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Abstract  Employing the ideas of non-linear preconditioning and testing of the classi-
cal proximal point method, we formalise common arguments in convergence rate and
convergence proofs of optimisation methods to the verification of a simple iteration-wise
inequality. When applied to fixed point operators, the latter can be seen as a generalisation
of firm non-expansivity or the a-averaged property. The main purpose of this work is to
provide the abstract background theory for our companion paper “Block-proximal methods
with spatially adapted acceleration”. In the present account we demonstrate the effective-
ness of the general approach on several classical algorithms, as well as their stochastic
variants. Besides, of course, the proximal point method, these method include the gradient
descent, forward-backward splitting, Douglas—Rachford splitting, Newton’s method, as well
as several methods for saddle-point problems, such as the Alternating Directions Method
of Multipliers, and the Chambolle-Pock method.

1 INTRODUCTION

The proximal point method for monotone operators [19, 24], while infrequently used by itself, can
be found as a building block of many popular optimisation algorithms. Indeed, many important
application problems can be written in the form

(P) mxin G(x) + F(Kx)

for convex non-smooth G and F, and a linear operator K. Examples abound in image processing
and data science. The problem (P) can often be solved by methods such as forward-backward
splitting, ADMM (alternating directions method of multipliers) and their variants [2, 7, 12, 18].
They all involve a proximal point step.

The equivalent saddle point form of (P) is

(S) min max G(x) + (Kx,y) — F*(y).
x oy

In particular within mathematical image processing and computer vision, a popular algorithm
for solving (S) is the primal-dual method of Chambolle and Pock [7]. As discovered in [13], the
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method can most concisely be written as a preconditioned proximal point method, solving on
each iteration for u’*! = (x'*!, '*1) the variational inclusion

(PPy) 0 € H™™) + My (u'™ = uh),

where the monotone operator
_ [0G(x) + K"y
Hiw):= (aF*(y) - Kx)

encodes the optimality condition 0 € H(u) for (S). In the standard proximal point method [24],
one would take M;;; = I the identity. With this choice, (PP) is generally difficult to solve.
In the Chambolle-Pock method the preconditioning operator is given for suitable step length
parameters 7;, 0541, 9; > 0 by

-1 *
= I -K
(1.1) M = (—9,-K O'i_+111) .

This choice of M;.; decouples the primal x and dual y updates, making the solution of (PP,)
feasible in a wide range of problems. If G is strongly convex, the step length parameters 7;, 6,41, 6;
can be chosen to yield O(1/N?) convergence rates of an ergodic duality gap and the quadratic
distance ||x — x]|%.

In our earlier work [28], we have modified M;, as well as the condition (PP)) to still allow a
level of mixed-rate acceleration when G is strongly convex only on sub-spaces. Our convergence
proofs were based on testing the abstract proximal point method by a suitable operator, which
encodes the desired and achievable convergence rates on relevant subspaces.

In the present paper, we extend this theoretical approach to non-linear preconditioning,
non-invertible step-length operators, and arbitrary monotone operators H. Our main purpose
is to provide the abstract background theory for our companion paper [27]. Here, within these
pages, we demonstrate that several classical optimisation methods—including the second-order
Newton’s method—can also be seen as variants of the proximal point method, and that their
common convergence rate and convergence proofs reduce to the verification of a simple iteration-
wise inequality. Through application of our theory to Browder’s fixed point theorem [5] in
Section 2.5, we see that our inequality generalises the concepts of firm non-expansivity or the
a-averaged property. Our theory also covers stochastic variants of the considered algorithms.

In Section 2, we start by developing our theory for general monotone operators H. This
extends, simplifies, and clarifies the more disconnected results from [28] that concentrated
on saddle-point problems with preconditioners derived from (1.1). We demonstrate our results
on the basic proximal point method, gradient descent, forward-backward splitting, Douglas—
Rachford splitting, and Newton’s method. The proximal step in forward-backward splitting
and proximal Newton’s method can be introduced completely “free”, without any additional
proof effort, in our approach.

In Section 3 we specialise our work to saddle-point problems, and demonstrate the results on
variants of the Chambolle-Pock method, ADMM, and the Generalised Iterative Soft Thresholding
(GIST) algorithm of [18]. In the final Section 4 we extend our results and examples to produce the
convergence of ergodic duality gaps. This is also where we move to the stochastic setting, which
allows our results to be used to study various stochastic block-coordinate descent methods. We



refer to [29] for a review of this class of methods. In the companion paper [27], we will apply

our results to stochastic primal-dual methods with coordinate-wise adapted step lengths.
Besides already cited works, other previous work related to ours includes that on generalised

proximal point methods, such as [6, 9], as well inertial methods for variational inclusions [17].

2 AN ABSTRACT PRECONDITIONED PROXIMAL POINT ITERATION

2.1 NOTATION AND GENERAL SETUP

We use C(X) to denote the space of convex, proper, lower semicontinuous functions from X to
the extended reals R := [—c0, 0], and £(X;Y) to denote the space of bounded linear operators
between Hilbert spaces X and Y. We denote the identity operator by I. For T, S € £(X;X),
we write T > S when T — S is positive semidefinite. Also for possibly non-self-adjoint T, we
introduce the inner product and norm-like notations

(2.1) (¢, z2)7 = (Tx,z), and ||x||IT := V{x, x)T.

For a set A ¢ R, we write A > 0 if every element t € A satisfies t > 0.
Our overall wish is to find some u € U, on a Hilbert space U, solving for a given set-valued
map H : U = U the variational inclusion

(2.2) 0 € H().

In the present Section 2, H will be arbitrary, but in Section 3, where we specialise the results,
and in Section 4, where we consider gap estimates, we concentrate on H arising from the saddle
point problem (S).

Our strategy towards finding a solution # is to introduce an arbitrary non-linear iteration-
dependent preconditioner Viy; : U — U and a step length operator Wi, € L(U;U). With these,
we define the generalised proximal point method, which on each iteration i € N solves for u'*!
from

(PP) 0e VVi+1H(ui+1) + Vi+1(ui+l),
We assume that V;,; splits into M;; € L(U;U),and V/,, : U — U as
(2.3) Vigi(u) = Vl,+1(u) + M (u - ui)-

More generally, to rigorously extend our approach to cases that would otherwise involve set-
valued V;,, we also consider for H;,; : U = U the iteration

(PP7) 0 € Hia (™) + My ('™ = u).

2.2 BASIC ESTIMATES

We analyse (PP) and (PP™) by applying a testing operator Z;1 € L(U;U), following the ideas
introduced in [28]. The product Z;1M;; with the linear part of the preconditioner, will, as we
soon demonstrate, be an indicator of convergence rates.



Theorem 2.1. On a Hilbert space U, letﬁm :U 3 U,and M1, Zi11 € L(U; U) fori € N. Suppose

(PP~) is solvable, and denote the iterates by {u'};en. If Zi11 M1 is self-adjoint, and

Lo e Lol =2
(€)™ =iz, g, + 510 = Wz p -z,
+ <ﬁi+1(ui+l), u'tt - A}ZM = _Ai+1(a)
foralli € N and someu € U, then
N-1
DI DN - <Lz, + Y am@ (V=1
iy 5 u Ullzy My = 2 u = ullzpm i+1(w) (N =1).

i=0

Corollary 2.2. On a Hilbert space U, let H : U = U. Also let Z; 11, Wit1, M1 € L(U;U), and
V!, :U > U fori € N. Suppose (PP) is solvable for Vi41 as in (2.3). Denote the iterates by {u'};en.
Letu € HX(0). If Z; 1M, is self-adjoint, and

i+1

1 i+1 i2 1 =~12
(CI) EHu —u ||Zi+1Mi+1 + 5”“ - u”Zi+1Mi+1—Zi+2Mi+2

+ Win[H@™) = H@)] + Vi, @), 0™ =Wz, > —Ain(0),

foralli € N, then (CI™) and (DI) holdforflm(u) = WipH(u) + V. (u).

For (PP), the condition (CI) is often more practical to verify than (CI™) thanks to the additional
structure introduced by H(%) 3 0. Indeed, in many of our examples, we can eliminate H through
monotonicity. To derive gap estimates in Section 4, we will however need (CI™).

Proof of Theorem 2.1. Inserting (PP~) into (CI™), we obtain

i+1 i+1

~12
u”Zi+1Mi+1—Zi+zMi+2

i+1 i it .
@t =d W =Wz M = —Aia ().

1 in2 1
(2.4) EH” —u ||Zi+1Mi+1 + 5””

We recall for general self-adjoint M the three-point formula

; i 1o TN ST Y S ~12
(2.5) <ul+1 - uz’uz+1 —Un = E”ulﬂ - ul”M - E”ul - u”M + E”ulﬂ - UHM-
Using this with M = Z;1M;, we rewrite (2.4) as
Lo~ Lo —~2
5”” - u”Zi+1Mi+1 - EHU - u||Zi+2Mi+z = _Ai+1(m-
Summing this over i = 0,..., N — 1, we obtain (DI). ]

Remark 2.3 (Bregman distances). The three-point formula (2.5) generalises to Bregman distances
[9]. If Zi+1 = $isal for some scalar ¢; 44, it is then easy to generalise Theorem 2.1 from %II * |lam,,, to
more general Bregman distances. While we do occasionally work with Vi1 arising as the gradient
of a more general Bregman distance, we will, however, not benefit from more general M;.;.



