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Abstract. We consider continuous reformulations of the Euclidean travelling salesperson problem
(TSP), based on certain clustering problem formulations. These reformulations allow us to apply a
generalisation with perturbations of the Weiszfeld algorithm in an attempt to find local approximate
solutions to the Euclidean TSP.
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1. Introduction

This paper is concerned with the travelling salesperson problem with Euclidean (�2) distances (undiscretised),
i.e. the problem of finding the shortest closed path that visits every vertex (or city) in a given finite subset of R

m

exactly once, with the distances given by the Euclidean metric. Whereas various rather efficient algorithms exist
for the general and general metric TSP [14], few seem to be able to take advantage of the special features of the
variant with Euclidean distances – that still remains NP-hard. The most remarkable of those that do are Arora’s
polynomial time (and even “nearly linear time”) approximation schemes (PTAS) [2,3], the good performance of
which is, however, only asymptotic. Other methods for Euclidean instances specifically include various heuristics
optimised for speed and based on clustering or partitioning of the plane, or spacefilling curves [14].

Here, we make another stab at formulating and finding (local) solutions to the Euclidean TSP. Our approach
consists of first reformulating the problem as a continuous diff-convex problem. Instead of attempting to find the
optimal path, we attempt to find points that construct the path, constrained to equal one of the input vertices.
We then relax this problem, converting the constraint into a mere penalty. Dependent on the formulation
of the constraint, the relaxed problem is found to be equivalent to certain clustering problems (including the
multisource Weber problem or “K-spatial medians”) perturbed with the path length penalty. (Perhaps not so
coincidentally, Arora’s methods can also be extended to approximate the K-spatial medians [3,4].)

As a continuation of the work in [22,23], in this paper we restrict ourselves to locally solving these penalised
reformulations, by applying the so-called “perturbed Weiszfeld method” applicable to finding “semi-critical”
points of a sum of Euclidean distances from fixed points, perturbed by a concave function. Although applicable
to the multisource Weber problem (providing a sort of dual of the K-means -style algorithm), it is unfortunately
not applicable to the problem perturbed with the path length penalty. The algorithm is, however, applicable
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tka@mit.jyu.fi

Article published by EDP Sciences c© EDP Sciences, SMAI 2008

http://dx.doi.org/10.1051/cocv:2008056
http://www.esaim-cocv.org
http://www.edpsciences.org


896 T. VALKONEN AND T. KÄRKKÄINEN

to another clustering formulation presented in [23], perturbed with the path length penalty. It is this latter
reformulation we will use in our numerical experiments.

An (approximate) solution of such a continuous reformulation of the Euclidean TSP is not in practice – and
not in theory either for big penalty parameters – a permutation of the original vertices. Therefore, along the
course of studying these reformulations, we derive a heuristic that we use to “associate” the points of a solution
with the original vertices. We also develop some other heuristics to reduce problem sizes, based on this heuristic
and the clustering principle.

As for the applicability of our algorithms, we do not have any theoretical proofs of efficiency aside from
partial convergence to “semi-critical points” (often local minima), and each step of the basic algorithm being
O(n2) (consisting of n parallel Weiszfeld steps). On the experimental side, our method does seem to provide
rather good results in quite few iterations for small problems. For bigger problems the performance however
degrades considerably – there are, after all, many more local solutions then. A bigger penalty parameter value
might help, but the algorithm we apply has a limit on its magnitude. Clustering heuristics that we develop,
however, somewhat remedy the situation. Nevertheless, our numerical results are not remarkable compared to
what is achievable with other (non-Euclidean) algorithms [14].

The primary contributions of this work are thus the reformulations that appear new, and perhaps with other
methods applied to them, could provide better numerical results. The basic method based on the Weiszfeld
algorithm is also new. Our clustering heuristics are related to the classic Karp clustering heuristic, Bentley’s
Fast Recursive Partitioning scheme [8], and Litke’s clustering heuristic [15]. The first two of these use a “hard-
coded” partitioning approach until the clusters are small enough, after which the sub-problems in the cluster are
solved either approximately or exactly. Our approach, by contrast, uses a more dynamic cluster configuration,
as defined by a clustering problem objective function. Litke’s method also uses an ad hoc dynamic clustering
method. None of these methods incorporate TSP path length optimisation in the cluster calculation phase.
Finally, our geometric penalisation approach bears some resemblance to various geometric neural net methods
for the problem – see [13] and the references therein – as well as the Lazy TSP of [18]. In this latter paper
a formulation very similar to the first one of ours, but with squared distances, is analysed along with its
convexification. This problem is also considered in [9], in a wider measure-theoretic transport optimisation
framework.

The rest of this paper is organised as follows: in Sections 2 and 3 we present our continuous reformulations.
Then in Section 4 we consider the sensitivity of the solutions of the penalised reformulations with respect to the
solutions of the original problem, as the penalty parameter is varied. Section 5 considers heuristic approaches
that could be used to improve or speed up results. Finally in Section 6 we present and discuss the results of
our numerical experiments, and conclude the paper in Section 7. Appendix 7 presents some auxiliary results.

2. First reformulation

Consider the Euclidean travelling salesperson problem:

min
σ

n∑
i=1

∥∥aσi − aσ(i+1)

∥∥ , (2.1)

where ā � (a1, . . . , an) ∈ R
mn are distinct vertices, also called cities, and σ is a permutation of the numbers

{1, . . . , n}, with σ(n+1) � σ1. We shall henceforth use this identification without explicit mention. We denote
by σ̂ any of the optimal permutations that minimise (2.1). There are always at least n of these, every “shift”
of a solution being one.

Let us now reformulate the problem as finding p̄ � (p1, . . . , pn) that solves

min fTSP(p̄) �
n∑

i=1

‖pi − pi+1‖ subject to pi = aσi for some permutation σ.
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Here again we identify pn+1 � p1. The qualification condition may be written as

fKM(p̄; ā) �
n∑

i=1

min
j=1,...,n

‖ai − pj‖ = 0.

The function fKM is precisely the multisource Weber problem (or “n-spatial medians”) objective function, when
the number of data points and cluster prototypes are equal [23]. This function is diff-convex, as may be seen
by rewriting fKM(p̄; ā) = f(p̄; ā) − νKM(p̄; ā) with

f(p̄; ā) �
n∑

i=1

n∑
j=1

‖ai − pj‖ and νKM(p̄; ā) �
n∑

i=1

max
j=1,...,n

(∑
k �=j

‖ai − pk‖
)
. (2.2)

These considerations suggest relaxing problem (2.1) to the problem

min
p̄
fKM(p̄; ā) + λfTSP(p̄), λ > 0, (2.3)

or

min
p̄

(
n∑

i=1

min
j=1,...,n

‖ai − pj‖ + λ
n∑

i=1

‖pi − pi+1‖
)
.

Notice that for permutations σ of the vertices, p̄ = āσ � (aσ1, . . . , aσn) are precisely all the global minimisers
of (2.3) for λ = 0. The function fTSP therefore acts as a perturbation to the multisource Weber problem, pe-
nalising such permutations that result in long paths. For small enough perturbation parameter λ, a minimiser p̂
of (2.3) actually equals āσ̂ for one of the optimal permutations σ̂, as Theorem 2.5 below shows. First we need
some preliminary results and definitions, however.

Definition 2.1. The vertices ak (k = 1, . . . , n) are collinear (on the line L) if there are vectors z, v ∈ R
m such

that for the line L � Rz + v, {a1, . . . , an} ⊂ L. Otherwise the points are non-collinear.

Definition 2.2. Given a path/permutation σ, there is said to be a degenerate angle at the point aσk, if
(aσ(k+1) − aσk)T (aσ(k−1) − aσk) =

∥∥aσ(k+1) − aσk

∥∥∥∥aσ(k−1) − aσk

∥∥.
Since the collinear case is trivial, we will only consider the case of

Assumption 2.3. The vertices ak ∈ R
m (k = 1, . . . , n) are non-collinear and distinct.

