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We propose a class of primal–dual block-coordinate descent methods
based on blockwise proximal steps. The methods can be executed either
stochastically, randomly executing updates of each block of variables, or
the methods can be executed deterministically, featuring performance-
improving blockwise adapted step lengths. Our work improves upon several
previous stochastic primal–dual methods in that we do not require a full dual
update in an accelerated method; both the primal and dual can be updated
stochastically in blocks. We moreover provide convergence rates without
the strong assumption of all functions being strongly convex or smooth:
a mixed Op1{N 2q ` Op1{N q for an ergodic gap and individual strongly
convex primal blocks. Within the context of deterministic methods, our
blockwise adapted methods provide improvements on our earlier work on
subspace accelerated methods. We test the proposed methods on various
image processing problems.

1. Introduction

We want to e�ciently solve optimisation problems of the form

min
x

Gpxq ` F pKxq, (1.1)

arising from the variational regularisation of image processing and inverse problems.
We assume G : X Ñ R and F : Y Ñ R to be convex, proper, and lower semicontinuous
functionals on Hilbert spaces X and Y , respectively, and K P LpX ;Y q to be a bounded
linear operator.

Several �rst-order optimisation methods have been developed for (1.1), typically with
both G and F convex, and K linear, but recently also accepting a level of non-convexity
and non-linearity [1–4]. Since at least one of G or F is typically non-smooth—popular
regularisers for image processing are non-smooth, such as [5–7]—e�ective primal algo-
rithms operating directly on the form (1.1), are typically a form of classical forward–
backward splitting, occasionally going by the name of iterative soft-thresholding [8–10].

If G is separable, Gpx1, . . . ,xmq “
řm

j“1G jpx jq, problem (1.1) becomes

min
x

m
ÿ

j“1
G jpx jq ` F pKxq. (1.2)
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In big data optimisation, various forward–backward block-coordinate descent methods
have been developed for this type of problems, or an alternative dual formulation.
At each step of the optimisation method, they only update a subset of the blocks x j ,
randomly in parallel, see e.g. the review [11] and the original articles [12–22]. Typically
F is assumed smooth. Often, in these methods, each of the functions G j is assumed
strongly convex. Besides parallelism, one advantage of these methods is them being
able to exploit the local blockwise factor of smoothness (Lipschitz gradient) of F and
K . This can be better than the global factor, and helps to obtain improved convergence
compared to standard methods.

Unfortunately, primal-only and dual-only stochastic approaches are rarely applicable
to imaging problems that do not satisfy the separability and smoothness requirements
simultaneously, at least not without additional Moreau–Yosida (aka. Huber, aka. Nes-
terov) regularisation. Generally, even without the splitting of the problem of the into
blocks, primal-only or dual-only approaches, as discussed above, can be ine�cient
on more complicated problems, as the steps of the algorithms become very expensive
optimisation problems themselves. This di�culty can often be circumvented through
primal-dual approaches. If F is convex, and F˚ denotes the conjugate of F , the problem
(1.1) can be written in the min-max form

min
x

max
y

Gpxq ` xKx ,yy ´ F˚pxq, (1.3)

If G is also convex, a popular algorithm for (1.3) is the Chambolle–Pock method [23, 24],
also classi�ed as the Primal-Dual Hybrid Gradient Method (Modi�ed) or PDHGM in [25].
The method consists of alternating proximal steps on x and y , combined with an over-
relaxation step that ensures convergence. The PDHGM is closely-related to the classical
Alternating Direction Method of Multipliers (ADMM, [26]). Both the PDHGM and
ADMM bear close relationship to Douglas–Rachford splitting [27, 28] and the split
Bregman method [29, 30]. These relationships are discussed in detail in [25, 31].

While early work on block-coordinate descent methods concentrated on primal-only
or dual-only algorithms, recently primal-dual algorithms based on the ADMM and
the PDHGM have been proposed [32–38]. Besides [32, 33, 38] that have restrictive
smoothness and strong convexity requirements, little is known about the convergence
rates of these algorithms. Interestingly, a direct blockwise version of ADMM for (1.2) is
however infeasible [39].

The convergence of the PDHGM can be accelerated from the basic rate Op1{N q to
Op1{N 2q if G (equivalently F˚) is strongly convex [23]. However, saddle-point formula-
tions (1.3) of important problems often lack strong convexity on the entire domain of G .
These include any problem with higher-order TGV [6] or ICTV [7] regularisation, as
well as such simple problems as deblurring with any regularisation term. Motivated
by this, we recently showed in [3] that acceleration schemes can still produce con-
vergence with a mixed rate, Op1{N 2q with respect to initialisation, and Op1{N q with
respect to “residual variables”, if G is only partially strongly convex. This means with
x “ px1, . . . ,xmq for some block k and a factor γk ą 0 the condition

Gpx 1q ´Gpxq ě xz,x 1 ´ xy `
γk
2
}x 1k ´ xk}

2, (1.4)

over all x 1 and subgradients z P BGpxq. This property can be compared to partial
smoothness on manifolds [40, 41], used to study the fast convergence of standard
methods to submanifolds [42].

Under the condition (1.4), the iterates tx iku
8
i“0 of the “partially accelerated” methods

proposed in [3] will convergence fast to an optimal solution pxk , while nothing is known
about the convergence of non-strongly-convex blocks. In Section 2 of this work, we
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improve this analysis to be able to deal with partial steps, technically non-invertible
step-length operators. We also allow the steps to be chosen stochastically. Some of
the abstract proofs that are relatively minor generalisations of those in [3], we have
left to Appendix A. From this abstract analysis, we derive in Sections 3 and 4 both
stochastic and deterministic block-proximal primal-dual methods with the novelty of
having local or blockwise step lengths. These can either be adapted dynamically to the
actual sequence of block updates taken by the method, or taken deterministically with
the goal of reducing communication in parallel implementations. As the most extreme
case, which we consider in several of our image processing experiments in the �nal
Section 5, our methods can have pixelwise-adapted step lengths.

The stochastic variants of our methods do not require the entire dual variable to be
updated, it can also be randomised under light compatibility conditions on the primal and
dual blocks. In the words of [38], our methods are “doubly-stochastic”. Our additional
advances here are the convergence analysis—proving mixed Op1{N 2q `Op1{N q rates
of both the (squared) iterates and an ergodic gap—not being restricted to single-block
updates, and not demanding strong convexity or smoothness from the entire problem,
only individual blocks of interest.

2. A general method with non-invertible step operators

2.1. Background

To make the notation de�nite, we writeLpX ;Y q for the space of bounded linear operators
between Hilbert spaces X and Y . The identity operator we denote by I . For T ,S P
LpX ;X q, we use T ě S to mean that T ´ S is positive semide�nite; in particular T ě 0
means thatT is positive semide�nite. Also for possibly non-self-adjointT , we introduce
the inner product and norm-like notations

xx ,zyT :“ xTx ,zy, and }x}T :“
b

xx ,xyT , (2.1)

the latter only de�ned for positive semi-de�nite T . We write T » T 1 if xx ,xyT 1´T “ 0
for all x .

Denoting R :“ r´8,8s, we now let G : X Ñ R and F˚ : Y Ñ R be given convex,
proper, lower semicontinuous functionalsG : X Ñ R and F˚ : Y Ñ R on Hilbert spaces
X and Y . We also let K P LpX ;Y q be a bounded linear operator. We then wish to solve
the minimax problem

min
xPX

max
yPY

Gpxq ` xKx ,yy ´ F˚pyq, (P)

assuming the existence of a solution pu “ ppx ,pyq satisfying the optimality conditions

´ K˚py P BGppxq, and Kpx P BF˚ppyq. (OC)

The primal-dual method of Chambolle and Pock [23] for (P) consists of iterating the
system

x i`1 :“ pI ` τiBGq
´1px i ´ τiK

˚y iq, (2.2a)
x̄ i`1 :“ ωipx

i`1 ´ x iq ` x i`1, (2.2b)
y i`1 :“ pI ` σi`1BF

˚q´1py i ` σi`1Kx̄
i`1q. (2.2c)

In the basic version of the algorithm, ωi “ 1, τi ” τ0, and σi ” σ0, assuming that
the step length parameters satisfy τ0σ0}K}

2 ă 1. The method has Op1{N q rate for the
ergodic duality gap. If G is strongly convex with factor γ , we may accelerate

ωi :“ 1{
a

1` 2γτi , τi`1 :“ τiωi , and σi`1 :“ σi{ωi , (2.3)
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to achieveOp1{N 2q convergence rates. To motivate our later choices, we observe that σ0
is never needed if we equivalently parametrise the algorithm by δ “ 1´ }K}2τ0σ0 ą 0.

In [3], we extended the algorithm (2.2) & (2.3) to partially strongly convex problems.
For suitable step length operators Ti P LpX ;X q and Σi P LpY ;Y q, as well as an over-
relaxation parameter rωi ą 0, it consists of the iterations

x i`1 :“ pI `TiBGq
´1px i ´TiK

˚y iq, (2.4a)
x̄ i`1 :“ rωipx

i`1 ´ x iq ` x i`1, (2.4b)
y i`1 :“ pI ` Σi`1BF

˚q´1py i ` Σi`1Kx̄
i`1q, (2.4c)

The diagonally preconditioned algorithm of [43] also �ts into this form. For speci�c
choices of Ti , Σi , and rωi , and under additional conditions on G and F˚, we were able to
obtain mixed Op1{N 2q `Op1{N q convergence rates of an ergodic duality gap, as well
as the squared distance of the primal iterates within a subspace on which G is strongly
convex.

Let us momentarily assume that the operators Ti and Σi`1 are invertible. Following
[3, 44], we may with the general variable splitting notation

u “ px ,yq,

write the system (2.4) as

0 P Hpui`1q `Mipu
i`1 ´ uiq, (PP0)

for the monotone operator

Hpuq :“
ˆ

BGpxq ` K˚y
BF˚pyq ´ Kx

˙

, (2.5)

and the preconditioning or step-length operator

Mi :“
ˆ

T´1
i ´K˚

´rωiK Σ´1
i`1

˙

. (2.6)

With these operators, the optimality conditions (OC) can also be encoded as 0 P Hppuq.

Remark 2.1 (A word about the indexing). The reader may have noticed that the steps
of (2.2) and (2.4) involve Ti and Σi`1, with distinct indices. This is mainly to maintain
in (2.3) the identity τiσi “ τi`1σi`1 from [23]. On the other hand the proximal point
formulation necessitates x-�rst ordering of the steps (2.2) in contrast to the y-�rst order
in [23]. Thus our y i`1 is their y i .

2.2. Non-invertible step length operators

What if Ti and Σi`1 are non-invertible? The algorithm (2.4) of course works, but how
about the proximal point version (PP0)? We want to use the form (PP0), because it
greatly eases the analysis of the method.

De�ning

Wi`1 :“
ˆ

Ti 0
0 Σi`1

˙

, and (for now) Li`1 “

ˆ

I ´TiK
˚

´rωiΣi`1K I

˙

, (2.7)

the method (2.4) can also be written

Wi`1Hpu
i`1q ` Li`1pu

i`1 ´ uiq Q 0. (PP)
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To study the convergence of (PP), we apply the concept of testing that we introduced
in [3]. The idea is to analyse the inclusion obtained by multiplying (PP) by the testing
operator

Zi`1 :“
ˆ

Φi 0
0 Ψi`1

˙

(2.8)

for some primal test Φi P LpX ;X q and dual test Ψi`1 P LpY ;Y q. To employ the general
estimates of Appendix A, we need Zi`1Li`1 to be self-adjoint and positive semi-de�nite.
Therefore, we allow for general Li`1 P LpX ˆ Y ;X ˆ Y q instead of �xing the one in
(2.7), and assume that

Zi`1Li`1 “

ˆ

Φi ´Λ˚i
´Λi Ψi`1

˙

ě 0 and is self-adjoint, (C0)

for some Λi P LpX ;Y q, pi P Nq. If Φi and Ψi`1 are invertible, we can solve Li`1 from
(C0).