The next two results demonstrate how the estimate of Theorem 2.1 can be used to prove
convergence with or without rates.

Proposition 2.4 (Convergence with a rate). Suppose (DI) holds with A;+1(u) < 0, and that
Zn+iMn11 > p(N)IL. Then ||uN —||> — 0 at the rate O(1/u(N)).

Proof. Immediate from (DI). O

Proposition 2.5 (Weak convergence). Suppose Z;M; = ZoMy > 0 is self-adjoint, and that the
iterates of (PP~) satisfy (CI™) with A;41(0) < —gllu’”rl - uill?zmMi+1 forallueU:={ueU|0€
H(u)} and some § > 0. If

(CL) ZigMiy ('™ —u') = 0 and u'* — u = limsup H;, (u'*) C W,H (u)
k—oco0

for some non-singular W, € L(U;U), then ZoMy(u' —u*) — 0 weakly in U for some u* satisfying
0 € H(u*).

The lim sup denotes the (strong) outer limit [see, e.g., 25]. For the proof, we use the next
lemma. Its earliest version is contained in the proof of [20, Theorem 1].

Lemma 2.6 ([5, Lemma 6]). On a Hilbert space X, let X C X be closed and convex, and {x'};cn C X.
If the following conditions hold, then x' — x* weakly in X for some x* € X:

(i) i & ||Ix' — x*|| is non-increasing for all x* € X.
(ii) All weak limit points of {x'};en belong to X.

Proof of Proposition 2.5. Since Z;11M;+1 — ZiraMiry < 0, it is easy to see that (CI”) and conse-
quently (DI) holds for all % € U’ := clconvU. We apply Theorem 2.1 on any @ € U’. Using
Ai(w) < —g luit —ul ”.ZZmMm’ we have Z; 1M (u'*' —u’) — 0. By (PP~) and (CL), any weak
limit point u* of the sequence {u'};cy then satisfies u* € U c U’. Since A := ZoMy = Z; M4,
this verifies condition (ii) of the lemma for x* := AY2y! and X’ := AY2U on X := AY2U c U. Ap-
plied with N = 1 and «’ in place of u°, (DI) shows condition (i) of the lemma. Thus x’ — x* € X.
But x* = AY2y* for some u* = U. Thus A(u! — u*) — 0. This implies ZoMo(u' — u*) — 0
weakly. O

2.3 EXAMPLES OF FIRST-ORDER METHODS
We now look at several concrete examples.
Example 2.1 (The proximal point method). Take M; = I, V/ = 0, and W;;; = 7;I for some

7; > 0. Then (PP) is the standard proximal point method with step length 1/7;. If H is maximal
monotone, {u'};en converges weakly to some u* € H™1(0).

Proof of convergence. We take Z;.1 = ¢;I for some ¢; > 0. Aslong as ¢; > @1, the monotonicity
of H clearly shows (CI) with A;41(u) = —%llui+1 — u'||%. Using the maximal monotonicity,
Minty’s theorem [e.g., 1, Theorem 21.1] guarantees the solvability of (PP). Thus the conditions



of Corollary 2.2 are satisfied. Maximal monotonicity also guarantees that H is weak-to-strong
outer semicontinuous; see Lemma A.1. This establishes (CL). Taking ¢; = ¢, for constant ¢y > 0,
so that Z;11M;1 = ZoMy = ¢ol, it remains to refer to Proposition 2.5. O

Example 2.2 (Accelerated proximal point method). Continuing from Example 2.1, suppose H
is strongly monotone. Then (H(u'™!) — H(u), u'™' — 1) > y|lu’*! — u]|? for some y > 0, so
(CI) continues to hold with A;4; (%) = —% lu'*t — u®||2 if ¢; (1 + 2y1;) > ¢;1y. This is the case
for 7;.1 == 7;/\I+ 2y7;, and @41 := 1/72,,. The testing variable @y is of the order O(N?)
[7, 28], so we get convergence of ||u™N — #||? to zero at the rate O(1/N?) from Corollary 2.2
and Proposition 2.4.

To facilitate the analysis algorithms with a proximal step, we introduce the following strength-
ened version of (CI), assumed to hold for some A; (u*;u) atall u € U;y; € U and u* € U:

1 , 1
* 2 *112
€)= wiliz ag, + S = Wz 0z M

+ (Wi (H(u) = Hu")) + Vi (u), u —u")z,,, > A (u”;u).

Note that only the choice u = u'*! and u* = u implies (CI™) and thus convergence. The role of
the subset U;,; is to model a compatible range of u'*! between H = Aand H = A + B in the next
lemma. Typically U;4; = U, but for the stochastic examples of Section 4.5, we will need to make
restrictions.

Lemma 2.7. Let A,B: U == U. Suppose (CI*) holds for H = A, and that
(2.6) (B(u) - B(u*),u—u")z, ,w,,, 20, (ue€Uyy,u" €lU).

Then (CI") holds for H = A+ B with Wiy, My, Zit1, V/,; and A1 (u, u*) unchanged. Moreover,
if v'*! solves (PP) for H = A, then u'*! := (I + W;;1B)"}(v'*?) solves (PP) for H = A+ B.

Proof. Using (2.6), B s easily eliminated from (CI*). The result is (CI*) for H = A. The relationship

between v'*! and u'*! is immediate from expansion of (PP). O
The next lemma starts our analysis of gradient descent:

Lemma 2.8. Let H = VG for G € C(X) such that VG is L-Lipschitz. Take M;y; = I and V/ ,(u) :=
1;(VG(u') — VG(u)) with Wiy = ;I as well as Z;,1 = ¢;1 for some 7;, ¢; > 0. Then (CI*) holds
Wlth Ui+1 = U l_f

(i) ¢; = ¢ is constant, 7;L < 2, and A;1(u*;u) :== —¢p; (1 — 1;L/2)||lu — u'||?/2.
If G is strongly convex with factory > 0, alternatively:
(ii) ©L? <y, piv1:= ¢i + piti(y — TL?), 7y := ¢,~_1/2, and Aj(u*;u) = 0.

Moreover, V41 satisfies (CL) under the above constraints on ;.



Proof. The satisfaction (CL) is immediate from the continuity of VG and the boundedness of z;.
For the rest, we start by expanding the condition (CI") as

1) P+ P 1 (VG - VO =) 2 A,

(i) Lipschitz gradient implies L™!-co-coercivity ([1], see also Appendix B)
(2.8) (VG') = VG(u),u’ —uy > LY |VGu') - VGw)|* forall wu,u’.
Now (2.7) follows after we use (2.8) and Cauchy’s inequality to estimate
(2.9) (VGu') = VGu*),u —u*) = (VG(u') — VG(u*),u' — u*)
+(VGu') - VG(u*),u —u') > —%nu —u|?.
(ii) We estimate

(VG') = VGu*),u — u*y = (VG(u) — VG(u*),u — u*y + (VG(u') — VG(u),u — u*)
N 1 ; ;L .
> Lt 1P - =P Tl - w2,
2 21, 2

Inserting this into (2.7), we see that (CI*) holds with A;.1(u*;u) = 0 if
(2.10) $i + ¢iti(y — Til?) = disa.
Clearly our choice of {7;};en is non-increasing. Therefore, (2.10) follows from the initialisation
condition 79L? < y and the update rule ¢;; := ¢; + ¢;7; (y — 7;L?). m|
Example 2.3 (Gradient descent). Taking 7; = 7 constant in Lemma 2.8, (PP) reads
0 = tVG@') +u't —u'.

This is the gradient descent method. Direct application of Lemma 2.8(i) with u = u’*! and
u* = u together with Corollary 2.2 and Proposition 2.5 now verifies the well-known weak
convergence of the method when 7L < 2.

Observe that Vi1 = VQj.4 for

1 . . . .
Qini(w) = Zllu = I + 7 [Gw) +(VG().u ~u') - Gw)] .
Each step of (PP) therefore minimises the surrogate objective [10]
(2.11) u Gu) + 7705 (u).

The function Q;; on one hand penalises long steps, and on the other hand allows longer
steps when the local linearisation error is large. In this example, Q;.; is, in fact, a Bregman



distance. Proximal point methods based on general Bregman distances in place of the squared
norm are studied in, e.g., [6, 9, 14, 15].

Example 2.4 (Acceleration of gradient descent). Continuing from Example 2.3, if G is strongly
convex, we may use the acceleration scheme in Lemma 2.8(ii). Similarly to Example 2.1, ¢n
is of the order ©(N?). Therefore, Corollary 2.2 and Proposition 2.4 show the convergence of
luN — 7% to zero at the rate O(1/N?).

Example 2.5 (Forward-backward splitting). Let H = VG + JF for G, F € C(X) with VG
Lipschitz. Taking M;.1, Wiy, and V/,, as in Example 2.3, (PP) becomes

0 € ;0F(w'™) + 1, VG(u') + u'™ —u'.
This is the forward-backward splitting method
™= I+ ;0F) ' — ;VG(u)).