The following result is well-known, but we provide the proof for completeness:

Lemma 2.4. Suppose that Assumption 2.3 holds on the points ak ∈ R
m (k = 1, . . . , n). Then the points of an

optimal path āσ̂ form a simple closed curve. In particular, there are no degenerate angles.

Proof. Assume without loss of generality that σ̂ is the identity permutation. Suppose two (open) straight line
segments of the path (ak, ak+1) and (ai, ai+1) with i �= k, cross at a point c. Then replacing the former segments
with (ak, ai) and (ak+1, ai+1), and reversing part of the remaining path, produces a valid path with one less
crossing. Now

‖ak − ai‖ + ‖ak+1 − ai+1‖ ≤ ‖ak − c‖ + ‖ai − c‖ + ‖ak+1 − c‖ + ‖ai+1 − c‖
= ‖ak − ak+1‖ + ‖ai − ai+1‖ ,

with the inequality strict if c does not lie on one (and then both) of the segments (ak, ai) or (ak+1, ai+1). Thus
the path can in that case be improved by removing the crossing.

If c ∈ (ak, ai)∩ (ak+1, ai+1), then these points are collinear, and (ak, ak+1) or (ai, ai+1) contains an endpoint
of the other; say ak ∈ [ai, ai+1], the other cases being analogous. The path can therefore visit ak during
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this segment, not increasing the cost. Furthermore, if this segment is part of the optimal path, the smaller
problem with ak removed will have equal optimal path length. If removing ak does not improve the path
length by going from ak−1 directly to ak+1, it must be that ak−1, ak+1, ai and ai+1 are collinear. Therefore,
if recursively applying the argument never improves the path, all the points must be collinear. This is in
contradiction to our assumptions. �

We denote by B(x, r) the closed ball centred at x ∈ R
m of radius r. Note that ∂ ‖· − a‖ (a) = B(0, 1),

yielding (by local convexity) that ∂fKM(āσ; ā) =
∏n

i=1 B(0, 1) when the points are distinct.

Theorem 2.5.

(i) For λ ∈ (0, 1/2], every global minimiser p̄ of (2.3), is a permutation of ā.
(ii) For λ ∈ (0, 1/2), global minimisers of (2.3), coincide with optimal TSP paths āσ̂; the same holds for

λ = 1/2 under Assumption 2.3.
(iii) However, for every permutation σ, āσ is a strict local minimiser of (2.3) for λ ∈ [0, 1/2) and a (possibly

non-strict) local minimiser for λ = 1/2.

Proof. Let p̄ = (p1, . . . , pn) ∈ R
mn be arbitrary. Suppose that for some pj (j = 1, . . . , n) the following property

holds: for every ak (k = 1, . . . , n) and some i(k) �= j,
∥∥ak − pi(k)

∥∥ ≤ ‖ak − pj‖. The point pj then does not
contribute to fKM, and we may assume that it lies on the straight line segment from pj−1 to pj+1, for otherwise
the cost could be decreased by making this alteration. We may in fact freely move pj on the path composed of
the remaining points pi (i �= j). Therefore, we can arrange the points in such a way that whenever pj minimises
i �→ ‖ak − pi‖ for Nj points ak, then the multiplicity of pi with pi = pj is also Nj .

The (possibly collinear) case with λ ∈ (0, 1/2). Let then pj minimise i �→ ‖ak − pi‖ > 0. We may then alter
p̄ by assigning pj �→ ak, actually decreasing the cost. This follows from the following two observations. Firstly,
(a) by the previous alterations, if pj is a minimiser of the distance for another a� �= ak, then there is also another
pi = pj for which this holds. Therefore mini ‖a� − pi‖ is not increased. Secondly, (b) for λ ∈ (0, 1/2), we have

λ ‖pj−1 − ak‖ < λ ‖pj−1 − pj‖ +
1
2
‖pj − ak‖ (2.4)

and similarly for pj+1. Thus the increase in the length of the path (p1, . . . , pn, p1) is consumed by the decrease
of minj ‖ak − pj‖ to zero.

We have therefore showed that for λ ∈ (0, 1/2), only the points āσ for permutations σ can be global minimisers.
Obviously the actual global minimisers correspond to the permutations that minimise fTSP.

However, 0 ∈ int ∂(fKM(·; ā) + λfTSP)(āσ) because ∂fKM(āσ; ā) =
∏n

i=1B(0, 1) as already noted, and

∇pifTSP(āσ) = ∇pi(
∥∥pi − aσ(i−1)

∥∥+
∥∥pi − aσ(i+1)

∥∥)(aσi) =
aσi − aσ(i+1)∥∥aσi − aσ(i+1)

∥∥ +
aσi − aσ(i−1)∥∥aσi − aσ(i−1)

∥∥
for λ ∈ (0, 1/2). By the local convexity of fKM in a neighbourhood of āσ, strict local optimality follows.

When λ = 1/2, we still have 0 ∈ ∂(fKM(·; ā)+λfTSP)(āσ). Thus local optimality follows from local convexity.
For an optimal permutation σ̂, by Lemma 2.4 we must in fact have ‖∇ifTSP(āσ̂)‖ < 2, wherefore strict local
optimality still holds. It remains to prove global optimality for this case.

The non-collinear case with λ = 1/2. Let again pj minimise i �→ ‖ak − pi‖ > 0. The inequality (2.4) still
holds as non-strict. In fact, when it holds as equality for both j − 1 and j + 1, all the points pj , pj−1, pj+1

and ak must lie on a line L, such that in one of the natural orders ≺ of L, ak ≺ pj , pj ≺ pj+1, and pj ≺ pj−1.
As before, we may then move pj to p′j � ak, not increasing the cost. Since ‖ak − pj‖ > 0 was minimal, p′j can
equal neither pj−1 nor pj+1. Therefore, there’s a degenerate angle in the altered path at p′j . Now, if some pi is
not on L, Lemma 2.4 applied to the points p1, . . . , p

′
j , . . . , pn (duplicates removed) shows that the path can not

be optimal.
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The possibility then remains that all the points pi are on L. By the non-collinearity assumption, there’s
some ak that is not on L. But now (2.4) holds strictly for the pj minimising i �→ ‖ak − pi‖ > 0. Therefore the
cost can be decreased as before. �

Corollary 2.6. Finding a point arbitrarily close to a minimiser of problem (2.3) is NP-hard for λ ∈ (0, 1/2]
when the vertices are non-collinear (with rational coordinates). Consequently, we have another proof that the
family of diff-convex problems is NP-hard.

Proof. We can always assume that ‖ak − a�‖ ≥ 1 (k �= �), because scaling does not alter σ̂. Suppose then that
for problem (2.3) and a given ε > 0, we were able to find in time polynomial in n (but not in ε), a point p̂
with ‖p̂i − aσ̂i‖ < ε (i = 1, . . . , n) for some σ̂. Then, taking ε = 1/3, we could uniquely assign each p̂i to
aσ̂i in polynomial time. But this means we could solve the original NP-hard Euclidean TSP problem (2.1) in
polynomial time1. �

For small enough λ, a good enough approximate solution should therefore identify the solution of (2.1), there
being a unique distance-minimising assignment of each pj to ak. For parameters greater than the threshold
value of λ, one could look for a permutation σ for which āσ closely matches p̄, for example by following the
method used in the proof of Theorem 2.5. Deciding how to optimally assign equal points pj to the corresponding
vertices in that method, can of course be expensive in itself.

