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1 INTRODUCTION

These lectures are based on the articles [26, 30, 31], as well as the lecture notes [27, 29].

We assume that the reader is familiar with basic convex analysis, including in particular
convex subdi�erentials; an introduction may be found, for example, in [27, 29], and more
in-depth details in [16, 24]. Before going forward, the reader may also wish to refer to
Appendix A to refresh their mind on notation.

1.1 how to derive optimisation methods?

Let f : X → R be convex, proper, and lower semicontinuous, on a Hilbert space X ; we
denote this f ∈ Γ(X ). We want to �nd a point x̂ such that

(P) f (x̂) = min
x∈X

f (x).

This is of course characterised by
0 ∈ ∂ f (x̂).

This system is, however, in most interesting cases di�cult to solve analytically. So let us
try to derive numerical methods. One way of deriving numerical methods is to replace the
original di�cult objective with a simpler one whose minimisation provides improvement
to the original objective.

Definition 1.1. A function f̃
sx : X → R is a surrogate objective for f : X → R at sx if f̃

sx ≥ f ,
and f̃

sx (sx) = f (sx).

Starting with a point x0, we would then minimise f̃x0 to obtain a new point xi+1. Through
the properties of the surrogate objective, this will not increase the value of f . Hopefully it
will provide signi�cant improvement! Then we repeat the process, minimising f̃x 1 , and so
on.
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1 introduction

1.2 gradient descent

What options are there for surrogate objectives, and which would be a good one? If f is
(Fréchet) di�erentiable, one possibility is

(1.1) min
x∈X

f̃
sx (x) := f (sx) + 〈∇f (sx),x − sx〉 +

1
2τ
‖x − sx ‖2.

To show that f̃
sx is a surrogate function for suitable factors τ > 0, we need the following

de�nition:

Definition 1.2. Let f : X → R be convex. We say that f is L-smooth if it is di�erentiable
and

(1.2) f (x′) ≤ f (x) + 〈∇f (x),x′ − x〉 +
L

2
‖x′ − x ‖2, (x′,x ∈ X ).

In general f (sx) = f̃
sx (sx). If f is L-smooth per De�nition 1.2, and Lτ ≤ 1, then also f ≤ f̃i .

Therefore, in this case, f̃
sx is a valid surrogate objective, and minimising f̃

sx will provide
improvement to f as well.

The optimality condition 0 ∈ ∂ f̃x i (x) becomes

(1.3) ∇f (xi) + τ−1(x − xi) = 0.

This holds if xi = x̂ by taking also x = x̂ . Therefore, there is a direct correspondence
between the solutions of the surrogate objective and the original. If xi , x̂ , solving (1.3) for
x = xi+1, we get the rule

(GD) xi+1 = xi − τ∇f (xi).

This is known as the gradient descent method. In this context the quadratic term in (1.1) can
be seen as a step length condition.

Will sequentially minimising f̃x i provide su�cient decrease in f such that we obtain
convergence of {xi} to a minimiser x̂ of f ? A conventional way to do this is via Browder’s
�xed point theorem; see, e.g. [29]. In this course, we will introduce a di�erent approach in
Chapter 2.

1.3 the proximal point method

The gradient descent method is very basic, but often not very good. In particular, subgradi-
ent extensions of (GD) can have very slow convergence. Therefore we need alternative
methods.
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1 introduction

We now allow for general (possibly non-di�erentiable) convex functions f : X → R, and
replace the surrogate objective in (1.1) by another surrogate

(1.4) min
x∈Rn

sf
sx (x) := f (x) +

1
2τ
‖x − sx ‖2.

In other words, we remove the linearisation, and try to minimise f directly with a step
length condition. Again sf

sx (sx) = f (sx), and clearly f
sx ≥ f . Therefore sf

sx is a valid surrogate
objective for f at sx . This time the optimality conditions for x minimising sfx i are

(1.5) 0 ∈ ∂ f (x) + τ−1(x − xi).

If xi = x̂ for x̂ a minimiser of the original objective f , then (1.5) is solved by x = x̂ , so again
there is a direct correspondence between the solutions of the surrogate objective and the
original.

The method based on solving (1.5) resp. (1.4) is known as the proximal point method. The
step is the backward step, or the implicit step, since we cannot in general derive an explicit
solution x = xi+1, and try to go “back to xi from xi+1”. However, often, and especially in the
context of splitting algorithms, (1.5) is easy to solve. We will get back to this. By contrast, the
gradient descent step (GD) is also known as the forward step or the explicit step, because
we calculate ∇f (xi) already at the current iterate, going “forward” from it.

Re-ordering as
xi ∈ τ ∂ f (xi+1) + xi+1,

the iteration resulting from the condition (1.5) may also be written as

(PP0) xi+1 := (I + τ ∂ f )−1(xi),

where the proximal mapping

proxτ ∂ f := (I + τ ∂ f )−1

is the inverse of the set-valued map A := I + τ ∂ f , de�ned simply as

A−1y := {x | y ∈ Ax}.

(Thus y ∈ Ax ⇐⇒ x ∈ A−1y .) As is evident from the expression

(1.6) proxτ ∂ f (x) = argmin
x ′

f (x′) +
1
2τ
‖x′ − x ‖2,

the proximal mapping is, in fact, single-valued.
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Example 1.1. Let f (x) = ‖z−x ‖22/2 for some z ∈ Rn. By (1.6), we have x′ = proxτ ∂ f (x) if
and only if x ∈ τ ∂ f (x′)+x′. This gives the requirement x = τ (x′−z)+x′. Consequently

proxτ ∂ f (x) =
x + τz

1 + τ
.

Example 1.2. Let f (x) = δ[−1,1] on R. Then by (1.6), x′ = proxτ ∂ f (x) if and only if
x ∈ τN[−1,1](x

′) + x′. Since z ∈ NC(x
′) implies τz ∈ NC(x

′) for any convex set C and
τ > 0, this is to say x ∈ x′ + N[−1,1](x

′). Since

N[−1,1](x
′) =


[0,∞), x′ = 1,
{0}, x′ ∈ (−1, 1),
(−∞, 0], x′ = 1,
∅, otherwise,

it is not di�cult to verify that

x′ = x ·min{1, 1/|x |} =


1, x > 1,
x , x ∈ [−1, 1],
−1, x < −1.

In other words, the proximal mapping is the (Euclidean) projection of x to [−1, 1]. This
is true in the general case f (x) = δC , as is already evident from (1.6).

Exercise 1.1. Calculate proxτ ∂ f on Rn for

(i) f (x) = δαB(x), where B is the unit ball and α > 0.

(ii) f (x) = α ‖x ‖2.

1.4 monotone variational inclusions

The proximal point method (PP0) readily generalises to solving for monotone H : X ⇒ X
the variational inclusion

(MVI) 0 ∈ H (x).

Definition 1.3. We recall that a set-valued map H : X ⇒ X is monotone, if

〈q′ − q,x′ − x〉 ≥ 0 ((q′,y′), (x′,x) ∈ GraphH ).
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1 introduction

The method is simply

(MPP) xi+1 := proxτH (x
i) = (I + τH )−1(xi).

The problem with (MPP) for any interesting H is that it will be just as di�cult to solve as
the original problem (MVI). There are however some ingenious ways to modify the step
(MPP) to be cheap for speci�c problems with interesting H .

1.5 saddle point problems

For some д ∈ Γ(X ), f ∈ Γ(Y ), and K ∈ L(X ;Y ), let us consider the problem

min
x
д(x) + f (Kx).

By writing f in terms of its convex conjugate f ∗, we are led to

(1.7) min
x

max
y

д(x) + 〈Kx ,y〉 − f ∗(y),

Using the fact that y ∈ ∂ f (z) if and only if z ∈ ∂ f ∗(y), which follows from f being convex,
proper, and lower semicontinuous [see, e.g.. 16, 24, 29], the optimality conditions for this
system can be seen to be

−K∗ŷ ∈ ∂д(x̂), and Kx̂ ∈ ∂ f ∗(ŷ).

These conditions may be encoded as 0 ∈ H (x ,y) in terms of

(1.8) H (x ,y) :=
(
∂д(x) + K∗y
∂ f ∗(y) − Kx

)
.

In principle, we may therefore apply (MPP) to solve the saddle point problem (1.7). In
practise we however need to work a little bit more, as the step (MPP) can rarely be given
an explicit, easily solvable form.

Exercise 1.2. With д and f convex, proper, and lower semicontinuous, verify that H given
in (1.8) is a monotone operator as per De�nition 1.3.

1.6 decoupling preconditioners, the pdhgm

However, there is a very e�ective primal–dual method for (1.7), that can be obtained from
(MPP) with a small change. Let us �rst write out in explicit form the algorithm, known as the
PDHGM (Primal–Dual Hybrid Gradient method, Modi�ed) or the Chambolle–Pock method.
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For parameters τ ,σ > 0, the primal variable x , and the dual variable y , we speci�cally
iterate

xi+1 := (I + τ ∂д)−1(xi − τK∗yi),(1.9a)
sxi+1 := 2xi+1 − xi ,(1.9b)
yi+1 := (I + σ∂ f ∗)−1(yi + σKsxi+1).(1.9c)

The step (1.9a) is simply a proximal step for x in (1.7), keeping y = yi �xed. The step (1.9c)
is likewise a proximal step for y in (1.7), keeping x �xed, not to xi or xi+1 but to the inertial
variable sxi+1 de�ned in (1.9b). This may be visualised as a “heavy ball” version of xi+1 that
has enough inertia to not get stuck in small bumps in the landscape.

