study after going through the obligatory preliminaries in the
following Section 2. We finish the study with a few final words in Section 7.



2. Notations and useful facts

We begin by introducing the tools necessary for our work. Much of this material is the same as in Part 1
[38]; we have however decided to make this manuscript to be mostly self-contained, legible without having to
delve into the extensively detailed analysis of Part 1. We will also include additional information on tensor
fields and functions of bounded deformation, BD(Ω). These are crucial for the definition of TGV. First we
introduce basic notations for sets, mappings, measures, and tensors. We then move on to tensor fields and
Lipschitz mappings and graphs. Finally, we discuss distributional gradients of tensor fields, which allow us to
define bounded variation and deformation in a unified way.

2.1. Basic notations

We denote by {e1, . . . , em} the standard basis of Rm. The boundary of a set A we denote by ∂A, and the closure
by clA. The {0, 1}-valued indicator function we write as χA. We denote the open ball of radius ρ centred at
x ∈ Rm by B(x, ρ). We denote by ωm the volume of the unit ball B(0, 1) in Rm.

For z ∈ Rm, we denote by z⊥ := {x ∈ Rm | 〈z, x〉 = 0} the hyperplane orthogonal to z , whereas Pz denotes
the projection operator onto the subspace spanned by z, and P⊥z the projection onto z⊥. If A ⊂ z⊥, we denote
by riA the relative interior of A in z⊥ as a subset of Rm.

Let Ω ⊂ Rm be an open set. We then denote the space of (signed) Radon measures on Ω byM(Ω). If V is a
vector space, then the space of Radon measures on Ω with values in V is denotedM(Ω;V ). The k-dimensional
Hausdorff measure, on any given ambient space Rm, (k ≤ m), is denoted by Hk, while Lm denotes the Lebesgue
measure on Rm.

The total variation (Radon) norm of a measure µ is denoted ‖µ‖M(Rm). For vector-valued measures µ =
(µ1, . . . , µ

k) ∈M(Ω;Rk), we use the notation

‖µ‖q,M(Ω;Rk) := sup
{∫

Ω

k∑
i=1

ϕi(x) dµi(x)

∣∣∣∣∣ϕ ∈ C∞0 (Ω;Rk), ‖ϕ(x)‖p ≤ 1 for x ∈ Ω
}

(2.1)

to indicate that the finite-dimensional base norm is the p-norm where 1/p + 1/q = 1. When the choice of the
finite-dimensional norm is inconsequential, we use the notation ‖µ‖q,M(Ω;Rk). In this work in practise we restrict
ourselves to q = 2 for measures. In other words, we consider isotropic total variation type functionals. We use
the same notation for vector fields w ∈ Lp(Ω;Rk), namely

‖w‖q,Lp(Ω;Rk) :=
(∫

Ω
‖w(x)‖pq dx

)1/p
.

For a measurable set A, we denote by µxA the restricted measure defined by (µxA)(B) := µ(A ∩ B). The
notation µ� ν means that µ is absolutely continuous with respect to the measure ν, and µ ⊥ ν that µ and ν
are mutually singular. The singular and absolutely continuous (with respect to the Lebesgue measure) part of
µ are denoted µa and µs, respectively.

We denote the k-dimensional upper resp. lower density of µ by

Θ∗k(µ;x) := lim sup
ρ↘0

µ(B(x, ρ))
ωkρk

, resp. Θ∗,k(µ;x) := lim inf
ρ↘0

µ(B(x, ρ))
ωkρk

.

The common value, if it exists, we denote by Θk(µ;x).

Finally, we often denote by C, C ′, C ′′′ arbitrary positive constants, and use the plus-minus notation a± = b±

in to mean that both a+ = b+ and a− = b− hold.

2.2. Lipschitz and C1 graphs

A set Γ ⊂ Rm is called a Lipschitz (m− 1)-graph (of Lipschitz factor L), if there exist a unit vector zΓ, an open
set VΓ ⊂ z⊥Γ , and a Lipschitz map fΓ : VΓ → R, of Lipschitz factor at most L, such that

Γ = {v + fΓ(v)zΓ | v ∈ VΓ}.



If fΓ ∈ C1(VΓ), we cal Γ a C1 (m− 1)-graph. We also define gΓ : VΓ → Rm by

gΓ(v) = v + zΓfΓ(v).

Then
Γ = gΓ(VΓ).

We denote the open domains “above” and “beneath” Γ, respectively, by

Γ+ := Γ + (0,∞)zΓ, and Γ− := Γ + (−∞, 0)zΓ.

We recall that by Kirszbraun’s theorem, we may extend the domain of gΓ from VΓ to the whole space z⊥Γ without
altering the Lipschitz constant. Then Γ splits Ω into the two open halves Γ+ ∩Ω and Γ− ∩Ω. We often use this
fact.

2.3. Mappings from a subspace

We denote by L(V ;W ) the space of linear maps between the vector spaces V and W . If L ∈ L(V ;Rk), where
V ∼ Rn, (n ≤ k), is a finite-dimensional Hilbert space, then L∗ ∈ L(Rk;V ∗) denotes the adjoint, and the
n-dimensional Jacobian is defined as [3]

Jn[L] :=
√

det(L∗ ◦ L).

With the gradient of a Lipschitz function γ : V → Rk defined in “components as columns order”, ∇γ(x) ∈
L(Rk;V ), we extend this notation for brevity as

Jnf(x) := Jn[(∇f(x))∗].

If Ω ⊂ V is a measurable set, and g ∈ L1(Ω), the area formula may then be stated∫
Rk

∑
x∈Ω∩γ−1(y)

g(x) dHn(y) =
∫

Ω
g(x)Jnγ(x) dHn(x). (2.2)

That this indeed holds in our setting of finite-dimensional Hilbert spaces V ∼ Rn follows by a simple argument
from the area formula for γ : Rn → Rk, stated in, e.g, [3]. We only use the cases V = z⊥ for some z ∈ Rm
(n = m− 1), or V = Rm (n = m).

We also denote by
C2,∩(V ) :=

⋂
λ∈(0,1)

C2,λ(V )

the class of functions that are twice differentiable (as defined above for tensor fields) with a Hölder continuous
second differential for all exponents λ ∈ (0, 1).

The Lipschitz factor of a Lipschitz mapping f we denote by lip f . We also recall that a Lipschitz transformation
γ : U → V with U, V ⊂ Rm has the Lusin N -property if it maps Lm-negligible sets to Lm-negligible sets.

If γ : Ω→ Ω is a bijective Lipschitz transformation, and u : Ω→ Ω a Borel function, we define the pushforward
uγ := γ#u := u ◦ γ−1. Finally, we denote the identity transformation by ι(x) = x.

2.4. Tensors and tensor fields

We now introduce tensors and tensor fields. We simplify the treatment from its full differential-geometric setting,
as can be found in, e.g., [6], as we are working on finite-dimensional Hilbert spaces. These definitions and our
approach to defining TGV2 follow that in [39].

We let V1, . . . , Vk be finite-dimensional Hilbert spaces, Vj ∼ Rmj with corresponding bases {ej1, . . . , ejmj},
(j = 1, . . . , k). A k-tensor is then a k-linear mapping A : V1 × · · · × Vk → R. We denote A ∈ T (V1, . . . , Vk).
If Vj = V for all j = 1, . . . , k, we write T k(V ) := T (V1, . . . , Vk). A symmetric tensor A ∈ Symk(V ) ⊂ T k(V )
satisfies for any permutation π of {1, . . . , k} and any c1, . . . , ck ∈ V that A(cπ1, . . . , cπk) = A(c1, . . . , ck), For
conciseness of notation, we often identify V ∼ T 1(V ) through the mapping V (x) = 〈V, x〉.



For a A ∈ T (V1, . . . , Vk) and B ∈ T (Vk+1, . . . , Vk+m) we define the (m+ k)-tensor A⊗B ∈ T (V1, . . . , Vk+m)
by

(A⊗B)(c1, . . . , ck+m) = A(c1, . . . , ck)B(ck+1, . . . , ck+m).

We define on A,B ∈ T (V1, . . . , Vk) the inner product

〈A,B〉 :=
m1∑
p1=1
· · ·

mk∑
pk=1

A(e1
p1
, . . . , ekpk)B(e1

p1
, . . . , ekpk),

and the Frobenius norm
‖A‖F :=

√
〈A,A〉.

If k = 1 ,we simply denote ‖A‖ := ‖A‖2 := ‖A‖F , as the Frobenius norm agrees with the Euclidean norm.

Let then u : Ω → T (V1, . . . , Vk) be a Lebesgue-measurable function on the domain Ω ⊂ V0, where V0 ∼ Rm
is also a finite-dimensional Hilbert space. We define the norms

‖u‖F,p :=
(∫

Ω
‖u(x)‖pF dx

)1/p
, (p ∈ [1,∞)), and ‖u‖F,∞ := ess sup

x∈Ω
‖u(x)‖F ,

and the spaces

Lp(Ω; T (V1, . . . , Vk)) = {u : Ω→ T (V1, . . . , Vk) | u Borel, ‖u‖F,p <∞}, (p ∈ [1,∞]).

The spaces Lp(Ω; T k(V )) and Lp(Ω; Symk(V )) are defined analogously.

2.5. Distributional gradients and tensor-valued measures

For the definition of total generalised variation (TGV), we need to define the concept of a tensor-valued measure,
as well as the distributional differential Du and the symmetrised distributional Eu on tensor fields. This is done
now. If the reader is satisfied with a cursory understanding of TGV, this subsection may be skipped.

We start with tensor field divergences. Let u ∈ C1(Ω; T (V1, . . . , Vk)), (k ≥ 0). The (Fréchet) differential
d f(x) ∈ T (V0, V1, . . . , Vk) at x ∈ Ω is defined by the limit

lim
h→0

‖f(x+ h)− f(x)− d f(x)(h, ·, . . . , ·)‖F
‖h‖F

= 0.

If k ≥ 1, if V0 = V1, we define the divergence, div u ∈ C(Ω; T (V2, . . . , Vk)) by contraction as

[div u(x)](c2, . . . , ck) :=
m1∑
i=1

du(x)(ξ1
i , ξ

1
i , c2, . . . , ck).

Observe that if u is symmetric, then so is div u. Moreover Green’s identity∫
Ω
〈du(x), φ(x)〉 dx =

∫
Ω
〈u(x),−divφ(x)〉 dx

holds for u ∈ C1(Ω; T (V2, . . . , Vk)) and φ ∈ C1
0 (Ω; T (V1, . . . , Vk)) with Ω ⊂ V1 = V0.

Denoting by X∗ the continuous linear functionals on the topological space X, we now define the distributional
gradient

Du ∈ [C∞c (Ω; T k+1(Rm))]∗

of u ∈ L1(Ω; T k(Rm)) by

Du(ϕ) := −
∫

Ω
〈u(x),divϕ(x)〉 dx, (ϕ ∈ C∞c (Ω; T k+1(Rm))).

Likewise we define the symmetrised distributional gradient

Eu ∈ [C∞c (Ω; Symk+1(Rm))]∗



of u ∈ L1(Ω; T k(Rm)) by

Eu(ϕ) := −
∫

Ω
〈u(x),divϕ(x)〉 dx, (ϕ ∈ C∞c (Ω; Symk+1(Rm))). (2.3)

We also define the “Frobenius unit ball”

V kF,ns := {ϕ ∈ C∞c (Ω; T k(Rm)) | ‖ϕ‖F,∞ ≤ 1}.

and the “symmetric Frobenius unit ball”

V kF,s := {ϕ ∈ C∞c (Ω; Symk(Rm)) | ‖ϕ‖F,∞ ≤ 1}.

For our purposes it then suffices to define a tensor-valued measure µ ∈ M(Ω; T k(Rm)) as a linear functional
µ ∈ [C∞c (Ω; T k(Rm))]∗ bounded in the sense that the total variation norm

‖µ‖F,M(Ω;T k(Rm)) := sup{µ(ϕ) | ϕ ∈ V kF,ns} <∞.

For a justification of this definition, we refer to [24]. The definition of a symmetric measure µ ∈M(Ω; Symk(Rm))
is analogous with µ ∈ [C∞c (Ω; Symk(Rm))]∗ and

‖µ‖F,M(Ω;Symk(Rm)) := sup{µ(ϕ) | ϕ ∈ V kF,s} <∞.

It follows that Du and Eu are measures when they are bounded on V kF,ns and V kF,s, respectively. Observe that
for k = 0, it holdsM(Ω; T 0(Rm)) =M(Ω; Sym0(Rm)) =M(Ω), and for k = 1, it holds

M(Ω; T 1(Rm)) =M(Ω; Sym1(Rm)) =:M(Ω;Rm).

Remark 2.1. The choice of the Frobenius norm as the finite-dimensional norm in the above definitions, indi-
cated by the subscript F , ensures isotropy and a degree of rotational invariance for tensor fields. Some alternative
rotationally invariant norms, generalising the nuclear and the spectral norm for matrices, are discussed [39].

2.6. Functions of bounded variation

We say that a function u : Ω → R on a bounded open set Ω ⊂ Rm, is of bounded variation (see, e.g., [3] for a
more thorough introduction), denoted u ∈ BV(Ω), if u ∈ L1(Ω), and the distributional gradient Du is a Radon
measure. Given a sequence {ui}∞i=1 ⊂ BV(Ω), weak* convergence is defined as ui → u strongly in L1(Ω) along
with Dui ∗⇀ Du weakly* inM(Ω). The sequence converges strictly if, in addition to this, |Dui|(Ω)→ |Du|(Ω).

