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1 Introduction

Let g and h be convex functions on Rm, both proper and closed with h finite-valued.
Define the difference of these functions as f := g − h. As shown in particular by
Hiriart-Urruty [4], a necessary and sufficient condition for ŷ ∈ Rm to be a global
minimiser of f is that

∂εh(ŷ) ⊂ ∂εg(ŷ) for all ε ≥ 0. (1)

For local optimality, Dür [2] has showed the sufficiency of the existence of ε > 0

such that (1) holds for all ε ∈ [0, ε). This condition is, however, not necessary for
local optimality. In this paper, we show that necessity follows under the additional
constraint of the set of “mutual linearity” of g and h around ŷ, being the singleton
{ŷ}.

We also show that the condition on mutual linearity along with strict inclusion
in (1) for ε ∈ (0, ε) – but importantly not necessarily for ε = 0 – is both necessary
and sufficient for strict local optimality. Also, when f is level-bounded, it turns
out that strict inclusion for all ε > 0 and a singleton mutual linearity set is both
necessary and sufficient for the uniqueness of ŷ as a global minimiser.

The rest of this paper is organised as follows. In Section 2 we introduce notation
and concepts employed in the later analysis. Then in Section 3 we study the
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aforementioned characterisations of strict local optimality. In Section 4 we adapt
these results to get refined characterisations of non-strict local optimality, while in
Section 5 we consider the uniqueness of global minimisers. We conclude the paper
in Section 6 with a brief discussion of related sensitivity and level-boundedness
results. The results have been extracted and improved from the author’s Ph.D
thesis [9].

2 Definitions

We use the following notations. The support function of a non-empty convex set
A ⊂ Rm is denoted by σ(x;A) := sup{〈z, x〉 | z ∈ A}, and the normal cone at x ∈ A
is defined as NA(x) := {z ∈ Rm | 〈z, x′ − x〉 ≤ 0 for all x′ ∈ A}. The star-difference
is defined for two sets A and B as

A ∗−B := {z ∈ Rm | z +B ⊂ A}.

Note that this set is closed and convex if A is. The closure, boundary, interior, and
relative interior of a set A are denoted, respectively, by clA, bdA, intA and riA.

The effective domain of a function f : Rm → R∪{∞} is denoted dom f := {y ∈
Rm | f(y) <∞}. This set is non-empty for our functions of interest. Similarly, the
c-level set of f is defined as levc f := {y ∈ Rm | f(y) ≤ c}, and f is said to be
level-bounded if levc f is a bounded set for every c ∈ R.

Throughout the rest of this paper, unless otherwise explicitly mentioned, we
utilise the following assumption.

Assumption 1 The functions denoted by g and h are convex, proper, and closed
with g : Rm → R ∪ {∞} and h : Rm → R. The symbol f denotes a function
Rm → (−∞,∞] that can be decomposed as f = g − h. Such a function is called a
difference of convex functions, or diff-convex.

The ε-subdifferential of g at y ∈ Rm is defined as the set ∂εg(y) of z ∈ Rm that
satisfy

g(y′)− g(y) ≥ 〈z, y′ − y〉 − ε for all y′ ∈ Rm.

Our general reference for many of the basic properties of ε-subdifferentials listed
below is provided by Hiriart-Urruty and Lemaréchal [5].

Defining the convex graphs

Gg(y) := {(z, ε) | ε ≥ 0, z ∈ ∂εg(y)},

we have the expression

g(y + v)− g(y) = sup{〈v, z〉 − ε | ε > 0, z ∈ ∂εg(y)}
= sup{σ(v; ∂εg(y))− ε | ε > 0}
= σ((v,−1);Gg(y)).

(2)

This will be useful throughout the paper.
Let us also recall the definition of the linearisation error,

eg(y′; y, z) := g(y′)− g(y)− 〈z, y′ − y〉, (3)



3

and the subdifferential transportation formula:

if z ∈ ∂ηg(y), then z ∈ ∂εg(y′) for ε ≥ η + eg(y′; y, z). (4)

We may then define the region of mutual linearity of g and h around y as

L(y) := {y′ ∈ Rm | eg(y′; y, z) = eh(y′; y, z) = 0 for some z ∈ ∂g(y) ∩ ∂h(y)}.

Finally, we denote
Cε(y) := ∂εg(y) ∗− ∂εh(y).