With the general notation
u = (x ,y),

the algorithm (1.9) may also be written in the preconditioned proximal point form

(1.10) H (ui+1) +M(ui+1 − ui) 3 0,

for the monotone operator H as in (1.8), and the preconditioning matrix

M :=
(
I/τ −K∗

−K I/σ

)
.

Through the replacement of I byM in the basic proximal point iterationui+1 := (I+H )−1(ui),
we thus have in (1.9a)–(1.9b) a proximal point method for which the steps can often be
solved explicitly.

Theorem 1.1. Let f ∈ Γ(Y ), д ∈ Γ(X ), and K ∈ L(X ;Y ). Choose τ ,σ > 0 such that τσ ‖K ‖2 <
1. Let u∗ = (x∗,y∗) be a cluster point of the sequence of iterates {ui} generated by (1.9) for any
starting point u0 = (x0,y0). Then u∗ is a saddle point of (1.7).

Proof. A saddle point û satis�es 0 ∈ H (û). Therefore by the monotonicity of H ,

〈H (ui+1),ui+1 − û〉 ≥ 0.

Thus (1.10) gives

(1.11) 〈M(ui+1 − ui),ui+1 − û〉 ≤ 0.

With the notation ‖x ‖M :=
√
〈Mx ,x〉, we have

〈M(ui+1 − ui),ui+1 − û〉 =
1
2
‖ui+1 − ui ‖2M −

1
2
‖ui − û‖2M +

1
2
‖ui+1 − û‖2M .
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Now (1.11) shows that

(1.12)
1
2
‖ui+1 − û‖2M +

1
2
‖ui+1 − ui ‖2M ≤

1
2
‖ui − û‖2M .

Summing (1.12) over i = 0, . . . ,N − 1 shows that

(1.13)
1
2
‖uN − û‖2M +

N−1∑
i=0

1
2
‖ui+1 − ui ‖2M ≤

1
2
‖u0 − û‖2M .

Now, the condition τσ ‖K ‖2 < 1 ensures that ‖u‖2M ≥ θ ‖u‖
2 for some θ > 0. Therefore (1.13)

shows that ‖ui+1 − ui ‖ → 0, and that {ui}i∈N is bounded. Therefore, every subsequence
{ui j }j∈N has a further subsequence that converges to some point u∗ satisfying 0 ∈ H (u∗).
In particular, every cluster point is a saddle point. �

Exercise 1.3. Using Opial’s lemma below, show that there is, in fact, only one cluster point.
Show, therefore, that the whole sequence of iterates converges to a saddle point.

The earliest version of the next lemma, required for Exercise 1.3, is contained in the proof
of [22, Theorem 1]. A more complete statement can be found as [4, Lemma 6].

Lemma 1.2 (Opial’s lemma). On a Hilbert space X , let X̂ ⊂ X be closed and convex, and
{xi}i∈N ⊂ X . If the following conditions hold, then xi ⇀ x∗ weakly in X for some x∗ ∈ X̂ :

(i) i 7→ ‖xi − x∗‖ is non-increasing for all x∗ ∈ X̂ .

(ii) All weak limit points of {xi}i∈N belong to X̂ .

The property (i) of Opial’s lemma has a name worth remembering:

Definition 1.4 (Féjer monotonicity). Given a non-empty subset X̂ ⊂ X , a sequence {ui}i∈N
is Féjer monotone with respect to X̂ if

‖ui+1 − u‖ ≤ ‖ui − u‖ (i ∈ N;u ∈ X̂ ).

We refer to [2] for more information on this property.

1.7 tricks of the trade

Example 1.3 (Dualisation trick for hard-to-invert forward operators). As we have seen
in Example 1.1, the proximal mapping of д(x) = ‖z − x ‖22/2 is easy to calculate. But
what about д(x) = ‖z − Ax ‖22/2 for some A ∈ Rk×n and z ∈ Rk? Unless A is unitary
(i.e., A∗A = I , such as a Fourier transform), the computation of proxτ ∂ f will generally
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require a costly matrix inversion. However, we can also use the dualisation trick

д(x) = sup
λ∈Rk
〈Ax − z, λ〉 −

1
2
‖λ‖2,

and replace the saddle point problem

min
x

max
y

д(x) + 〈Kx ,y〉 − f ∗(y)

by
min
x

max
ỹ

д̃(x) + 〈K̃x , ỹ〉 − f̃ ∗(ỹ),

where ỹ = (y, λ) and the mappings

д̃(x) = 0, f̃ ∗(ỹ) = f ∗(y) +
1
2
‖λ‖2 + 〈z, λ〉, and K̃x = (Kx ,Ax).

1.8 forward–backward splitting

Let us consider the minimisation of the composite objective

(1.14) min
x∈Rn

h(x) := д(x) + f (x),

where д is smooth, but f possibly non-smooth. We may write the optimality conditions
as

0 ∈ ∇д(x) + ∂ f (x).

We can rewrite this as
τ−1x − ∇д(x) ∈ τ−1x + ∂ f (x),

or
x = (I + τ ∂ f )−1(x − τ∇д(x)).

This gives the iteration

(FB) xi+1 = proxτ ∂ f (x
i − τ∇д(xi)).

In other words, we do a gradient/forward step with respect to д, and a proximal/backward
step with respect to f . The resulting method is known as forward–backward splitting.
Particular instances include the so-called iterative soft-thresholding (IST) algorithm for
Lasso, with proxτ ∂ | · | known as the iterative soft-thresholding operator.

Exercise 1.4. Express forward–backward splitting in terms of a surrogate objective.
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2 PRECONDITIONED PROXIMAL POINT METHODS

Our overall wish is to �nd some û ∈ U , on a Hilbert spaceU , solving for a given set-valued
map H : U ⇒ U the variational inclusion

(2.1) 0 ∈ H (û).

Our strategy towards �nding a solution û is to introduce an arbitrary non-linear iteration-
dependent preconditioner Vi+1 : U → U and a step length operatorWi+1 ∈ L(U ;U ). With
these, we de�ne the generalised proximal point method, which on each iteration i ∈ N

solves ui+1 from

(PP) 0 ∈Wi+1H (u
i+1) +Vi+1(u

i+1).

We assume that Vi+1 splits into Mi+1 ∈ L(U ;U ), and V ′i+1 : U → U as

(2.2) Vi+1(u) = V
′
i+1(u) +Mi+1(u − u

i).

In contrast to (1.5) or (1.10), we place the step lengths at the front of H instead of inverted
in Mi+1, in order to allow zero step lengths, as we will later discuss in Section 3.4.

Example 2.1 (The basic proximal point method). To obtain the basic proximal point
method (PP0, p.5), we setWi+1 := τ I , Mi+1 := I , V ′i+1 ≡ 0, and H := ∂ f .

Example 2.2 (The PDHGM or Chambolle–Pock method). To obtain the PDHGM (1.9)
for saddle point problems, we take H as in (1.8), and set

Wi+1 :=
(
τ I 0
0 σ I

)
, Mi+1 :=

(
I −τK∗

−σK I

)
, and V ′i+1 ≡ 0.

Indeed, (PP) is (1.10) multiplied byWi+1.

We analyse (PP) by applying a testing operator Zi+1 ∈ L(U ;U ), following the ideas intro-
duced in [32]. The product Zi+1Mi+1 with the linear part of the preconditioner, forms a
“metric” ‖ · ‖2Zi+1Mi+1

, which will, as we soon demonstrate, be an indicator of convergence
rates.
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2 preconditioned proximal point methods

2.1 a general convergence result

Adelante! We go straight ahead with our main convergence result, an almost trivial little
theorem, on which everything that follows is based on.

Theorem 2.1. On a Hilbert spaceU , let H : U ⇒ U , andWi+1,Mi+1,Zi+1 ∈ L(U ;U ), as well
as V ′i+1 : U → U for i ∈ N. Suppose (PP) is solvable for Vi+1 as in (2.2), and denote the iterates
by {ui}i∈N. If Zi+1Mi+1 is self-adjoint, and

(CI)
1
2
‖ui+1 − ui ‖2Zi+1Mi+1

+
1
2
‖ui+1 − û‖2Zi+1Mi+1−Zi+2Mi+2

+ 〈Wi+1H (u
i+1) +V ′i+1(u

i+1),ui+1 − û〉Zi+1 ≥ −∆i+1(û)

for all i ∈ N and some û ∈ U , then

(DI)
1
2
‖uN − û‖2ZN+1MN+1

≤
1
2
‖u0 − û‖2Z1M1

+

N−1∑
i=0

∆i+1(û) (N ≥ 1).

Proof. Inserting (PP) into (CI), we obtain

(2.3)
1
2
‖ui+1 − ui ‖2Zi+1Mi+1

+
1
2
‖ui+1 − û‖2Zi+1Mi+1−Zi+2Mi+2

− 〈ui+1 − ui ,ui+1 − û〉Zi+1Mi+1 ≥ −∆i+1(û).

