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Abstract. We study the extension of total variation (TV), total deformation (TD), and (second-order) total
generalised variation (TGV2) to symmetric tensor fields. We show that for a suitable choice of
finite-dimensional norm, these variational semi-norms are rotation-invariant in a sense natural and
well-suited for application to diffusion tensor imaging (DTI). Combined with a positive definiteness
constraint, we employ these novel semi-norms as regularisers in ROF-type denoising of medical
in-vivo brain images. For the numerical realisation, we employ the Chambolle-Pock algorithm,
for which we develop a novel duality-based stopping criterion which guarantees error bounds with
respect to the functional values. Our findings indicate that TD and TGV2, both of which employ
the symmetrised differential, provide improved results compared to other evaluated approaches.
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1. Introduction. In this paper, we propose and study novel edge-preserving regularisa-
tion functionals for positivity-constrained variational denoising problems on symmetric tensor
fields, i.e., minimising functionals of the type

min
u≥0

1

2
‖f − u‖2F,2 +H(u). (1.1)

Here, f ∈ L1(Ω; Sym2(Rm)) is a second-order symmetric tensor field on a domain Ω ⊂ Rm,
‖ · ‖F,2 is the L2-norm on Ω with Frobenius norm for symmetric 2-tensors as pointwise norm,
and H is a regularisation functional. Observe, moreover, that we require the solution u ∈
L1(Ω; Sym2(Rm)) to be pointwise a.e. positive semi-definite. The regularisation functionals
we are introducing in this paper generalise the total-variation functional

H(u) = ‖Du‖M(Ω;),

extended to symmetric tensor fields of order k, which is a popular choice for denoising problems
and usually results in the ROF (Rudin-Osher-Fatemi [34]) model. The generalisations are
aiming at two directions. On the one hand, we utilise the symmetrised derivative Eu of u
instead of the full derivative Du in order to obtain a weaker measure of gradient information.
This results in the total deformation, which reads as

H(u) = ‖Eu‖M(Ω;Symk+1(Rm))

and can also be seen as first-order total generalised variation TGV1 for tensor fields. In par-
ticular, it imposes, as the total variation, regularity on the data which includes discontinuities
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and is therefore well-suited for symmetric tensor-valued image data. However, like all Radon-
type first-order regularisations, solutions tend to exhibit staircasing artefacts. In order to
reduce these effects we also propose, on the other hand, a generalisation of the second-order
total generalised variation TGV2 [11] for symmetric tensor fields:

H(u) = min
w∈L1(Ω;Symk+1(Rm))

α‖Eu− w‖M(Ω;Symk+1(Rm)) + β‖Ew‖M(Ω;Symk+2(Rm)).

Besides providing an analysis for these functionals and the associated denoising problems, we
moreover develop and discuss a numerical algorithm for the approximate solution of these
problems together with a rigorous stopping criterion. The performance of the algorithm is
tested on synthetic as well as in-vivo brain data.

The need for solving positivity-constrained denoising problems with tensor-valued data
arises, for instance, in diffusion-tensor imaging (DTI) of brain tissues. As a first step towards
DTI, diffusion weighted magnetic resonance imaging (DWI) is performed. It measures the
anisotropic diffusion of water molecules, and provides valuable and unique in-vivo insight into
the white matter structure of the brain [8, 38]. To capture the diffusion information, images
have to be obtained with diffusion sensitising gradients in multiple directions. This leads to
very long acquisition times, even with ultra fast sequences like echo planar imaging (EPI).
Therefore, DWI is inherently a low-resolution and low-SNR method. It exhibits Rician noise
[23], eddy-current distortions [38], and is very sensitive with respect to artefacts originating
from patient motion [25, 2].

By taking multiple DWI images, a diffusion-tensor describing the probability of water
diffusing in different spatial directions can be solved from the Stejskal-Tanner equation [8, 27].
These tensors can be visualised as a confidence ellipsoids, which have varying anisotropy – or
directional dependence – depending on the probability of diffusion of water in that direction.
In particular, in the brain, grey matter has low anisotropy – the ellipsoids are almost spheres,
water having uniform diffusion. In white matter, which transmits messages between areas of
grey matter, the anisotropy is, by contrast, high – the ellipsoids are far from spheres, and
water has a single most probable direction of diffusion. Since the DWI measurements are
noisy, as described in the previous paragraph, we are led to the problem of denoising the
diffusion tensors obtained this way. A natural requirement is that the denoising result should
be invariant with respect to rotations of the imaged object. In diffusion tensor imaging, unlike
in scalar imaging, this involves individual tensors rotating as well, not only shifting to another
point of the domain. Our regularisation functionals will be rotation-invariant. The denoised
tensors should, moreover, be positive definite, as the failure of this condition is non-physical.

Let us shortly discuss some of the existing approaches for the denoising of DTI data
and their relations to the present work. In [5, 6, 20, 21, 22] log-Euclidean metrics giving a
suitable Riemannian manifold structure to Sym2(Rm) have been studied in the context of
diffusion-tensor imaging. Regularisation approaches based on log-Euclidean metrics facilitate
maintaining the positive definiteness of the tensors, as well as avoiding swelling, i.e., increase in
volume of the ellipsoids corresponding to the tensors. Log-Euclidean metrics have, moreover,
the advantage over earlier affine-invariant metrics [32] that they are computationally more
efficient. Basically the approach amounts to taking the logarithm of the data, to expand the
positive definite cone to the whole space, applying usual Euclidean techniques such as ROF
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with smoothed TV regularisation term [20], or Gaussian denoising [21], and transforming
the solution back to the positive definite cone by taking the exponential. This approach has
therefore many desirable theoretical qualities, and is also computationally tractable. We are
interested in whether our regularisation approaches can provide results with other desirable
qualities. It is known [11, 28] that TGV2 in the scalar case tends to avoid the stair-casing
effect exhibited by TV, so we expect some improvements. It is also interesting to see what is
the effect of the symmetrised differential employed by TD (that is to say, TGV1) and TGV2

in contrast to the normal differential employed by TV.

We note that TV, however lacking the positive semi-definiteness constraint, has in fact
already been studied in [35]. In [24], which also takes the approach of Riemannian metrics, and
[43], the positive semi-definiteness constraint is incorporated through a Cholesky or u = LDLT

factorisation approach. These two works moreover incorporate the Stejskal-Tanner equation
into the fidelity function, resulting in a difficult non-convex problem. The problem (1.1) is still
convex, albeit constrained. Our novel algorithm, based on recent state-of-the-art non-smooth
optimisation methods [15], can however handle the constraint efficiently.

A completely different approach to DTI denoising is taken in [16, 40], similar to the
one in [39] for colour images. It is of the Perona-Malik or anisotropic diffusion [44] type.
Instead of directly minimising a regularisation functional, a constrained gradient flow of a
time-dependent tensor field t 7→ ut is defined on a suitable manifold. The structure of this
manifold incorporates any desired constraints, such as positive semi-definiteness of ut(x), or
the magnitude of the eigenvalues of ut(x), if we only want to regularise the eigenvectors, as
is also done in [33, 17]. The gradient flow is then used to transport the noisy measurement
u0 = f until a solution ut of desired quality is found. Choosing the cost function giving rise
to the (unconstrained) gradient flow to have suitable anisotropic smoothing properties, edges
should be preserved – empirically, in the discretisation. Indeed, Perona-Malik type approaches
in general have the theoretical difficulty that the edges in space appear in time as shocks that
cause the solution to break down. An obvious advantage of our approach (1.1) is that it also
theoretically preserves edges (between white matter and grey matter), being based on rigorous
formulations of L1 gradient penalties.

The rest of our paper is organised as follows. First in Section 2 we begin by introducing
tensor and tensor field calculus to set up the framework in which our results are represented.
We then define variational semi-norms of tensor fields, and show that these are rotation-
invariant in a sense natural to diffusion tensor imaging. In Section 3 we introduce in more
detail the positivity-constrained denoising problems (1.1) with TV, TD, and TGV2 regulari-
sation term, and show the existence of solutions. This involves a few new proofs, because we
define TGV2 directly through the differentiation cascade formulation, which is more practical
for numerical realisation than the original dual-ball formulation. After that, in Section 4,
we describe our implementation of the Chambolle-Pock algorithm [15] that we use to solve
these problems, and represent a novel duality-based stopping criterion. Finally, in Section 5
we study the numerical results that we have obtained, on both synthetic test data and an
in-vivo brain measurement. To conclude the paper, we state in Section 6 our conclusions
and outlook for future research. Additionally, in Appendix A we show that the extra primal
variable of the differentiation cascade formulation of TGV2 is bounded, and in Appendix B
discuss alternative rotation-invariant tensor norms.
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2. Tensors and tensor fields. The development of total generalised variation demands
the machinery of differential calculus of tensor fields that we derive next. We also show that
the derived total variation and total deformation semi-norms of tensor fields are rotation-
invariant, in a sense to be discussed in more detail, when the base finite-dimensional norm is
the Frobenius norm, or one of the alternatives discussed in Appendix B.

2.1. Basic tensor calculus. We begin by recalling basic tensor calculus. We make some
simplifications as we do not need the machinery in its full differential-geometric glory, as can be
found in, e.g., [9]. In particular, as we are working on the Euclidean space Rm, and do not need
tensors with simultaneous covariant (x ∈ Rm) and contravariant variables (x ∈ (Rm)∗ ∼ Rm),
we make no distinction between them.

Therefore, we define a k-tensor A ∈ T k(Rm) as a k-linear mapping A : Rm×· · ·×Rm → R.
A symmetric tensor A ∈ Symk(Rm) then satisfies for any permutation π of {1, . . . , k} that
A(cπ1, . . . , cπk) = A(c1, . . . , ck).

For any A ∈ T k(Rm) we define the symmetrisation |||A by

(|||A)(c1, . . . , ck) :=
1

k!

∑
π

A(cπ1, . . . , cπk),

where the sum is taken over all k! permutations π of {1, . . . , k}. For a k-tensor A and a
m-tensor B, we define the (m+ k)-tensor A⊗B by

(A⊗B)(c1, . . . , cm, cm+1, . . . , cm+k) = A(c1, . . . , cm)B(cm+1, . . . , cm+k).

Let then e1, . . . , em be the standard basis of Rm. We define the inner product

〈A,B〉 :=
∑

p∈{1,...,m}k
A(ep1 , . . . , epk)B(ep1 , . . . , epk), (2.1)

and the Frobenius norm
‖A‖F :=

√
〈A,A〉.

We will see later in Proposition 2.2 that these are invariant with respect to orthogonal basis
transformations. We moreover have 〈A, |||B〉 = 〈|||A,B〉. Thus, in particular, for symmetric
B ∈ Symk(Rm), and general A ∈ T k(Rm), we have 〈A,B〉 = 〈|||A,B〉.

Example 2.1 (Vectors). Vectors A ∈ Rm can be identified with symmetric 1-tensors: A(x) =
〈A, x〉. The symmetrisation satisfies |||A = A. The inner product is the usual inner product
in Rm, and the Frobenius norm ‖A‖F = ‖A‖2.

Example 2.2 (Matrices). Matrices can be identified with 2-tensors: A(x, y) = 〈Ax, y〉. Sym-
metric matrices A = AT can be identified with symmetric 2-tensors. The symmetrisation is
given by |||A = (A+AT )/2. The inner product is 〈A,B〉 =

∑
i,j AijBij and ‖A‖F is the matrix

Frobenius norm. We use the notation A ≥ 0 for positive semi-definite A.
Much of what follows in this section is stated for general tensor norms, although our numer-

ical work will employ the Frobenius norm. Appendix B however contains a discussion of some
alternative norms, the so-called largest and smallest reasonable cross-norms. The application
of these could provide interesting results, provided an efficient numerical implementation. We
therefore do not fix the norm in the following when not necessary.
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2.2. Tensor fields. Let ‖·‖• be a norm on T k(Rm). We denote its dual norm with respect
to the inner product (2.1) by ‖ · ‖∗. For u : Ω→ T k(Rm) on a domain Ω ⊂ Rm, we then set

‖u‖•,p :=
(∫

Ω
‖u(x)‖p• dx

)1/p
, (p ∈ [1,∞)), and ‖u‖•,∞ := ess supx∈Ω ‖u(x)‖•,

and define the spaces

Lp(Ω; T k(Rm)) = {u : Ω→ T k(Rm) | ‖u‖•,p <∞}, and

Lp(Ω; Symk(Rm)) = {u : Ω→ Symk(Rm) | ‖u‖•,p <∞}, (p ∈ [1,∞]).