We denote by Su the approximate discontinuity set, i.e., the complement of the set where the Lebesgue limit
ũ exists. The latter is defined by

lim
ρ↘0

1
ρm

∫
B(x,ρ)

‖ũ(x)− u(y)‖ dy = 0.

The distributional gradient can be decomposed as Du = ∇uLm + Dju + Dcu, where the density ∇u of the
absolutely continuous part of Du equals (a.e.) the approximate differential of u. We also define the singular
part as Dsu = Dju+Dcu. The jump part Dju may be represented as

Dju = (u+ − u−)⊗ νJuHm−1xJu,

where x is in the jump set Ju ⊂ Su of u if for some ν := νJu(x) there exist two distinct one-sided traces u+(x)
and u−(x), defined as satisfying

lim
ρ↘0

1
ρm

∫
B±(x,ρ,ν)

‖u±(x)− u(y)‖ dy = 0, (2.4)

where
B±(x, ρ, ν) := {y ∈ B(x, ρ) | ±〈y − x, ν〉 ≥ 0}.

It turns out that Ju is countably Hm−1-rectifiable and ν is (a.e.) the normal to Ju. This former means that there
exist Lipschitz (m−1)-graphs {Γi}∞i=1 such that Hm−1(Ju\

⋃∞
i=1 Γi) = 0. Moreover, we have Hm−1(Su\Ju) = 0.

The remaining Cantor part Dcu vanishes on any Borel set σ-finite with respect to Hm−1.

We will depend on the following basic properties of densities of Du; for the proof, see, e.g., [3, Proposition
3.92].



Proposition 2.1. Let u ∈ BV(Ω) for an open domain Ω ⊂ Rm. Define

S̃u := {x ∈ Ω | Θ∗,m(|Du|;x) =∞}, and J̃u := {x ∈ Ω | Θ∗,m−1(|Du|;x) > 0}.

Then the following decomposition holds.

(i) ∇u = Dux(Ω \ S̃u).
(ii) Dju = DuxJ̃u, precisely J̃u ⊃ Ju, and Hm−1(J̃u \ Ju) = 0.
(iii) Dcu = Dux(S̃u \ J̃u).

We will require the following property of the one-sided traces of u. Roughly, the lemma states that locally,
outside a singular set Zu, the jump set Ju can be approximated by a Lipschitz graph Γ.

Lemma 2.1 ([38]). Let u ∈ BV(Ω). Then there exists a Borel set Zu with Hm−1(Zu) = 0 such that every
x ∈ Ju \ Zu is a Lebesgue point of the one-sided traces u±, and

Θ∗m−1(|Du|x(Γx)+;x) = 0, and Θ∗m−1(|Du|x(Γx)−;x) = 0

for a Lipschitz (m− 1)-graph Γx, which satisfies the following. Firstly

VΓx ⊃ B(P⊥zΓx, r(x))

for some r(x) > 0. Secondly the traces of u at x exist from both sides of Γx and agree with u±(x).

2.7. Functions of bounded deformation

Similarly to the definition of a function of bounded variation, a function w ∈ L1(Ω;Rm) for a domain Ω ⊂ Rm
is said to be of a vector field (or function) of bounded deformation, if the distributional symmetrised gradient
Ew ∈ M(Ω; Sym2(Rm)) [37], where Sym2(Rm) is defined in Section 2.4, and Ew defined in (2.3). We denote
the space consisting of such w by BD(Ω). The concept can also be generalised to tensor fields of higher orders
[7], useful for the definition of TGVk for k > 2.

Similar to BV, we have the decomposition [1]

Ew = EwLm + Ejw + Ecw,

where Ew is the absolutely continuous part. For smooth functions

Ew(x) = 1
2
(
∇w(x) + [∇w(x)]T

)
.

Generally this expression holds at points of approximate differentiability of w, at Lm-a.e. x ∈ Ω [1, 25]. The
jump part satisfies

Ejw = 1
2
(
νJu ⊗ (w+ − w−) + (w+ − w−)⊗ νJw

)
Hm−1xJw,

where the one-sided traces w±, the jump set Jw and its approximate normal νJw are as in the case of functions
bounded variation. Likewise, the Cantor part vanishes on any Borel set σ-finite with respect to Hm−1. Similarly
to Proposition 2.1, defining

J̃u := {x ∈ Ω | Θ∗,m−1(|Eu|;x) > 0},

we have
J̃u ⊃ Ju, and Hm−1(J̃u \ Ju) = 0. (2.5)

Many other results are however not as strong in BD(Ω) as in BV(Ω). For one, we only have |Ew|(Sw \Jw) = 0
instead of the stronger result Hm−1(Sw \ Jw) = 0, which were to hold if u ∈ BV(Ω;Rm). In fact, this result can
be made a little stronger. Namely, |Ev|(Sw \ Jw) = 0 for v, w ∈ BD(Ω) [1, Theorem 6.1].

Instead of Poincaré’s inequality in BV(Ω;Rn), which says that on Lipschitz domains we can approximate
zero-mean ‖u − ū‖ for ū = −

∫
Ω u dy by CΩ|Du|(Ω), in BD(Ω) we have the Sobolev-Korn inequality. This says

that there exists a constant CΩ > 0 and for each w ∈ BD(Ω) an element w̄ ∈ kerE such that

‖w − w̄‖2,L1(Ω;Rm) ≤ CΩ‖Ew‖F,M(Ω;Sym2(Rm)).



The kernel of E consists of affine maps w̄(x) = Ax + c for A a skew-symmetric matrix. The Sobolev-Korn
inequality can also be extended to symmetric tensor fields of higher-order than the present k = 1, in which case
the kernel is also a higher-order polynomial [7].

We will not really need these latter properties. The point is that BD(Ω) has significantly weaker regularity
than BV(Ω;Rm). This will have implications to our work. What we will use is Korn’s inequality, which holds
for 1 < q < ∞ but notoriously not for q = 1. The form most suitable for our purposes, easily obtainable from
the versions in [1, 19, 18], states the existence of a constant CΩ,q > 0 such that∫

Ω
‖∇w(x)‖qF dx ≤ CΩ,q

∫
Ω
‖Ew(x)‖qF dx, (2.6)

for bounded domains Ω, and vector fields w ∈ W 1,q
0 (Ω;Rm). Our reason for the zero boundary condition, as

opposed to Ω = Rm, a Sobolev-Korn type ‖∇(w − w̄)(x)‖qF on the left, or extra ‖w‖2,Lq(Ω;Rm) on the right, is
that in our application, we do not want to directly enforce w ∈ Lq(Ω;Rm). This will typically however follow a
posteriori from (2.6) and the Gagliardo-Nirenberg-Sobolev inequality.

2.8. Embeddings of BV2(Ω) in dimension m ∈ {1, 2}

The second-order variable of ICTV lies in the space

BV2(Ω) := {v ∈W 1,1(Ω) | ∇v ∈ BV(Ω;Rm)} (2.7)

with the norm
‖v‖BV2(Ω) := ‖v‖L1(Ω) + ‖∇v‖L1(Ω;Rm) + ‖D∇v‖M(Ω;T 2(Rm)).

We now provide some embedding results for this space. These are based on [21].

Definition 2.1. Let Ω ⊂ R2 (or, trivially, R1). We say that ∂Ω is of class C2,N , if it can be covered by finitely
many C2 graphs except possibly for a finite set of points N .

Example 2.1. Most importantly for us, the rectangular domain Ω = [a1, b1]× [a2, b2] ⊂ R2, typical for images,
has C2,N boundary.

Lemma 2.2. With m = {1, 2}, let Ω ⊂ Rm. Then the following hold.
(i) If Ω is an open bounded domain with C2,N boundary, then BV2(Ω) ↪→ L∞(Ω).
(ii) Generally BV2(Ω) ⊂ L∞loc(Ω).

Proof. For m = 1 the claims are verified by a simple integration argument. Claim (i) for m = 2 is a consequence
of [21, Théorème 3.2] with the singular part N of the boundary covered by [21, Remarque 2.1]. Claim (ii) for
then follows by applying (i) on a ball B(x, r) ⊂ Ω around every x ∈ Ω.

3. Problem statement

Before stating our main results rigorously, we introduce our assumptions on regularisation functionals and
fidelities. The definition of an admissible regularisation functional, and our assumptions on the fidelity φ are
unchanged from Part 1, but we replace the double-Lipschitz comparability by a notion of partial double-Lipschitz
comparability, and limit the set of admissible Lipschitz transformations to one that operates along a specific
direction.

3.1. Admissible regularisation functionals and fidelities

We begin by stating our assumptions on R, which are formulated in Definition 3.1 and Definition 3.4.

Definition 3.1. We call R an admissible regularisation functional on L1(Ω), where the domain Ω ⊂ Rm, if it is
convex, lower semi-continuous with respect to weak* convergence in BV(Ω), and there exist C, c > 0 such that

‖Du‖M(Ω;Rm) ≤ C
(
1 + ‖u‖L1(Ω) +R(u)

)
, (u ∈ L1(Ω)). (3.1)

Here and throughout the paper, unless otherwise indicated, the finite-dimensional base norm on Rm is the
Euclidean or 2-norm. This is the one most appropriate to most image processing tasks due to its rotational
invariance.



u Ju, vKγ

γ#u

Figure 1: Illustration of the partial push-forward γ#Ju, vK (dashed line) versus the push-forward γ#u (dotted line). The
transformation is γ(x) = x+1 on the domain U = R, and the functions are v(x) = sin x and u(x) = v(x)+2χ[0,∞)(x)−1.
Observe how the partial push-forward does not alter the sine component, and only pushes the jump of the step function
forward.

The next two technical definitions will be required by Definition 3.4.

Definition 3.2. We denote by F(Ω) the set of one-to-one Lipschitz transformations γ : Ω→ Ω with γ−1 also
Lipschitz and both satisfying the Lusin N -property. With U ⊂ Ω an open set, and z ∈ Rm a unit vector, we set

F(Ω, U) := {γ ∈ F(Ω) | γ(x) = x for x 6∈ U}, and
F(Ω, U, z) := {γ ∈ F(Ω, U) | P⊥z γ(y) = P⊥z y for all y ∈ Ω}.

With γ, γ ∈ F(Ω), we then define the basic double-Lipschitz comparison constants

Gγ,γ := sup
x∈Ω,v∈Rm,‖v‖=1

‖Aγ(x)v‖+ ‖Aγ(x)v‖ − 2‖v‖, (3.2)

and
J̄γ,γ := sup

x∈Ω
|Jmγ(x) + Jmγ(x)− 2|.

The Jacobian Jmγ is defined in Section 2.3. The mapping I is the identity on Rm, and

Aγ(x) := ∇γ−1(γ(x))Jmγ(x).

We also define the distances-to-identity

Dγ := sup
x∈Ω
‖∇γ−1(γ(x))− I‖, and J̄γ := J̄γ,ι = sup

x∈Ω
|Jmγ(x)− 1|,

as well as the normalised transformation distance

Mγ := sup
U :γ∈F(Ω,U)
u∈BV(Ω)

∫
Ω

‖γ#u(y)− u(y)‖
diam(U)|Du|(U) dy. (3.3)

Finally we combine these all into the overall double-Lipschitz comparison constant

Tγ,γ := Gγ,γ + J̄γ,γ +D2
γ +D2

γ + J̄2
γ + J̄2

γ +M
2
γ +M

2
γ .

Observe that by Poincaré’s inequality, if supp(γ−ι) has Lipschitz boundary, thenMγ <∞ for Lm-a.e. x ∈ Ω,
small enough r > 0, and γ ∈ F(Ω, U) for U ⊂ B(0, r).

Definition 3.3. Given u, v ∈ L1(Ω), and γ ∈ F(Ω), we define the partial pushforward

γ#Ju, vK := γ#(u− v) + v.

The idea in our application of the partial push-forward is, roughly, to only push forward the first-order
component of u, while keeping the second-order component fixed. This is however not in terms of Taylor
expansions or such, but in terms of splitting performed by R. We illustrate this idea in Figure 1 by comparison
to the push-forward γ#u.

Finally, we may state rigorously our most central concept.



Definition 3.4. Let x0 ∈ Ω and u ∈ BV(Ω). We say that R is partially double-Lipschitz comparable for u at
x0, if there exists a constant Ra > 0 and a function v = vu,x0 ∈W 1,1(Ω) ∩ L∞loc(Ω) with x0 6∈ Sv such that

for every ε > 0,
for some rε > 0, for every


open set U ⊂ B(x0, r),
0 < r < rε, and
γ, γ ∈ F(Ω, U) with Tγ,γ < 1,

holds
R(γ#Ju, vK) +R(γ#Ju, vK)− 2R(u) ≤ RaTγ,γ |D(u− v)|(clU) + (T 1/2

γ,γ + r)εrm (3.4)

We also say that R is partially double-Lipschitz comparable at x0 for u in the direction z for some unit vector
z ∈ Rm, if (3.4) holds with the change that γ, γ ∈ F(Ω, U, z).

Remark 3.1. Usually Ra will be a universal constant for R, but we do not need this in this work. The function
v will depend on both u and x0. The bound Tγ,γ < 1 is mostly about aesthetics. We could instead allow
Tγ,γ < δ for arbitrary δ > 0; we however cannot allow δ to be determined by ε > 0 for the proof of our main
result Theorem 3.2. It can only depend on u and x0 similarly to v. The only purpose of the bound is to allow
the use of the single constant Tγ,γ in front of both of the terms on the right hand side of (3.4), replacing any
second-order terms that we might get in front of the remainder term εrm by first-order terms, which suffice
there; compare the proof of Proposition 5.1. For this the fixed bound suffices: Tγ,γ ≤ T

1/2
γ,γ . Instead of this, we

could also replace Tγ,γ by two arbitrary polynomials of the square roots of the variables in its definition, the
one in front of |D(u − v)|(clU) being of lowest order 2, and the one in front of εrm of lowest order 1. Then
we would not have to bound Tγ,γ < 1. The reason for introducing the normalised transformation distance is
likewise aesthetical.