We recall for general self-adjoint M the three-point formula

(2.4) 〈ui+1 − ui ,ui+1 − û〉M =
1
2
‖ui+1 − ui ‖2M −

1
2
‖ui − û‖2M +

1
2
‖ui+1 − û‖2M .

Using this with M = Zi+1Mi+1, we rewrite (2.3) as

(2.5)
1
2
‖ui − û‖2Zi+1Mi+1

−
1
2
‖ui+1 − û‖2Zi+2Mi+2

≥ −∆i+1(û).

Summing this over i = 0, . . . ,N − 1, we obtain (DI). �

Remark 2.2 (�antitative Féjer monotonicity). If ∆i+1(û) ≡ 0, the inequality (2.5) is a
quantitative or variable-metric version of Féjer monotonicity of De�nition 1.4 with respect to
C = {û}.

Immediately we obtain the following:

Corollary 2.3 (Convergence with a rate). Suppose (DI) holds with ∆i+1(û) ≤ 0, and that
ZN+1MN+1 ≥ µ(N )I . Then ‖uN − û‖2 → 0 at the rate O(1/µ(N )).

For weak convergence, when we cannot make ZN+1MN+1 grow fast, we need to do a little
bit additional technical work. For this we need a few concepts form the convergence of
sets, and the continuity of set-valued maps. More details can be found in, e.g., [25].
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2 preconditioned proximal point methods

2.2 interlude: set convergence and maximal monotone operators

Definition 2.1. Let {Ai}∞i=1 be a sequence of subsets of X . The (strong, resp. weak) outer
limit of the sequence is the set lim supi→∞Ai ⊂ X of all x∗ ∈ X such that there exist a
subsequence {ik}∞k=1 and xk ∈ Aik with xk → x∗ (strongly, resp. weakly).

Definition 2.2. A set-valued map H : U ⇒ U is weak-to-strong (resp. strong-to-strong)
outer semicontinuous if ui ⇀ u (resp. ui → u) implies lim supi→∞H (ui) ⊂ H (u).

It is well-known that convex subdi�erentials H = ∂ f are maximal monotone by the
following de�nition [see 2, 24]. They are also weak-to-strong outer semicontinous, as well
as the opposite [see 2, Proposition 16.26 & Proposition 20.33].

Definition 2.3. A monotone operator H : X ⇒ X is maximal if there does not exist a
monotone operator T : X ⇒ X with GraphH ( GraphT .

Lemma 2.4. Let H : U ⇒ U be maximal monotone on a Hilbert space U . Then H is is
weak-to-strong outer semicontinuous: for any sequence {ui}i∈N, and any zi ∈ H (ui) such that
ui ⇀ u weakly, and zi → z strongly, we have z ∈ H (u).

Proof. By monotonicity, for any u′ ∈ U and z′ ∈ U holds Di := 〈u′ − ui , z′ − zi〉 ≥ 0. Since
a weakly convergent sequence is bounded, we have Di ≥ 〈u

′ − ui , z′ − z〉 −C‖z − zi ‖ for
someC > 0 independent of i . Taking the limit, we therefore have 〈u′ −u, z′ − z〉 ≥ 0. If we
had z < H (u), this would contradict that H is maximal. �

2.3 additional conditions for weak convergence

Corollary 2.5 (Weak convergence). Suppose ZiMi = Z0M0 ≥ 0 is self-adjoint, and that the
iterates of (PP, p.11) satisfy (CI) with ∆i+1(û) ≤ −

δ
2 ‖u

i+1 − ui ‖2Zi+1Mi+1
for all û ∈ H−1(0) and

some δ > 0. If

(CL) Zi+1Mi+1(u
i+1−ui) → 0 and uik ⇀ u =⇒ lim sup

k→∞
Wik+1H (u

ik )+V ′ik+1(u
ik ) ⊂W∗H (u)

for some non-singularW∗ ∈ L(U ;U ), then Z0M0(u
i − u∗) ⇀ 0 weakly in U for some u∗ ∈

H−1(0).

The condition (CL) is clari�ed by the following corollary that �xesWi+1.

Corollary 2.6 (Weak convergence, fixed steps). Suppose ZiMi = Z0M0 ≥ 0 is self-adjoint,
Wi+1 ≡W , and that the iterates of (PP, p.11) satisfy (CI) with ∆i+1(û) ≤ −

δ
2 ‖u

i+1 −ui ‖2Zi+1Mi+1

for all û ∈ H−1(0) and some δ > 0. If H is weak-to-strong outer semicontinuous, and

Zi+1Mi+1(u
i+1 − ui) → 0 =⇒ lim sup

k→∞
V ′i+1(u

i+1) → 0,

then Z0M0(u
i − u∗)⇀ 0 weakly inU for some u∗ ∈ H−1(0).
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2 preconditioned proximal point methods

Proof of Corollary 2.6. We apply Theorem 2.1 on any û ∈ U ′. SinceZi+1Mi+1 = Zi+2Mi+2, it is
easy to see that (CI) and consequently by the theorem, (DI) holds for all û ∈ U ′ := cl conv Û .

For the rest of the proof, we use Opial’s lemma (Lemma 1.2). Using ∆i+1(û) ≤ −
δ
2 ‖u

i+1 −

ui ‖2Zi+1Mi+1
, we deduce from (DI, p.12) that A1/2(ui+1 − ui) → 0 for A := Z0M0 = Zi+1Mi+1.

By (PP, p.11) and (CL), any weak limit point u∗ of a subsequence of the sequence {ui}i∈N
then satis�es u∗ ∈ Û ⊂ U ′. This veri�es condition (ii) of the lemma for xi := A1/2ui and
X ′ := A1/2Û on X := A1/2U ⊂ U . Applied with N = 1 and ui in place of u0, (DI) shows
condition (i) of the lemma. Thus xi ⇀ x∗ ∈ X̂ . But x∗ = A1/2u∗ for some u∗ ∈ Û . Thus
A(ui − u∗)⇀ 0. This implies Z0M0(u

i − u∗)⇀ 0 weakly. �

2.4 examples

We now look at several concrete examples.

Example 2.3 (The proximal point method). Take Mi = I , V ′i = 0, and Wi+1 = τiI for
some τi > 0. (Recall Example 2.1.) Then (PP, p.11) is the standard proximal point method
xi+1 := (I + τiH )−1(xi). If H is maximal monotone, {ui}i∈N converges weakly to some
u∗ ∈ H−1(0).

Veri�cation. We take Zi+1 = ϕiI for some ϕi > 0. As long as ϕi ≥ ϕi+1, the monotonicity of
H clearly shows (CI, p.12) with ∆i+1(û) = −

ϕi
2 ‖u

i+1 −ui ‖2. Using the maximal monotonicity,
Minty’s theorem [e.g., 2, Theorem 21.1] guarantees the solvability of (PP, p.11). Thus the
conditions of Theorem 2.1 are satis�ed. Maximal monotonicity also guarantees that H is
weak-to-strong outer semicontinuous; see Lemma 2.4. This establishes (CL). Taking ϕi ≡ ϕ0
for constant ϕ0 > 0, so that Zi+1Mi+1 = Z0M0 = ϕ0I , it remains to refer to Corollary 2.6. �

Example 2.4 (Acceleration and linear convergence of the proximal point method).

Continuing from Example 2.3, suppose H is strongly monotone. Then 〈H (ui+1) −
H (û),ui+1 − û〉 ≥ γ ‖ui+1 − û‖2 for some γ > 0, so (CI, p.12) continues to hold with
∆i+1(û) = −

ϕi
2 ‖u

i+1 − ui ‖2 if ϕi(1 + 2γτi) ≥ ϕi+1. This is the case for τi+1 := τi/
√
1 + 2γτi ,

and ϕi+1 := 1/τ 2i+1. The testing variable ϕN is of the order Θ(N 2) [5, 32], so we get con-
vergence of ‖uN − û‖2 to zero at the rate O(1/N 2) from Theorem 2.1 and Corollary 2.3.
Alternatively, if we keep τi = τ0 constant, ϕN becomes exponential, so we get linear
convergence.

The next lemma starts our analysis of gradient descent:

Lemma 2.7. Let H = ∇G for G ∈ Γ(X ) such that ∇G is L-Lipschitz. Take Mi+1 ≡ I and
V ′i+1(u) := τi(∇G(u

i) − ∇G(u)) withWi+1 = τiI as well as Zi+1 ≡ ϕiI for some τi ,ϕi > 0. Then
(CI, p.12) holds if
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2 preconditioned proximal point methods

(i) ϕi = ϕ is constant, τiL < 2, and ∆i+1(û) := −ϕi(1 − τiL/2)‖ui+1 − ui ‖2/2.

If G is strongly convex with factor γ > 0, alternatively:

(ii) τ0L2 < γ , ϕi+1 := ϕi + ϕiτi(γ − τiL2), τi := ϕ−1/2i or τi := τ0, and ∆i+1(û) = 0.

Proof. We will instead of (CI, p.12) prove the following more general condition: for some
∆i+1(u

∗;u) at all u,u∗ ∈ U holds

(2.6)
1
2
‖u − ui ‖2Zi+1Mi+1

+
1
2
‖u − u∗‖2Zi+1Mi+1−Zi+2Mi+2

+ 〈Wi+1(H (u) − H (u
∗)) +V ′i+1(u),u − u

∗〉Zi+1 ≥ −∆i+1(u
∗;u).