For Γ P LpX ;X q, we de�ne

Ξi`1pΓq :“
ˆ

2TiΓ 2TiK˚
´2Σi`1K 0

˙

, (2.9)

and
∆i`1pΓq :“ Zi`1Li`1 ´ ZipLi ` ΞipΓqq. (2.10)

In practise, Γ will in be given by the partial strong monotonicity or convexity of G that
we will soon discuss in Sections 2.4 and 2.5. The remainder of this manuscript by and
large consists of estimating ∆i`1. It measures with respect to the tests Zi and Zi`1, the
di�erence between the local metrics induced by the operators Li`1 and Li ` ΞipΓq. The
�rst is chosen by practical considerations of algorithm realisability, while the second
one would be the theoretically desired one from the analysis in Appendix A. We begin
this work by expanding ∆i`1.

Lemma 2.1. Suppose (C0) holds. Then

∆i`2pΓq »

ˆ

Φi`1 ´ ΦipI ` 2TiΓq A˚i`2
Ai`2 Ψi`2 ´ Ψi`1

˙

(2.11)

for
Ai`2 :“ pΨi`1Σi`1K ´ Λi`1q ` pΛi ´ KT ˚i Φ

˚
i q. (2.12)

Proof. Using (C0), we have

Zi`1pLi`1 ` Ξi`1pΓqq “

ˆ

ΦipI ` 2TiΓq 2ΦiTiK
˚ ´ Λ˚i

´2Ψi`1Σi`1K ´ Λi Ψi`1

˙

.

In particular

∆i`2pΓq “

ˆ

Φi`1 ´ ΦipI ` 2TiΓq Λ˚i ´ Λ˚i`1 ´ 2ΦiTiK
˚

2Ψi`1Σi`1K ` Λi ´ Λi`1 Ψi`2 ´ Ψi`1

˙

»

ˆ

Φi`1 ´ ΦipI ` 2TiΓq A˚i`2
Ai`2 Ψi`2 ´ Ψi`1

˙

. �

Example 2.1. In the standard algorithm (2.2) & (2.3), we have Ti “ τi I , Φi “ τ´2
i I , and

Γ “ γ I , as well as Σi “ σi I and Ψi`1 “ 1{p1 ´ δq “ 1{pτ0σ0}K}
2q. It follows that

∆i`1 “ 0.

Remark 2.2. Later on, we will need to force various expectations of Ai`2 to equal zero.
It may already be instructive for the reader to consider how Λi will be constrained when
one sets Ai`2 “ 0, as will happen in deterministic variants of our algorithm.
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2.3. Stochastic variants

Just before commencing with the i:th iteration of (PP), let us choose Ti and Σi`1 ran-
domly, only based on the information we have gathered beforehand. We denote this
information by Oi´1, including the speci�c random realisations of Ti´1 and Σi . Techni-
cally Oi´1 is a σ -algebra, and satis�es Oi´1 Ă Oi . For details on the measure-theoretic
approach to probability, we refer the reader to [45], here we merely recall some basic
concepts.

Definition 2.1. We denote by pΩ,O,Pq the probability space consisting of the set Ω
of possible realisation of a random experiment, by O a σ -algebra on Ω, and by P a
probability measure on pΩ,Oq. We denote the expectation corresponding to P by E,
the conditional probability with respect to a sub-σ -algebra O1 Ă O by Pr ¨ |O1s, and the
conditional expectation by Er ¨ |O1s.

We also use the next non-standard notation.

Definition 2.2. If O is a σ -algebra on the space Ω, we denote by RpO;V q the space of
V -valued random variables A, such that A : Ω Ñ V is O-measurable.

We frequently abuse notation, and use A as if it were a variable in V . For example,
Ti P RpOi ;LpX ;X qq, but we generally think of Ti directly as an operator in LpX ;X q.
Indeed, in our work, random variables and probability spaces only become apparent
in the expectations E, and probabilities P, otherwise everything is happening in the
underlying space V . The spaces RpO;V q mainly serve to clarify the measurability
with respect to di�erent σ -algebras Oi , that is, the algorithm iteration on which the
realisation of a random variable is known.
Oi thus includes all our knowledge prior to iteration i , with the interpretation that

the random realisations of Ti and Σi`1 are also known just before iteration i begins.
Formally

Ti P RpOi ;LpX ;X qq, and Σi`1 P RpOi ;LpY ;Y qq.

Assuming that also Φi P RpOi ;LpX ;X qq and Ψi`1 P RpOi ;LpY ;Y qq, we deduce from
(PP) that x i`1 P RpOi ;X q and y i`1 P RpOi ;Y q. We say that any variable, e.g., x i`1 P

RpOi ;X q, that can be computed from the information in Oi to be deterministic with
respect to Oi . Then in particular Erx i`1|Ok s “ x i`1 for all k ě i .

2.4. Basic estimates on the abstract proximal point iteration

To derive convergence rate estimates, we start by formulating abstract forms of partial
strong monotonicity. As a �rst step, we take subsets of operators

T Ă LpX ;X q, and S Ă LpY ;Y q.

We then suppose that BG is partially strongly T -monotone, which we take to mean

xBGpx 1q ´ BGpxq, rT ˚px 1 ´ xqy ě }x 1 ´ x}2
rT Γ
, px ,x 1 P X ; rT P T q (G-PM)

for some linear operator 0 ď Γ P LpX ;X q. The operator rT P T acts as a testing operator.
Similarly, we assume that BF˚ is S-monotone in the sense

xBF˚py 1q ´ BF˚pyq,rΣ˚py 1 ´ yqy ě 0, py ,y 1 P Y ; rΣ P Sq. (F˚-PM)

Example 2.2. Gpxq “ 1
2}f ´ Ax}2 satis�es (G-PM) with Γ “ A˚A and T “ LpX ;X q.

Indeed, we calculate x∇Gpx 1q ´ ∇Gpxq, rT ˚px 1 ´ xqy “ xA˚Apx 1 ´ xq, rT ˚px 1 ´ xqy “
}x 1 ´ x}2

rT Γ
.

6



Example 2.3. If F˚pyq “
řn

`“1 F
˚
`
py`q for y “ py1, . . . ,ynqwith each F˚

`
convex, then F˚

satis�es (F˚-PM) with S “ t
řn

`“1 β`Q` | β` ě 0u for Q`y :“ y` . Indeed, the condition
(F˚-PM) simply splits into separate monotonicity conditions for each BF˚

`
, (` “ 1, . . . ,n).

The fundamental estimate that forms the basis of all our convergence results, is the
following. We note that the theorem does not yet prove convergence, but to do so we
have to estimate the “penalty sum” involving the operators ∆i`2, as well as the operator
ZN`1LN`1. This is the content of the much of the rest of this paper. Moreover, to
derive more meaningful “on average” results in the stochastic setting, we will take the
expectation of (2.13).

Theorem 2.1. Let us be given K P LpX ;Y q, and convex, proper, lower semicontinu-
ous functionals G : X Ñ R and F˚ : Y Ñ R on Hilbert spaces X and Y , satisfy-
ing (G-PM) and (F˚-PM) for some 0 ď Γ P LpX ;X q. Suppose the (random) operators
Ti ,Φi P RpOi ;LpX ;X qq and Σi`1,Ψi`1 P RpOi ;LpY ;Y qq satisfy ΦiTi P RpOi ;T q and
Ψi`1Σi`1 P RpOi ;Sq for each i P N. If, moreover, (C0) holds, then the iteratesui “ px i ,y iq
of the proximal point iteration (PP) satisfy for all N ě 1 the estimate

}uN ´ pu}2ZN`1LN`1
`

N´1
ÿ

i“0
}ui`1 ´ ui}2Zi`1Li`1

ď }u0 ´ pu}2Z0L0
`

N´1
ÿ

i“0
}ui`1 ´ pu}2∆i`2pΓq

.

(2.13)

As the proof is a relatively straightforward improvement of [3, Theorem 2.1] to
non-invertible Ti and Σi , we relegate it to Appendix A.

2.5. Estimates on an ergodic duality gap

We may also prove the convergence of an ergodic duality gap. For this, the abstract
monotonicity assumptions (G-PM) and (F˚-PM) are not enough, and we need analogous
convexity formulations. We �nd it most straightforward to formulate these conditions
directly in the stochastic setting. Namely we assume for all N ě 1 that whenever
rTi P RpOi ;T q and x i`1 P RpOi ;X q for each i “ 0, . . . ,N ´ 1, and that

řN´1
i“0 ErrTi s “ I ,

then for some 0 ď Γ P LpX ;X q holds

G

˜

N´1
ÿ

i“0
ErrT ˚i x

i`1s

¸

´Gppxq ě
N´1
ÿ

i“0
E

„

xBGpx i`1q, rT ˚i px
i`1 ´ pxqy `

1
2
}x i`1 ´ px}2

rTi Γ



.

(G-EC)
Analogously, we assume whenever rΣi`1 P RpOi ;Sq and y i`1 P RpOi ;Y q for each
i “ 0, . . . ,N ´ 1 with

řN´1
i“0 ErrΣi`1s “ I that

F˚

˜

N´1
ÿ

i“0
ErrΣ˚i`1y

i`1s

¸

´ F˚ppyq ě
N´1
ÿ

i“0
E
”

xBF˚py i`1q,rΣ˚i`1py
i`1 ´ pyqy

ı

. (F˚-EC)

If everything is deterministic, (G-EC) and (F˚-EC) with N “ 1 imply (G-PM) and
(F˚-PM).

Example 2.4. If rΣi`1 “ rσi`1I for some (random) scalar rσi`1, then it is easy to verify
(F˚-EC) using Jensen’s inequality. We will generalise this example in Section 3.2.

Further, we assume for some η̄i ą 0 that

ErT ˚i Φ
˚
i s “ η̄i I , and ErΨi`1Σi`1s “ η̄i I , pi ě 1q, (CG)

and for

ζN :“
N´1
ÿ

i“0
η̄i (2.14)
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de�ne the ergodic sequences

rxN :“ ζ´1
N E

«

N´1
ÿ

i“0
T ˚i Φ

˚
i x

i`1

ff

, and ryN :“ ζ´1
N E

«

N´1
ÿ

i“0
Σ˚i`1Ψ

˚
i`1y

i`1

ff

. (2.15)

These sequences will eventually be generated through the application of (G-EC) and
(F˚-EC) with rTi :“ ΦiTi and rΣi :“ ΨiΣi . Finally, we introduce the duality gap

Gpx ,yq :“
`

Gpxq ` xpy ,Kxy ´ F ppyq
˘

´
`

Gppxq ` xy ,Kpxy ´ F˚pyq
˘

. (2.16)

Then we have:

Theorem 2.2. Let us be given K P LpX ;Y q, and convex, proper, lower semicontinuous
functionals G : X Ñ R and F˚ : Y Ñ R on Hilbert spaces X and Y , satisfying (G-PM),
(F˚-PM), (G-EC) and (F˚-EC) for some 0 ď Γ P LpX ;X q. Suppose the (random) operators
Ti ,Φi P RpOi ;LpX ;X qq and Σi`1,Ψi`1 P RpOi ;LpY ;Y qq satisfy ΦiTi P RpOi ;T q and
Ψi`1Σi`1 P RpOi ;Sq for each i P N. If, moreover, (C0) and (CG) hold, then the iterates
ui “ px i ,y iq of the proximal point iteration (PP) satisfy for all N ě 1 the estimate

E

«

}xN ´ px}2ZN`1LN`1
`

N´1
ÿ

i“0
}ui`1 ´ ui}2Zi`1Li`1

ff

` ζNGprxN ,ryN q

ď }u0 ´ pu}2Z0L0
`

N´1
ÿ

i“0
Er}ui`1 ´ pu}2∆i`2pΓ{2qs. (2.17)

Again, the proof is in Appendix A.