The benefit from using a bigger λ comes from the local minima starting to disappear as the objective function
becomes “more convex”, and therefore possibly easier to minimise. For very big λ, the global minimisers also
drift far from the sought solution, however: the study of this sensitivity is the topic of Section 4.

By the diff-convexity, one could thus try to solve problem (2.1) by (approximately) solving a penalised
version (2.3) by methods of global optimisation, such as outer approximation methods; see e.g. [12]. As stated,
we are, however, interested in applying the somewhat more lightweight perturbed Weiszfeld method of [23] to
the problem. Unfortunately, the present model does not exactly fit within the class of problems considered in
[23], and for which we have partial convergence proofs. The problem is that fTSP(p̄)− νKM(p̄; ā) is not concave.

3. Second reformulation

We are thus led to seek for another way to formulate the condition pi = aσi, that would fit within the above-
mentioned class of problems. Given the observed relationship to the K-means clustering problem, a natural
candidate is based on the multi-objective clustering problem formulated in [23]. The problem then becomes

min
p̄
fMO(p̄; ā) + λfTSP(p̄), λ > 0, (3.1)

where
fMO(p̄; ā) � f(p̄; ā) − νMO(p̄)

is in structure similar to fKM: the function νKM has merely been replaced with

ν(p̄) � νMO(p̄) � 1
2

n∑
i=1

n∑
j=1

‖pi − pj‖.

We have fixed the factor 1/2 already at this point for simplicity; in [23], this may vary up to n/(2s− 2), with
s = n in our case, while ensuring level-boundedness of the objective function.

This time, the function fTSP(p̄)−ν(p̄) is concave for λ ∈ [0, 1], because ν(p̄) contains all the terms ‖pi − pi+1‖
in the sum expression.

1We may also consider approximate solutions in value space as well, since a good enough solution will have unique assignment
to some σ̂ in fKM.
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The permutations āσ are strict local minimisers of fMO(·; ā), as

∇ν(āσ) ∈ int ∂f(āσ; ā) = ∇ν(āσ) +
n∏

i=1

intB(0, 1). (3.2)

This follows from

∇piν(āσ) =
∑
j �=i

∇pi ‖pi − aσj‖ (aσi), ∂pif(āσ) =
∑

k

∂pi ‖pi − ak‖ (aσi),

with the difference B(0, 1) coming from σi = k.
As before, we have the inclusion ∂fTSP(āσ) ⊂ B(0, 1), strict at σ = σ̂ under Assumption 2.3 by Lemma 2.4.

Therefore, all the points āσ are strict local minimisers for λ ∈ (0, 1/2), and āσ̂ for λ = 1/2 as well. As for global
optimality, we have:

Theorem 3.1. Suppose the points ai (i = 1, . . . , n) are distinct. Then,

(i) The global minimisers of fMO(·; ā) are exactly āσ for all σ.
(ii) There exists a λ̂ > 0, such that the minimisers of fλ

MOTSP � fMO(·; ā) + λfTSP are exactly the optimal
TSP paths āσ̂ for λ ∈ (0, λ̂).

We begin the proof with a few lemmas. For the case m > 1, we will use the following extension (to strict
inequalities) of a reduction theorem of Levi; cf. [16], p. 175.

Lemma 3.2. Let ki ∈ R, and ρij ∈ R, i = 1, . . . ,K, j = 1, . . . , N . Suppose that for all x̄ = (x1, . . . , xN ) ∈ R
N ,

we have
K∑

i=1

ki |ρi1x1 + . . .+ ρiNxN | ≥ 0, (3.3)

and let C be the cone of x̄s, on which this inequality is strict. Then for all ȳ = (y1, . . . , yN ) ∈ R
mN ,

K∑
i=1

ki ‖ρi1y1 + . . .+ ρiNyN‖ ≥ 0.

Furthermore, this inequality is strict on the cone C′ where

A(ȳ) � {b ∈ R
m | ‖b‖ = 1, (bT y1, . . . , bT yN ) ∈ C}

has positive Lebesgue measure on the unit sphere.

Proof. Let ξi � ρi1yj + . . .+ ρiNyN . Then for some constant Cm > 0,

K∑
i=1

ki ‖ξi‖ /Cm =
K∑

i=1

ki ‖ξi‖
∫
‖b‖=1

∣∣bT ξi/ ‖ξi‖∣∣db =
∫
‖b‖=1

K∑
i=1

ki

∣∣bT ξi∣∣ db
=
∫
‖b‖=1

K∑
i=1

ki |ρi1xj(b) + . . .+ ρiNxN (b)| db ≥ 0,

where xj(b) � bT yj . As the area integrated over includes A(ȳ), the claim on strictness of the inequality
follows. �
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Lemma 3.3. Suppose the points ai (i = 1, . . . , n) are distinct, and define rσ(p̄) � 2
∑

i ‖pi − aσi‖. Then for
all λ ∈ [0, 1/2), and permutations σ, there exist neighbourhoods Dλ

σ of āσ, where

fMO(p̄; ā) − fMO(āσ; ā) ≥ λrσ(p̄), p̄ ∈ Dλ
σ . (3.4)

When m = 1,
⋃

σ D
λ
σ = R

nm (i.e. the whole space), and when λ = 0, D0
σ = R

nm. In both of these cases, the
inequality holds strictly when p̄ �= āσ for all σ.

Proof. We have

f(p̄; ā) − f(āσ; ā) ≥ max∂f(āσ; ā)T (p̄− āσ) = max
[ n∏

i=1

B(0, 1) + ∇ν(āσ)
]T

(p̄− āσ)

= (1/2)rσ(p̄) + ∇ν(āσ)T (p̄− āσ),

where the subdifferential is calculated as for (3.2), and the last equality follows from the expression ‖x‖ =
max{zTx | z ∈ B(0, 1)} for x ∈ R

m. Likewise,

ν(āσ) − ν(p̄) ≥ ∂ν(p̄)T (āσ − p̄).

Therefore

fMO(p̄) − fMO(āσ) = [f(p̄; ā) − f(āσ; ā)] + [ν(āσ) − ν(p̄)]

≥ (1/2)rσ(p̄) − min[∂ν(p̄) −∇ν(āσ)]T (p̄− āσ).

By monotonicity [∂ν(p̄) −∇ν(āσ)]T (p̄− āσ) ≥ 0. The problem is now to bound

L � min[∂ν(p̄) −∇ν(āσ)]T (p̄− āσ) ≤ (1/2 − λ)rσ(p̄). (3.5)

But, since the ai are distinct, ν is continuously differentiable2 in some neighbourhood of each aσ. Now, we
approximate

L ≤
n∑

i=1

‖[∇ν(p̄) −∇ν(āσ)]i‖ ‖pi − aσi‖ ≤ max
j

‖∇jν(p̄) −∇jν(āσ)‖ rσ(p̄)/2.

From this we see that some neighbourhoods Dλ
σ of āσ can be found, where the maximum term is small enough

for (3.5) to hold.
Now, if m = 1, there actually exists for each p̄ a permutation σ, for which the left hand side of (3.5) is zero.

Therefore (3.5) and then (3.4) are true for all λ ≤ 1/2, and
⋃

σ D
λ
σ = R. To see this, recall that where ν is

differentiable (i.e. pi �= pj for i �= j),

∇piν(p̄) =
n∑

j �=i

pi − pj

‖pi − pj‖
·

In the m = 1 case the terms summed over are ± 1, indicating the direction pj faces from pi on the real
line. But the set of these numbers over all i then uniquely determines the order of the pi on the real line,
and consequently a permutation σ, for which ∇ν(p̄) = ∇ν(āσ). In the non-differentiable case, pi = pj for
some i �= j. In this case we can arbitrarily decide on the order, and choose the corresponding signs ± 1 from
∂(p,p′) ‖p− p′‖ (p, p) = {(z,−z) | z ∈ B(0, 1)}.