The choice of the finite-dimensional norm ‖ · ‖• does not affect the definition of these spaces,
since all finite-dimensional norms are equivalent. Hence strong and weak convergence in the
spaces is unambiguously defined, with the dual spaces analogous to the case of scalar func-
tions: for 1 ≤ p <∞, the dual of Lp(Ω; T k(Rm)) (resp. Lp(Ω; Symk(Rm))) is Lq(Ω; T k(Rm))
(resp. Lq(Ω; Symk(Rm))), where q is the Hölder conjugate of p, satisfying 1/p + 1/q = 1. In
a standard fashion we also deduce that ‖ · ‖•,p is lower semi-continuous with respect to weak
convergence in Lp.

A tensor field ϕ : Ω→ T k(Rm) is symmetrised pointwise, that is

(|||ϕ)(x) := |||(ϕ(x)).

We say that ϕ is symmetric, if ϕ(x) ∈ Symk(Rm) for every x ∈ Ω.
We define for u ∈ C1(Ω; T k(Rm)), k ≥ 1 the divergence div u ∈ C(Ω; T k−1(Rm) by

contraction as

[div u(x)](ei2 , . . . , eik) :=

m∑
i1=1

∂i1 [x 7→ u(x)(ei1 , . . . , eik)] =

m∑
i1=1

〈ei1 ,∇u(·)(ei1 , . . . , eik)〉. (2.2)

Observe that if u is symmetric, then so is div u. This definition is also the reason why have
assumed the dimension m of the space Rm ⊃ Ω 3 x and of the parameters of u(x) ∈ T k(Rm)
to agree. The definition of divergence does not as such apply to tensor fields u : RK → T k(Rm)
for K 6= m. As our regularisation functionals will be based on calculating divergences (2.2),
this has the implication that when we want to denoise 3D diffusion tensors, we should in
principle have a full 3D volume Ω of data, not a 2D slice! We will return to this topic later
on.

Example 2.3 (Vector fields). Let u ∈ C1(Ω;Rm) = C1(Ω; T 1(Rm)). Then div u(x) =∑m
i=1 ∂iui(x) is the usual divergence.

Example 2.4 (Matrix fields). Let u ∈ C1(Ω; T 2(Rm)). Then [div u(x)]j =
∑m

i=1 ∂iuij(x).
That is, we take columnwise the divergence of a vector field. We use the notation u ≥ 0 for
pointwise a.e. positive semi-definite u.

Preparing to define tensor-valued measures next, we define the non-symmetric unit ball

V k
∗,ns := {ϕ ∈ C∞c (Ω; T k(Rm)) | ‖ϕ‖∗,∞ ≤ 1}, (2.3)

and the symmetric unit ball

V k
∗,s := {ϕ ∈ C∞c (Ω; Symk(Rm)) | ‖ϕ‖∗,∞ ≤ 1}.
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2.3. Tensor-valued measures. We let now µ ∈ M(Ω; T k(Rm)) be a tensor-valued mea-
sure, which it suffices for our purposes to define to mean that µ is a bounded linear functional
on C∞c (Ω; T k(Rm)), namely µ ∈ [C∞c (Ω; T k(Rm))]∗, the topological dual of C∞c (Ω; T k(Rm)),
and

sup{µ(ϕ) | ϕ ∈ V k
∗,ns} <∞.

For a justification of this definition, we refer to [19]. Other possible definitions also exist,
along the lines of that taken for vector-valued measures in [4]. The space M(Ω; Symk(Rm))
of symmetric tensor-valued measures is defined analogously as bounded linear functionals on
C∞c (Ω; Symk(Rm)).

We extend µ ∈ M(Ω; Symk(Rm)) to ϕ ∈ C∞c (Ω; T k(Rm)) by symmetrising, µ(ϕ) :=
µ(|||ϕ). Conversely, we symmetrise µ ∈M(Ω; T k(Rm)) by

(|||µ)(ϕ) := µ(|||ϕ), (ϕ ∈ C∞c (Ω; T k(Rm))).

For µ(ϕ) =
∫

Ω〈f(x), ϕ(x)〉 dLm, where Lm is the Lebesgue measure on Rm, we then have the
desired expression

(|||µ)(ϕ) =

∫
Ω
〈ϕ(x), |||f(x)〉 dx.

For symmetric µ ∈M(Ω; Symk(Rm)) clearly |||µ = µ.
For µ ∈ M(Ω; T k(Rm)), and choice of norm ‖ · ‖• on T k(Rm), we now define the total

variation norm
‖µ‖•,M(Ω;T k(Rm)), := sup{µ(ϕ) | ϕ ∈ V k

∗,ns}.

For symmetric µ ∈M(Ω; Symk(Rm)), we have

‖µ‖•,M(Ω;T k(Rm)) = sup{µ(ϕ) | ϕ ∈ V k
∗,s};

indeed

sup{µ(ϕ) | ϕ ∈ V k
∗,s} ≤ sup{µ(ϕ) | ϕ ∈ V k

∗,ns} = ‖µ‖•,M(Ω;T k(Rm))

= ‖|||µ‖•,M(Ω;T k(Rm)) = sup{µ(|||ϕ) | ϕ ∈ V k
∗,ns} ≤ sup{µ(ϕ) | ϕ ∈ V k

∗,s}.

Finally, weak* convergence of {µi}∞i=0 ∈ M(Ω; T k(Rm)) to µ ∈ M(Ω; T k(Rm)), denoted
µi ∗⇀ µ, is defined to hold when

µi(ϕ)→ µ(ϕ), (ϕ ∈ C∞c (Ω; T k(Rm))).

Observe that ‖ · ‖•,M(Ω;T k+1(Rm)) is lower semi-continuous with respect to weak* convergence.

2.4. Symmetric tensor fields of bounded variation and deformation. We define the
distributional gradient Du ∈ [C∞c (Ω; T k+1(Rm))]∗ of u ∈ L1(Ω; T k(Rm)) by

Du(ϕ) := −
∫

Ω
〈u(x), divϕ(x)〉 dx, (ϕ ∈ C∞c (Ω; T k+1(Rm))).

Likewise we define the symmetrised distributional gradient Eu ∈ [C∞c (Ω; Symk+1(Rm))]∗ by

Eu(ϕ) := −
∫

Ω
〈u(x), divϕ(x)〉 dx, (ϕ ∈ C∞c (Ω; Symk+1(Rm))).
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With these notions at hand, we now define the spaces of symmetric tensor fields of bounded
variation and bounded deformation, respectively, as (see also [10])

BV(Ω; Symk(Rm)) :=
{
u ∈ L1(Ω; Symk(Rm))

∣∣∣ supϕ∈V k+1
∗,ns

Du(ϕ) <∞
}
, and

BD(Ω; Symk(Rm)) :=
{
u ∈ L1(Ω; Symk(Rm))

∣∣∣ supϕ∈V k+1
∗,s

Eu(ϕ) <∞
}
.

For functions u ∈ BV(Ω; Symk(Rm)), we have Du ∈ M(Ω; T k+1(Rm)), that is, the operator
Du is a measure. Analogously, for u ∈ BD(Ω; Symk(Rm)), it holds Eu ∈M(Ω; Symk+1(Rm)).

Remark 2.1 (Equivalences and terminology). For k = 0, i.e., in the case of scalar fields, the
space BV(Ω; Sym0(Rm)) = BD(Ω; Sym0(Rm)) agrees with the usual space of (scalar) functions
of bounded variation. For k = 1, i.e., the case of vector fields, the space BD(Ω; Sym1(Rm))
agrees with the space of functions of bounded deformation studied in [37]. This is our motiva-
tion for the term tensor fields of bounded deformation. The space BD(Ω; Sym1(Rm)) does not
agree with the space BV(Ω; Sym1(Rm)) for m > 1, as the kernel of E includes the infinites-
imal rigid displacements u(x) = u0 + Ax, where A is skew-symmetric, while the kernel of D
includes only constants.

Remark 2.2 (Symmetric tensor fields). It can be argued that from the point of view of gen-
eral theory, the space

BV(Ω; T k(Rm)) :=
{
u ∈ L1(Ω; T k(Rm))

∣∣∣ supϕ∈V k+1
F,ns

Du(ϕ) <∞
}
,

of general tensor fields of bounded variation is more natural than the space BV(Ω; Symk(Rm))
of symmetric tensor fields of bounded variation. Indeed, in the former case neither u nor
Du is restricted to have symmetric values, while in the latter u alone is. The symmetrised
derivative Eu, by contrast, has symmetric values, so the restriction of u ∈ BD(Ω; Symk(Rm))
to have symmetric values, can be argued to be very natural. In our forthcoming applications
we are, however, interested in symmetric tensors fields u only, so our results in this section
are stated for BV(Ω; Symk(Rm)). They nevertheless hold likewise for BV(Ω; T k(Rm)) and the
analogously defined space BD(Ω; T k(Rm))

Proposition 2.1.Let u ∈ BV(Ω; Symk(Rm)). Then u ∈ BD(Ω; Symk(Rm)) and Eu = |||Du.

Proof. Let ϕ ∈ C∞c (Ω; Symk+1(Rm)). Then by the very definition of Eu and Du, we have

Eu(ϕ) = −
∫

Ω
〈u(x), divϕ(x)〉 dx = Du(ϕ).

In particular, sup{Eu(ϕ) | ϕ ∈ V k+1
F,s } < ∞, so u ∈ BD(Ω; Symk(Rm)). Let then ϕ ∈

C∞c (Ω; T k+1(Rm)) be possibly non-symmetric. We now obtain

(|||Du)(ϕ) = Du(|||ϕ) = Eu(|||ϕ) = Eu(ϕ).

For the first equality we have used the definition of the symmetrisation |||Du, and for the final
equality the definition µ(ϕ) := µ(|||ϕ) for measures µ ∈M(Ω; Symk+1(Rm)).
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u uR

Figure 2.1. Illustration of the rotation-invariance ‖DuR‖F,M(R2;T 3(R2)) = ‖Du‖F,M(R2;T 3(R2)), for

uR(y)(c1, c2) = u(R−1y)(Rc1, Rc2) and R a rotation matrix on R2.

Analogously to the case of scalar functions, we define on BV(Ω; Symk(Rm)), and on
BD(Ω; Symk(Rm)), the norms

‖u‖•,BV(Ω;Symk(Rm)) := ‖u‖•,1 + ‖Du‖•,M(Ω;T k+1(Rm)), and, respectively,

‖u‖•,BD(Ω;Symk(Rm)) := ‖u‖•,1 + ‖Eu‖•,M(Ω;Symk+1(Rm)).

These define strong convergence and Banach-space structure; see [10]. Weak convergence of
{ui}∞i=0 ⊂ BV(Ω; Symk(Rm)) to u ∈ BV(Ω; Symk(Rm)) is defined as

ui → u strongly in L1(Ω; Symk(Rm)) and Dui ∗⇀ Du weakly* in M(Ω; T k+1(Rm)).

In BD(Ω; Symk+1(Rm)) weak convergence is defined analogously by

ui → u strongly in L1(Ω; Symk(Rm)) and Eui ∗⇀ Eu weakly* in M(Ω; Symk+1(Rm)).

It is immediate that ‖ ·‖•,BV(Ω;Symk(Rm)) (resp. ‖ ·‖•,BD(Ω;Symk(Rm))) is lower semi-continuous

with respect to weak convergence in BV(Ω; Symk(Rm)) (resp. BD(Ω; Symk(Rm))).

2.5. Rotation-invariance. We now study the rotation-invariance of the total variation
semi-norm ‖Du‖•,M(Ω;T k+1(Rm)) and the total deformation semi-norm ‖Eu‖•,M(Ω;Symk+1(Rm)).
It is crucial for the DTI denoising application that these norms are invariant of rotations in a
suitable sense, explained in the next example, because the denoising results should not depend
on the imaged object having rotated.