The condition 0 ∈ Cε(ŷ) (resp. 0 ∈ intCε(ŷ)) is then the same as ∂εh(ŷ) ⊂ ∂εg(ŷ)

(resp. ∂εh(ŷ) ⊂ int ∂εg(ŷ)), since ∂εh(ŷ) is compact by our standing assumption
on h being finite-valued. Thus 0 ∈

⋂
ε>0 Cε(y) is equivalent to the necessary and

sufficient global optimality condition ∂εh(y) ⊂ ∂εg(y) for all ε > 0. According to
Mart́ınez-Legaz and Seeger [6], ∂f(y) =

⋂
ε>0 Cε(y), providing the connection to

yet another characterisation of optimality.

3 Strict local optimality

We may now state the main result. Recall that throughout the paper, the symbols
f , g, and h denote functions that satisfy Assumption 1.

Theorem 1 The point ŷ ∈ Rm is a strict local minimiser of f := g−h if and only
if L(ŷ) = {ŷ} and the following subdifferential inclusion is satisfied:

there exists ε > 0, such that 0 ∈ intCε(ŷ) for each ε ∈ (0, ε). (SDI)

(Note that we do not explicitly require ŷ ∈ dom g for necessity, because the
condition L(ŷ) = {ŷ} already forces this.)

We begin the proof with a few technical lemmas. Lemma 1 followed by Lemma
2 forms the core of the necessity proof, while Lemma 3 provides a lower estimate
of f(y)− f(ŷ) that quickly yields the sufficiency proof.

Lemma 1 Suppose (zh, εh) ∈ Gh(ŷ)\intGg(ŷ). Then there exists (zg, εg) ∈ bdGg(ŷ),
α ≥ 0, and (v, δ) ∈ NGg(ŷ)(zg, εg) with δ ∈ {0,−1} and ‖v‖ ≥ 1 + δ, such that
(zh, εh) = (zg, εg) + α(v, δ). We additionally have ‖v‖ > 0 if εh > 0.

Proof Since ŷ ∈ dom g, the set Gg(ŷ) is non-empty. It is also closed and con-
vex, and the function w : (z, ε) 7→ ‖(zh, εh)− (z, ε)‖2 /2 is convex, continuous, and
level-bounded. Therefore, w has a minimiser (zg, εg) over Gg(ŷ) that satisfies the
optimality condition −∇w(zg, εg) ∈ NGg(ŷ)(zg, εg), or

(zh − zg, εh − εg) ∈ NGg(ŷ)(zg, εg). (5)

Clearly also (zg, εg) ∈ bdGg(ŷ) due to (zh, εh) 6∈ intGg(ŷ).
The inclusion (zg, εg) ∈ Gg(ŷ) means zg ∈ ∂εgg(ŷ). The definition of the ε-

subdifferential implies that, in fact, zg ∈ ∂εg(ŷ) for all ε ≥ εg. Thus, by choosing
z = zg and ε > εg, we find that the inequality 〈(v, δ), (z − zg, ε − εg)〉 ≤ 0 cannot
hold for all (z, ε) ∈ Gg(ŷ) unless δ ≤ 0. Hence we obtain that

(v, δ) ∈ NGg(ŷ)(zg, εg) implies δ ≤ 0. (6)
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Combining (5) and (6), we find εh ≤ εg. If actually εh < εg, we may set
α = εg − εh, and find (v, δ) = ((zh − zg)/α,−1) ∈ NGg(ŷ)(zg, εg) by dividing (5) by
α. Clearly both conditions (zh, εh) = (zg, εg) + α(v, δ) and ‖v‖ ≥ 1 + δ are satisfied
by this choice. If, on the other hand, εg = εh, there are two cases to consider for
the choice of (v, δ) and α:

(i) If also zg = zh, we take α = 0. Since (zg, εg) is a boundary point of the
convex set Gg(ŷ), there exists some (0, 0) 6= (v, δ) ∈ NGg(ŷ)(zg, εg). If δ = 0, this
implies v 6= 0, so we may normalise (v, δ) to satisfy ‖v‖ = 1, thus fulfilling the
requirement ‖v‖ ≥ 1 + δ. Otherwise, δ < 0 by (6), so we normalise (v, δ) to have
δ = −1, which trivially fulfills ‖v‖ ≥ 1 + δ.

(ii) If zg 6= zh, we take α = ‖zh − zg‖, v = (zh − zg)/α, and δ = 0. All the
requirements are again clearly fulfilled by this choice.