Remark 2.3. The di�erence between ∆i`2pΓ{2q and ∆i`2pΓq in (2.17) and (2.13) corre-
sponds to the fact [23, 46] that in (2.2) we need slower ωi “ 1{

?
1` γτi compared to

(2.3), to get Op1{N 2q convergence of the gap. The scheme (2.3) is only known to yield
convergence of the iterates.

2.6. Estimates on another ergodic duality gap

The condition (CG) does not hold for the basic non-stochastic accelerated method (2.2)
& (2.3), which would satisfy τiϕi “ ψσi for a suitable constant ψ and ϕi “ τ´2

i ; see
Example 2.1. We therefore assume for some η̄i P R that

ErT ˚i Φ
˚
i s “ η̄i I , and ErΨiΣi s “ η̄i I , pi ě 1q, (CG˚)

and for

ζ ,̊N :“
N´1
ÿ

i“1
η̄i (2.18)

de�ne

rx ,̊N :“ ζ´1
,̊NE

«

N´1
ÿ

i“1
T ˚i Φ

˚
i x

i`1

ff

, and ry ,̊N :“ ζ´1
,̊NE

«

N´1
ÿ

i“1
Σ˚i Ψ

˚
i y

i

ff

. (2.19)

These variables give our new duality gap. Our original ergodic variables will however
turn out to be the only possibility for doubly-stochastic methods. The convergence
result is:

Theorem 2.3. In Theorem 2.2, let us assume Eq. (CG˚) in place of Eq. (CG). Then (2.17)
holds with ζ ,̊NGprx ,̊N ,ry ,̊N q in place of ζNGprxN ,ryN q.
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Once again, the proof is in Appendix A.

Remark 2.4. Technically, in Theorems 2.1 to 2.3, we do not need Ti , Φi , Σi`1, and
Ψi`1 deterministic with respect to Oi . It is su�cient that Ti ,Φi P RpO;LpX ;X qq and
Σi`1,Ψi`1 P RpO;LpY ;Y qq satisfy ΦiTi P RpO;T q and Ψi`1Σi`1 P RpO;Sq for each
i P N. For consistency, we have however made the stronger assumptions, which we will
start needing from now on.

2.7. Simplifications and summary so far

We assume the existence of some �xed δ ą 0, and bounds bi`2prΓq dependent on our
choice of rΓ P LpX ;X q such that

ErZi`2Li`2|Oi s ě

ˆ

δΦi`1 0
0 0

˙

, and (C1)

Er}ui`1 ´ pu}2
∆i`2prΓq

s ď Er}ui`1 ´ ui}2Zi`1Li`1
s ` bi`2prΓq, pi P Nq. (C2)

Then we obtain the following corollary.

Corollary 2.1. Let us be given K P LpX ;Y q, and convex, proper, lower semicontinuous
functionals G : X Ñ R and F˚ : Y Ñ R on Hilbert spaces X and Y , satisfying (G-PM)
and (F˚-PM) for some 0 ď Γ P LpX ;X q. Suppose (C0), (C1), and (C2) hold for some
random operators Ti ,Φi P RpOi ;LpX ;X qq and Σi`1,Ψi`1 P RpOi ;LpY ;Y qq with ΦiTi P
RpOi ;T q and Ψi`1Σi`1 P RpOi ;Sq for each i P N. Assuming one of the following cases
to hold, let

rдN :“

$

’

&

’

%

0, rΓ “ Γ,

ζNGprxN ,ryN q, rΓ “ Γ{2; (G-EC), (F˚-EC) and (CG) hold
ζ ,̊NGprx ,̊N ,ry ,̊N q, rΓ “ Γ{2; (G-EC), (F˚-EC) and (CG˚) hold.

Then the iterates ui “ px i ,y iq of the proximal point iteration (PP) satisfy

δE
“

}xN ´ px}2ΦN
‰

` rдN ď }u
0 ´ pu}2Z0L0

`

N´1
ÿ

i“0
bi`2pΓq (2.20)

Proof. We take the expectation of the estimate of Theorem 2.1, and directly use the
estimates of Theorems 2.2 and 2.3. Then we use (C1) and (C2). �

2.8. Interpreting the conditions

What do the conditions (C0), (C1) and (C2) mean? The condition (C1) is actually a
stronger version of the positivity in (C0). If Φi`1 is self-adjoint and positive de�nite,
using (C0), for any δ P p0,1q we deduce

Zi`2Li`2 »

ˆ

Φi`1 ´Λ˚i`1
´Λi`1 Ψi`2

˙

ě

ˆ

δΦi`1 0
0 Ψi`2 ´

1
1´δ Λi`1Φ

´1
i`1Λ

˚
i`1

˙

. (2.21)

Thus the positivity in (C0) is veri�ed along with (C1) if for some δ P p0,1q holds

p1´ δqΨi`1 ě ΛiΦ
´1
i Λ˚i and Φi ą 0, pi P Nq. (C11)

Regarding (C2), we expand

}ui`1 ´ pu}2
∆i`2prΓq

“ }ui`1 ´ ui}2
∆i`2prΓq

` 2xui`1 ´ ui ,ui ´ puy∆i`2prΓq
` }ui ´ pu}2

∆i`2prΓq
.

(2.22)
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Standard nesting properties of conditional expectations, since ui`1 P RpOi ;X ˆ Y q and
ui P RpOi´1;X ˆ Y q, show

E
”

}ui`1 ´ pu}2
∆i`2prΓq

ı

“ E
”

}ui`1 ´ ui}2
Er∆i`2prΓq|Oi s

` 2xui`1 ´ ui ,ui ´ puy
Er∆i`2prΓq|Oi s

` }ui ´ pu}2
Er∆i`2prΓq|Oi´1s

ı

.

(2.23)

Further using (2.11), we see for O1 “ Oi ,Oi´1 that

Er∆i`2prΓq|O
1s “

ˆ

ErΦi`1 ´ ΦipI ` 2TirΓq|O1s ErA˚i`2|O
1s

ErAi`2|O
1s ErΨi`2 ´ Ψi`1|O

1s

˙

.

If the o�-diagonal satis�es

ErAi`2|Oi spx
i`1 ´ x iq “ 0, (2.24a)

ErA˚i`2|Oi spy
i`1 ´ y iq “ 0, and (2.24b)

ErA˚i`2|Oi´1s “ 0, (2.24c)

we may simplify (2.23) into

E
”

}ui`1 ´ pu}2
∆i`2prΓq

ı

“ E
”

}x i`1 ´ x i}2
ErΦi`1´Φi pI`2TirΓq|Oi s

` }y i`1 ´ y i}2
ErΨi`2´Ψi`1|Oi s

` 2xx i`1 ´ x i ,x i ´ pxy
ErΦi`1´Φi pI`2TirΓq|Oi s

` 2xy i`1 ´ y i ,y i ´ pyyErΨi`2´Ψi`1|Oi s

` }x i ´ px}2
ErΦi`1´Φi pI`2TirΓq|Oi´1s

` }y i ´ py}2
ErΨi`2´Ψi`1|Oi´1s

ı

.

For any operator M P LpX ;X q, de�ning 0 ď ~M~ P LpX ;X q as satisfying

xx ,x 1yM ď }x}~M ~}x
1}~M ~, px ,x 1 P Mq,

we obtain by Cauchy’s inequality for any αi ,βi ą 0 that

E
”

}ui`1 ´ pu}2
∆i`2prΓq

ı

ď E
”

}x i`1 ´ x i}2
ErΦi`1´Φi pI`2TirΓq|Oi s`αi ~ErΦi`1´Φi pI`2TirΓq|Oi s~

` }y i`1 ´ y i}2
ErΨi`2´Ψi`1|Oi s`βi ~ErΨi`2´Ψi`1|Oi s~

` }x i ´ px}2
ErΦi`1´Φi pI`2TirΓq|Oi´1s`α

´1
i ~ErΦi`1´Φi pI`2TirΓq|Oi s~

` }y i ´ py}2
ErΨi`2´Ψi`1|Oi´1s`β

´1
i ~ErΨi`2´Ψi`1|Oi s~

ı

.

(2.25)

Recalling the de�nition of Ai`2 in (2.12), the o�-diagonal conditions (2.24) may be
written

ErΨi`1Σi`1K ´ Λi`1 ` Λi ´ KT ˚i Φ
˚
i |Oi spx

i`1 ´ x iq “ 0, (C21.a)
ErK˚Σ˚i`1Ψ

˚
i`1 ´ Λ˚i`1 ` Λ˚i ´ ΦiTiK |Oi sy

i`1 ´ y iq “ 0, (C21.b)
ErΨi`1Σi`1K ´ Λi`1 ` Λi ´ KT ˚i Φ

˚
i |Oi´1s “ 0. (C21.c)
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Using (2.21) on the right hand side, and (2.25) on the left hand side of (C2), we see that
(C2) is satis�ed if in addition to (C21.a)–(C21.c), we have some bounds bxi`2p

rΓq,b
y
i`2 P R

such that

E
“

}x i`1 ´ x i}2
ErΦi`1´Φi pI`2TirΓq|Oi s`αi ~ErΦi`1´Φi pI`2TirΓq|Oi s~´δΦi

` }x i ´ px}2
ErΦi`1´Φi pI`2TirΓq|Oi´1s`α

´1
i ~ErΦi`1´Φi pI`2TirΓq|Oi s~

‰

ď bxi`2p
rΓq, (C21.d)

and

E
“

}y i`1 ´ y i}2
ErΨi`2´Ψi`1|Oi s`βi ~ErΨi`2´Ψi`1|Oi s~

` }y i ´ py}2
ErΨi`2´Ψi`1|Oi´1s`β

´1
i ~ErΨi`2´Ψi`1|Oi s~

‰

ď b
y
i`2. (C21.e)

The bounds bxi`2p
rΓq and b

y
i`2 clearly exist if the iterates stay bounded, or if the con-

ditional operator expectations stay negative semi-de�nite. The achieve the latter, we
need to choose the testing operators Φi and Ψi suitably. We do this in the following
sections for practical block-coordinate descent algorithms. First, to conclude the present
derivations:

Corollary 2.2. We may in Corollary 2.1 replace (C1) and (C2) by (C11) and (C21).

3. Block-proximal methods

To derive practical algorithms, we need to satisfy the conditions of Corollary 2.2. To do
this, we employ ideas from the stochastic block-coordinate descent methods discussed in
the Introduction (Section 1). We construct Ti and Σi`1 to select some sub-blocks of the
variables x and y to update. This way, we also seek to gain performance improvements
through the local properties of G, F˚, and K .

