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Abstract We study and develop (stochastic) primal–dual block-coordinate descent meth-
ods for convex problems based on the method due to Chambolle and Pock. Our methods
have known convergence rates for the iterates and the ergodic gap: O(1/N 2) if each block
is strongly convex, O(1/N ) if no convexity is present, and more generally a mixed rate
O(1/N 2) +O(1/N ) for strongly convex blocks, if only some blocks are strongly convex. Ad-
ditional novelties of our methods include blockwise-adapted step lengths and acceleration,
as well as the ability to update both the primal and dual variables randomly in blocks under
a very light compatibility condition. In other words, these variants of our methods are
doubly-stochastic. We test the proposed methods on various image processing problems,
where we employ pixelwise-adapted acceleration.

1 introduction

We want to e�ciently solve optimisation problems of the form

(P0) min
x

G(x) + F (Kx),

arising, in particular, from image processing and inverse problems. We assume G : X → R and
F : Y → R to be convex, proper, and lower semicontinuous on Hilbert spaces X and Y and
K ∈ L(X ;Y ) to be a bounded linear operator. We are particularly interested in block-separable

(GF) G(x) =
m∑
j=1

G j (Pjx), and F ∗(y) =
n∑̀
=1
F ∗` (Q`y),

where F ∗ is the Fenchel conjugate of F . The operators P1, . . . , Pm are projections in X with∑m
j=1 Pj = I and PjPi = 0 if i , j . Likewise, Q1, . . . ,Qn are projection operators in Y . We assume

all the component functions G j and F ∗
`

to be convex, proper, and lower semicontinuous, and the
subdi�erential sum rule to hold for the expressions (GF).

Several �rst-order optimisation methods have been developed for (P0) without block-separable
structure, typically both G and F convex and K linear. Recently also some non-convexity and
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non-linearity has been introduced [4, 21, 23, 37]. In applications to image processing and data
science, one of G or F is typically non-smooth. E�ective algorithms operating directly on the
primal problem (P0), or its dual, therefore tend to be a form of classical forward–backward
splitting, occasionally called iterative soft-thresholding [1, 12].

In big data optimisation several forward–backward block-coordinate descent methods have
been developed for (P0) with block-separableG . On each step, the methods update only a random
subset of blocks x j := Pjx in parallel; see the review [39] and the original articles [2, 9, 11, 16,
22, 24, 28–31, 42]. Typically F is assumed smooth, and, often, each G j strongly convex. Besides
parallelism, an advantage of these methods is the exploitation of blockwise factors of smoothness
and strong convexity. These can help convergence by being better than the global factor.

Unfortunately, primal-only and dual-only stochastic methods, as discussed above, are rarely
applicable to image processing problems. These, and many other problems, do not satisfy the
assumed separability and smoothness assumptions. On the other hand, additional Moreau–Yosida
(aka. Huber, aka. Nesterov) regularisation of the problem, which would provide the required
smoothness, would alter the problem, losing essential non-smooth characteristics. Generally,
even without the splitting of the problem into blocks and the introduction of stochasticity,
primal-only or dual-only methods can be ine�cient on more complicated problems. Proximal
steps, which are typically used to deal with non-smooth components of the problem, can in
particular be as expensive as the original optimisation problems itself. In order to make these
steps cheap, the problem has to be formulated appropriately. Such a reformulation can often be
provided through primal–dual approaches.

With the Fenchel conjugate F ∗, we can write (P0) as

(1.1) min
x

max
y

G(x) + 〈Kx,y〉 − F ∗(y).

The method of Chambolle and Pock [6, 27] is popular for this formulation. It is also called the
PDHGM (Primal-Dual Hybrid Gradient Method, Modi�ed) in [14] and the PDPS (Primal–Dual
Proximal Splitting) in [34]. It consists of alternating proximal steps on x and y combined with
an over-relaxation step to ensure convergence. The method is closely related to the classical
ADMM and Douglas–Rachford splitting. The acronym PDHGM arises from the earlier PDHG
[43] that is convergent only in special cases [18]. These connections are discussed in [14].

While early block-coordinate methods only worked with a primal or a dual variable, recently
stochastic primal–dual approaches based on the ADMM and the PDHGM have been proposed
[3, 15, 25, 26, 33, 40, 41]. Moreover, variants of the ADMM that deterministically update multiple
blocks in parallel and afterwards combine the results for the Lagrange multiplier update have
been introduced [20]. As with the primal- or dual-only methods, these algorithms can improve
convergence by exploiting local properties of the problem. Besides [33, 40, 41] that have restrictive
smoothness and strong convexity requirements, little is known about convergence rates.
In this paper, we will derive block-coordinate descent variants of the PDHGM with known

convergence rates: O(1/N 2) if each G j is strongly convex, O(1/N ) without any strong convexity,
and mixed O(1/N 2) +O(1/N ) if some of the G j are strongly convex. These rates apply to an
ergodic duality gap and strongly convex blocks of the iterates. Our methods have the novelty of
blockwise-adapted step lengths. In the imaging applications of Section 5 we will even employ
pixelwise-adapted step lengths. Moreover, we can update random subsets of both primal and
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dual blocks under a light “nesting condition” on the sampling scheme. Such “doubly-stochastic”
updates have previously been possible only in very limited settings [40].

Our present work is based on [37] on the acceleration of the PDHGM when G is strongly
convex only on a subspace: the deterministic two-block case m = 2 and n = 1 of (GF). Besides
enabling (doubly-)stochastic updates and an arbitrary number of both primal and dual blocks,
in the present work, we derive simpli�ed step length rules through a more careful analysis.

The more abstract basis of our present work has been split out in [35]. There we study
preconditioning of abstract proximal point methods and “testing” by suitable operators as
means of obtaining convergence rates. We recall the relevant aspects of this theory through
the course of Sections 2 and 3. In the �rst of these sections, we start by going through notation
and previous research on the PDHGM in more detail. Then we develop the rough structure
of our proposed method. This will depend on several structural conditions that we introduce
in Section 2. Afterwards in Section 3 we develop convergence estimates based on technical
conditions on the various step length and testing parameters. These conditions need to be
veri�ed through the development of explicit parameter update rules. We do this in Section 4
along with proving the claimed convergence rates (Theorem 4.5 and its corollaries). We also
present there the �nal, detailed, versions of our proposed algorithms: Algorithm 1 (doubly
stochastic) and Algorithm 2 (simpli�ed). We �nish with numerical experiments in Section 5.

2 background and overall structure of the algorithm

To make the notation de�nite, we write L(X ;Y ) for the space of bounded linear operators
between Hilbert spaces X and Y . The identity operator we denote by I . For T , S ∈ L(X ;X ), we
use T ≥ S to mean that T − S is positive semi-de�nite; in particular T ≥ 0 means that T is
positive semi-de�nite. Also for possibly non-self-adjoint T , we introduce the inner product and
norm-like notations
(2.1) 〈x, z〉T := 〈Tx, z〉, and ‖x ‖T :=

√
〈x, x〉T ,

the latter only de�ned for positive semi-de�nite T . We write T ' T ′ if 〈x, x〉T ′−T = 0 for all x .
We denote by C(X ) the set of convex, proper, lower semicontinuous functionals from a Hilbert

space X to R := [−∞,∞]. With G ∈ C(X ), F ∗ ∈ C(Y ), and K ∈ L(X ;Y ), we then wish to solve
the minimax problem
(P) min

x ∈X
max
y ∈Y

G(x) + 〈Kx,y〉 − F ∗(y),

assuming the existence of a solution û = (x̂, ŷ) satisfying the optimality conditions
(OC) − K∗ŷ ∈ ∂G(x̂), and Kx̂ ∈ ∂F ∗(ŷ).

For the stochastic aspects of our work, we denote by (Ω,O,P) the probability space consisting
of the set Ω of possible realisation of a random experiment, by O a σ -algebra on Ω, and by
P a probability measure on (Ω,O). We denote the expectation corresponding to P by E, the
conditional probability with respect to a sub-σ -algebra O ′ ⊂ O by P[ · |O ′], and the conditional
expectation by E[ · |O ′]. We refer to [32] for more details.

We also use the next non-standard notation: If O is a σ -algebra on the space Ω, we denote by
R(O;V ) the space of V -valued random variables A, such that A : Ω → V is O-measurable.
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2.1 preconditioned proximal point methods; testing for rates

We use the notation
u = (x,y)

to combine the primal variable x and dual variable y into a single variable u. Following [19, 37],
the primal–dual method of Chambolle and Pock [6] (PDHGM) may then be written in proximal
point form as

(PP0) 0 ∈ H (ui+1) + Li (u
i+1 − ui )

for a monotone operator H encoding the optimality conditions (OC) as 0 ∈ H (û), and a precon-
ditioning or step length operator Li = L0

i . These are

(2.2) H (u) :=
(
∂G(x) + K∗y
∂F ∗(y) − Kx

)
, and L0

i :=
(
τ−1
i −K∗

−ωiK σ−1
i+1

)
.

Here τi ,σi+1 > 0 are step length parameters, and ωi > 0 an over-relaxation parameter. In the
basic version of the algorithm,ωi = 1, τi ≡ τ0, and σi ≡ σ0, assuming τ0σ0‖K ‖

2 < 1. Observe that
we may equivalently parametrise the algorithm by τ0 and δ = 1 − ‖K ‖2τ0σ0 > 0. The method
has O(1/N ) rate for the ergodic duality gap that we will return to in Section 3.1.

If G is strongly convex with factor γ > 0, we may for γ̃ ∈ (0,γ ] accelerate

(2.3) ωi := 1/
√

1 + 2γ̃τi , τi+1 := τiωi , and σi+1 := σi/ωi .

This gives O(1/N 2) convergence of ‖xN − x̂ ‖2 to zero. If γ̃ ∈ (0,γ/2], we also obtain O(1/N 2)
convergence of an ergodic duality gap.

In [37], we extended the PDHGM to partially strongly convex problems: in (GF) this cor-
responded to the primal two-block and dual single-block case m = 2 and n = 1 with only G1
assumed strongly convex. This extension was based on taking in (PP0) the preconditioner

(2.4) Li =

(
T −1
i −K∗

−ωiK Σ−1
i+1

)
for invertible Ti = τ1,iP1 + τ2,iP2 ∈ L(X ;X ) and Σi+1 = σi+1I ∈ L(Y ;Y ). After simple rearrange-
ments of (PP0), the resulting algorithm could be written more explicitly as

x i+1 := (I +Ti∂G)−1(x i −TiK
∗y i ),(2.5a)

y i+1 := (I + Σi+1∂F
∗)−1(y i + Σi+1K((1 + ωi )x

i+1 − ωix
i )).(2.5b)

Since G is as assumed separable, the �rst, primal update, splits into separate updates for x i+1
1 :=

P1x
i+1 and x i+1

2 := P2x
i+1. Note that this explicit form of the algorithm does not require Ti and

Σi+1 to be invertible, unlike (PP0) with the choice (2.4), so suggests we could develop stochastic
methods that randomly choose one, two, or no primal blocks to update.

To study convergence, it is, however, more practical to work with implicit formulations, such
as (PP0). We will shortly see how this works. To make (PP0) work with non-invertible Ti and
Σi+1, let us reformulate it slightly. In fact, let us de�ne

(2.6) Wi+1 :=
(
Ti 0
0 Σi+1

)
, and (for the moment) Mi+1 =

(
I −TiK

∗

−ω̃iΣi+1K I

)
.
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With this, whether or not Ti and Σi+1 are invertible, (2.5) can be written as the preconditioned
proximal point iteration

(PP) Wi+1H (u
i+1) +Mi+1(u

i+1 − ui ) 3 0,

This will be the abstract form of the algorithms that we will develop, however, with the exact
form of Ti+1, Σi+1, and Mi+1 still to be re�ned.

To study the convergence of (PP), we apply to the testing framework introduced in [35, 37].
The idea is to apply 〈 · ,ui+1 − û〉Zi+1 for a testing operator Zi+1 to (PP) to “test” it. Thus

(2.7) 0 ∈ 〈Wi+1H (u
i+1) +Mi+1(u

i+1 − ui ),ui+1 − û〉Zi+1 .

We need Zi+1Mi+1 to be self-adjoint and positive semi-de�nite. This guarantees that Zi+1Mi+1
can be used to form the local semi-norm ‖ · ‖Zi+1Mi+1 . Indeed, assuming for some linear operator
Ξi+1 that H has the operator-relative (strong) monotonicity property

(2.8) 〈H (u ′) − H (u),u ′ − u〉Zi+1Wi+1 ≥ ‖u − u
′‖2Zi+1Ξi+1

(u,u ′ ∈ X × Y ),

then a simple application of Pythagoras’ identity

〈ui+1 − ui ,ui+1 − û〉Zi+1Mi+1 =
1
2 ‖u

i+1 − ui ‖2Zi+1Mi+1
−

1
2 ‖u

i − û‖2Zi+1Mi+1
+

1
2 ‖u

i+1 − û‖2Zi+1Mi+1

yields
1
2 ‖u

i+1 − û‖2Zi+1(Mi+1+2Ξi+1)
+

1
2 ‖u

i+1 − ui ‖2Zi+1Mi+1
≤

1
2 ‖u

i − û‖2Zi+1Mi+1
.

If Zi+2Mi+2 ≤ Zi+1(Mi+1 + 2Ξi+1) for all i , then summing over i = 0, . . . ,N − 1 gives

(2.9) 1
2 ‖u

N − û‖2ZN+1MN+1
+

N−1∑
i=0

1
2 ‖u

i+1 − ui ‖2Zi+1Mi+1
≤

1
2 ‖u

0 − û‖2Z1M1
.

We therefore see thatZi+1Mi+1 measures the rates of convergence of the iterates. If our iterations
are stochastic, to obtain deterministic estimates, we can simply take the expectation in (2.9).
However, to obtain estimates on a duality gap, we need to work signi�cantly more. We will,
therefore, in the beginning of Section 3, after introducing all the relevant concepts and �nalising
the setup for the present work, quote the appropriate results from [35].

2.2 stochastic and deterministic block updates

We want to update any subset of any number of primal and dual blocks stochastically. Compatible
with the separable structure (GF) of G and F ∗, we therefore construct from individual (possibly
random) step length and testing parameters, τj ,i ,σ`,i+1 ≥ 0 and ϕ j ,i ,ψ`,i+1 > 0, as well as
random subsets S(i) ⊂ {1, . . . ,m} andV (i + 1) ⊂ {1, . . . ,n} the step length and testing operators
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Wi+1 :=
(
Ti 0
0 Σi+1

)
and Zi+1 :=

(
Φi 0
0 Ψi+1

)
for(S.a)

Ti :=
∑
j ∈S (i)

τj ,iPj , Σi+1 :=
∑

`∈V (i+1)
σ`,i+1Q`,(S.b)

Φi :=
m∑
j=1

ϕ j ,iPj , and Ψi+1 :=
n∑̀
=1
ψ`,i+1Q` (i ≥ 0).(S.c)

We moreover take as the preconditioner

Mi+1 :=
(

I −Φ−1
i Λ∗i

−Ψ−1
i+1Λi I

)
for Λi := KT̊ ∗i Φ

∗
i − Ψi+1Σ̊i+1K with(S.d)

T̊i :=
∑
j ∈S̊ (i)

τj ,iPj , S̊(i) ⊂ S(i),(S.e)

Σ̊i+1 :=
∑

`∈V̊ (i+1)

σ`,i+1Q`, and V̊ (i + 1) ⊂ V (i + 1).(S.f)

The subsets S(i) and V (i + 1) are the indices of the blocks

(2.10) x j := Pjx, and y` := Q`y

of the variables x and y that are to be updated on iteration i .1 Hence Ti and Σi+1 will not be
invertible unless we update all the blocks. Clearly Φi , Ψi+1, Ti , and Σi+1 are self-adjoint and
positive semi-de�nite with Φi and Ψi+1 invertible. The subsets S̊(i) and V̊ (i + 1) indicate those
blocks of x i+1 and of y i+1 that are to be updated “independently” of the other variable. We will
explain these subsets and the choice of Λi in more detail in Section 2.3.

