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Abstract

We introduce a notion of sparse rectifiability, stronger than that of uniform rectifiability. As applications
we derive, firstly, results ensuring the convergence of the total variation measures |µi| subject to the
weak* convergence of the sparsely rectifiable Radon measures µi. Secondly, we apply sparse rectifiability
to derive compactness results for special functions of bounded variation (SBV) and, more generally, special
functions of bounded deformation (SBD).
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1. Introduction

Suppose µ is a Radon measure on Rm. As a simplified variant of the definition, we then say that
µ is sparsely rectifiable (in dimension d), if it is upper Ahlfors-regular and there exists a family
G = {Γxj | x ∈ Rm, j = 0, 1, 2, . . .} of Lipschitz d-graphs of constant at most L, satisfying

Sp(µ;G) :=
∞∑
j=0

2jm
∫
|µ|([0, 2−j ]m \ Γxj ) dx <∞.

Roughly speaking, local deviations of µ from a Lipschitz graph, in the sense of measure, vanish as the
scale gets smaller.

It turns out, as we show in this paper, that sparsely rectifiable measures with compact support are
rectifiable. Indeed, subject to lower Ahlfors-regularity, sets E such that HdxE is sparsely rectifiable,
are also uniformly rectifiable per [7]. Moreover, weak* limits of sequences of suitably bounded sparsely
rectifiable Radon measures remain sparsely rectifiable.

Besides these basic results on sparsely rectifiable measures, our intent is to apply this new notion to
derive compactness and approximability results for sequences of special functions of bounded variation
(SBV, see [2]). Analogous results hold for special functions of bounded deformation (SBD, see [9, 1]);
we however concentrate on the former due to greater familiarity for most readers. Specifically, by
bounding

sup
i
‖ui‖L1(Ω) +

∫
Ω
ψ(∇ui(x)) dx+ |Djui|(Ω) + Sp(Djui;Gi) <∞,

we are able to derive a basic compactness result in SBV(Ω) with convergence properties comparable
to the SBV compactness theorem of Ambrosio (see [2]) or the analogous result of Bellettini et al. [3]
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for SBD. Indeed, the only difference is that instead of bounding and showing lower-semicontinuity of
the mass Hm−1(Jui) of the jump sets, we do the same for Sp(Djui;Gi).

The convergence of the jump parts Djui of the distributional gradients to Dju in the basic compact-
ness result is only weak*. We are however able to get improved forms of convergence by employing the
following regularisation result. Specifically, let {µi}∞i=0 be a sequence of Radon measures, convergent
weakly* to some Radon measure µ. We introduced in [10] a regularisation term η(µi), whose bound-
edness ensures the weak* convergence of |µi| to |µ|. Applying these results in conjunction with (either
of) the SBV compactness results discussed above, we can then formulate, for example, a compactness
result with the jump divergence Divj ui := TrDjui convergent in total variation. Indeed, the moti-
vation for the present study stems from an optimisation problem studied in [10], where we need this
kind of stronger convergence from Divj ui, with ui ∈ SBD(Ω). This is to ensure the closedness of a
PDE constraint (an extended form of the transport equation with “jump sources and sinks”), needed
to show the existence of solutions to the problem.

Additionally in this paper, based on the sparse rectifiability of µ, we derive more easily calculable
bounds for η(µ). A still unanswered question is whether we can construct a sequence of (discrete)
approximations {ui}∞i=0 of u such that F (ui)→ F (u) for functionals F involving terms like η(Divj u).
By using sparse rectifiability estimates, we expect to be able to carry this out. In this paper we
study some conditions ensuring that η(Divj ui) is convergent for a given approximating sequence. To
keep the paper focussed and at a reasonable length, we however leave the construction of a concrete
approximating sequence to future studies.

The rest of this paper is organised as follows. In Section 2 we introduce notation, spaces and other
tools used. Then in Section 3 we study sparse rectifiability. Section 4 is an interlude that introduces
some Poincaré inequalities used in the following Section 5 that where we study the η functional. Finally,
in Section 6 we study compactness in SBV/SBD.

2. Notation and other preliminaries

2.1. Sets and functions

We denote the open ball of radius ρ centred at x ∈ Rm by B(x, ρ). For ν ∈ Rm, we denote the
orthogonal hyperplane by ν⊥ := {z ∈ Rm | 〈ν, z〉 = 0}. Pν denotes the projection onto the subspace
spanned by ν, and by P⊥ν the projection onto the orthogonal subspace. Given a set A ⊂ Rm, we denote
by convA the convex hull of A.

The trace of a matrix A ∈ Rm×m is denoted TrA, and the k-dimensional Jacobian of a linear map
L : Rk → Rm, (k ≤ m), is defined as Jk[L] :=

√
det(L∗ ◦ L).

A set Γ ⊂ Rm is a called a Lipschitz d-graph (of Lipschitz factor L), if there exist a unit vector zΓ,
an open set VΓ on a d-dimensional subspace of (zΓ)⊥, and a Lipschitz map gΓ : VΓ → Rm of Lipschitz
factor at most L, such that

Γ = {y ∈ Rm | gΓ(v) = y, v = P⊥zΓy ∈ VΓ}.

Remark 1. If Γ is the graph of f : U ⊂ Rm−1 → R, then gγ(x, 0) = (x, f(x)) for (x, 0) ∈ VΓ = U×{0}.
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2.2. Measures

The space of (signed) Radon measures on an open set Ω is denoted M(Ω). If V is a vector space,
then the space of V -valued Radon measures on Ω is denoted M(Ω;V ). The k-dimensional Hausdorff
measure, on any given ambient space Rm, (k ≤ m), is denoted by Hk, while Lm denotes the Lebesgue
measure on Rm. For a measure µ and a measurable set A, we denote by µxA the restriction measure
defined by (µxA)(B) := µ(A ∩B). The total variation measure of µ is denoted |µ|.

A measure µ ∈M(Ω) is said to be Ahlfors-regular (in dimension d), if there exists M ∈ (0,∞) such
that

M−1rd ≤ |µ|(B(x, r)) ≤Mrd for all r > 0 and x ∈ suppµ.

If only the first or second inequality holds, then µ is said to be, respectively, lower or upper Ahlfors-
regular.

2.3. Functions of bounded variation

Following Ambrosio et al. [2], a function u : Ω → Rk on a bounded open set Ω ⊂ Rm, is said to be
of bounded variation, denoted u ∈ [BV(Ω)]k, if u ∈ L1(Ω), and the distributional gradient Du is a
Radon measure.

Given a sequence {ui}∞i=1 ⊂ [BV(Ω)]k, strong convergence to u ∈ [BV(Ω)]k is defined as strong L1

convergence ‖ui − u‖L1(Ω;Rk) → 0 together with convergence of the total variation |u − ui|(Ω) → 0.
Weak convergence is defined as ui → u strongly in L1(Ω; Rk) along with Dui ∗⇀ Du weakly* in
M(Ω; Rk×m).

