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Abstract We discuss the benefits, difficulties, and performance of a GPU imple-
mentation of the Chambolle-Pock algorithm for TGV (total generalised variation)
denoising of medical diffusion tensor images. Whereas we have previously studied
the denoising of 2D slices of 2× 2 and 3× 3 tensors, attaining satisfactory perfor-
mance on a normal CPU, here we concentrate on full 3D volumes of data, where
each 3D voxel consists of a symmetric 3×3 tensor. One of the major computational
bottle-necks in the Chambolle-Pock algorithm for these problems is that on each
iteration at each voxel of the data set, a tensor potentially needs to be projected
to the positive semi-definite cone. This in practise demands the QR algorithm, as
explicit solutions are not numerically stable. For a 128 × 128 × 128 data set, for
example, the count is 2 megavoxels, which lends itself to massively parallel GPU
implementation. Further performance enhancements are obtained by parallelising
basic arithmetic operations and differentiation. Since we use the relatively recent
OpenACC standard for the GPU implementation, the article includes a study and
critique of its applicability.
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1 Introduction

Let f ∈ L1(Ω; Sym2(Rd)) be a second-order symmetric tensor field on a domain
Ω ⊂ Rd, such as a medical diffusion tensor image (DTI). In the following, we study
the numerical solution of the denoising problem

min
u≥0

1

2
‖f − u‖2F,2 + TGV2

(β,α)(u). (1)

Here TGV2 denotes the second-order total generalised variation (TGV2), intro-
duced in [1], and extended to the tensor case in [2]. The advantage of TGV2 over
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total variation (TV) is that it tends to avoid the stair-casing effect. [3,4] Observe
also that we require the solution u ∈ L1(Ω; Sym2(Rd)) of (1) to be pointwise
positive semi-definite: non-positive definite diffusion tensors are non-physical.

Diffusion-tensor images (DTI) arise from combination of multiple magnetic res-
onance images (MRI) obtained with different diffusion-sensitising gradients (DWI),
as described by the Stejskal-Tanner equation. [5,6]. They describe the anisotropic
diffusion of water molecules, and provides valuable insight into the white matter
structure of the brain [5,7], as white matter has high anisotropy, in contrast to low-
anisotropy grey matter. Diffusion-weighted MRI has long acquisition times, even
with ultra fast sequences like echo planar imaging (EPI). Therefore, it is inherently
a low-resolution and low-SNR method, exhibiting Rician noise [8], eddy-current
distortions [7]. Additionally, it is very sensitive to patient motion. [9,10]

Since the DWI measurements are noisy, we are led to the problem of denois-
ing the diffusion tensors obtained obtained this way. Here we concentrate on the
denoising model (1). Other approaches (see, e.g., [11,12,13]) are discussed and
compared in our earlier work. [2] It should be pointed out that, strictly speaking,
the omnipresent squared fidelity function also employed in (1) introduces the in-
correct (Gaussian) noise model: As discussed out above, the DWI data has Rician
distribution, and the tensor field f is linearly related to the log-ratios of the DWI
images through Stejskal-Tanner equation. The squared fidelity is clearly computa-
tionally significantly easier, although potentially improved denoising results could
be obtained by more correct modelling.

We choose to solve the numerical problem (1) using the Chambolle-Pock al-
gorithm [14], as it tends to be quite efficient and easy to implement, considering
the non-smoothness of (1). Because of the positive semi-definiteness constraint,
however, the algorithm will involve projections to the positive semi-definite cone.
These are computationally intensive, and lead to long computational times on a
lone traditional CPU when denoising full 3D volumes instead of individual 2D
slices. Since these projections, along with many other operations in the algorithm,
are fully parallel over voxels, graphics processors should be the ideal hardware. In
this paper, we study what kind of performance advantage GPUs have over CPU,
as well as the implementation details and hurdles.