We start by expanding (2.6) as

(2.7)
ϕi
2
‖u − ui ‖2 +

ϕi − ϕi+1
2

‖u − u∗‖2 + ϕiτi 〈∇G(u
i) − ∇G(u∗),u − u∗〉 ≥ −∆i+1(u

∗;u).

(i) Lipschitz gradient implies L−1-co-coercivity (see Exercise 2.1 below)

(2.8) 〈∇G(u′) − ∇G(u),u′ − u〉 ≥ L−1‖∇G(u′) − ∇G(u)‖2 for all u,u′.

Now (2.7) follows after we use (2.8) and Cauchy’s inequality to estimate

(2.9) 〈∇G(ui) − ∇G(u∗),u − u∗〉 = 〈∇G(ui) − ∇G(u∗),ui − u∗〉

+ 〈∇G(ui) − ∇G(u∗),u − ui〉 ≥ −
L

4
‖u − ui ‖2.

(ii) We estimate

〈∇G(ui) − ∇G(u∗),u − u∗〉 = 〈∇G(u) − ∇G(u∗),u − u∗〉 + 〈∇G(ui) − ∇G(u),u − u∗〉

≥
γ

2
‖u − u∗‖2 −

1
2τi
‖u − ui ‖2 −

τiL
2

2
‖u − u∗‖2.

Inserting this into (2.7), we see that (2.6) holds with ∆i+1(u
∗;u) = 0 if

(2.10) ϕi + ϕiτi(γ − τiL
2) ≥ ϕi+1.

Clearly our two alternative choices of {τi}i∈N are non-increasing. Therefore, (2.10) follows
from the initialisation condition τ0L2 < γ and the update rule ϕi+1 := ϕi +ϕiτi(γ −τiL2). �

Exercise 2.1. Prove that ∇G being L-Lipschitz for a convex function G implies the L−1-co-
coercivity (2.8).
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2 preconditioned proximal point methods

Example 2.5 (Gradient descent). Taking τi = τ constant in Lemma 2.7, (PP, p.11) reads

0 = τ∇G(ui) + ui+1 − ui .

This is the gradient descent method. Direct application of Lemma 2.7(i) with u = ui+1

and u∗ = û together with Theorem 2.1 and Corollary 2.6 now veri�es the well-known
weak convergence of the method when τL < 2.

Observe that Vi+1 = ∇Qi+1 for

Qi+1(u) :=
1
2
‖u − ui ‖2 + τ

[
G(ui) + 〈∇G(ui),u − ui〉 −G(u)

]
.

As we have already seen, each step of (PP) therefore minimises the surrogate objective

(2.11) u 7→ G(u) + τ−1Qi+1(u).

The functionQi+1 on one hand penalises long steps, and on the other hand allows longer
steps when the local linearisation error is large.

Example 2.6 (Forward–backward spli�ing). Let H = ∂G, where G = G0 + J for G, F ∈
Γ(X )with ∇J Lipschitz. Taking Mi+1,Wi+1, andV ′i+1 as in Example 2.5, (PP, p.11) becomes

0 ∈ τi∂G0(u
i+1) + τi∇J (u

i) + ui+1 − ui .

This is the forward–backward splitting method

ui+1 := (I + τi∂G0)
−1(ui − τi∇J (u

i)).

The method converges when the gradient descent of Example 2.5 applied to J converges.

Exercise 2.2. Prove the convergence claims of Example 2.6 for forward–backward splitting.

Hint: Use (2.6) for a suitable choice of u∗.
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3 SADDLE POINT PROBLEMS AND PRIMAL–DUAL

METHODS

3.1 the theory, specialised

With K ∈ L(X ;Y ), G = G0 + J ∈ Γ(X ), and F ∗ ∈ Γ(Y ) on Hilbert spaces X and Y , we now
wish to solve the saddle point or min–max problem (1.7). We recall that the �rst-order
necessary optimality conditions can be written

(OC) − K∗ŷ ∈ ∂G(x̂), and Kx̂ ∈ ∂F ∗(ŷ).

Setting U := X × Y and introducing the variable splitting notation u = (x ,y), û = (x̂ , ŷ),
etc., this can succinctly be written as 0 ∈ H (û) in terms of the operator H from (1.8). We
recall this to be

(3.1) H (u) :=
(
∂G(x) + K∗y
∂F ∗(y) − Kx

)
.

In this section, concentrating on this speci�c H , we specialise the theory of Section 2.1
to saddle point problems. Throughout, for some primal and dual step length and testing
parameters τi ,ϕi > 0,ψi+1 > 0, we take

(3.2) Wi+1 :=
(
τiI 0
0 σi+1I

)
, and Zi+1 :=

(
ϕiI 0
0 ψi+1I

)
.

We suppose that ∂G0 is (strongly) monotone, satisfying

(G0-SM) 〈∂G0(x
′) − ∂G0(x),x

′ − x〉 ≥ γ ‖x′ − x ‖2 (x ,x′ ∈ X )

for some γ ≥ 0. Regarding J , we assume that ∇J exists and is co-coercive in the sense that
for some L ≥ 0 holds

(J-CO) 〈∇J (x′) − ∇J (x),x′ − x〉 ≥ L−1‖∇J (x′) − ∇J (x)‖2 (x ,x′ ∈ X ).

(We allow L = 0 for the case J = 0.)

17



3 saddle point problems and primal–dual methods

We also introduce

Ξi+1(γ ) :=
(

2τiγ I 2τiK∗
−2σi+1K 0

)
, and Qi+1(L) :=

(
LτiI 0
0 0

)
,

which are operator measures of strong monotonicity and smoothness of H . Finally, we
introduce the forward–step preconditioner with respect to J , familiar from Example 2.5
as

(3.3) V J
i+1(u) :=

(
τi(∇J (x

i) − ∇J (x))
0

)
.

Theorem 3.1. Let us be given K ∈ L(X ;Y ), G = G0 + J ∈ Γ(X ), and F ∗ ∈ Γ(Y ) on Hilbert
spaces X and Y . Suppose G0 satis�es (G0-SM) for some γ ≥ 0, and J satis�es (J-CO) for
some L ≥ 0. For each i ∈ N, let τi ,ϕi ,σi+1,ψi+1 > 0. Also take V ′i+1 : X × Y → X × Y , and
Mi+1 ∈ L(X ×Y ;X ×Y ). LetH given by (3.1),Zi+1 andWi+1 by (3.2), andVi+1 by (2.2). Suppose
(PP, p.11) is solvable, and denote the iterates by ui = (xi ,yi). Then (CI, p.12) and (DI, p.12)
hold if Zi+1Mi+1 is self-adjoint, and

(CI-Γ)
1
2
‖ui+1 − ui ‖2Zi+1(Mi+1−Qi+1(L/2)) +

1
2
‖ui+1 − û‖2Zi+1(Ξi+1(γ )+Mi+1)−Zi+2Mi+2

+ 〈V ′i+1(u
i+1) −V J

i+1(u
i+1),ui+1 − û〉Zi+1 ≥ −∆i+1(û).

Proof. Using (J-CO), similarly to (2.9) we derive

〈∇J (xi) − ∇J (x̂),xi+1 − x̂〉 ≥ −
L

4
‖xi+1 − xi ‖2

Using (3.3), therefore

〈V J
i+1(u

i+1),ui+1 − û〉Zi+1 ≥ −
Lϕiτi
4
‖xi+1 − xi ‖2 − ϕiτi 〈∇J (x

i+1) − ∇J (x̂),xi+1 − x̂〉.

With this, the monotonicity of ∂F ∗, and (G0-SM), we observe (CI-Γ) to imply

(3.4)
1
2
‖ui+1 − ui ‖2Zi+1Mi+1

+
1
2
‖ui+1 − û‖2Zi+1(Ξi+1(0)+Mi+1)−Zi+2Mi+2

+ 〈∂G(xi+1) − ∂G(x̂),xi+1 − x̂〉ΦiTi + 〈∂F
∗(yi+1) − ∂F ∗(ŷ),yi+1 − ŷ〉Ψi+1Σi+1

+ 〈V ′i+1(u
i+1),ui+1 − û〉Zi+1 ≥ −∆i+1(û).

Here pay attention to the fact that (3.4) employs Ξi+1(0) while (CI-Γ) employs Ξi+1(γ ). If
we show that (CI, p.12) follows from (3.4), then (DI, p.12) follows from Theorem 2.1. Indeed,
using the expansion

Zi+1Wi+1 =

(
ϕiτiI 0
0 ψi+1σi+1I

)
,
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3 saddle point problems and primal–dual methods

we expand for any ũ = (x̃ , ỹ) that

〈Zi+1Wi+1(H (u
i+1) − H (ũ)),ui+1 − ũ〉

= ϕiτi 〈∂G(x
i+1) − ∂G(x̃),xi+1 − x̃〉 +ψi+1σi+1〈∂F

∗(yi+1) − ∂F ∗(ỹ),yi+1 − ỹ〉

+ ϕiτi 〈K
∗(yi+1 − ỹ),xi+1 − x̃〉 −ψi+1σi+1〈K(x

i+1 − x̃),yi+1 − ỹ〉.