The iterate ui+1 = (x i+1,y i+1) has to be computable based on random sampling at iteration i
and the information gathered (random variable realisations) before commencing the iteration.
For the algorithm to be realisable, it cannot depend on the future. We therefore need to be
explicit about the space of each random variable. We model the information available just before
commencing iteration i by the σ -algebra Oi−1. Thus Oi−1 ⊂ Oi . More precisely,Oi is the smallest
sub-σ -algebra of O satisfying for all k = 0, . . . , i , j = 1, . . . ,m, and ` = 1, . . . ,n that

τj ,k ,σ`,k+1 ∈ R(Oi ; [0,∞)), ϕ j ,k ,ψ`,k+1 ∈ R(Oi ; (0,∞)),(R.a)
S(k) ∈ R(Oi ;P({1, . . . ,m})), V (k + 1) ∈ R(Oi ;P({1, . . . ,n})).(R.b)
S̊(k) ∈ R(Oi ;P({1, . . . ,m})), and V̊ (k + 1) ∈ R(Oi ;P({1, . . . ,n})).(R.c)

Here and only here P denotes the power set. Any other variables can only be random by being
constructed from these variables. We thus deduce from (S), and (PP) that

Tk ∈ R(Oi ;L(X ;X )), Φk ∈ R(Oi ;L(X ;X )) x i+1 ∈ R(Oi ;X ),
Σk+1 ∈ R(Oi ;L(Y ;Y )), Ψk+1 ∈ R(Oi ;L(Y ;Y )), and y i+1 ∈ R(Oi ;Y ).

1The iteration index is o�-by-one for σ`,i+1 andψ`,i+1 for reasons of historical development of the Chambolle–Pock
method, when it was not written as a preconditioned proximal point method.
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We will also need to assume the nesting conditions on sampling,

V(S̊(i)) ∩ V̊ (i + 1) = ∅, V(S(i) \ S̊(i)) ∩ (V (i + 1) \ V̊ (i + 1)) = ∅,(V .a)
S̊(i) ∪ V−1(V̊ (i + 1)) ⊂ S(i), and V̊ (i + 1) ∪ V(S̊(i)) ⊂ V (i + 1),(V .b)

where the set

(2.11) V(j) := {` ∈ {1, . . . ,n} | Q`KPj , 0}.

consists of the dual blocks that are “connected” by K to the primal block with index j. Vice
versa,V−1(`) consists of the primal blocks that are “connected” by K to the dual block with
index `. Thus (V .b) states that the independent updates (S̊(i) and V̊ (i + 1)) must propagate from
primal to dual and vice versa as non-independent updates (S(i) andV (i+ 1)). The condition (V .a)
restricts connections between primal and dual updates: the �rst part says that the independently
updates blocks cannot be connected. By the second part neither can non-independent updates.
If we use (V .b) as an equality to de�ne S(i) and V (i + 1), then the second part of (V .a) holds
ifV(V−1(V̊ (i + 1))) ∩ V(S̊(i)) = ∅, that is, the condition restricts second-degree connections
between the independently updated blocks.

To facilitate referring to all the above structural conditions, we introduce:

Assumption 2.1 (main structural condition). We assume the structure (GF) and (S) with the the
limitations (R) and (V) on randomness.

Clearly

(2.12) Zi+1Mi+1 =

(
Φi −Λ∗i
−Λi Ψi+1

)
is self-adjoint. We need to prove that it is positive semi-de�nite. We will do this in Section 4
using the functions κ` introduced next. As we show afterwards in Example 2.1, these functions
are a block structure adapted generalisation of the simple bound K ≤ ‖K ‖I .

Definition 2.2. LetP := {P1, . . . , Pm}, andQ := {Q1, . . . ,Qn}. We write (κ1, . . . ,κn) ∈ K(K,P,Q)
if each κ` : [0,∞)m → [0,∞) is monotone (` = 1, . . . ,n) and the following hold:

(i) (Estimation) For all (z`,1, . . . , z`,m) ⊂ [0,∞)m and ` = 1, . . . ,n the estimate
m∑
j=1

n∑
`,k=1

z1/2
`, jz

1/2
k , jQ`KPjK

∗Qk ≤

n∑̀
=1
κ`(z`,1, . . . , z`,m)Q` .

(ii) (Boundedness) For some κ > 0 and all (z1, . . . , zm) ⊂ [0,∞)m the bound

κ`(z1, . . . , zm) ≤ κ
m∑
j=1

zj .

(iii) (Non-degeneracy) There exists κ > 0 and for all j = 1, . . . ,m) a choice of `∗(j) ∈ {1, . . . ,n}
such that for all (z1, . . . , zm) ⊂ [0,∞)m ,

κzj ≤ κ`∗(j)(z1, . . . , zm) (j = 1, . . . ,m).
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The choice ofκ allows us to construct di�erent algorithms. Here we consider a few possibilities,
�rst an easy one, and then a more optimal one.

Example 2.1 (Worst-case κ). We may estimate

m∑
j=1

n∑
`,k=1

z1/2
`, jz

1/2
k , jQ`KPjK

∗Qk ≤

n∑
`,k=1

z1/2
`
z1/2
k Q`KK

∗Qk ≤

n∑̀
=1
z` ‖K ‖

2Q` .

Therefore De�nition 2.2 (i) and (ii) hold with κ = ‖K ‖2 for the monotone choice

κ`(z1, . . . , zm) := ‖K ‖2 max{z1, . . . , zm}.

Clearly also κ = κ for any choice of `∗(j) ∈ {1, . . . ,n}. This choice of κ` corresponds to the
rule τσ ‖K ‖2 < 1 in the PDHGM method.

Example 2.2 (Balanced κ). Take minimal κ` satisfying De�nition 2.2 and the balancing
condition κ`(z`,1, . . . , z`,m) = κk (zk ,1, . . . , zk ,m), (`,k = 1, . . . ,n). This requires problem-
speci�c analysis, but tends to perform well, as we will see in Section 5.

2.3 justification of the preconditioner and sampling restrictions

With Mi+1 of the form (S.d) for any Λi , the implicit method (PP) expands as

0 ∈ Ti∂G(x i+1) +TiK
∗y i+1 + (x i+1 − x i ) − Φ−1

i Λ∗i (y
i+1 − y i ), and(2.13a)

0 ∈ Σi+1∂F
∗(y i+1) − Σi+1Kx

i+1 − Ψ−1
i+1Λi (x

i+1 − x i ) + (y i+1 − y i ).(2.13b)

This can easily be rearranged as

x i+1 := (I +Ti∂G)−1(x i + Φ−1
i Λ∗i (y

i+1 − y i ) −TiK
∗y i+1),(2.14a)

y i+1 := (I + Σi+1∂F
∗)−1(y i + Ψ−1

i+1Λi (x
i+1 − x i ) + Σi+1Kx

i+1).(2.14b)

This method is still not explicit as the primal and dual updates potentially depend on each other.
We will now show how the removal of this dependency leads to our choice of Λi in (S.d).

Indeed, due to the compatible block-separable structures (S) and (GF), multiplying (2.13a) by
Pj for j = 1, . . . ,m, and (2.13b) by Q` for ` = 1, . . . ,n, (2.14) can be split blockwise as

x i+1
j = (I + χS (i)(j)τj ,i∂G j )

−1(x ij + Pj [Φ
−1
i Λ∗i (y

i+1 − y i ) −TiK
∗y i+1]) (j = 1, . . . ,m),

y i+1
` = (I + χV (i+1)(`)σ`,i+1∂F

∗
` )
−1(y i` +Q`[Ψ

−1
i+1Λi (x

i+1 − x i ) + Σi+1Kx
i+1]) (` = 1, . . . ,n).

For S(i) and V (i + 1) to have the intended meaning that only the corresponding blocks are
updated, we need to choose Λi such that

x i+1
j = x ij (j < S(i)), and y i+1

` = y i` (` < V (i + 1)).(2.15)
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Since PjTi = 0 for j < S(i), and Q`Σi+1 = 0 for ` < V (i + 1), this is to say

PjΦ
−1
i Λ∗i (y

i+1 − y i ) = 0 (j < S(i)), and(2.16a)
Q`Ψ

−1
i+1Λi (x

i+1 − x i ) = 0 (` < V (i + 1)).(2.16b)

Taking Λi = KT ∗i Φ
∗
i would allow computing x i+1 before y i+1 and satisfy (2.16a). If we further

had KT ∗i Φ
∗
i = ωiΨi+1Σi+1K , then also (2.16b) would hold and (S.d) would reproduce Mi+1 of (2.6).

Symmetrically, Λi = −Σi+1Ψi+1K would make y i+1 independent of x i+1. Such conditions will,
however, rarely be satis�able unless, deterministically,S(i) ≡ {1, . . . ,m} andV (i+1) ≡ {1, . . . ,n}.
Nevertheless, motivated by this, we designate subsets of blocks of x i+1 and y i+1 to be updated
independently of the other variable. This are the subsets S̊(i) and V̊ (i + 1) in (S.e) and (S.f). Then
picking Λi as in (S.d) achieves our objective:

Lemma 2.1. Suppose Assumption 2.1 holds. Then (2.15) and (2.16) hold.

Proof. We already know that (2.16) implies(2.15). Using (S.d), (2.16) can be rewritten

PjΦ
−1
i [ΦiT̊iK

∗ − K∗Σ̊∗i+1Ψ
∗
i+1](y

i+1 − y i ) = 0 (j < S(i)), and
Q`Ψ

−1
i+1[KT̊

∗
i Φ
∗
i − Ψi+1Σ̊i+1K](x

i+1 − x i ) = 0 (` < V (i + 1)).

Clearly PjT̊iK
∗ for j < S(i). Therefore, the �rst condition holds if PjK∗Σ̊∗i+1 = 0 for j < S(i). This

is to say j < V−1(V̊ (i + 1)), which is guaranteed by (V .b). Likewise, the second condition holds
if Q`KT̊

∗
i = 0 for ` < V (i + 1), which is also guaranteed by (V .b). �

2.4 overall structure of the proposed method

Setting T⊥i := Ti − T̊i , and Σ⊥i+1 := Σi+1 − Σ̊i+1, we can now rewrite (2.14) as

qi+1 := Φ−1
i K∗Σ̊∗i+1Ψ

∗
i+1(y

i+1 − y i ) +T⊥i K
∗y i+1,(2.17a)

x i+1 := (I +Ti∂G)−1(x i − T̊iK
∗y i − qi+1),(2.17b)

zi+1 := Ψ−1
i+1KT̊

∗
i Φ
∗
i (x

i+1 − x i ) + Σ⊥i+1Kx
i+1,(2.17c)

y i+1 := (I + Σi+1∂F
∗)−1(y i + Σ̊i+1Kx

i + zi+1).(2.17d)

Due to the �rst part of (V .a), Pjqi+1 = 0 and Q`z
i+1 = 0 for j ∈ S̊(i) and ` ∈ V̊ (i + 1). The

second part of (V .a) moreover implies T⊥i K∗Q` = 0 and Σ⊥i+1KPj for ` ∈ V (i + 1) \ V̊ (i + 1) and
j ∈ S(i)\S̊(i). The �rst part of (V .a) and (V .b) moreover imply Σ⊥i+1Θi+1 = Σi+1Θi+1 = Ψ−1

i+1KT̊
∗
i Φ
∗
i

and T⊥i B∗i+1 = TiB
∗
i+1 = Φ−1

i K∗Σ̊i+1Ψi+1 for

Θi :=
∑
j ∈S̊ (i)

∑
`∈V(j)

θ`, j ,iQ`KPj with θ`, j ,i+1 :=
τj ,iϕ j ,i

σ`,i+1ψ`,i+1
and

Bi :=
∑

`∈V̊ (i+1)

∑
j ∈V−1(`)

b`, j ,iQ`KPj with b`, j ,i+1 :=
σ`,i+1ψ`,i+1
τj ,iϕ j ,i

,
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Setting x̊ i+1 :=
∑

j ∈S̊ (i) Pjx
i+1 and ẙ i+1 :=

∑
`∈V̊ (i+1)Q`x

i+1 we therefore obtain

qi+1 := Φ−1
i K∗Σ̊∗i+1Ψ

∗
i+1(ẙ

i+1 − y i ) +T⊥i K
∗ẙ i+1 = T⊥i [B

∗
i+1(ẙ

i+1 − y i ) + ẙ i+1] and(2.18a)
zi+1 := Ψ−1

i+1KT̊
∗
i Φ
∗
i (x̊

i+1 − x i ) + Σ⊥i+1Kx̊
i+1 = Σ⊥i+1[Θi+1(x̊

i+1 − x i ) + x̊ i+1].(2.18b)

Introducing w i+1 and vi+1 such that Ψ⊥i+1w
i+1 = zi+1 and Φ⊥i v

i+1 = qi+1, and using (GF), we
can write the method given by (2.17) and (2.18) as

x̊ i+1 := (I + T̊i∂G)−1(x i − T̊iK
∗y i ),(2.19a)

ẙ i+1 := (I + Σ̊i+1∂F
∗)−1(y i + Σ̊i+1Kx

i ),(2.19b)
w i+1 := Θi+1(x̊

i+1 − x i ) + x̊ i+1,(2.19c)
vi+1 := B∗i+1(ẙ

i+1 − y i ) + ẙ i+1,(2.19d)
x i+1 := (I +T⊥i ∂G)−1(x̊ i+1 −T⊥i v

i+1),(2.19e)
y i+1 := (I + Σ⊥i+1∂F

∗)−1(ẙ i+1 + Σ⊥i+1w
i+1).(2.19f)

Due to (GF), these operations can further be split into blockwise operations with no dependencies
on so far uncomputed blocks. We delay doing this explicitly until we are ready to present our
�nal Algorithms 1 and 2 towards the end of the theoretical part of the paper.

We conclude the present structural development by explicitly stating what we have proved
in the preceding paragraphs:

Lemma 2.2. Suppose Assumption 2.1 holds. Then (2.19) is equivalent to (PP).

3 a basic convergence estimate

Now that we have the overall structure of the proposed algorithms established in (2.19), we
need to develop rules for the step length and testing parameters that yield a convergent method.
This will require, in particular, the positive semi-de�niteness of Zi+1Mi+1, as we recall from the
discussion leading up to (2.9). Indeed, since in general, without any strong convexity, we can
only obtain gap (and weak) convergence, we need to re�ne that argument.

In Sections 3.1 to 3.5, we will derive some quite technical conditions that the step length
parameters, testing parameters, and block selection probabilities need to satisfy. From these
basic estimates, we then develop explicit convergence rates in the next section. In the �nal
Section 3.6, we will also discuss permissible sampling patterns.