We have chosen to implement our GPU realisation of the code using the re-
cent OpenACC [15] standard instead of writing CUDA [16] code. This consists
of #pragma directives in relatively standard C code, and instruct an accelerator
compiler (such as PGI PGCC) to generate the GPU code. As such, our study also
provides a study of the practicability of OpenACC and PGCC: promising, but not
fully satisfactory.

The rest of this paper is organised as follows. In Section 2 we introduce the
tensor and tensor field calculus to set up the framework in which our results are
represented. Then in Section 3 we formulate the problem (1) in detail. Section 4
describes the Chambolle-Pock algorithm [14] that we use to solve these problems.
Then, in Section 5 we study GPU performance for this algorithmic solution. We
finish the paper with our conclusions in Section 6.
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2 Tensors and tensor fields

We now recall basic tensor calculus, as needed for the development of TGV2. We
make many simplifications, as we do not need the the calculus in its full differential-
geometric setting [17], working on the Euclidean space Rm.

Basic tensor calculus A k-tensor A ∈ T k(Rm) is a k-linear mapping A : Rm×· · ·×
Rm → R. A symmetric tensor A ∈ Symk(Rm) satisfies for any permutation π of
{1, . . . , k} that A(cπ1, . . . , cπk) = A(c1, . . . , ck).

For example, vectors A ∈ Rm can be identified with symmetric 1-tensors,
A(x) = 〈A, x〉, while matrices can be identified with 2-tensors, A(x, y) = 〈Ax, y〉.
Symmetric matrices A = AT can be identified with symmetric 2-tensors. We use
the notation A ≥ 0 for positive semi-definite A.

Let now e1, . . . , em be the standard basis of Rm. We then define the inner
product

〈A,B〉 :=
∑

p∈{1,...,m}k
A(ep1 , . . . , epk)B(ep1 , . . . , epk),

and the Frobenius norm
‖A‖F :=

√
〈A,A〉.

For example, for 1-tensors, i.e., vectors, the inner product is the usual inner
product in Rm, and the Frobenius norm ‖A‖F = ‖A‖2. For 2-tensors, i.e., matrices,
the inner product is 〈A,B〉 =

∑
i,j AijBij and ‖A‖F is the matrix Frobenius norm.

Tensor fields Let u : Ω → T k(Rm) for a domain Ω ⊂ Rm. We then set

‖u‖F,p :=
(∫

Ω

‖u(x)‖pF dx
)1/p
, (p ∈ [1,∞)),

and define the spaces

Lp(Ω; T k(Rm)) = {u : Ω → T k(Rm) | ‖u‖F,p <∞}, and

Lp(Ω; Symk(Rm)) = {u : Ω → Symk(Rm) | ‖u‖F,p <∞}, (p ∈ [1,∞)).

Finally, for u ∈ C1(Ω; T k(Rm)), k ≥ 1, the divergence div u ∈ C(Ω; T k−1(Rm)
is defined by contraction as

[div u(x)](ei2 , . . . , eik) :=
m∑
i1=1

∂i1 [x 7→ u(x)(ei1 , . . . , eik)]

=
m∑
i1=1

〈ei1 ,∇u(·)(ei1 , . . . , eik)〉.

(2)

Observe that if u is symmetric, then so is div u.
Let, for example, u ∈ C1(Ω;Rm) = C1(Ω; T 1(Rm)). Then the divergence

div u(x) =
∑m
i=1 ∂iui(x) is the usual vector field divergence. If, on the other hand,

u ∈ C1(Ω; T 2(Rm)), then [div u(x)]j =
∑m
i=1 ∂iuij(x). That is, we take columnwise

the divergence of a vector field. For 2-tensor fields, we use the notation u ≥ 0 for
pointwise a.e. positive semi-definite u.
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Denoting by X∗ the continuous linear functionals on the topological space X,
we now define the symmetrised distributional gradient

Eu ∈ [C∞c (Ω; Symk+1(Rm))]∗

by

Eu(ϕ) := −
∫
Ω

〈u(x),divϕ(x)〉 dx, (ϕ ∈ C∞c (Ω; Symk+1(Rm))).