We will strive to prove the following property of the regularisation functionals that we study. We will only
use the more involved case (ii) in this work.

Assumption 3.1. We assume that R is an admissible regularisation functional (Definition 3.1) on L1(Ω) that
satisfies the following for every u ∈ BV(Ω) and every Lipschitz (m− 1)-graph Γ ⊂ Ω.

(i) R is partially double-Lipschitz comparable for u at Lm-a.e. x ∈ Ω.
(ii) R is partially double-Lipschitz comparable for u in the direction zΓ at Hm−1-a.e. x ∈ Γ.

In order to show the existence of solutions to (P), we require the following property from φ.

Definition 3.5. Let the domain Ω ⊂ Rm. We call φ : R → [0,∞] an admissible fidelity function on Ω if φ is
convex and lower semi-continuous, φ(0) = 0, φ(−t) = φ(t), (t > 0), and for some C > 0 holds

‖u‖L1(Ω) ≤ C
(∫

Ω
φ(u(x)) dx+ 1

)
, (u ∈ L1(Ω)). (3.5)

For the study of the jump set Ju of solutions to (P), we require additionally the following increase criterion
to be satisfied by φ.

Definition 3.6. We say that φ is p-increasing for p ≥ 1, if there exists a constant Cφ > 0 for which

φ(x)− φ(y) ≤ Cφ(x− y)|x|p−1, (x, y ≥ 0).

As we have seen in Part 1, the functions φ(t) = tp, (p ≥ 1), in particular are p-increasing and admissible.
Moreover, the problem (P) is well-posed under the above assumptions.

Theorem 3.1 (Part 1 & standard). Let f ∈ L1(Ω) satisfy
∫

Ω φ(f(x)) dx <∞. Suppose that R is an admissible
regularisation functional (Definition 3.1) on L1(Ω), and φ an admissible fidelity function for Ω. Then there
exists a solution u ∈ L1(Ω) to (P), and any solution satisfies u ∈ BV(Ω).
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Figure 2: Illustration of the transformation γρ,r. The Lipschitz graph Γ is shifted along zΓ by an amount ρhr as specified
by the possibly negative depth ρ ∈ R and a function 0 ≤ hr ∈W 1,∞

0 (B(x0, r) ∩ z⊥Γ ).

3.2. Jump set containment

Our main result in this paper is the following theorem combined with the corresponding partial double-Lipschitz
comparability estimates for higher-order regularisers in Section 5.

Theorem 3.2. Let the domain Ω ⊂ Rm be bounded with Lipschitz boundary, and φ : [0,∞) → [0,∞) be an
admissible p-increasing fidelity function (Definitions 3.5 and 3.6) for some 1 < p <∞. Let f ∈ BV(Ω)∩L∞loc(Ω),
and suppose u ∈ BV(Ω) ∩ L∞loc(Ω) solves (P). If R satisfies Assumption 3.1(ii), then

Hm−1(Ju \ Jf ) = 0.

Remark 3.2. Observe that we require u to be locally bounded. This does not necessarily hold, and needs to
be proved separately. In imaging applications we are however not usually interested in unbounded data , and
nearly always ‖f‖L∞(Ω) ≤ M for some known dynamic range M . So one would think that it suffices to add
the constraint ‖u‖L∞(Ω) ≤ M to the problem (P). This would even work under the simpler double-Lipschitz
comparability (1.1) of Part 1, as the constraint is invariant under pushforwards γ#u.

It is, however, not generally invariant under the partial pushforward γ#Ju, vK, which might not satisfy the
constraint if |ũ(x0)| = M . If |ũ(x0)| < M , and the radius rε > 0 is small enough, the constraint will still be
satisfied for otherwise well-behaved u and typical constructions of v. What this says is that if (well-behaved)
u jumps outside Jf , then it will jump to activate the constraint. Whether in practise the v prescribed by the
partial double-Lipschitz property of any particular regulariser satisfies ‖γ#Ju, vK‖L∞(Ω) ≤ M , is as interesting
an open question as boundedness itself.

Let us recall the functions fΓ and gΓ related to a Lipschitz graph Γ from Section 2.2. The proof of Theorem 3.2
is based on combining the double-Lipschitz estimate for the regulariser with a separate estimate for the fidelity,
for specific “shift” transformations γρ,r constructed in Part 1. Roughly, as illustrated in Figure 2, they shift on
a sub-domain Ur ⊂ Ω the Lipschitz graph Γ′ := gΓ(P⊥zΓB(x0, r)) ⊂ Γ in the direction zΓ by a small amount ρhr
defined by a function 0 ≤ hr ∈ W 1,∞

0 (B(x0, r) ∩ z⊥Γ ) and the depth ρ ∈ R of the modification. This may be
negative. The following lemma summarises the essential properties. For its statement and proof, we recall from
Definition 3.2 the double-Lipschitz comparison constant Tγ,γ , the normalised transformation distance Mγ , as
well as the class of Lipschitz transformations F(Ω, Ur, zΓ).

Lemma 3.1 (Extension of Lemma 5.4 in Part 1). Let Ω ⊂ Rm, and Γ ⊂ Ω be a Lipschitz (m−1)-graph, x0 ∈ Γ.
There exist r0 > 0 and Lipschitz transformations γρ,r ∈ F(Ω, Ur, zΓ), (−1 < ρ < 1, 0 < r < r0), with

Ur := x0 + z⊥Γ ∩B(0, r) + (3 + lip fΓ)(−r, r)zΓ.

These transformations satisfy for a constant C > 0 the estimate

Tγρ,r,γ−ρ,r ≤ Cρ2.

Proof. We only need to prove Mγρ,r ≤ C|ρ|, since the rest of the components of Tγρ,r,γ−ρ,r , are already appro-
priately bounded in Lemma 5.4 and Lemma 5.2 of Part 1. Let us denote for short γ := γρ,r. Lemma 5.3 in Part
1 then shows that whenever U is such that γ ∈ F(Ω, U, z), we have∫

U

|γ#u(x))− u(x)| dx ≤Mγ |Du|(U)



for
Mγ := sup

x∈Ω
‖γ(x)− x‖ = sup

x∈Ω
‖γ−1(x)− x‖.

Therefore
Mγ ≤ sup

U :γ∈F(Ω,U,zΓ)

Mγ

diam(U) .

This is why we call Mγ the normalised transformation distance in comparison to Mγ . Lemma 5.4 in Part 1
shows that Mγ = |ρ|r. The construction of γ in Part 1 (see Figure 2) shifts every point on Γ in the direction zΓ
by some amount. Therefore any U satisfying γ ∈ F(Ω, U, zΓ), is of diameter at least 2r. These considerations
yield the estimate

Mγρ,r ≤
|ρ|r

diam(Ur)
≤ |ρ|/2.

For the following result, we recall the definition of Zu from Lemma 2.1.

Lemma 3.2 (Part 1). Suppose φ is admissible and p-increasing with 1 < p < ∞, and both u, f ∈ BV(Ω) ∩
L∞loc(Ω). Let x0 ∈ Ju \ (Sf ∪ Zu). Then there exist θ ∈ (0, 1), r0 > 0, independent of ρ, and a constant
C = C(φ, u±(x0), f̃(x0)) > 0, such that whenever 0 < r < r0 and 0 < ρ < 1, the functions

ūρ,r(x) = θu(x) + (1− θ)γρ,r#u(x), (3.6)

satisfy ∫
Ω
φ(ūρ,r(x)− f(x)) dx+

∫
Ω
φ(ū−ρ,r(x)− f(x)) dx− 2

∫
Ω
φ(u(x)− f(x)) dx ≤ −Cρrm. (3.7)

With these, we may without much difficulty prove Theorem 3.2.

Proof of Theorem 3.2. Since Ju is rectifiable, there exists a family {Γi}∞i=1 of Lipschitz graphs with Hm−1(Ju \⋃∞
i=1 Γi) = 0. If the conclusion of the theorem does not hold, that is Hm−1(Ju \ Jf ) > 0, then for some

i ∈ Z+ and Γ := Γi, also Hm−1((Γ ∩ Ju) \ Jf ) > 0. We will show that this leads to a contradiction. Since
R satisfies Assumption 3.1(ii), it is partially double-Lipschitz comparable (see Definition 3.4) in the direction
zΓ for u at almost every x0 ∈ (Γ ∩ Ju) \ Jf . In particular, since Hm−1(Zu) = 0, we may choose a point
x0 ∈ (Γ ∩ Ju) \ (Jf ∪ Zu), where R is also partially double-Lipschitz comparable in the direction zΓ for u. We
let v = vu,x0 ∈W 1,1(Ω)∩L∞loc(Ω) be the function given by Definition 3.4, satisfying x0 6∈ Sv. We also recall the
partial pushforward γ#Ju, vK from Definition 3.3. We pick arbitrary ε > 0 and θ ∈ (0, 1). Then for some r1 > 0,
every U ⊂ B(x0, r), 0 < r < r1 and γ, γ ∈ F(Ω, U, zΓ), the estimate holds

R(γ#Ju, vK) +R(γ#Ju, vK)− 2R(u) ≤ RaTγ,γ |D(u− v)|(clU) + (T 1/2
γ,γ + r)εrm/(1− θ). (3.8)

The overall idea now is to apply Lemma 3.2 on the function q := u− v with data g := f − v for v. Indeed

ûρ,r := θu+ (1− θ)γ#Ju, vK =
(
θ(u− v) + (1− θ)γ#(u− v)

)
+ v = q̄ρ,r + v,

where q̄ρ,r is defined by (3.6). It is important here that v ∈ W 1,1(Ω) ∩ L∞loc(Ω) with x0 6∈ Sv. These imply that
g ∈ L∞loc(Ω) with Hm−1(Jg \ Jf ) = 0, and (u− v)+(x0)− (u− v)−(x0) = u+(x0)− u−(x0). Thus by Lemma 3.2
there exist θ ∈ (0, 1), r2 > 0, and a constant C = C(φ, u±(x0), f̃(x0), v) > 0, such that whenever 0 < r < r2
and 0 < ρ < 1, then ∫

Ω
φ(ûρ,r(x)− f(x)) dx+

∫
Ω
φ(û−ρ,r(x)− f(x)) dx

− 2
∫

Ω
φ(u(x)− f(x)) dx ≤ −Cρrm.

By convexity, obviously

R(ûρ,r) +R(û−ρ,r)− 2R(u) ≤ (1− θ) (R(γρ,r#Ju, vK) +R(γ−ρ,r#Ju, vK)− 2R(u)) ,

Since the transformations γρ,r ∈ F(Ω, Ur, zΓ), and Ur ⊂ B(x, κr) for some κ > 0, it follows from (3.8), for
0 < r < r1/κ that

R(ûρ,r) +R(û−ρ,r)− 2R(u) ≤ (1− θ)RaTγρ,r,γ−ρ,r |D(u− v)|(clUr) + (T 1/2
γρ,r,γ−ρ,r + κr)ε(κr)m. (3.9)



Since x0 ∈ Ju \ Zu, referring to Lemma 2.1, we deduce

|D(u− v)|(clUr) ≤ 2|u+(x0)− u−(x0)|ωm−1(κr)m−1

for 0 < r < r3 and some r3 > 0. Lemma 3.1 gives

Tγ−ρ,r,γ−ρ,r ≤ C ′′′ρ2

for some constant C ′′′ > 0. Setting

G(u) :=
∫

Ω
φ(u(x)− f(x)) dx+R(u)

and summing (3.7) with (3.9), we observe for some constants C ′, C ′′ > 0 and every 0 < r < min{r1/κ, r2, r3}
and 0 < ρ < 1 that

G(ûρ,r(x)) +G(û−ρ,r(x))− 2G(u) ≤ C ′ρ2rm−1 + C ′′ρεrm − Cρrm + ε(κr)m+1.

To see how to make the right hand side negative, let us set ρ = ρ̄rm. Then we get

G(ûρ,r(x)) +G(û−ρ,r(x))− 2G(u) ≤ (C ′ρ̄2 + C ′′ρ̄ε− Cρ̄+ εκm+1)rm+1.

We first pick ρ̄ small enough that C ′ρ̄ < C/4. Then we pick ε > 0 small enough that C ′′ε < C/4 and εκm+1 <
ρ̄C/4. This will force r > 0 small, but will give

G(ûρ,r(x)) +G(û−ρ,r(x))− 2G(u) ≤ −Cρ̄rm+1/4,

which is negative. This says that min{G(ûρ,r(x)), G(û−ρ,r(x))} < G(u). Thus we produce a contradiction to u
minimising G.

4. Approximation results

In this section, we study two aspects of approximation. The first is how well we can approximate functions
of bounded deformation (or variation, for the matter) by differentials ∇v of functions v ∈ W 1,1(Ω). These
approximations form the basis of proving partial double-Lipschitz comparability. The second aspect that we
study is the approximation of a function u ∈ BD(Ω) in terms of TGV-strict convergence, or generally convergence
such that ui → u weakly* in BV(Ω) and ‖Dui − w‖2,M(Ω;Rm) → ‖Du− w‖2,M(Ω;Rm) for w ∈ L1(Ω).

4.1. Local approximation in BD(Ω)

One of our most critical concepts is stated in the following definition.