The claim on strictness of the inequality (3.4) in the m = 1 case follows from the non-strict variant, since
D

1/2
σ cover the whole space, and (1/2)rσ(p̄) > λrσ(p̄) when p̄ �= aσ and λ < 1/2.

2Twice actually, so we could alternatively apply the mean value theorem.



902 T. VALKONEN AND T. KÄRKKÄINEN

Now, if λ = 0 (and still m = 1), the right hand side of (3.4) is zero, and independent of σ. We have
also previously shown that for every p̄, the inequality holds for some σ. But since 2ν(āσ) = f(āσ; ā) and
fMO(āσ) = f(āσ; ā) − ν(āσ) = ν(āσ) = ν(ā) does not depend on σ, actually

fMO(p̄; ā) − fMO(āσ; ā) = f(p̄; ā) − ν(p̄) − ν(ā) ≥ 0 for all σ and p̄. (3.6)

Therefore, in the m = 1 case, D0
σ =

⋃
σ′ D0

σ′ = R, for all σ.
Finally, suppose m > 1 and λ = 0. Since (3.6) is of the form (3.3) with x̄ = (p̄, ā) when pi, ak ∈ R, we may

apply Lemma 3.2 with ȳ = (p̄, ā) when pi, ak ∈ R
m to obtain that (3.6) holds generally. For the strict inequality,

to show that A(p̄, ā) has positive measure, choose the projection b in Lemma 3.2 so that (3.4) holds strictly, i.e.
at least for some i, bT pi �= bTak for all k. This can be done if pi �= ak for all k, because the set of projections
with bT pi = bTak is then finite. By continuity, the same holds in a neighbourhood of positive measure of the
chosen points and projection. Therefore A(p̄, ā) has positive measure. �

Proof of Theorem 3.1. Lemma 3.3 with λ = 0 proves claim (i).
As for claim (ii), since fMO is continuous and level-bounded (as noted above), the cluster points of minimis-

ers p̂λ of fλ
MOTSP with λ↘ 0, must be those of fMO = f0

MOTSP [21], Theorem 1.17. Since there are finitely many
permutations σ, there is a constant c dependent on ā, such that fTSP(āσ) ≥ c + fTSP(āσ̂) for non-optimal σ.
Therefore the cluster points must be the optimal TSP paths āσ̂.

To show the existence of the threshold on λ, choose an arbitrary λ̃ ∈ (0, 1/2). There must now exist λ̂ ≤ λ̃,
such that p̂λ ∈ D �

⋃
σ̂ D

λ̃
σ̂ for λ ∈ (0, λ̂). If this were not so, we could find a cluster point outside D, in

contradiction to previously established results.
Now, apply

∥∥aσi − aσ(i+1)

∥∥ =
∥∥aσi − pi + pi − pi+1 + pi+1 − aσ(i+1)

∥∥
≤ ‖aσi − pi‖ + ‖pi − pi+1‖ +

∥∥pi+1 − aσ(i+1)

∥∥, (3.7)

to yield

fTSP(āσ) − fTSP(p̄) =
∑

i

(∥∥aσi − aσ(i+1)

∥∥− ‖pi − pi+1‖
)
≤ 2

∑
i

‖pi − aσi‖. (3.8)

Combined with (3.4), we therefore have

fλ
MOTSP(p̄) − fλ

MOTSP(āσ̂) = fMO(p̄) − fMO(āσ̂) + λ(fTSP(p̄) − fTSP(āσ̂)) ≥ (λ̃− λ)rσ̂(p̄),

whenever λ ∈ [0, λ̃), and p̄ ∈ Dλ̃
σ̂ . This says that for λ ∈ (0, λ̂), we must have p̂λ = āσ̂ for some σ̂. �

Corollary 3.4. Either (or both) the calculation of λ̂ is NP-hard, or the problem (3.1) is NP-hard for λ ∈ (0, λ̂)
(and non-collinear vertices ā).

Proof. Identical to Corollary 2.6. �

Remark 3.5. Actually, the upper bound λ̂ is not strict under Assumption 2.3, for (3.7) is strict for some
i ∈ {1, . . . , n}. Suppose it weren’t. Then all the vectors aσi − pi, pi − pi+1, and pi+1 − aσ(i+1) would point in
the same direction, for all i. But this can not be unless both pi and pi+1 are collinear with aσi and aσ(i+1).
Therefore, all the four points are collinear. But likewise pi+1 and aσ(i+1) are collinear also with pi+2 and
aσ(i+2). By extension, all the points p1, . . . , pn and, in particular, a1, . . . , an are collinear, which violates our
assumptions.
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Lemma 3.3 also contains the following interesting special cases, obtained with λ = 0, stated here separately:

Corollary 3.6. For any points a1, . . . , an ∈ R
m, and p1, . . . , pn ∈ R

m, it holds that

n∑
i=1

n∑
k=1

‖pi − ak‖ ≥ 1
2

n∑
i=1

n∑
j=1

‖pi − pj‖ +
1
2

n∑
k=1

n∑
�=1

‖ak − a�‖.

In particular, when pi = −ai,
n∑

k=1

n∑
�=1

‖ak + a�‖ ≥
n∑

k=1

n∑
�=1

‖ak − a�‖.

Proof. This follows from the equivalence and inequality in (3.6). �

4. Sensitivity analysis

Here we provide some sensitivity results for our penalised reformulations of the Euclidean TSP. This is in
order to understand how the solutions vary, as the penalty parameter λ varies above 1/2 or λ̂, and to justify
the use of values higher than this threshold. Recall that ε-argmin f � {x | f(x) ≤ min f + ε}, and that the
polar of a convex set C is C◦ � {z | zTx ≤ 1 for all x ∈ C}.

Define fλ
KMTSP � fKM(·; ā) + λfTSP. Note that this function is locally convex at āσ̂, so that the convex

subdifferential is defined there. For the reformulation based on the multisource Weber problem, we then
get the following theorem. The first steps of the argument are based on the epigraphical methods of [21],
Section 7.J, and [6], but incorporate various optimisations and generalisations for improved bounds. (Recall
that the “auxiliary ρ-epi-distance” of f0 and g is defined as the infimum of η ≥ 0 that satisfy minB(x,η) g ≤
max{f0(x),−ρ} + η and minB(x,η) f0 ≤ max{g(x),−ρ} + η for all x ∈ B(0, ρ), also known as the Kenmochi
conditions [5]. We replace B(0, ρ) with an arbitrary set D, and translate our functions in order to not need the
first inequality to bound minD g from above. For the second inequality, we use a poor maximum value difference
estimate (4.2), as a consequence of which we do not have to consider the ball B(x, η), and minimise the gauge ψ
over it.)

Theorem 4.1. Suppose Assumption 2.3 holds. Let ε ≥ 0, λ0 ∈ (0, 1/2], and λ ≥ λ0. Suppose
D ∩ argmin fλ0

KMTSP �= ∅, and that p̂ ∈ ε-argminD fλ
KMTSP. Denote η � fTSP(āσ̂) − minD fTSP (this value

does not depend on the choice of σ̂), and Cσ̂ � ∂fλ0
KMTSP(āσ̂). Then,

(i) If for some σ̂, also p̂ ∈ āσ̂ +
∏n

i=1B(0, δσ̂i) for δi � minj �=i ‖ai − aj‖ /2, we actually have

p̂ ∈ āσ̂ + ((λ− λ0)η + ε)C◦
σ̂, (4.1)

with the set on the right bounded.
(ii) Suppose (4.1) holds and λ ≤ λ0 + mini(δσ̂i − εMi)(ηMi)−1 with Mi = maxx̄∈C◦

σ̂
‖xi‖. Then p̂ ∈

āσ̂ +
∏n

i=1 B(0, δσ̂i).
(iii) There exists a finite index set T , closed sets At, compact sets Ct, points q̄t, and constants ct ∈

[0, fλ0
KMTSP(q̄t) − fλ0

KMTSP(āσ̂)], such that C◦
t is bounded, and for some t ∈ T ,

p̂ ∈ At ∩
(
q̄t + ((λ− λ0)η + ε− ct)C◦

t

)
.