3.1. Structure of the step length operators

Let P1, . . . ,Pm be a collection of projection operators in X , with
řm

j“1 Pj “ I and
PjPi “ 0 if i ‰ j. Likewise, suppose Q1, . . . ,Qn are projection operators in Y such
that

řm
`“1 Q` “ I and Q`Qk “ 0 for k ‰ `. With this, for j P t1, . . . ,nu and a subset

S Ă t1, . . . ,mu, we denote

Vpjq :“ t` P t1, . . . ,nu | Q`KPj ‰ 0u, and VpSq “
ď

jPS

Vpjq.

For some tϕj,iumj“1,tψ`,i`1u
n
`“1 Ă RpOi ; p0,8qq, we then de�ne

Φi :“
m
ÿ

j“1
ϕj,iPj , and Ψi`1 :“

n
ÿ

`“1
ψ`,i`1Q` . (S-ΦΨ)

We take random subsets Spiq Ă t1, . . . ,mu, and V pi ` 1q Ă t1, . . . ,nu, deterministic
with respect to Oi , and set

Ti :“
ÿ

jPSpiq

τj,iPj , and Σi`1 :“
ÿ

`PV pi`1q

σ`,i`1Q` , pi ě 0q. (S-TΣ)

We assume that the blockwise step lengths satisfy tτj,i`1u
m
j“1,tσ`,i`2u

n
`“1 Ă RpOi ; p0,8qq.

Then all Φi , Ψi`1, Ti , and Σi`1 are self-adjoint and positive semi-de�nite.
Finally, we introduce τ̂j,i :“ τj,i χSpiqpjq and σ̂`,i :“ σ`,i χV piqp`q, as well as denote by

πj,i :“ Prj P Spiq | Oi´1s, and ν`,i`1 :“ Pr` P V pi ` 1q | Oi´1s,

the probability that j will be contained in Spiq and, respectively, that ` will be contained
in V pi ` 1q, given what is known at iteration i ´ 1.
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3.2. Structure of G and F˚

We assume that G and F˚ are (block-)separable in the sense

Gpxq “
m
ÿ

j“1
G jpPjxq, (S-G)

and

F˚pyq “
n
ÿ

`“1
F˚` pQ`yq. (S-F˚)

With T :“ t
řm

j“1 tjPj | tj ą 0u, and S :“ t
řn

`“1 s`Q` | s` ą 0u, the conditions (G-PM)
and (F˚-PM) then reduce to the strong monotonicity of each BG j with factor γj , and
the monotonicity of each BF` . In particular (F˚-PM) is automatically satis�ed. Thus
Γ “

řm
j“1 γjPj . We also write rΓ “

řm
j“1 rγjPj .

Let us temporarily introduce rTi :“
řm

j“1 rτj,i ě 0, satisfying
řN´1

i“0 Errτj,i s “ 1 for
each j “ 1, . . . ,m. Splitting (G-EC) into separate inequalities over all j “ 1, . . . ,m, and
using the strong convexity of G j , we see that (G-EC) holds if

G j

˜

N´1
ÿ

i“0
Errτj,iPjx

i`1s

¸

´G jpPjpxq ě
N´1
ÿ

i“0
E
“

rτi
`

G jpx
i`1q ´G jppxq

˘‰

, pj “ 1, . . . ,mq.

(3.1)
The right hand side can also be written as

ş

ΩN G jpPjx
ipωqq ´G jpPjpxqdµ

N pi,ωq for the
measure µN :“ rτj

řN´1
i“0 δi ˆ P on the domain ΩN :“ t0, . . . ,N ´ 1u ˆ Ω. Using our

assumption
řN´1

i“0 Errτj,i s “ 1, we deduce µN pΩN q “ 1. An application of Jensen’s
inequality now shows (3.1). Therefore (G-EC) is automatically satis�ed. By similar
arguments we see that (F˚-EC) also holds.

We now need to satisfy the conditions of Corollary 2.2 for the above structural setup.
Namely, we need to satisfy (C0), (C11), and (C21) to obtain convergence estimates of the
primal iterates, and we need to satisfy either (CG) or (CG˚) to obtain gap estimates. We
divide these veri�cations into the following subsections Sections 3.3 to 3.6, after which
we summarise the results in Section 3.7.

3.3. Satisfaction of the o�-diagonal conditions (C21.a)–(C21.c) and either (CG) or (CG˚)

Expanded, Li`1 solved from (C0), and the proximal maps inverted, (PP) states

x i`1 “ pI `TiBGq
´1px i ` Φ´1

i Λ˚i py
i`1 ´ y iq ´TiK

˚y i`1q, (3.2a)
y i`1 “ pI ` Σi`1BF

˚q´1py i ` Ψ´1
i`1Λipx

i`1 ´ x iq ` Σi`1Kx
i`1q. (3.2b)

To derive an e�cient algorithm, we have to be able to solve this system easily. In
particular, we wish to avoid any cross-dependencies on x i`1 and y i`1 between the two
steps. One way to avoid this, is to make the �rst step independent of y i`1. To do this,
we could enforce Φ´1

i Λ˚i “ TiK
˚, but this can be re�ned a little bit, as not all blocks of

y i`1 are updated.
Moreover, to simplify the treatment of (C21.a) and (C21.b), and for Spiq and V pi ` 1q

to correspond exactly to the coordinates that are updated, as one would expect, we
enforce

x i`1
j “ x ij , pj R Spiqq, and likewise (C-cons.a)

y i`1
`

“ y i` , p` R V pi ` 1qq. (C-cons.b)
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Let us take

Λi :“
m
ÿ

j“1

ÿ

`PVpjq

λ`,j,iQ`KPj for some λ`,j,i P RpOi , r0,8qq. (S-Λ)

If (C-cons) and (S-Λ) hold, then (C21.a)–(C21.c) follow if

Erλ`,j,i`1|Oi s “ ψ`,i`1σ̂`,i`1 ` λ`,j,i ´ ϕj,i τ̂j,i ,

"

j P Spiq,
` P Vpjq,

(3.3a)

Erλ`,j,i`1|Oi s “ ψ`,i`1σ̂`,i`1 ` λ`,j,i ´ ϕj,i τ̂j,i ,

"

` P V pi ` 1q,
j P V´1p`q,

(3.3b)

Erλ`,j,i`1|Oi´1s “ Erψ`,i`1σ̂`,i`1 ` λ`,j,i ´ ϕj,i τ̂j,i |Oi´1s,

"

j “ 1, . . . ,m,
` P Vpjq.

(3.3c)

We set
rλ`,j,i`1 :“ ψ`,i`1σ̂`,i`1 ` λ`,j,i ´ ϕj,i τ̂j,i ,

and using (3.3a) and (3.3b), compute

Erλ`,j,i`1|Oi´1s “ ErErλ`,j,i`1|Oi s|Oi´1s

“ ErErλ`,j,i`1|Oi sχV pi`1qp`q|Oi´1s

` ErErλ`,j,i`1|Oi sp1´ χV pi`1qp`qqχSpiqpjq|Oi´1s

` ErErλ`,j,i`1|Oi sp1´ χV pi`1qp`qqp1´ χSpiqpjqq|Oi´1s

“ Errλ`,j,i`1χV pi`1qp`q|Oi´1s

` Errλ`,j,i`1p1´ χV pi`1qp`qqχSpiqpjq|Oi´1s

` ErErλ`,j,i`1|Oi sp1´ χV pi`1qp`qqp1´ χSpiqpjqq|Oi´1s.

(3.4)

If

λ`,j,i “ 0, pj R Spiq or ` R V pi ` 1qq, (3.5a)

we obtain

Errλ`,j,i`1|Oi´1s “ Errλ`,j,i`1χV pi`1qp`q|Oi´1s

` Errλ`,j,i`1p1´ χV pi`1qp`qqχSpiqpjq|Oi´1s.

Together this and (3.4) show that (3.3c) holds if (3.3a) and (3.3b) do along with

ErErλ`,j,i`1|Oi sp1´ χV pi`1qp`qqp1´ χSpiqpjqq|Oi´1s “ 0.

From this, it is easy to see that (3.3) holds if (3.5a) does, and

Erλ`,j,i`1|Oi s “ ψ`,i`1σ̂`,i`1 ` λ`,j,i ´ ϕj,i τ̂j,i , pj “ 1, . . . ,m; ` P Vpjqq. (3.5b)

For a speci�c choice of λ`,j,i , we take S̊piq Ă Spiq, V̊ pi ` 1q Ă V pi ` 1q, and set

λ`,j,i :“ ϕj,i τ̂j,i χS̊piqpjq ´ψ`,i`1σ̂`,i`1χV̊ pi`1qp`q, p` P Vpjqq. (R-λ)

For λ`,j,i to take values that allow the straightforward computation of (3.2), we assume

V´1pV̊ pi ` 1qq XV´1pVpS̊piqqq “ 0. (C-nest.a)

It is then easy to see that (C-cons) and the easy computability of (3.2) demand

Spiq “ S̊piq YV´1pV̊ pi ` 1qq, and V pi ` 1q “ V̊ pi ` 1q YVpS̊piqq. (C-nest.b)
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Assuming (C-nest) to hold, clearly the choice (R-λ) satis�es (3.5a), while (3.5b) follows
if

Erλ`,j,i`1|Oi s “ ψ`,i`1σ̂`,i`1p1´ χV̊ pi`1qp`qq ´ ϕj,i τ̂j,ip1´ χS̊piqpjqq, p` P Vpjqq.

Inserting (R-λ), we see this to be satis�ed if for some ηi`1 P RpOi ; p0,8qq holds

Erϕj,i`1τ̂j,i`1χS̊pi`1qpjq|Oi s “ ηi`1 ´ ϕj,i τ̂j,ip1´ χS̊piqpjqq ě 0, and (C-step.a)

Erψ`,i`2σ̂`,i`2χV̊ pi`2qp`q|Oi s “ ηi`1 ´ψ`,i`1σ̂`,i`1p1´ χV̊ pi`1qp`qq ě 0, (C-step.b)

with j “ 1, . . . ,m; ` “ 1, . . . ,n; and i ě ´1, taking

S̊p´1q “ t1, . . . ,mu, and V̊ p0q “ t1, . . . ,nu. (C-step.c)

If the testing variables ϕj,i`1 and ψ`,i`2 are known, (C-step.a) and (C-step.b) give
update rules for τj,i`1 andσ`,i`2 when j P S̊pi`1q and, respectively, ` P V̊ pi`2q. To cover
j P Spi ` 1qzS̊pi ` 1q and ` P V pi ` 2qzV̊ pi ` 2q, for some ηKτ ,i`1,η

K
σ ,i`1 P RpOi ; r0,8qq,

we demand

Erϕj,i`1τ̂j,i`1p1´ χS̊pi`1qpjqq|Oi s “ ηKτ ,i`1, and (C-step.d)

Erψ`,i`2σ̂`,i`2p1´ χV̊ pi`2qp`qq|Oi s “ ηKσ ,i`1. (C-step.e)

Then

Erϕj,i`1τ̂j,i`1s “ Erηi`1 ` ηKτ ,i`1 ´ ηKτ ,i s, and (3.6a)

Erψ`,i`2σ̂`,i`2s “ Erηi`1 ` ηKσ ,i`1 ´ ηKσ ,i s. (3.6b)

The condition (CG) is satis�ed if Erϕj,i`1τ̂j,i`1s “ η̄i “ Erψ`,i`2σ̂`,i`2s. This follows
if

ErηKτ ,i ´ ηKσ ,i s “ ηK :“ constant. (C-ηK)

We therefore obtain the following.

Lemma 3.1. Let us choose Λi according to (S-Λ) and (R-λ). If (C-nest), (C-step), and
(C-ηK) are satis�ed, then (C21.a)–(C21.c) and (CG) hold, as does (C-cons).