With the help of Ξi+1(0) we then obtain

〈H (ui+1) − H (ũ),ui+1 − ũ〉Zi+1Wi+1 ≥
1
2
‖ui+1 − ũ‖Zi+1Ξi+1(0)

+ ϕiτi 〈∂G(x
i+1) − ∂G(x̃),xi+1 − x̃〉 +ψi+1σi+1〈∂F

∗(yi+1) − ∂F ∗(ỹ),yi+1 − ỹ〉.

Inserting this into (3.4), we obtain (CI, p.12). Then we apply Theorem 2.1. �

Remark 3.2. For gap estimates and other extensions, we refer to [31].

3.2 examples of primal–dual methods

We now look at several known methods for the saddle point problem (1.7).

Example 3.1 (The primal–dual method of Chambolle and Pock [5]). This method consists
of iterating the system

xi+1 := (I + τi∂G)−1(xi − τiK∗yi),(3.5a)
sxi+1 := ωi(x

i+1 − xi) + xi+1,(3.5b)
yi+1 := (I + σi+1∂F ∗)−1(yi + σi+1Ksxi+1).(3.5c)

In the basic version of the algorithm, ωi = 1, τi ≡ τ0 > 0, and σi ≡ σ0 > 0, assuming the
step length parameters to satisfy

(3.6) τ0σ0‖K ‖
2 < 1.

The iterates convergence weakly, and the method has O(1/N ) rate for ann ergodic
duality gap, which we skip in these notes; details can be found in [5, 31]. IfG is strongly
convex with factor γ , we may accelerate

(3.7) ωi := 1/
√
1 + 2γτi , τi+1 := τiωi , and σi+1 := σi/ωi .

This yields O(1/N 2) convergence of ‖xN − x̂ ‖2 to zero.

Veri�cation. We formulate the method in our proximal point framework with J = 0 and
G0 = G following [15, 32] by taking as the preconditioner

Mi+1 =

(
I −τiK

∗

−σiK I

)
and V ′i+1 = 0.
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3 saddle point problems and primal–dual methods

Taking ∆i+1(û) := − 1
2 ‖u

i+1 − ui ‖2Zi+1Mi+1
, we reduce (CI-Γ) to

(3.8)
1
2
‖ui+1 − û‖2Di+2

≥ 0 for Di+2 := Zi+1(Ξi+1(γ ) +Mi+1) − Zi+2Mi+2.

We may expand

Zi+1Mi+1 =

(
ϕiI −ϕiτiK

∗

−ψi+1σiK ψi+1I

)
, and(3.9a)

Di+2 =

(
(ϕi(1 + 2γ̃τi) − ϕi+1)I (ϕiτi + ϕi+1τi+1)K

∗

(ψi+2σi+1 − 2ψi+1σi+1 −ψi+1σi)K (ψi+1 −ψi+2)I

)
.(3.9b)

We have ‖ · ‖Di+2 = 0 (but not Di+2 = 0, as the former depends on the o�-diagonals
cancelling out), and Zi+1Mi+1 is self-adjoint, if for some constantψ we take

(3.10) ϕi+1 := ϕi(1 + 2γ̃τi), τi := ϕ−1/2i , σi := ϕiτi/ψ , and ψi+1 := ψ .

This gives the acceleration scheme (3.7). Moreover, for any δ ∈ (0, 1) holds

(3.11) Zi+1Mi+1 ≥

(
δϕiI 0
0 ψ I − (1 − δ )−1KK∗

)
.

Thus Zi+1Mi+1 ≥ 0 if ψ ≥ (1 − δ )−1‖K ‖2. By (3.10), σiτi = 1/ψ . Since this �xes the ratio of
σi to τi , we need to takeψ := 1/(σ0τ0) as well as δ := 1 − σ0τ0‖K ‖2. Through the positivity
of δ , we recover the initialisation condition (3.6).

Theorem 3.1 and Corollary 2.6 show weak convergence of the iterates without a rate. If
G is strongly convex with factor γ ≥ 0, so that also γ̃ > 0, the results in [5, 32] show that
τN is of the order O(1/N ), and consequently ϕN is of the order Θ(N 2). By Corollary 2.3,
‖xN − x̂ ‖2 converges to zero at the rate O(1/N 2). �

Example 3.2 (Chambolle–Pock with a forward step). Suppose G = G0 + J with G
(strongly) convex with factorγ ≥ 0, and∇J Lipschitz with factorL. In [6], the Chambolle–
Pock method was extended to take forward steps with respect to J . With everything
else as in Example 3.1, take

V ′i+1(u) := V
J
i+1(u) = (τi(∇J (x

i) − ∇J (x)), 0).

Then (PP, p.11) can be rearranged as

xi+1 := (I + τi∂G0)
−1(xi − τi∇J (x

i) − τiK
∗yi),(3.12)

sxi+1 := ωi(x
i+1 − xi) + xi+1,(3.13)

yi+1 := (I + σi+1∂F ∗)−1(yi + σi+1Ksxi+1).(3.14)

The method inherits the convergences properties of Example 3.1 if we use the step
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3 saddle point problems and primal–dual methods

length update rules (3.7), and initialise τ0,σ0 > 0 subject to (3.6), and

(3.15) 0 < θ := 1 − Lτ0/(1 − τ0σ0‖K ‖2).

Veri�cation. With Di+2 as in (3.8), the condition (CI-Γ, p.18) becomes

(3.16)
1
2
‖ui+1 − ui ‖2Zi+1Mi+1

−
τiϕiL

4
‖xi+1 − xi ‖2 +

1
2
‖ui+1 − û‖2Di+2

≥ −∆i+1(û).

The rules (3.10) force ‖ · ‖Di+2 = 0. We take ∆i+1(û) = −
θ
2 ‖u

i+1 −ui ‖2Zi+1Mi+1
for some θ > 0,

and deduce using Cauchy’s inequality that (3.16) holds if

(1 − θ )Zi+1Mi+1 ≥ τiϕiL

(
I 0
0 0

)
.

Recalling (3.11), this is true if (1 − θ )δϕi ≥ τiϕiL and ψ ≥ (1 − δ )−1ϕiτ 2i ‖K ‖
2. Further

recalling (3.10), and observing that {τi} is non-increasing, we only have to satisfy (1−θ )(1−
τ0σ0‖K ‖

2) ≥ Lτ0. Otherwise put, we obtain (3.15). �

Example 3.3 (Alternating Directions Method of Multipliers, briefly). The classical
ADMM [13] and Douglas–Rachford splitting [12] are known to be related to the Chambolle–
Pock method; in fact the Chambolle–Pock method is a preconditioned ADMM [5]. From
[3, Section 5], we can deduce that compared to the Chambolle–Pock method, the ADMM
merely has the sign of K reversed in

Mi+1 =

(
I τiK
σiK I

)
.

Taking τi = τ0 and σi = σ0 constant and satisfying (3.6), the iterates converge weakly.
Acceleration can provide O(1/N ) convergence of ‖xN − x̂ ‖2.

Veri�cation. Following Example 3.1, we now expand

Di+2 =

(
(ϕi(1 + 2γ̃τi) − ϕi+1)I (3ϕiτi − ϕi+1τi+1)K∗

(ψi+1σi − 2ψi+1σi+1 −ψi+2σi+1)K (ψi+1 −ψi+2)I

)
.

This time ‖ · ‖Di+2 = 0 and Zi+1Mi+1 is self-adjoint if we take

(3.17) ϕi+1 := ϕi(1 + 2γ̃τi), τi+1 := τiϕi/ϕi+1, σi := ϕiτi/ψ , and ψi+1 := ψ .

If γ̃ = 0, which corresponds to the standard ADMM with �xed step lengths, it is easy to
retrace the steps of Example 3.1 to prove weak convergence (without a rate). If γ̃ , 0, we
obtain ϕN+1 = ϕN +2γ̃τN−1ϕN−1 = ϕN +2γ̃τ0ϕ0 = ϕ0+2N γ̃τ0ϕ0. Therefore, the acceleration
scheme (3.17) only gives the rate O(1/N ). �
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3 saddle point problems and primal–dual methods

Example 3.4 (GIST). Suppose G(x) = 1
2 ‖ f −Ax ‖

2, ‖A‖ <
√
2, and ‖K ‖ ≤ 1. Take

V ′i+1(u) :=
(
∇G(xi) − ∇G(x)

0

)
, and Mi+1 :=

(
I 0
0 I − KK∗

)
.

With Ti := I and Σi+1 := I , we then obtain the Generalised Iterative Soft Thresholding
(GIST) algorithm of [19]

yi+1 := (I + ∂F ∗)−1((I − KK∗)yi + K(xi − ∇G(xi))),
xi+1 := xi − ∇G(xi) − K∗yi+1.

The iterates {xi}i∈N converge weakly to x̂ .

Exercise 3.1. Using Theorem 3.1 and Corollary 2.6, prove the convergence of GIST.

3.3 non-linear forward operators

Suppose we want to solve a problem of the form

min
x

1
2
‖z −T (x)‖2 + F (Ax),

where T ∈ C1(X ;Y ) is non-linear. Recalling Example 1.3, we can convert this problem into
the form

min
x

max
y,λ
〈(Ax ,T (x)), (y, λ)〉 −

[
1
2
‖λ‖2 + 〈z, λ〉 + F ∗(y)

]
.