(iv) For p̂ ∈ At in (iii), we must have (λ− λ0)η + ε ≥ f0(q̄t) − min f0.

Proof. (i) Let f0 � fλ0
KMTSP − fλ0

KMTSP(āσ̂) and g � fλ
KMTSP − fλ

KMTSP(āσ̂) (the choice of σ̂ not affecting the
result). Then f0 and g have the same minimisers as fλ0

KMTSP and fλ
KMTSP, respectively, and min f0 = 0.

We now have
max

D
f0 − g = max

p∈D
(λ− λ0)(fTSP(āσ̂) − fTSP(p)) = η′ � (λ− λ0)η. (4.2)
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Thus for p̂ ∈ ε-argminD g, we get

f0(p̂) − min f0 ≤ g(p̂) + η′ − min f0 ≤ η′ + ε, (4.3)

since g(p̂) ≤ minD g+ ε ≤ ε by the construction of g, employing the assumption ({āσ̂ | σ̂} = arg min f0)∩D �= ∅,
and the fact that g(āσ̂) has equal value for all σ̂.

When p̂ ∈ āσ̂ +
∏n

i=1B(0, δi), the choice of δi forces the distance ‖pi − aσ̂i‖ to be minimal for both pi and aσ̂i

(against alternatives of the other), so that both p̂ and āσ̂ belong to a neighbourhood on which fKM is locally
convex. Therefore f0 is also convex in this neighbourhood, and we have the estimate

f0(p̂) − min f0 = fλ0
KMTSP(p̂) − fλ0

KMTSP(āσ̂) ≥ max(p̂− āσ̂)T ∂fλ0
KMTSP(āσ̂). (4.4)

The right hand side of this equation is the support function of Cσ̂ = ∂fλ0
KMTSP(āσ̂) applied to p̂ − āσ̂. Since

0 ∈ Cσ̂ (being the subdifferential at a minimiser), by [20], Theorem 14.5, the support function of Cσ̂ is the
gauge ψC◦

σ̂
(x) � inf{t ≥ 0 | x ∈ tC◦

σ̂} of the polar of Cσ̂. Combining with (4.3), we therefore have

η′ + ε ≥ f0(p̂) − min f0 ≥ ψC◦
σ̂
(p̂− āσ̂), (4.5)

and hence p̂− āσ̂ ∈ (η′ + ε)C◦
σ̂, as claimed.

Since Cσ̂ is bounded, 0 ∈ intC◦
σ̂ (so that Mi > 0); see [20]. It remains to prove that C◦

σ̂ is bounded. This
likewise follows if 0 ∈ intCσ̂ . Because ∂fKM(āσ̂) =

∏n
i=1 B(0, 1), it suffices to have Di < 2 for

Di �
∥∥∥∥∥ aσ̂i − aσ̂(i−1)∥∥aσ̂i − aσ̂(i−1)

∥∥ +
aσ̂i − aσ̂(i+1)∥∥aσ̂i − aσ̂(i+1)

∥∥
∥∥∥∥∥ = ‖∇ifTSP(āσ̂)‖ .

But Di ≤ 2, and equality can only happen when there’s a degenerate angle between aσ̂(i−1), aσ̂i, and aσ̂(i+1).
By Lemma 2.4 and Assumption 2.3 this can not happen for optimal permutations σ̂.

(ii) Approximating the gauge ψC◦
σ̂
, we get

ψC◦
σ̂
(x) ≥ inf{t ≥ 0 | xi = zi

i for z̄i ∈ tC◦
σ̂, for all i = 1, . . . , n}

= max
i=1,...,n

inf{t ≥ 0 | xi = zi
i for z̄i ∈ tC◦

σ̂}

≥ max
i=1,...,n

inf{t ≥ 0 | ‖xi‖ ≤ tMi} = max
i

‖xi‖ /Mi.

Since the condition in the statement of the claim is equivalent to (η′ + ε) ≤ δσ̂i/Mi for all i, claim (ii) follows
from applying this information to (4.5).

(iii) Notice that fKM and then f0 is convex on a finite family {At | t ∈ T } of closed sets – corresponding to
different associations of the pi to ak (possibly multiple/empty) – that fill the entire space. On these regions fKM

is equal to some convex function f t : p̄ �→
∑n

k=1

∥∥ak − pi(k,t)

∥∥ for some association i(k, t) (not necessarily a
permutation). Let q̄t be a minimiser of f t

TSP � f t + λ0fTSP, not necessarily in At. The subdifferential of
f t
TSP may be a singleton at q̄t, and thus not provide much information. But we can use a more informative

approximate subdifferential containing 0 in its interior and thus with bounded polar, as follows.
The function f t

TSP is level-bounded: suppose ‖z̄‖ = 1. Then the triangle inequality gives f t
TSP(q̄t + αz̄)/α ≥∑n

k=1

∥∥zi(k,t)

∥∥ + λ0fTSP(z̄) − f t
TSP(q̄t)/α. If fTSP(z̄) < δ, we must have ‖zk − zi‖ < δ for all k, i = 1, . . . , n.

But then for small enough δ > 0, by ‖z̄‖ = 1 each ‖zi‖ must be close to 1/
√
n. Thus

∑n
k=1

∥∥zi(k,t)

∥∥+ fTSP(z̄)
is bounded from below on {‖z̄‖ = 1} by some value greater than zero. Therefore, for big enough α > 0,
f t
TSP(q̄t + αz̄)/α is greater than some constant, and hence f t

TSP is level-coercive and then level-bounded. Thus
by Lemma A.2 in Appendix 7, 0 ∈ int ∂ε′f

t
TSP(q̄t) for ε′ > 0.
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We may assume that q̄t �= āσ̂, for otherwise claim (i) provides the result. Let then Ct � ∂ε′f
t
TSP(q̄t) for small

enough ε′ > 0 that ct � f0(q̄t) − min f0 − ε′ ≥ 0 holds. Similarly to (4.4) and (4.5), we may then approximate

η′ + ε ≥ f0(p̂) − f0(q̄t) + f0(q̄t) − min f0 ≥ ψC◦
t
(p̂− q̄t) + ct for p̂ ∈ At.

The claim follows from the definition of the gauge ψC◦
t
. Note that we must have η′ + ε ≥ ct if p̂ ∈ At, since

ψC◦
t
≥ 0. Expanding this condition, and letting ε′ ↘ 0, we get claim (iv). �

Suppose that p̂ is an (approximate) minimiser of the perturbed problem fλ
KMTSP in a predetermined neigh-

bourhood D of any āσ̂. The first two claims of Theorem 4.1 then say that for small λ > λ0 = 1/2, p̂ actually
belongs to a smaller set that behaves quite well with respect to λ and ε ≥ 0. The fourth claim says that for p̂ to
not belong to the predetermined neighbourhood of some āσ̂, λ or ε must be large enough (since f0(q̄t) > min f0
for q̄t �= āσ̂). Therefore for small enough λ > 1/2, the minimisers of fλ

KMTSP stay within a linearly-scaled region
around āσ̂.

The optimal solution appears in the local bound through C◦
σ̂. However, applying the argument proving the

boundedness of this set, we can approximate it by considering all the possible non-degenerate angles between
the points ak, and choosing the smallest ones. That will, of course, increase the bound. Computing the global
bound is much more complicated.