The distributional gradient be decomposed as Du = ∇uLm +Dju+Dcu, where the density ∇u of
the absolutely continuous part of Du equals (a.e.) the approximate differential of u. The jump part
Dju may be represented as

Dju = (u+ − u−)⊗ νJuHm−1xJu, (1)

where x is in the jump set Ju of u if for some ν := νJu(x) there exist two distinct one-sided traces
u±(x) defined as satisfying

lim
ρ↘0

1
ρm

∫
B±(x,ρ,ν)

‖u±(x)− u(y)‖ dy = 0, (2)

where B±(x, ρ, ν) := {y ∈ B(x, ρ) | ±〈y−x, ν〉 ≥ 0}. It turns out that Ju is countablyHm−1-rectifiable,
and ν is (a.e.) the normal to Ju. The remaining Cantor part Dcu vanishes on any Borel set σ-finite
with respect to Hm−1.

The space [SBV(Ω)]k of special functions of bounded variation is defined as those u ∈ [BV(Ω)]k

with Dcu = 0. There we have the following compactness result.

Theorem 1 (SBV compactness [2]). Let Ω ⊂ Rm be open and bounded. Suppose ψ : [0,∞) → [0,∞)
is non-decreasing with limt→∞ ψ(t)/t =∞. If {ui}∞i=0 ⊂ [SBV(Ω)]k with

‖ui‖L1 +
∫

Ω
ψ(|∇ui|) dx+ |Djui|(Ω) +Hm−1(Jui) ≤ K <∞.

Then there exists a subsequence of {ui}∞i=0, unrelabelled, such that

ui → u strongly in L1(Ω; Rk),

∇ui ⇀ ∇u weakly in L1(Ω; Rk×m),

Djui ∗⇀ Dju weakly* in M(Ω; Rk×m), and

Hm−1(Ju) ≤ lim inf
i→∞

Hm−1(Jui).
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3. Sparse rectifiability

We now introduce a quantifiable notion of “sparse” rectifiability, which bears some resemblance to
definitions of uniform rectifiability, as studied by David and Semmes [7]. That notion, however, does not
provide the regularity we need, as it allows considerable “dense” packing of the set, merely measuring
locally the deviation from a Lipschitz surface in a geometric sense. Our notion of “sparse” rectifiability,
by contrast, measures the deviation in the sense of measure.

Definition 1. A sequence {(fj , νj)}∞j=0 of bounded Borel functions f j : Rm → R and Borel probability
measures νj on Rm is said to form a nested sequence of functions if fj(x) =

∫
fj+1(x−y) dνj(y) (a.e.).

The sequence is said to be normalised if fj ≥ 0 and
∫
fj dx = 1. The sequence is said to be regular,

if it is normalised, and there exist constants α > 0 and β > 0, and a sequence hj ↘ 0, such that
αh−mj χB(0,βhj) ≤ fj ≤ α−1h−mj χB(0,hj).

Whenever {fj}∞j=0 is a nested sequence of functions, we denote Sxj := x+ supp fj . We also employ
the notation τxf(y) := f(y − x).

Remark 2. Regularity holds in the typical case fj(x) := h−mj f(x/hj) for hj ↘ 0 and some f ≥
αχB(0,β) with compact support and

∫
fj dx = 1. Examples include f = χ[−1/2,1/2]m in Rm, and

f(t) = max{0,min{1+ t, 1− t}} in R (as well as similar but more complicated shape functions in Rm).

Definition 2. Let Ω ⊂ Rm open and bounded, and {fj}∞j=0 a regular nested sequence of functions
per Definition 1. A Radon measure µ ∈M(Ω) is said to be sparsely rectifiable in dimension d ≤ m−1
with constants L,M ∈ [0,∞) (with respect to {fj}∞j=0), denoted µ ∈ Spd(Ω, L,M), if the following
hold.

1. µ is upper Ahlfors-regular in dimension d with constant M .
2. There exist families G = {Gj}∞j=0, Gj = {Γxj | x ∈ Rm} of d-dimensional Lipschitz graphs Γxj , of

Lipschitz factor at most L, satisfying

Sp(µ;G) :=
∞∑
j=0

Spj(µ;Gj) <∞, where Spj(µ;Gj) :=
∫

Rm

∣∣µxSxj \ Γxj
∣∣(τxfj) dx. (3)

Definition 3. We also set

Sp(µ) := inf
G

Sp(µ;G), and Spj(µ) := inf
Gj

Sp(µ;Gj),

where the infimum is taken over all families of the type specified above.

Definition 4. A bounded set E ⊂ Rm is said to sparsely rectifiable in dimension d, if HdxE is.

Definition 5. For the Lipschitz graphs Γxj from Definition 2, we use the shorthand notations V x
j :=

VΓxj
, gxj := gΓxj

, and zxj := zΓxj
for the entities from the definition in Section 2.

Remark 3. Much of our results would hold for bi-Lipschitz images Γxj , as we will mostly be relying on
the maps gxj satisfying bi-Lipschitz properties. For simplicity we restrict ourselves to Lipschitz graphs,
however.

Proposition 1. Suppose Ω ⊂ Rm is open and bounded, and µ ∈ M(Ω) satisfies (3). Then µ is
concentrated on a countably d-rectifiable set J . If µ is sparsely rectifiable (i.e., is also upper Ahlfors-
regular in dimension d ≤ m− 1), then µ is d-rectifiable, µ� HdxJ .

Proof. Let G be as in Definition 2. Let K be a compact set containing suppµ+B(0, h0). To construct
rectifiable approximations of suppµ, we need a partially discrete approximation of the Lebesgue in-
tegral over K. Denoting by α and β the regularity constants for {fj}∞j=0 from Definition 1, we set
Aj := B(0, βhj). With j fixed for the moment, we then apply the Besicovitch covering theorem on
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the family {x + Aj | x ∈ K} to obtain an at most countable (actually finite) set Gj , such that for a
dimensional constant cm, we have

χK ≤
∑
ξ∈Gj

τξχAj ≤ cm.

It follows that
Lm ≥ c−1

m

∑
ξ∈Gj

Lmx(ξ +Aj). (4)

Moreover, from the regularity condition for fj , there exists a constant C1 > 0 dependent on α, β, and
m alone, such that ∑

ξ∈Gj

τξfj ≥
∑
ξ∈Gj

h−mj ατξχAj ≥ h
−m
j αχK ≥ C1/Lm(Aj)χK . (5)

Now, with this preliminary setup taken care of, let us for any given y ∈ Aj set Jyj :=
⋃
x∈Gj+y Γxj .

Then Jyj is Hd-rectifiable and we may, using (4) and (5), approximate

Spj(µ;Gj) =
∫ ∣∣µxSxj \ Γxj

∣∣(τxfj) dx
≥ c−1

m

∫
Aj

∑
x∈y+Gj

∣∣µxSxj \ Γxj
∣∣(τxfj) dy

≥ c−1
m

∫
Aj

∑
x∈y+Gj

∣∣µxΩ \ Jyj
∣∣(τxfj) dy

≥ C1

cmLm(Aj)

∫
Aj

∣∣µxΩ \ Jyj
∣∣(τyχK) dy

≥ C1

cmLm(Aj)

∫
Aj

∣∣µ∣∣(Ω \ Jyj ) dy.

We thus deduce that there is a choice of yj ∈ Aj with

Spj(µ;Gj)cmC−1 ≥ |µ|(Ω \ Jyjj ).