Example 2.5.We may draw a tensor u(x) ∈ Sym2(R2) as an ellipse whose major and mi-
nor axes have magnitude and direction corresponding to the eigenvalues and eigenvectors
of u(x). What our main rotation-invariance result, Proposition 2.4, roughly says is that
‖Du‖•,M(Ω;T k+1(Rm)) does not change when we rotate the image consisting of these ellipses,
as illustrated in Figure 2.1. That is, it is not sufficient to rotate the domain or the tensors
alone to obtain invariance, both the domain and the tensors have to be rotated.

We begin by showing orthogonal invariance of the Frobenius norm. After that we study
the rotation-invariance of the variational semi-norms, culminating in Proposition 2.4.

Proposition 2.2. Let A ∈ T k(Rm), and let R ∈ Rm×m be an orthogonal matrix (i.e., RT =
R−1). Define AR ∈ T k(Rm) according to

AR(c1, . . . , ck) = A(Rc1, . . . , Rck). (2.4)

Then the Frobenius norm ‖ · ‖F is orthogonally invariant in the sense that ‖AR‖F = ‖A‖F .
In fact, the inner product (2.1) is orthogonally invariant in the sense that 〈AR, BR〉 = 〈A,B〉
for A,B ∈ T k(Rm).
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Proof. It obviously suffices to prove the claim for the inner product, from which the result
for the Frobenius norm follows. We begin by observing that that we may decompose

A =
N∑
i=1

αix
i
1 ⊗ · · · ⊗ xik and B =

N∑
i=1

βiy
i
1 ⊗ · · · ⊗ yik

for some N ≥ 0, xij , y
i
j ∈ Rm, and αi, βi ∈ R, (j = 1, . . . , k; i = 1, . . . , N), where

〈xi1 ⊗ · · · ⊗ xik, x`1 ⊗ · · · ⊗ x`k〉 = 〈yi1 ⊗ · · · ⊗ yik, y`1 ⊗ · · · ⊗ y`k〉 = 0, (i 6= `).

For example, we may take A =
∑

p∈{1,...,m}k A(ep1 , . . . , epk)ep1 ⊗ · · · ⊗ epk , and likewise for B.
Then also

AR =

N∑
i=1

αiRx
i
1 ⊗ · · · ⊗Rxik and BR =

N∑
i=1

βiRy
i
1 ⊗ · · · ⊗Ryik,

with

〈Rxi1 ⊗ · · · ⊗Rxik, Rx`1 ⊗ · · · ⊗Rx`k〉 = 〈Ryi1 ⊗ · · · ⊗Ryik, Ry`1 ⊗ · · · ⊗Ry`k〉 = 0, (i 6= `).

Thus

〈AR, BR〉 =

N∑
i=1

N∑
`=1

αiβ`〈Rxi1 ⊗ · · · ⊗Rxik, Ry`1 ⊗ · · · ⊗Ry`k〉

=

N∑
i=1

N∑
`=1

αiβ`

k∏
j=1

〈Rxij , Ry`j〉 =

N∑
i=1

N∑
`=1

αiβ`

k∏
j=1

〈xij , y`j〉

=
N∑
i=1

N∑
`=1

αiβ`〈xi1 ⊗ · · · ⊗ xik, y`1 ⊗ · · · ⊗ y`k〉 = 〈A,B〉.

This proves the claim.
We let now ‖ · ‖• be a generic norm on T k(Rm), satisfying the orthogonal invariance

conclusion of Proposition 2.2. and R ∈ Rm×m be a rotation matrix, i.e., orthogonal with
det(R) = 1. We let u ∈ L1(Rm; T k(Rm)), and ϕ ∈ C∞c (Rm; T k(Rm)). We define uR ∈
L1(Rm; T k(Rm)) by

uR(y) := [u(R−1y)]R, (y ∈ Rm),

and ϕR analogously. Then an application of the area formula shows that

‖uR‖•,p = ‖u‖•,p,

as well as ∫
Rm
〈uR(y), ϕR(y)〉 dy =

∫
Rm
〈u(y), ϕ(y)〉 dy. (2.5)

The following lemma and proposition show that also the norm of the gradient is invariant.
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Lemma 2.3. Suppose u ∈ L1(Rm; T k(Rm)), and that ϕ ∈ C∞c (Rm; T k+1(Rm)). Let R ∈
Rm×m be a rotation matrix. Then

DuR(ϕR) = Du(ϕ)

as well as
‖ϕR‖•,p = ‖ϕ‖•,p, (p ∈ [1,∞]). (2.6)

Moreover, if u is a symmetric tensor field, then so is uR, and if ϕ is a symmetric tensor
field, then so is ϕR, and we have

EuR(ϕR) = | det(R)|Eu(ϕ).

Proof. That uR (resp. ϕR) is symmetric whenever u (resp. ϕ) is, is clear from the definition

uR(y)(c1, . . . , ck) = u(R−1y)(Rc1, . . . , Rck).

By Proposition 2.2 we have 〈AR−1 , CR−1〉 = 〈A,C〉 for A,C ∈ T k(Rm). Thus we may now
calculate for y ∈ Rm that

〈uR(y), divϕR(y)〉 = 〈[uR(y)]R−1 , [divϕR(y)]R−1〉

=
∑

p∈{1,...,m}k
uR(y)(R−1ep1 , . . . , R

−1epk)(divϕR(y))(R−1ep1 , . . . , R
−1epk)

=
∑

p∈{1,...,m}k
u(R−1y)(ep1 , . . . , epk)

( m∑
p0=1

〈ep0 ,∇y[ϕ(R−1y)(Rep0 , ep1 , . . . , epk)]〉
)

=
∑

p∈{1,...,m}k
u(R−1y)(ep1 , . . . , epk)

( m∑
p0=1

〈Rep0 ,∇[ϕ(·)(Rep0 , ep1 , . . . , epk)](R−1y)〉
)

=
∑

p∈{1,...,m}k
u(R−1y)(ep1 , . . . , epk)

( m∑
p0=1

〈ep0 ,∇[ϕ(·)(ep0 , ep1 , . . . , epk)](R−1y)〉
)

=
∑

p∈{1,...,m}k
u(R−1y)(ep1 , . . . , epk)(divϕ(R−1y))(ep1 , . . . , epk) = 〈u(R−1y), divϕ(R−1y)〉.

In the next-to-last step we have employed the fact that for any matrix A ∈ T 2(Rm), the trace
trA :=

∑
i〈ci, Aci〉 is does not depend on the choice of the orthonormal basis c1, . . . , cm of

Rm. Thus, by application of the area formula

DuR(ϕR) = −
∫
Rm
〈uR(y),divϕR(y)〉 dy

= −
∫
Rm
〈u(R−1y), divϕ(R−1y)〉 dy

= −
∫
Rm
〈u(y), divϕ(y)〉|det(R)| dy = Du(ϕ).
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Analogously, when ϕ and then ϕR is symmetric, we get

EuR(ϕR) = | det(R)|Eu(ϕ).

Finally, ‖ϕ(R−1y)‖•,p = ‖[ϕ(R−1y)]R‖•,p = ‖ϕR(y)‖•,p due to the assumed orthogonal
invariance of the finite-dimensional norm ‖ · ‖•. Thus (2.6) can be seen to hold. Indeed,

‖ϕR‖•,∞ = sup
y∈B
‖ϕ(R−1y)‖• = sup

y∈B
‖ϕ(y)‖• = ‖ϕ‖•,∞.

and

‖ϕR‖•,p =

(∫
B
‖ϕ(R−1y)‖p• dy

)1/p

=

(∫
B
‖ϕ(y)‖p• dy

)1/p

= ‖ϕ‖•,p, (p ∈ [1,∞)).

This concludes the proof.

The following is our main result on rotation-invariance.

Proposition 2.4. Let ‖ · ‖• be a norm on T k(Rm), satisfying the conclusion of Proposition
2.2. Let u ∈ BV(Rm; Symk(Rm)) (resp. u ∈ BD(Rm; Symk(Rm))). Given an rotation matrix
R ∈ Rm×m, i.e. orthogonal with det(R) = 1, we then have

‖DuR‖•,M(Rm;T k+1(Rm)) = ‖Du‖•,M(Rm;T k+1(Rm))

(resp. ‖EuR‖•,M(Rm;T k+1(Rm)) = ‖Eu‖•,M(Rm;T k+1(Rm)) ).

Proof. Immediate consequence of Lemma 2.3.

3. Regularisation of tensor fields. We now begin the study of regularisation models for
tensor fields. We concentrate on models in the class (1.1), reminiscent of the Rudin-Osher-
Fatemi (ROF) regularisation model for scalar fields. We therefore begin by recalling this
model.

3.1. For recollection: TV and ROF for scalar fields. Let Ω ⊂ Rm be a domain and
u ∈ L1(Ω). We write the total variation of u as

TV(u) := sup
ϕ∈V

∫
Ω
u(x) divϕ(x) dx = ‖Du‖M(Ω),

where

V := {ϕ ∈ C∞c (Ω;Rm) | ‖ϕ‖∞ ≤ 1}.

Given a regularisation parameter α > 0, the ROF regularisation of f ∈ L1(Ω) is then given
by the solution û of the problem

min
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω) + αTV(u).
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3.2. Total variation regularisation of tensor fields. We now extend total variation to
tensor fields. Given a domain Ω ⊂ Rm and u ∈ L1(Ω; T k(Rm)), we write

TV(u) := sup
ϕ∈V k+1

F,ns

∫
Ω
〈u(x), divϕ(x)〉 dx = ‖Du‖F,M(Ω;T k+1(Rm)).

Here we recall the defining equation (2.3) of

V k+1
F,ns := {ϕ ∈ C∞c (Ω; T k+1(Rm)) | ‖ϕ‖F,∞ ≤ 1}.

Observe that we bound ϕ pointwise by the Frobenius norm. The reason for this is that we
desire the rotation-invariance detailed in Proposition 2.4. Alternatively, it would be interesting
to use the largest or smallest reasonable cross-norm, discussed in Appendix B, but these norms
are computationally demanding for tensors of degree greater than two; compare to the related
tensor decompositions in [30]. In our application ϕ(x) has degree three.

For α > 0, a positive semi-definite ROF-type regularisation of f ∈ L1(Ω; Symk(Rm)) is
now given by the problem

min
0≤u∈L1(Ω;Symk(Rm))

1

2
‖f − u‖2F,2 + αTV(u). (P-TV)

Although derived by other means, and superficially different, it turns out that the “component-
based regularisation” of [35] for Ψ =

√
·, is very similar to (P-TV). The difference is that the

former lacks the positive semi-definiteness constraint. If the data f is positive semi-definite,
then the constraint can indeed be shown to be superfluous, and the two problems equivalent.

Denoting by

δA(x) :=

{
0, x ∈ A,
∞, x 6∈ A,

the indicator function of a set A in the sense of convex analysis, and particularly by

δ≥0(u) :=

{
0, u(x) is positive semi-definite for a.e. x ∈ Ω,

∞, otherwise,

the indicator function of the pointwise positive semi-definite cone, the problem (P-TV) may
also be given the inf-sup formulation

min
u∈L1(Ω;Symk(Rm))

sup
ϕ∈C∞c (Ω;T k+1(Rm))

(1

2
‖f − u‖2F,2 + δ≥0(u) + 〈u,K∗ϕ〉−δαV k+1

F,ns
(ϕ)
)

(S-TV)

where K∗ϕ := −divϕ, and the indicator function δαV k+1
F,ns

takes the role of the constraint

ϕ ∈ αV k+1
F,ns on the dual variable in the definition of TV(u). The conjugate-like notation K∗

will be justified in Section 4, where we study the numerical solution of (P-TV) through the
formulation (S-TV).



Total generalised variation in DTI 13

3.3. Total deformation regularisation of tensor fields. We may also restrict ϕ to be
symmetric, that is

ϕ ∈ V k+1
F,s ⊂ V

k+1
F,ns ,

yielding a symmetrised TV variant, called total deformation and defined as

TD(u) := sup
ϕ∈V k+1

F,s

∫
Ω
〈u(x), divϕ(x)〉 dx = ‖Eu‖F,M(Ω;Symk+1(Rm)).