Definition 4.1. We say that w ∈ BD(Ω) is BV-differentiable at x ∈ Ω if there exists ŵx ∈ BVloc(Ω;Rm) such
that

lim
r↘0
−
∫
B(x,r)

‖w(y)− ŵx(y)‖
r

dy = 0.

Remark 4.1. Clearly w is BV-differentiable everywhere if actually w ∈ BVloc(Ω;Rm). On a related note, the
BVloc assumption was also required in [2] for the study of traces of another function u with respect to |Dsw|.

Proposition 4.1. Every u ∈ BD(Ω) is BV-differentiable at Lm-a.e. x ∈ Ω.

Proof. We know from [1, 25] that w is approximately differentiable at Lm-a.e. x ∈ Ω in the sense of existence
of L = ∇u(x) ∈ Rm×m such that

lim
r↘0
−
∫
B(x,r)

‖w(y)− w(x)− L(y − x)‖
r

dy = 0.

It therefore suffices to set ŵx(y) := w(x) + L(y − x).



Remark 4.2. The domain of BV-differentiability is however potentially larger than approximate differentiabil-
ity. A simple piece of evidence for this is the fact that any w ∈ BVloc(Ω;Rm) is BV-differentiable everywhere,
but not approximately differentiable on the jump set Jw.

That we can show Lm-a.e. approximate differentiability is not entirely satisfying. We would prefer to have the
property Hm−1xJw-a.e. Whether this can be achieved at least for w a solution to (1.3), remains an interesting
open question.

We will need the following simple result for our main application of BV-differentiability stated after it.

Lemma 4.1. Suppose w ∈ BD(Ω) is BV-differentiable at x ∈ Jw. Then x ∈ J
ŵx

with w+(x) = ŵ+
x (x) and

w−(x) = ŵ−x (x).

Proof. By the definition of BV-differentiability

lim
r↘0
−
∫
B(x,r)

‖w(y)− ŵx(y)‖ dy ≤ lim
r↘0
−
∫
B(x,r)

‖w(y)− ŵx(y)‖
r

dy = 0.

This implies that w and ŵx have the same one-sided limits at x.

The next lemma provides one of the most important ingredients of our approach to proving partial double-
Lipschitz comparability for higher-order regularisation functionals. For its statement, we recall from Definition
3.2 the class of Lipschitz transformations F(Ω, Ur, zΓ) and the constant Mγ for a Lipschitz transformation γ.

Lemma 4.2. Let w ∈ BD(Ω), x ∈ Ω, and Γ 3 x be a C1 (m− 1)-graph. Suppose that w has traces w±(x) from
both sides of Γ at x, and P⊥zΓ(w+(x)− w−(x)) = 0. Then there exists v ∈W 1,1(Ω) ∩ C(Ω) satisfying

lim
r↘0
−
∫
B(x,r)

‖w −∇v‖ dy = 0. (4.1)

If w is moreover BV-differentiable at x, then

for every ε > 0,
for some rε > 0, whenever

 U ⊂ B(x, r),
0 < r < rε, and
γ ∈ F(Ω, U, zΓ),

holds
∫
U

‖γ#(w −∇v)− (w −∇v)‖ dy ≤ (Mγ + r)εrm.

(4.2)

If x ∈ Ω \ Sw, we may take γ ∈ F(Ω, U) (without any specification of Γ). In particular, at Lm-a.e. x ∈ Ω
there exists v ∈W 1,1(Ω) ∩ C(Ω) satisfying (4.1) and (4.2) for every γ ∈ F(Ω, U).

Proof. We first of all note that we may assume Ω bounded. Indeed, having fixed x, we may employ the construc-
tion below on a ball B(x, r0) ⊂ Ω. Let us call this v0. Then we may find a smooth function ϕ ∈ C∞c (B(x, r0))
with χB(x,r0/2) ≤ ϕ ≤ χB(x,r0), and take v := ϕv0.

With Ω therefore bounded, we first prove the results for γ ∈ F(Ω, U, zΓ) with Γ specified. We denote for short
z := zΓ, and recall that z⊥ is the plane orthogonal to z. We let

V ± := {x ∈ Rm | ±〈z, x〉 > 0},

and define the transformation ψ : Rm → Rm by

ψ(y) := y + fΓ(P⊥z y)z,

Here we recall that P⊥z is the orthogonal projection to z⊥, and fΓ : VΓ ⊃ z⊥ → R is the scalar map from Section
2.2 corresponding to Γ. Then ψ(VΓ) = gΓ(VΓ) = Γ. We observe also that

ψ−1(y) = y − fΓ(P⊥z y)z. (4.3)

Therefore
∇ψ−1(y) = I − (P⊥z )∗∇fΓ(P⊥z y)⊗ z,
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(a) Here for simplicity fΓ = 0 (i.e., Γ is a plane)
so that ψ(y) = y and ∇ψ = I. The function v is
continuous, in particular along Γ = ψ(z⊥Γ ) = z⊥Γ .

w+

w−

z⊥Γ

x

(b) More complicated fΓ (i.e., curved Γ) essentially
transforms the basic example of (a). The function
v is still continuous along Γ = ψ(z⊥Γ ) (thick curved
line).

Figure 3: Illustration of v in the proof of Lemma 4.2 with x = 0. The thin lines are the level lines of v, and the thick
dashed line illustrates the assumption P⊥zΓ(w+(x) − w−(x)) = 0. Observe how the magnitude of 〈zΓ, w

±〉 affects the
density of the level lines on each side of Γ.

Since 〈z, (P⊥z )∗∇fΓ(P⊥z y)〉 = 0 we find that ∇ψ−1(x) is invertible. Because ∇fΓ is by assumption continuous,
this implies that

Ψ(y) := ∇ψ−1(y)∇ψ(ψ−1(x)) = ∇ψ−1(y)[∇ψ−1(x)]−1

is continuous with Ψ(x) = I. More precisely for any ε > 0, for suitable rε > 0,

‖Ψ(y)− I‖ ≤ ε, (‖P⊥z (y − x)‖ ≤ rε). (4.4)

As illustrated in Figure 3, we then let

v :=ψ#v̄ with v̄(y) := 〈[∇ψ(ψ−1(x))]∗w+(x), y − ψ−1(x)〉χV +(y)
+ 〈[∇ψ(ψ−1(x))]∗w−(x), y − ψ−1(x)〉χV −(y).

Recalling (4.3), we observe that v is continuous and differentiable outside ψ(z⊥), v ∈ W 1,1(Ω) ∩ C(Ω). In
particular, x 6∈ Sv. Indeed, minding the continuity and differentiability of ψ−1, it suffices to show that v̄ ∈
W 1,1(B(0, R))∩C(B(0, R)) for some R > 0 with ψ−1(Ω) ⊂ B(0, R). On B(0, R) \ z⊥ this claim is trivial, so we
concentrate on a point y ∈ z⊥. At any such point Pz(y − ψ−1(x)) = 0. Therefore, if we take sequence yi → y,
we have limi→∞ Pzy

i = Pzψ
−1(x). Now, we observe that we may rewrite

[∇ψ(ψ−1(x))]∗w±(x) = [I + (P⊥z )∗∇fΓ(P⊥z ψ−1(x))⊗ z]∗w±(x)
= [I + z ⊗ [∇fΓ(P⊥z x)]∗(P⊥z )]w±(x)
= Pzw

±(x) + (I + z ⊗ [∇fΓ(P⊥z x)]∗)P⊥z w−(x).

The last equality is the only place where we need the assumption P⊥z (w+(x)−w−(x)) = 0. If now each yi ∈ V +

or, respectively, each yi ∈ V −, (i = 1, 2, 3, . . .), we see that

lim
i→∞

v̄(yi) = 〈(I + z ⊗ [∇fΓ(P⊥z x)]∗)P⊥z w−(x), y − ψ−1(x)〉.

As this is independent of whether {yi} approaches y from V + or V −, we deduce the continuity of v̄ on z⊥.
Since v̄ is continuous and also differentiable outside the linear subspace z⊥, it is clearly of bounded variation
on B(0, R). As, moreover, Dv̄ = ∇v̄Ln, we deduce that v̄ ∈ W 1,1(B(0, R)), concluding the proof of our claim
that v ∈W 1,1(Ω) ∩ C(Ω).

Let us then consider (4.1). Defining

w0(y) := w+(x)χΓ+(y) + w−(x)χΓ−(y),

we may write
∇v(y) = Ψ(y)w0(y). (4.5)

Moreover, given ε > 0, by the definition of the one-sided limits w±(x), we have for some rε > 0 that

−
∫
B(x,r)

‖w(y)− w0(y)‖ dy ≤ ε, (0 < r < rε). (4.6)



Thus with C = 2 max{w+(x), w−(x)}, recalling (4.4) and (4.5), we obtain

−
∫
B(x,r)

‖w0(y)−∇v(y)‖ dy ≤ −
∫
B(x,r)

‖Ψ(y)− I‖‖w0(y)‖ dy ≤ Cε, (0 < r < rε). (4.7)

Combined (4.6) and (4.7) give

−
∫
B(x,r)

‖w(y)−∇v(y)‖ dy ≤ (1 + C)ε, (0 < r < rε).

Since ε > 0 was arbitrary, we conclude that (4.1) holds.

We now have to prove (4.2), assuming that w is BV-differentiable at x. We begin by observing that q := w−w0
is then BV-differentiable with q̂x = ŵx − w0. Moreover∫

U

‖γ#(ŵx − w0)(y)− (ŵx(y)− w0(y))‖ dy ≤Mγ diam(U)|D(ŵx − w0)|(U).

≤ CmMγr|D(ŵx − w0)|(U),
(4.8)

for some dimensional constant Cm needed to apply (3.3) to vector fields. By assumption γ ∈ F(Ω, U, z). Thus
P⊥z γ

−1(y) = P⊥z y, which implies
Ψ ◦ γ−1 = Ψ. (4.9)

Consequently

γ#(∇v − w0)− (∇v − w0) = γ#([Ψ− I]w0)− [Ψ− I]w0

= [Ψ− I](γ#w0 − w0).

Using (4.4) again, ∫
U

‖γ#(∇v − w0)(y)− (∇v − w0)(y)‖ dy

≤ ε
∫
U

‖γ#w0(y)− w0(y)‖ dy

≤ εCmMγr|Dw0|(U) ≤MγC
′εrm, (0 < r < rε),

(4.10)

for suitable rε > 0 and some constant C ′ = C ′(Γ, w±(x0)). Choosing rε > 0 small enough, we may now for
0 < r < rε finally approximate∫

U

‖(γ#w(y)− γ#∇v(y))− (w(y)−∇v(y))‖ dy

≤
∫
U

‖(γ#w0(y)− γ#∇v(y))− (w0(y)−∇v(y))‖ dy

+
∫
U

‖(γ#ŵx(y)− γ#w0(y))− (ŵx(y)− w0(y))‖ dy

+
∫
U

‖γ#ŵx(y)− γ#w(y)‖ dy +
∫
U

‖ŵx(y)− w(y)‖ dy

≤Mγr|D(ŵx − w0)|(U) +MγC
′εrm + εrm+1.

(4.11)

For the final inequality, we have used (4.8) and (4.10) for the two first terms of the middle step, and the definition
of BV-differentiability with the area formula for the last two terms. Referring to Lemma 4.1 and (2.5), we now
observe for suitable rε > 0 that

|D(ŵx − w0)|(U) ≤ εrm−1, (0 < r < rε). (4.12)

The arbitrariness of ε > 0 allows us to get rid of the constant factors in (4.11), and thus conclude the proof of
(4.2) in the case that γ ∈ F(Ω, U, zΓ).

If x ∈ Ω \ Sw, and γ ∈ F(Ω, U) (without any specification of Γ), we set

ψ(y) := y.

Then
v̄(y) = v(y) = w0(y) ≡ w̃(x).



Also
Ψ(y) = I,

so we get
γ#(∇v − w0)− (∇v − w0) = 0,

and do not need the property (4.9), which is the only place where we used the fact that γ ∈ F(Ω, U, zΓ). Indeed,
instead of (4.4), we have the stronger property∫

U

‖γ#(∇v − w0)(y)− (∇v − w0)(y)‖ dy = 0.

The rest follows as before. In particular, since by Proposition 4.1, w is BV-differentiable Lm-a.e., and also the
approximate limit w̃ exist Lm-a.e., we deduce at Lm-a.e. x ∈ Ω the existence of v ∈ W 1,1(Ω) satisfying (4.1)
and (4.2) for γ ∈ F(Ω, U).

Remark 4.3. Our main reason for introducing the notion of BV-differentiability in Definition 4.1 is to be able
to perform the pushforward approximation in (4.2). For this it would also suffice to require the existence of
ŵ⊥x,z ∈ BVloc(Ω; z⊥) satisfying

lim
r↘0
−
∫
B(x,r)

‖P⊥z w(y)− ŵ⊥x,z(y)‖
r

dy = 0. (4.13)

Here z := zΓ. This holds because the slice uzy(t) := 〈z, w(y + tz)〉 ∈ BV(Ωzy) for Ωzy := {t ∈ R | y + tz ∈ Ω}, and
Hm−1-a.e. y ∈ P⊥z Ω [1]. Unfortunately, we do not know much about the slices t 7→ 〈e, w(y + tz)〉 for e ⊥ z, and
therefore need to assume BV-differentiability. Combined with (4.13), the assumption P⊥zΓ(w+(x)− w−(x)) = 0
that we required reduces into x 6∈ S

ŵ⊥x,z
. In other words, we approximate P⊥z w by a BV function for which x is

a Lebesgue point. What all this means is that we need to assume extra regularity from w in directions parallel
to the plane z⊥Γ , but do not need to assume anything beyond w ∈ BD(Ω) along zΓ.