Let us also define the “symmetric Frobenius unit ball”

V kF,s := {ϕ ∈ C∞c (Ω; Symk(Rm)) | ‖ϕ‖F,∞ ≤ 1}.

If sup{Eu(ϕ) | ϕ ∈ V k+1
F,s } < ∞, then Eu is a measure [18, §4.1.5]. Indeed, for our

purposes it suffices to define a tensor-valued measure µ ∈ M(Ω; Symk(Rm)) to as
a linear functional µ ∈ [C∞c (Ω; Symk(Rm))]∗ that is bounded in the sense that the
total variation norm

‖µ‖F,M(Ω;Symk(Rm)) := sup{µ(ϕ) | ϕ ∈ V kF,s} <∞.

For smooth 1-tensor fields u ∈ C∞(Ω;Rm), we get Eu(x) = (∇u(x)+(∇u(x))T /2.
Those u ∈ L1(Ω;Rm) for which Eu is a measure, are called functions of bounded
deformation [19]. For scalar fields u ∈ L1(Ω), the symmetrised gradient is the usual
gradient, Eu = Du.

3 Total generalised variation of tensor fields

We now develop second-order total generalised variation for tensor fields. We begin
by recalling total variation of scalar fields.

For recollection: TV and ROF for scalar fields Let Ω ⊂ Rm be a domain and
u ∈ L1(Ω). We write the total variation of u simply as

TV(u) := sup
ϕ∈V 1

F,s

∫
Ω

u(x) divϕ(x) dx = ‖Du‖M(Ω),

Given a regularisation parameter α > 0, the ROF regularisation of f ∈ L1(Ω) is
then given by the solution û of the problem

min
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω) + αTV(u).
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Second-order total generalised variation (TGV2) for tensor fields Total generalised
variation was introduced in [1] as a higher-order extension of TV, that tends to
avoid the stair-casing effect. Given parameters α, β > 0, for a scalar field u ∈
L1(Ω), second-order TGV may according to [3,20] be written as the“differentiation
cascade”

TGV2
(β,α)(u) :=

min
w∈L1(Ω;Sym1(Rm))

α‖Eu− w‖F,M(Ω;Sym1(Rm)) + β‖Ew‖F,M(Ω;Sym2(Rm)). (3)

Readily this definition extends to tensor fields u ∈ L1(Ω; Symk(Rm)) by raising
the order of all the involved tensors, so that

TGV2
(β,α)(u) :=

min
w∈L1(Ω;Symk+1(Rm))

α‖Eu− w‖F,M(Ω;Symk+1(Rm)) + β‖Ew‖F,M(Ω;Symk+2(Rm)).

(4)

In the rest of this paper, given a tensor field f ∈ L1(Ω; Sym2(Rm)), we study
the numerical solution of the positivity-constrained TGV2 regularisation problem

min
0≤u∈L1(Ω;Sym2(Rm))

1

2
‖f − u‖2F,2 + TGV2

(β,α)(u). (P-TGV2)

For suitable choice of parameters (β, α) > 0, solutions u of this problem should then
closely match the original measurement f , however missing unwanted noise, and
not violating the positivity constraint that diffusion tensor fields should satisfy.

For the numerical solution, we write (P-TGV2) in an alternative way, as a
min-sup problem. Denoting by

δA(x) :=

{
0, x ∈ A,
∞, x 6∈ A,

the indicator function of a set A in the sense of convex analysis, and particularly
by

δ≥0(u) :=

{
0, u(x) is positive semi-definite for a.e. x ∈ Ω,
∞, otherwise,

,

the problem (P-TGV2) can be written in the form

min
v

sup
ξ
G(v) + 〈v,K∗ξ〉 − F ∗(ξ). (S-TGV2)

Here the primal variables v = (u,w), and dual variable ξ = (ϕ,ψ) with

u ∈ L1(Ω; Sym2(Rm)), w ∈ L1(Ω; Sym3(Rm)),

ϕ ∈ C∞c (Ω; Sym3(Rm)), ψ ∈ C∞c (Ω; Sym4(Rm)).