It remains to show that ‖v‖ > 0 if εh > 0. If δ = 0, this trivially follows from
the bound ‖v‖ ≥ 1 + δ. If δ = −1, it suffices to show that (v,−1) ∈ NGg(ŷ)(zg, εg)

implies v 6= 0. This follows from the definition of NGg(ŷ)(zg, εg) due to εg ≥ εh > 0

and the inclusion ∂εg(ŷ) ⊂ ∂εgg(ŷ) for ε ∈ [0, εg]. ut

Lemma 2 Suppose ŷ ∈ dom g, and (zh, εh), (zg, εg), (v, δ) and α are as in the
statement of Lemma 1. Let yλ := ŷ + λv for λ ≥ 0. When δ = −1, we then
have f(yλ) ≤ f(ŷ) + (1 − λ)εh − λα for λ ∈ [0, 1]. In the case δ = 0, we have
f(yλ) ≤ f(ŷ) + εh − λα for all λ ≥ 0.

Proof In both of the cases δ = 0 and δ = −1, applying (zh, εh) = (zg, εg) + α(v, δ),
and zh ∈ ∂εhh(ŷ), we find

h(yλ)− h(ŷ) ≥ λ〈zh, v〉 − εh
= λ(〈zh, v〉 − εh)− (1− λ)εh

= λ(〈zg, v〉 − εg + α(‖v‖2 − δ))− (1− λ)εh.

Because ‖v‖2 − δ ≥ 1 due to ‖v‖ ≥ 1 + δ and δ ∈ {0,−1}, we thus obtain

h(yλ)− h(ŷ) ≥ λ(〈zg, v〉 − εg) + λα− (1− λ)εh. (7)

Consider now the case δ = −1. By the expression (2) and the property (v,−1) ∈
NGg(ŷ)(zg, εg) from Lemma 1, we find that for y1 = ŷ + v, we have

g(y1)− g(ŷ) = σ((v,−1);Gg(ŷ)) = 〈zg, v〉 − εg.

Thus, by the convexity of g and the expression yλ = λy1 + (1− λ)ŷ, we find

g(yλ)− g(ŷ) ≤ λ(g(y1)− g(ŷ)) = λ(〈zg, v〉 − εg) for λ ∈ [0, 1]. (8)

Combining the inequalities (8) and (7), we hence obtain the claimed

f(yλ)− f(ŷ) ≤ (1− λ)εh − λα for λ ∈ [0, 1].

It remains to consider the case δ = 0. Since (v, 0) ∈ NGg(ŷ)(zg, εg) with ‖v‖ > 0

by Lemma 1, we find that 〈zg, v〉 ≥ 〈z, v〉 over all (z, ε) ∈ Gg(ŷ). Consequently, (2)
yields

g(yλ)− g(ŷ) = sup{λ〈z, v〉 − ε | ε > 0, z ∈ ∂εg(y)}
≤ sup{λ〈zg, v〉 − ε | ε > 0, z ∈ ∂εg(ŷ)}
= λ〈zg, v〉.

(9)
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Since, by Lemma 1, εg = εh when δ = 0, the inequality (7) reduces into

h(yλ)− h(ŷ) ≥ λ〈zg, v〉+ λα− εh.

Combining this with (9) yields the claim f(yλ) ≤ f(ŷ) + εh − λα for all λ ≥ 0. ut

Lemma 3 Suppose ŷ ∈ dom g, y ∈ Rm, and z ∈ ∂h(y). Suppose also ε > εh :=

eh(ŷ; y, z). Then

f(y)− f(ŷ) ≥ sup{σ(y − ŷ;Cε(ŷ))− (ε− εh) | ε ∈ [εh, ε)}. (10)

Additionally, provided that y 6= ŷ, that L(ŷ) = {ŷ}, and that (SDI) holds for ŷ
and ε, then f(y) > f(ŷ).