With then readily arrive at the regularisation problem

min
0≤u∈L1(Ω;Symk(Rm))

1

2
‖f − u‖2F,2 + αTD(u), (P-TD)

and the equivalent inf-sup formulation

min
u∈L1(Ω;Symk(Rm))

sup
ϕ∈C∞c (Ω;Symk+1(Rm))

(1

2
‖f − u‖2F,2 + δ≥0(u) + 〈u,K∗ϕ〉−δαV k+1

F,s
(ϕ)
)
, (S-TD)

where again K∗ϕ := −divϕ. The difference to (S-TV) is that ϕ is constrained to be sym-
metric. Indeed, observe that a symmetric ϕ(x) has significantly less degrees of freedom than
a non-symmetric one; in R2, for example, a generic (k + 1)-tensor requires 2k+1 scalars to
represent, while a symmetric (k + 1)-tensor can be represented by k + 2 scalars. Already for
k = 2 this translates to 8 versus 4. This has an influence on numerical efficiency.

3.4. Second-order total generalised variation (TGV2) for tensor fields. Total gener-
alised variation was introduced in [11] as a higher-order extension of TV. The application
to magnetic resonance imaging, in particular, is studied in [28], yielding improved results in
comparison to TV.

For a scalar field u ∈ L1(Ω), second-order TGV may according to [12, 13] be written as
the “differentiation cascade”

TGV2
(β,α)(u) := min

w∈L1(Ω;Sym1(Rm))
α‖Eu− w‖F,M(Ω;Sym1(Rm)) + β‖Ew‖F,M(Ω;Sym2(Rm)), (3.1)

where the parameters α, β > 0. Observe that Du = Eu for scalar fields u ∈ L1(Ω) =
L1(Ω; T 0(Rm)).

Readily the above definition extends to u ∈ L1(Ω; T k(Rm)) as

TGV2
(β,α)(u) := min

w∈L1(Ω;Symk+1(Rm))
α‖Eu− w‖F,M(Ω;Symk+1(Rm)) + β‖Ew‖F,M(Ω;Symk+2(Rm)).

(3.2)
Observe that also this semi-norm is rotation-invariant (on Ω = Rm), as follows from Lemma
2.3 together with (2.5).

A positive semi-definite TGV2-regularisation of a tensor field f ∈ L1(Ω; Symk(Rm)) may
now be defined as a solution of

min
0≤u∈L1(Ω;Symk(Rm))

1

2
‖f − u‖2F,2 + TGV2

(β,α)(u). (P-TGV2)
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This can again be written in the inf-sup form

min
u,w

sup
ϕ,ψ

(1

2
‖f − u‖2F,2 + δ≥0(u) + 〈(u,w),K∗(ϕ,ψ)〉−δαV k+1

F,s
(ϕ)− δβV k+2

F,s
(ψ)
)
, (S-TGV2)

where u ∈ L1(Ω; Symk(Rm)), w ∈ L1(Ω; Symk+1(Rm)), ϕ ∈ C∞c (Ω; Symk+1(Rm)), and ψ ∈
C∞c (Ω; Symk+2(Rm)), while the operator K∗ is defined by K∗(ϕ,ψ) := (−divϕ,−ϕ− divψ).

Remark 3.1 (Symmetric differentials). It can be argued that TGV2 defined above should be
called TGD2, for total generalised deformation, due to the use of symmetrised differentials,
and the fact that TD, not TV, is the first-order equivalent of TGV2. The reason for calling
(3.2) TGV is historical: TGV2 in the scalar case (3.1) already employs symmetric differentials.
Of course, for scalar fields Eu = Du, and so TV and TD also agree.

It is also possible to define “non-symmetric TGV2”, bearing similar differences to “sym-
metric TGV2” as TV bears to TD. We however do not do that, because such a regulariser
would be computationally much heavier, due to far greater degree of freedom, and because
we have found the symmetric TD to offer numerically better results than TV.

3.5. Existence of solutions. We now show that the minimisation problems discussed
above admit solutions, as stated by the following theorem.

Theorem 3.1. Let Ω ⊂ Rm be a bounded Lipschitz domain, k ≥ 0, and f ∈ L2(Ω; T k(Rm)).
Then (P-TV) admits a solution 0 ≤ û ∈ BV(Ω; Symk(Rm)), and (P-TD), and (P-TGV2)
admit solutions 0 ≤ û ∈ BD(Ω; Symk(Rm)).

Proof. The proof for (P-TV) and (P-TD) is quite standard; cf., e.g., [26]. Indeed, let
{ui ≥ 0}∞i=0 ⊂ L1(Ω; Symk(Rm)) be a minimising sequence for (P-TD). Observe that

sup
i
‖ui‖F,2 + ‖Eui‖F,M(Ω;Symk+1(Rm)) <∞. (3.3)

Therefore, as in the case of scalar functions, we deduce that there exists a subsequence,
unrelabelled, and 0 ≤ û ∈ BD(Ω; Symk(Rm)), such that ui ⇀ û weakly in L2(Ω; T k(Rm)),
and Eui ∗⇀ Eû weakly* inM(Ω; Symk+1(Rm)). Lower semi-continuity of ‖·‖F,M(Ω;Symk+1(Rm))

and of ‖ · ‖F,2 now shows that û is a solution to (P-TD).
The claim for (P-TV) follows analogously in BV(Ω; Symk(Rm)), with Eu replaced by Du

above.
It remains to show the existence of a solution 0 ≤ û ∈ BD(Ω; Symk(Rm)), û ≥ 0, to

(P-TGV2). As in the scalar case k = 0, considered in [13], we need to show that for some
c > 0 it holds

c
(
‖u‖F,1 + ‖Eu‖F,M(Ω;Symk+1(Rm))

)
≤ ‖u‖F,1 + TGV2

(β,α)(u), (u ∈ L1(Ω; Symk(Rm)), (3.4)

and that TGV2
(β,α) is lower semi-continuous with respect to weak* convergence of Eui to

Eu. These results are contained in the following two lemmas. We let then {ui ≥ 0}∞i=1 ⊂
L1(Ω; Symk(Rm)) be a minimising sequence for (P-TGV2). We want to show that (3.3) holds.
Indeed, supi ‖ui‖F,1 <∞ thanks to Ω being bounded and

sup
i
‖f − ui‖F,2 + TGV2

(β,α)(u
i) <∞, (3.5)



Total generalised variation in DTI 15

the latter following from {ui} being a minimising sequence for (P-TGV2). It now follows from
(3.4) that supi ‖Eui‖F,M(Ω;Symk+1(Rm)) < ∞. This and (3.5) lead to (3.3). The same argu-

ments as above now provide 0 ≤ û ∈ BD(Ω; Symk(Rm)), and lower semi-continuity establishes
that it solves (P-TGV2).

Lemma 3.2. Let Ω ⊂ Rm be a bounded Lipschitz domain and k ≥ 0. Then there exist
constants c, C > 0, dependent on Ω, k,m, such that for all u ∈ L1(Ω; Symk(Rm)) it holds

c‖u‖BD(Ω;Symk(Rm)) ≤ ‖u‖F,1 + TGV2
(β,α)(u) ≤ C‖u‖BD(Ω;Symk(Rm)). (3.6)

Proof. The proof is a straightforward extension of the equivalence proof for k = 0 in [13],
employing the tensor Sobolev-Korn estimates from [10]. Indeed, by definition

‖u‖F,1 + TGV2
(β,α)(u) ≤ ‖u‖F,1 + α‖Eu− w‖F,M(Ω;Symk+1(Rm)) + β‖Ew‖F,M(Ω;Symk+2(Rm)),

for all w ∈ L1(Ω; Symk+1(Rm)), so setting w = 0 gives

‖u‖F,1 + TGV2
(β,α)(u) ≤ ‖u‖F,1 + α‖Eu‖F,M(Ω;Symk+1(Rm)) ≤ C‖u‖BD(Ω;Symk(Rm))

for C = max{1, α}. Thus the second inequality of (3.6) holds.
For the first inequality of (3.6), we may assume that Eu ∈ M(Ω; Symk+1(Rm)), since

otherwise ‖Eu−w‖F,M(Ω;Symk+1(Rm)) =∞ for all w ∈ L1(Ω; Symk+1(Rm)), and the inequality
holds trivially. We want to show that there exists C1 > 0 such that

‖Eu‖F,M(Ω;Symk+1(Rm)) ≤ C1

(
‖u‖F,1 + ‖Eu− w̄‖F,M(Ω;Symk+1(Rm))

)
(3.7)

for every u ∈ BD(Ω; Symk(Rm)) and w̄ ∈ L1(Ω; Symk+1(Rm)) satisfying Ew̄ = 0, i.e.,
w̄ ∈ kerE. For the proof of the fact that E has a non-trivial finite-dimensional kernel,
see [10]. Indeed, suppose that (3.7) does not hold. Then there exist sequences {ui}∞i=0 ⊂
BD(Ω; Symk(Rm)) and {w̄i}∞i=0 ⊂ L1(Ω; Symk+1(Rm)) ∩ kerE such that for i = 1, 2, 3, . . ., it
holds

‖Eui‖F,M(Ω;Symk+1(Rm)) = 1 and ‖ui‖F,1 + ‖Eui − w̄i‖F,M(Ω;Symk+1(Rm)) ≤ 1/i, (3.8)

It follows that ui → 0 strongly in L1(Ω; Symk(Rm)). Consequently Eui ∗⇀ 0 weakly* in
the space M(Ω; Symk+1(Rm)). Employing the first half of (3.8) in the second, it moreover
follows that supi ‖w̄i‖F,1 < ∞. Since kerE is finite-dimensional, we deduce that there exists
a convergent subsequence, unrelabelled, and w̄ ∈ L1(Ω; Symk+1(Rm))∩kerE, such that w̄i →
w̄ strongly in L1(Ω; Symk+1(Rm)). It hence follows from (3.8) that Eui → w̄ strongly in
M(Ω; Symk+1(Rm)). But Eui ∗⇀ 0, so w̄ = 0. This means that ‖Eui‖F,M(Ω;Symk+1(Rm)) → 0

in contradiction to (3.8). Hence (3.7) holds.
Now we employ from [10] the following Sobolev-Korn estimate: there exists C2 > 0 such

that for all w ∈ BD(Ω; Symk+1(Rm)) there exists w̄ ∈ L1(Ω; Symk+1(Rm)) ∩ kerE satisfying

‖w − w̄‖F,1 ≤ C2‖Ew‖F,M(Ω;Symk+2(Rm)).
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For this choice of w̄, we deduce the existence of C3 > 0 such that for all u ∈ BD(Ω; Symk(Rm))
and w ∈ BD(Ω; Symk+1(Rm)) it holds

‖Eu− w̄‖F,M(Ω;Symk+1(Rm)) ≤ ‖Eu− w‖F,M(Ω;Symk+1(Rm)) + ‖w − w̄‖F,1
≤ C3

(
α‖Eu− w‖F,M(Ω;Symk+1(Rm)) + β‖Ew‖F,M(Ω;Symk+2(Rm))

)
.

Employing this estimate in (3.7) yields for some C4 > 0 the estimate

‖u‖BD(Ω;Symk(Rm)) ≤ C4

(
‖u‖F,1 + α‖Eu− w‖F,M(Ω;Symk+1(Rm)) + β‖Ew‖F,M(Ω;Symk+2(Rm))

)
,

which holds for all w ∈ BD(Ω; Symk+1(Rm)) and u ∈ BD(Ω; Symk(Rm)). Hence the first
inequality of (3.6) holds with c = C−1

4 .
Lemma 3.3. Let Ω ⊂ Rm be a bounded Lipschitz domain and k ≥ 0. Then the function

F (µ) := min
w∈L1(Ω;Symk+1(Rm))

α‖µ− w‖F,M(Ω;Symk+1(Rm)) + β‖Ew‖F,M(Ω;Symk+2(Rm)),

where µ ∈M(Ω; Symk+1(Rm)), is lower semi-continuous with respect to weak* convergence.
Proof. Let µi ∗⇀ µ weakly* inM(Ω; Symk+1(Rm)). Observe that by the Banach-Steinhaus

theorem, supi ‖µi‖F,M(Ω;Symk+1(Rm)) <∞. Consequently also supi F (µi) <∞.