3.1 a bound on ergodic duality gaps

Recall the basis of the testing technique, (2.7). In the single-block case (Ti = τi I , Σi+1 = σi+1I ,
Φi+1 = ϕi+1I , and Ψi+1 = ψi+1I ), instead of using û ∈ H−1(0) and the operator-relative mono-
tonicity (2.8) to eliminate H , using the convexity of G and F ∗ we can also estimate

〈H (ui+1),ui+1 − û〉Zi+1Wi+1 ≥ ϕiτi [G(x
i+1) −G(x̂)] +ψi+1σi+1[F

∗(y i+1) − F ∗(ŷ)]

+ ϕiτi 〈K
∗y i+1, x i+1 − x̂〉 −ψi+1σi 〈Kx

i+1,y i+1 − ŷ〉 =: G̃i+1.
(3.1)
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With this, (2.9) can be improved to

1
2 ‖u

N − û‖2ZN+1MN+1
+

N−1∑
i=0

(
G̃i+1 +

1
2 ‖u

i+1 − ui ‖2Zi+1Mi+1

)
≤

1
2 ‖u

0 − û‖2Z1M1
.

We would like to develop the “preliminary gaps” G̃i+1 into a (Lagrangian) duality gap

(3.2) G(x,y) :=
(
G(x) + 〈ŷ,Kx〉 − F ∗(ŷ)

)
−

(
G(x̂) + 〈y,Kx̂〉 − F ∗(y)

)
.

The �rst obstacle we face are the di�ering factors in front of G and F ∗. This suggests to impose
ϕiτi = ψi+1σi+1. For the PDHGM, it however turns out that ϕiτi = ψiσi . After taking care of
some technical details, this can be dealt with by an index realignment argument [35].

With multiple blocks, we can get a similar estimate as (3.1) with factor the ϕ j ,iτj ,i in front of
G j andψ`,i+1σ`,i+1 in front of F ∗

`
. To derive a gap estimate, the preceding discussion suggests to

imposeTiΦi = η̄i I and Σi+1Ψi+1 = η̄i I or ΣiΨi = η̄i I for some scalar η̄i > 0. This kind of coupling
between the blocks will be one of the main restrictions that we face in the development our
method. In the stochastic setting, it turns out [35] that we can relax the coupling slightly: do it
in expectation. Correspondingly, we assume for some η̄i > 0 either

E[T ∗i Φ
∗
i ] = η̄i I , and E[Ψi+1Σi+1] = η̄i I , (i ≥ 1), or(3.3a)

E[T ∗i Φ
∗
i ] = η̄i I , and E[ΨiΣi ] = η̄i I , (i ≥ 1).(3.3b)

The second condition is an extension of what we saw the standard PDHGM to satisfy. The �rst
condition, which is o�-by-one compared to the second, will, however, be the only alternative
that doubly-stochastic methods can satisfy.

A further di�culty with developing (3.1) into a gap estimate are the remaining terms involving
K . Even after rearrangements we can only get an ergodic estimate [35]. To express such estimates,
corresponding to the conditions (3.3a) and (3.3b), we introduce

(3.4) ζN :=
N−1∑
i=0

η̄i and ζ∗,N :=
N−1∑
i=1

η̄i ,

and the ergodic sequences

x̃N := ζ −1
N E

[
N−1∑
i=0

T ∗i Φ
∗
i x

i+1

]
, ỹN := ζ −1

N E

[
N−1∑
i=0

Σ∗i+1Ψ
∗
i+1y

i+1

]
,(3.5)

x̃∗,N := ζ −1
∗,NE

[
N−1∑
i=1

T ∗i Φ
∗
i x

i+1

]
, ỹ∗,N := ζ −1

∗,NE

[
N−1∑
i=1

Σ∗iΨ
∗
i y

i

]
.(3.6)

The coupling conditions (3.3a) and (3.3b) then produce two di�erent ergodic gaps, G(x̃N , ỹN )
and G(x̃∗,N , ỹ∗,N ). We demonstrate this in the next theorem from [35]. It forms the basis for
our work in the remaining sections. The fundamental arguments for the proof are those that
led to (2.9), however, the gap estimate requires signi�cant additional technical work.
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Theorem 3.1. Suppose Assumption 2.1 (main structural condition) holds with Zi+1Mi+1 positive
semi-de�nite. Write Γ :=

∑m
j=1 γjPj for γj ≥ 0 the factor of (strong) convexity of G j . With Γ̃ =∑m

j=1 γ̃jPj ∈ L(X ;X ), assuming one of the following alternatives to hold, let

(3.7) д̃N :=


0, 0 ≤ Γ̃ ≤ Γ,

ζNG(x̃N , ỹN ), 0 ≤ Γ̃ ≤ Γ/2; (3.3a) holds,
ζ∗,NG(x̃∗,N , ỹ∗,N ), 0 ≤ Γ̃ ≤ Γ/2; (3.3b) holds.

Also de�ne

Ξi+1(Γ̃) :=
(

2Ti Γ̃ 2TiK∗
−2Σi+1K 0

)
and Di+1(Γ̃) := Zi+2Mi+2 − Zi+1(Ξi+1(Γ̃) +Mi+1).

Then the iterates ui = (x i ,y i ) of (PP) satisfy for any û ∈ H−1(0) the estimate

1
2E

[
‖uN − û‖2ZNMN

]
+ д̃N ≤

1
2 ‖u

0 − û‖2Z1M1
(3.8)

+

N−1∑
i=0

1
2E

[
‖ui+1 − û‖2

Di+1(Γ̃)
− ‖ui+1 − ui ‖2Zi+1Mi+1

]
.

Proof. This is [35, Theorem 5.5] with ∆i+1(Γ̃) := 1
2 ‖u

i+1 − û‖2
Di+1(Γ̃)

− 1
2 ‖u

i+1 − ui ‖2Zi+1Mi+1
and

the condition Γ̃ = Γ relaxed to 0 ≤ Γ̃ ≤ Γ, which is possible because if дj is strongly convex
with factor γj > 0, it is strongly convex with any smaller non-negative factor. Moreover, [35,
Example 5.1] shows that the blockwise structure (GF), (S) has an ergodic convexity property
that produces the gaps G(x̃N , ỹN ) and G(x̃∗,N , ỹ∗,N ) �

In the standard PDHGM we can ensure Di+1(Γ̃) ' 0 [35]. However, in our present setting, we
will not generally be able to enforce this, so these operators will introduce a penalty in (3.8).
A lot of our remaining work will consist of controlling this penalty. We also need to estimate
from below and show that ZNMN is positive semi-de�nite.

3.2 notations and assumptions

For convenience, we introduce

τ̂j ,i := τj ,i χS (i)(j), σ̂`,i := σ`,i χV (i)(`),
πj ,i := P[j ∈ S(i) | Oi−1], ν`,i+1 := P[` ∈ V (i + 1) | Oi−1],

π̊j ,i := P[j ∈ S̊(i) | Oi−1], and ν̊`,i+1 := P[` ∈ V̊ (i + 1) | Oi−1].

The �rst two denote “e�ective” step lengths on iteration i , while the rest are shorthands for the
probabilities of the primal block j or the dual block ` being contained in the corresponding set
on iteration i . Recalling (S.d), we also write

Λi =

m∑
j=1

∑
`∈V(j)

λ`, j ,iQ`KPj with λ`, j ,i := ϕ j ,i τ̂j ,i χS̊ (i)(j) −ψ`,i+1σ̂`,i+1χV̊ (i+1)(`).(3.9)
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We require the following technical assumption, which we will verify through explicit step
length and testing parameter update rule development in the next section. We indicate the
rough intended use of each condition in parentheses after the statement.

Assumption 3.1 (step length parameter restrictions). We assume for each i ∈ N the following,
constants independent of i , and the same alternatives holding for each i:

(a) We are given (κ1, . . . ,κn) ∈ K(K,P,Q) (see De�nition 2.2), and for some δ ∈ (0, 1),

(1 − δ )ψ`,i+1 ≥ κ`(λ
2
`,1,iϕ

−1
1,i , . . . , λ

2
`,m,iϕ

−1
m,i ) (` = 1, . . . ,n).

(This condition generalises the condition τσ ‖K ‖2 < 1 for the standard PDHGM, needed
to ensure the positivity of the local metric Zi+1Mi+1.)

(b) We are given ηi ∈ R(Oi−1; (0,∞)) and η⊥τ ,i ,η⊥σ ,i ∈ R(Oi−1; [0,∞)) such that ηi+1 ≥ ηi ,

ηi ·min
j
(πj ,i − π̊j ,i ) ≥ η

⊥
τ ,i , and ηi+1 ·min

`
(ν`,i+1 − ν̊`,i+1) ≥ η

⊥
σ ,i .

(This is needed to annihilate the o�-diagonal of Di+1 in the penalty term.)

(c) Either
(c-i) E[η⊥τ ,i − η

⊥
σ ,i ] = constant; or

(c-ii) η⊥τ ,i = 0 and η⊥σ ,i = ηi+1.
(These are needed to ensure the coupling conditions (3.3a) or (3.3b), respectively.)

(d) The step lengths parameters

τj ,i =


ηi−ϕj ,i−1τj ,i−1χS (i−1)\S̊ (i−1)(j)

ϕj ,i π̊j ,i
, j ∈ S̊(i),

η⊥τ ,i
ϕj ,i (πj ,i−π̊j ,i )

, j ∈ S(i) \ S̊(i),
(3.10a)

σj ,i+1 =


ηi−ψj ,iσj ,i χV (i )\V̊ (i )(j)

ψj ,i+1ν̊`,i+1
, j ∈ V̊ (i + 1),

η⊥σ ,i
ψj ,i+1(ν`,i+1−ν̊`,i+1)

, j ∈ V (i + 1) \ V̊ (i + 1).
(3.10b)

For i = 0 we take τj ,−1 := 0 and σj ,0 := 0.
(This rule is also needed to annihilate the o�-diagonal of Di+1 in the penalty term.)

(e) Let γj ≥ 0 by the factor of (strong) convexity of G j , and γ̃j ∈ [0,γj ], (j = 1, . . . ,m). Also
let αi > 0 and de�ne

qj ,i+2(̃γj ) :=
(
E[ϕ j ,i+1 − ϕ j ,i (1 + 2τ̂j ,iγ̃j )|Oi ](3.11a)
+ αi |E[ϕ j ,i+1 − ϕ j ,i (1 + 2τ̂j ,iγ̃j )|Oi ]| − δϕ j ,i

)
χS (i)(j), and

hj ,i+2(̃γj ) := E[ϕ j ,i+1 − ϕ j ,i (1 + 2τ̂j ,iγ̃j )|Oi−1](3.11b)
+ α−1

i |E[ϕ j ,i+1 − ϕ j ,i (1 + 2τ̂j ,iγ̃j )|Oi ]|.
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Then for some Cx > 0 either

‖x i+1
j − x̂ j ‖

2 ≤ Cx (j = 1, . . . ,m) or(3.12a)
hj ,i+2(̃γj ) ≤ 0 and qj ,i+2(̃γj ) ≤ 0 (j = 1, . . . ,m),(3.12b)

(This is needed to bound the primal components in the penalty term.)

(f) For some Cy > 0 either

E[ψ`,i+2 −ψ`,i+1 |Oi ] ≥ 0, ‖y i+1
` − ŷ` ‖

2 ≤ Cy (` = 1, . . . ,n) or(3.13a)
E[ψ`,i+2 −ψ`,i+1 |Oi ] = 0 (` = 1, . . . ,n).(3.13b)

(This is needed to bound the dual components in the penalty term.)

It is important that Assumption 3.1 is consistent with Assumption 2.1, in particular that the
step lengths generated by the former are non-negative. We will prove this in Lemma 3.4. Before
this, we start the main goal of the present section, the following specialisation of Theorem 3.1.

Proposition 3.2. Suppose Assumption 2.1 (main structural condition) and Assumption 3.1 (step
length restrictions) hold. Then the iterates of (PP) satisfy for any û ∈ H−1(0) the estimate

(3.14)
m∑
j=1

δ

2E[ϕ−1
j ,N ]
· E

[
‖xNj − x̂ j ‖

]2
+ д̃N ≤

1
2 ‖u

0 − û‖2Z0M0
+

m∑
j=1

1
2d

x
j ,N (̃γj ) +

n∑̀
=1

1
2d

y
`,N ,

where

д̃N :=


ζNG(x̃N , ỹN ), case (c-i) and γ̃j ≤ γj/2 for all j,
ζ∗,NG(x̃∗,N , ỹ∗,N ), case (c-ii) and γ̃j ≤ γj/2 for all j,
0, otherwise,

(3.15a)

dxj ,N (̃γj ) :=
N−1∑
i=0

δxj ,i+2(̃γj ) d
y
`,N :=

N−1∑
i=0

δ
y
`,i+2,(3.15b)

δxj ,i+2(̃γj ) := 4CxE[max{0,qj ,i+2(̃γj )}] +CxE[max{0,hj ,i+2(̃γj )}], and(3.15c)
δ
y
`,i+2 := 9CyE[ψ`,i+2 −ψ`,i+1].(3.15d)

Proof. We use Lemma 3.7 or Lemma 3.8 (to follow) to verify one of the coupling conditions
(3.3a) or (3.3b). Then we obtain (3.8) from Theorem 3.1. Next, we use Lemmas 3.3 and 3.6 (to
follow) to estimate ZN+1MN+1 ≥

( δΦN 0
0 0

)
and

E
[
‖ui+1 − û‖2

Di+1(Γ̃)
− ‖ui+1 − ui ‖2Zi+1Mi+1

]
≤

m∑
j=1

δxj ,i+2(̃γj ) +
n∑̀
=1
δ
y
`,i+2.

Therefore (3.8) yields

δ

2E
[
‖xN − x̂ ‖2ΦN

]
+ д̃N ≤

1
2 ‖u

0 − û‖2Z0M0
+

1
2

N−1∑
i=0

( m∑
j=1

δxj ,i+2(̃γj ) +
n∑̀
=1
δ
y
`,i+2

)
.
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By Hölder’s inequality

E
[
‖xN − x̂ ‖2ΦN

]
=

m∑
j=1

E
[
ϕ j ,N ‖x

N
j − x̂ j ‖

2] ≥ m∑
j=1

E
[
‖xNj − x̂ j ‖

]2
/E[ϕ−1

j ,N ].

The estimate (3.14) is now immediate. �

3.3 lower bound on the local metric

Lemma 3.3. Suppose Assumption 2.1 (main structural condition) and Assumption 3.1 (a) hold. Then
Zi+1Mi+1 ≥

( δΦi 0
0 0

)
.

Proof. Since Φi+1 is self-adjoint and positive de�nite, using (2.12) and Cauchy’s inequality, for
any δ ∈ (0, 1) we deduce

(3.16) Zi+1Mi+1 =

(
Φi −Λ∗i
−Λi Ψi+1

)
≥

(
δΦi 0

0 Ψi+1 −
1

1−δ ΛiΦ
−1
i Λ∗i

)
.

We therefore require (1 − δ )Ψi+1 ≥ ΛiΦ
−1
i Λ∗i , which can be expanded as

(3.17) (1 − δ )
n∑̀
=1
ψ`,i+1Q` ≥

m∑
j=1

n∑
`,k=1

λ`, j ,iλk , j ,iϕ
−1
j ,iQ`KPjK

∗Qk .