Setting J :=
⋃∞
j=0 J

yj
j , it follows from observing

|µ|(Ω \ Jyjj ) ≥ |µ|(Ω \ J)

and letting j ↗ ∞ that |µ|(Ω \ J) = 0. Since J is Hd-rectifiable, this gives the first claim of the
proposition. If |µ| is upper Ahlfors-regular in dimension d, we then have |µ| � HdxJ . We conclude
that µ is rectifiable.

Even quite simple sets may, however, fail to be sparsely rectifiable, as the next example demonstrates.
Indeed, even single Lipschitz curves may not be sparsely rectifiable, while being contained on such a
set is equivalent to uniform rectifiability of Ahlfors-regular one-dimensional sets.

Example 1. Let us choose hj := 2−j and fh(x) = h−2χQ(x/h) for Q := [0, 1]2. (Strictly speaking,
{fh} is not normal per Definition 1. But this is only a matter of a translation or replacing Q = [0, 1]2.
by the more unwieldy set [−1/2, 1/2]2.) We then set Γ1 = [0, 1]× {0} and Γ2 = {(x, g(x)) | x ∈ [0, 1]}
for g(x) = e−1/x, and study µ := H1x(Γ1 ∪ Γ2) on R2. See Figure 1(a) for a sketch.

Suppose h ∈ (0, 1) and let

Ah := {(x, y) | x ∈ [0, 1− h], g(x+ h) ≤ h, y ∈ [g(x+ h)− h, 0]}.
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(a) A “simple” non-sparsely rectifi-
able set

(b) A “complex” sparsely rectifi-
able set

Figure 1: Examples of sparsely rectifiable and non-sparsely rectifiable sets

Then, whenever (x, y) ∈ Ah, both

H1(Γi ∩ ((x+ y) + hQ)) ≥ h, (i = 1, 2, ).

Consequently, by the definition of fh, we find that

(H1xΓi)(τ(x,y)fh) ≥ h−1, (i = 1, 2; (x, y) ∈ Ah).

If we set
Gij := {(Γ1 ∪ Γ2 \ Γi) ∩ ((x, y) + hjQ) | (x, y) ∈ R2},

we then have
h−1
j L

2(Ahj ) ≤
∫
Ahj

(H1xΓi)(τ(x,y)fhj ) d(x, y) ≤ Spj(µ;Gij).

We want to show that Ah has too large measure for condition (3) to be satisfied, that is h−1
j L2(Ahj )

does not sum to a finite quantity (for any sequence hj ↘ 0).

For small enough h, we have

Ah ⊃ {(x, y) | x ≥ 0, g(x+ h) ≤ h/2, y ∈ [−h/2, 0]}.

Since g−1(h) = −1/ log h, we thus have (for small enough h)

h−1L2(Ah) ≥ h−1

∫ g−1(h/2)−h

0
h/2 dx = (−1/ log(h/2)− h)/2.

We observe
∞∑
j=0

(−1/ log(hj/2)− hj) =
∞∑
j=0

(1/(j + 1)− 2−j) =∞.

Therefore
∑∞

j=0 Spj(µ;Gij) =∞, (i = 1, 2).

Finally, we observe that there do not exist families Gj , (j = 0, 1, 2, . . .), of Lipschitz graphs covering
(Γ1 ∪ Γ2) ∩ ((x, y) + hQ) with bounded constant, so only Γ1 or Γ2 can be covered, as has been done
above. To see this, one observes that for the Lipschitz constant to be bounded, there must exist α > 0
such that any Lipschitz graph Γ covering a part Γ1 has |〈zΓ, (1, 0)〉| ≥ α. But then either zΓ is a
tangent vector to Γ2, or Γ2 is occluded by Γ1 when looking in the direction of z. Thus µ is not sparsely
rectifiable with respect to the chosen system of rectangular nested functions.

As an element of justification for Definition 2, next we provide an example of a somewhat “complex”
set that is sparsely rectifiable.
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Example 2. Let ri := 2−i, and Γi := {1 − ri} × [0, ri], (i = 0, 1, 2, . . .). Also let Γ′ := [0, 1] × {0}.
Finally, set R := Γ′ ∪

⋃∞
i=0 Γi, as sketched in Figure 1(b). We claim that R is sparsely rectifiable

with respect to fj(x) = h−2
j χQ(x/hj), where Q := [0, 1]2. Indeed, at every (x, y) + hjQ, let us choose

Γ(x,y)
j as (Γi

⋃
Γ′) ∩ ((x, y) + hjQ) for the smallest i such that 1 − ri ≥ x. It follows that Γ′ gives no

contribution to (3) at all, so all we have to do is to calculate

Zi,j :=
∫
H1x(Γi \ Γ(x,y)

j )(τ(x,y)fj) d(x, y), (i = 0, 1, 2, . . .). (6)

The term H1x(Γi \Γ(x,y)
j )(τ(x,y)fj) is non-zero only when x+hj ≥ 1− ri and x ≤ 1− ri−1. It follows

that x is on an interval of length hj − ri, and hj ≥ ri (minding that ri−1 − ri = ri). For fixed x we
may thus calculate that∫

(H1xΓi)(τ(x,y)fj) dy = h−2
j

∫ ∫ y+h

y
χ[0,ri](t) dt dy ≤ ri/hj .

This gives the estimate

Zi,j ≤

{
(hj − ri)ri/hj , hj ≥ ri,
0, otherwise,

for the contribution (6) of Γi, (i = 0, 1, 2, . . .), to (3). But hj ≥ ri means i ≥ − log2 hj , so summing
the contributions of Γi for i ≥ − log2 hj , we obtain

Spj(µ) ≤
∞∑
i=0

Zi,j ≤
∑

i≥− log2 h

(hj − ri)ri/hj ≤
∑

i≥− log2 hj

ri ≤ 2hj .

Thus (3) holds. Moreover, it is possible to show that R is Ahlfors-regular in dimension 1, the maximum
for the constant M for the upper bound being given at (1, 0).

We next intend to show that sparse rectifiability implies uniform rectifiability for Ahlfors-regular
sets. Towards this end, we recall the following definition (among many alternatives) from [7].

Definition 6. Suppose K : Rm \ {0} → R is odd, i.e., K(−x) = −K(x), and such that
‖x‖d+j‖∇jK(x)‖ ∈ L∞(Rm \ {0}, (j = 0, 1, 2, . . .). An Ahlfors-regular set E ⊂ Rm (in dimension
d) is said to be uniformly rectifiable if for any such K, the family of operators

Tεg(z) =
∫
E\B(z,ε)

K(z − y)g(y) dHd(y), (ε > 0),

determine bounded linear operators on L2(E) with the operator norm uniformly bounded in ε.

Lemma 1. Let E ⊂ Rm be closed and Ahlfors-regular (in dimension d). Suppose there are constants
θ ∈ (0, 1) and L > 0 such that for Hd-a.e. x ∈ E there exist rx > 0 such that for all r ∈ (0, rx) one
can find a Lipschitz graph Γ of Lipschitz factor at most L, satisfying

Hd(E ∩ Γ ∩B(x, r)) ≥ θHd(E ∩B(x, r)). (7)

Then E is uniformly rectifiable in dimension d.