By Lemma 2.7, convergence and acceleration work exactly as for gradient descent in Ex-
amples 2.3 and 2.4. If F is strongly convex with factor yr, we can introduce the additional
term )%vlluprl — u]|? to (2.7). This will improve (2.10) to allow ¢;4; := ¢; + i7;(y + yr — 7;L).
Alternatively, it would be possible to choose ¢; and 7; to yield FISTA-style acceleration [2].

Example 2.6 (Douglas—Rachford splitting). Let A,B : U = U be monotone operators.
Consider the problem of finding u with 0 € A(u) + B(u). For A > 0, let

0 0

0 I

H(u,0) = ()LB(u) +u-— v) ’

A(u) +v—u
AB(u”l) + it — ot
Uit 4 ot gyl gl — it

M = ( ), and

(2.12) ﬁ,-+1(u, v) = (M(

Then 0 € A(u) + B(u) if and only if 0 € H(u, v), where v € (u — AA(u)) N (u + AB(u)). The
algorithm (PP~) becomes the Douglas—Rachford splitting [11]

u't = (I+AB) (v,

o= ol ([ 4 24) 72" - o) —u'tL,

We work with (PP™) since in (PP), V! , would have to be set-valued. If A and B are maxi-

i+1
mal monotone, the variables {v'};en converge weakly to 0. Again, it is possible to devise
acceleration schemes under strong monotonicity [see, e.g., 4].

Proof of convergence. Write u' := (u',v") and u := (4, 0). Observe that

ut — oM = g e MA@ 0™ —0') and -0 =: 7€ AA®@D).



Using the monotonicity of A and B, with Z;,; := I, we have
(Hin(@™), Z;,, @™ = 0)) € (Hia (@) — H(@), Z;,, @™ - )
- )L(B(u”l) _ B(a)’qu _ a> + /‘L<qi+1 _ 67 ,Ui+1 _ 5)
+ <ui+1 _ Ui, (ui+1 _ Z}i+1) _ (a_ 6)>
— )L(B(uiﬂ) _ B(ﬁ),u”l _ a> + A<qi+1 _ q’ui+1 + Ui+1 _ vi _ 5} > 0.
Thus (CI™) holds with Ai+1(5) = —%IIIT'Jrl - ﬁ"llémMm. Using (2.12) and the weak-to-strong

outer semicontinuity of A and B (see Lemma A.1), we easily verify (CL). Weak convergence now
follows from Theorem 2.1 and Proposition 2.5. O

2.4 EXAMPLES OF SECOND-ORDER METHODS
Lemma 2.9. Let H = VG for G € C*(U). Take
Vis(u) = V2G(u')(u — u') + VG(u') = VG(u), and Wiy =1

IfVEG(u*) > 0, then (CI*) holds for u' close enough to u* with Aj41(u,u*) = 0 and ZyMy =
kNV2G(u*) for somex > 1.

Proof. We set M., := V2G(u*) and Z;,; := ¢;I for some ¢; > 0. Then G € C?(X) implies that
ZiiMiy1 = $;V2G(u*) is self-adjoint. The condition (CI*) reads
1 ; 1 . *

(2-13) Ellu - ul”;iVZG(u*) + Ellu —u ||(2¢i—¢i+1)V2G(M*) + ¢iDi+1 2 _Ai+1(u ;u),
where

Dit1 = (VGu') — VGu*) + (V2G(u') — VG (™)) (u — u'), u — u*).
By the fundamental theorem of calculus, there exists (' between u’ and u* with

Diy = (VG (W' —u"),u = u") + ((V2G(u') = VG (")) (u - u'),u — u”).

Using the three-point formula (2.5) and Cauchy’s inequality we therefore obtain

1 : 1 .
2 i2 i #1112
2V2G(ui)-V2G(u*) - 5” —u ”VZG(u*) + EHu —u ”VZG(u*)

+([V2G() = VPG (' — u"),u~u")

1
Dy = E”u - U*H u

2

1 * 1 in2
> EHu —u ||2VZG(ui)—VZG(u*)—Ai - 5”” —u ”VZG(u*)

for
A; = [V2G({') = VPGH]IVPGW )] [VEG((T) - VEG(uh)].
Inserting this estimate into (2.13), we deduce that we can take A4 (u*;u) = 0 if
20, V2G(u') = i1 V2G(u") 2 iA;.

Since G € C?(U), and V2G(u*) > 0, locally near u*, we can ensure A; < eV2G({**!) and
ViG(u') > [x/2 + €/2]V?G(u*) for some x > 1and € > 0. Thus it remains to satisfy

(I+e)xpi — Piv1 > Piex.
This holds when ¢;4; = k¢;. Taking ¢g = 1, thus ZyMyn > kKNV2G(u*). ]



Example 2.7 (Newton’s method). Suppose H = VG for G € C*(U). Take V;;; and W;4; as in
Lemma 2.9. Then (PP) reads

0 = VG(u') + V26 (') (u'* — u').

This is Newton’s method. By Lemma 2.9, Corollary 2.2, and Proposition 2.4, we obtain linear
convergence if V2G(u) > 0.
Observe that now V;4;(u) is the gradient of

Qin1(u) = G(u') +(VG(u'),u —u') + %nu ~ U 2ty — GW).

In the surrogate objective (2.11), this allows longer steps when the second-order Taylor
expansion under-approximates, and forces shorter steps when it over-approximates.

Example 2.8 (Proximal Newton’s method). Similarly to Example 2.5, let H = VG + 9F for
G € C%(X), and F € C(X). Taking M;.1, Wi41, and V/,, as in Lemma 2.9, (PP) becomes

0 € OF(u'™) + VG(u') + VG (') (u'™ - u').
This is the proximal Newton’s method [see, e.g., 16]
u't= (1+ [VPG@Wh)]'0F) 7 (' - [VEG(u')]'VG(®u)),

where (I + A™'0F)"}(v) solves min, %llu - vlli + F(u). By Lemma 2.7, convergence and
acceleration work exactly as for Newton’s method in Example 2.7.

2.5 CONNECTIONS TO FIXED POINT THEOREMS

We demonstrate connections of our approach to established fixed point theorems.

Example 2.9 (Browder’s fixed point theorem [5]). Let T : U — U be a-averaged, that is
T = (1— )] + al for some non-expansive J and « € (0, 1). Suppose there exists a fixed point
u = T(u). Let u'*! := T(u'). Then u' — u* for some fixed point u* of T.

Proof of Browder’s fixed point theorem. Let us set H(u) := T(u) — u, as well as Z;,1 := Wi =
My ==Tand V/, (u) := T(4') + u’ — T(u) — u. We have

(2.14) ﬁi+1(ui+1) = M+1H(ui+l) + ‘/i,+1(ui+1) — T(ui) + ui _ 2ui+1 — ui _ ui+1,

where the last step follows by observing from the previous steps that (PP) says u'*! = T(u').
The expression (2.14) easily gives (CL), and reduces (CI™) to

1 . . . . . .
5”u1+1 _ u1”2 + <uz _ uz+1,uz+1 _ a) > —Am(u).

10



Using u'*! = T(u?) and u = T(u), and taking 8 > 0, (CI") therefore holds for

(215) Bia@ = S
provided
0<D:= %IIT(ui) —uP+ @ -u—- (TW) - T@), T(u') - T(w)).

Using the a-averaged property and u = J(u), we expand

= BT P+ =T )+ @, (- @)U - J@) + e - D)

= (a+ P’ —all* + (B+a—-DJ) - J@I® - 2a + 28 - 1)) - J@),u' — ).

We take f := max{0,1/2 — a}. Then 2« + 2 > 1. Cauchy’s inequality and non-expansivity of J
thus give

D 1. . 1 i —~
— > |l —a@ll* - -] @) - J@I* 2 0.
l-a 2 2
This verifies (CI™). From (2.15), Aj41 () < —1 min{1, a/(1 — a)}|lu’*" — u'||%. We now obtain the
claimed convergence from Corollary 2.2 and Proposition 2.5. O

Remark 2.10. The preconditioner Viy1(u) = T(u') — T(u) is a T-based “distance”, which is not
obviously a Bregman distance.

3 SADDLE POINT PROBLEMS

With K € £L(X;Y), G € C(X) and F* € C(Y) on Hilbert spaces X and Y, we now wish to solve
(S). The first-order necessary optimality conditions can be written

(OC) - Ky € 0G(x), and Kx € 0F*(y).

Setting U := X X Y and introducing the variable splitting notation u = (x,y), u = (%, ), etc.,
this succinctly be written as 0 € H(u) in terms of the operator

(3.1) H(u) = (86(") Ky ) .