Therefore we have a problem of the form (1.7) with K non-linear, that is

(3.18) min
x

max
y

G(x) + 〈K(x),y〉 − F ∗(y).

It follows from properties of convex conjugates and, e.g., [7, Theorem 2.3.10 and Proposition
2.3.6] applied to F (K(x)) that the �rst-order necessary optimality conditions for this problem
can be written

(3.19) − [∇K(x̂)]∗ŷ ∈ ∂G(x̂), K(x̂) ∈ F ∗(ŷ).

In the linear case we had −K∗ŷ ∈ ∂G(x̂) and Kx̂ ∈ F ∗(ŷ). Making corresponding changes
to the PDHGM from (1.9), we are led to the NL-PDHGM algorithm [26]

xi+1 := (I + τi∂G)−1(xi − τi[∇K(xi)]∗yi),(3.20a)
sxi+1 := ωi(x

i+1 − xi) + xi+1,(3.20b)
yi+1 := (I + σi+1∂F ∗)−1(yi + σi+1K(sxi+1)).(3.20c)
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3 saddle point problems and primal–dual methods

Corresponding to the optimality conditions (3.19), we de�ne the set-valued operator H :
X × Y ⇒ X × Y for u = (x ,y) as

(3.21) H (u) :=
(
∂G(x) + [∇K(x)]∗y
∂F ∗(y) − K(x)

)
,

such that 0 ∈ H (û) encodes �rst-order necessary optimality conditions for our problem.

As in Example 3.1, we de�ne for some ϕi ,ψi+1 > 0 the step length operator and testing
operators

Wi+1 :=
(
τiI 0
0 σi+1I

)
, and Zi+1 :=

(
ϕiI 0
0 ψi+1I

)
.

We also de�ne the non-linear preconditioner Vi+1(u) := V ′i+1(u) +Mi+1(u − u
i) by

(3.22) V ′i+1(u) :=Wi+1

(
[∇K(xi) − ∇K(x)]∗y

K(x) − K(nx ,xioω) − ∇K(xi)(x − nx ,xioωi )
)
,

and

(3.23) Mi+1 :=
(

I −τi[∇K(x
i)]∗

−ωiσi+1∇K(x
i) I

)
,

where ωi := ψ−1i+1ϕiτi , and sxi+1 := nxi+1,xioωi for nx ,xioω := x + ω(x − xi).

Now (3.20) can be written in the standard form

(3.24) 0 ∈Wi+1H (u
i+1) +Vi+1(u

i+1).

In �nite dimensions, the convergence of this method is proved in [26], on the assumption
of metric regularity of H . For the in�te-dimensional case, see [9, 10]. More recent results in
[8] are based on the theory presented here.

3.4 spatial adaptation and stochastic methods

Let us suppose G and F ∗ are separable as

G(x) =
m∑
j=1

Gj(Pjx), and F ∗(y) =
n∑̀
=1

F ∗` (Q`y).

for some projection oeprators P1, . . . , Pm in X with
∑m

j=1 Pj = I and PjPi = 0 if i , j.
Likewise, Q1, . . . ,Qn are similarly projection operators in Y . Similarly to G and F ∗, we
assume all the component functions Gj and F ∗` to be convex.
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3 saddle point problems and primal–dual methods

Let us replace the step length operators τi and σi+1 by blockwise operators

Ti :=
∑
j∈S(i)

τj,iPj , and Σi+1 :=
∑
`∈V (i+1)

σ`,i+1Q`, (i ≥ 0),

where τj,i ,σ`,i+1 ≥ 0 and S(i) ⊂ {1, . . . ,m}, V (i + 1) ⊂ {1, . . . ,n}. These subsets we allow
to be random.

Then we can derive stochastic and “spatiall adaptive” algorithms that update each of the
“blocks” Pjx and Q`x separately. In these algorithms, it will generally not be possible to
satisfy

Zi+1(Mi+1 + Ξi+1) ≥ Zi+2Mi+2.

Therefore the penalty ∆i+1 in Theorem 3.1 is non-zero, and produces “mixed”O(1/N +1/N 2)

convergence rates for problems where only some of the functions Gj are strongly convex.
For details we refer to [28].
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4 FASTER CONVERGENCE FROM REGULARITY

[In these notes, this last chapter, extracted from [30], is done at a somewhat more abstract
level than in the lectures. A more introductory version is a work in progress.]

What is the weakest useful form of regularity of a set-valued map H? In particular, if
0 ∈ H (û) for û = (x̂ , ŷ) encodes optimality conditions of a saddle point problem (1.7), what
regularity property is useful for showing faster—improved—convergence of optimisation
methods, compared to that obtainable by the basic analysis of the previous chapters?

A starting point for the regularity of set-valued maps is to extend the Lipschitz property
of single-valued maps. One such approach is the Aubin, pseudo-Lipschitz, or Lipschitz-like
property. When we are interested in the stability of the optimality condition 0 ∈ H (û), it is
typically more bene�cial to study the Aubin property of the inverse H−1. This is called the
metric regularity of H at (or near) a point (û, ŵ) ∈ GraphH . In this property, both u and w
are allowed to vary in the criterion

κ dist(w,H (u)) ≥ dist(u,H−1(w)) (u ∈ U, w ∈ W),

which is assumed to hold for some κ > 0, and neighbourhoodsU 3 û andW 3 ŵ . Metric
regularity is equivalent to openness at a linear rate near (û, ŵ), and holds for smooth maps
by the class Lyusternik–Graves theorem [see, e.g., 17]. It is too strong a property to be
satis�ed in many applications. In [26], we used metric regularity to show the convergence
of the NL-PDHGM from [26]. In a newer analysis [8] we no longer need it, instead using
more direct monotonicity-based analysis. In this chapter, we will also look at a weaker
notion of (partial) submonotonicity.

These notions are motivated by metric subregularity. It allows much more leeway for H by
�xing w = ŵ . In other words, we require

(4.1) κ dist(ŵ,H (u)) ≥ dist(u,H−1(ŵ)) (u ∈ U).

The counterpart of metric subregularity that relaxes the Aubin property is known as
calmness or the upper Lipschitz property [23]. We refer to the books [1, 11, 17, 20, 25] for
further information on these and other related properties. These include the Mordukhovich
criterion that allows verifying the Aubin property or metric regularity through coderivative
considerations.

Before introducing our notions of regularity, we improve Theorem 2.1 to study convergence
to the entire set H−1(0) instead of a speci�c point û. This is as we might expect from (4.1).
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4 faster convergence from regularity

4.1 convergence to set of critical points

We continue with the abstract setup of Chapter 2. Speci�cally, we want to solve (PP, p.11),
which is

0 ∈Wi+1H (u
i+1) +V ′i+1(u

i+1) +Mi+1(u
i+1 − ui).

The next result modi�es Theorem 2.1 to replace ‖u − û‖2Zi+1Mi+1
for a �xed û ∈ H−1(0) by

the distance dist2Zi+1Mi+1
(u;H−1(0)) to the solution set.

Theorem 4.1. On a Hilbert space U , let H : U ⇒ U , andWi+1,Mi+1,Zi+1 ∈ L(U ;U ), as well
as V ′i+1 : U → U for i ∈ N. Suppose (PP, p.11) is solvable for Vi+1 as in (2.2), and denote the
iterates by {ui}i∈N. If Zi+1Mi+1 is self-adjoint, and

(CI∗)
1
2
‖ui+1 − ui ‖2Zi+1Mi+1

+ inf
u∗∈H−1(0)

(
1
2
‖ui+1 − u∗‖2Zi+1Mi+1

+ 〈Wi+1H (u
i+1) +V ′i+1(u

i+1),ui+1 − u∗〉Zi+1

)
≥

1
2
dist2Zi+2Mi+2

(ui+1;H−1(0)) − ∆i+1

for all i ∈ N and some ∆i+1 ∈ R, then

(DI∗)
1
2
dist2ZN+1MN+1

(uN ,H−1(0)) ≤
1
2
dist2Z1M1

(u0,H−1(0)) +
N−1∑
i=0

∆i+1 (N ≥ 1).

Proof. Let u∗ ∈ H−1(0) be arbitrary. Inserting (PP, p.11) into (CI∗), we obtain

(4.2)
1
2
‖ui+1 − ui ‖2Zi+1Mi+1

+ inf
u∗∈H−1(0)

(
1
2
‖ui+1 − u∗‖2Zi+1Mi+1

− 〈ui+1 − ui ,ui+1 − u∗〉Zi+1Mi+1

)
≥

1
2
dist2Zi+2Mi+2

(ui+1;H−1(0)) − ∆i+1.

We recall for general self-adjoint M the three-point formula (2.4), that is

〈ui+1 − ui ,ui+1 − u∗〉M =
1
2
‖ui+1 − ui ‖2M −

1
2
‖ui − u∗‖2M +

1
2
‖ui+1 − u∗‖2M .

Using this with M = Zi+1Mi+1, we rewrite (4.2) as

1
2
dist2Zi+1Mi+1

(ui ;H−1(0)) ≥
1
2
dist2Zi+2Mi+2

(ui+1;H−1(0)) − ∆i+1.