The functionals G and F ∗ and the operator K∗ are defined as

K∗(ϕ,ψ) := (−divϕ,−ϕ− divψ), G(u,w) :=
1

2
‖f − u‖2F,2 + δ≥0(u),

F ∗(ϕ,ψ) := δαV 3
F,s

(ϕ) + δβV 4
F,s

(ψ).

Observe that we bound ϕ pointwise by the Frobenius norm. The reason for this is
that we desire rotation-invariance: for details see [2].
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4 Algorithmic aspects

We now move on to discuss the algorithmic aspects of the solution of the regular-
isation problems above. We do this through the saddle-point formulations.

Discretisation and the algorithm We intend to apply the Chambolle-Pock algo-
rithm [14] to the saddle-point form (S-TGV2) of problem (P-TGV2). This can
be done after we discretise the original problem first; for the infinite-dimensional
problem the (pre)conjugate K of K∗ is not well-defined. We represent each tensor
field f , u, w, ϕ and ψ with values on an uniform rectangular grid Ωh of cell width
h > 0, and discretise the operator div by forward differences with zero boundary
conditions as divh. We choose not to use central differences, because it tends to
cause oscillation in this problem. This yields the discretised version

K∗h(ϕ,ψ) := (−divh ϕ,−ϕ− divh ψ),

of the operator K∗. We then take Kh := (K∗h)∗ as the discrete conjugate of K∗h. It
may be written

Kh(u,w) = (Ehu− w,Ehw)

for Eh the forward-differences discretisation of the operator E.
The algorithm may be stated as follows.

Algorithm 1 Perform the steps:

1. Pick τ, σ > 0 satisfying τσ‖Kh‖2 ≤ 1, as well as initial iterates (v0, ξ0). Set
v̄0 = v0.

2. For i = 0, 1, 2, . . ., repeat until a stopping criterion is satisfied.

ξi+1 := (I + σ∂F ∗)−1(ξi + σKhv̄
i)

vi+1 := (I + τ∂G)−1(vi − τK∗hξ
i+1)

v̄i+1 := vi+1 + θi(v
i+1 − vi).

The resolvent operators needed to calculate ξi+1 and vi+1, may be written

(I + τ∂G)−1(v) = arg min
y

{
‖v − y‖2

2τ
+G(y)

}
,

where for pairs v = (u,w) we have to take ‖v‖2 = ‖u‖2F + ‖w‖2F . The efficient
realisation of Algorithm 1 depends on the efficient realisation of these minimisation
problems. First, for F ∗(ϕ,ψ) = δαV 3

F,s
(ϕ) + δβV 4

F,s
(ψ), the resolvent (ϕ,ψ) = (I +

σ∂F ∗)−1(v, q) reduces to pointwise projection

ϕ(x) = PαV 3
F,s

(v(x)) and ψ(x) = PβV 4
F,s

(q(x))

for all x ∈ Ω, where
PαV k

F,s
(z) := zmin{1, α/‖z‖F }.

This can be efficiently implemented on a parallel processor, such as a GPU.
Secondly, we have

G(u,w) =
1

2
‖f − u‖2F,2 + δ≥0(u),
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for which we solve

[(I + τ∂G)−1(u,w)](x) =

(
P≥0

(
v(x) + f(x)τ

1 + τ

)
, w

)
, (x ∈ Ω).

The projection x = P≥0(z) to the positive semi-definite cone can be performed
by projecting each eigenvalue γi, (i = 1, . . . ,m) of z to R+, and reconstructing
x with the projected eigenvalues and original eigenvectors. This follows from the
optimality condition z ∈ x+N≥0(x), and the structure of the normal cone N≥0(x)
at x to the positive semi-definite, described in [21, Lemma 3.1]. For m = 2 we may
perform this operation by deriving explicit expressions, but for m = 3 such an
appraoch is not numerically stable. We therefore need to employ the QR algorithm.
This is expensive, but can be completely per-voxel parallelised. Moreover, we use
Sylvester’s criterion to first check, whether we need to project.