OF*(y) — Kx

In this section, concentrating on this specific H, we specialise the theory of Section 2.2 to
saddle point problems. Throughout, for some primal and dual step length and testing operators
T;,®; € L(X;X),and 244, Vi1 € L(Y;Y), we take

_Ti 0 (D 0
(3-2) Wiy = (0 2i+1) , and Zjyq = (O \Pi+1) .
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To work with arbitrary step length operators, which will be necessary for stochastic algorithms
in Section 4.5, as well as the partially accelerated algorithms of [28], we will need abstract forms
of partial strong monotonicity of G and F*. As a first step, we take subsets of operators

T c L(X;X), and S c L(YV;Y).
We suppose that dG is partially (strongly) 7 -monotone, which we take to mean

(G-PM) (0G(x") = 0G(x),x" = x)7 > [|x" - xll%_, (xx,x' €eX;TeT)

for some linear operator 0 < T € £(X;X). The operator T € 7~ acts as a testing operator.
Similarly, we assume that F* is S-monotone in the sense

(F*-PM) (OF*(y") = 0F*(y),y' =¥ 20 (y,y €Y; > e8).
Assuming G to satisfy (G-PM) for I' and F* to satisfy (F*-PM), we also introduce
_ . [ 2nT 2Tk
2= o 2.

which is an operator measure of strong monotonicity of H.

Example 3.1 (Block-separable structure, monotonicity). Let P, . .., Py, be projection opera-
tors in X with Zj”i1 P; =Iand P;P; = 0if i # j. Suppose Gy,...,G;, € C(X) are (strongly)
convex with factors y1, ..., ym > 0. Then (G-PM) holds with T = 3’72, y;P; for

(33) G(x) = ZGj(ij)’ and 7 = {T = Z tiPj |t > 0,5 C {1,. ..,m}}.

Jj=1 jGS

3.1 ESTIMATES

Using the (strong) 7 -monotonicity of dG, the next lemma simplifies Corollary 2.2 for H given
by (3.1). We introduce I = I' to facilitate later gap estimates that will require the conditions in
the lemma to hold for I' = I'/2 instead of ' = T'.

Theorem 3.1. Let us be given K € L(X;Y), G € C(X), and F* € C(Y) on Hilbert spaces X and
Y. Suppose G satisfies (G-PM) for some 0 < T € L(X;X). Foreachi € N, let T;, ®; € L(X;X)
and %11, ¥ir1 € L(Y;Y) be such that ®;T; € 7. Alsotake V/,, : X XY — X XY, and M;4; €
L(X XY;X XY). Let H given by (3.1), Zi+1 and Wiiq by (3.2), and Viiq by (2.3). Suppose (PP) is
solvable, and denote the iterates by u' = (x',y"). Then (CI), (CI") and (DI) hold if Z;11M;41 is
self-adjoint, and forT =T we have

1. . . 1 .
CI-T - u1+1 _ ul 2 / + = u1+1 _ 17 2 _
( ) 2 I ”Z”lM”l 2 I ||Zi+1(Ei+1(r)+Mi+1)—Zi+2Mi+2

step length in local metric linear preconditioner update discrepancy
0 i+1 * (> i+l _ = ’ i+1 i+1
+ <6F (y ) - OF (J/), y - y>‘1’i+12i+1 + <Vi+1(u )’ u - iDZHl
variably useful remainder from H from non-linear preconditioner

> —Aia(u).

12



Proof. First of all, we observe that (CI-T') implies

i+1 i i+1 2
(3.4) 5”ul+ —ull+ EHuH B u||Zi+1(Ei+1(0)+Mi+1)—Zi+zMi+z
+ <6G(xi+1) - 9G(x), x - A>q>iTi + <6F*(yi+1) - aF*G/\)’yiH - %‘Piﬂziﬂ
+ (V@™ u™ =0y, > —Aa ().

Here pay attention to the fact that (3.4) employs =;,1(0) while (CI-T') employs =;1(T). If we
show that (CI) follows from (3.4), then (CI™) and (DI) follow from Corollary 2.2. Indeed, using
the expansion

D, T; 0
ZiaWip = ( ! ),

0 V¥in2in

we expand for any u = (X, y) that

<Zi+1M/i+1(H(ui+l) — H(u)), uitl = )
= (0G(x™") = 0G(), x"! = Xyg, 1, + (OF (") = OF (1), ™" = Mwazia
+ <cDiTiK*(yi+l - )"D,xm -X) - <\Iji+1zi+1K(xi+1 - }),yiﬂ — %

With the help of =;,1(0) we then obtain
. . 1. —
(H@™) = H@,u"™ =)z, w2 S0 = 2z,02,00)
+(9G("™) = 9G(R), x™ = Dya,1, + OF (v™) = OF 3).y"™ = Pz
Inserting this into (3.4), we obtain (CI). O

3.2 EXAMPLES OF PRIMAL—DUAL METHODS

We now look at several known methods for the saddle point problem (S).

Example 3.2 (The primal-dual method of Chambolle and Pock [7]). This method consists of
iterating the system

(3.52) xi= (I + 1;0G) 7 (x' — 1, K*y'),
(35b) )?H—l o= wi(xi+1 _ xi) + xi+1’
(3.5¢) y = (I + 01410F) (3! + 01 KX Y).

In the basic version of the algorithm, w; = 1, 7; = 7o > 0, and 0; = 0y > 0, assuming the step
length parameters to satisfy

(3-6) 7000 lIK1 < 1.

The iterates convergence weakly, and the method has O(1/N) rate for the ergodic duality
gap, to which we will return in Section 4. If G is strongly convex with factor y, we may take
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v € (0,y], and accelerate
(3.7) Wi = 1/7[1+2y7i, Tip1:=Tiwi, and 04 = 0;/w;.

This yields O(1/N?) convergence of lxN — x]|? to zero.

Proof of convergence of iterates. We formulate the method in our proximal point framework
following [13, 28] by taking as the preconditioner

I —;K* ,
Miy = (—O'iK 11 ) and Vi, =0

As the step length and testing operators we take T; = 7;1, 241 = 0i11l, ©; = ¢il, Yir1 = il

We also write I := y1. Taking A;41(u) := —% lui*t — ”émMm’ we reduce (CI-T) to
1 .. .
(3.8) 5”“”1 - 7v¢||12)i+2 >0 for Diyp:=Zi1(Bi1(D) + Miy1) — ZizaMiys.
We may expand
¢il —$iTiK*
.9a ZiviMiq = , and
(3.92) +1Mi+1 (_¢i+10'iK Vil
(3.9b) Diry = ( ($i(1+2y7;) = Pira)I (Piti + Pir1Tiv1) K™
' " (Vis20it1 — 2Yi110i401 — Yir101)K (Vi1 — Vi)

We have || - [|p,,, = 0 (but not D;,, = 0, as the former depends on the off-diagonals cancelling
out), and Z; 1M, is self-adjoint, if for some constant  we take

(3-10) Giv1 = ¢i(1+ 27%‘), Tj = ¢;1/2, oi = ¢iti/Y, and Yy =
This gives the acceleration scheme (3.7). Moreover, for any é € (0,1) holds

Sl 0 )

(3'11) Zi+1Mi+1 2 ( 0 l//I— (1 _ 5)—1KK* .

Thus Z;.1M;y; > 0if ¢ > (1—8)7}||K||%. By (3.10), 0;7; = 1/¢. Since this fixes the ratio of o; to
1;, we need to take 1 := 1/(0g70) as well as § := 1 — 6y7y||K||?. Through the positivity of §, we
recover the initialisation condition (3.6).

Theorem 3.1 and Proposition 2.5 show weak convergence of the iterates without a rate. If G is
strongly convex with factor y > 0, so that also y > 0, the results in [7, 28] show that zy is of
the order O(1/N), and consequently @y is of the order ®(N?). By Proposition 2.4, [|xV — X]|?
converges to zero at the rate O(1/N?). O

Example 3.3 (Alternating Directions Method of Multipliers, briefly). The classical ADMM
[12] and Douglas—Rachford splitting [11] are known to be related to the Chambolle-Pock
method; in fact the Chambolle-Pock method is a preconditioned ADMM [7]. From [3, Section
5], we can deduce that compared to the Chambolle-Pock method, the ADMM merely has
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the sign of K reversed in

I ’Z'iK
Mivy = (cnK I )
Taking 7; = 79 and 0; = 0y constant and satisfying (3.6), the iterates converge weakly.

Acceleration can provide O(1/N) convergence of IV = x]|%.

Proof of convergence. Following Example 3.2, we now expand

(pi(1+ 2yT;) = i) (3¢iti — ¢i+11’i+1)K*) ‘

D; =
2 ((¢i+10i — 2Yis10i41 — Yis20i41)K (Vix1 — Vi)

This time || - ||p,,, = 0 and Z; 1M, is self-adjoint if we take

(3-12) Gis1 = ¢i(1+2yT;),  Tip1 = Tidi/Piv1,  0i =i/, and Yy =

If y = 0, which corresponds to the standard ADMM with fixed step lengths, it is easy to retrace
the steps of Example 3.2 to prove weak convergence (without a rate). If y # 0, we obtain
ON+1 = ON + 2YTN1ON-1 = N + 2YToo = Po + 2Ny 7To¢po. Therefore, the acceleration scheme
(3.12) only gives the rate O(1/N). O

Example 3.4 (Chambolle—Pock with a forward step). Suppose G = Gy + J with G (strongly)
convex with factor y > 0, and V] Lipschitz with factor L. (J does not have to be convex.)
In [8], the Chambolle-Pock method was extended to take forward steps with respect to J.
With everything else as in Example 3.2, take V., (u) := (;(VJ(x") — VJ(x)), 0). Then (PP)
can be rearranged as

(313) x*i= (1 4+ 1,0G) ! (x' — V] (x) - nK*y"),
(314) )?i+1 o= w,-(x”l _ xi) + xi+1’
(3.15) Yyt i= (I + 014310F") 7 (y' + 03 KX ).