Proof. If we required that for every ball B(x, r) with x ∈ E, r > 0, there existed a Lipschitz graph
Γ of constant at most L such that (7) holds, then the present lemma would be just [7, Proposition
1.28] simplified to employ only Lipschitz graphs as Γ. The proof of [7, Proposition 1.28] is found in
[6, Proposition III.3.2] (which is stated even more generally), and it turns out that in the proof one
actually uses the stronger (“for every ball”) assumptions only to produce a cover of E for which the
slightly weaker assumptions of our lemma suffice. Therefore the proof of the present lemma follows
directly from the proof of [6, Proposition III.3.2].
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Proposition 2. Sparse rectifiability of an Ahlfors-regular (in dimension d ≤ m) compact set E ⊂ Rm

implies uniform rectifiability of E (in dimension d).

Proof. We use Lemma 1. By Proposition 1, we may find a family {Γi}∞i=0 of Lipschitz graphs such
that Hd(E \

⋃∞
i=0 Γi) = 0. Moreover, by the proof of the proposition, thse graphs have have Lipschitz

factor at most L, where L is the factor from Definition 2.

For an arbitrary ε ∈ (0, 1/2), we may then deduce (see the proof of [4, Theorem 2] for details) that
for Hd-a.e. x ∈ E, there exists rx > 0 and i ∈ {0, 1, 2, . . .} such that Hd(E∆Γi ∩ B(x, r)) ≤ 2εr and
Hd(E ∩B(x, r)) ≥ 2(1− ε)r for r ∈ (0, rx). It follows that

Hd(E ∩ Γi ∩B(x, r)) ≥ Hd(E ∩B(x, r))− 2εr

≥ (1− 2ε)/(1− ε)Hd(E ∩B(x, r)), (r ∈ (0, rx)).

Thus (7) holds at Hd-a.e. x ∈ E with θ = (1− 2ε)/(1− ε). This completes the proof.
Remark 4. Observe that the sparse rectifiability condition is only used in the proof to ensure a
bounded Lipschitz factor for the graphs {Γi}.

Example 3. The Cantor set K on the real line embedded into R2 as K × {0} is easily seen to be
sparsely rectifiable; just take Γxj = Sxj ∩ ([0, 1] × {0}). Since K is not Ahlfors-regular from below in
dimension 1, it is however not uniformly rectifiable.

Theorem 2. Let Ω ⊂ Rm be open and bounded. Suppose {µi}∞i=0 ∈ Spd(Ω, L,M) with

sup
i=0,1,2,...

Sp(µi) + |µi|(Ω) <∞.

Then any weak* limit µ of {µi}∞i=0 satisfies µ ∈ Spd(Ω, L,M) and

Sp(µ) + |µ|(Ω) ≤ lim inf
i→∞

Sp(µi) + |µi|(Ω)

Proof. Let ε > 0 be arbitrary. Let Gi = {Gij}∞j=0, Gij = {Γx,ij | x ∈ Rm}, be such that

Sp(µi;Gi) ≤ Sp(µi) + ε, (i = 0, 1, 2, . . .).

Then it suffices to show that

Sp(µ;G) + |µ|(Ω) ≤ lim inf
i→∞

Sp(µi;Gi) + |µi|(Ω)

for some G = {Gj}∞j=0, Gj = {Γxj | x ∈ Rm}.

We use the shorthand notation zx,ij = z
Γx,ij

, and gx,ij = g
Γx,ij

. We may assume that V
Γx,ij

=

P⊥
zx,ij

B(x, hj). This is because we may (see, e.g., [8]) extend gx,ij from V
Γx,ij

to the whole space P⊥
zx,ij

,

without increasing the Lipschitz constant.

We may, moreover, assume that µi ∗⇀ µ ∈ M(Ω), and |µi| ∗⇀ λ ∈ M(Ω), where λ ≥ |µ|. The
claim of the proposition now follows by an application of Fatou’s inequality in (3), if we show for all
j = 0, 1, 2, . . . and almost all x ∈ Rm that

lim inf
i→∞

∣∣µixSxj \ Γx,ij
∣∣(τxfj) ≥ ∣∣µxSxj \ Γxj

∣∣(τxfj) (8)

for some Lipschitz graph Γxj with constant at most L. Indeed, with j = 0, 1, 2, . . . and x ∈ Rm fixed,
we may for each i = 0, 1, 2, . . ., define a Lipschitz map gi : B(0, hj) ⊂ Rm−1 → Γxj of constant at most
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L by gi(v) = gx,ij (x + R
zx,ij

(v, 0)) with Rz ∈ Rm×m the rotation matrix from Rm−1 × 0 to z⊥. Then,
since Lipschitz maps of bounded constant are compact in the topology of pointwise convergence, we
define Γxj as the image of the pointwise limit g of a subsequence of {gi}∞i=0. Rotating the domain of g
back on z⊥ with z a limit of a further subsequence of {zx,ij }∞i=0 will show that Γxj is a Lipschitz graph.

Let us then write ∣∣µixSxj \ Γx,ij
∣∣(τxfj) =

∣∣µi∣∣(τxfj)− ∣∣µixΓx,ij
∣∣(τxfj). (9)

For almost all x ∈ Rm, we have (as follows from, e.g., [1, Proposition 1.62])

|µi|(τxfj)→ λ(τxfj). (10)

Moreover, we have

λ(τxfj) = (λxSxj \ Γxj )(τxfj) + (λxΓxj )(τxfj)

≥
∣∣µxSxj \ Γxj

∣∣(τxfj) + (λxΓxj )(τxfj).
(11)

On the other hand, any weak* limit λ̃ of (a subsequence of) |µi|xΓx,ij satisfies λ̃ ≤ λxΓxj . Moreover, for
a.e. x ∈ Rm, we have |µixΓx,ij |(τxfj)→ λ̃(τxfj). Thus, minding (9)–(11), we deduce

lim inf
i→∞

∣∣µixSxj \ Γx,ij
∣∣(τxfj) = lim inf

i→∞

(∣∣µi∣∣(τxfj)− ∣∣µixΓx,ij
∣∣(τxfj))

≥
∣∣µxSxj \ Γxj

∣∣(τxfj) + (λxΓxj )(τxfj)− lim sup
i→∞

∣∣µixΓx,ij
∣∣(τxfj)

≥
∣∣µxSxj \ Γx,ij

∣∣(τxfj) + (λxΓxj )(τxfj)− λ̃(τxfj)

≥
∣∣µxSxj \ Γxj

∣∣(τxfj) for a.e. x ∈ Rm.

But this is (8). Since upper Ahlfors regularity clearly holds for µ with constant M by the lower
semi-continuity of |µ|(B(x, r)) with respect to weak* convergence, we may conclude the proof.

4. Poincaré-type inequalities

For an application of sparse rectifiability, soon to follow, we will need some Poincaré-type inequalities,
which we next study. The following proposition can be found in, e.g., [11, Theorem 5.12.7].

Proposition 3. Let Ω ⊂ Rd be a connected domain with Lipschitz boundary, and µ a positive Radon
measure on Rd, that is upper Ahlfors regular with constant M in dimension d−1, and satisfies suppµ ⊂
cl Ω. Then there exists a constant C2 = C2(Ω), such that for each u ∈ BV(Ω), we have

‖u− µ(u)/µ(Ω)‖L1(Ω) ≤ C2
M

µ(cl Ω)
|Du|(Ω).