In practise we initialise Algorithm 1 with u0 = 0, w0 = 0, ϕ0 = 0, and ψ0 = 0.
We moreover approximate ‖Kh‖2 ≤ L2 := (2`m + 1 +

√
1 + 4`m)/2, where `m =

4m/h2 (see [22]). In practise we choose σ = τ = 0.95/L. As pointed out to us by a
reviewer, speed-ups could potentially be obtained by choosing σ and τ unequal, or
through the dimension-dependent steps of [23]. Our focus in this paper is, however,
the advantages of a GPU over a CPU.

Thus, denoting by F (Ωh;X) := {g : Ωh → X} the space of functions from
the discrete set Ωh to X, we may expand Algorithm 1 for the present problem as
follows.

Algorithm 2 Perform the steps:

1. Initialise

u0 = 0 ∈ F (Ωh; Sym2(Rm)), w0 = 0 ∈ F (Ωh; Sym3(Rm)),

ϕ0 = 0 ∈ F (Ωh; Sym3(Rm)), and ψ0 = 0 ∈ F (Ωh; Sym4(Rm)).

Set ū0 := x0 and w̄0 := w0 and

τ := σ := 0.95/

√
(2`m + 1 +

√
1 + 4`m)/2, where `m = 4m/h2.

2. For i = 0, 1, 2, . . ., repeat the following updates until a stopping criterion is
satisfied.

ϕi+1(x) := P‖·‖F≤α
(
ϕi(x) + σ(Ehū

i(x)− w̄i(x))
)

ψi+1(x) := P‖·‖F≤β
(
ψi(x) + σEhw̄

i(x)
)

ui+1(x) := P≥0

(
ui(x) + τ divh ϕ

i+1(x) + τf(x)

1 + τ

)
wi+1(x) := wi(x) + τ(ϕi(x) + divh ψ

i(x))

ūi+1 := ui+1 + θ(ui+1 − ui).

w̄i+1 := wi+1 + θ(wi+1 − wi).
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5 GPU implementation and performance

As mentioned in the introduction, instead of CUDA [16], we used OpenACC[15]
specification #pragma directives in normal C code to instruct a suitable compiler
to generate GPU code. These directives are similar to those of OpenMP, and have
the advantage over CUDA that in principle the same code can be compiled for
OpenMP and single-CPU targets, reducing code maintenance effort. It should also
enable more rapid development than manually writing CUDA GPU kernels. In
the process of the GPU implementation of our code, we however ran into several
restrictions of the current versions of the standard and the Portland Group PGCC
compiler that was used, which we describe next.

Example 1 The following code illustrates the usage of OpenACC.

#pragma omp parallel for
#pragma acc kernels loop deviceptr(y, f , res ), independent
for( size t i=0; i<n; i++)

res [ i ]=y[ i ]+f[ i ];

OpenACC/PGCC difficulties: Code re-use PGCC allows only selected function
calls in kernel regions. In particular pointer parameters are often not allowed. This
is a difficulty, because the C language only supports one-valued functions. We had
to implement the function computing the two parameters (c, s) = givens(a, b) of a
Givens rotation as a macro, as we could not call the routine with prototype

void givens(double *c, double *s, double a, double b);

from the core function for the QR algorithm. A plausible reason for this restriction
is that pointer-arithmetic should be possible on s and c, but the variables are stored
in GPU registers, where this is not possible. Also, returning a struct containing
c and s resulted in a failure. Partially this is thus a problem of the C language,
although the compiler could try to deduce, what is really being done, and what
language features are really needed.

Another difficult is that function pointers are not allowed, even though the
compiler has the logic to inline functions passed as pointers, so that the pointer is
actually never dereferenced in the machine code. The following example demon-
strates such code-reuse, where a “paralleliser” multiop gets passed a primitive func-
tion as a pointer, to generate a parallelised version.