We will frequently assume for some ϵ P p0,1q that

i ÞÑ ηi
i ÞÑ ηKτ ,i
i ÞÑ ηKσ ,i

,

.

-

are non-decreasing, and
"

ϵηi ¨minjpπj,i ´ π̊j,iq ě ηKτ ,i ,

ηi ¨min`pν`,i`1 ´ ν̊`,i`1q ě ηKσ ,i .
(C-η)

This ensures the non-negativity conditions in (C-step.a) and (C-step.b), while simplifying
other derivations to follow. In fact, the condition suggests to take either both ηKτ ,i and
ηKσ ,i as constants, or to take ηKσ ,i`1 “ ηKτ ,i “: cηi for some c ą 0 such that the non-
negativity conditions in (C-step.a) and (C-step.b) are satis�ed. Note that (C-η) guarantees
η̄i ě Erηi s.

If we deterministically take V̊ pi ` 1q “ H, then (C-step.e) implies ηKσ ,i ” 0. But
then (C-step.b) will be incompatible with (3.6b). Therefore V̊ pi ` 1q has to be chosen
randomly to satisfy (CG). The same holds for S̊piq. Thus algorithms satisfying (CG) are
necessarily doubly-stochastic, randomly updating both the primal and dual variables, or
neither.

The alternative (CG˚) requires Erϕj,i`1τ̂j,i`1s “ η̄i`1 “ Erψ`,i`1σ̂`,i`1s. This holds
when

Erηi`1 ` ηKτ ,i`1 ´ ηKτ ,i s “ η̄i “ Erηi ` ηKσ ,i ´ ηKσ ,i´1s.
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It does not appear possible to simultaneously satisfy this condition and the non-negativity
conditions in (C-step.a) and (C-step.b) for an accelerated method, unless we deterministi-
cally take V̊ pi`1q “ H for all i . Then (C-step) and (C-nest) implyV pi`1q “ t1, . . . ,nu,
Spiq “ S̊piq, as well as ηKτ ,i ” 0, and ηKσ ,i`1 “ ηi . This choice satis�es (C-η) if i ÞÑ ηi is
non-decreasing and positive. Conversely, choosing ηKτ ,i and ηKσ ,i this way, and taking
the expectation with respect to Oi´1 in (C-step.b), we see that V̊ pi ` 1q “ H. This says
that to satisfy (CG˚), we need to perform full dual updates. This is akin to most existing
primal-dual coordinate descent methods [32,34,35]. The algorithms in [36–38] are more
closely related to our method. However only [38] provides convergence rates for very
limited single-block sampling schemes under the strong assumption that both G and F˚

are strongly convex.
The conditions (C-step) now reduce to

ϕj,i`1τj,i`1πj,i`1 “ ηi`1, pj “ 1, . . . ,mq, and (C-step1.a)
ψ`,i`1σ`,i`1 “ ηi`1, p` “ 1, . . . ,nq. (C-step1.b)

Moreover λ`,j,i “ ϕj,i τ̂j,i χS̊piqpjq. Clearly this satis�es (C-cons) through (3.2). In sum-
mary:

Lemma 3.2. Let us choose Λi according to (S-Λ) and (R-λ). If we ensure (C-step1), take
ηKτ ,i ” 0 and ηKσ ,i`1 “ ηi , and force

S̊piq “ Spiq, V̊ pi ` 1q “ H, and V pi ` 1q “ t1, . . . ,nu,

then (C-nest) and (C-step) hold, as do (C21.a)–(C21.c), (CG˚), and (C-cons). If i ÞÑ ηi ą 0
is non-decreasing, then (C-η) holds.

3.4. Satisfaction of the primal penalty bound (C21.d)

Split into blocks, the conditions asks for each j “ 1, . . . ,m the upper bound

E
“

qj,i`2prγjq}x
i`1
j ´ x ij }

2 ` hj,i`2prγjq}x
i
j ´ px j}

2‰ ď bxj,i`2prγjq, (3.7)

where

qj,i`2prγjq :“
`

Erϕj,i`1 ´ ϕj,ip1` 2τ̂j,irγjq|Oi s
` αi |Erϕj,i`1 ´ ϕj,ip1` 2τ̂j,irγjq|Oi s| ´ δϕj,i

˘

χSpiqpjq,
(3.8)

and

hj,i`2prγjq :“ Erϕj,i`1 ´ ϕj,ip1` 2τ̂j,irγjq|Oi´1s

` α´1
i |Erϕj,i`1 ´ ϕj,ip1` 2τ̂j,irγjq|Oi s|.

(3.9)

We easily obtain from (3.7) the following lemma.

Lemma 3.3. Suppose for some Cx ą 0 either

}x i`1
j ´ px j}

2 ď Cx , or (C-xbnd.a)

hj,i`2prγjq ď 0 and qj,i`2prγjq ď 0, (C-xbnd.b)

for all j “ 1, . . . ,m and i P N. Then (C21.d) holds with bxi`2p
rΓq :“

řm
j“1 b

x
j,i`2prγjq for any

bxj,i`2prγjq ě 4CxErmaxt0,qj,i`2prγjqus `CxErmaxt0,hj,i`2prγjqus. (3.10)
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Since Corollary 2.2 involve sums
řN´1

i“0 bxi`2p
rΓq, we de�ne for convenience

dxj,N prγjq :“
N´1
ÿ

i“0
bxj,i`2prγjq. (3.11)

We still need to bound Ermaxt0,qj,i`2prγjqus and Ermaxt0,hj,i`2prγjqus. We do this
through primal test update rules, constructing next two possibilities.

Example 3.1 (Random primal test updates). For some constant ρ j ě 0, let us take

ϕj,i`1 :“ ϕj,ip1` 2rγj τ̂j,iq ` 2ρ jπ´1
j,i χSpiqpjq. (R-ϕrnd)

Note that ϕj,i`1 P RpOi ; p0,8qq instead of just RpOi`1; p0,8qq, as we have assumed so
far. If we set ρ j “ 0 and have just a single deterministically updated block, (R-ϕrnd) is
gives the standard update rule (2.3) with the identi�cation ϕi “ τ´2

i . The role of ρ j ą 0
is to ensure some (slower) acceleration for non-strongly-convex blocks with rγj “ 0.
This is necessary for convergence rate estimates.

We compute

qj,i`2prγjq “
`

2p1` αiqρ jπ
´1
j,i ´ δϕj,i

˘

χSpiqpjq ď 2p1` αiqρ jπ
´1
j,i χSpiqpjq, and

(3.12a)
hj,i`2prγjq “ 2ρ jπ´1

j,i ErχSpiqpjq|Oi´1s ` 2α´1
i ρ jπ

´1
j,i ErχSpiqpjq|Oi s. (3.12b)

This implies that (C-xbnd.b) holds if ρ j “ 0. Taking the expectation, we compute

Ermaxt0,qj,i`2prγjqus ď 2p1` αiqρ j , and (3.13a)
Ermaxt0,hj,i`2prγjqus “ 2p1` α´1

i qρ j . (3.13b)

Choosing αi “ 1{2 and using (3.13) in (3.10), we obtain:

Lemma 3.4. If (C-xbnd.a) holds, take ρ j ě 0, otherwise take ρ j “ 0, (j “ 1, . . . ,m). If we
de�ne ϕj,i`1 P RpOi ; p0,8qq through (R-ϕrnd), then we may take bxj,i`2prγjq “ 18Cxρ j .
In particular (C21.d) holds, and dxj,N prγjq “ 18Cxρ jN .

Remark 3.1. In (R-ϕrnd), we could easily replace r j,i “ ρ jπ
´1
j,i χSpiqpjq by a split version

r j,i “ ρ̊ j π̊
´1
j,i χS̊piqpjq ` ρKj pπj,i ´ π̊j,iq

´1χSpiqzS̊piqpjq without destroying the property
Err j,i |Oi´1s “ ρ̊ j ` ρKj “: ρ j .

The di�culty with the rule (R-ϕrnd) is, as we will see in Section 4, thatηi`1 will depend
on the random realisations of Spiq through ϕj,i`1. This will require communication in a
parallel implementation of the algorithm. We therefore desire a deterministic update
rule for ηi`1. As we will see, this can be achieved if ϕj,i`1 is updated deterministically.

Example 3.2 (Deterministic primal test updates). Let us assume (C-step) and (C-η) to
hold, and for some ρ j ě 0 and γ̄j P r0,1qrγj take

ϕj,i`1 :“ ϕj,i ` 2pγ̄jηi ` ρ jq. (R-ϕdet)

Since ηi P RpOi´1; p0,8qq, we see that ϕj,i`1 P RpOi´1; p0,8qq. In fact, ϕj,i`1 is
deterministic as long as ηi is chosen deterministically, for example as a function of
tϕj,iu

m
j“1. Since i ÞÑ ηKτ ,i is non-decreasing by (C-η), (C-step) gives

Erϕj,i τ̂j,i |Oi´1s “ ηi ` ηKτ ,i ´ ηKi´1,τ ě ηi . (3.14)
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Abbreviatingγj,i :“ γ̄j`ρ jη
´1
i , we can writeϕj,i`1 “ ϕj,i`2γj,iηi . With this, expansion

of (3.9) gives

hj,i`2prγjq “ 2Erγj,iηi ´ rγjϕj,i τ̂j,i |Oi´1s ` 2α´1
i ~Erγj,iηi ´ rγjϕj,i τ̂j,i |Oi s~

ď 2pγj,i ´ rγjqηi ` 2α´1
i ~γj,iηi ´ rγjϕj,i τ̂j,i ~

ď 2p1` α´1
i qρ j ` 2pγ̄j ´ rγjqηi ` 2α´1

i ~γ̄jηi ´ rγjϕj,i τ̂j,i ~.

Forcing
α´1
i ~γ̄jηi ´ rγjϕj,i τ̂j,i ~ ď prγj ´ γ̄jqηi , (3.15)

and taking the expectation, this gives

Ermaxt0,hj,i`2prγjqus ď 2p1` α´1
i qρ j . (3.16)

If γ̄jηi ą rγjϕj,i τ̂j,i , (3.15) holds when we take

αi “ αi,1 :“ min
j
γ̄j{prγj ´ γ̄jq. (3.17)

Otherwise, if γ̄jηi ď rγjϕj,i τ̂j,i , for (3.15) to hold, we need

ϕj,i τ̂j,i ď

ˆ

αi
rγj ´ γ̄j

rγj
´
γ̄j

rγj

˙

ηi . (3.18)

Taking

αi “ αi,2 :“ max
j

˜

rγj π̊
´1
j,i ´ γ̄j

rγj ´ γ̄j

¸

,

we see that (3.18) holds if ϕj,i τ̂j,i ď π̊´1
j,i ηi . We have to consider the cases j P S̊piq and

j P SpiqzS̊piq separately. The conditions (C-step.a) and (C-step.d) show that

ϕj,i τ̂j,i π̊j,i χS̊piqpjq ď ηi , and ϕj,i τ̂j,ipπj,i ´ π̊j,iqp1´ χS̊piqpjqq ď ηKτ ,i .

Using (C-η) in the latter estimate, we verify (3.18) (provided or not that π̊j,i ą 0).
Next, we expand (3.8), obtaining

qj,i`2prγjq “
`

2Erγj,iηi ´ rγjϕj,i τ̂j,i |Oi s ` 2αi ~Erγj,iηi ´ rγjϕj,i τ̂j,i |Oi s~´ δϕj,i
˘

χSpiqpjq,

“
`

2pγj,iηi ´ rγjϕj,i τ̂j,iq ` 2αi ~γj,iηi ´ rγjϕj,i τ̂j,i ~´ δϕj,i
˘

χSpiqpjq,

ď
`

2p1` αiqρ j ` 2pγ̄jηi ´ rγjϕj,i τ̂j,iq ` 2αi ~γ̄jηi ´ rγjϕj,i τ̂j,i ~´ δϕj,i
˘

χSpiqpjq.