If w ∈ BV(Ω;Rm) withm = 2 is the gradient of some function, we may do away with many of the assumptions
of Lemma 4.2. We will use this lemma on conjunction with ICTV.

Lemma 4.3. With m ∈ {1, 2}, suppose Ω ⊂ Rm is an open domain, Γ a Lipschitz (m − 1)-graph, and w =
∇v2 ∈ BV(Ω;Rm) for some v2 ∈ W 1,1(Ω). Then for Hm−1-a.e. x ∈ Γ there exists v ∈ W 1,1(Ω) ∩ L∞(Ω) with
x 6∈ Sv satisfying (4.1) and (4.2).

Proof. As in the proof of Lemma 4.2, we may assume that Ω = B(x, r0) for some r0 > 0. As Ω then has a C2

boundary, by Lemma 2.2, v2 ∈ L∞(Ω). We may therefore simply choose v2 = v, which trivially satisfies (4.1)
and (4.2).

4.2. TGV-strict smooth approximation

We now study alternative forms of strict convergence in BV(Ω).

Theorem 4.1. Suppose Ω ⊂ Rm is open and let (u,w) ∈ BV(Ω) × BD(Ω). Then there exists a sequence
{(ui, wi)}∞i=1 ∈ C∞(Ω)× C∞(Ω;Rm) with

ui → u in L1(Ω), ‖Dui − wi‖2,M(Ω;Rm) → ‖Du− w‖2,M(Ω;Rm),

wi → w in L1(Ω;Rm), ‖Ewi‖F,M(Ω;Sym2(Rm)) → ‖Ew‖F,M(Ω;Sym2(Rm)).

If only w ∈ L1(Ω;Rm), then we get the three first convergences, but not the fourth one.

Proof. The proof follows the outlines of the approximation of u ∈ BV(Ω) in terms of strict convergence in
BV(Ω), see [3, Theorem 3.9]. We just have to add a few extra steps to deal with w, which is approximated
similarly.

To start with the proof, given a positive integer m, we set Ω0 = ∅ and

Ωk := B(0, k +m) ∩ {x ∈ Ω | inf
y∈∂Ω

‖x− y‖ ≥ 1/(m+ k))}.



We pick m large enough that

|Du− w|(Ω \ Ω1) < 1/i and |Ew|(Ω \ Ω1) < 1/i. (4.14)

With
Vk := Ωk+1 \ cl Ωk−1,

each x ∈ Ω belongs to at most four sets Vk. We may then find a partition of unity {ζk}∞k=1 with ζk ∈ C∞c (Vk),
0 ≤ ζk ≤ 1 and

∑∞
k=1 ζk ≡ 1 on Ω.

With {ρε}ε>0 a family of mollifiers, and εk > 0, we let

uk := ρεk ∗ (uζk), and wk := ρεk ∗ (wζk).

We select εk > 0 small enough that suppuk, suppwk ⊂ Vk (doable because ζk ∈ C∞c (Vk)), and such that the
estimates

‖uk − uζk‖ ≤ 1/(2ki), and ‖ρεk ∗ (u∇ζk)− u∇ζk‖ ≤ 1/(2ki), (4.15)

hold, as do
‖wk − wζk‖ ≤ 1/(2ki), and ‖ρεk ∗ (w ⊗∇ζk)− w ⊗∇ζk‖ ≤ 1/(2ki). (4.16)

We then let

ui(x) :=
∞∑
k=1

uk(x), and wi(x) :=
∞∑
k=1

wk(x).

By the construction of the partition of unity, for every x ∈ Ω there exists a neighbourhood of x such the these
sums have only finitely many non-zero terms. Hence ui ∈ C∞(Ω). Moreover, as u =

∑∞
k=1 ζku, (4.15) gives

‖u− ui‖ ≤
∞∑
k=1
‖uk − uζk‖ < 1/i.

Thus ui → u in L1(Ω) as i→∞. Completely analogously wi → w in L1(Ω;Rm) as i→∞.

By lower semicontinuity of the total variation, we have

‖Du− w‖2,M(Ω;Rm) ≤ lim inf
i→∞

‖Dui − wi‖2,M(Ω;Rm), and

‖Ew‖F,M(Ω;Sym2(Rm)) ≤ lim inf
i→∞

‖Ewi‖F,M(Ω;Sym2(Rm)).

It therefore only remains to prove the opposite inequalities. Let ϕ ∈ C1
c (Ω;Rm) with supx∈Ω |ϕ(x)| ≤ 1. We

have ∫
Ω

divϕ(x)uk(x) =
∫

Ω
divϕ(x)(ρεk ∗ ζku)(x) dx

=
∫

Ω
div(ρεk ∗ ϕ)(x)ζk(x)u(x) dx

=
∫

Ω
div[ζk(ρεk ∗ ϕ)](x)u(x) dx−

∫
Ω
〈∇ζk(x), (ρεk ∗ ϕ)(x)〉u(x) dx

=
∫

Ω
div[ζk(ρεk ∗ ϕ)](x)u(x) dx

−
∫

Ω
〈ϕ(x), (ρεk ∗ (u∇ζk))(x)− (u∇ζk)(x)〉 dx

−
∫

Ω
〈ϕ(x), (u∇ζk)(x)〉 dx.

Since
∑∞
k=1∇ζk = 0, we have

∞∑
k=1

∫
Ω
〈ϕ(x), (u∇ζk)(x)〉 dx = 0.



Thus using (4.15), we get∫
Ω

divϕ(x)ui(x) =
∞∑
k=1

∫
Ω

divϕ(x)uk(x)

=
∞∑
k=1

∫
Ω

div[ζk(ρεk ∗ ϕ)](x)u(x) dx

−
∞∑
k=1

(∫
Ω
〈ϕ(x), (ρεk ∗ (u∇ζk))(x)− (u∇ζk)(x)〉 dx

)

≤
∞∑
k=1

∫
Ω

divϕk(x)u(x) dx+ 1/i.

In the final step, we have set
ϕk := ζk(ρεk ∗ ϕ).

By the definition of wi, we also have∫
Ω
〈ϕ(x), wi(x)〉 dx =

∞∑
k=1

∫
Ω
〈ϕ(x), [ρεk ∗ (wζk)](x)〉 dx

=
∞∑
k=1

∫
Ω
〈ϕk(x), w(x)〉 dx.

Observing that −1 ≤ ϕk ≤ 1, and using the fact that
∑∞
k=1 χVk ≤ 4, we further get∫

Ω
ϕ(x) d[Dui − wi](x) = −

∫
Ω

divϕ(x)ui(x) + 〈ϕ(x), wi(x)〉 dx

≤ −
∫

Ω
divϕ1(x)u(x) + 〈ϕ1(x), w(x)〉 dx

−
∞∑
k=2

∫
Ω

divϕk(x)u(x) + 〈ϕk(x), w(x)〉 dx+ 1/i

≤ |Du− w|(Ω) +
∞∑
k=2
|Du− w|(Vk) + 1/i

≤ |Du− w|(Ω) + 4|Du− w|(Ω \ Ω1) + 1/i
≤ |Du− w|(Ω) + 5/i.

In the final step we have used (4.14). This shows that ‖Dui − wi‖2,M(Ω;Rm) → ‖Du− w‖2,M(Ω;Rm).

Next we recall that

|Ew|(Ω) = sup
ϕ∈C∞c (Ω;Symn×n):‖ϕ(x)‖∞≤1

∫
Ω
〈divϕ(x), w(x)〉 dx

with the divergence taken columnwise. Therefore, arguments analogous to the ones above show that
‖Ewi‖F,M(Ω;Sym2(Rm)) → ‖Ew‖F,M(Ω;Sym2(Rm)) if w ∈ BD(Ω). If only w ∈ L1(Ω;Rm), then we do not get
this converges, but the proof of the other converges did not depend on w ∈ BD(Ω) at all. This concludes the
proof.

For our present needs, the most important corollary of the above theorem is the following. We note that after
the first version of this manuscript was submitted, a similar result has been published in the tensor space setting
in [8]. This is, however, proved directly without being based on the more general result of Theorem 4.1.

Corollary 4.1. Suppose Ω ⊂ Rm is open and let (u,w) ∈ BV(Ω) × L1(Ω;Rm). Then there exists a sequence
{ui}∞i=1 ∈ C∞(Ω) with

ui → u in L1(Ω) and ‖Dui − w‖2,M(Ω;Rm) → ‖Du− w‖2,M(Ω;Rm), (4.17)

as well as Dui ∗⇀ Du weakly* inM(Ω;Rm).



Proof. Let {(ui, wi)}∞i=1 ∈ C∞(Ω)× C∞(Ω;Rm) be given by Theorem 4.1. Then

lim
i→∞

‖Dui − w‖2,M(Ω;Rm) ≤ lim
i→∞

(
‖Dui − wi‖2,M(Ω;Rm) + ‖wi − w‖2,L1(Ω;Rm)

)
= ‖Du− w‖2,M(Ω;Rm).

Analogously we deduce
lim
i→∞

‖Dui − w‖2,M(Ω;Rm) ≥ ‖Du− w‖2,M(Ω;Rm).

This gives (4.17). Clearly, by moving to a subsequence of the original bounded sequence, we may further force
Dui ∗⇀ Du weakly* inM(Ω;Rm).

The following corollary shows the approximability of u ∈ BV(Ω) in terms of TGV2-strict convergence. It is
of course easy to extend to TGVk for k > 2.

Corollary 4.2. Suppose Ω ⊂ Rm is open and let u ∈ BV(Ω). Then there exists a sequence {ui}∞i=1 ∈ C∞(Ω)
with ui → u in L1(Ω), Dui ∗⇀ Du weakly* inM(Ω;Rm), and TGV2

(β,α)(ui)→ TGV2
(β,α)(u) for any α, β > 0.

Proof. Let w achieve the minimum in the differentiation cascade of definition (1.3) of TGV2, the minimiser
existing by [10]. Let then the sequence {(ui, wi)}∞i=1 ∈ C∞(Ω) × C∞(Ω;Rm) be given by Theorem 4.1. As in
the proof of Corollary 4.1, we may assume that Dui ∗⇀ Du weakly* inM(Ω;Rm).

To see the convergence of TGV2
(β,α)(ui) to TGV2

(β,α)(u), we observe that by definition

TGV2
(β,α)(ui) ≤ α‖Dui − wi‖2,M(Ω;Rm) + β‖Ewi‖F,M(Ω;Sym2(Rm))

Moreover
lim
i→∞

α‖Dui − wi‖2,M(Ω;Rm) + β‖Ewi‖F,M(Ω;Sym2(Rm)) = TGV2
(β,α)(u).

Since the TGV2 functional is lower semicontinuous with respect to weak* convergence in BV(Ω) ([9], see also
Lemma 5.5 below), the claim follows.

5. Higher-order regularisers

We now study partial double-Lipschitz comparability of second- and higher-order regularisers. We start in
Section 5.1 with general results for a specific form of higher-order regularisers. We then apply these to TGV2

in Section 5.2. As the results for TGV2 are not completely satisfying, afterwards in Section 5.3 we consider
variants of TGV2 for which we have gradually stronger results. We finish in Section 5.4 with infimal convolution
TV (ICTV).

5.1. A general double-Lipschitz comparability result

The basic idea of the proof of double-Lipschitz comparability of TGV2, ICTV, and other higher-order regularisers
is similar to the proof for TV in Part 1. We however need to deal with the second-order variable w as well.
This adds significant extra complications. One of them is the use of the symmetrised gradient Ew in TGV2.
This has the consequence that we cannot use estimates of the type of Lemma 5.3 in Part 1. We need the
BV-differentiability of Section 4.1 here. Also, the variable w alone is problematic in the expression Dγ#u − w
for the use of the area formula. In order to deal with it, we have to take something, ∇v, out of w, and shift this
into u. This is done by the partial push-forward, see Figure 1. Finally, we need to be careful with the jump set
of w, also removing it from some estimates.

Here we consider general regularisers formed by fixing ~α = (β, α) > 0, a proper weak* lower semicontinuous
functional Ψ : BD(Ω)→ R, and defining

FΨ(u) := inf
w∈L1(Ω;Rm)

α‖Du− w‖F,M(Ω;Rm) + βΨ(w), (u ∈ BV(Ω)). (5.1)

We cannot in general prove Assumption 3.1(ii) for FΨ quite exactly, only for Hm−1-a.e. x ∈ Γ∩Dw ∩OΓ
w, where

Dw := {x ∈ Ω | w is BV-differentiable at x}, and (5.2a)
OΓ
w := {x ∈ Γ | P⊥zΓ(w+(x)− w−(x)) = 0}. (5.2b)

In specific cases, the sets however turn out to be large enough that Assumption 3.1(ii) holds. Note that in the
following lemma, we do not prove or require FΨ to be admissible by Definition 3.1.



Lemma 5.1. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Suppose for any u ∈ BV(Ω) there
exists a minimiser w ∈ BD(Ω) to (5.1) for u. Then FΨ satisfies Assumption 3.1(i). Moreover, given u ∈ BV(Ω),
a corresponding minimiser w ∈ BD(Ω) to (5.1), and any Lipschitz (m− 1)-graph Γ ⊂ Ω, we verify
(ii∗) FΨ is partially double-Lipschitz comparable (Definition 3.4) for u in the direction zΓ at Hm−1-a.e. x ∈

Γ ∩Dw ∩ UΓ
w, where for each w and Γ we set

UΓ
w :=

{
x ∈ Ω

∣∣∣∣ exists v ∈W 1,1(Ω) ∩ L∞loc(Ω) with x 6∈ Sv, satisfying (5.3),
and for γ, γ, U, ε, and r as in Definition 3.4, (5.4)

}
.