Corollary 1. Suppose Ω = B(0, r) in Proposition 3. Then there exists a constant C3 = C3(d),
independent of r, such that

‖u− µ(u)/µ(Ω)‖L1(Ω) ≤ rdC3
M

µ(cl Ω)
|Du|(Ω), (u ∈ BV(Ω)). (12)

Suppose, in particular, that µ = LdxΩ′ ⊂ Ω with µ(u) = 0 and Ld(Ω′) ≥ ρrd. Then, for a constant
C4 = C4(d), we have

‖u‖L1(Ω) ≤ rρ(1−d)/dC4|Du|(Ω). (13)
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Proof. We apply Proposition 3 on the domain B(0, 1) with u1(x) := u(rx) and µ1(A) := µ(rA). As
µ1(B(0, 1)) = µ(B(0, r)), and the upper Ahlfors factor for µ1 is at most Mrd−1, a change of variables
in the norms of u1 gives (12).

As for the second result, we just have to approximate M . Elementary manipulations give

µ(B(x, s)) ≤ min{ωmsd,Ld(Ω′)} ≤Msd−1

for ωm the volume of the unit ball in Rd, and M defined by

M/Ld(Ω′) =
(
ωm/Ld(Ω′)

)(d−1)/d ≤ (ρ−1ωm)(d−1)/dr1−d.

Inserting this into (12) gives (13).
Definition 7. Let O be a collection of domains in Rd (or any d-dimensional hyperplane of Rm,
m ≥ d). Suppose there exist constants δ > 0 and K < ∞, such that for each Ω ∈ O, there exists a
ball BΩ = B(xΩ, rΩ) ⊃ Ω with Ld(Ω) ≥ δLd(BΩ) and an extension operator TΩ : BV(Ω) → BV(BΩ)
with ‖TΩ‖ ≤ K. Then O is called a collection of uniformly extensible domains.

Lemma 2. Suppose O is a collection of uniformly extensible domains. Then there exists a constant
C5 = C5(d, δ,K) such that for each Ω ∈ O, the following holds: Let µ be positive Radon measure on
Rd, that is upper Ahlfors regular with constant M in dimension d − 1, and satisfies suppµ ⊂ cl Ω.
Then for each u ∈ BV(Ω), we have

‖u− µ(u)/µ(Ω)‖L1(Ω) ≤ rdΩC5
M

µ(cl Ω)
‖u‖BV(Ω).

In particular, if µ = LdxΩ′ with Ω′ ⊂ Ω and Ld(Ω′) ≥ ρrdΩ with µ(u) = 0, then for a constant
C6 = C6(d, δ,K), we have

‖u‖L1(Ω) ≤ rΩρ
(1−d)/dC6‖u‖BV(Ω).

Proof. This lemma is a rather direct result of applying Corollary 1 to TΩu. We just have to concede with
having no bound for |DTΩu|(BΩ) directly, only that |DTΩu|(BΩ) ≤ ‖TΩu‖BV(BΩ) ≤ K‖u‖BV(Ω).

5. Convergence of total variation measures

First we recall and improve from [10] the following result. Then we study the relationship of η,
introduced below, to sparse rectifiability. Throughout we assume that exactly the same nested sequence
of functions {(fj , νj)}∞j=0 is employed in the definition of Sp(µ;G) and η(µ).

Theorem 3. Let Ω ⊂ Rm be an open set, and {(fj , νj)}∞j=0 a normalised nested sequence of functions.
For µ ∈M(Ω), set

η(µ) :=
∞∑
j=0

ηj(µ), where ηj(µ) := |µ|(Ω)−
∫
|µ(τxfj)| dx. (14)

Suppose {µi}∞i=0 ⊂ M(Ω) weakly* converges to µ ∈ M(Ω) with supi |µi|(Ω) + η(µi) < ∞. If also
|µi| ∗⇀ λ, then λ = |µ|, and ηj(µi) → ηj(µ) for each j = 0, 1, 2, . . .. Moreover, the functional η is
lower-semicontinuous with respect to the weak* convergence of {µi}∞i=0.
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Proof. Denote by Sf the set of (approximate) discontinuity points of f . Fubini’s theorem and the fact
that Sf is an Lm-negligible Borel set, imply that

∫
λ(Sτxfj ) dx = 0. This shows that λ(Sτxfj ) = 0 for

a.e. x ∈ Ω. As a consequence (see, e.g., [1, Proposition 1.62]), we have µi(τxfj)→ µ(τxfj) for a.e. x ∈
Rm. Likewise |µi|(τxfj) → λ(τxfj) for a.e. x ∈ Rm. Next we observe that |µi|(τxfj) − |µi(τxfj)| ≥ 0,
and

lim
i→∞

∫
|µi|(τxfj) dx = lim

i→∞
|µi|(Rm) = λ(Rm) =

∫
λ(τxfj) dx =

∫
lim
i→∞
|µi|(τxfj) dx.

An application of Fatou’s lemma therefore yields

λ(Rm)− lim sup
i→∞

∫
|µi(τxfj)| dx = lim inf

i→∞

(∫
|µi|(τxfj) dx−

∫
|µi(τxfj)| dx

)
≥
∫

lim inf
i→∞

(
|µi|(τxfj)− |µi(τxfj)|

)
dx

= λ(Rm)−
∫
|µ(τxfj)| dx,

so that lim supi→∞
∫
|µi(τxfj)| dx ≤

∫
|µ(τxfj)| dx. By another application of Fatou’s lemma on the

sequence {x 7→ |µi(τxfj)|}∞i=0, we thus get

lim
i→∞

∫
|µi(τxfj)| dx =

∫
|µ(τxfj)| dx. (15)

We stress that (15) holds because of the convergence |µi| ∗⇀ λ.

If we can show that, as claimed, λ = |µ|, it follows immediately from (15) and the definition
(14) that ηj(µi) → ηj(µ), showing that part of the claim of the lemma. Moreover, since the total
variation |µi|(Ω) is lower-semicontinuous with respect to weak* convergence, it follows from (15) that
each ηj is lower-semicontinuous with respect to the simultaneous weak* convergence of {(µi, |µi|)}∞i=0.
Consequently also η is lower-semicontinuous with respect to the simultaneous convergence (by Fatou’s
lemma). However, assuming that {|µi|}∞i=0 does not converge, let us take a subsequence {µi`}∞`=0 such
that η(µi`) → α := lim infi→∞ η(µi). Since supi |µi|(Ω) < ∞, we may move to a further subsequence,
unrelabelled, such that also |µi` | ∗⇀ λ for some λ ∈ M(Ω). Since still η(µi`) → α, we deduce from
the lower semicontinuity with respect to the simultaneous weak* convergence that α ≥ η(µ). This
completes the proof of the claim that η is lower-semicontinuous with respect to weak* convergence of
{µi}∞i=0 alone.

Returning to the proof of λ = |µ|, observe that thanks to the fact that {(fj , νj)}∞i=0 is a nested
sequence of functions, {ηj(µ)}∞j=0 forms a decreasing sequence (for any µ ∈M(Ω)). Indeed, as fj(x) =∫
fj+1(x− y) dνj(y) and νj(Rm) = 1 with νj ≥ 0, we have∫

|µ(τxfj)| dx =
∫ ∣∣∣∣∫ µ(τx+yfj+1) dνj(y)

∣∣∣∣ dx ≤ ∫ ∫ |µ(τx+yfj+1)| dνj(y) dx

=
∫ ∫

|µ(τx+yfj+1)| dx dνj(y) =
∫
|µ(τxfj+1)| dx

after a change of variables in the last step to eliminate y. Minding the definition (14), it follows from
here that ηj(µ) ≥ ηj+1(µ).