Summing over i = 0, . . . ,N − 1, we obtain the claim. �

It is possible to obtain weak convergence from this result [see 30], but we concentrate on
strong results.
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4 faster convergence from regularity

4.2 rates from strong monotonicity

Suppose for some Ξi+1 ∈ L(U ;U ) we have strong monotonicity of the form

(4.3) 〈H (u) − H (u′),u − u′〉Zi+1Wi+1 ≥ ‖u − u
′‖Zi+1Ξi+1 (u,u

′ ∈ U ),

If alsoV ′i+1 = 0, or ifV ′i+1 can otherwise be approximated away from (CI∗), then we see that
(CI∗) holds with the penalty ∆i+1 = 0 if we secure

(4.4) Zi+1(Mi+1 + Ξi+1) ≥ Zi+2Mi+2.

From (DI∗) we are then able to obtain convergence rates for dist2(uN ;H−1(0)).

Example 4.1 (O(1/N 2) convergence rate). Suppose Mi+1 = I , Zi+1 = ϕi+1I , and Ξi+1 =

γϕ−1/2i+1 for some ϕi+1 > 0 and γ > 0. Then (4.4) as an equality gives the rule ϕi+1 :=
ϕi + γϕ

1/2
i+1. From this it is possible to show that ϕN ≥ CN 2 for some constant C > 0 [5,

32]. We therefore deduce from (DI∗) the O(1/N 2) convergence of dist2(uN ;H−1(0)) to
zero.

Example 4.2 (Linear convergence rate). Suppose Mi+1 = I , Zi+1 = ϕi+1I , and Ξi+1 = γ
for some ϕi+1 > 0 and γ > 0. Then (4.4) as an equality gives the rule ϕi+1 := ϕi(1 + γ ).
Clearly then ϕN ≥ ϕ0(1 + γ )N . In other words, we obtain from (DI∗) linear convergence
of dist2(uN ;H−1(0)) to zero.

4.3 rates from submonotonicity

In (CI∗) we can �x u′ = û, so do not need the full power of monotonicity of the form (4.3).
Indeed, we are led to thinking we can take the in�mum over u′ ∈ H−1(0). However, we
have to be careful to keep this minimisation compatible with dist2Zi+2Mi+2

(ui+1;H−1(0)). We
therefore introduce the following concept.

Definition 4.1. Let N ,M,Ξ ∈ L(U ;U ) with M ≥ 0. We say that T : U ⇒ U is (Ξ,N ,M)-
partially strongly submonotone at (û, ŵ) ∈ GraphT if there exists a neighbourhoodU 3 û
where for all u ∈ U and w ∈ T (u) holds

(PSM) inf
u∗∈T−1(ŵ)

(
〈w − ŵ,u − u∗〉N + ‖u − u

∗‖2M−Ξ
)
≥ dist2M (u,T

−1(ŵ)).

If Ξ = M , we say that T is (N ,M)-strongly submonotone. If Ξ = 0, we say that T is (N ,M)-
submonotone.
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4 faster convergence from regularity

Remark 4.2 (Submonotonicity from monotonicity). (Ξ,M,N )-partial strong submonotonicity
for anyM ≥ 0 is implied by

〈w − ŵ,u − u∗〉N ≥ ‖u − u
∗‖2Ξ (u ∈ U, w ∈ T (u), u∗ ∈ T −1(ŵ)).

Remark 4.3 (Limited dependence on base point). Submonotonicity only depends on û through
U.

Remark 4.4 (Scaling invariance). For any factor α > 0, (Ξ,N ,M)-partial strong submono-
tonicity is equivalent to (αΞ,αN ,αM)-partial strongly submonotonicity

Returning to the preconditioned proximal point method (PP, p.11), the next result shows
how Zi+2Mi+2 can be made to grow based on partial strong submonotonicity, and therefore
how this can help us obtain convergence rates.

Corollary 4.5. On a Hilbert spaceU , letH : U ⇒ U ,V ′i+1 : U → U , andMi+1,Wi+1,Zi+1,Ξi+1 ∈

L(U ;U ) with Zi+1Mi+1 ≥ 0 self-adjoint for all i ∈ N. Suppose (PP, p.11) is solvable for the
iterates {ui}i∈N. If H is (Zi+1Ξi+1, 2Zi+1Wi+1,Zi+2Mi+2)-partially strongly submonotone at
some (û, 0) ∈ GraphH , and

(CI-M)
1
2
‖ui+1 − ui ‖2Zi+1Mi+1

+
1
2
‖ui+1 − u∗‖2Zi+1(Mi+1+Ξi+1)−Zi+2Mi+2

+ 〈V ′i+1(u
i+1),ui+1 − u∗〉Zi+1 ≥ −∆i+1

for some ∆i+1 ∈ R for all i ∈ N and u∗ ∈ H−1(0), then (DI∗, p.26) holds provided {ui}Ni=0 ⊂ U
for the neighbourhoodU of partial strong submonotonicity.

Proof. By the assumed partial strong submonotonicity, for all u∗ ∈ H−1(0) holds

〈H (ui+1),ui+1 − u∗〉Zi+1Wi+1 +
1
2
‖ui+1 − u∗‖Zi+2Mi+2−Zi+1Ξi+1 ≥

1
2
dist2Zi+2Mi+2

(ui+1;H−1(0)).

Summing this with (CI-M), and taking the in�mum over u∗ ∈ H−1(0), we obtain (CI∗, p.26).
Then we just apply Theorem 4.1. �

Example 4.3 (Basic proximal point method, submonotonicity). Suppose for some τ > 0
and ξ ≥ 0 thatH is (ξ I , 2τ I , (1+ξ )I )-partially strongly submonotone at (û, 0) ∈ GraphH .
This is to say

inf
u∗∈H−1(0)

(
2τ 〈w,u − u∗〉 + ‖u − u∗‖2

)
≥ (1 + ξ ) dist2(u,H−1(0)) (u ∈ U, w ∈ H (u)).

Take Mi+1 := I , V ′i+1 = 0, as well as Wi+1 := τ I . Then (PP, p.11) describes the basic
proximal point method 0 ∈ H (ui+1)+τ−1(ui+1−ui). Its iterates satisfy dist2(uN ;H−1(0)) ≤
(1 + ξ )−N dist2(u0;H−1(0)).
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4 faster convergence from regularity

Veri�cation. We take Ξi+1 := ξ I . Zi+1 := ϕiI for some ϕi > 0. Then Zi+1(Mi+1 + Ξi+1) =

Zi+2Mi+2 if we update ϕi+1 := ϕi(1 + ξ ) for some ϕ0 > 0. By Remark 4.4, (ξ I , 2τ I , (1 +
ξ )I )-partial strong submonotonicity is equivalent to (ϕiξ I , 2ϕiτ I ,ϕi(1 + ξ )I )-partial strong
submonotonicity. Since ϕi+1 := ϕi(1+ξ ), by our de�nitions ofZi+1,Mi+1, andWi+1, we obtain
the required (Zi+1Ξi+1, 2Zi+1Wi+1,Zi+2Mi+2)-partial strong submonotonicity. Consequently
(CI-M) holds with ∆i+1 ≡ 0. This is to say dist2(uN ;H−1(0)) ≤ (ϕ0/ϕN ) dist2(u0;H−1(0)).
Now we use ϕi+1 = ϕi(1 + ξ ). �

Exercise 4.1 (Forward–backward spli�ing). Suppose H = H0 + ∇J with J ∈ Γ(U ) also
L-smooth [see, e.g., 2]. With everything else as in Example 4.3, take V ′i+1(u) := τ (∇J (u

i) −

∇J (u)). Then (PP, p.11) describes the forward–backward splitting ui+1 := (I + τH0)
−1(ui −

τ∇J (ui)), as we have already seen in Example 2.6. Show that as long as Lτ ≤ 2, the
convergence results of Example 4.3 apply.

some fundamental convex functions

Here we show on R that the subdi�erentials of the indicator of the unit ball, and of the
absolute value function are strongly submonotone. None of these subdi�erentials are
strongly monotone in the conventional sense. Throughout, with (x∗,q∗) ∈ Graph ∂G, we
consider (I ,γ I )-strong submonotonicity, equivalently (γ−1I , I )-strong submonotonicity for
which we need to prove for some γ > 0 and neighbourhoodU that

(4.5) 〈∂G(x) − q∗,x − x∗〉 ≥ γ dist2(x ; [∂G]−1(q∗)) (x ∈ U).

We recall that (I ,γ I )-strong submonotonicity implies (γ I , I , I )-partial strong submonotonic-
ity.

Lemma 4.6. Consider G := δclB(0,α), and let (x∗,q∗) ∈ Graph ∂G . Then ∂G is (I ,γ I )-strongly
submonotone with

U := domG, and γ :=

{
‖q∗‖/(2α), q∗ , 0,
∞, q∗ = 0.

Proof. Since 〈∂G(x),x − x∗〉 ≥ 0, from (4.5) it su�ces to prove for x ∈ clB(0,α) = domG
that

(4.6) 〈q∗,x∗ − x〉 ≥ inf
x̂∈[∂G]−1(q∗)

γ ‖x − x̂ ‖2.