The method inherits the convergences properties of Example 3.2 if we use the step length
update rules (3.7), and initialise 7y, oy > 0 subject to (3.6), and

(3.16) 0 <0 :=1-Lty/(1 - 1900|IK|[?).
Proof of convergence. With D;,, as in (3.8), the condition (CI-T') becomes
1 . . 1 , .
(3.17) 5”1«11+1 - Ml||2.HMi+1 + EHHIH - ll||i-)i+2 + 79V (x") = VJ(X),x™* = %) 2 =N (3).
The rules (3.10) force || - ||p,,, = 0. Applying the estimate (2.9) to J, (3.17) becomes

L in in2 Tigil i in2 -~
S =l ay = = T =X 2~ A @)
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We take A1 (1) = —g lui*! — ! I@Hle for some 6 > 0, and deduce using Cauchy’s inequality
that this condition holds if

I 0
(1-0)Zi M1 > 1;¢;L (0 0) .

Recalling (3.11), this is true if (1-0)5¢; > 7;¢;Landyy > (1—5)_1¢in IK||?. Further recalling (3.10),
and observing that {r;} is non-increasing, we only have to satisfy (1 — 0)(1 — 1o00||K||?) > L.
Otherwise put, we obtain (3.16). O

Example 3.5 (GIST). Suppose G(x) = %llf — Ax|I%, Al < V2, and ||K|| < 1. Take

o= (057t (! %)

With T; := I and 3;,4 := I, we then obtain the Generalised Iterative Soft Thresholding (GIST)
algorithm of [18]

Y= (I + 0F) (I - KK*)y! + K(x' — VG(xY))),
= x' - VG(x') - Ky

The iterates {x'};en converge weakly to X.

Proof of convergence. Clearly Z; 1M1 is positive semi-definite self-adjoint. Also G satisfies
(G-PM) with T’ = A*A. If we take ®; = I and ¥;,; = I, then
—2K 0

= 2A*A 2K*
Diyy := Zip(Binn(T) + Miy1) — ZiyaMiyy = ( )

Thus £ |lull 12),~+2 = ||x|l5. ,- Eliminating F* by monotonicity, (CI-T) thus holds if

1 i+1 in2 i+1 =112 i+1 i+1 =~
EHUH - ul”Z,-HMM + “xl+ _XHA*A + <Zi+1Vi,+1(ul+ )sUH -uy > =Ai(u).

Expanding and using ||K|| < 1, we see this to hold when

1 v~ A
§||xl+1 _ xl”2 + ”xl+1 _ x”124*A + <A A(xl _ xl+1)’xl+1 _ 55) > —Ai+1(ﬂ).
Our assumption [|A|| < V2 guarantees %(A*A)2 < A*A. Cauchy’s inequality therefore shows
that we can take A;;q = —£||x"*! — x'||? for some ¢ > 0. Using Theorem 3.1 and Proposition 2.4,

we obtain weak convergence. O

4 THE ERGODIC DUALITY GAP AND STOCHASTIC METHODS

We now study the extension of the testing approach of Section 2.2 to produce the convergence
of an ergodic duality gap. Throughout this section, we are in the saddle point setup of Section 3.
In particular, H is as in (3.1), and the step length and testing operators Wj.; and Z;; as in (3.2).
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4.1 PRELIMINARY GAP ESTIMATES

Our first lemma demonstrates how to obtain a “preliminary” gap G/, ,(u) from H. If the step
lengths and tests are scalar, T; = 7;I, and ®; = ¢;I, etc., and satisfy 7;¢; = 0;1;,4, it is easy to
bound this preliminary gap from below by 7;¢; times the conventional duality gap

(41) G(x.y) = (G(x) + (3. Kx) - F(3)) - (G®) + (3, KZ) — F*(3)).

To do the same for more general step length operators, we will in Section 4.2 introduce abstract
notions of convexity that incorporate ergodicity and stochasticity.

Lemma 4.1. Let us be given K € L(X;Y), G € C(X), and F* € C(Y) on Hilbert spaces X and Y.
Foreachie N, letT;,®; € L(X;X) and 241, ¥i41 € L(Y;Y). Then for anyF e L(X;X),

. . L~ 1 .
(4-2) (H@™),u™ =z, wi,, = Gl @5 + S|lu”™! =@l ;
2 ZL+1—1+1(F)

where the “preliminary gap”

Gia(w:D) :=0G(x).x = Dz, = Ix =FI =+ OF (9).y = Pwzin

— (Y, (KT ®; = ¥i112i1K)X) = (¥, ¥ir1Zi1KX) + (¥, KT; @} x).

Proof. Similarly to the proof of Theorem 3.1, we have

(H(u”l), ui+1 _ A>Zi+1147i+1 — (8G(xi+1),xi+1 _ A><I> T, + <(I)'T'K*yl+1 i+l _ 55)
+(OF (™), ¥ = Py, — T ZinKx Ly =),

A little bit of reorganisation gives (4.2). Indeed

<H(ui+1)’ ui+1 - @ZiJrl‘/ViH <6G( l+1) - 55>(DiTi - ||xi+1 x”i TF

+OF (). v = Dz + I =TI

+ (Y =P, (KT O — ¥ 211 K) (6 - x)>
-y, (KT*dJ* - ¥12i11K)x)
- (™ l+121+1K3?> + (7, KT @} x"™")

i+1, i+1 _ 2
= gz+1(u F) 2 ” ||Zi+13i+1(f)' -

The next lemma extends Theorem 3.1 to estimate the preliminary gap.
Lemma 4.2. Let us be given K € L(X;Y), G € C(X), and F* € C(Y) on Hilbert spaces X and Y.
Foreachi € N, letT;, ®; € R(L(X;X)) and X1, ¥Yip1 € R(L(Y;Y)), as wellasV/,; € R(XXY —
X XY)and M;y; € R(LX XY; X XY)). Let H given by (3.1), Z;41 and Wiyq by (3.2), and Vi1 by
(2.3). Suppose (PP) is solvable, and denote the iterates by u' = (x',y"). If Z;11M;4, is self-adjoint,
and

CI- - uz+1 — 4t 2 + = ul+1 2
( g) 2 ” ”Z”ljwi*'l 2 || ” Zi1(Eia( F)+A11+1) Zita2Miso

+ (Vi @), u* =)z, > =R (@)
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for some Te L(X;X), then

N- N-

1 N P —
(43) Sl =T, e, + Z Gl (uT) < -Ilu°—ullélMl Z 1@ (N 21).

i=0 i=0

Proof. Inserting (4.2) into (CI-G) proves (CI") for Aj1 (%) := Ajq () — §{+1(ui+1;f). Now we
use Theorem 2.1. O

The problem with the above Lemma 4.2 is that it loses JF from the condition (CI-G) compared
to (CI-T). Thus (CI-G) can be more difficult to satisfy for particular preconditioners that are
related to OF, such as the forward-backward splitting in Example 2.5. Fortunately, there is a
remedy: to study a one-sided gap that provides no indication of the convergence of the dual
variable.

Lemma 4.3. Let us be givenK € L(X;Y), G € C(X), and F* € C(Y) on Hilbert spaces X and Y.
Foreachi € N, letT;, ®; € R(L(X;X)) and %41, Vi1 € R(L(Y;Y)), aswellasV/ € R(XXY —
XxY)and M;y1 € R(L(X X Y; X XY)). Let H given by (3.1), Z;4+1 and Wiiq by (3.2), and Vi1 by
(2.3). Suppose (PP) is solvable, and denote the iterates by u' = (x',y"). If Z;+1M;4, is self-adjoint,
and (CI-T) holds for someT € L(X;X), then

N-1 N-1
1 N A~
(4.4) 5||uN—u||§NHMNH+Zg+1 XL < —Ilu — @l + ) Aa@ (N 21).
i=0

i=0

Proof. Let us write (Hy(u), Hy (1)) := H(u). Then 0 € Hy,(y). We may thus expand

Qz‘,ﬂ(uiﬂ;i:) = gi,+1(ui+l§i:) - <Hy (y)’yiﬂ - y)‘l’mzm
= gil"'l(u“—l; F) - <6F*(§>’ yi+1 - ?)‘1’1‘4—12”1 + <\Ili+12i+1K*§’ yi+1 - J7>
= Gl (L) +OF (™) = 0F (3), Y™ = Mwisisi-

Inserting this into (4.2), we obtain

) ) 1 .
i+1 i+1 _ — G’ i+l = i+1 _ 2
<H(u )’u a>Zi+1W[+1 g1+1( ’y7r) 2 ”u ||Zl+1'—‘l+1(r)

+ <aF*(yl+l) - OF" (5;)’ yi+1 - y>\Pi+12i+1’

(4.5)

We write A,+1 for the A;4; for which (CI-T') holds. Inserting (4.5) into (CI-T") proves (CI™) for
Aip1(@) = Apr (@) — Gl (LY T). The rest follows from Theorem 2.1. O

4.2 CONVERSION OF PRELIMINARY GAPS TO ERGODIC GAPS

The “preliminary gaps” are not as such very useful. To go further, the abstract monotonicity
assumptions (G-PM) and (F*-PM) are not enough, and we need analogous convexity formulations.
We formulate these conditions directly in the stochastic setting. Towards this end we introduce
the following notation:
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Definition 4.1. We write x € R(X) if T is an 7 -valued random variable: x : Q — X for some
(in the present work fixed) probability space (Q2, O), where O is a o-algebra on Q. We denote
by E the expectation with respect to a probability measure P on Q. As is common, we abuse
notation and write x = x(w) for the unknown random realisation w € Q.