This follows from De�nition 2.2 (i) with z`, j := λ2
`, j ,iϕ

−1
j ,i . �

3.4 bounds on the penalty terms

The structural setup (S) gives

Di+1(Γ̃) =

(
Φi+1 − Φi (I + 2Ti Γ̃) Λ∗i − Λ

∗
i+1 − 2ΦiTiK

∗

2Ψi+1Σi+1K + Λi − Λi+1 Ψi+2 − Ψi+1

)
(3.18)

'

(
Φi+1 − Φi (I + 2Ti Γ̃) A∗i+2

Ai+2 Ψi+2 − Ψi+1

)
for

Ai+2 := (Ψi+1Σi+1K − Λi+1) + (Λi − KT
∗
i Φ
∗
i ).

Lemma 3.4. Suppose Assumption 2.1 (main structural condition) and Assumption 3.1 (b) & (d) hold.
Then

(3.19) E[Ai+2 |Oi ](x
i+1 − x i ) = 0, E[A∗i+2 |Oi ](y

i+1 − y i ) = 0, E[A∗i+2 |Oi−1] = 0.

Moreover, if ϕ j ,i ,ψ`,i+1 > 0 for all ∈ N, then τj ,i ,σ`,i+1 ≥ 0 for all i ∈ N. In particular, Assump-
tion 3.1 is consistent with Assumption 2.1 requiring τj ,i ,σ`,i+1 ≥ 0 and ϕ j ,i ,ψ`,i+1 > 0 for all i ∈ N;
j = 1, . . . ,m; and ` = 1, . . . ,n.
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Proof. We start by claiming that

(3.20) E[λ`, j ,i+1 |Oi ] = ψ`,i+1σ̂`,i+1(1 − χV̊ (i+1)(`)) − ϕ j ,i τ̂j ,i (1 − χS̊ (i)(j))

whenever ` ∈ V(j). Indeed, inserting (3.9) into (3.20), we see the former to be satis�ed if (for
any given ηi+1),

E[ϕ j ,i+1τ̂j ,i+1χS̊ (i+1)(j)|Oi ] = ηi+1 − ϕ j ,i τ̂j ,i (1 − χS̊ (i)(j)) ≥ 0, and(3.21a)

E[ψ`,i+2σ̂`,i+2χV̊ (i+2)(`)|Oi ] = ηi+1 −ψ`,i+1σ̂`,i+1(1 − χV̊ (i+1)(`)) ≥ 0,(3.21b)

over j = 1, . . . ,m; ` = 1, . . . ,n; and i ≥ −1, taking S̊(−1) = {1, . . . ,m} and V̊ (0) = {1, . . . ,n}.
We can also write (3.21a) as

(3.22) E[ϕ j ,i+1τ̂j ,i+1χS̊ (i+1)(j)|Oi ] = ηi+1 − ϕ j ,iτj ,i χS (i)\S̊ (i)(j) ≥ 0.

If j < S(i) \ S̊(i), since ηi+1 ≥ 0 by Assumption 3.1 (b), it is clear that the inequality in (3.22)
holds. If j ∈ S(i) \ S̊(i), using the corresponding case of (3.10a), we rewrite the inequality as
ηi+1 ≥ η

⊥
τ ,i/(πj ,i − π̊j ,i ). This is veri�ed by Assumption 3.1 (b). Comparing to Assumption 3.1 (d),

the inequality in (3.22) now inductively veri�es, as claimed, τj ,i+1 ≥ 0 for all i ∈ N provided
ϕ j ,i > 0 for all i ∈ N

To verify the equality in (3.22), let O+i ⊃ Oi be the smallest σ -algebra also containing the set
{ω ∈ Ω | j ∈ S̊(ω)(i + 1)} (now not abusing notation for random variables, with ω standing for
the random realisation that we typically omit). By Assumption 3.1 (d), more precisely (3.10b)
shifted from i to i+1, we see thatϕ j ,i+1τj ,i+1 is O+i -measurable. Therefore, by standard properties
of conditional expectations (see, e.g., [32])

E[ϕ j ,i+1τ̂j ,i+1χS̊ (i+1)(j)|Oi ] = E[E[ϕ j ,i+1τ̂j ,i+1χS̊ (i+1)(j)|O
+
i ]|Oi ]

= E[E[ϕ j ,i+1τj ,i+1 |O
+
i ]|Oi ]

= E[E[1|O+i ]ϕ j ,i+1τj ,i+1 |Oi ] = E[π̊j ,i+1ϕ j ,i+1τj ,i+1 |Oi ].

(3.23)

Further expanding with (3.10b) shifted from i to i + 1, and d using ηi+1 ∈ R(Oi ; (0,∞)) from
Assumption 3.1 (b), we obtain

(3.24) E[π̊j ,i+1ϕ j ,i+1τj ,i+1 |Oi ] = E[ηi+1 − ϕ j ,iτj ,i χS (i)\S̊ (i)(j)|Oi ] = ηi+1 − ϕ j ,iτj ,i χS (i)\S̊ (i)(j).

This veri�es the equality in (3.22). Thus (3.21a) holds.
Similarly we can verify (3.21b) and σ`,i+1 ≥ 0. Thus (3.20) holds, as does the non-negativity

claim on the dual step lengths.
Using (V .b) and (3.20), we now observe that λ`, j ,i satis�es

λ`, j ,i = 0, (j < S(i) or ` < V (i + 1)), and(3.25a)
E[λ`, j ,i+1 |Oi ] = λ̃`, j ,i+1, (j = 1, . . . ,m; ` ∈ V(j)),(3.25b)
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for λ̃`, j ,i+1 := ψ`,i+1σ̂`,i+1 + λ`, j ,i − ϕ j ,i τ̂j ,i . Using (2.15), which follows from Lemma 2.1, (3.19)
expands as

E[λ`, j ,i+1 |Oi ] = λ̃`, j ,i+1 (j ∈ S(i), ` ∈ V(j)),(3.26a)
E[λ`, j ,i+1 |Oi ] = λ̃`, j ,i+1 (` ∈ V (i + 1), j ∈ V−1(`)), and(3.26b)

E[λ`, j ,i+1 |Oi−1] = E[λ̃`, j ,i+1 |Oi−1], (j = 1, . . . ,m; ` ∈ V(j)).(3.26c)

Clearly (3.25b) implies (3.26a) and (3.26b). Moreover, applying E[ · |Oi−1] to (3.25b) and using
standard properties of nested conditional expectations we obtain (3.26c). We have therefore
veri�ed (3.19). �

Corollary 3.5. Suppose Assumption 3.1 (b) & (d) hold. Then

E[ϕ j ,i+1τ̂j ,i+1 |Oi ] = ηi+1 + η
⊥
τ ,i+1 − η

⊥
τ ,i , and

E[ψ`,i+2σ̂`,i+2 |Oi ] = ηi+1 + η
⊥
σ ,i+1 − η

⊥
σ ,i .

Proof. Arguing analogously to (3.23) and (3.24) with the cases j ∈ S(i) \ S̊(i) and ` ∈ V (i + 1) \
V̊ (i + 1) of Assumption 3.1 (d), we deduce

E[ϕ j ,i+1τ̂j ,i+1(1 − χS̊ (i+1)(j))|Oi ] = η
⊥
τ ,i+1, and

E[ψ`,i+2σ̂`,i+2(1 − χV̊ (i+2)(`))|Oi ] = η
⊥
σ ,i+1.

Combined with (3.21) (in the proof of Lemma 3.4) these imply the claim. �

For the next lemma we recall the coordinate notation x j and y` from (2.10).

Lemma 3.6. Suppose Assumption 2.1 (main structural condition) and Assumption 3.1 (step length
parameter restrictions) hold. Then

E[‖ui+1 − û‖2
Di+1(Γ̃)

− ‖ui+1 − ui ‖2Zi+1Mi+1
] ≤

m∑
j=1

δxj ,i+2(̃γj ) +
n∑̀
=1
δ
y
`,i+2,

where δxj ,i+2(̃γj ) and δ
y
`,i+2 are given in (3.15c) and (3.15d), respectively.

Proof. Since ui+1 ∈ R(Oi ;X × Y ) and ui ∈ R(Oi−1;X × Y ), standard nesting properties of
conditional expectations show

E[‖ui+1 − û‖2
Di+1(Γ̃)

] = E
[
‖ui+1 − ui ‖2

E[Di+1(Γ̃) |Oi ]
+ ‖ui − û‖2

E[Di+1(Γ̃) |Oi−1]

+ 2〈ui+1 − ui ,ui − û〉E[Di+1(Γ̃) |Oi ]

]
.

(3.27)

By Lemma 3.4, (3.19) holds. Using (3.18), we therefore expand (3.27) into

E[‖ui+1 − û‖2
Di+1(Γ̃)

] = E
[
‖x i+1 − x i ‖2

E[Φi+1−Φi (I+2Ti Γ̃) |Oi ]
+ ‖x i − x̂ ‖2

E[Φi+1−Φi (I+2Ti Γ̃) |Oi−1]

+ ‖y i+1 − y i ‖2E[Ψi+2−Ψi+1 |Oi ]
+ ‖y i − ŷ ‖2E[Ψi+2−Ψi+1 |Oi−1]

+ 2〈x i+1 − x i , x i − x̂〉E[Φi+1−Φi (I+2Ti Γ̃) |Oi ] + 2〈y i+1 − y i ,y i − ŷ〉E[Ψi+2−Ψi+1 |Oi ]

]
.
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By Assumption 3.1 (f), E[Ψi+2 − Ψi+1 |Oi ] ≥ 0. Standard properties of conditional expectations
guarantee E[E[Ψi+2 − Ψi+1 |Oi ]|Oi−1] = E[Ψi+2 − Ψi+1 |Oi−1]. By Lemma 3.3, moreover

−‖ui+1 − ui ‖2Zi+1Mi+1
≤ −δ ‖x i+1 − x i ‖Φi .

Use of Cauchy’s inequality for arbitrary factors αi , βi > 0 therefore yields

E
[
‖ui+1 − û‖2

Di+1(Γ̃)
− ‖ui+1 − ui ‖2Zi+1Mi+1

]
= E

[
‖x i+1 − x i ‖2

E[Φi+1−Φi (I+2Ti Γ̃) |Oi ]+αi |E[Φi+1−Φi (I+2Ti Γ̃) |Oi ] |−δΦi

+ ‖x i − x̂ ‖2
E[Φi+1−Φi (I+2Ti Γ̃) |Oi−1]+α−1

i |E[Φi+1−Φi (I+2Ti Γ̃) |Oi ] |

+ (1 + βi )‖y i+1 − y i ‖2E[Ψi+2−Ψi+1 |Oi ]
+ (1 + β−1

i )‖y
i − ŷ ‖2E[Ψi+2−Ψi+1 |Oi−1]

]
.

Here we write |
∑m

j=1 c jPj | :=
∑m

j=1 |c j |Pj . Therefore, choosing βi = 1/2, splitting the estimates
into blocks, and using Assumption 3.1 (e) & (f), we obtain the claim. �

It is relatively easy to satisfy Assumption 3.1 (f) and to bound δy
`,i+2. To estimate δxj ,i+2(̃γj ),

we need to derive more involved update rules. We next construct one example.

Example 3.1 (Random primal test updates). If (3.12a) holds, take ρ j ≥ 0, otherwise take
ρ j = 0 (j = 1, . . . ,m). Set

(3.28) ϕ j ,i+1 := ϕ j ,i (1 + 2γ̃j τ̂j ,i ) + 2ρ jπ−1
j ,i χS (i)(j), (j = 1, . . . ,m; i ∈ N).

Then it is not di�cult to show that ϕ j ,i+1 ∈ R(Oi ; (0,∞)) and δxj ,i+2(̃γj ) = 18Cxρ j .
If we set ρ j = 0 and have just a single deterministically updated block, (3.28) is the

standard rule (2.3) with ϕi = τ−2
i . The role of ρ j > 0 is to ensure some (slower) acceleration

on non-strongly-convex blocks with γ̃j = 0. This is necessary for convergence rate estimates.

The di�culty with (3.28) is that the coupling parameter ηi+1 will depend on the random
realisations of S(i) through ϕ j ,i+1. This will require communication in a parallel implementation
of the algorithm. We therefore desire to updateϕ j ,i+1 deterministically. We delay the introduction
of an appropriate update rule to Section 4.

3.5 satisfaction of the coupling conditions

We still need to satisfy either of the coupling conditions (3.3) to obtain gap estimates.

Lemma 3.7. Suppose Assumption 2.1 (main structural condition), Assumption 3.1 (d), (b) & (c-i)
hold. Then the coupling condition (3.3a) holds.

Proof. The condition (3.3a) holds if E[ϕ j ,i+1τ̂j ,i+1] = η̄i+1 = E[ψ`,i+2σ̂`,i+2] for some η̄i+1 for
all j = 1, . . . ,m and ` = 1, . . . ,n. Taking η̄i+1 := E[ηi+1 + η

⊥
τ ,i+1 − η

⊥
τ ,i ], the claim follows from

Corollary 3.5 and Assumption 3.1 (c-i). �
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The alternative coupling condition (3.3b) requires E[ϕ j ,i+1τ̂j ,i+1] = η̄i+1 = E[ψ`,i+1σ̂`,i+1] for
some η̄i+1. By Corollary 3.5, this holds when

(3.29) E[ηi+1 + η
⊥
τ ,i+1 − η

⊥
τ ,i ] = η̄i = E[ηi + η

⊥
σ ,i − η

⊥
σ ,i−1].

It is not clear how to satisfy this simultaneously with Assumption 3.1 (c-i), so we use (c-ii).

Lemma 3.8. Suppose Assumption 2.1 (main structural condition), Assumption 3.1 (d) & (c-ii) hold.
Then (b) holds if and only if V̊ (i + 1) = ∅ and V (i + 1) = {1, . . . ,n}. When this is the case, the
coupling condition (3.3b) holds, necessarily S(i) = S̊(i), and

τj ,i = ηi/(ϕ j ,i π̊j ,i ) (j ∈ S(i)),(3.30a)
σj ,i+1 = ηi+1/ψj ,i+1 (j ∈ V(S(i))).(3.30b)

Proof. Assumption 3.1 (c-ii), i.e., η⊥τ ,i = 0 and η⊥σ ,i = ηi+1 reduces (b) to min`(ν`,i+1 − ν̊`,i+1) ≥ 1.
This holds if and only hold if ν`,i+1 ≡ 1 and ν̊`,i+1 ≡ 0 for all ` = 1, . . . ,m. This holds, as claimed,
if and only if V̊ (i + 1) = ∅, V (i + 1) = {1, . . . ,n}. Clearly in this case (V) holds if and only if
S(i) = S̊(i) this implies (V). With Assumption 3.1 (b) veri�ed, Corollary 3.5 now rewrites (3.3b)
as (3.29). This is clearly veri�ed by η⊥τ ,i = 0 and η⊥σ ,i = ηi+1. Finally, (3.30) is a specialisation of
Assumption 3.1 (d) to the choices of (c-ii). �

Remark 3.9. We had to impose full dual updates to satisfy (3.3b). This is akin to most existing
primal–dual coordinate descent methods [3, 15, 33]. The algorithms in [25, 26, 40] are more closely
related to our method, however, only [40] provides convergence rates for single-block sampling
schemes under full strong convexity of both G and F ∗.