If q∗ = 0, then [∂G]−1(q∗) = clB(0,α), so (4.6) trivially holds by the monotonicity of ∂G as
a convex subdi�erential [24].
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4 faster convergence from regularity

Otherwise, if q∗ , 0, necessarily q∗ = βx∗ for some β > 0, and ‖x∗‖ = α . Moreover,
[∂G]−1(q∗) = {x∗}. Therefore (4.6) reads β 〈x∗,x∗ − x〉 ≥ γ ‖x − x∗‖2. In other words
(β −γ )‖x∗‖2 ≥ γ ‖x ‖2 + (β − 2γ )〈x∗,x〉. Since ‖x ‖ ≤ α and ‖x∗‖ = α , this holds for β ≥ 2γ .
Since q∗ = βx∗ and ‖x∗‖ = α , this gives the maximal choice γ = ‖q∗‖/(2α). �

Lemma 4.7. Consider G := | · |, and let (x∗,q∗) ∈ Graph ∂G. Then ∂G is (I ,γ I )-strongly
submonotone for any γ > 0 in the neighbourhoodU := ([1,−1] − q∗)/γ .

Proof. We need to prove (4.5). Since dom ∂G = [−1, 1], it su�ces to consider x ∈ [−1, 1].
Clearly also |q∗ | ≤ q.

Consider �rst q∗ ∈ {−1, 1}. Now [∂G]−1(q∗) = [−1, 1], so (4.5) reduces to 〈∂G(x)−q∗,x −x∗〉.
This holds by the monotonicity of convex subdi�erentials.

Consider then |q∗ | < 1. Then [∂G]−1(q∗) = {x∗} = {0}. Then (4.5) holds if

(4.7) 〈∂G(x) − q∗,x〉 ≥ γx2.

If x = 0, this is clear. If x > 1, ∂G(x) = {1}, so (4.7) holds if 1 − q∗ ≥ γx . This holds if
x ≤ (1 − q∗)/γ . Similarly, if x < 1, we obtain for (4.7) condition −1 − q∗ ≤ γx . This holds
when x ≥ (−1 −q∗)/γ . The conditions x ≤ (1 −q∗)/γ and −1 −q∗ ≤ γx give the expression
forU in the statement of the lemma. �

4.4 rates from error bounds

We now study an approach alternative to submonotonicity: the error bounds that we
discussed in the introduction. Their essence is to prove for some κ > 0 that

(EB) κ‖ui+1 − ui ‖ ≥ ‖ui+1 − û‖.

One can see how this would improve (CI∗, p.26) by allowing Zi+1Mi+2 to grow faster.
However, we generally cannot �x û, so would take the in�mum over û ∈ H−1(0) above.
In our case we also have to observe the changing metrics, and instead assume for some
δ ∈ [0, 1] and Pi+1 ∈ L(U ;U ) with Zi+2Mi+2 ≥ Zi+1Pi+1 the partial error bound

(PEB) δ ‖ui+1 − ui ‖2Zi+1Mi+1
+ dist2Zi+2Mi+2−Zi+1Pi+1

(ui+1,H−1(0)) ≥ dist2Zi+2Mi+2
(ui+1,H−1(0)).

Corollary 4.8. On a Hilbert spaceU , letH : U ⇒ U ,V ′i+1 : U → U , andMi+1,Wi+1,Zi+1,Ξi+1 ∈

L(U ;U ) with Zi+1Mi+1 ≥ 0 self-adjoint for all i ∈ N. Suppose (PP, p.11) is solvable for the
iterates {ui}i∈N. If (PEB) holds, and

(CI-PEB)
1 − δ
2
‖ui+1 − ui ‖2Zi+1Mi+1

+
1
2
‖ui+1 − u∗‖2Zi+1(Mi+1+Pi+1)−Zi+2Mi+2

+ 〈Wi+1Hi+1(u
i+1) +V ′i+1(u

i+1),ui+1 − u∗〉Zi+1 ≥ −∆i+1(u
∗)

for some ∆i+1 ∈ R for all i ∈ N and u∗ ∈ H−1(0), then (DI∗, p.26) holds.
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4 faster convergence from regularity

Proof. By (CI-PEB) for all u∗ ∈ H−1(0) holds
δ

2
‖ui+1 − ui ‖2Zi+1Mi+1

+
1
2
‖ui+1 − u∗‖Zi+2Mi+2−Zi+1Pi+1 ≥

1
2
dist2Zi+2Mi+2

(ui+1;H−1(0)).

Summing this with (CI-PEB), and taking the in�mum overu∗ ∈ H−1(0), we obtain (CI∗, p.26).
Then we just apply Theorem 4.1. �

4.5 error bounds from metric subregularity

An essential ingredient in proving the basic error bound (EB) is the metric subregularity of
H at û for ŵ = 0: the existence of a neighbourhoodU 3 û and κ > 0 such that

(4.8) κ dist(ŵ,H (u)) ≥ dist(u,H−1(ŵ)) (u ∈ U).

We refer to [11, 14, 17, 18, 21] for more on error bounds and metric subregularity. We need a
partial version.

Definition 4.2. LetU ,W be Hilbert spaces. Also let M, P ∈ L(U ;U ) and N ∈ L(W ;W )with
N ≥ 0, M ≥ 0, and M ≥ P . We say say that T : U ⇒W is (P ,N ,M)-partially subregular at
(û, ŵ) ∈ GraphT if there exists a neighbourhoodU 3 û such that

(PSR) dist2N (ŵ,T (u)) + dist
2
M−P (u,T

−1(ŵ)) ≥ dist2M (u,T
−1(ŵ)) (u ∈ U).

We say that T is (N ,M)-subregular if P = M .

Lemma 4.9. Suppose Zi+1Mi+1 ≥ 0 is self-adjoint and positive de�nite. Then
1
2
‖ui+1 − ui ‖2Zi+1Mi+1

≥
1
2
dist2Zi+1(Zi+1Mi+1)−1Zi+1

(0, H̃i+1(u
i+1)).

Proof. Let qi+1 := −Mi+1(u
i+1 − ui). Then qi+1 ∈ H̃i+1(u

i+1). By applying 1
2 〈 · ,ui+1 − ui〉Zi+1

to (PP, p.11), we therefore obtain
1
2
‖ui+1 − ui ‖2Zi+1Mi+1

= −
1
2
〈qi+1,ui+1 − ui〉Zi+1 .

By our assumptionsZi+1Mi+1 is invertible. Therefore we can solveui+1−ui = −(Zi+1Mi+1)
−1Zi+1q

i+1.
It follows

1
2
‖ui+1 − ui ‖2Zi+1Mi+1

=
1
2
‖qi+1‖2Z ∗i+1(Zi+1Mi+1)−1Zi+1

.

This immediately yields the claim. �

As a consequence, for the linearly preconditioned case V ′i+1 = 0 we obtain:

Proposition 4.10. Suppose Zi+1Mi+1 is self-adjoint and positive de�nite, and V ′i+1 = 0. Let
Ni+1 := δW ∗i+1Z

∗
i+1(Zi+1Mi+1)

−1Zi+1Wi+1 for someδ ∈ [0, 1]. LetP i+1 ∈ L(U ;U )withZi+2Mi+2 ≥

Zi+1Pi+1. Then the partial error bound (PEB) holds if H is (Zi+1Pi+1,Ni+1,Zi+2Mi+2)-partially
subregular at some û ∈ H−1(0) in a neighbourhoodU containing {ui}∞i=0.
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4 faster convergence from regularity

Exercise 4.2 (Basic proximal point method, subregularity). Suppose for some τ > 0,π ≥ 0,
and δ ∈ [0, 1] that H is (π I ,δτ 2I , (1 + π )I )-partially subregular at (û, 0) ∈ GraphH , and
〈H (u),u − û〉 ≥ 0 for all u ∈ U . The former is to say,

δτ 2 dist2(0,H (u)) + dist2(u,H−1(0)) ≥ (1 + π ) dist2(u,H−1(0)) (u ∈ U).

Show that when this subregularity holds, the basic proximal point method 0 ∈ H (ui+1) +
τ−1(ui+1 − ui) satis�es

dist2(uN ;H−1(0)) ≤ (1 + π )−N dist2(u0;H−1(0)).

For various examples, we refer to [30]. Although saddle point problems are also analysed
there, it is still open whether we can derive practically useful results for them.

32



A NOTATION

We use Γ(X ) to denote the space of convex, proper, lower semicontinuous functions from
X to the extended reals R := [−∞,∞]. We write ∂ f for the convex subdi�erential.

If C ⊂ X is a convex set, we write

δC(x) :=

{
0, x ∈ C,

∞, x < C,

for the indicator function, and NC(x) = ∂δC(x) for the normal cone at x ∈ C .

We use L(X ;Y ) to denote the space of bounded linear operators between Hilbert spaces X
and Y . We denote the identity operator by I .

For T , S ∈ L(X ;X ), we write T ≥ S when T − S is positive semide�nite.

Also for possibly non-self-adjoint T ∈ L(X ;X ), we introduce the inner product and norm-
like notations

〈x , z〉T := 〈Tx , z〉, and ‖x ‖T :=
√
〈x ,x〉T .

For A ⊂ X a set, and x ∈ X , we write the distance to the set

distT (x ,A) := inf
x ′∈A
‖x − x′‖T .

For a set A ⊂ R, we write A ≥ 0 if every element t ∈ A satis�es t ≥ 0.
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