Here the conditions are
lim
r↘0
−
∫
B(x,r)

‖w −∇v‖ dy = 0, (5.3)

and ∑
γ=γ,γ

∫
U

‖γ#(w −∇v)− (w −∇v)‖ dy ≤ (T 1/2
γ,γ + r)εrm. (5.4)

Using Lemma 4.2 we immediately deduce the following lemma as a corollary.

Lemma 5.2. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Suppose for any u ∈ BV(Ω) there
exists a minimiser w ∈ BD(Ω) to (5.1) for u. Then FΨ satisfies Assumption 3.1(i). Moreover, given u ∈ BV(Ω),
a corresponding minimiser w ∈ BD(Ω) to (5.1), and any Lipschitz (m− 1)-graph Γ ⊂ Ω, we verify
(ii’) FΨ is partially double-Lipschitz comparable for u in the direction zΓ at Hm−1-a.e. x ∈ Γ ∩Dw ∩OΓ

w.

Proof. The satisfaction of Assumption 3.1(i) follows directly from Lemma 5.1. Regarding (ii’), in order to apply
Lemma 4.2, we need a C1 (m−1)-graph. Indeed, as a consequence of the Whitney extension theorem [24, 3.1.14]
and Lusin’s theorem applied to fΓ, we may cover Γ by C1 (m − 1)-graphs {Λi}∞i=1 satisfying zΛi = zΓ, and
Hm−1(Γ \

⋃∞
i=1 Λi) = 0. Since by Lemma 4.2 now UΛi

w ⊃ OΛi
w , for every i ∈ Z+, the claim follows from Lemma

5.1.

If there exists for every u a minimising w to (5.17), actually in W 1,1(Ω;Rm), we verify Assumption 3.1(ii).

Lemma 5.3. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Suppose for any u ∈ BV(Ω) there
exists a minimiser w ∈W 1,1(Ω;Rm) to (5.1) for u. Then FΨ satisfies Assumption 3.1.

Proof. If w ∈W 1,1(Ω;Rm), it is BV-differentiable everywhere (cf. Remark 4.1). Thus Dw = Ω. Moreover, given
a Lipschitz (m − 1)-graph Γ, we observe that Hm−1(Γ ∩ Sw) = 0. This follows from the BV trace theorem [3,
Theorem 3.77], which guarantees the existence of w± almost everywhere on Γ, the property Hm−1(Sw \Jw) = 0
in BV, and the fact that Hm−1(Jw) = 0 for w ∈ W 1,1(Ω;Rm). Thus in particular Hm−1(Γ \ OΓ

w) = 0. Lemma
5.2 now implies Assumption 3.1 in full.

Proof of Lemma 5.1. We pick arbitrary w ∈ BD(Ω) achieving the minimum in (5.1). To show Assumption 3.1(i),
we use Lemma 4.2 to show at Lm-a.e. x ∈ Ω the existence of v ∈W 1,1(Ω) ∩ C(Ω) satisfying (4.1) and (4.2) for
every γ ∈ F(Ω, U). For (ii∗) we fix x ∈ Γ ∩Dw ∩ UΓ

w, and use v ∈ W 1,1(Ω) ∩ L∞loc(Ω) with x 6∈ Sv as provided
by the definition of UΓ

w. Observe that in both cases v ∈W 1,1(Ω) ∩ L∞loc(Ω) with x 6∈ Sv, and (5.3) and (5.4) are
satisfied.

We recall the partial pushforward γ#Ju, vK from Definition 3.3, and define

uγ := γ#Ju, vK = γ#(u− v) + v, (γ = γ, γ).

If we also set
H(u,w) := α‖Du− w‖2,M(Ω;Rm) + βΨ(w), (5.5)

then FΨ(u′) ≤ H(u′, w′) for all (u′, w′) ∈ BV(Ω)× L1(Ω;Rm). To prove the partial double-Lipschitz compara-
bility property (3.4) for u at x, it therefore suffices to prove

for any ε > 0,
the existence of rε > 0, such that any


open set U ⊂ B(x0, r),
0 < r < rε, and
γ, γ ∈ F(Ω, U) (resp. F(Ω, U, zΓ))
with Tγ,γ < 1,



satisfy
H(uγ , w) +H(uγ , w)− 2H(u,w) ≤ Tγ,γ |D(u− v)|(clU) + (T 1/2

γ,γ + r)εrm, (5.6)

for w achieving the minimum in (5.18) for u. Here we recall the family F(Ω, U, zΓ)) of Lipschitz transformations,
and the double-Lipschitz comparison constant Tγ,γ from Definition 3.2. For the following, we also recall Aγ ,
Gγ,γ , Dγ , J̄γ from the very same Definition.

We suppose first that u ∈ W 1,1(Ω). With γ = γ, γ, we have γ#∇u = ∇γ−1γ#∇u [38, Section 4.1]. Thus we
may expand

∇uγ − w = ∇γ#(u− v) +∇v − w
= ∇γ−1γ#(∇u−∇v) + γ#(∇v − w)
− [γ#(∇v − w)− (∇v − w)]

= ∇γ−1γ#(∇u− w) + (I −∇γ−1)γ#(∇v − w)
− [γ#(∇v − w)− (∇v − w)].

It follows ∫
U

‖∇uγ − w‖ dy ≤
∫
U

‖Aγ(∇u− w)‖ dy

+
∫
U

‖(I −∇γ−1(γ))(∇v − w)‖Jmγ dy

+
∫
U

‖γ#(∇v − w)− (∇v − w)‖ dy.

(5.7)

With γ = γ, γ, using (5.3) we get∫
U

‖(I −∇γ−1(γ))(∇v − w)‖Jmγ dy ≤ Dγ

∫
U

‖∇v − w‖Jmγ dy

≤ Dγ(J̄γ + 1)
∫
U

‖∇v − w‖ dy

≤ Dγ(J̄γ + 1)εrm.

(5.8)

Using (5.8) and (5.4) in (5.7), we see that∑
γ=γ,γ

∫
U

‖∇uγ − w‖ dy ≤
∑
γ=γ,γ

(∫
U

‖Aγ(∇u− w)‖ dy +Dγ(J̄γ + 1)εrm
)

+ (T 1/2
γ,γ + r)εrm.

Subtracting 2
∫
U
‖∇u− w‖ dy and using the defining equation (3.2) of Gγ,γ , we obtain∫

U

‖∇uγ − w‖ dy +
∫
U

‖∇uγ − w‖ dy − 2
∫
U

‖∇u− w‖ dy

≤ Gγ,γ
∫
U

‖∇u− w‖ dy +
∑
γ=γ,γ

Dγ(J̄γ + 1)εrm + (T 1/2
γ,γ + r)εrm.

(5.9)

We deduce from (5.3) that ∫
U

‖∇u− w‖ dy ≤
∫
U

‖∇u−∇v‖ dy + εrm.

Using this in (5.9) we finally have∫
U

‖∇uγ − w‖ dy +
∫
U

‖∇uγ − w‖ dy − 2
∫
U

‖∇u− w‖ dy

≤ Gγ,γ
∫
U

‖∇(u− v)‖ dy + (Cγ,γ + r)εrm,
(5.10)

where
Cγ,γ := Gγ,γ +Dγ(J̄γ + 1) +Dγ(J̄γ + 1) + T

1/2
γ,γ .



Under the assumption Tγ,γ < 1 contained in Definition 3.4, this can be made less than a constant times T 1/2
γ,γ .

Since ε > 0 was arbitrary, we can get rid of any extra constant factors, proving (5.6) if u ∈W 1,1(Ω).

For general u ∈ BV(Ω) we use Corollary 4.1, to form a sequence {ui}∞i=1 ∈ C∞(Ω) with

ui → u in L1(Ω) and ‖D(ui − v)‖2,M(Ω;Rm) → ‖D(u− v)‖2,M(Ω;Rm), (5.11)

as well as Dui ∗⇀ Du. Here we keep both w and v fixed, as constructed above for u, observing that the steps
leading to (5.10) depended on the relationship of w to v but of neither to u. Also neither ε > 0 nor r0 > 0 in
(5.10) depends on u itself. Therefore (5.10) holds in a uniform sense for the sequence {ui}∞i=1. In particular

H(uiγ , w) +H(uiγ , w)− 2H(ui, w) ≤ Gγ,γ |D(ui − v)|(U) + c (i ∈ Z+) (5.12)

for the small nuisance variable c := (T 1/2
γ,γ + r)εrm, independent of i.

The sequences {uiγ}∞i=1 and {uiγ}∞i=1 are bounded in BV(Ω). This follows from [3, Theorem 3.16] describing
the behaviour of Lipschitz push-forwards in BV, and the boundedness of {ui}∞i=1 contained in (5.11). We may
therefore extract a subsequence, unrelabelled, such that both {uiγ}∞i=1 and {uiγ}∞i=1 are convergent weakly* to
some u ∈ BV(Ω) and u ∈ BV(Ω), respectively. Moreover, by (5.11), (5.12), and the lower semicontinuity of the
Radon norm with respect to weak* convergence, we find that

H(u,w) +H(u,w)− 2H(u,w) ≤ lim inf
i→∞

Gγ,γ |D(ui − v)|(U) + c.

Let us pick an open set U ′ ⊃ U such that |Du|(∂U ′) = 0. Then |D(ui − v)|(U ′) → |D(u − v)|(U ′) because
D(ui − v)→ D(u− v) strictly inM(Ω;Rm); see [3, Proposition 1.62]. It follows

H(u,w) +H(u,w)− 2H(u,w) ≤ Gγ,γ |D(u− v)|(U ′) + c.

By taking the intersection over all admissible U ′ ⊃ U , we deduce

H(u,w) +H(u,w)− 2H(u,w) ≤ Gγ,γ |D(u− v)|(clU) + c. (5.13)

This is almost (5.6) just have to show that u = γ#Ju, vK and u = γ#Ju, vK. Indeed∫
Ω
|u(x)− γ#Ju, vK| dx ≤

∫
Ω
|u(x)− γ#Jui, vK| dx+

∫
Ω
|γ#Ju, vK− γ#Jui, vK| dx

≤
∫

Ω
|u(x)− γ#Jui, vK| dx+ C

∫
Ω
|u(x)− ui(x)| dx

(5.14)

for
C :=

(
sup
x
Jmγ(x)

)
≤ (lip γ)m <∞.

The integrals on the right hand side of (5.14) moreover tend to zero by the strict convergence of ui to u and
the weak* convergence of γ#u

i to u. It follows that u = γ#u. Analogously we show that u = γ#u. The bound
(5.6) is now immediate from (5.13).

Before studying specific higher-order regularisation functionals, we provide another general result that will
be useful for regularisers with convex Ψ that forces w ∈ BV(Ω;Rm) ⊂ BD(Ω).

Lemma 5.4. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Suppose Ψ : BV(Ω;Rm) → R
is convex and lower semicontinuous with respect to weak* convergence in BV(Ω;Rm), and satisfies for some
constant C > 0 the inequality

‖Dw‖F,M(Ω;T 2(Rm)) ≤ C(1 + Ψ(w)). (5.15)

For any ~α = (β, α) > 0, define

FΨ(u) := inf
w∈L1(Ω;Rm)

α‖Du− w‖F,M(Ω;Rm) + βΨ(w), (u ∈ BV(Ω)). (5.16)

Then FΨ is an admissible regularisation functional on L1(Ω), i.e., satisfies Definition 3.1.



Proof. Minding (5.15), it is not difficult to see that a minimising sequence {wi}∞i=1 for the expression of FΨ(u)
in (5.16) is bounded in BV(Ω). The existence of a minimising w ∈ BV(Ω;Rm) for FΨ(u) therefore follows from
the lower semicontinuity of Ψ. If now ui → u weakly* in BV(Ω), with corresponding minimisers wi to the
expression of FΨ(ui) in (5.16), then we may again deduce that {wi}∞i=1 is bounded in BV(Ω;Rm). Therefore,
we may extract a subsequence, unrelabelled, such that also {wi}∞i=1 converge weakly* to some u ∈ BV(Ω). But
the functional

H(u,w) := α‖Du− w‖F,M(Ω;Rm) + βΨ(w), (5.17)

is clearly lower semicontinuous with respect to weak* convergence of both variables. Since FΨ(u) ≤ H(u,w),
and FΨ(ui) = H(ui, wi), we deduce that FΨ is weak* lower semicontinuous.

To see the coercivity property (3.1), we use the fact that

‖Du‖F,M(Ω;Rm) ≤ C
(
‖Du− w‖F,M(Ω;Rm) + ‖Dw‖F,M(Ω;Sym2(Rm)) + ‖u‖L1(Ω)

)
.

This follows from the Poincaré inequality and an argument by contradiction; for details see [11, 10]. Plugging
in (5.15) immediately proves (3.1).

Finally, FΨ is clearly convex, so the above considerations show that it is admissible.

5.2. Second-order total generalised variation

Total generalised variation was introduced in [9] as a higher-order extension of TV that avoids the stair-casing
effect. Following the differentiation cascade formulation of [11, 10], it may be defined for u ∈ BV(Ω) and
~α = (β, α) as

TGV2
~α(u) := min

w∈L1(Ω;Rm)
α‖Du− w‖2,M(Ω;Rm) + β‖Ew‖F,M(Ω;Sym2(Rm)), (5.18)

with a minimising w ∈ BD(Ω) existing. Clearly

TGV2
~α(u) ≤ αTV(u).