3.6 sampling patterns

There are not many possible fully deterministic sampling patterns allowed by (V) with Assump-
tion 3.1. Indeed, (3.21a) reads in the deterministic setting

ϕ j ,i+1τj ,i+1χS̊ (i+1)(j) + ϕ j ,i τ̂j ,i χS (i)\S̊ (i)(j)) = ηi+1.

Since ηi+1 > 0, j < S(i) \ S̊(i) implies j ∈ S̊(i + 1), which implies j <⊂ S(i + i) \ S̊(i + 1). Therefore,
once in the independently updated set, the block j will always stay there. Due to (V .b), if
V̊ (i + 1) , ∅ consistently, for most K , the set S(i) will grow. Therefore, after a small number of
iterations N , either j ∈ S̊(i) for i ≥ N , or j ∈ S(i) = {1, . . . ,n}. Similar considerations hold for the
dual blocks. Therefore, the way each block is updated in deterministic methods is, after a small
number of iterations, �xed. There does not, therefore, appear to be signi�cant improvements
possible over consistently taking S(i) = S̊(i) = {1, . . . ,m}, V̊ (i + 1) = ∅ andV (i + 1) = {1, . . . ,m}
(or the converse dual-�rst order).

Regarding stochastic algorithms, we start with a few options for sampling S(i) in Algorithm 2
with iteration-independent probabilities πj ,i ≡ πj .
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Example 3.2 (Independent probabilities). If all the blocks {1, . . . ,m} are chosen indepen-
dently, we have P({j,k} ⊂ S(i)) = πjπk for j , k , where πj ∈ (0, 1].

Example 3.3 (Fixed number of random blocks). If we have a �xed number M of processors,
we may want to choose a subset S(i) ⊂ {1, . . . ,m} such that #S(i) = M .

The next example gives a simple way to satisfy (V .a) for Algorithm 1.

Example 3.4 (Alternating x-y and y-x steps). Let us randomly alternate between S̊(i) = ∅
and V̊ (i + 1) = ∅. That is, with some probability px , we choose to take an x-y step that omits
lines 9 and 8 in Algorithm 1, and with probability 1 − px , an y-x step that omits the lines 7
and 10. If π̃j = P[j ∈ S̊ |S̊ , ∅], and ν̃` = P[` ∈ V̊ |V̊ , ∅] denote the probabilities of the rule
used to sample S̊ = S̊(i) and V̊ = V̊ (i + 1) when non-empty, then (V) gives

π̊j = px π̃j , πj = px π̃j + (1 − px )P[j ∈ V−1(V̊ )|V̊ , ∅],

ν̊` = (1 − px )ν̃`, ν` = (1 − px )ν̃j + pxP[` ∈ V(S̊)|S̊ , ∅].

To compute πj and ν` we thus need to knowV and the exact sampling pattern.

Remark 3.10. Based on Example 3.4, we can derive an algorithm where the only randomness comes
from alternating between full x-y and full y-x steps.

4 rates of convergence

We now need to satisfy Assumption 3.1. This involves choosing update rules for ηi+1, η⊥τ ,i+1,
η⊥σ ,i+1, ϕ j ,i+1 andψ`,i+1. At the same time, to obtain good convergence rates, we need to make
dxj ,N (̃γj ) and d

y
`,N small in (3.14). We do these tasks here, including stating two �nal versions of

our algorithm Algorithm 1 (doubly stochastic) and Algorithm 2 (full dual updates). Speci�cally,
in Section 4.1 we introduce and study a deterministic alternative to the example random update
rule forϕ j ,i+1 in Example 3.1. The analysis of the new rule is easier, and it allows the computation
of ηi , which will also be deterministic, without communication in parallel implementations of
our algorithms. Afterwards, in Section 4.2 we look at possible choices for the parameters η⊥τ ,i
and η⊥σ ,i , which are only needed in stochastic variants of Algorithm 1. In Sections 4.3 to 4.6 we
then give various useful choices of ηi andψ`,i that yield concrete convergence rates.

We assume for simplicity that the sampling pattern is independent of iteration,

π̊j ,i ≡ π̊j > 0, ν̊`,i ≡ ν̊`, πj ,i ≡ πj , and ν`,i ≡ ν` .(4.1)

4.1 deterministic primal test updates

The next lemma gives a deterministic alternative to Example 3.1. We recall that γj ≥ 0 is the
factor of (strong) convexity of G j .
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Lemma 4.1. Suppose Assumption 3.1 (b) & (d), and (4.1) hold, and that i 7→ η⊥τ ,i is non-decreasing.
Suppose, moreover, that either (3.12a) holds or supj=1, ...,m ρ j = 0. Also take τj ,0,ϕ j ,0 > 0 and
γ̄j ≥ 0 such that ρ j + γ̄j > 0, and set

(4.2) ϕ j ,i+1 := ϕ j ,i + 2(γ̄jηi + ρ j ), (j = 1, . . . ,m; i ∈ N).

Then for some c j > 0 and all N ≥ 1 holds

ϕ j ,N+1 ∈ R(ON−1; (0,∞)),(4.3a)

E[ϕ j ,N ] = ϕ j ,0 + 2ρ jN + 2γ̄j
N−1∑
i=0

E[ηi ], and(4.3b)

E[ϕ−1
j ,N ] ≤ c jN

−1, (N ≥ 1).(4.3c)

If γ̃j ∈ [γ̄j ,γj ], (j = 1, . . . ,m), satisfy

2γ̃jγ̄jηi ≤ (̃γj − γ̄j )δϕ j ,i , (j ∈ S(i), i ∈ N),(4.3d)

then Assumption 3.1 (e) holds, and

dxj ,N (̃γj ) = 18ρ jCxN .(4.3e)

Finally, if ηi ≥ bj minj ϕ
p
j ,i for some p,bj > 0, then for some c̃ j > 0 holds

1 ≥ γ̄j c̃ jN p+1E[ϕ−1
j ,N ], (N ≥ 4).(4.3f)

Proof. Since Assumption 3.1 (b) guarantees ηi ∈ R(Oi−1; (0,∞)), we deduce (4.3a) from (4.2). In
fact, ϕ j ,i+1 is deterministic as long as ηi is deterministic.

The claim (4.3b) is immediate from using (4.2) to compute

(4.4) ϕ j ,N = ϕ j ,N−1 + 2(γ̄jηN−1 + ρ j ) = ϕ j ,0 + 2ρ jN + 2γ̄j
N−1∑
i=0

ηi .

Since i 7→ ηi is non-decreasing, clearlyϕ j ,N ≥ 2N ρ̃ j for ρ̃ j := ρ j+γ̄jη0 > 0. Thenϕ−1
j ,N ≤

1
2ρ̃ jN .

Taking the expectation proves (4.3c).
Clearly (4.3f) holds if γ̄j = 0, so assume γ̄j > 0. Using the assumption ηi ≥ bj minj ϕ

p
j ,i and

ϕ j ,i ≥ 2iρ̃ j that we just proved in (4.4), we estimate

ϕ j ,N ≥ ϕ j ,0 + bj (2ρ̃ j )p
N∑
i=1

ip ≥ ϕ j ,0 + bj (2ρ̃ j )p
∫ N

2
xp dx ≥ ϕ j ,0 + p

−1bj (2ρ̃ j )p (N p+1 − 2).

Thus ϕ−1
j ,N ≤ 1/(γ̄j c̃ jN 1+p ) for some c̃ j > 0. Taking the expectation proves (4.3f).

It remains to prove (4.3e) and Assumption 3.1 (e). Abbreviating γj ,i := γ̄j + ρ jη−1
i , we write

ϕ j ,i+1 = ϕ j ,i + 2γj ,iηi . Since i 7→ η⊥τ ,i is non-decreasing, Corollary 3.5 gives

(4.5) E[ϕ j ,i τ̂j ,i |Oi−1] = ηi + η
⊥
τ ,i − η

⊥
i−1,τ ≥ ηi .
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Expanding the de�ning equation (3.11b) of hj ,i+2(̃γj ), with the help of (4.5) we estimate

hj ,i+2(̃γj ) = 2E[γj ,iηi − γ̃jϕ j ,i τ̂j ,i |Oi−1] + 2α−1
i |E[γj ,iηi − γ̃jϕ j ,i τ̂j ,i |Oi ]|

≤ 2(γj ,i − γ̃j )ηi + 2α−1
i |γj ,iηi − γ̃jϕ j ,i τ̂j ,i |

≤ 2(1 + α−1
i )ρ j + 2(γ̄j − γ̃j )ηi + 2α−1

i |γ̄jηi − γ̃jϕ j ,i τ̂j ,i |.

Since (4.3d) implies γ̄j ≤ γ̃j , if also

α−1
i |γ̄jηi − γ̃jϕ j ,i τ̂j ,i | ≤ (̃γj − γ̄j )ηi ,(4.6)

then
E[max{0,hj ,i+2(̃γj )}] ≤ 2(1 + α−1

i )ρ j .(4.7)

We claim (4.6) this to hold for

(4.8) αi :=
{

minj γ̄j/(̃γj − γ̄j ), γ̄jηi > γ̃jϕ j ,i τ̂j ,i ,

minj (̃γj π̊
−1
j + γ̄j )/(̃γj − γ̄j ), γ̄jηi ≤ γ̃jϕ j ,i τ̂j ,i .

The case γ̄jηi > γ̃jϕ j ,i τ̂j ,i is clear. Otherwise, to justify the case γ̄jηi ≤ γ̃jϕ j ,i τ̂j ,i , we observe
that (4.6) can in this case be rewritten as γ̃jϕ j ,i τ̂j ,i ≤ (αi (̃γj − γ̄j ) − γ̄j )ηi . With the choice of αi
in (4.8), we see this to hold if ϕ j ,i τ̂j ,i ≤ π̊−1

j ηi . We consider the cases j ∈ S̊(i) and j ∈ S(i) \ S̊(i)

separately. In the case j ∈ S̊(i), this is inequality immediate from (3.10a) in Assumption 3.1 (d)
and Lemma 3.4. If j ∈ S(i) \ S̊(i), (3.10a) and Assumption 3.1 (b) give

ϕ j ,i τ̂j ,i (πj − π̊j ) ≤ η
⊥
τ ,i ≤ min

j′
(πj′ − π̊j′)ηi ≤ (πj − π̊j )ηi ≤ (πj − π̊j )π̊

−1
j ηi .

In the last step we have used that π̊j ∈ (0, 1] by (4.1). This �nishes verifying (4.7).
Next, we expand (3.11a), obtaining

qj ,i+2(̃γj ) =
(
2E[γj ,iηi − γ̃jϕ j ,i τ̂j ,i |Oi ] + 2αi |E[γj ,iηi − γ̃jϕ j ,i τ̂j ,i |Oi ]| − δϕ j ,i

)
χS (i)(j),

=
(
2(γj ,iηi − γ̃jϕ j ,i τ̂j ,i ) + 2αi |γj ,iηi − γ̃jϕ j ,i τ̂j ,i | − δϕ j ,i

)
χS (i)(j),

≤
(
2(1 + αi )ρ j + 2(γ̄jηi − γ̃jϕ j ,i τ̂j ,i ) + 2αi |γ̄jηi − γ̃jϕ j ,i τ̂j ,i | − δϕ j ,i

)
χS (i)(j).

Since ηi and ϕ j ,iτj ,i are increasing, if also

2(γ̄jηi − γ̃jϕ j ,i τ̂j ,i ) + 2αi |γ̄jηi − γ̃jϕ j ,i τ̂j ,i | ≤ δϕ j ,i (j ∈ S(i)),(4.9)
then

E[qj ,i+2(̃γj )] ≤ 2(1 + αi )ρ j .(4.10)

Inserting αi from (4.8), we see (4.9) to follow from (4.3d). Finally, (4.7) and (4.10) show that
(3.12b) holds with ρ j = 0. Thus Assumption 3.1 (e) holds. From Proposition 3.2 now

δxj ,i+2(̃γj ) = 8(1 + αi )ρ jCx + 2(1 + α−1
i )ρ jCx .

Clearly αi de�ned in (4.8) is bounded above and below, so we obtain (4.3e). �
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4.2 the parameters η⊥τ ,i and η⊥σ ,i
We now want to satisfy Assumption 3.1 (c-i) for doubly-stochastic methods. As it turns out, the
parameters η⊥τ ,i and η⊥σ ,i , do not have any e�ect on convergence rates. Here are a few options.

Lemma 4.2. Assume (4.1) and that i 7→ ηi is non-decreasing with ηi ∈ R(Oi−1; (0,∞)). Then
Assumption 3.1 (b) & (c-i) hold and both i 7→ η⊥τ ,i and i 7→ η⊥σ ,i are non-decreasing if either:

(i) (Constant rule) We take η⊥τ ,i ≡ η
⊥
τ and η⊥σ ,i ≡ η

⊥
σ for constant η⊥σ ,η

⊥
τ > 0 satisfying

η0 ·min
j
(πj − π̊j ) ≥ η

⊥
τ , and η0 ·min

`
(ν` − ν̊`) ≥ η

⊥
σ .

(ii) (Proportional rule) For some α ∈ (0, 1) we take η⊥τ ,i := η⊥σ ,i := αηi satisfying

min
j
(πj − π̊j ) ≥ α, and min

`
(ν` − ν̊`) ≥ α .

Proof. Clearly both rules satisfy Assumption 3.1 (b) & (c-i). That i 7→ η⊥τ ,i and i 7→ η⊥σ ,i are
non-decreasing and belong to R(Oi−1; [0,∞)) is obvious. �

4.3 worst-case rules for ηi

To verify Assumption 3.1 (a) we take deterministic worst-case bounds wj ,wj , ` ≥ 0 such that

(4.11) wj := max
`

w`, j and w`, j ≥ π̊
−1
j χS̊ (i)(j) + ν̊

−1
` χV̊ (i+1)(`) (i ∈ N).

Since we assume iteration-independent probabilities (4.1), such bounds exist.

Lemma 4.3. Suppose Assumption 3.1 (d) and (4.1) hold. With (κ1, . . . ,κn) ∈ K(K,P,Q) take

(4.12) ηi := min
`=1, ...,n

√
(1 − δ )ψ`,i+1

κ`(w
2
`,1ϕ

−1
1,i , . . . ,w

2
`,mϕ

−1
m,i )

(i ≥ 0).

Then Assumption 3.1 (a) holds. Moreover, ηi ∈ R(Oi−1; (0,∞)) providedψi+1 ∈ R(Oi−1; (0,∞)).

Proof. Recalling the expression for λ`, j ,i in (3.9), Assumption 3.1 (d), and (4.1) imply λ`, j ,i ≤
ηiw`, j for ` ∈ V(j). By the monotonicity of κ` (assumed in De�nition 2.2), Assumption 3.1 (a)
will therefore hold if

(4.13) ψ`,i+1 ≥
η2
i

1 − δ κ`(w
2
`,1ϕ

−1
1,i , . . . ,w

2
`,mϕ

−1
m,i ).