To show λ = |µ|, that is |µi| ∗⇀ |µ|, we only have to show |µi|(Ω) → |µ|(Ω). To see the latter, we
choose an arbitrary ε > 0, and write

|µ|(Ω)− |µi|(Ω) = ηj(µ)− ηj(µi) +
∫
|µ(τxfj)| − |µi(τxfj)| dx. (16)

Next we observe from the already proved lower semi-continuity of η and the bound supi η(µi) =: K <
∞ that η(µ) ≤ K as well. Therefore, recalling that {ηj(µ)}∞j=1 and {ηj(µi)}∞j=1 for i = 0, 1, . . . are
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decreasing sequences, as shown above, it follows that by taking j large enough, we can ascertain that
sup{ηj(µ), ηj(µ1), ηj(µ2), . . .} ≤ ε. (Note that ηj ≥ 0!) Employing this observation in (16), we find
that ∣∣|µ|(Ω)− |µi|(Ω)

∣∣ ≤ 2ε+
∣∣∣∣∫ |µ(τxfj)| − |µi(τxfj)| dx

∣∣∣∣
for any large enough j and all i. The integral term tends to zero as i→∞ by (15). Therefore, we have

lim
i→∞

∣∣|µi|(Ω)− |µ|(Ω)
∣∣ ≤ 3ε.

Since ε > 0 was arbitrary, the proof can be concluded.
Remark 5. Since, by assumption,

∫
fj dx = 1, we may alternatively write ηj(µ) =

∫
Rm |µ|(τxfj) −

|µ(τxfj)| dx.

Next we intend to derive bounds on η(µ) for sparsely rectifiable measures µ. We begin with a few
definitions.

Definition 8. Suppose θ is a Borel function on a countably Hd-rectifiable set J ⊂ Rm, and Ĝ a family
of Lipschitz d-graphs. We then set

‖θ‖
BV( bG)

= sup
∑
Γi

‖θ ◦ gΓi‖BV(Γi),

where the supremum is taken over all finite disjoint sub-collections {Γ1, . . . ,ΓN} ⊂ Ĝ, (N ≥ 1).

Definition 9. Let µ ∈ Spd(Ω, L,M) with Definition 2 satisfied by the families Gµ = {Gµj }∞j=0, Gµj =
{Γxj | x ∈ Rm} of Lipschitz graphs. We then denote

Ĝµj := {gxj (V x
j ∩ P⊥zxjB(x, hj)) | x ∈ Rm, Γxj ∩B(x, hj) 6= ∅}, (j = 0, 1, 2, . . .),

and Ĝµ := {Ĝµj }∞j=0, as well as

Oµ :=
∞⋃
j=0

{V x
j ∩ P⊥zxjB(x, hj) | x ∈ Rm, Γxj ∩B(x, hj) 6= ∅}.

Remark 6. Let us denote Ωx
j = V x

j ∩ P⊥zxjB(x, hj). Instead of considering the sub-graphs

gxj (Ωx
j ) ⊂ gxj (V x

j ) = Γxj ,

we could simply require that
P⊥zxj Γxj ⊂ P⊥zxjB(x, hj),

as such a requirement has no no effect on Definition 2 holding for µ: only Γxj ∩B(x, hj) matters in the
expression of Spj(µ;Gj), so that Spj(µ;Gµj ) = Spj(µ; Ĝµj ).

The reason for the restriction of the domain is, firstly, to ensure that the radii rΩxj
in Definition 7

can be taken small, so that functions in BV(Ωx
j ) can with uniformly bounded constants be extended

to P⊥zxj
B(x, hj) ⊃ Ωx

j . Secondly, the restriction ensures that gxj (Ωx
j ) ⊂ B(x, (2L + 4)hj) whenever

B(x, hj) ∩ Γxj 6= ∅. We will need this in the following proposition, for which we recall the following
constants.

• L is an upper bound on the Lipschitz constant of the graphs Γxj ∈
⋃∞
j=0 Ĝj ,

• α is the regularity constant for the maps {fj}∞j=0 from Definition 1, and
• δ and K are the uniform extensibility constants of Oµ.
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Proposition 4. Let Ω ⊂ Rm be open and bounded. Suppose µ = θHdxJ ∈ Spd(Ω, L,M), and Oµ is
uniformly extensible per Definition 7. Then

ηj(µ) ≤ C7hj‖θ‖BV( bGµj )
+ Spj(µ;Gµj ) (17)

for some constant C7 = C7(L,m, d, δ,K, α). In particular, if
∑∞

j=0 hj <∞, then

η(µ) ≤ C8

(
sup

j=0,1,2,...
‖θ‖

BV( bGµj )
+ Sp(µ;Gµ)

)
for C8 = C8(L,m, d, δ,K, α,

∑
hj).

Proof. Let us simply assume, without loss of generality as discussed in Remark 6, that

P⊥zxj Γxj ⊂ P⊥zxjB(x, hj), (x ∈ Rm; j = 0, 1, 2, . . .). (18)

as well as
Γxj ∩B(x, hj) 6= ∅, (x ∈ Rm; j = 0, 1, 2, . . .).

Then we may simply write
Ĝµj := Gµj , (j = 0, 1, 2, . . .),

and

Oµ := {VΓ | Γ ∈
∞⋃
j=0

Ĝµj }.

Let then j ∈ {0, 1, 2, . . .} be fixed for the moment. By writing θ = θ+−θ−, where θ± ≥ 0, we deduce

ηj(µ) =
∫
|µ|(τxfj)− |µ(τxfj)| dx

= 2
∫

min
{∫

J
θ+τxfj dHd,

∫
J
θ−τxfj dHd

}
dx.

(19)

Writing J = (J ∩ Γxj ) ∪ (J \ Γxj ), we get

ηj(µ)/2 ≤
∫

min

{∫
Γxj

θ+τxfj dHd,
∫

Γxj

θ−τxfj dHd
}
dx+

∫ ∣∣µxSxj \ Γxj
∣∣(τxfj) dx. (20)

Since the minimum is non-zero only if both θ+|Sxj 6= 0 and θ−|Sxj 6= 0, only points x in the set

Zj := {x ∈ Rm | 0 ∈ conv θ(Γxj ), Γxj ∩B(x, hj) 6= ∅}

contribute to the first integral in (20). Applying (3), we thus obtain

ηj(µ)/2 ≤
∫
Zj

min

{∫
Γxj

θ+τxfj dHd,
∫

Γxj

θ−τxfj dHd
}
dx+ Spj(µ; Ĝµj )

≤ α−1h−mj

∫
Zj

min

{∫
Γxj

θ+ dHd,
∫

Γxj

θ− dHd
}
dx+ Spj(µ; Ĝµj ).

(21)

In the final step we have used the regularity of {fj}∞j=0, i.e., fj ≤ α−1h−mj χB(0,hj).