Proof By (2), we have

h(y)− h(ŷ) ≥ σ(y − ŷ; ∂εhh(ŷ))− εh. (11)

By the definition (3), εh = eh(ŷ; y, z) reads as

h(y)− h(ŷ) = 〈y − ŷ, z〉 − εh. (12)

But z ∈ ∂h(y) and the subdifferential transportation formula (4) imply that z ∈
∂εhh(ŷ). Therefore, by (12), we have equality in (11), i.e.,

h(y)− h(ŷ) = σ(y − ŷ; ∂εhh(ŷ))− εh. (13)

Employing the properties of the support function and the definition of Cε(ŷ) as a
set satisfying ∂εh(ŷ) + Cε(ŷ) ⊂ ∂εg(ŷ), we furthermore get

g(y)− g(ŷ) = sup{σ(y − ŷ; ∂εg(ŷ))− ε | ε > 0}
≥ sup{σ(y − ŷ; ∂εg(ŷ))− ε | ε ∈ [εh, ε)}
≥ sup{σ(y − ŷ;Cε(ŷ)) + σ(y − ŷ; ∂εh(ŷ))− ε | ε ∈ [εh, ε)}
≥ sup{σ(y − ŷ;Cε(ŷ)) + σ(y − ŷ; ∂εhh(ŷ))− ε | ε ∈ [εh, ε)}.

(14)

The compactness of ∂εh(ŷ) ensures that the final estimate in (14) is well-defined
as −∞ when Cε(ŷ) = ∅. Thus, subtracting (13) from (14), we get the claimed (10).

It remains to show that y 6= ŷ together with L(ŷ) = {ŷ} and (SDI) imply
f(y) > f(ŷ). Setting ε = εh in (10) gives

f(y)− f(ŷ) ≥ σ(y − ŷ;Cεh(ŷ))).

Thus, the claim is established if 0 ∈ intCεh(ŷ). By (SDI), this is the case when
εh ∈ (0, ε). We have εh < ε by assumption, so only the case εh = 0 remains to be
dealt with. Then eh(y; ŷ, z) = −eh(ŷ; y, z) = −εh = 0, wherefore z ∈ ∂h(ŷ) by the
subdifferential transportation formula. Since (SDI) implies 0 ∈ C0(ŷ), we therefore
have z ∈ ∂g(ŷ) as well. If y 6= ŷ, the condition L(ŷ) = {ŷ} thus forces eg(y; ŷ, z) > 0.
But then we have eg(y; ŷ, z) − eh(y; ŷ, z) > 0, which is just f(y) > f(ŷ) written in
another way. ut

We now have the necessary ingredients to prove Theorem 1.
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Proof (Theorem 1) Necessity. We may assume that ŷ ∈ dom g, since otherwise ŷ
cannot minimise f strictly, not even locally. If we had ŷ 6= y ∈ L(ŷ), then by the
definition of the mutual linearity set L(ŷ), the segment [ŷ, y] ⊂ L(ŷ). Since f is
a constant on the set L(ŷ), and ŷ was assumed a strict local minimiser, we must
therefore have L(ŷ) = {ŷ}.

To prove the necessity of (SDI), we assume the contrary, i.e., that there exists
a sequence εh,k ↘ 0 (k = 0, 1, 2, . . .), such that 0 6∈ intCεh,k (ŷ). By the com-
pactness of ∂εh,kh(ŷ), this may be rewritten ∂εh,kh(ŷ) 6⊂ int ∂εh,kg(ŷ). We there-
fore have the existence of some zh,k ∈ ∂εh,kh(ŷ) \ int ∂εh,kg(ŷ). This may be re-
stated (zh,k, εh,k) ∈ Gh(ŷ)\intGg(ŷ). Consequently Lemma 1 provides (zg,k, εg,k) ∈
bdGg(ŷ) and (vk, δk) ∈ NGg(ŷ)(zg,k, εg,k) with δk ∈ {0,−1} and ‖vk‖ ≥ 1 + δk, as
well as αk ≥ 0 such that (zh,k, εh,k) = (zg,k, εg,k) + αk(vk, δk).

First, we consider the case that (for a subsequence) ‖vk‖ → 0. We may then
assume that δk = −1, as this must be the case for large enough k due to the
property ‖vk‖ ≥ 1 + δk. An application of Lemma 2 with λ = 1 then shows that
f(ŷ + vk) ≤ f(ŷ). But ŷ + vk → ŷ, which provides a contradiction to strict local
minimality at ŷ.

We may therefore assume that ‖vk‖ ≥ θ for some θ > 0. Since εh,k ↘ 0, and
h has bounded ε-subdifferentials due to domh = Rm, the sequence {zh,k}∞k=0 is
bounded. By possibly switching to a subsequence, it may therefore be assumed
convergent to some zh ∈ ∂h(ŷ). Since (zg,k, εg,k) is, by construction, the closest
point in the non-empty set Gg(ŷ) to (zh,k, εh,k), the sequence {(zg,k, εg,k)}∞k=0

is also bounded, and may likewise be assumed convergent to some (zg, εg) ∈
bdGg(ŷ). Observe that these considerations force {αk(vk, δk)}∞k=0 = {(zh,k, εh,k)−
(zg,k, εg,k)}∞k=0 to be likewise convergent.