This is veri�ed by inserting ηi from (4.12). Clearly (4.12) also veri�es ηi ∈ R(Oi−1; (0,∞)) when
ψi+1 ∈ R(Oi−1; (0,∞)). �

The next lemma provides a choice of ψi+1 ∈ R(Oi−1; (0,∞)) that also satis�es Assump-
tion 3.1 (f). The resulting ηi we express later in (4.14) to collect all rules in one place.
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Lemma 4.4. Let (κ1, . . . ,κn) ∈ K(K,P,Q) and take ηi according to (4.12) withψ`,i+1 = η
2−1/p
i ψ`,0

for some ψ`,0 > 0 and p ∈ (0, 1]. If ϕ j ,i ∈ R(Oi−1; (0,∞)), then ηi ,ψi+1 ∈ R(Oi−1; (0,∞)). If,
moreover, (4.3c) holds, then E[ηi ] ≥ c

p
ηi
p and ηi ≥ b

p
η minj ϕ

p
j ,i for some constants cη,bη > 0

independent of p.

Proof. That ηi ,ψi+1 ∈ R(Oi−1; (0,∞)) is clear from (4.12) and ϕ j ,i ∈ R(Oi−1; (0,∞)).
Withψ

0
:= min`=1, ...,nψ`,0, from (4.12) also

η
1/p
i ≥

(1 − δ )ψ0

max`=1, ...,n κ`(w
2
`,1ϕ

−1
1,i , . . . ,w

2
`,mϕ

−1
m,i )
.

Since µ̂`, j ,i = 0 for ` < V(j), using De�nition 2.2 (ii), we get

η
1/p
i ≥

(1 − δ )ψ0

κ
∑n

j=1 max` w2
`, jϕ

−1
j ,i
≥

1∑n
j=1 b

−1
j ϕ
−1
j ,i

for bj := (1 − δ )ψ0/(κw
2
j ). This shows ηi ≥ minj b

p
j ϕ

p
j ,i . Since x 7→ 1/x and x 7→ xq are convex

on [0,∞) for q ≥ 1, Jensen’s inequality gives

E[ηi ] ≥
1

E
[
(
∑n

j=1 b
−1
j ϕ
−1
j ,i )

p
] ≥ 1(∑n

j=1 b
−1
j E[ϕ−1

j ,i ]
)p .

By an application of (4.3c) we obtain E[ηi ] ≥ c
p
ηi
p for cη := 1/

∑m
j=1 b

−1
j c j . �

4.4 mixed rates under partial strong convexity

We are �nally ready to state our main result and algorithms. We recall that by Lemma 2.2, (PP)
is equivalent to (2.19) under the structural conditions of Assumption 2.1. Dividing the updates of
(2.19) into individual block updates, and taking the step length rules from Assumption 3.1 (d), we
obtain the steps of the doubly-stochastic method Algorithm 1. If we perform full dual updates,
i.e., force Assumption 3.1 (c-ii) and following Lemma 3.8 take V̊ (i+1) = {1, . . . ,n} and S̊(i) = S(i),
we get the simpler steps of Algorithm 2. Regarding the updates of the remaining parameters
that are not speci�ed directly in the algorithm skeletons, we start with:

Theorem 4.5. Assume the block-separable structure (GF), writing γj ≥ 0 for the factor of (strong)
convexity ofG j . Let δ ∈ (0, 1) and (κ1, . . . ,κn) ∈ K(K,P,Q) (see De�nition 2.2). In Algorithm 1 or
Algorithm 2, take

(i) ϕ j ,0 > 0 freely and ϕ j ,i+1 := ϕ j ,i + 2(γ̄jηi + ρ j ) for some ρ j ≥ 0 and γ̄j ∈ [0,γj ] with
ρ j + γ̄j > 0.

(ii) ψ`,0 > 0 freely andψ`,i := ψ`,0η
2−1/p
i for some �xed p ∈ [1/2, 1].

(iii) η⊥τ ,i ,η
⊥
σ ,i > 0 (in Algorithm 1) following Lemma 4.2, and, with wj given by (4.11),

(4.14) ηi := min
`=1, ...,n

(
(1 − δ )ψ`,0

κ`(w
2
`,1ϕ

−1
1,i , . . . ,w

2
`,mϕ

−1
m,i )

)p
.
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Let û ∈ H−1(0), i.e., solve (OC), and suppose the following hold:

(A) supj=1, ...,m ρ j = 0 or supj=1, ...,m; i ∈N ‖x
i+1
j − x̂ j ‖

2 ≤ Cx for a constant Cx > 0.

(B) p = 1
2 or both sup`=1, ...,n; i ∈N ‖y

i+1
`
− ŷ` ‖

2 ≤ Cy and γ̄j∗ = 0 for some j∗ ∈ {1, . . . ,m}.

(C) With `∗(j) and κ given by De�nition 2.2, for some γ̃j ∈ [γ̄j ,γj ] for all j = 1, . . . ,m we have
the initialisation bound

(4.15) γ̃j = γ̄j = 0 or
2γ̃jγ̄j
γ̃j − γ̄j

(
1 − δ
κwj

)p
≤ δψ

−p
`∗(j),0ϕ

1−p
j ,0 .

Then

(4.16)
m∑
j=1

δc̃ jγ̄j

2 E
[
‖xNj − x̂ j ‖

]2
+ дp ,N ≤

‖u0−û ‖2Z0M0
+18Cx (

∑m
j=1 ρ j )N+

∑n
`=1ψ`,0

(
C∗N 2p−1+δ∗

)
2N p+1 ,

when N ≥ 4 and the weighted gap on the ergodic variables,

дp ,N :=


cpG(x̃N , ỹN ), Algorithm 1, γ̃j ≤ γj/2 for all j,
c∗,pG(x̃∗,N , ỹ∗,N ), Algorithm 2, γ̃j ≤ γj/2 for all j,
0, otherwise.

The constants C∗, δ∗ ≥ 0 are zero if p = 1/2 while the constants cp, c∗,p > 0.

Remark 4.6. If p = 1/2, (4.16) yields a mixedO(1/N 3/2) +O(1/N 1/2) convergence rate. If p = 1, we
get a mixed O(1/N 2) +O(1/N ) convergence rate.

Remark 4.7. Theorem 4.5 is valid (with suitable constants) for general primal update rules as long as
(4.3) holds and i 7→ ϕ j ,i is non-decreasing. This is the case for the deterministic rule of Lemma 4.1.
For the random rule of Example 3.1, the rest of the conditions hold, but we have not been able to
verify (4.3f). This has the implication that only the gap estimates hold.

Proof. We use Proposition 3.2, so need to verify Assumptions 2.1 and 3.1. First of all, (R) follows
from the updates rules for the testing and step length parameters, that only depend on previous
realisations of S(i) and V (i + 1). The rest of the conditions of Assumption 2.1 are clear from
Lemma 2.2, the derivation of Algorithms 1 and 2 from (2.19), and the requisite nesting condition
(V) within the algorithms themselves.

Regarding the requirements (a)–(f) of Assumption 3.1, we proceed as follows:

(a) The choiceψ`,i+1 := η2−1/p
i ψ`,0 in (ii) shows that (4.14) is equivalent to the formula (4.12)

for ηi . Thus Lemma 4.3 veri�es (a).

(b) It is clear that i 7→ ϕ j ,i and i 7→ ψ`,i are non-decreasing. Therefore (4.12) shows that
i 7→ ηi is non-decreasing. Moreover, Lemma 4.4 veri�es that ηi ∈ R(Oi−1; (0,∞)).
Algorithm 2 by construction satis�es Assumption 3.1 (c-ii) and has both V̊ (i + 1) = ∅ and
V (i + 1) = {1, . . . ,n}. It therefore su�ces to refer to Lemma 3.8.
Algorithm 1, by its own statement, satis�es (4.1). Therefore, Lemma 4.2 shows Assump-
tion 3.1 (b) & (c-i), and that also i 7→ η⊥τ ,i is non-decreasing.
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Algorithm 1. Doubly-stochastic primal–dual method
Require: K ∈ L(X ;Y ), G ∈ C(X ), and F ∗ ∈ C(Y ) with the separable structures (GF).
Require: Rules for ϕ j ,i ,ψ`,i+1, ηi+1,η

⊥
τ ,i+1,η

⊥
σ ,i+1 > 0 from Theorem 4.5, Corollary 4.8, or 4.9.

Require: Sampling patterns for S(i), S̊(i),V (i + 1), and V̊ (i + 1), (i ∈ N), subject to the nesting
condition (V) (p. 7) with iteration-independent probabilities (4.1); see Section 3.6.

1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: Initialise τj ,−1,σ`,0 := 0, (j = 1, . . . ,m; ` = 1, . . . ,m).
3: for all i ≥ 0 until a stopping criterion is satis�ed do
4: Sample S̊(i) ⊂ S(i) ⊂ {1, . . . ,m} and V̊ (i + 1) ⊂ V (i + 1) ⊂ {1, . . . ,n}.
5: For each j ∈ S̊(i), compute

τj ,i :=
ηi−ϕj ,i−1τj ,i−1χS (i−1)\S̊ (i−1)(j)

ϕj ,i π̊j ,i
, and

x i+1
j := (I + τj ,i∂G j )

−1
(
x ij − τj ,i

∑
`∈V(j) K

∗
`, jy

i
`

)
, where K`, j := Q`KPj .

6: For each ` ∈ V̊ (i + 1), compute

σj ,i+1 :=
ηi−ψj ,iσj ,i χV (i )\V̊ (i )(j)

ψj ,i+1ν̊`,i+1
, and

y i+1
` := (I + σ`,i+1∂F

∗
`
)−1

(
y i
`
+ σ`,i+1

∑
j ∈V−1(`) K`, jx

i
j

)
.

7: For each j ∈ S̊(i) and ` ∈ V(j), set
w̃ i+1

`, j := θ`, j ,i+1(x
i+1
j − x

i
j ) + x

i+1
j with θ`, j ,i+1 := τj ,iϕj ,i

σ`,i+1ψ`,i+1
.

8: For each ` ∈ V̊ (i + 1) and j ∈ V−1(`), set
ṽi+1
`, j := b`, j ,i+1(y

i+1
`
− y i

`
) + y i

`
with b`, j ,i+1 := σ`,i+1ψ`,i+1

τj ,iϕj ,i
.

9: For each j ∈ S(i) \ S̊(i), compute

τj ,i := η⊥τ ,i
ϕj ,i (πj ,i−π̊j ,i )

, and

x i+1
j := (I + τj ,i∂G j )

−1
(
x ij − τj ,i

∑
`∈V(j) K

∗
`, jṽ

i+1
`, j

)
.

10: For each ` ∈ V (i + 1) \ V̊ (i + 1) compute

σj ,i+1 := η⊥σ ,i
ψj ,i+1(ν`,i+1−ν̊`,i+1)

, and

y i+1
` := (I + σ`,i+1∂F

∗
`
)−1

(
y i
`
+ σ`,i+1

∑
j ∈V−1(`) K`, jw̃

i+1
`, j

)
.

11: end for

(c) Proved together with (b) above.

(d) These choices are encoded into Algorithm 1. For Algorithm 2 we recall Lemma 3.8.

(e) We use Lemma 4.1. We have already showed Assumption 3.1 (b) & (d). Moreover, the
algorithms satisfy the iteration-independent probability assumption (4.1). By (A), either
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Algorithm 2. Block-stochastic primal–dual method, primal randomisation only
Require: K ∈ L(X ;Y ), G ∈ C(X ), and F ∗ ∈ C(Y ) with the separable structures (GF).
Require: Rules for ϕ j ,i ,ψ`,i+1,ηi+1 ∈ R(Oi ; (0,∞)) from Theorem 4.5, Corollary 4.8, or 4.9.
Require: Iteration-independent (4.1) sampling pattern for the set S(i), (i ∈ N); see Section 3.6.

1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: for all i ≥ 0 until a stopping criterion is satis�ed do
3: Sample S(i) ⊂ {1, . . . ,m}.
4: For each j < S(i), set x i+1

j := x ij .
5: For each j ∈ S(i), with τj ,i := ηiπ−1

j ,iϕ
−1
j ,i , compute

x i+1
j := (I + τj ,i∂G j )

−1
(
x ij − τj ,i

∑
`∈V(j) K

∗
`, jy

i
`

)
, where K`, j := Q`KPj .

6: For each j ∈ S(i) set

x̄ i+1
j := θ j ,i+1(x

i+1
j − x

i
j ) + x

i+1
j with θ j ,i+1 := ηi

πj ,iηi+1
.

7: For each ` ∈ {1, . . . ,n} using σ`,i+1 := ηi+1ψ
−1
`,i+1, compute

y i+1
`

:= (I + σ`,i+1∂F
∗
`
)−1

(
y i
`
+ σ`,i+1

∑
j ∈V−1(`) K`, j x̄

i+1
j

)
.

8: end for

supj ρ j = 0 or (3.12a) holds. We still need to satisfy (4.3d). Using De�nition 2.2 (iii) in
(4.14), we estimate

(4.19) ηi ≤

(
(1 − δ )ψ`∗(j),0

κwj
ϕ j ,i

)p
.

By (C), therefore, either γ̃j = γ̄j = 0, or 2γ̃jγ̄jηi ≤ δ (̃γj − γ̄j )ϕ1−p
j ,0 ϕ

p
j ,i . By (i), i 7→ ϕ j ,i , so

this gives (4.3d). Lemma 4.1 now shows Assumption 3.1 (e).

(f) If p = 1/2, by Remark 4.6,ψ`,i ≡ ψ`,0. Therefore (3.13b) holds. If p , 1/2, the same remark
and (A) guarantee (3.13a).

With Assumptions 2.1 and 3.1 now veri�ed, Proposition 3.2 provides the estimate

(4.20)
m∑
k=1

δ

2E[ϕ−1
k ,N ]

· E
[
‖xNk − x̂k ‖

]2
+ д̃N ≤

1
2 ‖u

0 − û‖2Z0M0
+

m∑
j=1

1
2d

x
j ,N (̃γj ) +

n∑̀
=1

1
2d

y
`,N ,

where д̃N , dxj ,N (̃γj ) and d
y
`,N are given in (3.15) To obtain convergence rates, we still need to

further analyse this estimate, mainly ζN and ζ∗,N within д̃N .
We start with ζN and ζ∗,N . By Lemma 4.2 for Algorithm 1 and directly by Assumption 3.1 (c-ii)

for Algorithm 2 , i 7→ η⊥τ ,i is non-decreasing (as is i 7→ η⊥σ ,i ). We recall the coupling variable
η̄i from (3.3). Observe that (4.3c) holds as we have veri�ed the conditions of Lemma 4.1 above.
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By Corollary 3.5 and Lemma 4.4, therefore, in both cases, (3.3a) and (3.3b), for some constant
cη > 0,

η̄i = E[ηi + η
⊥
τ ,i − η

⊥
τ ,i−1] ≥ E[ηi ] ≥ c

p
ηi
p .

Thus we estimate ζN from (3.4) as

ζN =
N−1∑
i=0

η̄i ≥
N−1∑
i=0

E[ηi ] ≥ c
p
η

N−1∑
i=0

ip ≥ c
p
η

∫ N−2

0
xp dx

≥
c
p
η

p + 1 (N − 2)p+1 ≥
c
p
η

2p+1(p + 1)N
p+1 =: cpN p+1 (N ≥ 4).

(4.21)

Similarly, for some c∗,p > 0, the quantity ζ∗,N de�ned in (3.4) satis�es

(4.22) ζ∗,N ≥
N−1∑
i=1

E[ηi ] ≥
c
p
η

p + 1 ((N − 2)p+1 − 1) ≥ c∗,pN
p+1 (N ≥ 4).