Moreover, TGV2
~α is a seminorm. In fact, it turns out that the norms ‖u‖L1 + TV(u) and ‖u‖L1 + TGV2

~α(u)
are equivalent, as shown in [11, 10]. In other words TGV2

~α induces the same topology in BV(Ω) as TV does,
but different geometry, as can be witnessed from often much improved behaviour in practical image processing
tasks.

Lemma 5.5. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Then there exist constants c, C > 0,
dependent on Ω, such that for all u ∈ L1(Ω) it holds

c
(
‖u‖L1(Ω) + ‖Du‖M(Ω;Rm)

)
≤ ‖u‖L1(Ω) + TGV2

(β,α)(u) ≤ C
(
‖u‖L1(Ω) + ‖Du‖M(Ω;Rm)

)
. (5.19)

Moreover, the functional TGV2
~α is lower semicontinuous with respect to weak* convergence in BV(Ω).

Proof. Lower semicontinuity is proved in [9] for the original dual ball formulation. Equivalence to the differen-
tiation cascade formulation presented here is proved in [11, 10], where the norm equivalence is also proved.

The following proposition states what we can say about partial double-Lipschitz comparability of standard
TGV2.

Proposition 5.1. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Then TGV2
α is an admissible

regularisation functional on L1(Ω), i.e., satisfies Definition 3.1, and also satisfies Assumption 3.1(i) and (ii’).

Proof. We know from Lemma 5.5 that TGV2
~α is lower semi-continuous with respect to weak* convergence in

BV(Ω), and that (3.1) holds. For the verification of Assumption 3.1(i) and (ii’) we apply Lemma 5.2 with
Ψ(w) := ‖Ew‖F,M(Ω;Sym2(Rm)).

Corollary 5.1. Let the domain Ω ⊂ Rm be bounded with Lipschitz boundary, and φ : [0,∞) → [0,∞) be an
admissible p-increasing fidelity function (Definitions 3.5 and 3.6) for some 1 < p <∞. Let f ∈ BV(Ω)∩L∞loc(Ω),
and suppose u ∈ BV(Ω) solves (P) for R = TGV2

~α. Let w ∈ BD(Ω) achieve the minimum in (5.18) for u, and
let Γ ⊂ Ω be any Lipschitz (m− 1)-graph. If u ∈ L∞loc(Ω), then for Dw and OΓ

w defined in (5.2), we have

Hm−1(Ju ∩ Γ ∩Dw ∩OΓ
w \ Jf ) = 0.



Proof. By Proposition 5.1, R = TGV2
~α is partially double-Lipschitz comparable for u in the direction zΓ at

Hm−1-a.e. x ∈ Γ ∩Dw ∩ OΓ
w. The proof of Theorem 3.2 now goes through for Hm−1-a.e. point x0 ∈ Ju ∩ Γ ∩

Dw ∩OΓ
w \ Jf .

Remark 5.1. As Lemma 5.2 does not significantly depend on the structure of Ψ, Proposition 5.1 trivially
extends to the differentiation cascade formulation of TGVk, (k ≥ 3), defined for the parameter vector ~α =
(α1, . . . , αk) > 0 as

TGVk~α(u) = inf
u`∈L1(Ω;Sym`(Rm));
`=1,...,k−1;u0=u, uk=0

k∑
`=1

αk−`‖Eu`−1 − u`‖.

The extension of the proof of this formulation in [11] for k = 2 to k > 2 may be found in [8].

5.3. Variants of TGV2

As we have seen, we are unable to prove jump set containment for TGV2 unless we assume that the minimising
w ∈ BD(Ω) in (5.18) actually satisfies w ∈ BVloc(Ω) and P⊥zΓ(w+(x) − w−(x)) = 0 for any Lipschitz graph Γ.
Of course, we also have to assume that u ∈ L∞loc(Ω). Whether we can prove any of these properties, we leave as
a fascinating question for future studies. Here we consider a couple of variants of TGV2 for which we get step
by step closer to the satisfaction of the assumptions of Theorem 3.2.

The first modification, already considered in [9], is the non-symmetric variant, which may be defined as

nsTGV2
~α(u) := min

w∈BV(Ω;Rm)
α‖Du− w‖F,M(Ω;Rm) + β‖Dw‖F,M(Ω;T 2(Rm)). (5.20)

It is not difficult to extend Lemma 5.5 to this this functional, and then use Lemma 5.2 to obtain the following.

Proposition 5.2. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Then nsTGV2
~α is an admissible

regularisation functional on BV(Ω), i.e., satisfies Definition 3.1), and also satisfies Assumption 3.1(i) and

(ii”) nsTGV2
~α is partially double-Lipschitz comparable for u in the direction zΓ at Hm−1-a.e. x ∈ OΓ

w.

Here we have used the fact that Hm−1(Ω \ Dw) = 0 resulting from the everywhere BV-differentiability
of w ∈ BV(Ω). We have therefore reduced the assumptions of Theorem 3.2 holding to u ∈ L∞loc(Ω), and
P⊥zΓ(w+(x)− w−(x)) = 0 Hm−1-a.e. on any Lipschitz graph Γ.

Similarly to Corollary 5.1, we have:

Corollary 5.2. Let the domain Ω ⊂ Rm be bounded with Lipschitz boundary, and φ : [0,∞) → [0,∞) be an
admissible p-increasing fidelity function (Definitions 3.5 and 3.6) for some 1 < p <∞. Let f ∈ BV(Ω)∩L∞loc(Ω),
and suppose u ∈ BV(Ω) solves (P) for R = nsTGV2

~α. Let w ∈ BD(Ω) achieve the minimum in (5.18) for u, and
let Γ ⊂ Ω be any Lipschitz (m− 1)-graph. If u ∈ L∞loc(Ω), then for OΓ

w defined in (5.2), we have

Hm−1(Ju ∩ Γ ∩OΓ
w \ Jf ) = 0.

Modifying TGV2 a little further, we can do a little bit more. As we recall from Korn’s inequality, functions
with bounded symmetrised gradient in Lq for q > 1 are much better behaved than for q = 1. We exploit this to
define variants of TGV2 with stronger double-Lipschitz comparability properties.

Corollary 5.3. Suppose Ω ⊂ Rm is an open bounded set with Lipschitz boundary, and 1 < q <∞. Then

TGV2,q
~α,0(u) := min

w∈W 1,q
0 (Ω;Rm)

α‖Du− w‖2,M(Ω;Rm) + β‖Ew‖F,Lq(Ω;Sym2(Rm))

is an admissible regularisation functional on L1(Ω) (Definition 3.1), and satisfies Assumption 3.1.

In other words, the only bit missing from the satisfaction of the assumptions of Theorem 3.2 is that the
solution u ∈ L∞loc(Ω). Similarly to Corollary 5.1, we then obtain:



Corollary 5.4. Let the domain Ω ⊂ Rm be bounded with Lipschitz boundary, and φ : [0,∞) → [0,∞) be an
admissible p-increasing fidelity function (Definitions 3.5 and 3.6) for some 1 < p <∞. Let f ∈ BV(Ω)∩L∞loc(Ω),
and suppose u ∈ BV(Ω) solves (P) for R = TGV2,q

~α,0(u) with 1 < q <∞. If u ∈ L∞loc(Ω), then

Hm−1(Ju \ Jf ) = 0.

Proof of Corollary 5.3. We may write TGV2,q
~α,0(u) = FΨ with

Ψ(w) :=
{
‖Ew‖F,Lq(Ω;Sym2(Rm)), w ∈W 1,q

0 (Ω;Rm),
∞, otherwise.

Condition (5.15) of Lemma (5.4) is now an immediate consequence of Korn’s inequality (2.6). For weak* lower
semicontinuity, we have to establish that any BV-weak* limit point w of a sequence {wi}∞i=1 ⊂ W 1,q

0 (Ω;Rm)
with

sup
i
‖w‖2,L1(Ω;Rm) + ‖Ew‖F,Lq(Ω;Sym2(Rm)) ≤ C <∞, (5.21)

also satisfies w ∈ W 1,q
0 (Ω;Rm). The lower semicontinuity of ‖E · ‖2,Lq(Ω;Sym2(Rm)) itself is standard. By the

Gagliardo-Nirenberg-Sobolev inequality, Korn’s inequality (2.6), and approximation in C∞c (Ω;Rm), we also
discover

‖wi‖2,Lq(Ω;Rm) + ‖∇wi‖F,Lq(Ω;T 2(Rm)) ≤ C ′‖Ewi‖F,Lq(Ω;Sym2(Rm)) ≤ C ′C.

We may therefore assume {wi}∞i=1 convergent weakly in W 1,q(Ω;Rm), necessarily to w. It follows that w ∈
W 1,q(Ω;Rm). But wi ∈W 1,q

0 (Ω;Rm) andW 1,q
0 (Ω;Rm) is strongly closed within the reflexive spaceW 1,q(Ω;Rm),

hence weakly closed as a convex set [12]. Therefore w ∈W 1,q
0 (Ω;Rm) ⊂W 1,1(Ω;Rm). This establishes BV-weak*

lower semicontinuity of Ψ. Lemma 5.4 now shows the admissibility of TGV2,q
~α,0. Finally, we employ Lemma 5.3

to verify Assumption 3.1.

In Figure 4, we have a simple comparison of the effect of the exponent q with fidelity φ(t) = t2/. For q = 1,
we have chosen the base parameters α = 25 and β = 250 on the image domain Ω := [1, 256]2. For other values of
q, namely q = 1.5 and q = 2, we have scaled β by the factor 2562(q−1)/q. This is what the the Cauchy-Schwarz
inequality gives as the factor for the q-norm to dominate the 1-norm on an image with 2562 pixels. We also
include the TV result for comparison. The PSNR for variants of TGV2 with different q values is always the
same, 29.2, while TV has PSNR 28.0. There is also visually no discernible difference between the different
q-values, whereas TV clearly exhibits the staircasing effect in the background sky. It therefore seems reasonable
to also employ in practise this kind of variants of TGV2, for which we have stronger theoretical results now,
only lacking a proof of the local boundedness of u to complete the proof of the property Hm−1(Ju \ Jf ).

5.4. Infimal convolution TV

Let v ∈ BV2(Ω) for the space is defined in (2.7). We then define the second-order total variation by

TV2(v) = ‖D∇v‖F,M(Ω;T 2(Rm)).

Then second-order infimal convolution TV of u ∈ BV(Ω), first introduced in [15], is written

ICTV~α(u) := (αTV�βTV2)(u) := inf
u=v1+v2

(
αTV(v1) + βTV2(v2)

)
, (5.22)

where necessarily v2 ∈ BV2(Ω), and v1 ∈ BV(Ω). Clearly we have

TGV2
~α(u) ≤ nsTGV2

~α(u) ≤ ICTV~α(u) ≤ αTV(u). (5.23)

It has been observed that while ICTV is better at avoiding the stair-casing effect than TV, it fares worse than
TGV2 [4].

We did not find a proof of the weak* lower semi-continuity of ICTV in the literature, so we provide one
below. Then we show that ICTV~α is admissible and partially double-Lipschitz comparable as required by
Assumption 3.1. As already observed in the Introduction, we remark, however, that the the jump set containment
Hm−1(Ju \ Jf ) = 0 can be proved for ICTV using the result for TV, if we assume that v2 ∈ L∞loc(Ω).

Lemma 5.6. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Then ICTV~α is lower semi-continuous
with respect to weak* convergence in BV(Ω).



(a) Original (b) Noisy image (c) TV, ~α = 25

(d) q = 1, ~α = (250, 25) (e) q = 1.5, ~α = (10079, 25) (f) q = 2.0, ~α = (64000, 25)

Figure 4: Effect of the of exponent q in the norm ‖Ew‖F,Lq(Ω;Sym2(Rm)) in variants of TGV2 together with fidelity
φ(t) = t2/2. The β factor has been scaled from the case q = 1 with the help of the Cauchy-Schwarz inequality. There is
no discernible difference between the results for different q, all having PSNR 29.2, while the TV comparison has PSNR
28.0 and exhibits the stair-casing effect in the sky that TGV2 variants do not.

Proof. Let ui ∗⇀ u weakly* in BV(Ω), (i = 0, 1, 2, . . .). We may then without loss of generality assume that
{‖ui‖L1(Ω) + ‖Dui‖F,M(Ω;Rm)}∞i=0 is bounded. Let vi1 ∈ BV(Ω) and vi2 ∈ W 1,1(Ω) with ∇vi2 ∈ BV(Ω;Rm) be
such that

α‖Dvi1‖F,M(Ω;Rm) + β‖D∇vi2‖F,M(Ω;T 2(Rm)) ≤ ICTV~α(ui) + 1/i, (i = 0, 1, 2, . . .).

Observe that we may take each vi1 such that

v̄i1 :=
∫

Ω
vi1(x) dx = 0, (5.24)

since the infimum in (5.22) is independent of the mean of v1 and v2.