Now, if {vk}∞k=0 contains a bounded subsequence, we take α and (v, δ) as
limits of some common subsequence of {αk}∞k=0 and {(vk, δk)}∞k=0. Clearly then
δ ∈ {0,−1} and α ≥ 0, while ‖v‖ ≥ max{1 + δ, θ} > 0.

Otherwise, if {vk}∞k=0 is unbounded, we take (v, δ) as a limit of a subsequence
of the renormalised sequence {(vk, δk)/ ‖vk‖}∞k=0, and α as a limit of a common
subsequence of {αk ‖vk‖}∞k=0 = {

∥∥zg,k − zh,k∥∥}∞k=0. Clearly then δ = 0, ‖v‖ = 1

and α ≥ 0.
In both of the above cases, recalling that NGg(ŷ) is outer-semicontinuous, we ob-

serve that (v, δ) ∈ NGg(ŷ)(zg, εg). From the convergence of αk(vk, δk) = (zh,k, εh,k)−
(zg,k, εg,k), we also find that α(v, δ) = (zh, 0)− (zg, εg). With εh := 0, the assump-
tions of Lemma 2 are therefore satisfied by (zh, εh), (zg, εg), (v, δ), and α. Conse-
quently, in both of the cases δ = 0 and δ = −1, we have f(yλ) ≤ f(ŷ)−λα ≤ f(ŷ) for
λ ∈ [0, 1] and yλ := ŷ + λv. Since ‖v‖ > 0, letting λ↘ 0 provides the contradiction
to f having strict local minimum at ŷ.

Sufficiency. Suppose yk → ŷ (k = 0, 1, 2, . . . ; yk 6= ŷ). We may then choose some
zk ∈ ∂h(yk) since domh = Rm. For sufficiently large k, we have eh(ŷ; yk, zk) < ε,
since {zk}∞k=0 is bounded, h is continuous, and yk → ŷ. Therefore, for large k, the
second claim of Lemma 3 applies with y = yk and z = zk, yielding f(yk) > f(ŷ).
This shows that ŷ is a strict local minimiser of f , thus completing the proof. ut

Remark 1 Note that (SDI) ensures 0 ∈ C0(ŷ) by closedness of the subdifferentials,
but we do not require 0 ∈ intC0(ŷ), which in itself if sufficient for strict local
optimality, as shown by, e.g., Hiriart-Urruty [3], or Penot [7] in a more general
setting.



7

Corollary 1 The diff-convex function f : Rm → (−∞,∞] has a strict local mini-
mum at ŷ ∈ Rm if and only if (SDI) holds for every decomposition f = g − h.

Proof The necessity of (SDI) holding for every decomposition at a strict local
minimiser is immediate from Theorem 1. Sufficiency follows from Theorem 1 by
choosing a decomposition f = g − h with L(ŷ) = {ŷ}. This can be done by taking
an arbitrary decomposition and adding the function y 7→ θ ‖y − ŷ‖2 for arbitrary
θ > 0 to both g and h, forming the functions gθ and hθ. Then ∂gθ(ŷ) = ∂g(ŷ),
whence for all z ∈ ∂gθ(ŷ) and y 6= ŷ,

gθ(y)− gθ(ŷ) = g(y)− g(ŷ) + θ ‖y − ŷ‖ > g(y)− g(ŷ) ≥ 〈z, y − ŷ〉.

This says that egθ (y; ŷ, z) > 0, showing that L(ŷ) = {ŷ} for the decomposition

f = gθ − hθ. Since (SDI) holds by assumption, Theorem 1 now proves strict local
optimality. ut

We may also rephrase Corollary 1 in terms of strictly convex functions:

Corollary 2 The diff-convex function f : Rm → (−∞,∞] has a strict local mini-
mum at ŷ ∈ Rm if and only if (SDI) holds for some decomposition f = g− h such
that either g or h is strictly convex.