Note that claim (i) of Theorem 4.1 provides a necessary condition for a local minimisers (or, in fact, any
point for either the KM or MO reformulation) to be close to a real solution of the Euclidean TSP: if the point p̂
can be unambiguously morphed into āσ for some, not necessarily optimal σ – which is the case e.g. when
p̂ ∈

∏n
i=1B(aσi, δσi) – the condition (4.1) must hold for the permutation σ to be an optimal path. It suffices to

take η = fTSP(āσ) − fTSP(p̂) and D = {āσ, p̂}, for if η becomes negative this way, we know a better minimiser
and test point.

It remains to discuss the sensitivity in λ of solutions to fλ
MOTSP. Similarly to the KM case, by Lemma 3.3

and (3.8), we could for λ1 ∈ (λ0, 1/2), obtain a gauge approximating fλ0
MOTSP(p̂) − fλ0

MOTSP(āσ̂) from below
in Dλ1

σ . This happens by replacing (4.4) by

fλ0
MOTSP(p̂) − fλ0

MOTSP(āσ̂) = fMO(p̂; ā) − fMO(āσ̂; ā) − λ0(fTSP(āσ̂) − fTSP(p̂))

≥ λ1rσ̂(p̂) − λ0rσ̂(p̂) = max(pi − aσ̂i)TCσ̂,

where Cσ̂ � 2(λ1 − λ0)
∏n

i=1 B(0, 1). However, as the neighbourhoods Dλ1
σ are merely proved to exist (when

m > 1, and λ1 > 0, which we require), the bounds so obtained would be rather poor compared to fλ
KMTSP.

5. Heuristics

A we shall see in Section 6, the performance of our basic algorithm is not all that great for larger instances
of the Euclidean TSP. Therefore, in this section, we consider various heuristic approaches that could be used
to speed up the algorithm or improve the results otherwise. As a first task, however, the association heuristic
demands some clarification.

5.1. The association heuristic

The proof of Theorem 2.5 provides a conceptual algorithm for obtaining a permutation σ from any sequence
of points p̄ = (p1, . . . , pn):

(1) Assign the points ak to the closest pj , forming the cluster Cj (handling ambiguous cases arbitrarily).
(2) Remove all the points pj with empty clusters.
(3) Re-insert points in the path, at any ak ∈ Cj , ak �= pj (the closest in our implementations), before or

after pj (depending on which seems to provide shorter path).
(4) Repeat steps (1)–(3) while there’s something to be done.
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Note that when Cj consists of ak alone (and there were no ambiguous assignments), these steps amount to
moving pj at ak, as pj would be removed after the new point has been placed at ak.

Any reinsertion may change the clusters, the new (reinserted) point assimilating points from clusters of pi,
for i �= j as well as j. If we ignore this fact for i �= j, we may construct σ locally in a hierarchic fashion,
“splitting” each cluster until it consist of a single ak. Otherwise we need to recalculate/shuffle the clusters after
each reinsertion. Some improvements to the resulting path length can sometimes be obtained this way, but the
method is quite dependent on the order of processing.

5.2. Number of cluster centres

A straightforward heuristic derived from our reformulations in the earlier sections, is to reduce the number s
of the points pi used in the minimisation method. After the “shape” of the path has been obtained with a
reduced number of points, it can then be refined by adding more points using the already described rules for
associating (unassociated and duplicate) points with cities. In case of the MO variant, when s < n, we have to
alter the factor of the function νMO, in order to keep the objective function level-bounded, and for reasonable
results. Our somewhat arbitrary but obvious choice of factor is n/(2s), which is below the n/(2s − 2) upper
bound from [23]:

νs
MO(p̄) � n

2s

s∑
i=1

s∑
j=1

‖pi − pj‖ .

Notice that the upper bound for λ ensuring that λfTSP−νs
MO is concave, increases similarly, and we have indeed

used λ = n/s in our experiments.

5.3. Hierarchical clustering

An obvious refinement of the previous heuristic is analogous to hierarchical clustering:
(1) Run our path-length perturbed clustering algorithm on the whole data, with a small number s of

clusters.
(2) Assign each ak to the closest pi, producing the cluster Ci.
(3) Run the algorithm again on Ci with a new set of “cluster centres”, of size si ≤ #Ci. Continue this

subdivision until the size of the cluster Ci is small enough to merit choosing si = #Ci.
(4) Construct the full path by combining the paths of the lowest-level clusters along the paths formed by

the higher-level clusters centres.
There’s a small problem with this approach as such: the paths are closed, so combining them will produce

unnecessary detours. However, this is no big problem: we just have to alter fTSP to not attract the first and
last points of the open path we want. We can do more: we can attract the endpoints to points in the previous
cluster:

fopen
TSP (p̄; aprev, anext) � ‖p1 − aprev‖ + ‖ps − anext‖ +

s−1∑
j=1

‖pj − pj+1‖. (5.1)

There are various potential choices for aprev and anext. One is the points pi−1 and pi+1 in the higher-level path
(when we’re working on Ci). Another would be the points aprev ∈ Ci−1 and anext ∈ Ci+1 that minimise the
distance to Ci. In the experiments of Section 6 we have chosen the former. Based on a limited number of tests,
the latter more complex approach does not seem to improve the results. Note that the first two terms of fopen

TSP

are Euclidean distances from fixed points. They can therefore be included in the convex part of the objective
function, when we choose to minimise it with the perturbed Weiszfeld method.

A few more choices remain in the hierarchical algorithm: At which point to run the association heuristic:
for the whole path, or for the lowest-level clusters? In the experiments to follow, we have chosen the former
combined with the local association heuristic, as this seems to provide the best ratio of time spent to quality
of results. Another available choice is the number of points si to use in each cluster. Our somewhat arbitrary
choice has been to specify a maximum number M ≥ 2, but instead of greedily choosing si = min{M,#Ci},
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we try to do this bottom-up: we try to predictively assign the largest number of points to the lowest-level
clusters, by choosing

si = �#Ci/M
�logM #Ci�� when #Ci > M. (5.2)

This appears to provide better results than the greedy approach, based on a limited number of tests.

5.4. Clustering for initial iterate

This approach consists of running the previous heuristic without the association step to obtain an initial
iterate for the basic algorithm, that we perform only a few steps of.

5.5. Path-following

Yet another approach would be to calculate an approximate solution to a penalised version of the problem
for some λ, and then with a smaller one starting from the previous result. Unfortunately, at least with the
limitation λ ≤ 1 inherent in the perturbed Weiszfeld method, this does not appear to provide considerably
improved results.

6. Experiments

We have implemented our algorithms (in Haskell [17]) and tested our method on some problems from
TSPLIB [19], on an Athlon64 3200+ tabletop computer. In each case, we have used the step size ω = 1.4 in the
perturbed Weiszfeld algorithm3 of [23]: of the values we’ve tried, it seems to provide the most consistently best
results, largely in agreement with experimental results for the plain Weiszfeld algorithm [7], Appendices 2–3.
Although each ω ∈ [1, 2) does provably provide a descending sequence of iterates, it would be possible to do a
line search step in the algorithm as well. The initial iterate has likewise in each case been with the cities equally
distributed on a circle, centred and scaled to fit in the problem data. Such a choice seems to provide generally
better results than a (totally) random initial iterate, which may contain self-crossings of the path on a large
scale, that our method seems poor at removing.

6.1. The basic algorithm

In summary, the basic algorithm consists of
(1) Choose an initial iterate p̄0, step length ω ∈ [1, 2), penalty parameter λ ∈ (0, 1], and maximum iterations

count or other stopping criterion.
(2) Apply the perturbed Weiszfeld method to (3.1), to get p̃.
(3) Use the association heuristic to find a permuted path āσ from p̃.