We refer to [26] for more details on measure-theoretic probability. From now on, we assume
for allN > 1 that whenever T; (:= ®;T;) € R(7") and x'™! € R(X) foreachi = 0,...,N —1with
Z [E[T] = I, then for some 0 < T € L(X;X) holds

N-1 4 . 1
(G-EC) (Z E[T;x"] ) G®) = Y E[(IG(™),x™ - D) + Sl = §||%r].

i=0
Analogously, we assume for Sin (= i Zis) € R(S) and y'*l e R(Y) foreachi=0,...,N-1
with YN VE[Z;41] = I that

N-1 N-1
(F"-EC) F*(Z E[iiﬂy”l}) ~F@) 2 ) E[@F (™). -9, ]

i=0 i=0

Example 4.1 (Block-separable structure, ergodic convexity). Let G and 7 have the sepa-
rable structure of Example 3.1. We claim that (G-EC) holds. Indeed, let us introduce T; :=

1 7,iP; > 0, satistying SN YE[7;,:] = 1for each j = 1,..., m. Splitting (G-EC) into sepa-
rate inequalities over all j = 1,...,m, and using the strong convexity of G;, we see (G-EC)
tobe trueifforallj=1,...,m holds

N-1 N-
(4.6) Gj(z [E[%;-,,-ij"“]) Z (Gy(Px™) - Gi(PD)) ] -

i=0 i=0
The rlght hand side can also be written as fQN G;j(Pix'(w)) — G;(P;x) du™ (i, ») for the
measure p~ :=7; Zf\io 8; x P on the domain QV :={0,..., N~ 1} XQ. Using our assumption

SN [E[Tj’,‘] = 1, we deduce N (QN) = 1. An application of Jensen’s inequality now shows
(4.6). Therefore (G-EC) is satisfied.

We also assume that either

(CG) E[®;T;] = n:/, and E[¥iiXin] =ml, (i21),
or
(Cg*) [E[CI)ITI] = 771'1, and [E[‘I’,Zl] = r_],-I, (l > 1),

As will see in Example 4.2, (CG.) is satisfied by the accelerated Chambolle-Pock method of
Example 3.2. In our companion paper [27], we will however see that (CG) is required to develop
doubly-stochastic methods.

With these, and the gap functional G from (4.1), we derive the next two lemmas that are
meant to be used in combination with either Lemma 4.2 or Lemma 4.3, to estimate the sum of
the preliminary gaps therein. For this, the expectation needs to be taken in the estimates of the
latter. All of these different combinations will be summarised in Theorem 4.6 after the lemmas.
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Lemma 4.4. Suppose (G-EC), (F*-EC), and (CG) hold. Set

N-1

(47) In =)

i=0

and for {(x', y" )}, c X X Y, define the ergodic sequences

N-1
(4-8) xn =N 'E Z T @ x'™!
i=0

N-1
, and yN:= gKrl[E[Z Zi‘<+1\1’i*+1yi+1]-
i=0

Then

Z
N

E[G/ (x"", y"T/2)] = (NG (XN, IN)-

Il
o

i
Proof. Using (CG), (G-EC), and (F*-EC), we compute

N-1 N-1
Z [E[gl{+1(xi+l’yi+l;l—‘/2)] _ Z [E[<8G(xi+1)’xi+1 _ A>(DiTi
i=0 i=0

i+1 i+1) i

- )?”éiTir/Z + <6F* (y Y - 5/\>‘yi+12i+1

— NGNS KXY + NGV KXND) = (NG (XN YN)-

—lx
This immediately yields the claim.
Lemma 4.5. Suppose (G-PM), (F*-PM), (G-EC), (F*-EC), and (CG.) hold. Set
N-1
(4.9) Lon = ) M
i=1
and for {(x", yi)}f\il C X X Y, define the ergodic sequences

N-1
(4.10) x.n = NE Z T @ x"™!
i-1

N-1
, and Y. N = {;}V[E{Z eyt
i=1

Then

zZ

-1

E[G{n (", y"™5T/2)] 2 (NG (%, N» TN

Il
=}

Proof. Using (G-PM) and (OC), we deduce
Gi(x', yT/2) 2 (OF (y'), y' = Phwys, + (F, BiZKT) — (¥, ViShKX).
Likewise (F*-PM) and (OC) give

g]/\](xN’ yN’r/z) 2 <6G(xN)7xN - j@N,ITNfl - ||xN - &\llg)N—lTN—lr/z

— (¥, KTy, @y 1) + (3, KTJ\*I—ICD;\I—lxN>'
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’

Shifting indices of ' by one compared to G/,,, we define

g;,i+1 ::<6G(xi+l)’xi+l - A><I>iTi - ||xi+1 - .;C\Hé)iTir/z + <(9F*(yl)’ Z;k‘yz*(yl - 5/\)>
— 3. (KT; ®; = ¥;K)%) — (y', ¥;2K%) + (7, KT; @}x").

Correspondingly reorganising terms, we observe

N-1
3 Gl Ly T 2) = Gl ) + Gl (v T2)
i=0

N-2 N-1

+ Z gi/+1(xi+1’ yi+1§r/2) 2 Z g;,iﬂ‘

i=1 i=1

We now estimate Zfi}l E[G. ;,,] analogously to the proof of Lemma 4.4. O

The next theorem is our main result for saddle point problems.

Theorem 4.6. Let us be given K € L(X;Y), G € C(X), and F* € C(Y) on Hilbert spaces X and Y,
satisfying (G-PM) and (F*-PM) forsome 0 < T € L(X;X). Foreachi € N, letT;, ®; € R(L(X; X))
and %41, ¥ir1 € R(L(Y;Y)) be such that ®;T; € R(T") and ¥i11%i41 € R(S). Also take V]| €
RX XY > XXY)and My € RILX XY;X XY)). Let H given by (3.1), Zi+1 and Wi by (3.2),
and Vi1 by (2.3). Suppose (PP) is solvable, and denote the iterates by u' = (x',y"). Letu = (X, )
be a solution to (OC). Assuming one of the following cases to hold, let

0,
ING(XN. V),

I, (CI-T') holds,

I'/2;(CI-T"), (G-EC), (F*-EC) and (CG) hold,
N = {LNGEn. ), (CLT), (G-EC), (F*-EC) and (CG.) hold,
(NG (XN, IN)s (CI-G), (G-EC), (F*-EC) and (CG) hold,
(NG Fn.Ton), T =T/2:(CLG), (G-EC), (F'-EC) and (CG.) hold.

I'/2;
r/2;

aw ! Bt e R M

If Z;11M;4q is self-adjoint, then

N-1

1 - - —~ —~
(DL-G) SE[IN ~31Z ary | +98 <  = Tl + D ElA(@)].
i=0

Proof. The case gy = 0 is simply the result of taking the expectation in the claim of Theorem 3.1.
The remaining cases follow by taking the expectation in different combinations of Lemma 4.2
or 4.3 with Lemma 4.4 or 4.5. m|

As an easy corollary, we obtain convergence of function values for the basic minimisation
problem H = 9G.

Corollary 4.7. Let us be given G € C(X), satisfying (G-PM) and (G-EC) for T' = 0. For each
i€N,let W,M;,Z; € R(L(X;X)) as well as V] € R(X — X). Suppose Z;W; € R(T"), that
Z;M; is self-adjoint, that (CI) holds, and (PP) is solvable with H = G and V41 as in (2.3). Suppose
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E[Z;W;] = ij:] for some#; > 0. Letu € [0G)1(0). Then the iterates {u'};cn of (PP) satisfy (DI-G)
with
gn = {N(G(un) — G(u)),

N-1
, IN= Z i
=0

Proof. Introducing K := 0 and F* = 0 (or F* = §{p}), we can write the original problem in the
saddle point form (S). Then the gap G(x, y) = G(x) —G(x) measures the convergence of function
values. We can also extend the method for (PP) with H = G to the saddle point problem by
choosing

where

N-1
a’N = ggfl[E Z Wl-*Z;ku’H
i=0

_ _ My, 0
‘/i/-i-l(u) = (‘/i/-i—l(x)9 O)’ and Mi+1 = ( 0+1 0) 5
as well as T; := W;, ®; := Z;. We also denote by W;,; and Z;,; the step length and testing
operators for the saddle point problem. Now T;®; = 7;1, so we can choose ¥;4; = ;1] and
2i+1 = 041l such that (CG) holds and indeed KT;®; = ¥;;13;1K. The latter causes the off-
diagonal components of Zi+12i+1(T) to cancel. Consequently (CI-T) holds for I' = 0 by virtue of

(CI) holding for the original method. Now we just apply Theorem 4.6. O

4.3 PRIMAL—DUAL EXAMPLES REVISITED

We now study gap estimates for several of the examples from Section 3.