Proof The functions gθ and hθ constructed in the proof of Corollary 1 are strictly
convex, showing necessity. To show sufficiency of (SDI) holding for some decom-
position with either g or h strictly convex, it suffices by Theorem 1 to show that
L(ŷ) = {ŷ} then. To see this, we note that if g is strictly convex, then the sets
N(y) := {y′ ∈ Rm | eg(y′; y, z) = 0, z ∈ ∂g(y)} are the singletons {y} for y ∈ Rm.
Similar reasoning holds with h in place of g. This implies that L(ŷ) = {ŷ}, estab-
lishing sufficiency. ut

The next example demonstrates that the condition L(ŷ) = {ŷ} cannot be
dropped, that is, (SDI) is not sufficient alone.

Example 1 Define the real functions

g(y) :=

{
0, y ∈ (−1, 1),

|y| − 1, otherwise,
and h(y) := g(y/2) for y ∈ R.

Then clearly y = 0 is a non-strict global minimiser of f = g − h. But ∂εh(0) =

∂εg(0)/2, wherefore (SDI) holds, although strict optimality does not.

4 Non-strict local optimality

We now consider necessary conditions for local optimality, improving the suffi-
ciency analysis of Dür [2].

Theorem 2 For the point ŷ ∈ Rm to be a local minimiser of f := g − h, it is
sufficient that

there exists ε > 0, such that 0 ∈ Cε(ŷ) for each ε ∈ [0, ε). (SDI′)

If L(ŷ) = {ŷ}, this condition is also necessary.
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Proof As mentioned, sufficiency has been shown in [2], but it can also be shown
analogously to the sufficiency proof of Theorem 1, as follows. We take yk → ŷ (k =

0, 1, 2, . . . ; yk 6= ŷ), some zk ∈ ∂h(yk), and set εh,k := eh(ŷ; yk, zk). As before, for
sufficiently large k, we have εh,k < ε. Therefore, simply by employing 0 ∈ Cεh,k (ŷ)

in (10), Lemma 3 shows that f(yk) ≥ f(ŷ) for such large k. Thus ŷ is a local
minimiser. Note that a singleton mutual linearity set is not needed in this case.

Necessity likewise follows by adapting the necessity proof of Theorem 1. So,
we assume that (SDI′) does not hold for any ε > 0 , and for k = 0, 1, 2, . . ., take
εh,k ↘ 0 and (zh,k, εh,k) ∈ Gh(ŷ)\Gg(ŷ) with zh,k → zh. By application of Lemma 1
we again get (zg,k, εg,k) ∈ bdGg(ŷ), αk ≥ 0, and (vk, δk) ∈ NGg(ŷ)(zg, εg) satisfying
δk ∈ {0,−1}, ‖vk‖ ≥ 1 + δk, and (zh,k, εh,k) = (zg,k, εg,k) + αk(vk, δk). As in the
proof of Theorem 1, by possibly switching to a subsequence and letting k → ∞,
we may find α, (v, δ) and (zg, εg) also satisfying these conditions for (zh, εh) with
εh := 0.

We first consider the case that (for a subsequence) ‖vk‖ → 0. Thanks to the
property ‖vk‖ ≥ 1 + δk, we may again assume δk = −1. Presently actually αk >

0, because (zh,k, εh,k) is outside the closed set Gg(ŷ) containing (zg,k, εg,k). An
application of Lemma 2 therefore shows that f(ŷ + vk) ≤ f(ŷ) − αk < f(ŷ) . But
we had ‖vk‖ → 0, so this is in contradiction to local optimality.

Suppose then that ‖vk‖ ≥ θ > 0. Since εh = 0, in both of the cases δ = 0 and
δ = −1, an application of Lemma 2 shows that f(yλ) ≤ f(ŷ)− λα for λ ∈ [0, 1] and
yλ := ŷ + λv. If α > 0, we thus reach the desired contradiction to local optimality.
So suppose α = 0. Since (zg, εg) = (zh, 0) + α(v, δ), we in particular have εg = 0,
and zg = zh ∈ ∂g(ŷ) ∩ ∂h(ŷ). From (8) for δ = −1 and (9) for δ = 0, we find
g(yλ)− g(ŷ) ≤ λ〈zg, v〉 for λ ∈ [0, 1]. The inclusion zg ∈ ∂g(ŷ) provides the opposite
inequality, establishing the equality

g(yλ)− g(ŷ) = λ〈zg, v〉 for λ ∈ [0, 1]. (15)

This says eg(yλ; ŷ, zg) = 0. Since, by assumption, yλ 6∈ L(ŷ) for λ 6= 0, we must
therefore have eh(yλ; ŷ, zg) 6= 0. But zg ∈ ∂h(ŷ), so we get the strict inequality
eh(yλ; ŷ, zg) > 0, i.e.,

h(yλ)− h(ŷ) > λ〈zg, v〉 for λ ∈ (0, 1]. (16)

Combining (15) and (16) shows that f(yλ) < f(ŷ) for λ ∈ (0, 1]. Since ‖v‖ >
0 implies yλ 6= ŷ when λ 6= 0, this provides the desired contradiction to local
optimality. ut

Similarly to Corollary 2, we get the following result.