The results for this method may be found in Tables 1–4. Furthermore, Figure 1 shows results for some simple
instances from the first series of tests. In most of the test cases, we have used λ = 1.0, as it is the upper limit
at which the TSP penalty term can certainly be “absorbed” into the concave part of the diff-convex objective,
and thus that our algorithm can handle. Lower values also do not appear to provide better results. In each of
these tests of the basic algorithm, we have used the “semi-global” variant of this association heuristic discussed
in Section 5, to obtain a permutation of the points a1, . . . , an from the results of the Weiszfeld algorithm; cf.
Figure 1(c). In two problems, Eil101’ and PR1002’, some of the parameters have been varied to offer points
of comparison: the problem Eil101’ uses λ = 2.0, although our algorithm is not entirely applicable for such a
choice. In the problem PR1002’ we have used only s = 50 pis in the perturbed Weiszfeld method and added
the rest later, as again discussed in Section 5.

3In summary, the method consists of choosing an initial iterate iterate p̄(0), step length ω ∈ [1, 2), and on the simplifying
assumption that f(·; ā) is differentiable at p̄, iterating until a stopping criterion is satisfied, the mapping p̄ �→ p̄−ωS†(p̄)(∇f(p̄; ā)−
v) with arbitrary v ∈ ∂(νMO(p̄) − λfTSP(p̄)) and S(p̄) � (

∑n
k=1 I/ ‖ak − p1‖ , . . . ,

∑n
k=1 I/ ‖ak − ps‖). When f(·; ā) is non-

differentiable at p̄, the method requires more space to explain than available here. However, numerical difficulties aside, this could
be avoided by altering the step length ω within the mentioned bounds.
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Table 1. Results for max iters = 1000, τ = 10−5, and ω = 1.4.

Problem Berlin52 Eil101 TS225 PR1002 Eil101’ PR1002’
s n n n n n 50
λ 1.0 1.0 1.0 1.0 2.0 1.0
Weiszfeld iterations 1000 1000 1000 1000 1000 1000
Weiszfeld time 3.0 10.9 53.1 1315.0 11.5 46.4
Total time 3.1 11.3 56.0 1604.0 11.9 472.9
TSPLIB path length 7542 629 126 643 259 045 629 259 045
Result path length 8951.6 726.0 207 730.3 370 184.2 706.8 375 395.6

Table 2. Results for max iters = 10 000, τ = 10−2, and ω = 1.4.

Problem Berlin52 Eil101 TS225 PR1002 Eil101’ PR1002’
s n n n n n 50
λ 1.0 1.0 1.0 1.0 2.0 1.0
Weiszfeld iterations 396 201 797 10 000 10 000 1875
Weiszfeld time 1.2 2.3 42.6 12 877.3 114.1 88.2
Total time 1.3 2.6 45.5 13 146.1 114.5 518.7
TSPLIB path length 7542 629 126 643 259 045 629 259 045
Result path length 8951.6 719.7 207 730.3 363 456.1 702.9 365 239.2

Table 3. Results for max iters = 10 000, τ = 10−5, and ω = 1.4.

Problem Berlin52 Eil101 TS225 PR1002’
s n n n 50
λ 1.0 1.0 1.0 1.0
Weiszfeld iterations 1531 2573 2376 2344
Weiszfeld time 4.7 28.3 125.0 112.9
Total time 4.7 28.6 127.8 554.12
TSPLIB path length 7542 629 126 643 259 045
Result path length 8951.6 706.7 207 730.3 365 239.2

Table 4. Results for max iters = 10 log2 n, τ = 10−5, and ω = 1.4.

Problem Berlin52 Eil101 TS225 PR1002 Eil101’ PR1002’
s n n n n n 50
λ 1.0 1.0 1.0 1.0 2.0 1.0
Weiszfeld iterations 57 67 78 100 67 100
Weiszfeld time 0.18 0.8 4.6 145.5 0.8 4.8
Total time 0.25 1.2 9.6 617.4 1.2 442.5
TSPLIB path length 7542 629 126 643 259 045 629 259 045
Result path length 9087.1 741.9 210 694.5 392 377.7 741.9 372 602.0

In the first series, in Table 1, the maximum number of iterations of the perturbed Weiszfeld method has been
1000, and the stopping threshold τ (maximum difference in norm between successive iterates) has been 10−5,
whereas in Table 2 the values have been 10 000 and 10−2, respectively. In the third series in Table 1, where
we have excluded the cases from the second series that used the maximum number of iterations, the values are
10 000 and 10−5, respectively. Finally in Table 4, we have allowed for just 10 log2 n iterations.
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(a) Berlin52: Result, λ = 1.0 (b) Berlin52: TSPLIB optimal path
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(c) Berlin52: raw Weiszfeld, λ = 1.0 (d) Eil101: Result, λ = 1.0
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(e) Eil101: Result, λ = 2.0 (f) Eil101: TSPLIB optimal path

Figure 1. Results for Berlin52 and Eil101 from TSPLIB.
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In the tables, the “Weiszfeld time” field is the time (in seconds) it took for the perturbed Weiszfeld method
to finish, and the field “Weiszfeld iterations” is the number of iterations of this method used. The “Total time”
field indicates the time it took in addition to this, to move the resulting points towards the cities, as described
above. Such an intermediate result is included in Figure 1(c) for the Berlin52 problem. Note that the “TSPLIB
path length” is calculated with the Euclidean metric rounded to nearest integer, instead of the plain Euclidean
metric, with which “Our path length” has been calculated. Finally, the instance size (n) is indicated by the
TSPLIB problem name itself.

As we can see, the results are not all that great, compared to what is achievable with other methods; cf. [13,14].
Some of the run-time can be attributed to our choice of language: Haskell and the compilers available for it,
with standard unoptimised data structures, are not presently quite up to par with lower-level languages in
speed, but offer much comfort of implementation. As for the quality of the paths, it can clearly be seen that
the relative quality of the results degrades as the number of cities grows. Looking at the figures, our results
seem to share a lot of the overall structure of the optimal results, however, which would indicate that they could
serve as starting points for other methods. Also note comparing Figure 1(a)–1(c), that our näıve association
heuristics induce some clear mistakes, such as self-crossings of the path.

That increasing λ for Eil101’ improves the path, seems to be a general trend, although occasionally worse
results are obtained as for λ = 1.0. Decreasing λ below 1.0 also usually seems to degrade the result, as would
increasing it too much. In the second series of tests, we also see that the algorithm indeed does not appear to
converge.

In the last series with just 10 log2 n iterations, the performance does not actually decrease relatively that
much from series with more iterations. In this series, the result for PR1002 with 50 pis actually beats the one
for all 1002 pis in the Weiszfeld method. In both cases, considerable time is spent in the (quite unoptimised
and näıvely implemented) association heuristic.

6.2. The hierarchical algorithm

In summary, this heuristic consists of the steps
(1) Choose maximum prototype count M ≥ 2, as well as parameters for the perturbed Weiszfeld method,

and initialise the initial cluster C0 = {a1, . . . , an}.
(2) Calculating new prototype count si for each cluster from (5.2).
(3) Apply the Weiszfeld method with the modified penalty (5.1) and si new prototypes on each present

cluster Ci. The points aprev and anext are the prototypes of the present prototypes with next and
previous index.

(4) Split clusters that did not yet have equally many new prototypes and vertices, by the new prototypes.
Recursively continue from Step (2).

(5) Apply the association heuristic on each completed cluster, and join the in-cluster paths in the order
given by the higher-level clusters.

Table 5 lists results for this approach. The number “Total Weiszfeld its.” in the table, is the total number
of iterations of the Weiszfeld algorithm at all scales. As already mentioned in Section 5, we have used the
local variant of the association heuristic on the full resulting hierarchical Weiszfeld path, to obtain the final
permutation.