Next we set Bj := B(0, (2L + 4)hj), and apply the Besicovitch covering theorem on the family
{Bj + x | x ∈ Zj} to find finite collections F 1

j , . . . , F
cm
j ⊂ Zj satisfying

∑
x∈F ij

τxχBj ≤ 1, (i =
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1, . . . , cm), and
∑

x∈Fj τxχBj ≥ χZj . Here Fj :=
⋃cm
i=1 Fj and cm is a constant dependent on the

dimension m alone. Applying the cover Fj in (21), and denoting Γxj (θ) =
∫

Γxj
θ dHd, we may write

ηj(µ)/2 ≤ α−1h−mj

∫
Bj

∑
x∈(Fj+y)∩Zj

min{Γxj (θ+),Γxj (θ−)} dy + Spj(µ; Ĝµj )

≤ C9

Lm(Bj)

∫
Bj

∑
x∈(Fj+y)∩Zj

min{Γxj (θ+),Γxj (θ−)} dy + Spj(µ; Ĝµj )
(22)

for some constant C9 = C9(α,m,L). By the definition of Fj as
⋃cm
i=1 F

i
j , it follows that to bound ηj(µ),

it suffices to show that there exists C10 = C10(d, δ,K,L) such that∑
x∈(F ij+y)∩Zj

min{Γxj (θ+),Γxj (θ−)} ≤ C10hj‖θ‖BV( bGj) (23)

for Lm-a.e. y ∈ Bj and all i ∈ {1, . . . , cm}.

To begin the proof of (23), we observe that Jd(∇gxj (v)) ≤
√(

m
d

)
Ld =: C11. (Indeed, any d×d minor

B of ∇gxj (v) satisfies detB ≤ Ld, due to the maximal eigenvalue being at most L. Then we apply the
Cauchy-Binet formula, found in, e.g., [2].) Thus the area formula yields

Γxj (θ±) =
∫

Γxj

θ± dHd =
∫
V xj

(θ± ◦ gxj )Jd(∇gxj ) dv ≤ C11

∫
V xj

θ± ◦ gxj dv. (24)

Let us momentarily fix x ∈ Zj , and set V = V x
j , θ̃± = θ± ◦ gxj , and θ̃ = θ ◦ gxj . We intend to apply

Lemma 2. Toward this end, we set µ± := Ldx(V \ supp θ̃∓). Then µ+(V ) + µ−(V ) ≥ Ld(V ), so with
the constant δ from Definition 7, we have

max{µ+(V ), µ−(V )} ≥ Ld(V )/2 ≥ (δ/2)Ld(BV ) ≥ (δωd/2)rdV

for rV as in Definition 7. Since µ±(θ̃±) = 0, we may apply Lemma 2, to get either

‖θ̃+‖L1(V ) ≤ rV C12‖θ̃+‖BV(V ) or ‖θ̃−‖L1(V ) ≤ rV C12‖θ̃−‖BV(V )

for a constant C12 = C12(d, δ,K). As ‖θ̃±‖BV(V ) ≤ ‖θ̃‖BV(V ), by the definition of θ±, this gives

min{‖θ̃+‖L1(V ), ‖θ̃−‖L1(V )} ≤ rV C12‖θ̃‖BV(V ).

The crucial point here is that rV is “small”. Indeed, we may assume rV ≤ hj due to (18). We thus
obtain

min{‖θ+ ◦ gxj ‖L1(V xj ), ‖θ− ◦ gxj ‖L1(V xj )} ≤ hjC12‖θ ◦ gxj ‖BV(V xj ). (25)

Next, we observe that with all j ∈ {0, 1, 2, . . .}, i ∈ {1, . . . , cm}, and y ∈ Bj fixed, the graphs
{Γxj | x ∈ (y+F ij ∩Zj)} are disjoint. This follows from the balls x+Bj = B(x, (2L+4)hj), (x ∈ y+F ij ),
being disjoint by construction, and from Γxj ⊂ x+Bj , that holds due to assumption (18). Combining
(25) with (24) thus finally yields∑

x∈(F ij+y)∩Zj

min{Γxj (θ+),Γxj (θ−)} ≤ C11C12hj
∑

x∈(F ij+y)∩Zj

‖θ ◦ gxj ‖BV(V xj )

≤ C11C12hj‖θ‖BV( bGj).
(26)

To conclude the proof of the lemma, we only have to observe that (26) yields (23).
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Corollary 2. Let Ω ⊂ Rm be open and bounded, and
∑

j hj < ∞. Suppose {µi}∞i=0 ⊂ Spd(Ω, L,M)
and that

⋃∞
i=0Oµ

i
is uniformly extensible. Provided that

sup
i,j

(
‖θi‖

BV( bGµij )
+ Sp(µi;Gµ

i

j )
)
<∞,

then any weak* limit µ of a subsequence of {µi}∞i=0, unrelabelled, satisfies µ ∈ Spd(Ω, L,M) and
|µi|(Ω)→ |µ|(Ω).

If additionally
sup
i

Spj(µ
i;Gµ

i

j ) ≤ v(j) for some v ∈ L1(N),

then η(µi)→ η(µ).

Proof. The claim on the convergence of |µi|(Ω) to |µ|(Ω) is an easy consequence of Proposition 4,
Theorem 3, and Theorem 2. That η(µi)→ η(µ) follows from the already known lower-semicontinuity
of η and the limsup variant of Fatou’s lemma, after the facts that, by Theorem 3, ηj(µi)→ ηj(µ), and,
by (17), ηj(µi) ≤ C13hj + v(j), (i = 0, 1, 2, . . .), where j 7→ C13hj + v(j) is integrable.

6. Compactness in [SBV(Ω)]k

We will now provide some compactness and other convergence results in [SBV(Ω)]k following from
sparse rectifiability. All of the results hold with exactly the same proofs in SBD(Ω), when the gradient
Du is replaced by the symmetricised gradient Eu := (Du+ (Du)T )/2, and ∇u and Dju are replaced,
respectively, by the density Eu of the absolutely continuous part of Eu, and by jump part Eju. See
Temam [9] for basics on functions of bounded deformation, and Ambrosio et al. [1] for SBD.

We need to work with vector-valued measures µ ∈ M(Ω; Rk×m) now. The results of Section 3 can
readily be extended to this situation with no changes in proofs or definitions, but for concreteness we
work through the following definition.

Definition 10. For µ = (µi,j) ∈ [Spm−1(Ω, L,M)]k×m, we denote Sp(µ) =
∑k

i=1

∑m
j=1 Sp(µi,j).

Theorem 4. Let Ω ⊂ Rm be open and bounded, and {ui}∞i=0 ⊂ [SBV(Ω)]k. Suppose ψ : [0,∞)→ [0,∞)
is non-decreasing with limt→∞ ψ(t)/t =∞. If each Djui ∈ [Spm−1(Ω, L,M)]k×m, (i = 0, 1, 2, . . .), and

sup
i
‖ui‖L1(Ω) +

∫
ψ(∇ui(x)) dx+ |Djui|(Ω) + Sp(Djui) <∞, (27)

there then exists u ∈ [SBV(Ω)]k with Dju ∈ [Spm−1(Ω, L,M)]k×m and a subsequence, unrelabelled,
such that

ui → u strongly in L1(Ω; Rk), (28)

∇ui ⇀ ∇u weakly in L1(Ω; Rk×m), (29)

Djui ∗⇀ Dju weakly* in M(Ω; Rk×m), and (30)

Sp(Dju) ≤ lim inf
i→∞

Sp(Djui). (31)
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Proof. Let us denote by K the supremum on the left side of (27). We then deduce from (27) that

sup
i
‖ui‖L1(Ω) + |Dui|(Ω) <∞.