If lim supi ICTV~α(ui) =∞, there is nothing to prove, so we may assume that supi ICTV~α(ui) <∞. It follows
that both the sequence {‖Dvi1‖F,M(Ω;Rm)}∞i=0 and the sequence {‖D∇vi2‖F,M(Ω;Sym2(Rm))}∞i=0 are bounded.
Minding (5.24) and the assumption that Ω has Lipschitz boundary, the Poincaré inequality now shows the
existence of a constant C > 0 such that

‖vi1‖L1(Ω) = ‖vi1 − v̄i1‖L1(Ω) ≤ C‖Dvi1‖F,M(Ω;Rm), (i = 0, 1, 2, . . .),

Consequently {vi1}∞i=0 admits a subsequence, unrelabelled, weakly* convergent in BV(Ω) to some v ∈ BV(Ω). By
the boundedness of the sequence {‖vi1‖L1(Ω) + ‖Dvi1‖F,M(Ω;Rm)}}∞i=0 and of {‖ui‖L1(Ω) + ‖Dui‖F,M(Ω;Rm)}}∞i=0
it follows from ui = vi1 + vi2, moreover, that {‖vi2‖L1(Ω) + ‖Dvi2‖F,M(Ω;Rm)}}∞i=0 is bounded. Consequently,
moving to a further subsequence, we may assume that vi2 → v2 strongly in W 1,1(Ω) and ∇vi2 ∗⇀ ∇v2 weakly*
in M(Ω; Sym2(Rm)), for some v2 ∈ W 1,1(Ω) with ∇v2 ∈ M(Ω; Sym2(Rm)). We clearly have u = lim ui =
lim(vi1 +vi2) = v1 +v2. Hence, by the lower semicontinuity of the Radon norm with respect to weak* convergence



of measures, we obtain

ICTV~α(u) ≤ α‖Dv1‖F,M(Ω;Rm) + β‖D∇v2‖F,M(Ω;T 2(Rm))

≤ lim inf
i→∞

α‖Dvi1‖F,M(Ω;Rm) + β‖D∇vi2‖F,M(Ω;T 2(Rm))

≤ lim inf
i→∞

(
ICTV~α(ui) + 1/i

)
= lim inf

i→∞
ICTV~α(ui).

Thus ICTV~α is weak* lower semi-continuous, as claimed.

Proposition 5.3. With m ∈ {1, 2}, let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. Then ICTV~α is
an admissible regularisation functional (i.e., satisfies Definition 3.1) on L1(Ω), and satisfies Assumption 3.1.

Proof. We have already proved that TGV2
~α satisfies the coercivity criterion (3.1). It immediately follows from

(5.23) that ICTV~α also satisfies this. By Lemma 5.6, ICTV is weak* lower semicontinuous on BV(Ω). The rest
of the conditions of Definition 3.1 are obvious. Thus ICTV~α is admissible.

Let u = v1 + v2 be the optimal decomposition in (5.22) for u. Let us set Ψ(w) = β‖Dw‖F,M(Ω;T 2(Rm) +
χrng∇(w). Then ICTV~α = FΨ. Since in this formulation w = ∇v2 ∈ BV(Ω;Rm), we observe that Dw = Ω.
Lemma 4.3 further shows that Hm−1(Γ \ UΓ

w) = 0. Thus Assumption 3.1 can be proved using Lemma 5.1.

In fact, we have the following strong result for ICTV in these dimensions with a further regularity assumption
on the boundary (Definition 2.1). This assumption is satisfied by the typical case of a rectangular Ω (Example
2.1).

Theorem 5.1. With m ∈ {1, 2}, let Ω ⊂ Rm be a bounded domain with C2,N boundary. Suppose φ : [0,∞)→
[0,∞) is an admissible p-increasing (Definitions 3.5 and 3.6) fidelity function for some 1 < p < ∞, and
f ∈ BV(Ω)∩L∞(Ω). Then any solution u to (P) with R = ICTV~α satisfies Hm−1(Ju \Jf ) = 0 and u ∈ L∞(Ω).

Proof. Minding Proposition 5.3, the only assumption of Theorem 3.2 that remains to be satisfied is that u ∈
L∞loc(Ω). We prove that u ∈ L∞(Ω) using a barrier argument. We let u = v1 + v2 be the optimal decomposition
in (5.22). As a minimiser u satisfies∫

Ω
φ(|f(x)− u(x)|) dx+ ICTV~α(u) ≤ ICTV~α(f) ≤ αTV(f). (5.25)

This gives in particular

‖Dv2‖2,M(Ω;Rm) ≤ ‖Du‖2,M(Ω;Rm) + ‖Dv1‖2,M(Ω;Rm)

≤ ‖Du‖2,M(Ω;Rm) + TV(f).

Here ‖Du‖2,M(Ω;Rm) may be bounded in terms of ‖u‖L1(Ω)+ICTV~α(u) by Lemma 5.5 and (5.23). Using (3.5) and
(5.25) we can therefore bound ‖Dv2‖2,M(Ω;Rm) ≤ C1TV(f) for some constant C1 = C1(~α,m). We may without
loss of generality assume that −

∫
Ω v1 dy = 0. Then the Poincaré inequality and (5.25) bound ‖v1‖L1(Ω) ≤ C2TV(f)

for some constant C2 = C2(Ω, α). Using (3.5) and (5.25), we then bound ‖v2‖L1(Ω). As (5.25) already bounds
‖D∇v2‖M(Ω;T 2(Rm)), we therefore deduce

‖v2‖BV2(Ω) ≤ C3

for some constant C3 = C1(~α, f, φ,Ω). Using the continuous embedding of Lemma 2.2, we then deduce the
existence of a constant C4 = C4(~α, f, φ,Ω,m) such that

‖v2‖L∞(Ω) ≤ C4.

Let M := C4 + ‖f‖L∞(Ω), and suppose ‖v1‖L∞(Ω) > M . If we set

ṽ1(y) := max{−M,min{v1(y),M}},

then ‖Dṽ1‖2,M(Ω;Rm) ≤ ‖Dv1‖2,M(Ω;Rm) by a simple application of the co-area formula in BV. Moreover∫
Ω
φ(|(f(x)− v2(x))− ṽ1(x)|) dx <

∫
Ω
φ(|(f(x)− v2(x))− v1(x)|) dx

by the construction of ṽ1. This provides a contradiction to u solving (P). Therefore ‖v1‖L∞(Ω) ≤ M , and
consequently ‖u‖L∞(Ω) ≤ C4 +M .



6. Limiting behaviour of Lp-TGV2

Having studied qualitatively the behaviour of the jump set Ju, and obtained good results for variants of TGV2

although not TGV2 itself, we now want to study it quantitatively. We recall the definition from (5.18). We let
the second regularisation parameter β of TGV2 go to zero, and see what happens to Dsu for u solution to the
Lp-TGV2 regularisation problem, namely

min
u∈BV(Ω)

‖f − u‖pLp(Ω) + TGV2
~α(u). (6.1)

The next proposition states our findings.

Proposition 6.1. Let α > 0, 1 ≤ p < ∞, and f ∈ Lp(Ω). Then for every ε > 0 there exists β0 > 0 such that
any solution u to (6.1) satisfies

‖Dsu‖F,M(Ω;Rm) < ε for β ∈ (0, β0). (6.2)

Proof. Let {ρτ}τ>0 be the standard family of mollifiers on Rm, and use the notation

uτ := ρτ ∗ u, and wτ := ρτ ∗ w

for mollified functions, where w minimises (5.18) for u. Then

‖f − uτ‖Lp(Ω) ≤ ‖fτ − uτ‖Lp(Ω) + ‖f − fτ‖Lp(Ω)

≤ ‖f − u‖Lp(Ω) + ‖f − fτ‖Lp(Ω).

Let δ > 0 be arbitrary. Since ‖f − fτ‖Lp(Ω) → 0, we deduce the existence of τδ > 0 such that

‖f − uτ‖pLp(Ω) ≤ ‖f − u‖
p
Lp(Ω) + δ, for τ ∈ (0, τδ].

It can easily be shown by application of Green’s identities that the symmetric differential operator E satisfies

Ewτ = ρτ ∗ Ew = Eρτ ∗ w,

similarly to corresponding well known results on the operator D. With

w̃ := ∇uτ

we thus obtain for some constant C > 0 the estimate

‖Ew̃‖F,M(Ω;T 2(Rm)) ≤ ‖Ew̃ − Ewτ‖F,M(Ω;T 2(Rm)) + ‖Ewτ‖F,M(Ω;T 2(Rm))

≤ ‖Eρτ ∗ (Du− w)‖F,M(Ω;T 2(Rm)) + ‖Ew‖F,M(Ω;T 2(Rm))

≤ Cτ−1‖Du− w‖F,M(Ω;Rm) + ‖Ew‖F,M(Ω;T 2(Rm)).

As
‖Duτ − w̃‖F,M(Ω;Rm) = 0,

it follows that

‖f − uτ‖pLp(Ω) + TGV2
~α(uτ ) ≤ ‖f − uτ‖pLp(Ω) + α‖Duτ − w̃‖F,M(Ω;Rm) + β‖Ew̃‖

≤ ‖f − u‖pLp(Ω) + δ + Cβτ−1‖Du− w‖F,M(Ω;T 2(Rm))

+ β‖Ew‖F,M(Ω;T 2(Rm))

≤ ‖f − u‖pLp(Ω) + TGV2
~α(u)

+ (Cβτ−1 − α)‖Du− w‖F,M(Ω;Rm) + δ.

Consequently uτ provides a contradiction to u being a solution to (6.1) if

δ < (α− Cβτ−1)‖Du− w‖F,M(Ω;Rm).

Since
‖Dsu‖F,M(Ω;Rm) ≤ ‖Du− w‖F,M(Ω;Rm),

it follows that for an optimal solution u, it must hold

‖Dsu‖F,M(Ω;Rm) ≤ δ/(α− Cβτ−1
δ )

Thus (6.2) holds if
δ + Cβτ−1

δ ε < εα.

Choosing δ < εα, we find β0 > 0 such that this is satisfied for β ∈ (0, β0).



(a) L1-TGV2
(0.1,10) (b) L1-TGV2

(2,10) (c) L1-TGV2
(5,10) (d) L1-TGV2

(20,10)

(e) L1-TGV2
(30,10) (f) L1-TGV2

(40,10) (g) L1-TGV2
(50,10) (h) L1-TGV2

(60,10)

Figure 5: Illustration of varying β parameter for TGV2 regularisation with L1 fidelity on f = χ(−32,32)2 . For β = 0.1
in (a) it appears that we have recovered f . The apparent full recovery in (a) for β = 0.1 is an effect of the discretisation.
For β = 50 in (h) due to numerical difficulties we have not fully recovered the corners (of curvature 1/α = 0.2) that
should start to become sharp.

(a) L2-TGV2
(0.01,10) (b) L2-TGV2

(0.1,10) (c) L2-TGV2
(1,10) (d) L2-TGV2

(2,10)

(e) L2-TGV2
(5,10) (f) L2-TGV2

(20,10) (g) L2-TGV2
(50,10) (h) L2-TGV2

(10000,10)

Figure 6: Illustration for α = 10 of varying β parameter for TGV2 regularisation with squared L2 fidelity on f =
χ(−32,32)2 , to compare with Figure 5 for L1 fidelity.

We illustrate numerically in Figure 5 to Figure 6 the implications of Proposition 6.1 and Theorem 3.2 on a
very simple test image with a square in the middle. We did the experiments for fixed α = 10 or α = 5 and
varying β, with fidelity φ(t) = tp for p = 1 and p = 2. In all cases, as β goes down from a large value with good
reconstruction, the image first starts to smooth out. This happens until the smallest β, for which we appear to
have recovered f ! This may seem a little counterintuitive, as Proposition 6.1 forbids big jumps for small β. But
we should indeed have very steep gradients near the boundary. These are lost in the discretisation.

Besides this, the numerical experiments verify Hm−1(Ju \Jf ) for p = 2, and demonstrate the fact that it does
not hold for p = 1. However, the set Ju \ Jf has specific curvature dependent on the parameter α. For p = 2,
we of course observe the well-known phenomenon of contrast loss. In the corners where p = 1 starts to produce
new jumps, p = 2 starts to smooth out the solution, also not reconstructing the jumps of the corners.

7. Conclusion

In this pair of papers, we have provided a new technique for studying the jump sets of a general class of
regularisation functionals, not dependent on the co-area formula as existing results for TV are. In the case that
the fidelity φ is p-increasing for p > 1, besides TV, we proved in Part 1 the property Hm−1(Ju \ Jf ) = 0 for u a
solution to (P) for Huber-regularised total variation. We also demonstrated in Part 1 that the technique would
apply to non-convex TV models and the Perona-Malik anisotropic diffusion, if these models were well-posed,



(a) L1-TGV2
(0.1,5) (b) L1-TGV2

(1,5) (c) L1-TGV2
(3,5) (d) L1-TGV2

(7,5)

(e) L1-TGV2
(12,5) (f) L1-TGV2

(12.45,5) (g) L1-TGV2
(12.55,5) (h) L1-TGV2

(13,5)

Figure 7: Illustration for α = 5 of varying β parameter for TGV2 regularisation with L1 fidelity on f = χ(−32,32)2 .

(a) L2-TGV2
(0.01,5) (b) L2-TGV2

(0.1,5) (c) L2-TGV2
(1,5) (d) L2-TGV2

(5,5)

(e) L2-TGV2
(25,5) (f) L2-TGV2

(35,5) (g) L2-TGV2
(50,5) (h) L2-TGV2

(100,5)

Figure 8: Illustration for α = 5 of varying β parameter for TGV2 regularisation with squared L2 fidelity on f =
χ(−32,32)2 .



and had solutions in BV(Ω). For variants of TGV2 using Lq, (q > 1), energies for the second-order component,
we proved that the jump set containment property holds if the solution u is locally bounded. For TGV2 itself,
we obtained much weaker results, depending additionally on the differentiability assumptions of Lemma 4.2 on
the minimising second-order variable w. The two most important further questions that these studies pose are
whether the assumptions of Lemma 4.2 on w can be proved for TGV2, and whether the local boundedness of
the solution u can be proved for higher-order regularisers in general. In the first-order cases this was no work
at all. On the more positive side, we have verified the jump set containment for ICTV in dimension m = 2.
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