Again, as ηi and ϕj,iτj,i will be increasing, we want

2pγ̄jηi ´ rγjϕj,i τ̂j,iq ` 2αi ~γ̄jηi ´ rγjϕj,i τ̂j,i ~ ď δϕj,i , pj P Spiqq. (3.19)

Then
Erqj,i`2prγjqs ď 2p1` αiqρ j . (3.20)

We only need to consider the case γ̄jηi ą rγjϕj,i τ̂j,i , as (3.19) is trivial in the opposite
case. Then αi is given by (3.17). With this the condition (3.19) expands into

rγj “ γ̄j “ 0 or
2rγjγ̄j
rγj ´ γ̄j

ηi ď δϕj,i , pj P Spiq, i P Nq. (C-ϕdet)

In summary:
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Lemma 3.5. Suppose (C-step), (C-η), and (C-ϕdet) hold. If (C-xbnd.a) holds, take ρ j ě 0,
otherwise take ρ j “ 0, (j “ 1, . . . ,m). Let ϕj,i`1 P RpOi´1; p0,8qq be de�ned by (R-ϕdet).
Then we may take

bxj,i`2prγjq “ max
α“αi,1,αi,2

`

2p1` α´1qρ jCx ` 8p1` αqρ jCx
˘

.

In particular, if πj,i ě ϵ ą 0 for all i P N, and some ϵ ą 0, then there exists a constant
Cα ą 0 such that (C21.d) holds with dxj,N prγjq “ ρ jCxCαN .

Proof. We see from (3.16) and (3.20) that (C-xbnd.b) holds if we take ρ j “ 0. Therefore
(C-xbnd) always holds. The expression for bxj,i`2prγjq now follows from Lemma 3.3. For
the expression of dxj,N prγjq, we note that the condition πj,i ě ϵ ą 0 bounds αi,2. �

Remark 3.2. In the rule (R-ϕdet), we could replace ηi by ηi ` ηKτ ,i ´ ηKi´1,τ ; cf. (3.14).

3.5. Satisfaction of the dual penalty bound (C21.e)

To satisfy this bound, we make assumptions similar to Lemma 3.3.

Lemma 3.6. Suppose

Erψ`,i`2|Oi s ě Erψ`,i`1|Oi s, p` “ 1, . . . ,nq. (C-ψ inc)

as well as either

}y i`1
`
´ py`}

2 ď Cy , or (C-ybnd.a)
Erψ`,i`2 ´ψ`,i`1|Oi s “ 0, pj “ 1, . . . ,m; i P Nq, (C-ybnd.b)

Then (C21.e) holds with byi`2 “
řn

`“1 b
y
`,i`2 where

b
y
`,i`2 :“ 9CyErψ`,i`2 ´ψ`,i`1s. (3.21)

For convenience, we also de�ne the sum

d
y
`,N :“

N´1
ÿ

i“0
b
y
`,i`2 “ 9CyErψ`,N`1 ´ψ`,0s. (3.22)

Proof. (C-ψ inc) implies ~ErΨi`2 ´ Ψi`1|Oi s~ “ ErΨi`2 ´ Ψi`1|Oi s ě 0, so (C21.e) be-
comes

E
“

p1` βiq}y
i`1 ´ y i}2

ErΨi`2´Ψi`1|Oi s
` p1` β´1

i q}y
i ´ py}2

ErΨi`2´Ψi |Oi´1s

‰

ď b
y
i`2.

In other words, for each block ` “ 1, . . . ,n should hold

E
“

p1`βiq}y i`1
`
´y i`}

2
Erψ`,i`2´ψ`,i`1|Oi s

`p1`β´1
i q}y

i
`´py`}

2
Erψ`,i`2´Ψ`,i |Oi´1s

‰

ď b
y
`,i`2.

Taking βi “ 1{2 and estimating (3.23) with (C-ybnd) gives (3.21). �

3.6. Satisfaction of the positivity condition (C11)

This requires p1´ δqΨi`1 ě ΛiΦ
´1
i Λ˚i , which can be expanded as

p1´ δq
n
ÿ

`“1
ψ`,i`1Q` ě

m
ÿ

j“1

n
ÿ

`,k“1
λ`,j,iλk,j,iϕ

´1
j,i Q`KPjK

˚Qk . (3.23)

To go further from here, we require the functions κ` introduced next. After a general
lemma that follows from the properties of the κ` , we look at speci�c constructions.
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Definition 3.1. WritingP :“ tP1, . . . ,Pmu, andQ :“ tQ1, . . . ,Qnu, we denote pκ1, . . . ,κnq P
K pK ,P,Qq if each κ` : r0,8qm Ñ r0,8q, (` “ 1, . . . ,n), is monotone and we have

(i) (Estimation) The estimate
m
ÿ

j“1

n
ÿ

`,k“1
z

1{2
`,j z

1{2
k,jQ`KPjK

˚Qk ď

n
ÿ

`“1
κ`pz`,1, . . . ,z`,mqQ` . (C-κ.a)

(ii) (Boundedness) For some κ ą 0 the bound

κ`pz1, . . . ,zmq ď κ
m
ÿ

j“1
zj . (C-κ.b)

(iii) (Non-degeneracy) There exists κ ą 0 and `˚pjq P t1, . . . ,nu with

κzj˚ ď κ`˚pjqpz1, . . . ,zmq, pj P t1, . . . ,muq. (C-κ.c)

Lemma 3.7. Let pκ1, . . . ,κnq P K pK ,P,Qq. The condition (C11) then holds if

p1´ δqψ`,i`1 ě κ`p. . . ,λ
2
`,j,iϕ

´1
j,i , . . .q, p` “ 1, . . . ,nq. (C-κψ )

Proof. Clearly Φi`1 is self-adjoint and positive de�nite. The remaining condition in
(C11) is equivalent to (3.23), which follows from (C-κ.a) with z`,j :“ λ2

`,j,iϕ
´1
j,i . �

Example 3.3 (Simple structural κ). Using Cauchy’s inequality, we deduce
n
ÿ

`,k“1
z

1{2
`,j z

1{2
k,jQ`KPjK

˚Qk ď

n
ÿ

`“1
z`,ja`,jQ` , pj “ 1, . . . ,mq, (3.24)

for a`,j :“ }Q`KPj}
2 ¨ #Vpjq. Thus (C-κ.a) and (C-κ.b) hold with κ “ max`,j a`,j if we

take

κ`pz1, . . . ,zmq :“
m
ÿ

j“1
zja`,j .

Clearly κ` is also monotone. If minj #Vpjq ą 0, then also (C-κ.c) is satis�ed with
κ “ minj max`PVpjq a`,j ą 0 and `˚pjq :“ arg min`PVpjq a`,j .

Example 3.4 (Worst-case κ). If #Vpjq is generally large, the previous example may
provide very poor estimates. In this case, we may alternatively proceed with z` :“
maxj zj,` as follows:

m
ÿ

j“1

n
ÿ

`,k“1
z

1{2
`,j z

1{2
k,jQ`KPjK

˚Qk ď

n
ÿ

`,k“1
z

1{2
`
z

1{2
k Q`KK

˚Qk ď

n
ÿ

`“1
z`}K}

2Q` .

Therefore (C-κ.a) and (C-κ.b) hold with κ “ }K}2 for the monotone choice

κ`pz1, . . . ,zmq :“ }K}2 maxtz1, . . . ,zmu.

Clearly also κ “ κ for any choice of `˚pjq P t1, . . . ,nu.

Example 3.5 (Balanced κ). One more option is to choose the minimal κ` satisfying
(C-κ.a) and the balancing condition

κ`pz`,1, . . . ,z`,mq “ κk pzk,1, . . . ,zk,mq, p`,k “ 1, . . . ,nq.

This involves more re�ned use of Cauchy’s inequality than the rough estimate (3.24),
but tends to perform very well, as we will see in Section 5. This rule uses the data tz`,mu
non-linearly.
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3.7. Summary so far

We now summarise our �ndings so far, starting with writing out the proximal point
iteration (PP) explicitly in terms of blocks. We already reformulated it in (3.2). We
continue from there, �rst writing the λ`,j,i from (R-λ) in operator form as

Λi “ KT̊ ˚i Φ
˚
i ´ Ψi`1Σ̊i`1K ,

where T̊i :“
řm

j“1 χS̊piqpjqτ̂j,iPj , and Ψ̊i`1 :“
ř`

j“1 χV̊ pi`1qp`qσ̂`,iQ` . Also de�ning
TKi :“ Ti ´T̊i , and ΣKi`1 :“ Σi`1´ Σ̊i`1, we can therefore rewrite (3.2) non-sequentially
as

vi`1 :“ Φ´1
i K˚Σ̊˚i`1Ψ

˚
i`1py

i`1 ´ y iq `TKi K˚y i`1, (3.25a)

x i`1 :“ pI `TiBGq
´1px i ´ T̊iK

˚y i ´vi`1q, (3.25b)

zi`1 :“ Ψ´1
i`1KT̊

˚
i Φ

˚
i px

i`1 ´ x iq ` ΣKi`1Kx
i`1, (3.25c)

y i`1 :“ pI ` Σi`1BF
˚q´1py i ` Σ̊i`1Kx

i ` zi`1q. (3.25d)

Let us set

Θi :“
ÿ

jPSpiq

ÿ

`PVpjq

θ`,j,iQ`KPj with θ`,j,i`1 :“
τj,iϕj,i

σ`,i`1ψ`,i`1
.

Then thanks to (C-nest), we have ΣKi`1Θi`1 “ Ψ´1
i`1KT̊

˚
i Φ

˚
i . Likewise,

Bi :“
ÿ

`PV pi`1q

ÿ

jPV´1p`q

b`,j,iQ`KPj with b`,j,i`1 :“
σ`,i`1ψ`,i`1

τj,iϕj,i
,

satis�es TKi B˚i`1 “ Φ´1
i K˚Σ̊i`1Ψi`1. Now we can rewrite (3.25) as

vi`1 :“ TKi rB
˚
i`1py

i`1 ´ y iq ` K˚y i`1s, (3.26a)

x i`1 :“ pI `TiBGq
´1px i ´ T̊iK

˚y i ´vi`1q, (3.26b)

zi`1 :“ ΣKi`1rΘi`1px
i`1 ´ x iq ` Kx i`1s, (3.26c)

y i`1 :“ pI ` Σi`1BF
˚q´1py i ` Σ̊i`1Kx

i ` zi`1q. (3.26d)

Observe how (3.26b) can thanks to (S-G) be split into separate steps with respect to T̊i
andTKi , while (C-nest.a) guarantees zi`1 “ ΣKi`1rΘi`1px̊

i`1 ´ x iq `Kx̊ i`1s. Therefore,
we obtain

x̊ i`1 :“ pI ` T̊iBGq
´1px i ´ T̊iK

˚y iq, (3.27a)
w i`1 :“ Θi`1px̊

i`1 ´ x iq ` x̊ i`1, (3.27b)

y i`1 :“ pI ` Σi`1BF
˚q´1py i ` Σ̊i`1Kx

i ` ΣKi`1w
i`1q, (3.27c)

vi`1 :“ B˚i`1py
i`1 ´ y iq ` y i`1, (3.27d)

x i`1 :“ pI `TKi BGq
´1px̊ i`1 ´TKi v

i`1q. (3.27e)

In the blockwise case under consideration, in particular the setup of Lemma 3.1
together with (S-G) and (S-F˚), the iterations (3.27) easily reduce to Algorithm 1. There
we write

x j :“ Pjx , y` :“ Q`y , and K`,j :“ Q`KPj .