We first establish that F (µi) admits a minimiser ŵi ∈ BD(Ω; Symk+1(Rm)). Indeed,
let {vj}∞j=0 ⊂ BD(Ω; Symk+1(Rm)) be a minimising sequence for F (µi). The sequence is

obviously bounded in BD(Ω; Symk+1(Rm)). Thus [10, Theorem 4.17], establishes that there
exists a subsequence, unrelabelled, convergent strongly in L1(Ω; Symk+1(Rm)) to some v ∈
L1(Ω; Symk+1(Rm)). A standard argument (cf., e.g, [4, Proposition 3.13]) establishes that
Evi ∗⇀ Ev weakly* in M(Ω; Symk+2(Rm)). Finally, lower semi-continuity yields that ŵi := v
minimises F (µi).

Knowing that F (µi) admits a minimiser for each i = 0, 1, 2, . . ., we now establish lower
semi-continuity. Since supi F (µi) + ‖µi‖F,M(Ω;Symk+1(Rm)) <∞, we deduce that

sup
i
‖ŵi‖F,1 + ‖Eŵi‖F,M(Ω;Symk+2(Rm)) <∞.

Hence some subsequence of {ŵi}∞i=0 converges weakly in BD(Ω; Symk(Rm)) to some ŵ ∈
BD(Ω; Symk(Rm)). By lower semi-continuity of norms we deduce that

F (µ) ≤ α‖µ− ŵ‖F,M(Ω;Symk+1(Rm)) + β‖Eŵ‖F,M(Ω;Symk+2(Rm)),

≤ lim inf
i→∞

α‖µi − ŵi‖F,M(Ω;Symk+1(Rm)) + β‖Eŵi‖F,M(Ω;Symk+2(Rm)) = lim inf
i→∞

F (µi).

This establishes the lower semi-continuity of F .
Remark 3.2 (Dual-ball formulation). If we extended to the tensor case the equivalence proof

[12, 13] of the differentiation cascade formulation (3.1) of TGV2
(β,α), and the original dual-ball

formulation

TGV2
(β,α)(u) := sup

{∫
Ω
udiv2 ϕdx

∣∣∣ ϕ ∈ C2
c (Ω; Sym2(Rm)), ‖v‖F,∞ ≤ β, ‖div v‖F,∞ ≤ α

}
,
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then, following the original proof in [11], we could almost trivially obtain lower semi-continuity
of TGV2

(β,α) with respect to convergence in Lp. This would imply weak lower semi-continuity

in L1, and could be used to replace Lemma 3.3 in the proof of Theorem 3.1. The equivalence
proof is, however, very long, and not our focus here, so we do not provide the extension, and
choose to work entirely with the differentiation cascade formulation, that is more practical in
the numerical methods of our choosing.

4. Algorithmic aspects. We now move on to discuss the algorithmic aspects of the solu-
tion of the regularisation problems above. We do this through the saddle-point formulations.

4.1. Discretisation and the algorithm. The problems (S-TV), (S-TD), and (S-TGV2)
are of the form

inf
x

sup
y
G(x) + 〈x,K∗y〉−F ∗(y)

for proper convex lower semi-continuous G,F ∗. This suggests that the Chambolle-Pock al-
gorithm [15] could be applied. A problem with the original infinite-dimensional problems is,
however, that a (pre)conjugate of K∗ cannot easily be defined, as the spaces involved are
not reflexive; in the case of TV, in particular K∗ : C∞c (Ω; T k+1(Rm)) → C∞c (Ω; T k(Rm)).
In practise the algorithm is applied on finite dimensional discretisations, however, and this
problem does not surface when the discretisations are chosen suitably. We choose to represent
each tensor field f , u, w, ϕ and ψ by values on an uniform grid, and discretise K∗ by forward
differences, yielding the operator K∗h. We then take Kh := (K∗h)∗ as the discrete conjugate of
K∗h.

For TD and TV the function

G(u) = G0(u) :=
1

2
‖f − u‖2F,2 + δ≥0(u).

is uniformly convex. We therefore describe the accelerated version of the Chambolle-Pock
algorithm. It has the following assumptions.

Assumption 4.1. Consider the problem

min
x

max
y
G(x) + 〈x,K∗hy〉−F ∗(y),

where Kh : X → Y is a continuous linear operator between the finite-dimensional Hilbert-
spaces X and Y , and G : X → [0,+∞] and F ∗ : Y → [0,+∞] are proper, convex and lower
semi-continuous, with F ∗ the conjugate of a convex lower semi-continuous function F . Let,
moreover, γ ≥ 0 be such that for any x ∈ dom ∂G it holds

G(x′)−G(x) ≥ 〈z, x′ − x〉+
γ

2
‖x− x′‖2 for all z ∈ ∂G(x), x′ ∈ X.

Algorithm 4.1. Suppose Assumption 4.1 is satisfied. Following [15], perform the steps:

1. Pick τ0, σ0 > 0 satisfying τ0σ0‖Kh‖2 ≤ 1, as well as (x0, y0) ∈ X × Y . Set x̄0 = x0.



18 T. Valkonen, K. Bredies, and F. Knoll

2. For i = 0, 1, 2, . . ., repeat the following updates until a stopping criterion is satisfied.

yi+1 := (I + σi∂F
∗)−1(yi + σiKhx̄

i)

xi+1 := (I + τi∂G)−1(xi − τiK∗hyi+1)

θi := (1 + 2γτi)
−1/2, τi+1 := θiτi, σi+1 := σi/θi

x̄i+1 := xi+1 + θi(x
i+1 − xi).

For TD and TV we have γ = 1. For TGV2 we should in take γ = 0, because G(u,w) =
G0(u) does not depend on w, and is thus not uniformly convex. In this case the above
algorithm reduces to the unaccelerated version that does not update θi and σi. In numerical
practise γ = 1 works often better, but at other times does not converge.

The resolvent operators that need to be calculated to obtain xi+1 and yi+1, may be written

(I + τ∂G)−1(x) = arg min
y

{
‖x− y‖2

2τ
+G(y)

}
.

The efficient realisation of Algorithm 4.1 depends on the efficient realisation of these minimi-
sation problems. In our primary case of interest with k = 2, it turns out that they reduce to
easily calculable projections, as follows.

We begin by considering (S-TV). First, for F ∗(ϕ) = δαV k+1
F,s

(ϕ), the resolvent is

(I + σ∂F ∗)−1(v) = arg min
ϕ

{‖v − ϕ‖2F,2
2σ

+ δαV k+1
F,s

(ϕ)

}
.

This reduces to a pointwise projection

ϕ(x) = P‖·‖F≤α(v(x)) = v(x) min{1, α/‖v(x)‖F } (4.1)

for all x ∈ Ω. Secondly, G = G0, for which we solve

[(I + τ∂G0)−1(v)](x) = P≥0

(
v(x) + f(x)τ

1 + τ

)
, (x ∈ Ω). (4.2)

The pointwise projection

P≥0(A) := min
0≤X∈Sym2(Rm)

‖A−X‖2F , (A ∈ Sym2(Rm)),

can be performed by projecting each eigenvalue of A to R+. (This can be seen from the
structure of the normal cone N≥0(x′), spelled out in, e.g., [42, Lemma 3.1]. See also [31] for
related eigenvalue projection results that are useful for dealing with the nuclear and spectral
norms.)

Regarding (S-TD), still G = G0, so we get the resolvent (4.2). Also for F ∗ the resolvent

(I + σ∂F ∗)−1(v) = arg min
ϕ

{‖v − ϕ‖2F,2
2σ

+ δαV k+1
F,ns

(ϕ)

}
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has the same solution (4.1) as in the case of (S-TV).

It remains to consider the resolvents for (S-TGV2). Minding that G(u,w) = G0(u), we
find that

(I + τ∂G)−1(v, q) = ((I + τ∂G0)−1(v), q).

Likewise, from the expression

F ∗(ϕ,ψ) = δαV k+1
F,s

(ϕ) + δβV k+2
F,s

(ψ),

we immediately deduce that

(I + σ∂F ∗)−1(v, q) = (ϕ,ψ),

with the projection (4.1) applied on ϕ and ψ separately; more precisely ϕ(x) = P‖·‖F≤α(v(x))
and ψ(x) = P‖·‖F≤β(q(x)).

4.2. Duality gap as stopping criterion. For (S-TV) and (S-TD) it poses no difficulty to
calculate the duality gap

F (Khu) +G(u) +G∗(−K∗hϕ) + F ∗(ϕ),

and to use the reduction of the duality gap beyond a certain threshold as a stopping criterion.
Regarding (S-TGV2), the variable w from the expression TGV2(u) = minw α‖Eu − w‖ +
β‖Ew‖ does not appear in G(u,w) = G0(u), yielding G∗(a, b) = G∗0(a) + δ{0}(b). The result
is that in practise G∗(a, b) =∞ in the algorithm, so the duality gap as such is not useful for
a stopping criterion.

If we had an a priori bound M on ‖ŵ‖F,1, at an optimal solution (û, ŵ), then we could add
the term δB(0,M)(‖w‖F,1) to G, resulting in practical G∗ and duality gap. It can be shown (see
Proposition A.1 in the Appendix) that such a bound indeed exists. Unfortunately, however,
due to the nature of the proof, we only know the existence, but not the exact magnitude.

Fortunately it turns out that we can also pick M a posteriori, because if M is large
enough, δB(0,M)(‖w‖F,1) vanishes in Algorithm 4.1, and therefore, if the duality gap becomes
infinite, we can simply increase M , which is only used to calculate the duality gap/stopping
criterion. This suggests to employ the following generic algorithm, where for TGV2 we have
xi = (ui, wi), yi = (ϕi, ψi), and

U := {(u,w) ∈ L1(Ω; Symk(Rm))× L1(Ω; Symk+1(Rm)) | ‖w‖F,1 ≤ 1}.

The idea is that we always decrease the duality gap of the modified problem, where G is
replaced by G(x) + δMU (x), for some M > 0, unknown a priori, by a given fraction ρ, chosen
a priori.

Algorithm 4.2. Suppose Assumption 4.1 holds, and that U ⊂ X has non-empty interior.
In each step of the Algorithm 4.1, perform the following additional operations.

1. Pick ρ ∈ (0, 1) and M0 ≥ 0. Define

Gi(x) := G(x) + δMiU (x).



20 T. Valkonen, K. Bredies, and F. Knoll

2. Update the variables as in Algorithm 4.1 with G = Gi. Pick Mi+1 ≥Mi large enough
that x ∈Mi+1U . Calculate the initial and current pseudo-duality gaps

di+1
0 := F (Khx

0) +Gi+1(x0) +G∗i+1(−K∗hy0) + F ∗(y0),

di+1 := F (Khx
i+1) +Gi+1(xi+1) +G∗i+1(−K∗hyi+1) + F ∗(yi+1).

If di+1 < ρdi+1
0 , finish execution of the algorithm, with the solution (xi+1, yi+1). Oth-

erwise continue iteration.
Remark 4.1 (Computations on 2D slices of 3D data). The mathematical theory on tensor

fields above, in particular the definition (2.2) of the tensor divergence, only applies to tensors
fields f : Ω → Symk(Rm), where the domain Ω ⊂ Rm has the same dimension m as the
tensor parameters. Therefore, it is not directly possible to do computations on 2D slices of 3D
tensor fields f : Ω ⊂ R2 → Sym2(R3). For reasons of computational efficiency, working on 2D
slices of data instead of the full 3D volume can sometimes however be desirable. A solution
is to assume that the full image is constant in the z direction, and work on the extension
f3D(x, y, z) = f(x, y). At the level of the numerical implementation this extension can be
reduced to performing 3D calculations on the slice f , taking the differentials in the z direction
as zero.

5. Numerical results. We will now numerically study the performance of the different reg-
ularisation models on a synthetic test data, as well as an in-vivo brain measurement. We first
discuss how the results are reported, followed by discussing in detail how the computational
algorithm is parametrised. We then describe how our synthetic test data is constructed, and,
and finally represent and analyse the results for both this synthetic test data and an in-vivo
brain measurement.

5.1. Error measures. We would like to have a numerical value for the quality of the
solution, compared to noise-free test data. An obvious candidate is, of course, the Frobenius-
L2 norm

dF (f, u) := ‖f − u‖F,2.

This distance is, however, difficult to interpret in geometric terms directly related to f and u.
Therefore we introduce three other error measures that measure different geometrical aspects
of the tensors.