Example 2 In the following code, without OpenMP or OpenACC enabled, both
PGI PGCC and GNU GCC perfectly inline multiop below into multisqrt and
multiexp, so that a pointer to sqrt and exp is never used in the machine code.
With OpenMP both pass a function pointer to a non-inlined version of multip.
PGCC refuses to generate OpenACC accelerator kernel.

void inline multiop(double *p, size t n, double (*f)(double)) {
#pragma omp parallel for
#pragma acc kernels loop deviceptr(p), independent
for( size t i=0; i<n; i++)

p[ i ]=f(p[ i ]);
}
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void multisqrt (double *p, size t n) {
multiop(p, n, sqrt );

}

void multiexp(double *p, size t n) {
multiop(p, n, exp);

}

This kind of restrictions severely limit code-reuse, although, clearly, the com-
piler possesses most of the optimization logic necessary to inline everything. More-
over, PGCC 12.5 has a bug in the implementation of the C99 Pragma statement,
so macros also cannot be used. (C #pragma may not be used in macros.) In the
end, as the usual ways of code re-use resulted in failure, we had to manually inline
code in separate files with #include, with parameters set with #define.

OpenACC difficulties: memory management in complex programs It is our im-
pression that the OpenACC GPU memory management model is designed only
for programs with a simple nested structure, where it suffices to allow the com-
piler to copy data between GPU RAM and main RAM upon entry and exit of
an accelerator region. However, in a more complex program, we cannot make the
whole algorithm a single accelerator region, on the boundary of which the data is
copied. Moreover, with large amount of data, the synchronisation upon frequent
accelerator region entry and exit becomes inefficient, so we want a more detailed
control over the storage and copying of data. OpenACC includes acc malloc and
acc free to reserve and free memory in GPU RAM, but is missing an acc memcpy
procedure to efficiently copy memory when needed. This becomes useful, for one,
when a task is split over multiple compute notes (with OpenMPI), and we want
to copy the outermost data slices of a compute node to the neighbour node for
differentiation of the outermost slices. During most of the execution of the algo-
rithm, we do not need this data to reside in the main RAM, and never before
the algorithm is finished, do we need the innermost slices in the main RAM. As
OpenACC does not support such fine-grained memory management, we had to
directly use cudaMemcpy from the CUDA API for this.

Example 3 The following unabstracted program fits the OpenACC memory model.

void func(const char * infile ){
size t sz= find file size ( infile );
double *data=malloc(sz);
read doubles(data, sz , infile );
#pragma acc data copy(data[0:sz])
// Calculate something
free (data);

}

The following abstracted structure is not properly supported.

void func(const char * infile ){
MyData *data=load file( infile ); // Uses acc malloc. (#pragma acc data
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// does not survive function return )
// How to efficiently access the data on CPU (for, e.g ., MPI sync)?
// ==> Use cudaMemcpy!
free my data(data);

}

OpenACC/PGCC difficulties: Manual optimizations We need to efficiently store
temporary 3×3 matrices for the QR code. It would be convenient to define these as
C arrays, but that is inefficient on the GPU, as arrays cannot be stored in register.
We therefore have to construct matrices out of individual double variables, and
define macros to access these entries. The indices then have to be compile-time
constants, so loops are not supported for operating on the matrix entries.

We would like to implement differentiation generically as

Ehu(x) = AE,2diff(u, x), divh φ(x) = Adiv,3diff(φ, x),

Ehw(x) = AE,3diff(w, x), divh ψ(x) = Adiv,4diff(φ, x),

for diff(·, x) performing at x the forward-differences of every tensor component
in every m directions, and each AD,n a suitable (sparse) prefix matrix. However,
accessing these prefix matrices from GPU RAM is relatively slow, so we had to
generate code with hard-coded constants for each supported differentiation oper-
ator. This results in relatively long compilation times to support multiple tensor
orders and dimensions, and, for other regularisation functionals, both symmetric
and non-symmetric gradient and divergence. Moreover, we also generate versions
of the differentiation code with compile-time constant volume width and height
for improved cache blocking for typical 128× 128 and 256× 256 dimensions. This
results in further extended compile times.