In particular (C-step.a) can be written

ϕj,i`1Erτj,i`1|j P S̊pi ` 1qsπ̊j,i`1 “ ηi`1 ´ ϕj,i τ̂j,ip1´ χS̊piqpjqq.
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Therefore, if j P S̊piq, shifting indices down by one, we obtain the formula

τj,i “
ηi ´ ϕj,i´1τj,i´1χSpi´1qzS̊pi´1qpjq

ϕj,i π̊j,i
.

Similarly we obtain the other step length formulas in Algorithm 1.

Algorithm 1 Block-stochastic primal-dual method: general form

Require: Convex, proper, lower semi-continuous functions G : X Ñ R and F˚ :
Y Ñ R with the separable structures (S-G) and (S-F˚). Rules for ϕj,i , ψ`,i`1,
ηi`1,η

K
τ ,i`1,η

K
σ ,i`1 P RpOi ; r0,8qq, as well as sampling rules for S̊piq and V̊ pi ` 1q,

(j “ 1, . . . ,m; ` “ 1, . . . ,n; i P N).
1: Choose initial iterates x0 P X and y0 P Y .
2: for all i ě 0 until a stopping criterion is satis�ed do
3: Sample S̊piq Ă Spiq Ă t1, . . . ,mu and V̊ pi ` 1q Ă V pi ` 1q Ă t1, . . . ,nu subject

to (C-nest).
4: For each j R Spiq, set x i`1

j :“ x ij .
5: For each j P S̊piq, compute

τj,i :“
ηi´ϕj,i´1τj,i´1χSpi´1qzS̊pi´1qpjq

ϕj,i π̊j,i
, and

x i`1
j :“ pI ` τj,iBG jq

´1
´

x ij ´ τj,i
ř

`PVpjq K
˚
`,jy

i
`

¯

.

6: For each j P S̊piq and ` P Vpjq, set

rw i`1
`,j :“ θ`,j,i`1px

i`1
j ´ x ij q ` x i`1

j with θ`,j,i`1 :“ τj,iϕj,i
σ`,i`1ψ`,i`1

.

7: For each ` R V pi ` 1q, set y i`1
`

:“ y i
`
.

8: For each ` P V̊ pi ` 1q, compute

σj,i`1 :“
ηi´ψj,iσj,i χV piqzV̊ piqpjq

ψj,i`1ν̊`,i`1
, and

y i`1
`

:“ pI ` σ`,i`1BF
˚
`
q´1

´

y i
`
` σ`,i`1

ř

jPV´1p`q K`,jx
i
j

¯

.

9: For each ` P V pi ` 1qzV̊ pi ` 1q compute

σj,i`1 :“
ηKσ ,i

ψj,i`1pν`,i`1´ν̊`,i`1q
, and

y i`1
`

:“ pI ` σ`,i`1BF
˚
`
q´1

´

y i
`
` σ`,i`1

ř

jPV´1p`q K`,j rw
i`1
`,j

¯

.

10: For each ` P V̊ pi ` 1q and j P V´1p`q, set

rvi`1
`,j :“ b`,j,i`1py

i`1
`
´ y i

`
q ` y i

`
with b`,j,i`1 :“ σ`,i`1ψ`,i`1

τj,iϕj,i
.

11: For each j P SpiqzS̊piq, compute

τj,i :“
ηKτ ,i

ϕj,i pπj,i´π̊j,i q
, and

x i`1
j :“ pI ` τj,iBG jq

´1
´

x ij ´ τj,i
ř

`PVpjq K
˚
`,j rv

i`1
`,j

¯

.

12: end for

One way to simplify the algorithm in concept, is to alternate between the two x–y
and y–x update directions through the random alternating choice of S̊piq “ H and
V̊ pi ` 1q “ H. We will discuss this in more detail in Section 4.10. Alternatively, if
S̊piq “ Spiq, the last two steps of (3.27) vanish, giving x i`1 :“ x̊ i`1. If this choice is
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deterministic, then also V̊ pi ` 1q “ H, so we are in the full dual updates setting of
Lemma 3.2. The result is Algorithm 2.

Algorithm 2 Block-stochastic primal-dual method: full dual updates

Require: Convex, proper, lower semi-continuous functions G : X Ñ R and F˚ :
Y Ñ R with the separable structures (S-G) and (S-F˚). Rules for ϕj,i ,ψ`,i`1,ηi`1 P

RpOi ; p0,8qq, as well as a sampling rule for the set Spiq, (j “ 1, . . . ,m; ` “ 1, . . . ,n;
i P N).

1: Choose initial iterates x0 P X and y0 P Y .
2: for all i ě 0 until a stopping criterion is satis�ed do
3: Select random Spiq Ă t1, . . . ,mu.
4: For each j R Spiq, set x i`1

j :“ x ij .
5: For each j P Spiq, with τj,i :“ ηiπ

´1
j,i ϕ

´1
j,i , compute

x i`1
j :“ pI ` τj,iBG jq

´1
´

x ij ´ τj,i
ř

`PVpjq K
˚
`,jy

i
`

¯

.

6: For each j P Spiq set

x̄ i`1
j :“ θ j,i`1px

i`1
j ´ x ij q ` x i`1

j with θ j,i`1 :“
ηi

πj,iηi`1
.

7: For each ` P t1, . . . ,nu using σ`,i`1 :“ ηi`1ψ
´1
`,i`1, compute

y i`1
`

:“ pI ` σ`,i`1BF
˚
`
q´1

´

y i
`
` σ`,i`1

ř

jPV´1p`q K`,j x̄
i`1
j

¯

.

8: end for

We have not yet speci�ed ηi andψ`,i . We have also not �xed ϕj,i , giving the options
in Example 3.1 and Example 3.2. We will return to these choices in the next section, but
now summarise our results so far by specialising Corollary 2.2.

Proposition 3.1. Let δ P p0,1q and pκ1, . . . ,κnq P K pK ,P,Qq. Then the conditions (C0),
(C11), and (C21) hold when we do the following for each i P N.

(i) Sample S̊piq Ă Spiq Ă t1, . . . ,mu and V̊ pi ` 1q Ă V pi ` 1q Ă t1, . . . ,nu subject to
(C-nest).

(ii) De�ne Φi`1 through (S-ΦΨ), satisfying (C-xbnd) for rγj ě 0 to be speci�ed.

(iii) De�ne Ψi`1 through (S-ΦΨ), satisfying (C-ψ inc), (C-ybnd), and (C-κψ ).

(iv) TakeTi and Σi of the form (S-TΣ) with the blockwise step lengths satisfying (C-step).

(v) De�ne Λi through (S-Λ) and (R-λ).

(vi) Either (Lemma 3.1 or Lemma 3.2)

(a) Take ηKτ ,i and η
K
σ ,i satisfying (C-ηK) and (C-step). In this case (CG) holds; or

(b) Satisfy (C-step1), forcing Spiq “ S̊piq, V̊ pi ` 1q “ H, V pi ` 1q “ t1, . . . ,nu.
In this case (CG˚) holds, as do (C-nest) and (C-step) with ηKτ ,i ” 0, and
ηKσ ,i`1 “ ηi .

Let thenG and F˚ have the separable structures (S-G) and (S-F˚). For each j “ 1, . . . ,m,
suppose G j is (strongly) convex with corresponding factor γj ě 0, and pick rγj P r0,γj s.
Then there exists C0 ą 0 such that the iterates of (PP) satisfy

δ
m
ÿ

k“1

1
Erϕ´1

k,N s
¨ E

“

}xNk ´ pxk}
‰2
` rдN ď C0 `

m
ÿ

j“1
dxj,N prγjq `

n
ÿ

`“1
d
y
`,N , (3.30)
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where dxj,N prγjq is de�ned in (3.11), dy
`,N is de�ned in (3.22), and we set

rдN :“

$

’

&

’

%

ζNGprxN ,ryN q, (CG) holds and rγj ď γj{2 for all j,
ζ ,̊NGprx ,̊N ,ry ,̊N q, (CG˚) holds and rγj ď γj{2 for all j,
0, otherwise.

Here ζN and the ergodic variables rxN and ryN in (2.15), and the gap G in (2.16). The
alternatives ζ ,̊N , rx ,̊N and ry ,̊N are de�ned in (2.19).

Proof. We have proved all of the conditions (C0), (C11), (C21) and (CG), alternatively
(CG˚), in Lemmas 3.1 to 3.3, 3.6 and 3.7. Only the estimate (3.30) demands further
veri�cation.

In Corollary 2.2, we have assumed that either rΓ “ Γ or rΓ “ Γ{2, that is rγj P tγj ,γj{2u.
However, G j is (strongly) convex with factor γ 1j for any γ 1j P r0,γj s, so we may relax this
assumption to 0 ď rγj ď γj with the gap estimates holding when rγj ď γj{2.

Setting C0 :“ 1
2}u

0 ´ pu}2Z0L0
, Corollary 2.2 thus shows

δEr}xN ´ px}2ΦN s ` rдN ď C0 `

N´1
ÿ

i“0
pbxi`2prγjq ` b

y
i`2q.

By Hölder’s inequality

Er}xN ´ px}2ΦN s “
m
ÿ

k“1
E
“

ϕk,N }x
N
k ´ pxk}

2‰ ě

m
ÿ

k“1
Er}xNk ´ pxk}s

2{Erϕ´1
k,N s.

The estimate (3.30) is now immediate. �

Specialised to Algorithms 1 and 2, we obtain the following corollaries.

Corollary 3.1. Let δ P p0,1q and pκ1, . . . ,κnq P K pK ,P,Qq. Suppose the primal bound
(C-xbnd), and the dual test conditions (C-ψ inc), (C-ybnd), and (C-κψ ) hold along with
(C-ηK), (C-η). Then the iterates of Algorithm 1 satisfy (3.30) with rдN “ ζNGprxN ,ryN q
when rγj ď γj{2 for all j, and rдN “ 0 otherwise.

Proof. Algorithm 1 satis�es the structural assumptions (S-ΦΨ), (S-TΣ), and (S-Λ), the
conditions (C-nest) and (R-λ), as well as the alternative condition (a) of Proposition 3.1,
provided the non-negativity conditions in (C-step) are satis�ed. They are indeed ensured
by us assuming (C-η). The remaining conditions of Proposition 3.1 we have also assumed.

�

Corollary 3.2. Let δ P p0,1q and pκ1, . . . ,κnq P K pK ,P,Qq. Suppose (C-xbnd) and the
dual conditions (C-ψ inc), (C-ybnd), and (C-κψ ) hold. Then the iterates of Algorithm 2
satisfy (3.30)with rдN “ ζ ,̊NGprx ,̊N ,ry ,̊N qwhen rγj ď γj{2 for all j , and rдN “ 0 otherwise.