As the first geometrical error measure we have the L2 norm

dA(f, u) := ‖FAf − FAu‖L2(Ω)

of the differences of the fractional anisotropies, defined by

FAu(x) =
(∑m

i=1(λi − λ̄)2
)1/2(∑m

i=1 λ
2
i

)−1/2
∈ [0, 1], (x ∈ Ω),

where λ1, . . . , λm are the eigenvalues of u(x), and λ̄ =
∑m

i=1 λi/m. The second geometrical
error measure is the L2 norm

dλ(f, u) := ‖λ̂u − λ̂f‖L2(Ω)
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of the differences of the principal eigenvalues λ̂u(x) of u(x) and λ̂f (x) of f(x). As the final
geometrical error measure we take the weighted L2 norm

dv(f, u) := ‖νf,u(1− |〈v̂u, v̂f 〉|)‖L2(Ω)

of the differences of normalised principal eigenvectors v̂u(x) of u(x) and v̂f (x) of f(x). Since for
a fully isotropic tensor the direction of the principal eigenvector is completely undetermined,
being able to lie anywhere on the unit sphere, it is not meaningful to compare the principal
eigenvectors of such tensors. We therefore employ for δ = 0.005 the thresholding function

νf,u(x) = min{max{0,FAu(x)− δ,FAf (x)− δ}, δ}/δ

to ignore or put less weight on points x where the either u(x) or f(x) is almost anisotropic,
namely either FAu(x) or FAf (x) is less than 2δ = 0.01. This thresholding will also be used in
our error visualisations, discussed in the next subsection.

The distance dλ measures the error in the size of the tensors, i.e., the lengths of the
principal axes of the corresponding ellipsoids. The distance dv measures the error in the
directions of the principal axes, and, finally, dA measures the error in the shape of the ellipsoids.

5.2. Visualisation. The visualisation of tensor images, each point consisting of multiple
values, is not trivial, and the choice of visualisation highly affects what we can learn. The
most obvious approach (for 2D slices) is to plot the ellipses or ellipsoids corresponding to
the tensor, but in practise such a visualisation is very difficult to read except for very small
images. Fractional anisotropy, as a scalar quantity, can easily be studied, and provides useful
information, but is not sufficient by itself. Superimposing the principal eigenvector on the
fractional anisotropy is a relatively common means of visualisation, but can also become
difficult to read for high-resolution data.

Colour-coding of different tensor quantities is another common means of visualisation.
This is what we have chosen to principally use in the present paper, as suitable colour-coding
allows to easily observe differences between the different regularisation models. Particularly,
for plotting the computational results and source data, we have chosen to use as a basis the
standard coding (cf. [38]) of mapping the (x, y, z) components of the 3D principal eigenvector
(z = 0 for 2D data) directly to the (red, green,blue) channels of the RGB colour model.
Additionally, to increase the information available in the plots, we have modulated this unit
vector by a function of the fractional anisotropy. Namely, we have

RGB = v̂u ·min{1,FAu + 1/3}.

The effect of the nonlinearities in the fractional anisotropy modulation is to stop features
of interest in highly isotropic areas from disappearing, while still making them significantly
darker than highly anisotropic areas. Explanatory plots of this colour-coding are included in
Figure 5.1 (2D) and Figure 5.3 (3D).

It turns out, however, that analysing the error between the original noise-free data f0 and
the computational result u is more useful for comparing the different computational models.
Following, e.g., [2], a good choice of visualisation is to plot the angle cos−1(〈v̂u, v̂f0〉) between
the principal eigenvectors of f0 and u. However, as discussed in the context of the error
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measures in the previous subsection, this error is meaningless for fully anisotropic tensors.
Therefore we use the same thresholding νf,u as in the definition of dv to put less weight on
such points, and plot

θ = νf0,u cos−1(〈v̂u, v̂f0〉).

using the “jet” colour map of Matlab, spanning from blue through cyan and yellow to red.
This colour coding does not yet describe errors eFA = |FAu − FAf0 | in reconstruction of

fractional anisotropy, and therefore we have chosen to plot that as well, using shades of grey,
so that the resulting RGB (red, green, blue) value of an image pixel is the componentwise
maximum of the two colours,

RGB = max{jet(min{1, 2θ/π}),min{1, eFA/0.15}}.

The minimum expressions serve to compress the colours for high errors. A clarifying plot of
the colour-coding is included in Figures 5.2 and 5.4.

5.3. The evaluated models. We evaluate the models (P-TD), (P-TV), and (P-TGV2),
applying algorithm Algorithm 4.2 to solve each of them, as discussed in the preceding sections.
Moreover, we study the log-Euclidean [5, 6, 20] regularisation

min
u≥0

1

2
‖ log f − log u‖2 + αTV(log u). (P-logTV)

In practise this is implemented by taking û = exp v̂ where v̂ solves minv
1
2‖ log f−v‖2+αTV(v).

This can be calculated with Algorithm 4.2 again, just like normal TV, but without the positive
definiteness constraint. However, we have the minor problem that log f(x) =

∑m
i=1 λi(vi⊗ vi)

has complex values when f(x) is not positive definite, i.e, has a non-positive eigenvalue λi.
In principle we could calculate the distance | log f(x) − log u(x)| in the complex sense. But,
by the theory of log-Euclidean metrics, the boundary of the positive definite cone should be
infinitely far from any positive definite tensor. Therefore, in practise, when such data occurs,
we replace λi by a small positive number ε > 0 for the calculation of log f(x).

In addition to the models (P-TD), (P-TV), (P-TGV2), and (P-logTV), for numerical
experiments on in-vivo data we evaluate for comparison the more conventional approach of
denoising each DWI image separately [1]. Following [29], we perform this by total variation
regularisation, i.e., solving (P-TV) for k = 0 by Algorithm 4.2 for each of the DWI measure-
ments. The reported iteration count for this regularisation model, denoted DWITV, will be
the maximum over the different DWI measurements.

For each evaluated model we pick Algorithm 4.2 as the numerical method. As the stopping
criterion we use the normalised duality gap ρ = 0.001, and additionally limit the number of
iterations to at most 5000. The initial iterates are always x0 = 0, y0 = 0.

For (P-TGV2) we take τ0 = σ0 = 0.95/
√
L′1, where L′h = (16+h2+

√
h4 + 32h2)/(2h2) is a

bound on the squared norm ‖K∗h‖22 of the discretisationK∗h ofK∗(ϕ,ψ) := (−divϕ,−ϕ−divψ)
on a grid of cell width h (for domains Ω ⊂ R2!). At each iteration we update Mi+1 :=
‖wi+1‖F,1.

For (P-TV), (P-TD), and (P-logTV) we take, likewise, τ0 = σ0 = 0.95/
√
L1, where this

time Lh = 8/h2 bounds ‖∇‖22 on a grid of cell width h on domains Ω ⊂ R2; see [14].
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5.4. Choice of regularisation parameter. The choice of the regularisation parameters α
and β highly affects the denoising results, and care has to be taken to make the comparison
of different denoising models fair. One possibility would be to find the “best” parameters for
each model, and compare these results. The choice of “best” is, however, not a trivial one,
especially as in clinical data features that are difficult to quantify can be more important than
simple error measures.

Moreover, we find that it is important to compare the sensitivity of the models to pa-
rameter choice, and to study the range of denoising results achievable with each model. We
therefore report denoising results of each model for two different choices of the regularisation
parameters. We call them the “large parameter choice” and the “small parameter choice”.
In each test case, we pick for each regularisation model H a parameter α0(H) by trial and
error. For the large parameter choice we then set for each model α = α0(H) and, for TGV2,
β = 10α0(TGV2). For the small parameter choice we set α = 0.4α0(H), and for TGV2,
β = 0.6α0(TGV2). Observe that in this case α+β = α0(TGV2), which is a heuristic we want
to test for TGV2 against TV and TD.

Indeed, we pick α0(TV) = α0(TD) = α0(TGV2). For the large parameter choice this is
clearly fair: When β approaches infinity, the only real difference between the functionals is
their kernel. For TV it is constant functions, for TD it is “infinitesimal rigid displacements”
[10], i.e., functions u such that Eu = 0, and for TGV2 it is functions u such that the absolutely
continuous part w of Eu satisfies Ew = 0. For the small parameter choice, we will justify the
choice of same α0(H) numerically.

For H = logTV,DWITV we pick by trial and error another α0(H) that seems to provide
results comparable to TV, TD and TGV2 for both the large and small parameter choices. For
our tests with in-vivo brain data, for H = TV,TD,TGV2 we end up in practise picking

α0(H) = α0µ, µ := ‖max
i
λi(f0(x))‖L∞(Ω),

for a single “base regularisation parameter” α0 found by trial and error, and the maximum
eigenvalue µ of f0. For logTV we have then often found

α0(logTV) = α0| logµ|, (5.1)

to be a good choice, and for DWITV

α0(DWITV) = α0‖meanbAb(x)‖L∞(Ω).

These rather simple choices are somewhat justified by the fact that the factor between α0 and
α0(H) is in each case computed by an analogous rule on the data, minding that logTV does
TV regularisation on log(f0). For our experiments on synthetic test data, we however have
ended up choosing

α0(logTV) = 2α0| logµ|, (5.2)

which we have found by trial and error to be fairer than (5.1), although the scale of the latter
choice is also right, and the computational results not foo far from TV, TD, and logTV.

Although it is difficult to do complete justice to all the models, we believe to have chosen
the parameters reasonably fairly. Given that we report results of all models for two parameter
choices, we are able to observe trends that are relatively independent of parameter choice.
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5.5. Synthetic data. Our noise-free synthetic test data consists of a 128 × 128 image
of Sym2(R2) tensors, divided into four smaller rectangles each having a tensor field with
different properties; Figure 5.1(e) contains an illustration. The origin (0, 0) of the image is in
the lower-right corner.

In the rectangle (64, 128)× (64, 128) we have the constant tensors

f0(x, y) =

[
1.1 0
0 0.9

]
.

(We avoid the identity tensor due to ambiguity of a principal eigenvector.) This region is
in the kernel of both differential operators D and E. Next there is a lower-left rectangle
(0, 64)× (0, 64) consisting of an affine tensor field

f0(x, y) = I + 0.005

([
0 1
1 2

]
(x− 1) +

[
−2 −1
−1 0

]
(y − 1)

)
.

In this region Ef0 = 0 but Df0 6= 0. Then, we have the upper-left rectangle (0, 64)× (64, 128)
that has an affine tensor field

f0(x, y) = I + 0.02

([
1 0
0 0

]
(x− 1) +

[
0 0
0 1

]
(y − 65)

)
.

In this region both Df0 6= 0 and Ef0 6= 0. Finally, in the lower-right rectangle (64, 128) ×
(0, 64), we have the non-linear tensor field

f0(x, y) = Rx

[
3/4 0
0 1/2

]
RTx , Rx :=

[
1 0
0 1

]
cos

(
π

2

x− 65

64

)
+

[
0 −1
1 0

]
sin

(
π

2

x− 65

64

)
,

rotating the tensor 3
4e1⊗e1 + 1

2e2⊗e2 by an angle between [0, π/2] as the x-coordinate varies.

5.6. The Stejskal-Tanner equation and Rician noise. A diffusion tensor D ∈ Sym2(R3)
at a given voxel of a diffusion tensor image produced through DWI measurements is governed
by the Stejskal-Tanner equation

Ab = A0 exp(−〈b,D〉). (5.3)

Here the b matrix parametrises a diffusion gradient, and Ab is the DWI measurement corre-
sponding to b. At least K ≥ 6 independent non-zero diffusion gradients are needed to solve
for D by regression from the measurements {A0, Ab1 , . . . , AbK}; see, e.g., [8].

The noise in the DWI measurements Abi is Rician; see, e.g., [23]. We wish to apply the
same noise model on our synthetic test data as well. By choosing the b-matrices suitably,
we can extract each individual component of D, and therefore apply Rician noise on each
component separately

D̃ij = log(ricernd(exp(Dij), σ)),

where σ parametrises the Rice distribution, and ricernd is a Matlab function that applies
random Rician noise.
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5.7. Results on synthetic data. To the synthetic noise-free test data f0, we apply Rician
noise with the parameter σ = 0.15, yielding the noisy test data f with PSNR ≈ 34.4 dB (in
the DWI domain with exponential relationship to the tensor field). The maximal eigenvalue
of the test data f0, affecting the regularisation parameters, is µ ≈ 2.3. We have chosen the
base regularisation parameter α0 = 0.25 by trial and error and the rule (5.2) for logTV. The
results of applying the denoising models described above on f are depicted in Figure 5.1, and
the error maps in Figure 5.2.