Observe that differentation is still computationally expensive, since there are
many tensor components per voxel: for Sym4(R3), 16, for Sym3(R3) 10, and for
Sym2(R3), 6 components. This implies for TGV2 a total of 6 + 10 + 10 + 16 = 42
values per voxel, that need to be differentiated in all m = 3 directions at each
iteration of Algorithm 2.

Performance We computed 100 iterations of Algorithm 2 for a 128 Ö 128 Ö60
data set. We need three instances of both the primal and dual variables, 3 Ö

42 doubles per voxel, yielding a 945MB memory requirement. This is all stored
in GPU RAM for the GPU implementation. The raw run times are as reported
in Table 1 The reported times include the computation of a pseudo-duality gap,
not discussed here for the sake of conciseness; see [2] for details. A comparison
of single CPU to single GPU performance is provided in Table 2. As we see, the
performance improvement is noticeable. For double precision numbers, the GeForce
GTX 480 GPU is about 64 times faster than a single CPU core, while the Tesla
is about 45 times faster. This is well within the range of 10 to 100 times speed-
up obtained in other applications with a manual CUDA implementation [24,25,
26]. This indicates that good performance can be achieved with OpenACC. The
improvement for single precision floating point numbers is even higher than for
double precision. The overall algorithm however did not exhibit convergence using
single precision numbers, suggesting accumulation of numerical errors.
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Table 1 Performance of GPU and CPU hardware on 100 iterations of Algorithm 2 on a
128 Ö 128 Ö60 data set. “CPU time” is the total execution time over all CPUs. “GPU exec
time” denotes the time spent executing GPU code, while “GPU total time” includes memory
access as well.

Hardware Precision Real
time

CPU
time

GPU
exec
time

GPU
total
time

2Ö 6-core Intel Xeon X5650 CPU double 75.2s 898.5s
single 47.1s 562.8s

1Ö Nvidia GeForce GTX 480 GPU double 13.4s 13.4s 13.1s 13.3s
single 5.2s 5.2s 5.0s 5.2s

1Ö Nvidia Tesla C2070 GPU double 19.8s 19.7s 19.3s 19.8s
single 7.8s 7.8s 7.4s 7.8s

Table 2 GPU performance advantage over 1ÖCPU core. The numbers on the left are speed-
ups of the respective GPUs versus CPU. For the full run, relative decrease to 0.1% of the
pseudo-duality gap was used as the stopping criterion. The reported CPU time for the full run
is a projection estimate.

Hardware double
precision

single
precision

1Ö GeForce ∼64Ö ∼108Ö
1Ö Tesla ∼45Ö ∼72Ö

Hardware One iteration
(double prec.)

Full run
(1178 its.)

1Ö CPU core 9s 3h
1Ö Tesla 0.2s 3m50s

Noisy DTI image1 TV denoising TGV2 denoising

Fig. 1 Results of TV and TGV2 denoising.

For completeness, although analysis of the denoising results themselves is not
the objective of this paper, we show in Figure 1 the result of denoising a very noisy
text image by TV and TGV2. Clearly TGV2 performs better, with TV exhibit-
ing stair-casing: flat areas with sharp transitions. A more detailed comparison is
presented in [2].

6 Conclusions

Our conclusion is that the application of GPUs offers significant speed-ups over
CPUs. We would need 64 high-end CPU cores to match a single GPU. Regarding
software tools, we find that the PGI implementation of OpenACC is still some-
what immature, although it does offer performance comparable to manual CUDA
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implementations. OpenACC should allow faster development of high-performance
GPU code, and easier maintenance, as the same code can target OpenMP and
unparallelised targets as well. Presently, however, much extra work is still needed,
due to poor function support in kernels, and the OpenACC data region model,
which does not appear suitable for programs with rich structure.
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