Corollary 3 The diff-convex function f : Rm → (−∞,∞] has a local minimum at
ŷ ∈ Rm if and only if (SDI′) holds for some decomposition f = g − h.

Proof We only have to establish necessity, sufficiency being contained in Theorem
2. Given an arbitrary decomposition f = g − h, we consider the decomposition
f = gθ − hθ constructed in the proof of Corollary 1. These functions are strictly
convex by construction, wherefore by the proof of Corollary 2, L(ŷ) = {ŷ}. Theorem
2 now shows the necessity of (SDI′) for this decomposition. ut



9

Example 2 Dür [2] provides a counterexample to the necessity of (SDI′) without
the additional assumption L(ŷ) = {ŷ}. This is in the form of

g(y) :=

{
0, y ≤ 1,

(y − 1)2, y > 1,
and h(y) := g(−y).

The function f has local minimum at y = 0, but

∂εg(0) = [0, 2(
√

1 + ε− 1)], and ∂εh(0) = −∂εg(0),

whence the condition ∂εh(0) ⊂ ∂εg(0) does not hold for any ε > 0. However, we
have {y ∈ Rm | eg(y; 0, 0) = 0} = (−∞, 1], and {y ∈ Rm | eh(y; 0, 0) = 0} = [−1,∞),
whence L(0) = [−1, 1].

5 Uniqueness of global minimisers

Finally, we represent some results pertaining to global optimality.

Theorem 3 For the point ŷ to be the unique global minimiser of f := g − h, it is
sufficient that L(ŷ) = {ŷ} and (SDI) holds with ε = +∞. If f is level-bounded, this
is also necessary.

Proof If (SDI) holds with ε = +∞, Lemma 3 yields f(y) > f(ŷ) for all y 6= ŷ. This
establishes the sufficiency claim.

As for the necessity claim, clearly we must once again have L(ŷ) = {ŷ}, because
f takes a single value on this set. It remains to show that (SDI) holds with ε =

+∞. We do this by assuming that (SDI) is violated by the existence of (zh, εh) ∈
Gh(ŷ) \ intGg(ŷ) with εh > 0. As before, we apply Lemma 1 to the pair to get
(zg, εg) ∈ bdGg(ŷ), α ≥ 0, and (v, δ) ∈ NGg(ŷ)(zg, εg) with δ ∈ {0,−1}, ‖v‖ ≥ 1 + δ

and (zh, εh) = (zg, εg) + α(v, δ). Note that v is non-zero according to the lemma,
since εh > 0.

Now, if δ = −1, then Lemma 2 shows that f(y + v) ≤ f(ŷ), providing a con-
tradiction to uniqueness of the minimiser. If, on the other hand, δ = 0, then by
Lemma 2, f(y + λv) ≤ f(ŷ) + εh for λ ≥ 0. Because v 6= 0, this is in contradiction
to f having been assumed level-bounded. ut

The next corollary states the obvious counterpart to Corollaries 1 and 2, and
is proved analogously.

Corollary 4 Suppose f : Rm → (−∞,∞] is diff-convex and level-bounded. Then it
has its unique global minimum at ŷ ∈ Rm if and only if (SDI) holds with ε = +∞
for every decomposition f = g−h or, equivalently, some decomposition with either
g or h strictly convex.

The following example demonstrates that the strict subdifferential inclusion
condition (SDI) does not necessarily hold without the additional level-boundedness
assumption. We denote by B(x, r), the closed ball of radius r around x.
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Example 3 Consider

g(y) := ‖y‖ , and h(y) :=

{
‖y‖2 /4, ‖y‖ ≤ 2,

‖y‖ − 1, ‖y‖ > 2.

Clearly f(y) = 1 outside B(0, 2), so the function is not level-bounded, while it has
its unique global minimiser at y = 0. Indeed, (SDI) does not hold for ε ≥ 1, because

∂εg(0) = B(0, 1), and ∂εh(0) =

{
B(0,

√
ε), ε ≤ 1,

B(0, 1), ε > 1.