Our principal observations are the following. Firstly, in the top-left region, where u belongs
to (kerE)c, TGV2 is best at restoring the diagonal line between the red and green-coloured
regions for the large parameter choice. TV and logTV display a quite prominent S-shape: the
diagonal bends downwards on the right and upwards on the left. For TD the reconstruction
of the diagonal is quite noisy. We, however, note that the fact these effects can be seen is a
result of the non-linearities in our visualisation; if the principal eigenvector were modulated by
the fractional anisotropy directly, i.e., if v̂uFAu were plotted, this S-shape could not be seen,
as on the diagonal the tensors are fully isotropic, and the region around the diagonal would
blend to black without the jump. What happens in our test data across the diagonal is that
the principal eigenvector switches from pointing horizontally to pointing vertically. It appears
that TGV2 restores such extremely sensitive differences better than the other regularisation
models. Although for the small parameter choice not so much differences can be seen along
the diagonal in Figure 5.1, studying Figure 5.2 we observe that the reconstruction error is for
both parameter choices quite noisy around the diagonal for the first-order models, while for
TGV2 it is relatively flat.

Secondly, in the top-right region, where u belongs to kerD, we observe, by contrast, that
for the small parameter choice TV is best at restoring the flatness of this region. Presumably
the stair-casing effect helps here.

In the bottom-left region, where u belongs to kerE \kerD, the differences between TGV2,
TD, and TV are again minor; studying Figure 5.2, we see, however, that TV exhibits slightly
more noisy errors, while logTV exhibits in general more noise in this region.

Indeed, in the nonlinear bottom-right region, we observe that logTV is extremely noisy for
both parameter choices. For the smaller parameter choice all the methods are somewhat noisy
in this region. Studying Figure 5.2, we see that it has large errors in fractional anisotropy.
Looking at the error score dA superimposed on Figure 5.1, we see indeed that logTV has high
errors in fractional anisotropy, a trend that we will also see in tests with in-vivo brain data.
It could be argued that the regularisation parameter should be higher. We tried to increase
it by a factor of two, but the S-shape become even more prominent and dF increased, with
the errors disappearing. We also expected some stair-casing effect for the first order methods
in this region, but it is not noticeable. Only in the error plot of Figure 5.2 do we see it.

Concerning iteration counts (also superimposed on Figure 5.1), we observe TGV2 for the
large parameter choice has required 14 times as much iterations as the other models, and for
the smaller parameter choice also 1.5 times as many. It however provides clearly the best
results for the large parameter choice, by the error scores as well (superimposed on Figure
5.1). For the small parameter choice TV can be said to provide better results, but neither is
so good as TGV2 for the large parameter choice.

Finally, we note that the error measures superimposed on Figure 5.1(b3) are comparable
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to those on (a1) and (a4). This suggests that while visually (b3) is worse, from the point
of view of error measures the heuristic choice of α + β for TGV2 equal to α for TV or TD,
as discussed in Subsection 5.4, seems at least as reasonable as choosing the same α for all
the models and a large β. This suspicion is however not confirmed by the following tests on
in-vivo brain data, and indeed the choice of α seems more important than β.

5.8. In-vivo brain data. Finally, we apply the regularisation models to a clinical in-
vivo diffusion tensor image of a human brain. The measurements for our test data set were
performed on a clinical 3T system (Siemens Magnetom TIM Trio, Erlangen, Germany), using
a 32 channel head coil. Written informed consent was obtained from all volunteers before
the examination. A 2D diffusion weighted single shot EPI sequence with diffusion sensitising
gradients applied in 12 independent directions (b = 1000s/mm2) and an additional reference
scan without diffusion was used with the following sequence parameters: TR = 7900ms,
TE = 94ms, flip angle 90◦, matrix size 128 × 128, 60 slices with a slice thickness of 2mm, in
plane resolution 1.95mm× 1.95mm, 4 averages, GRAPPA acceleration factor 2. Prior to the
reconstruction of the diffusion tensor, eddy current correction was performed with FSL [36].
Given the four averages of 12 independent diffusion gradients, plus the zero gradient, we have
altogether 52 different DWI measurements.

When acquiring diffusion weighted MRI data, there is always a tradeoff between SNR,
the imaged field of view, spatial resolution and measurement time. From a clinical point of
view, it would be extremely desirable to be able to obtain DTI data sets with whole brain
coverage and an isotropic spatial resolution of approximately 1mm3. However, clinical scan
protocols are limited in measurement time to approximately 5 minutes for a diffusion weighted
acquisition [38]. The reason for this is patient comfort, the required patient throughput in a
clinical facility, as well as the inability to hold completely still for longer periods of time. This
is of special importance for diffusion weighted imaging, as it is a technique that is prone to
artifacts from patient movement.

Our data set is of rather high fidelity at the expense of low resolution. It is therefore suit-
able as a “ground truth” or “gold standard” to which additional noise is applied, and against
which the results of denoising the noisy data are compared. For reasons of visualisational and
computational practicality, we perform computations only on a single slice of the data set.
The data f0 is thus a 128 × 128 image of Sym2(R3) tensors, to which the considerations in
Remark 4.1 apply. We apply Rician noise with both the parameters σ = 10 (“low-noise case”,
PSNR ≈ 29.0 dB) and σ = 50 (“high-noise case”, PSNR ≈ 14.5 dB) on the original DWI
measurements, before the diffusion tensors are extracted from the Stejskal-Tanner equation
(5.3). Regarding regularisation parameter, the maximal eigenvalue of the data µ ≈ 0.0042,
and we have by trial and error chosen the “base regularisation parameter” α0 = 0.05 for the
low-noise case and α0 = 0.15 for the high-noise case. The regularisation parameter for logTV
is chosen as (5.1).

The computational results for the low-noise case are presented in Figure 5.3, and the error
maps in Figure 5.4. The results for the high-noise case are presented in Figure 5.5 and the error
maps in Figure 5.6. The results have been zoomed-in on the area (16, 112) × (16, 112), and
points where the average DWI signal intensity is less than 10% of the mean over the whole
image, have been masked out. Additionally, for the high-noise case, we include in Figure
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5.7 a plot of the fractional anisotropy superimposed with the projections of the principal
eigenvectors to the (x, y)-plane, for region (55, 73)×(74, 92) of the data, containing the corpus
callosum; the region is marked with a rectangle in Figure 5.5. For the low-noise case this plot
is not included, because any differences between most of the methods are hard to observe.

5.9. Analysis of the low-noise case. We first study the low-noise case. From Figure 5.3
it is difficult to observe any significant differences between the models, except that TV and
logTV exhibit stair-casing. Another noticeable aspect is that TGV2 requires significantly more
iterations to reach the target normalised duality gap than the other models. Nevertheless, all
the models manage to remove the additional Rician noise to some degree: Compared to the
noisy data f , the error measures (superimposed on Figure 5.3) are reduced significantly by all
models, with the exception of the error dv in the directions of the principal eigenvectors. In
contrast to the situation with the synthetic data, where TGV2 consistently had the best values
for the error measures (superimposed on Figure 5.3) in comparison to TV, TD, this time TV
appears to perform the best of these four models. Clearly, however, DWITV, i.e., individual
denoising of the DWI data, has the best error scores, with one exception: the error in fractional
anisotropy for the smaller regularisation parameter is significantly higher than for the other
models – we shall return to this topic. Next we observe that logTV performs somewhat worse
than the other models here, for which the large parameter choice can be argued to slightly
over-regularise. That is, however, not the case for the small parameter choice. There dA and
dv for logTV are comparable to the other models, but dλ and consequently also dF significantly
worse. It therefore appears that logTV does not restore the magnitude of the tensors so well.

More interesting information is provided by the error plot in Figure 5.4. Regarding the
error in the direction of principal eigenvector, plotted with colours, we observe no significant
difference between the models. In comparison to f , we observe that for the large parameter
choice, all the models introduce significant local errors to fractional anisotropy, where there
originally was none, and only TGV2 and TD obviously reduce the errors elsewhere (areas of
dark blue at the top left of the brain). For the small parameter choice, similar conclusions hold,
but the differences are not so easy to detect by visual observation. For the large parameter
choice, TV, logTV and DWITV exhibit higher local errors than TGV2 and TD. For latter the
difference between the large and the small parameter choice is the smallest, also confirmed
by inspection of Figure 5.3. This indicates that these models, both using the symmetrised
differential, are less sensitive towards parameter choice than TV and logTV.

5.10. Analysis of the high-noise case. We now turn to the high-noise case, for which
the computational results are depicted in Figure 5.5. Here the reconstruction by all the
models is already significantly poorer than the original image f0. For the large parameter
choice TGV2 and TD provide nevertheless visually acceptable results, given the high noise
levels, while both TV and logTV exhibit significant stair-casing. For the small parameter
choice, none of the methods manage to remove significant amounts of noise although logTV
exhibits stair-casing already then. Indeed, we note that logTV does not fare well in this test
case, introducing large errors and noise in fractional anisotropy construction, that are visually
observable already from this result plot for both parameter choice. However, with regard to
the fractional anisotropy error measure dA, DWITV performs even worse. TV has the best
fractional anisotropy reconstruction by error, with TD and TGV2 not far behind. Inspecting
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the error plot in Figure 5.5, TV however has the highest local errors errors in fractional
anisotropy for the large parameter choice.

Studying the zoomed-in Figure 5.7, we confirm the noise that logTV introduces in frac-
tional anisotropy. For the small parameter choice we note none of the models except logTV
manage to well reconstruct the directions of the principal eigenvectors. The largest errors are,
however, in the area of low anisotropy, which is reflected in the fact that dv (superimposed
on Figure 5.5) is comparable for all the models. For the large parameter choice logTV seems
to be over-regularising the directions, while TV has apparently the best reconstruction of the
principal eigenvectors here. That is, although logTV had in general large errors in fractional
anisotropy, in this region it is, in the sense of overall brightness, much closer to f0 than the
other models.

6. Some final remarks and outlook. From our numerical studies, we conclude that TGV2

and TD regularisation appear to be very reasonable novel approaches for the denoising of
diffusion tensors. Both are incidentally based on the symmetric differential. While DWITV
or TV sometimes perform better by some of the error measures, TGV2 and TD perform
consistently good. DWITV, in particular, suffers from errors in fractional anisotropy. So does
logTV, which we had expected to perform better than it does. Naturally, as already remarked,
it is difficult to choose the regularisation parameters such that complete justice is done to all
the methods. Possibly some of the problems are also due to the processing, as discussed in
Subsection 5.3, of negative eigenvalues in the noisy data, which the model does not directly
allow.

TGV2 never performs noticeable worse than TD, and sometimes better, but is computa-
tionally significantly more expensive. The choice between these two regularisers, according to
our research so far, is therefore a matter of computational resources. TD requires less itera-
tions of Algorithm 4.2 than TGV2. It is also per iteration the lightest of all the models, with
the caveat that DWITV is not directly comparable, iteration cost depending on the amount
of DWI data. Indeed, TGV2 has for 2D data 16 = 3 + 4 + 4 + 5 (u, ϕ, w, ψ) and for 3D
data 42 = 6 + 10 + 10 + 16 parameters per pixel, while TD has 7 = 3 + 4 (u, ϕ) parameters
per pixel for 2D data, and 16 = 6 + 10 parameters for 3D data. TV also has 11 = 3 + 8 (u,
non-symmetric ϕ) parameters per pixel for 2D data and 33 = 6 + 27 for 3D data – not much
less than TGV2.