If p = 1/2, (ii) clearly implies dy
`,N = E[ψ`,N −ψ`,0] ≡ 0. Therefore, we can take C∗, δ∗ = 0.

Otherwise, since 0 ≤ 2− 1/p ≤ 1, the map t 7→ t2−1/p is concave. Therefore, using (3.15), (ii), and
Jensen’s inequality, we deduce

dNy , ` =
N−1∑
i=0

9CyE[ψ`,i+2 −ψ`,i+1] = 9Cyψ`,0(E[η
2−1/p
N+1 ] − E[η

2−1/p
1 ]) ≤ 9Cyψ`,0E[ηN+1]

2−1/p .

The condition (B) provides j∗ ∈ {1, . . . ,m} with γj∗ = 0, so that a referral to (4.3b) shows
E[ϕ j∗ ,N ] = ϕ j∗ ,0 + 2Nρ j∗ . By (4.19) for some C∗, δ∗ > 0 then

(4.23) dNy , ` ≤ 9Cyψ`,0

(
(1 − δ )ψ`∗(j∗),0

κwj∗
E[ϕ j∗ ,i ]

)2p−1
≤ ψ`,0(C∗N

2p−1 + δ∗).

Finally, to estimate dxj ,N (̃γj ), Lemma 4.4 shows ηi ≥ b
p
η minj ϕ

p
j ,i , (j = 1, . . . ,m). Thus (4.3f)

and (4.3e) in Lemma 4.1 give 1/E[ϕ−1
j ,N ] ≥ γ̄j c̃ jN

p+1 for N ≥ 4, and dxj ,N (̃γj ) = 18ρ jCxN . Now
(4.16) is immediate by applying these estimates and (4.21)–(4.23) to (4.20). �

4.5 unaccelerated algorithm

If ρ j = 0 and γ̄j = γ̃j = 0 for all j = 1, . . . ,m, then ϕ j ,i ≡ ϕ j ,0. Consequently Lemma 4.3
gives ηi ≡ η0. Recalling ζN from (3.4), we see that ζN = Nη0. Likewise ζ∗,N from (3.4) satis�es
ζ∗,N = (N − 1)η0. Clearly also d

y
`,N = 0 and dxj ,N (̃γj ) = 0. Inserting this information into (4.20),

we immediately obtain:

Corollary 4.8. Assume the block-separable structure (GF). Let δ ∈ (0, 1) and (κ1, . . . ,κn) ∈
K(K,P,Q). In Algorithm 1 or 2, take

(i) ϕ j ,i ≡ ϕ j ,0 for some �xed ϕ j ,0 > 0.

(ii) ψ`,i ≡ ψ`,0 for some �xedψ`,0 > 0.
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(iii) ηi ≡ η0 given by (4.12) and (in Algorithm 1) η⊥τ ,i ,η
⊥
σ ,i > 0 following Lemma 4.2.

Then

(I) The iterates of Algorithm 1 satisfy G(x̃N , ỹN ) ≤ C0η
−1
0 /(2N ), (N ≥ 1).

(II) The iterates of Algorithm 2 satisfy G(x̃∗,N , ỹ∗,N ) ≤ C0/[2η0(N − 1)], (N ≥ 2).

4.6 full primal strong convexity

If G is fully strongly convex, we can naturally derive an O(1/N 2) algorithm.

Corollary 4.9. Assume the block-separable structure (GF), assuming each G j , (j = 1, . . . ,m),
strongly convex with the corresponding factor γj > 0. Let δ ∈ (0, 1) and (κ1, . . . ,κn) ∈ K(K,P,Q).
In Algorithm 1 or Algorithm 2, take

(i) ϕ j ,0 > 0 freely and ϕ j ,i+1 := ϕ j ,i (1 + 2γ̄jτj ,i ) for some �xed γ̄j ∈ (0,γj ).

(ii) ψ`,0 > 0 freely andψ`,i := ψ`,0.

(iii) ηi according to (4.12), and (in Algorithm 1) η⊥τ ,i ,η
⊥
σ ,i > 0 following Lemma 4.2.

Suppose the initialisation bound Theorem 4.5 (C) holds. Then

m∑
j=1

δc̃ jγ̄j

2 E
[
‖xNj − x̂ j ‖

]2
+ д̃1,N ≤

‖u0 − û‖2Z0M0

2N 2 (N ≥ 4)

for

д̃1,N :=


q1G(x̃N , ỹN ), Algorithm 1, γ̃j ≤ γj/2 for all j,
q∗,1G(x̃∗,N , ỹ∗,N ), Algorithm 2, γ̃j ≤ γj/2 for all j,
0, otherwise.

The constants c̃ j > 0 are provided by Lemma 4.1 while q1,q∗,1 > 0.

Proof. We adapt the argumentation of Theorem 4.5 for the case p = 1/2. Indeed, with this choice,
our present assumptions satisfy the conditions of that theorem hold:

(i) with ρ j = 0 becomes the present one. Since we take γ̄j > 0, ρ j + γ̄j > 0 as required.
(ii) reduces to the present one with p = 1/2.

(iii) becomes the present one since (4.14) with p = 1/2 equals (4.12).
(A) trivially holds since ρ j = 0 for all j = 1, . . . ,m.
(B) trivially holds when p = 1/2.
(C) we have assumed.

Since C∗, δ∗ = 0 when p = 1/2, the estimate (4.16) therefore holds with the right hand side
C0/(2N 1+1/2). We need to improve this to C0/(2N 2) by improving testing variable estimates.

Indeed, the update rule (4.2) now gives

ϕ j ,N ≥ ϕ0
+ γ

N−1∑
i=0

ηi ≥ ϕ0
+ γ

N−1∑
i=0

ηi with ϕ
0

:= min
j
ϕ j ,0 > 0.
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(a) True image (b) Noisy image (c) Blurry image (d) Dimmed image

Figure 1: Sample images for denoising, deblurring, and undimming experiments.

Lemma 4.4 shows η2
i ≥ b minj ϕ j ,i for some b. Therefore η2

N ≥ bϕ
0
+ bγ

∑N−1
i=0 ηi . Otherwise

written this says η2
N ≥ η̃

2
N , where

η̃2
N = bϕ0

+ bγ
N−1∑
i=0

η̃i = η̃
2
N−1 + c

2γη̃N−1 = η̃
2
N−1 + bγη̃

−1
N−1.

This implies ηi ≥ η̃i ≥ c ′ηi for some c ′η > 0; cf. the estimates for (2.3) in [6, 37]. Working through
the �nal estimation stage of the proof of Theorem 4.5 with p = 1/2, we can now use use in (4.21)
and (4.22) the estimate ηi ≥ c ′ηi that would otherwise correspond to p = 1. In our �nal result,
we write the constants cp and c∗,p from the proof as q1,q∗,1 > 0. �

Remark 4.10 (Linear rates). If both G and F ∗ are strongly convex, it is possible to derive linear
rates. We refer to [35] for the single-block deterministic case.

Remark 4.11 (Variance estimates). Variance can be estimated following [35, Remark 3.4].

5 numerical experience

We now apply several variants of the proposed algorithms to image processing problems. We
consider discretisations, as our methods are formulated in Hilbert spaces, but the space of
functions of bounded variation—where image processing problems are typically formulated—is
only a Banach space. Our speci�c example problems will be TGV2 denoising, TV deblurring,
and TV undimming.

We present the corrupt and ground-truth images in Figure 1, with values in the range [0, 255].
We use the images both at the original resolution of n1 × n2 = 768 × 512, and scaled down to
192 × 128 pixels. To the noisy high-resolution test image in Figure 1b, we have added Gaussian
noise with standard deviation 29.6 (12dB). In the downscaled image, this becomes 6.15 (25.7dB).
The image in Figure 1c we have distorted with Gaussian blur of standard deviation 4. To avoid
inverse crimes, we have added Gaussian noise of standard deviation 2.5. The dimmed image in
Figure 1d, we have distorted by multiplying the image with a sinusoidal mask γ ; see Figure 1c.
Again, we have added the small amount of noise.

Besides the unaccelerated PDHGM—our examples lack strong convexity for acceleration
of basic methods—we evaluate our algorithms against the relaxed PDHGM of [7, 19]. In our
precursor work [37], we have also evaluated these two algorithms against the mixed-rate method
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Table 1: Algorithm variant name construction
Letter: 1st 2nd 3rd 4th

Randomisation ϕ rule η andψ rules κ choice
A- D: Deterministic R: Random, Lem. 3.1 B: Bounded: p = 1

2 O: Balanc., Ex. 2.2
P: Primal only D: Determ., Lem. 4.1 I: Increasing: p = 1 M: Max., Ex. 2.1
B: Primal & Dual C: Constant

of [8], and the adaptive PDHGM of [17]. To keep our tables and �gures easily legible, we also
do not include the algorithms of [37] in our evaluations. It is worth noting that even in the
two-block case, the algorithms presented in this paper will not reduce to those of that paper:
our rules for σ`,i are very di�erent from the rules for the single σi therein.

We de�ne abbreviations of our algorithm variants in Table 1. We do not report the results or
apply all variants to all example problems, as this would not be informative. We demonstrate
the performance of the stochastic variants on TGV2 denoising only. This merely serves as an
example, as our problems are not large enough to bene�t from being split on a computer cluster,
where the bene�ts of stochastic approaches would be apparent.

To rely on Theorem 4.5 for convergence, we still need to satisfy (3.13a) and (3.12a), or take
ρ j = 0. The boundCy in Assumption 3.1 (f) is easily calculated, as in all of our example problems,
the functional F ∗ will restrict the dual variable to lie in a ball of known size. The primal
variable, on the other hand, is not explicitly bounded. It is however possible to prove data-based
conservative bounds on the optimal solution, see, e.g., [36, Appendix A]. We can therefore
add an arti�cial bound to the problem to force all iterates to be bounded, replacing G by
G̃(x) := G(x) + δB(0,Cx )(x). In practise, to avoid �guring out the exact magnitude of Cx , we
update it dynamically. This avoids the constraint from ever becoming active and a�ecting the
algorithm at all. In [36] a “pseudo duality gap” based on this idea was introduced to avoid
problems with numerically in�nite duality gaps. We will also use them in our reporting: we
take the bound Cx as the maximum over all iterations of all tested algorithms, and report the
duality gap for the problem with G̃ replacing G. We always report the pseudo-duality gap in
decibels 10 log10(gap2/gap2

0) relative to the initial iterate.
In addition to the pseudo-duality gap, we report for each algorithm the distance to a target

solution and function value. We report the distance in decibels 10 log10(‖v
i − v̂ ‖2/‖v̂ ‖2) and

the primal objective value val(x) := G(x) + F (Kx) relative to the target as 10 log10((val(x) −
val(x̂))2/val(x̂)2). The target solution x̂ we compute by taking one million iterations of the
PDHGM. We performed our computations with Matlab+C-MEX on a MacBook Pro with 16GB
RAM and a 2.8 GHz Intel Core i5 CPU. The initial iterates are x0 = 0 and y0 = 0.

5.1 TGV2 denoising

In this problem, we write x = (v,w) and y = (ϕ,ψ ), where v is the image of interest, and take

G(x) =
1
2 ‖ f −v ‖

2, K =

(
∇ −I
0 E

)
, and F ∗(y) = δB(0,α )n1n2 (ϕ) + δB(0,β )n1n2 (ψ ).

Here α, β > 0 are regularisation parameters, E is the symmetrised gradient, and the balls are
pixelwise Euclidean with the product Π over image pixels. Since there is no further spatial
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Table 2: TGV2 denoising performance: CPU time and number of iterations (at a resolution of
10) to reach given duality gap, distance to target, or primal objective value.

low resolution
gap ≤ −60dB tgt ≤ −60dB val ≤ −60dB

Method iter time iter time iter time
PDHGM 30 0.21s 100 0.72s 110 0.79s
Relax 20 0.20s 70 0.71s 70 0.71s
A-DRIO 40 0.26s 230 1.55s 180 1.22s
A-DRBO 80 0.54s 890 6.07s 500 3.41s
A-DDIO 20 0.14s 50 0.36s 110 0.80s
A-DDBO 30 0.19s 50 0.32s 90 0.58s

high resolution
gap ≤ −50dB tgt ≤ −50dB val ≤ −50dB
iter time iter time iter time
50 6.31s 870 111.83s 370 47.49s
40 6.93s 580 102.89s 250 44.25s
70 9.17s 2750 365.52s 1050 139.48s
80 10.56s 860 114.81s 420 56.00s
60 7.37s 2140 267.29s 900 112.34s
60 7.85s 600 79.67s 340 45.09s

non-uniformity in this problem, it is natural to take as our projections P1x = v , P2x = w ,Q1y = ϕ,
and Q2y = ψ . It is then not di�cult to calculate the optimal κ` of Example 2.2, so we use only
the ‘xxxO’ variants of the algorithms in Table 1.

As the regularisation parameters (β,α), we choose (4.4, 4) for the downscaled image. For
the original image we scale these parameters by (0.25−2, 0.25−1) corresponding to the image
downscaling factor [13]. Since G is not strongly convex with respect to w , we have γ̃2 = 0. For v
we take γ̃1 = 1/2, corresponding to the gap versions of our convergence estimates.

We take δ = 0.01, and parametrise the standard PDHGM with σ0 = 1.9/‖K ‖ and τ0 ≈
0.52/‖K ‖ solved from τ0σ0 = (1 − δ )‖K ‖2. These are values that typically work well. For
forward-di�erences discretisation of TGV2 with cell width h = 1, we have ‖K ‖2 ≤ 11.4 [36]. For
the ‘Relax’ method from [7], we use the same σ0 and τ0, as well as the value 1.5 for the inertial ρ
parameter. For the increasing-ψ ‘xxIx’ variants of our algorithms, we take ρ1 = ρ2 = 5, τ1,0 = τ0,
and τ2,0 = 3τ0. For the bounded-ψ ‘xxBx’ variants we take ρ1 = ρ2 = 5, τ1,0 = τ0, and τ2,0 = 8τ0.
For both methods we also take η0 = 1/τ0,1. These parametrisations force ϕ1,0 = 1/τ 2

1,0, and keep
the initial step length τ1,0 for v consistent with the basic PDHGM. This justi�es our algorithm
comparisons using just a single set of parameters. We plot the step length evolution for the
A-DDBO variant in Figure 3a.

The results for deterministic variants of our algorithm are in Table 2 and Figure 2. We display
the �rst 5000 iterations in a logarithmic fashion. To reduce computational overheads, we
compute the reported quantities only every 10 iterations. To reduce the e�ects of other processes
occasionally occupying the computer, the CPU times reported are the average iteration_time =
total_time/total_iterations, excluding time spent initialising the algorithm.

Our �rst observation is that the variants ‘xDxx’ based on the deterministic ϕ rule perform
better than the “random” rule ‘xRxx’. Presently, with no randomisation, the only di�erence
is the value of γ̄ . The value 0.0105 from the initialisation bound Theorem 4.5 (C) for p = 1/2
and the value 0.0090 for p = 1 appear to give better performance than the maximal value
γ̃1 = 0.5. Generally, the A-DDBO seems to have the best asymptotic performance, with A-DRBO
close. A-DDIO has good initial performance, although especially on the higher resolution image,
the PDHGM and ‘Relax’ perform initially the best. Overall, however, the question of the best
performer seems to be a rather fair competition between ‘Relax’ and A-DDBO.
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Figure 2: TGV2 denoising, deterministic variants of our algorithms with pixelwise step lengths,
5000 iterations, high (hi-res) and low (lo-res) resolution images.