Lemma 4.8. Suppose G € C(X) is (strongly) convex with factory > 0, T; = 7;I and ®; = ¢;1, and
T = [0,00)I. Then both (G-PM) and (G-EC) hold withT = yI.

Proof. This follows from Example 4.1 with m = 1. O

Suppose we have a method for (S) that satisfies the conditions of the earlier Theorem 3.1
with[ =T = YL T; = il, ®; = ¢;l, X1 = 041, and ¥iyy = Y441 This includes the examples
of Section 3.2. Then Lemma 4.8 proves all of (G-EC), (F*-EC), (G-PM) and (F*-PM). To use
Theorem 4.6, it remains to prove either (CI-T) or (CI-G) with T= (y/2)I instead of T= yI, and
either (CG) or (CG.). The conditions (CG) or (CG.) we reduce to

(4.11) either ¢;7; = Yiy10i41 or @it = Yi0;.

If these conditions are satisfied, and A;; < 0, we get from Theorem 4.6 the convergence of

G (XN, y) or G(X:. N, V) to zero at the respective rate O(1/{n) or (1/{. N).

Let us now return to the primal-dual examples of Section 3.2. In the accelerated variants, we
took arbitrary J € [0, y], and proved (CI-T) for T’ = JI. Therefore, it now suffices to restrict 7 €
[0, y/2] to satisfy (CI-T') for Theorem 4.6. We can also eliminate F* from (CI-I') by monotonicity,
so (CI-G) also holds in that case.

Example 4.2 (Chambolle-Pock gap). The Chambolle-Pock method of Example 3.2 satisfies
the second part of (4.11), and we have {, y = Z{i}l %/2 as well as A;;; < 0. In the unac-
celerated case (y = 0), we get (L, Ny = N gb(l)/ ?_ Therefore, according to the remarks in the
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previous paragraph, we get O(1/N) convergence of G(x. N, V« N) to zero. In the accelerated
casey € (0,y/2], ¢; is of the order @(i?). Therefore also ¢,y is of the order ©(N?), so we get
O(1/N?) convergence of G(¥. N,y N) to zero. The convergence of G (., N, y) is analogous.

Example 4.3 (ADMM gap). The ADMM of Example 3.3 also satisfies the second part of (4.11).
We recall that ¢;7; = constant. Therefore (i is always of the order ©(N). We now get the
convergence of G(xXn, yn) to zero at the rate O(1/N) with or without the step length update
scheme (3.12).

Example 4.4 (GIST gap). The GIST of Example 3.5 satisfies either of the conditions in (4.11),
as 7; = ¢; = 041 = Yip1 = L. It therefore has {y = N —1and {, y = N. Therefore, we have
O(1/N) convergence of all of the gaps to zero.

4.4 BASIC EXAMPLES REVISITED

Let H = 0G for G € C(U), and consider a method satisfying the conditions of Theorem 2.1
with W; = 1;1, Z; = ¢;1. This includes many of our examples in Section 2.3. Lemma 4.8 proves
(G-EC), so the conditions of Corollary 4.7 are satisfied with {y = Y N;" 7;¢;. Therefore, G(xXn)
converges to G(x) at the rate O(1/{n).

Example 4.5 (Gradient descent function value). For the gradient descent method of Exam-
ple 2.3, we have 7; = r and ¢; = ¢ constants, so we obtain O(1/N) rate. Similarly we can
obtain O(1/N?) convergence for the accelerated variant from Example 2.4 as long as we
choose y € (0,y/2].

Example 4.6 (Forward—backward splitting function value). As we recall from Example 2.5,
forward-backward splitting has the same convergence properties as gradient descent. There-
fore Example 4.5 characterises convergence of the function values.

Example 4.7 (Newton’s method function value). For Newton’s method in Example 2.7, we
have 7; = 1and ¢n := (2x)N ¢y for x € (1/2,1). We therefore obtain linear convergence of
the function values.

4.5 STOCHASTIC EXAMPLES

We now exploit the fact that the step length W;,; can be a non-invertible operator. We observe
that in a stochastic setting, we only need the expectation E[A;;1] in Corollary 4.7 and The-
orem 4.6. Therefore, we can relax the relevant condition (CI™), (CI), (CI-T), or (CI-G) to the
expectation. This may produce more lenient step length and other conditions. Here we demon-
strate the flexibility of our techniques with a few basic examples. We refer to the review article
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[29] for an introduction and further references to stochastic coordinate descent, and to our
companion paper [27] for primal-dual methods based on the work here.

Definition 4.2. We write (Py,...,Py,) € P(U)if Py, ..., Py, are projection operators in U with
j”ilP- =1, and P;P; = 0 for i # j. For random S(i) C {1,...,m}, we then set
Ps(iy = Z P;, and IIgg := Z ﬂJij, where 7;; :=P[j € S(i)] > 0.
Jjes(i) Jjes(i)

For smooth G € C(U), we let Lg(;) > 0 be the II(;)-relative smoothness factor (see Lemma B.1),
satisfying

(4.12) Lg}i)HVG(u) - VG(U)”I%IS(,-) <(VG(u) - VG(v),u —v), (u,vel).

We write E[-|i] for the conditional expectation with respect to random variable realisations
up to and including iteration i.

Example 4.8 (Stochastic gradient descent). Let G € C(U) have Lipschitz gradient, and
(P, ...,Py) € P(U). For each i € N, take random S(i) C {1, ..., n}, and set

(4.13) Wia = tillg), M =1, and Vi, (u) = Wiu[VG(u') — VG(u)].
Then (PP) says that we take gradient step on the random subspace range(ITs(;)):
(4.14) utt =yt - TiHS(i)VG(ui).

If the step lengths are deterministic and satisfy € < 7;Lg;) < 2m;; for all j € S(i) for
some € > 0, we have E[G(uy)] — G(u) at the rate O(1/N). Through the use of the “local”
smoothness factors L;), the method may be able to take larger steps z; than those allowed
by the global factor L in Example 2.3.

Proof of convergence. Taking Z;,; := I, Lemma 4.8 shows that G satisfies (G-EC) (with I' = 0).
We can also simply define 77; := E[Z;W;]. Then {Nx = Zﬁgl E(ZiW;] > Zﬁgl E[W;le > el.
Therefore Corollary 4.7 and Proposition 2.4 show the desired convergence provided we verify
(CI™). We do this through (CI*), which with U;4; = U now reads

Sl = ullP 4+ $rVG ) = VG W) u = u g = ~Aia(u'sw).

We have

EKVG(w') - VG(u"),u' —u*)ng, ] = ELVG(') - VG(u"),u' = u")eqmg g, i1
= E(VG(u}) — VG(u*),u' — u*)].
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Similarly to (2.9), we may thus estimate
E[(VG(u') - VG(u*),u — u*>ns(i)]
= IE[(VG(ui) - VG(u*),ui —u")] + [E[(VG(ui) -VGu"),u - ui)ns(i)]
> E[(VGu') - VGu*),u’ — u*) — L;}i)IIVG(ui) - VG(u*)IIIZIS(i)

Lsqw )2
- lu—u ”Hsu) .
Using (4.12), we see that (CI") is verified with
m 1— 1w i Ls(i)/2 )
(4.15) E[Ain(u'su)] = ‘[E[Z —— Py~ u)I?|.
j=1 2
This satisfies A;1(u*;u) < 0 under our step length assumptions. O

The smoothness of G limits the usefulness of Example 4.8. However, it forms the basis for
popular stochastic forward-backward splitting methods, of which we now provide an example.

Example 4.9 (Stochastic forward—backward splitting). Let (P, ..., Py,) € P(U). Suppose
H = VG + 0F for G, F € C(U), where G has Lipschitz gradient, and F = eri1 Fj o P;. Take
M1, Wiyq, and V/, | as in Example 4.8. Then (PP) describes the stochastic forward-backward

splitting method
ui“ = (I + r,-HS(i)aF)_l(ui - Tins(,')VG(ui)).

With u; := Pju, this can be written

Wit =

{(1 + nr 0F) 7 (ul - na P VG (), € S(i),
J

uj, Jj ¢ S(i).

Using Lemma 2.7, we deduce that the method has exactly the same convergence properties
as the stochastic gradient descent in Example 4.8.