Moving to a subsequence, unrelabelled, we may thus assume that ui ⇀ u weakly in [BV(Ω)]k for some
u ∈ [BV(Ω)]k. This gives (28). Moreover, because {∇ui}∞i=0 is an equi-integrable family, we have the
existence of some w ∈ L1(Ω; Rk×m), such that for a further unrelabelled subsequence, ∇ui ⇀ w weakly
in L1(Ω; Rk×m). Still, selecting another subsequence, we find from Theorem 2 that Djui ∗⇀ λ for some
λ ∈ [Spm−1(Ω, L,M)]k×m with Sp(λ) ≤ lim infi→∞ Sp(Djui). Minding that ∇uiLm+Djui = Dui and
Dui ∗⇀ Du by the weak convergence of {ui}∞i=0 in [BV(Ω)]k, we therefore have

wLm + λ = Du = ∇uLm +Dju+Dcu. (32)

Since λ ∈ [Spm−1(Ω, L,M)]k×m, Proposition 1 shows that the measure λ is concentrated on a Hm−1

rectifiable set J . This gives w = ∇u, showing (29). According to [1], the Cantor part Dcu vanishes
on any Borel set B that is σ-finite with respect to Hm−1. In particular DcuxJ = 0. Hence, by (32),
λ = Dju and Dcu = 0. This shows that u ∈ [SBV(Ω)]k as well as (30) and (31), thus completing the
proof.
Remark 7. Theorem 4 is complementary to the SBV compactness theorem of Ambrosio (Theorem
1), or in the SBD case, the analogue due to Bellettini et al. [3]. While our result requires bounds on
the sparse rectifiability of Djui, we do not require Hm−1(Jui) to be bounded, unlike does Theorem 1.

We now provide a corollary with stronger convergence for the jump part of the gradient. Choosing
T below as the trace operator, T = Tr, we get the convergence of Divj ui = TrEjui in total variation.

Corollary 3. Let Ω ⊂ Rm be open and bounded, and {ui}∞i=0 ⊂ [SBV(Ω)]k. Suppose ψ : [0,∞) →
[0,∞) is non-decreasing with limt→∞ ψ(t)/t = ∞, and T : Rk×m → R a bounded linear operator. If
each Djui ∈ [Spm−1(Ω, L,M)]k×m, (i = 0, 1, 2, . . .), and

sup
i
‖ui‖L1(Ω) +

∫
ψ(∇ui(x)) dx+ |Djui|(Ω) + Sp(Djui) + η(TDjui) <∞, (33)

then there exists u ∈ [SBV(Ω)]k with Dju ∈ [Spm−1(Ω, L,M)]k×m, and a subsequence, unrelabelled,
such that (28)–(31) hold along with

|TDjui|(Ω)→ |TDju|(Ω). (34)

Proof. Theorem 4 shows that (28)–(31) hold along with TDjui ∗⇀ TDju weakly* onM(Ω). Now (34)
follows from Theorem 3.
Remark 8. Of course, provided that

⋃∞
i=0OTD

jui is uniformly extensible and
∑∞

j=0 hj <∞, we can
apply Corollary 2. This allows us to replace η(TDjui) in (33) by supj ‖θi‖bGTDjuij

, where θi is such

that TDjui = θiHm−1xJ i. Further variants yet of Corollary 2 are possible, along with closely-related
lower-semicontinuity results (compare, e.g., [3]), thanks to the lower-semicontinuity results contained
in Theorem 2 and Theorem 3.

We base the next demonstrative result on Theorem 1 instead of Theorem 4. This is due to existing
approximation results that ensure the convergence of Hm−1(Jui), while not much is yet known of the
approximability of Sp(Djui).

Definition 11. We denote L∞M (Ω; Rk) := {u ∈ L∞(Ω; Rk) | ‖u‖L∞(Ω) ≤M}.
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Proposition 5. Let Ω ⊂ Rm be open and bounded and M > 0. Let F : L1(Ω)→ R be continuous and
bounded from below, ψ : [0,∞)→ [0,∞) non-decreasing with limt→∞ ψ(t)/t =∞, and T : Rm×m → R
a bounded linear operator. Set

J(u) := F (u) +
∫
ψ(∇u(x)) dx+Hm−1(Ju) + η(TDju).

Then we have the following.

1. J admits a minimiser in [SBV(Ω)]k ∩ L∞M (Ω; Rk).
2. Suppose that {u, u0, u1, u2, . . .} ⊂ [SBV(Ω)]k ∩ L∞M (Ω; Rk) satisfy

ui → u strongly in L1(Ω; Rm), (35)

∇ui → ∇u strongly in L1(Ω; Rk×m), and (36)

Hm−1(Jui)→ Hm−1(Ju). (37)

Suppose, moreover, that µi := TDjui ∈ Spd(Ω, L,M), (i = 0, 1, 2, . . .), with
⋃∞
i=0Oµ

i
uniformly

extensible,
∑∞

j=0 hj <∞, and that

sup
i,j
‖θi‖

BV( bGµij )
<∞,

as well as
sup
i

Spj(µ
i; Ĝµ

i

j ) ≤ v(j) for some v ∈ L1(N).

Then there exists a subsequence {uij}∞j=0 of {ui}∞i=0 with J(uij )→ J(u).

Proof. That J admits a minimiser follows from Theorem 1 and Theorem 3 by a standard argument,
minding that u ∈ L∞M (Ω) and Hm−1(Ju) bound |Dju|(Ω).

As for the convergence claim, it follows from Corollary 2 that η(TDjuij ) → η(TDju) for a subse-
quence {uij}∞j=0 of {ui}∞i=0. Combined with (35)–(37) and the continuity of F and ψ, this immediately
yields J(uij )→ J(u).
Remark 9. It follows from the work of Cortesani and Toader [5] that given u ∈ SBV(Ω) ∩ L∞(Ω),
there then exist ui ∈ H1(Ω \ J i) ∩ L∞M (Ω), with J i a finite union of C1 surfaces such that (35)–(37)
hold. A similar result is provided by Chambolle [4] in the SBD case. It is ongoing research how we can
satisfy the additional assumptions of Proposition 5 or otherwise ensure η(TDjui)→ η(TDju).

One final remark

Remark 10. All of our results continue to hold with simplified proofs for the following “discrete”
versions of η and the sparse rectifiability condition. Instead of integrating over all x ∈ Rm and requiring∫
τxfj dx ≡ 1, we would then sum over x on finite grids Fj such that

∑
x∈Fj τxfj ≡ 1. Our quantities

of interest would then be
S̃pj(µ;Gj) :=

∑
x∈Fj

∣∣µxSxj \ Γxj
∣∣(τxfj),

and
η̃j(µ) := |µ|(Ω)−

∑
x∈Fj

|µ(τxfj)|.

In this case we need to assume the lower semi-continuity of each fj , but the Besicovitch covering
arguments in the proofs not be needed, as we are already working with finite sets.
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