In this series of experiments, we have used bigger problem instances than in the previous experiments. As
can be seen from the results, with this heuristic, the running time becomes noticeably more feasible than that
of the basic algorithm, and without degrading the results – improving them, in fact. (For the smallest instances
from the other experiments, the heuristic degrades the results, however.) Note that for the biggest instances we
only have bounds on the optimal path length from TSPLIB, and for PLA33810 this is, in fact, for the ceiling
of the Euclidean distance, instead of rounded.

Using only a small number of iterations has been more our goal in this series of tests, than obtaining the best
possible result we can with our algorithms. By using two times as many steps in each cluster (20 log2 #C), we
could still improve some of the results noticeably, whereas others would simply take longer to compute without
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Table 5. Clustering heuristic results (max iters = 10 log2 #C, τ = 10−5, ω = 1.4).

Problem PR1002 PR2392
M 50 100 150 50 100 150
Total Weiszfeld its. 1741 1033 835 4472 2606 1743
Weiszfeld time 5.2 7.7 10.6 27.2 24.5 32.4
Total time 5.4 8.0 10.9 28.6 25.8 33.7
TSPLIB path length 259 045 378 032
Result path length 345 380 346 628 346 902 558 451 535 006 521 040
Problem RL11849 PLA33810
M 50 100 150 50 100 150
Total Weiszfeld its. 21 298 12 759 8980 62 609 34 811 24 940
Weiszfeld time 122.3 288.4 454.1 586.9 1270.3 2067.3
Total time 172.2 339.0 504.5 1037.0 1720.6 2518.7
TSPLIB path l. bnd. [920 847, 923 368] [65 913 275, 66 116 530]
Result path length 1 410 087 1 386 317 1 360 373 99 304 887 97 915 373 96 554 643

Table 6. Average results for random instances.

Algorithm Basic Clustering 50, 100 and 150
Problem set uniform 1k–3k clustered 1k–10k uniform 1k–3k clustered 1k–10k
# samples 15 15 54 54
Average performance 1.66 1.49 1.42 1.36

much improvement. (More meticulous choice of τ could of course be used to control the number of steps as
well.) Likewise, using the hierarchical method with a small number of iterations of the basic Weiszfeld method
to obtain an initial iterate, as discussed in Section 5, would slightly improve the results. For larger instances
there would be a noticeable increase in time spent, however.

Notice, nevertheless, that the results appear to fall approximately around 1.5 times the optimal path length
(modulo slightly differing distance measures). Further evidence for this is provided in Table 6. There, we have
calculated the average performance of our methods for the 1–3k city random and 1–10k city random clustered
Euclidean instances of the TSP DIMACS challenge problems [14]4. The average for the clustering heuristic is
further taken over all the parameter values M = 50, 100, 150. The performance reported is the proportion of
the path length calculated by our algorithm, to the Held-Karp bound for the problem. Our methods appear to
perform better for the clustered than non-clustered instances, as can be expected.

6.3. Use as an initial tour

We also tested in a few cases, the use of our method for providing an initial tour for other methods: LKH [10],
Concorde [1], and basic 2-Opt. All of these methods improved upon the initial tour from our method. Unfor-
tunately, our method did not significantly improve upon a random or default initial tour: LKH and Concorde
did in fact seem to take longer in their computations. The 2-Opt results varied, with the initial tour from our
method occasionally providing significant improvements in the final results, and at other times slightly worse
results. (The results obviously depend on the processing order in the implementation of the method.) It seems
to us that these non-geometrical algorithms fail to exploit the overall shape of the path that our method seems
to approximate, with the errors being mostly (but not exclusively) on the small scale.

4For the data, see http://www.research.att.com/~dsj/chtsp/.

http://www.research.att.com/~dsj/chtsp/
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7. Conclusions

Our computational results are not earth-shattering. Local algorithms seldom perform miracles, after all. The
primary contributions of this paper consist more of providing reformulations of the Euclidean TSP, that are
closely related to clustering problems. There still remain questions to be answered (and asked) in that area.
The application of our method for generating an initial tour for other (possibly new) methods is one possible
avenue for further research. It also seems to be worth trying out other optimisation methods that would allow
higher penalty parameters. This was chosen to be outside the scope of this paper, however.

Appendix A: Lemmas on subdifferentials

In this section we include a few simple results on convex (approximate) subdifferentials needed in the sensi-
tivity analysis of Section 4, that do not seem to appear in the standard literature. For convex f : R

m → R, we
denote the range of the subdifferential by R(∂f) �

⋃
p∈Rm ∂f(p). First we have the rather obvious,

Lemma A.1. Let f : R
m → R be convex, proper and level-bounded. Then 0 ∈ intR(∂f).

Proof. Since f is proper and level-bounded, it has a finite minimum, and we may assume without loss of
generality, that 0 ∈ ∂f(0). Denote A � clR(∂f). The set A is then convex [20], Section 24. Suppose 0 ∈ bdA.
Then there exists a direction z ∈ NA(0), the normal cone to A at 0, with z �= 0. Thus in particular zT∂f(αz) ≤ 0
for all α ≥ 0. But by monotonicity (abusing notation slightly), (z − 0)T (∂f(αz) − 0) = zT∂f(αz) ≥ 0. Thus
zT∂f(αz) = 0 for all α ≥ 0. But then f(0) ≥ f(αz) + ∂f(αz)T (0 − αz) = f(αz) for all α ≥ 0 in contradiction
to level-boundedness. �

Lemma A.2. Let f : R
m → R be convex, continuous and level-bounded, achieving its minimum at q. Then

0 ∈ int ∂εf(q) for ε > 0.

Proof. By Lemma A.1, for small r > 0, B(0, r) ⊂ intR(∂f). Let now

ε(r) � − min
p∈Rm

g(p, r) � − min
p∈Rm

(
f(p) − f(q) − r ‖p− q‖

)
.

The function g is continuous, and since intR(∂f) ⊃ B(0, r) = R(∂(r ‖· − q‖)) with the latter closed, g(·, r) is
level-bounded by [23], Theorem 7. Since g is a decreasing function of r, it is also locally uniformly level-bounded.
Thus for small r > 0, the function ε is continuous by [21], Theorem 1.17, and finite (by the showed properties
of g). As, in fact,

ε(r) = − min
z̄∈B(0,r)

min
p∈Rm

(
f(p) − f(q) − zT (p− q)

)
,

we have (cf. [11], Sect. XI) that ∂ε(r)f(q) ⊃ B(0, r). Finally, since ε is continuous and increasing with ε(0) = 0,
we can find for small enough ε > 0 an r(ε) > 0, such that ∂εf(q) ⊃ B(0, r(ε)). From this the claim follows for
small ε, and then for all from the nesting of the approximate subdifferentials. �
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[1] D. Applegate, R. Bixby, V. Chavátal and W. Cook, On the solution of traveling salesman problems, in Doc. Math., Extra
volume ICM 1998 III, Berlin (1998) 645–656.

[2] S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM
45 (1998) 753–782.

[3] S. Arora, Approximation schemes for NP-hard geometric optimization problems: a survey. Math. Program. 97 (2003) 43–69.



CONTINUOUS REFORMULATIONS AND HEURISTICS FOR THE ETSP 913

[4] S. Arora, P. Raghavan and S. Rao, Approximation schemes for Euclidean k-medians and related problems, in ACM Symposium
on Theory of Computing (1998) 106–113.

[5] H. Attouch and R.J.-B. Wets, Quantitative stability of variational systems: I. The epigraphical distance. Trans. Amer. Math.
Soc. 328 (1991) 695–729.

[6] H. Attouch and R.J.-B. Wets, Quantitative stability of variational systems: II. A framework for nonlinear conditioning. SIAM
J. Optim. 3 (1993) 359–381.
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