An obvious philosophical defect in all our regularisation models, except the direct regu-
larisation of the individual DWI data, is that we are already losing critical information by
reconstruction the tensors by linear regression through the Stejskal-Tanner equation (5.3) be-
fore regularisation. But individual denoising of the DWI data for each diffusion gradient also
introduces the problem of matching the regularisations of each signal – consider the case of a
small shift in the data. In principle eddy current correction removes such matching errors, but
may not do it completely, and ideally even eddy current correction would indeed be part of
an overall regularisation model from signal to DTI. Future work will therefore be directed to-
wards the integration of direct tensor regularisation in an extended reconstruction model that
allows direct reconstruction of the diffusion tensors from raw MR data. The main advantage
of such an approach is that it also allows to correct errors due to phase variations that arise
from head motion or unavoidable brain pulsations, and to include additional coil-sensitivity



Total generalised variation in DTI 29

information during the reconstruction [7, 3, 41].
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Appendix A. L1 bounds for TGV2 regularisation.
Proposition A.1. Let Ω ⊂ Rm be a bounded Lipschitz domain. Suppose f ∈ L2(Ω; T k(Rm)),

and let û ∈ BD(Ω; Symk(Rm)) and ŵ ∈ BD(Ω; Symk+1(Rm)) obtain the minimum in the
problem (P-TGV2), that is

(û, ŵ) = arg min
(u,w)

1

2
‖f−u‖2F,2+α‖Eu−w‖F,M(Ω;Symk+1(Rm))+β‖Ew‖F,M(Ω;Symk+2(Rm)). (A.1)

Then there exists a constant C = C(Ω, k,m, α, β) <∞, such that

‖û‖F,1 + ‖ŵ‖F,1 ≤ C(‖f‖F,2 + ‖f‖2F,2).

Proof. By Lemma 3.2, there exists a constant C0 <∞, dependent on Ω, k,m, such that

‖u‖F,1 + ‖Eu‖F,M(Ω;Symk+1(Rm)) ≤ C0[‖u‖F,1 + TGV2
(β,α)(u)], (u ∈ BD(Ω; Symk(Rm))).

Setting u = 0, w = 0 in (A.1), we get

1

2
‖f − û‖2F,2 ≤

1

2
‖f − û‖2F,2 + TGV2

(β,α)(û) ≤ 1

2
‖f‖2F,2, (A.2)

whence

‖Eû‖F,M(Ω;Symk+1(Rm)) ≤ C0[‖û‖F,1 + TGV2
(β,α)(û)] ≤ C0

[
‖û‖F,1 + ‖f‖2F,2

]
.

The estimate (A.2) and the boundedness of Ω also give

‖û‖F,1 ≤ Lm(Ω)1/2‖û‖F,2 ≤ Lm(Ω)1/2(‖f − û‖F,2 + ‖f‖F,2) ≤ 2Lm(Ω)1/2‖f‖F,2

This gives the desired bound on ‖û‖F,1, and the two preceding estimates together give

‖Eû‖F,M(Ω;Symk+1(Rm)) ≤ C0

[
2Lm(Ω)1/2‖f‖F,2 + ‖f‖2F,2

]
. (A.3)

Setting w = 0 and u = û in (A.1) gives

α‖Eû− ŵ‖F,M(Ω;Symk+1(Rm)) + β‖Eŵ‖F,M(Ω;Symk+2(Rm)) ≤ α‖Eû‖F,M(Ω;Symk+1(Rm)),

whence

‖ŵ‖F,1 ≤ ‖Eû− ŵ‖F,M(Ω;Symk+1(Rm)) + ‖Eû‖F,M(Ω;Symk+1(Rm)) ≤ 2‖Eû‖F,M(Ω;Symk+1(Rm)).

Recalling (A.3), we obtain for ŵ the desired bound

‖ŵ‖F,1 ≤ 2C0

[
2Lm(Ω)1/2‖f‖F,2 + ‖f‖2F,2

]
.

This concludes the proof.
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Appendix B. Alternative tensor norms.
In this appendix, we discuss the so called the largest and smallest reasonable cross-norms,

following [18]. A word of note, however: all the results in [18] that we refer to are stated there
only for k = 2, but readily generalise to k > 2. For a choice of p ∈ [1,∞], we thus define the
smallest reasonable cross-norm as

‖A‖∨ := sup{A(x1, . . . , xk) | ‖xi‖p ≤ 1, i = 1, . . . , k}. (B.1)

The largest reasonable cross-norm is defined by duality as

‖A‖∧ := sup{〈A, ξ〉 | ‖ξ‖∨ ≤ 1}

It may alternatively be written as

‖A‖∧ = inf{
N∑
i=1

‖xi1‖p · · · ‖xik‖p | A =
N∑
i=1

xi1 ⊗ · · · ⊗ xik}. (B.2)

Example B.1 (Vectors). We have ‖A‖∧ = ‖A‖p, and ‖A‖∨ = ‖A‖q, where 1/p + 1/q = 1.
Thus for p = 2 both norms are the same.

Example B.2 (Matrices). Denoting by {λi} the eigenvalues of A, we find that for p = 2, the
largest reasonable cross-norm ‖A‖∧ =

∑
i |λi| is the nuclear norm, and the smallest reasonable

cross-norm ‖A‖∨ = maxi |λi| is the spectral norm.
Only the case p = 2 is of interest to us, as in that case these norms are orthogonally

invariant, as is the Frobenius norm. Indeed, the following proposition is the counterpart to
Proposition 2.2. As a consequence, Proposition 2.4 holds for these norms.

Proposition B.1.Let A ∈ T k(Rm), and let R ∈ Rm×m be an orthogonal matrix (i.e., RT =
R−1). Define AR ∈ T k(Rm) according to

AR(c1, . . . , ck) = A(Rc1, . . . , Rck).

Then the norms ‖ · ‖• for • = ∨,∧ and p = 2, are orthogonally invariant in the sense that
‖AR‖• = ‖A‖•.

Proof. That ‖ · ‖∨ is orthogonally invariant, is clear from the the equation (B.1) defin-
ing the norm, as seen by evaluating A(x′1, . . . , x

′
k) with x′i = R−1xi. That ‖ · ‖∧ is or-

thogonally invariant is clear from the formulation (B.2): If A =
∑N

i=1 x
i
1 ⊗ · · · ⊗ xik, then

AR =
∑N

i=1R
Txi1 ⊗ · · · ⊗RTxik.
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Figure 5.1. Computational results for TD, logTV, TV, and TGV2 on the synthetic test data (c) with
Rician noise of parameter σ = 0.15 (DWI domain PSNR ≈ 34.4 dB) applied (d). The visualisation is as in the
legend above. The “base regularisation parameter” found by trial and error is α0 = 0.25, and the parameters for
each model, displayed under the plots, are chosen as in Section 5.4. The results of the “large parameter choice”
are displayed in (a1)–(a4), while the results for the “small parameter choice” are displayed in (b1)–(b4). The
iteration counts and error measures discussed in Subsection 5.1 have been superimposed on the results. The
areas of the synthetic data are illustrated in (e). Observe in particular that while TGV2 in (a3) restores the
diagonal in the top-left region well, TV and logTV in (a4),(a2) exhibit a quite prominent S-shape (indicated by
the arrows in the TV plot), while TD in (a1) exhibits blurring at the ends of the diagonal.
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Colour-coding of the thresholded error θ = νf0,u cos−1(〈v̂u, v̂f0 〉) between the principal eigenvectors
and the error eFA = |FAu − FAf0 | between the fractional anistropies of u and f0.

Figure 5.2. Error visualisation of the computational results for TD, logTV, TV, and TGV2 on the synthetic
test data (c) with Rician noise of parameter σ = 0.15 (DWI domain PSNR ≈ 34.4 dB) applied (d). The
visualisation is as in the legend above. The “base regularisation parameter” found by trial and error is α0 = 0.25,
and the parameters for each model, displayed under the plots, are chosen as in Section 5.4. The results of the
“large parameter choice” are displayed in (a1)–(a4), while the results for the “small parameter choice” are
displayed in (b1)–(b4). The areas of the synthetic data are illustrated in (e). Observe in particular that while
TGV2 in (a3) has small errors close to the diagonal in the top-left region, all TD TV, logTV (a1),(a2), and
(a4),, exhibit noisy error around the diagonal, particularly for TD, as indicated by the arrow. Moreover, logTV
exhibits high errors in fractional anisotropy in both of the bottom rectangles, as indicated by the arrow.
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Figure 5.3. Computational results for TD, logTV, TV, TGV2, and DWITV on the in-vivo brain data
(c) with Rician noise of parameter σ = 10 (DWI domain PSNR ≈ 29.0 dB) applied (d). The visualisation
is as in the legend above. The “base regularisation parameter” found by trial and error is α0 = 0.05, and the
parameters for each model, displayed under the plots, are chosen as in Section 5.4. The results of the “large
parameter choice” are displayed in (a1)–(a4), while the results for the “small parameter choice” are displayed in
(b1)–(b4). The iteration counts and error measures discussed in Subsection 5.1 have been superimposed on the
results. Observe in particular the stair-casing of TV and logTV particularly in the green region on lower-left
indicated by the arrow in the logTV plot.
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Colour-coding of the thresholded error θ = νf0,u cos−1(〈v̂u, v̂f0 〉) between the principal eigenvectors
and the error eFA = |FAu − FAf0 | between the fractional anistropies of u and f0.

Figure 5.4. Error visualisation of the computational results for TD, logTV, TV, TGV2, and DWITV on
the in-vivo brain data (c) with Rician noise of parameter σ = 10 (DWI domain PSNR ≈ 29.0 dB) applied (d).
The visualisation is as in the legend above. The “base regularisation parameter” found by trial and error is
α0 = 0.05, and the parameters for each model, displayed under the plots, are chosen as in Section 5.4. The
results of the “large parameter choice” are displayed in (a1)–(a4), while the results for the “small parameter
choice” are displayed in (b1)–(b4). Observe in particular how TGV2 (and TD) restore the fractional anisotropy
better than TV (or logTV), with less intense white areas, as indicated by the arrows.
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Figure 5.5. Computational results for TD, logTV, TV, TGV2, and DWITV on the in-vivo brain data
(c) with Rician noise of parameter σ = 50 (DWI domain PSNR ≈ 14.5 dB) applied (d). The visualisation
is as in the legend above. The “base regularisation parameter” found by trial and error is α0 = 0.15, and the
parameters for each model, displayed under the plots, are chosen as in Section 5.4. The results of the “large
parameter choice” are displayed in (a1)–(a4), while the results for the “small parameter choice” are displayed
in (b1)–(b4). The iteration counts and error measures discussed in Subsection 5.1 have been superimposed on
the results. The rectangle in (c) indicates the corpus callosum displayed in more detail in Figure 5.7. Observe
in particular the small extremely bright spots (high fractional anisotropy) exhibited by logTV, indicated by the
arrow, and the extreme stair-casing of TV for the large parameter choice. At the same time, TGV2 and TD
perform reasonably well for the large parameter choice, while all methods leave significant amounts of noise for
the small parameter choice. And, yet, logTV exhibits stair-casing already for the small parameter choice, as
indicated by an arrow.
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Colour-coding of the thresholded error θ = νf0,u cos−1(〈v̂u, v̂f0 〉) between the principal eigenvectors
and the error eFA = |FAu − FAf0 | between the fractional anistropies of u and f0.

Figure 5.6. Error visualisation of the computational results for TD, logTV, TV, TGV2, and DWITV on
the in-vivo brain data (c) with Rician noise of parameter σ = 50 (DWI domain PSNR ≈ 14.5 dB) applied (d).
The visualisation is as in the legend above. The “base regularisation parameter” found by trial and error is
α0 = 0.15, and the parameters for each model, displayed under the plots, are chosen as in Section 5.4. The
results of the “large parameter choice” are displayed in (a1)–(a4), while the results for the “small parameter
choice” are displayed in (b1)–(b4). Observe the high errors of fractional anisotropy exhibited by TV, as indicated
by the arrow.
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Figure 5.7. Fractional anisotropy (see legend above) and planar projection of the principal eigenvector for
the region containing the corpus callosum of the in-vivo brain data (c). Rician noise of parameter σ = 50 (DWI
domain PSNR ≈ 14.5 dB) has been applied to yield the noisy data (d). The “base regularisation parameter”
found by trial and error is α0 = 0.15, and the parameters for each model, displayed under the plots, are chosen
as in Section 5.4. Denoising results of the the noisy data for the “large parameter choice” with for TD, logTV,
TV, TGV2, and DWITV are displayed in (a1)–(a5), while the denoising results for the “small parameter choice”
are displayed in (b1)–(b5). Observe the noisy reconstruction of fractional anisotropy by logTV, as indicated by
the arrow.