5.2 TGV2 denoising with stochastic algorithm variants

We also test stochastic variants of our algorithms based on the alternating sampling of Exam-
ple 3.3 with M = 1 and, when appropriate, Example 3.4. We take all probabilities equal to 0.5,
that is px = π̃1 = π̃2 = ν̃1 = ν̃2 = 0.5. In the doubly-stochastic ‘Bxxx’ variants of the algorithms,
we take η⊥τ ,i = η⊥σ ,i = 0.9 · 0.5ηi following the proportional rule Lemma 4.2(ii).

The results are in Figure 4. To conserve space, we have only included a few descriptive
algorithm variants. On the x axis, to better describe to the amount of actual work performed by
the stochastic methods, the “iteration” count refers to the expected number of full primal–dual
updates. For all the displayed stochastic variants, with the present choice of probabilities, the
expected number of full updates in each iteration is 0.75.

We run each algorithm 50 times, and plot for each iteration the 90% con�dence interval
according to Student’s t-distribution. Towards the 5000th iteration, these generally become
very narrow, indicating reliability of the random method. Overall, the full-dual-update ‘Pxxx’
variants perform better than the doubly-stochastic ‘Bxxx’ variants. In particular, A-PDBO has
performance comparable to or even better than the PDHGM.

5.3 tv deblurring

We want to remove the blur in Figure 1c. We do this by taking

G(x) =
1
2 ‖ f − F

∗(aFx)‖2, K = ∇, and F ∗(y) = δB(0,α )n1n2 (y),
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Figure 3: Step length evolution (logarithmic from initialisation). A-DDBO TGV2 denoising and
A-DDIM TV deblurring. The τ plots of the latter are images in the Fourier domain,
lighter colour means smaller value of τ relative to initialisation (for that speci�c Fourier
component). Note that the images depict logarithm change, not absolute values.
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Figure 5: TV deblurring, deterministic variants of our algorithms with pixelwise step lengths,
�rst 5000 iterations, high (hi-res) and low (lo-res) resolution images.

where the balls are again pixelwise Euclidean, and F the discrete Fourier transform. The factors
a = (a1, . . . ,am) model the blurring operation in Fourier basis.

We take α = 2.55 for the high resolution image and scale this to α = 2.55 ∗ 0.15 for the
low resolution image. We parametrise the PDHGM and ‘Relax’ algorithms exactly as for TGV2

denoising above, taking into account the estimate 8 ≥ ‖K ‖2 [5]. We take Q1 = I and Pj as
the projection to the j:th Fourier component som = n1n2 and n = 1. Thus each primal Fourier
component has its own step length parameter. We initialise the latter as τj ,0 = τ0/(λ + (1 − λ)γj ),
where the componentwise factor of strong convexity γj = |aj |2. For the bounded-ψ ‘xxBx‘
algorithm variants we take λ = 0.01, and for the increasing-ψ ‘xxIx’ variants λ = 0.1. We
illustrate the step length evolution of the variant A-DDIM in Figure 3.

We only experiment with deterministic algorithms, as we do not expect small-scale randomi-
sation to be bene�cial. We also use the maximal κ ‘xxxM’ variants, as a more optimal κ would
be di�cult to compute. The results are in Table 3 and Figure 5. Similarly to A-DDBO in our
TGV2 denoising experiments, A-DDBM performs reliably well, indeed better than the PDHGM
or ‘Relax’. However, in many cases, A-DRBM and A-DDIM are even faster.

5.4 tv undimming

We take K and F ∗ as for TV deblurring, but G(u) := 1
2 ‖ f − γ · u‖

2 for the sinusoidal dimming
mask γ : Ω → R. Our experimental setup is also nearly the same as TV deblurring, with the
natural di�erence that the projection Pj are no longer to the Fourier basis, but to individual
image pixels. The results are in Figure 6, and Table 4. They tell roughly the same story as TV
deblurring, with A-DDBM performing well and reliably.
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Table 3: TV deblurring performance: CPU time and number of iterations (at a resolution of 10)
to reach given duality gap, distance to target, or primal objective value.

low resolution
gap ≤ −60dB tgt ≤ −60dB val ≤ −60dB

Method iter time iter time iter time
PDHGM 30 0.18s 330 2.05s 70 0.43s
Relax 20 0.11s 220 1.30s 50 0.29s
A-DRIM 20 0.14s 280 2.08s 80 0.59s
A-DRBM 20 0.14s 490 3.58s 90 0.65s
A-DDIM 20 0.14s 170 1.25s 70 0.51s
A-DDBM 20 0.15s 180 1.37s 60 0.45s

high resolution
gap ≤ −50dB tgt ≤ −40dB val ≤ −40dB
iter time iter time iter time
60 5.04s 330 28.12s 110 9.31s
50 4.32s 220 19.30s 90 7.84s
30 3.27s 280 31.41s 320 35.92s
60 6.48s 240 26.27s 220 24.07s
30 3.17s 260 28.35s 230 25.06s
50 5.56s 230 25.98s 150 16.90s
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Figure 6: TV undimming, deterministic variants of our algorithms with pixelwise step lengths,
5000 iterations, high (hi-res) and low (lo-res) resolution images.

conclusions

We have derived several accelerated block-proximal primal–dual methods, both stochastic and
deterministic. We have concentrated on applying them deterministically, taking advantage
of blockwise—indeed pixelwise—factors of strong convexity, to obtain improved performance
compared to standard methods. In future work, it will be interesting to evaluate the methods on
real large scale problems to other state-of-the-art stochastic optimisation methods. Moreover,
interesting questions include heuristics and other mechanisms for optimal initialisation of the
pixelwise parameters, as well as combination with over-relaxation and inertial schemes, such as
the extensions of the PDHGM considered in [10, 18, 34, 38].
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Table 4: TV undimming performance: CPU time and number of iterations (at a resolution of 10)
to reach given duality gap, distance to target, or primal objective value.

low resolution
gap ≤ −80dB tgt ≤ −60dB val ≤ −60dB

Method iter time iter time iter time
PDHGM 70 0.18s 200 0.51s 120 0.30s
Relax 50 0.16s 130 0.41s 80 0.25s
A-DRIM 30 0.10s 160 0.57s 80 0.28s
A-DRBM 20 0.05s 170 0.47s 60 0.16s
A-DDIM 30 0.08s 110 0.30s 60 0.16s
A-DDBM 20 0.05s 70 0.18s 40 0.10s

high resolution
gap ≤ −80dB tgt ≤ −60dB val ≤ −60dB
iter time iter time iter time
100 3.41s 300 10.31s 210 7.21s
70 3.03s 200 8.73s 140 6.10s
80 3.52s 760 33.82s 640 28.48s
90 3.95s 370 16.39s 380 16.84s
70 3.05s 580 25.57s 430 18.94s
60 2.63s 230 10.22s 200 8.88s

acknowledgements

The author would like to thank Peter Richtárik and Olivier Fercoq for several fruitful discussions,
and for introducing him to stochastic optimisation. Moreover, the support of the EPSRC grant
EP/M00483X/1 “E�cient computational tools for inverse imaging problems” is acknowledged
during the initial two months of the research.

a data statement for the epsrc

Implementations of the algorithms described in the paper, and relevant boilerplate codes, are
available on Zenodo at doi:10.5281/zenodo.1042419. The sample photo, also included in the
archive, is from the free Kodak image suite, at the time of writing at h�p://r0k.us/graphics/kodak/.

references

[1] Beck & Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
Problems, SIAM Journal on Imaging Sciences 2 (2009), 183–202, doi: 10.1137/080716542.

[2] Bertsekas, Incremental aggregated proximal and augmented Lagrangian algorithms, 2015,
arxiv: 1509.09257.

[3] Bianchi, Hachem & Iutzeler, A Stochastic Coordinate Descent Primal-Dual Algorithm
and Applications to Large-Scale Composite Optimization, arxiv: 1407.0898.

[4] Bolte, Sabach & Teboulle, Proximal alternating linearized minimization for nonconvex
and nonsmooth problems, Mathematical Programming 146 (2013), 459–494, doi: 10.1007/
s10107-013-0701-9.

[5] Chambolle, An algorithm for mean curvature motion, Interfaces and Free Boundaries 6
(2004), 195.

[6] Chambolle & Pock, A �rst-order primal-dual algorithm for convex problems with appli-
cations to imaging, Journal of Mathematical Imaging and Vision 40 (2011), 120–145, doi:
10.1007/s10851-010-0251-1.

37

http://dx.doi.org/10.5281/zenodo.1042419
http://r0k.us/graphics/kodak/
https://doi.org/10.1137/080716542
http://arxiv.org/abs/1509.09257
http://arxiv.org/abs/1407.0898
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1007/s10851-010-0251-1


[7] Chambolle & Pock, On the ergodic convergence rates of a �rst-order primal–dual algo-
rithm, Mathematical Programming (2015), 1–35, doi: 10.1007/s10107-015-0957-3.

[8] Chen, Lan & Ouyang, Optimal Primal-Dual Methods for a Class of Saddle Point Problems,
SIAM Journal on Optimization 24 (2014), 1779–1814, doi: 10.1137/130919362.

[9] Combettes & Pesquet, Stochastic forward-backward and primal-dual approximation
algorithms with application to online image restoration, 2016, arxiv: 1602.08021.

[10] Condat, A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian,
Proximable and Linear Composite Terms, Journal of Optimization Theory and Applications
158 (2013), 460–479, doi: 10.1007/s10957-012-0245-9.

[11] Csiba, Qu & Richtárik, Stochastic Dual Coordinate Ascent with Adaptive Probabilities,
arxiv: 1502.08053.

[12] Daubechies, Defrise & De Mol, An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint, Communications on Pure and Applied Mathematics 57
(2004), 1413–1457, doi: 10.1002/cpa.20042.

[13] De Los Reyes, Schönlieb & Valkonen, Bilevel parameter learning for higher-order total
variation regularisation models, Journal of Mathematical Imaging and Vision 57 (2017), 1–25,
doi: 10.1007/s10851-016-0662-8, arxiv: 1508.07243,

[14] Esser, Zhang & Chan, A general framework for a class of �rst order primal-dual algorithms
for convex optimization in imaging science, SIAM Journal on Imaging Sciences 3 (2010),
1015–1046, doi: 10.1137/09076934X.

[15] Fercoq & Bianchi, A Coordinate Descent Primal-Dual Algorithm with Large Step Size
and Possibly Non Separable Functions, 2015, arxiv: 1508.04625.

[16] Fercoq & Richtárik, Optimization in High Dimensions via Accelerated, Parallel, and
Proximal Coordinate Descent, SIAM Review 58 (2016), 739–771, doi: 10.1137/16M1085905.

[17] Goldstein, Li & Yuan, Adaptive Primal-Dual Splitting Methods for Statistical Learning
and Image Processing, Advances in Neural Information Processing Systems 28 (2015), ed. by
Cortes et al., 2080–2088.

[18] He, You & Yuan, On the Convergence of Primal-Dual Hybrid Gradient Algorithm, SIAM
Journal on Imaging Sciences 7 (2014), 2526–2537, doi: 10.1137/140963467.

[19] He & Yuan, Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem:
From Contraction Perspective, SIAM Journal on Imaging Sciences 5 (2012), 119–149, doi:
10.1137/100814494.

[20] He & Yuan, Block-wise alternating direction method of multipliers for multiple-block
convex programming and beyond, SMAI Journal of Computational Mathematics 1 (2015),
145–174, doi: 10.5802/smai-jcm.6.

[21] Möllenhoff, Strekalovskiy, Moeller & Cremers, The primal-dual hybrid gradient method
for semiconvex splittings, SIAM Journal on Imaging Sciences 8 (2015), 827–857, doi: 10.1137/
140976601.

38

https://doi.org/10.1007/s10107-015-0957-3
https://doi.org/10.1137/130919362
http://arxiv.org/abs/1602.08021
https://doi.org/10.1007/s10957-012-0245-9
http://arxiv.org/abs/1502.08053
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1007/s10851-016-0662-8
http://arxiv.org/abs/1508.07243
https://doi.org/10.1137/09076934X
http://arxiv.org/abs/1508.04625
https://doi.org/10.1137/16M1085905
https://doi.org/10.1137/140963467
https://doi.org/10.1137/100814494
https://doi.org/10.5802/smai-jcm.6
https://doi.org/10.1137/140976601
https://doi.org/10.1137/140976601


[22] Nesterov, E�ciency of Coordinate Descent Methods on Huge-Scale Optimization Prob-
lems, SIAM Journal on Optimization 22 (2012), 341–362, doi: 10.1137/100802001.

[23] Ochs, Chen, Brox & Pock, iPiano: inertial proximal algorithm for nonconvex optimization,
SIAM Journal on Imaging Sciences 7 (2014), 1388–1419, doi: 10.1137/130942954.

[24] Peng, Xu, Yan & Yin, ARock: an Algorithmic Framework for Asynchronous Parallel Coordi-
nate Updates, CAM Report 15-37, UCLA, 2015, url: �p://�p.math.ucla.edu/pub/camreport/
cam15-37.pdf.

[25] Peng et al., Coordinate Friendly Structures, Algorithms and Applications, 2016, arxiv:
1601.00863.

[26] Pesquet & Repetti, A class of randomized primal-dual algorithms for distributed optimiza-
tion, 2014, arxiv: 1406.6404.

[27] Pock, Cremers, Bischof & Chambolle, An algorithm for minimizing the Mumford-Shah
functional, in: 12th IEEE Conference on Computer Vision, 2009, 1133–1140, doi: 10.1109/ICCV.
2009.5459348.

[28] Qu, Richtárik & Zhang, Randomized Dual Coordinate Ascent with Arbitrary Sampling,
2014, arxiv: 1411.5873.

[29] Richtárik & Takáč, Parallel coordinate descent methods for big data optimization, Mathe-
matical Programming (2015), 1–52, doi: 10.1007/s10107-015-0901-6.

[30] Richtárik & Takáč, Distributed coordinate descent method for learning with big data, 2013,
arxiv: 1310.2059.

[31] Shalev-Shwartz & Zhang, Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization, Mathematical Programming 155 (2014), 105–145, doi: 10.1007/
s10107-014-0839-0.

[32] Shir�iaev, Probability, Springer, 1996.
[33] Suzuki, Stochastic Dual Coordinate Ascent with Alternating Direction Multiplier Method,

2013, arxiv: 1311.0622.
[34] Valkonen, Inertial, corrected, primal–dual proximal splitting, 2018, arxiv: 1804.08736, url:

tuomov.iki.fi/m/inertia.pdf.
[35] Valkonen, Testing and non-linear preconditioning of the proximal point method, Applied

Mathematics and Optimization (2018), doi: 10.1007/s00245-018-9541-6, arxiv: 1703.05705,
[36] Valkonen, Bredies & Knoll, Total generalised variation in di�usion tensor imaging, SIAM

Journal on Imaging Sciences 6 (2013), 487–525, doi: 10.1137/120867172,
[37] Valkonen & Pock, Acceleration of the PDHGM on partially strongly convex functions,

Journal of Mathematical Imaging and Vision 59 (2017), 394–414, doi: 10.1007/s10851-016-
0692-2, arxiv: 1511.06566,
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