Remark 2 Theorem 3 could be refined. In the final case of the proof that employs
the level-boundedness assumption with δ = 0, we may additionally assume α = 0.
This is because f(yλ) ≤ f(ŷ) + εh − λα for λ > 0 by Lemma 2, so big enough λ

would contradict ŷ being a global minimiser if we had α > 0. Now, due to α = 0,
we have (zg, εg) = (zh, εh). This says that z ∈ ∂εg(ŷ) ∩ ∂εh(ŷ) for ε = εg(= εh).
The procedure of Lemma 1, on the other hand, guarantees that in this case with
δ = α = 0, there does not exist (v,−1) ∈ NGg(ŷ)(zg, εg). Thus it is merely necessary
to have

z ∈ ∂εg(ŷ) ∩ ∂εh(ŷ) =⇒ (v,−1) 6∈ NGg(ŷ)(z, ε) for all v ∈ Rm (17)

along with L(ŷ) = {ŷ} and (SDI′) for ε = +∞.
We now show that this relaxed condition is sufficient as well: Suppose y 6= ŷ,

z ∈ ∂h(y), and let ε := eh(ŷ; y, z). Then z ∈ ∂εh(ŷ), and by (SDI′) holding for
ε = +∞, also z ∈ ∂εg(ŷ). Thus the premises of (17) are satisfied. Because riGg(ŷ)

is non-empty, 〈(y− ŷ,−1), (z, ε)〉 reaching σ((y− ŷ,−1);Gg(ŷ)) requires (y− ŷ,−1) ∈
NGg(ŷ)(z, ε) [see, e.g., 8, Theorem 27.4]. But this is not the case by (17). By (2),
we therefore have g(y) − g(ŷ) > 〈z, y − ŷ〉 − ε = h(y) − h(ŷ), where the equality is
due to ε = eh(ŷ; y, z). This shows sufficiency.

6 Discussion of some related results

We conclude this paper with a discussion of a few recent results on closely related
uses of the inclusions ∂εh(ŷ) ⊂ ∂εg(ŷ): level-boundedness and sensitivity analysis.

Let R(∂g) denote the range of ∂g and suppose R(∂h) is bounded. According
to a result in [9, 10], the level sets levc f := {y ∈ Rm | f(y) ≤ c} are bounded
if clR(∂h) ⊂ intR(∂g), and only if R(∂h) ⊂ intR(∂g). This result has particular
relevance with regard to Theorem 3. That is, if the subdifferentials of h are bounded
and the interior inclusion condition 0 ∈ intCε(ŷ) holds in a suitable sense “at
infinity”, it is necessary that it holds for all ε > 0, for ŷ to be the unique global
minimiser.

Also in [9], the use of the sets Cε(ŷ) is studied for analysing the sensitivity of
minimisers as the function f is subject to perturbations. This is done by applying
and modififying the epigraphical methods of Attouch and Wets [1] along the same
lines as in the specific case of reformulations of the Euclidean TSP in [11]. With the
help of the lower estimate (10), it is thus possible to bound minimisers of perturbed
functions in scaled polars C◦ε (ŷ) := {z ∈ Rm | 〈z, x〉 ≤ 1 for all x ∈ Cε(ŷ)} of the
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sets Cε(ŷ). One simplified case can be stated as follows: With f := g − h, let
ŷ ∈ arg min f , and assuming (SDI) holds, let ε′ ∈ [0, ε) and D be a closed set with

ŷ ∈ D ⊂ {y ∈ Rm | eh(ŷ; y, z) ≤ ε′ for some z ∈ ∂h(y)}.

Let f̃ : Rm → (−∞,∞] be another proper lower-semicontinuous function with
y′ ∈ γ-arg minD f̃ and choose η > supD∩dom f̃ (f − f̃)− (f(ŷ)− f̃(ŷ)). Then

y′ ∈ ŷ +
⋃

εh∈[0,ε′]

⋂
ε∈[εh,ε)

(η + γ + ε− εh)C◦ε (ŷ).

That is, if y′ is in a neighbourhood of ŷ where the linearisation error of h is not
too big, as determined by the choice of ε′, then it can be bounded in a smaller
neighbourhood determined by scaling the polars of the subdifferential differences
Cε(ŷ) by the approximation error η + γ.
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