Remark 4.9. Following Example 2.4, it is also possible to construct accelerated versions of both
Examples 4.8 and 4.9 if G + F is strongly convex.
Example 4.10 (Stochastic Newton’s method). Suppose (Pi,...,P,) € P(U) and G € C*(X).
Take H = VG, Wj4; := Ps(;) and
Vier(u) := [V2G(') = (I = Ps(5)) V2G(u')Ps(iy I (u — u') + Ps(y [VG (') — VG(u)],
where we abbreviate Ag(;) := Ps(;)APs(;). Then (PP) reads

0 = Ps(y VG(u') + [V2G ()]s (™ — ') + [V2G(u)]sope ('™ — u).
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We get

ultl =yt 4 [VZG(u)]g(i)VG(u’),
where Ay, satisfies AL = Ps)AL; Ps) and AswAL ) = Af, Asw = Pse- This is a
variant of stochastic Newton’s method and “sketching” [21, 22]. Notice how [VZG(u)]g 0)

can be significantly cheaper to compute than [V2G(u)]™".

With our machinery, we easily obtain with no convexity assumptions both function value
and, as a novelty for general G, iterate convergence in expectation: If V2G(u) > 0 and
E[P!|i — 1] = pI for some p € (0, 1), then both E[G(@N)] — G(u) and E[||u"N —u]|?] — 0 at
a linear rate.

Remark 4.10. From an estimate of the type E[lluN —u]|?] < Cn, as above, Jensen’s inequality gives
IE[uN] - @l|> < Cn. From this, with the application of the triangle and Cauchy’s inequalities, it is
easy to derive the variance estimate E[||E[u™] — uN|?] < 4C.

Proof of convergence of stochastic Newton’s method. We set M;,; := V2G(u*) and Z; := ¢;I for
some ¢; > 0. Then G € C%(X) implies that Z;,;M;,, is self-adjoint. We abbreviate P’ := Ps(i
and suppose V2G(u*) > 0. We also set Ujy; := {u € U | (I — P))(u — u')} in (CI*), which now
reads

1 . 1 ) .
(416) EHu - ul”;,—VZG(u*) + Ellu —u ||(2¢i—¢i+1)V2G(u*) + ¢iDi+1 > _Ai+1(u ;U)

for
Djy1 := D}, + D%, == (P"(VG(u') - VG(u*)),u — u*)
+ ((V2G@') — (I - PHYV?Gu')P' — VG (™)) (u — u'), u — u*).
By the fundamental theorem of calculus, there exists {* between u’ and u* with
Di,y = PV (W' ~u'),u—u") = (V2G(u")(u' —u’),u~u’)
— (I =PYV*Gu") (' —u*),u—u") + (P'[V’G({") = V’G(u")](u' — u"),u —u’).
Using P'(u —u') =u—u' = (u - u*) + (u* — u'), we can rearrange
DZ,, =([V*G(u') = V’G(u")](u —u'),u —u*) = (I - PYV?G(u') (u — u'),u — u")
=([V’G(u') = V’G(u")](u - u"),u —u") = (P'[V’G(u') - V2G(")](' - u*),u —u")
—((I - PHYV G (u — u*),u — u*) + (I - PHYV2GW*)(u' — u*),u — u*).
Using the three-point formula (2.5), we therefore obtain
Dis = 2w~ 1 Wi = g + 3 — a2
= 2V2G(uh)-V2G(u*) ~ o V2Gu) T g V2G(u*)

—(P'[V*G(u') - V’G()](W' - u*),u —u*)y - D},

for
= = PHYV G (u—u*), u—u*y = (I - PHV G (u — u*),u' — u*).

i+l "
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Since by assumption E[P!|i — 1] = pI for some p € (0,1), and u’ is known on iteration i — 1,
by Cauchy’s inequality for arbitrary € € (0, 1) holds

1—¢€

AT 1-p

I = 0 g | = 1] + Sl = 0 g
Writing
A; = PI[V2G(") - VEG()[VPG )] [VPG(T) - VPGP,

we deduce for 0 :=2 - (1-p)/(1—€) = (1+p—2¢€)/(1 - €) that

1 . 1 :
[E[Di+1] = E E”u —u II;VZG(ui)—VZG(u*)—Ai - E”u - ul”ézG(u*) .
For (4.16) to hold with E[A;(u*;u)] = 0, it therefore suffices that
$i[0V2G(') - Ai] = i VIG(W).

For small enough € > 0, we have 6 > 1. Proceeding similarly to Lemma 2.9, we deduce the
existence of ¥ > 1 such that this holds if we take ¢x := x. In that case ZyMy = V2G(u*)kN.
The rest follows from Proposition 2.4 and Corollary 4.7. O

An advantage of our techniques is the immediate convergence of:

Example 4.1 (Stochastic proximal Newton’s method). Let (P, ..., Pp) € P(U). Suppose
H = VG + OF for G, F € C(U), where G is smooth and F = Zj"il Fj o Pj. Take M1, Wj41,
and V/ , as in Example 4.10. Then we obtain the algorithm

= (I + [Vzc(u)]g(i)aF)—l(ui = [Vzc(u)]g(i)vc;(u")).

Note that the proximal step maintains u'*! € U;y; := {u € U | (I - P))(u'' — u’) = 0}.
Therefore, using Lemma 2.7, we deduce that the method has exactly the same convergence
properties as the stochastic Newton’s method in Example 4.10.

CONCLUSION

We have unified common convergence proofs of optimisation methods, employing the ideas
of non-linear preconditioning and testing of the classical proximal point method. We have
demonstrated that popular classical and modern algorithms can be presented in this framework,
and their convergence, including convergence rates, proved with little effort. The theory was,
however, not developed with existing algorithms in mind. It was developed to allow the devel-
opment of new spatially adapted block-proximal methods in [27]. We will demonstrate there
and in other works to follow, the full power of the theory. For one, we did not yet fully exploit
the fact that W;4; and Z;; are operators, to construct step-wise step lengths and acceleration.
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APPENDIX A OUTER SEMICONTINUITY OF MAXIMAL MONOTONE OPERATORS

We could not find the following result explicitly stated in the literature, although it is hidden in,
e.g., the proof of [24, Theorem 1].

Lemma A.1. Let H : U = U be maximal monotone on a Hilbert space U. Then H is is weak-
to-strong outer semicontinuous: for any sequence {u'};en, and any z' € H(u?) such thatu’ — u
weakly, and z' — z strongly, we have z € H(u).

Proof. By monotonicity, for any u’ € U and z’ € U holds D; := (u’ — u’,z’ — z') > 0. Since a
weakly convergent sequence is bounded, we have D; > (v’ — u’,z’ — z) — C||z — Z'|| for some
C > 0 independent of i. Taking the limit, we therefore have (u’ — u,z’ — z) > 0. If we had
z ¢ H(u), this would contradict that H is maximal, i.e., its graph not contained in the graph of
any monotone operator. O

APPENDIX B PROJECTED GRADIENTS AND SMOOTHNESS

The next lemma generalises well-known properties [see, e.g., 1] of smooth convex functions
to projected gradients, when we take P as projection operator. With P a random projection,
taking the expectation in (B.3), we in particular obtain a connection to the Expected Separable
Over-approximation property in the stochastic coordinate descent literature [23].

LemmaB.1. Let G € C(X), and P € L(X;X) be self-adjoint and positive semi-definite on a Hilbert
space X. Suppose P has a pseudo-inverse P' satisfying PPTP = P. Consider the properties:

(i) P-relative Lipschitz continuity of VG with factor L:

(B.1) IVG(x) =VG()llp < Lllx = yllpt  (x,y € X).

(ii) The P-relative property

(B.2) (VG(x + Ph) — VG(x),Phy < LIIAll5  (x,h € X).
(iii) P-relative smoothness of G with factor L:

(B.3) G(x + Ph) < G(x) + (VG(x), Ph) + IEJIIhIIIZJ (x,h € X).

(iv) P-relative co-coercivity of VG with factor L™:

(B.4) LIVG(x) = VG)llp < (VG(x) = VG(y),x = y)  (x,y € X).

We have (i) = (ii) <= (iii)) = (iv). If P is invertible, all are equivalent.
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Proof. (i) = (ii): Take y = x + Ph and multiply (B.1) by ||h||p. Then use Cauchy-Schwarz.
(ii) = (iii): Using the mean value theorem and (8.2), we compute (B.3):

1
G(x + Ph) — G(x) — (VG(x), Ph) = f (VG(x + tPh), Phy dt — (VG(x), Ph)
0

1 1
L
:f(VG(x+tPh)—VG(x),Ph>dt=f tdt - LRIl < 2 kil
0 0

(iii) = (ii): Add together (8.3) for x = x" and x = x’" + Ph.
(iii) = (iv): Adding —(VG(y), x + Ph) on both sides of (B.3), we get

G(x + Ph) — (VG(y), x + Ph) < G(x) — (VG(y), x) + (VG(x) — VG(y), Ph) + Iéuhuf,.

The left hand side is minimised with respect to x by taking x = y — Ph. Taking on the right-hand
side h = L™Y(VG(y) — VG(x)) therefore gives

GO) = (V6. y) < Gx) ~ (VG(), ) ~ VG () = VG-

Summing this estimate with one with x and y exchanged, we obtain (B.4).
(iv) = (i) when P is invertible: Cauchy—Schwarz. |
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