Proof. Algorithm 2 satis�es the structural assumptions (S-ΦΨ), (S-TΣ), (S-Λ) and (R-λ),
as well as (b) of Proposition 3.1. Its remaining conditions we have assumed. �

4. Dual tests and penalty bounds for block-proximal methods

We now need to satisfy the conditions of Corollaries 3.1 and 3.2. This involves choosing
update rules for ηi`1, ηKτ ,i`1, ηKσ ,i`1, ϕj,i`1 andψ`,i`1. Speci�cally, for both Corollaries,
we have to verify the primal bound (C-xbnd). For Corollary 3.1, we moreover need
(C-ηK), (C-η), and the non-negativity conditions in (C-step.a) and (C-step.b). At the
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same time, to obtain good convergence rates, we need to make dxj,N prγjq and d
y
`,N “

Erψ`,N`1 ´ψ`,0s small in (3.30).
We concentrate on the deterministic primal test update rule of Example 3.2, which

also provide estimates on dxj,N prγjq if the conditions of 3.5 are satis�ed. In addition to
the veri�cations above, we need to verify (C-ϕdet). To satisfy (C-xbnd), we have to take
ρ j “ 0 unless the bound (C-xbnd.a) holds for the speci�c problem under consideration.

We begin with general assumptions, after which in Section 4.2 we calculate expectation
bounds on ϕj,i . In Sections 4.3 to 4.8 we give useful choice of ηi and ψ`,i that �nally
yield speci�c convergence results. We �nish the section with choices for ηKτ ,i and ηKσ ,i in
Section 4.9, and sampling patterns in Section 4.10. The di�culty of (fully) extending our
estimates to the random primal test update of Example 3.1, we discuss in Remark 4.2.

4.1. Assumptions and simplifications

Throughout this section, we assume for simplicity that the probabilities stay constant
between iterations,

π̊j,i ” π̊j ą 0, and ν̊`,i ” ν̊` . (R-πν )

Then (C-nest) shows that

πj,i ” πj ą 0, and ν`,i ” ν` ą 0.

We assume (C-η) to hold. As we recall from Lemma 3.2, this is the case for Algorithm 2
if

i ÞÑ ηi ą 0 is non-decreasing.

Finally, aside from the non-negativity conditions that will be veri�ed through the
choice of ηKτ ,i and ηKσ ,i , we note that (C-step) holds in Algorithms 1 and 2. It is therefore
assumed.

4.2. Estimates for deterministic primal test updates

We consider the deterministic primal test updates of Example 3.2. To start with, from
(R-ϕdet), we compute

ϕj,N “ ϕj,N´1 ` 2pγ̄jηN´1 ` ρ jq “ ϕj,0 ` 2ρ jN ` 2γ̄j
N´1
ÿ

i“0
ηi . (4.1)

The following lemma lists the fundamental properties that this update rule satis�es.

Lemma 4.1. Suppose (C-η), (C-ϕdet), and (R-πν ) hold. If (C-xbnd.a) holds with the
constantCx ě 0, take ρ j ě 0, otherwise take ρ j “ 0, supposing rγj`ρ j ą 0, (j “ 1, . . . ,m).
De�ne ϕj,i`1 according to Example 3.2. Suppose ηi ě bjpi ` 1qp , for some p,bj ą 0. Then
for some c j ą 0, and Cα ą 0 holds

ϕj,N P RpON´1; p0,8qq, (C-ϕbnd.a)

Erϕj,N s “ ϕj,0 ` 2ρ jN ` 2γ̄j
N´1
ÿ

i“0
Erηi s, and (C-ϕbnd.b)

Erϕ´1
j,N s ď c jN

´1, pN ě 1q. (C-ϕbnd.c)

Moreover, the primal test bound (C-xbnd) holds, and with Cα “ 18 we have

dxj,N prγjq “ ρ jCxCαN . (C-ϕbnd.d)
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Suppose moreover that ηi ě bj minj ϕ
p
j,i , for some p,bj ą 0. Then for some rc j ě 0 holds

1
Erϕ´1

j,N s
ě γ̄jrc jN

p`1, pN ě 4q. (C-ϕbnd.e)

Proof. The conditions of Lemma 3.5 are guaranteed by our assumptions. It directly
proves (C-ϕbnd.a) and (C-ϕbnd.d). Since we assume i ÞÑ ηi to be increasing, clearly
ϕj,N ě 2N rρ j for rρ j :“ ρ j ` γ̄jη0 ą 0. Then ϕ´1

j,N ď
1

2rρ jN . Taking the expectation proves
(C-ϕbnd.c), while (C-ϕbnd.b) is immediate from (4.1). Clearly (C-ϕbnd.e) holds if γ̄j “ 0,
so assume γ̄j ą 0. Under our assumption on ηi , Lemma B.1 shows for some Bj ą 0 that
ϕ´1
j,N ď

1
BjN 1`p . Taking the expectation proves (C-ϕbnd.e) for a rc j :“ Bj{γ̄j . �

Remark 4.1. From (4.1), we see that ηi ě bjpi ` 1qp if ηi ě rbj minj ϕ
p
j,i for some rbj ą 0.

Remark 4.2. Propositions 4.1 and 4.2 to follow, will generalise to any update rule
for ϕj,i`1 that satis�es (C-ϕbnd). The conditions (C-ϕbnd.a)–(C-ϕbnd.d) can easily be
shown for the random primal test updates of Example 3.1. The estimate (C-ϕbnd.e)
however is challenging, with any derivation likely dependent on the exact sampling
patterns employed. The estimate (C-ϕbnd.e) is, however, only needed to estimate
1{Erϕ´1

j,N s from below in the �rst term of the general estimate (3.30), and therefore only
a�ects convergence of the iterates, not the gap. Hence the estimates in the upcoming
Propositions 4.1 and 4.2 on the ergodic duality gap, but not the iterates, do hold for the
random primal test update rule of Example 3.1.

4.3. Dual bounds—a first a�empt

We now need to satisfy the conditions (C-ψ inc), (C-ybnd), and (C-κψ ) on the dual
updates. By the construction of λ`,j,i in (R-λ), the step length condition (C-step), and
the constant probability assumption (R-πν ), we have

λl,j,i ď ηi
`

π̊´1
j χS̊piqpjq ` ν̊´1

`
χV̊ pi`1qp`q

˘

“: ηi µ̂`,j,i , p` P Vpjqq.

Therefore (C-κψ ) holds if we take

ψ`,i`1 :“
η2
i

1´ δ
κ`p. . . , µ̂

2
`,j,iϕ

´1
j,i , . . .q. (4.2)

With this, the condition (C-ψ inc) would require for all ` “ 1, . . . ,n that

Erη2
i`1κ`p. . . , µ̂

2
`,j,i`1ϕ

´1
j,i`1, . . .q|Oi s ě Erη2

iκ`p. . . , µ̂
2
`,j,iϕ

´1
j,i , . . .q|Oi s (4.3)

Since ηi`1 P RpOi ; p0,8qq, and ηi P RpOi ; p0,8qq, we can take ηi and ηi`1 outside the
expectations in (4.3). A �rst idea would then be to take ηi`1 as the smallest number
satisfying (4.3) for all `. In the deterministic case, the resulting rule will telescope, and
reduce to the one that we will follow. In the stochastic case, we have however observed
numerical instability, and have also been unable to prove convergence. Therefore, we
have to study “less optimal” rules.

4.4. Worst-case conditions

For a random variable p P RpΩ;Rq on the probability space pΩ,O,Pq, let us de�ne the
conditional worst-case realisation with respect to the σ -algebra O1 Ă O as the random
variable Wrp|O1s P RpO1;Rq de�ned by

p ď Wrp|O1s ď q P-a.e. for all q P RpO1;Rq s.t. p ď q P-a.e.
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We also write Wrps :“ Wrp|O1s when O1 “ tΩ,Hu is the trivial σ -algebra.
Following the derivation of (4.2), the condition (C-κψ ) will hold if

ψ`,i`1 ě
η2
i

1´ δ
Wrκ`p. . . , µ̂

2
`,j,iϕ

´1
j,i , . . .q|Oi´1s. (4.4)

Accordingly, we take

ηi :“ min
`“1, ...,n

g

f

f

e

p1´ δqψ`,i`1

Wrκ`p. . . , µ̂
2
`,j,iϕ

´1
j,i , . . .q|Oi´1s

. (R-η)

By the construction ofW, we getηi P RpOi´1; p0,8qq provided alsoψi`1 P RpOi´1; p0,8qq.
It is our task in the rest of this section to experiment with di�erent choices of ψ`,i`1,
satisfying (C-ψ inc) and (C-ybnd). Before this we establish the following important fact.

Lemma 4.2. Let δ P p0,1q and pκ1, . . . ,κnq P K pK ,P,Qq. Suppose (R-πν ) holds, and that
both i ÞÑ ϕj,i and i ÞÑ ψ`,i are non-decreasing for all j “ 1, . . . ,m and ` “ 1, . . . ,n. Then
i ÞÑ ηi de�ned in (R-η) is non-decreasing.

Proof. We �x ` P t1, . . . ,nu. The condition (R-πν ) implies that pµ̂`,1,i , . . . , µ̂`,m,iq are
independently identically distributed for all i P N. Since ϕj,i P RpOi´1; p0,8qq, we
can for some random pµ̂1, . . . , µ̂mq on a probability space pPµ ,Ωµ ,Oµq, distinct from
pP,Ω,Oq, write

Wrκ`p. . . , µ̂
2
`,j,iϕ

´1
j,i , . . .q|Oi´1s „ Wrκ`p. . . , µ̂

2
jϕ
´1
j,i , . . .qs, pi P Nq,

where „ stands for “identically distributed”. Since i ÞÑ ϕj,i is non-decreasing and κ`
monotone, this implies

Wrκ`p. . . , µ̂
2
`,j,iϕ

´1
j,i , . . .q|Oi´1s ě Wrκ`p. . . , µ̂

2
`,j,i`1ϕ

´1
j,i`1, . . .q|Oi s, P-a.e.

Since i ÞÑ ψ`,i is also non-decreasing, the claim follows. �

4.5. Partial strong convexity: Boundedψ

In addition to the assumptions in Section 4.1, from now on we assume (C-ϕbnd) to hold.
As we have seen, this is the case for the deterministic primal test update rule of both
Example 3.2. For the random primal test update rule of (3.1), the rest of the conditions
hold, but we have not been able to verify (C-ϕbnd.e). This has the implication that only
the gap estimates hold.

As a �rst option forψ`,i , let us takeψ`,i ” ψ`,0. Then both (C-ψ inc) and (C-ybnd.b)
clearly hold, and d

y
`,N ” 0. Moreover Lemma 4.2 shows that i ÞÑ ηi is non-decreasing,

as we have required in Section 4.1. To obtain convergence rates, we still need to
estimate the primal penalty dxj,N prγjq as well as ζN and ζ ,̊N . Presently the dual penalty
d
y
`,N “ Erψ`,N ´ψ`,0s ” 0.

Withψ
0

:“ min`“1, ...,nψ`,0, we compute

ηi ě

g

f

f

e

p1´ δqψ0

max`“1, ...,n Wrκ`p. . . , µ̂
2
`,j,iϕ

´1
j,i , . . .q|Oi´1s

.

Let us de�ne

wj :“ max
`PVpjq

Wrµ̂`,j,i |Oi´1s “ max
`PVpjq

W
“

π̊´1
j χS̊piqpjq ` ν̊´1

`
χV̊ pi`1qp`q

ˇ

ˇ Oi´1
‰

,
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which is independent of i ě 0; see the proof of Lemma 4.2. Since µ̂`,j,i “ 0 for ` R Vpjq,
using (C-κ.b) and ϕj,i P RpOi´1; p0,8qq, we further get

ηi ě

g

f

f

e

p1´ δqψ0

κ max`PVpjqWr
řn

j“1 µ̂
2
`,j,iϕ

´1
j,i |Oi´1s

ě

d

1
řn

j“1 b
´1
j ϕ´1

j,i

(4.5)

for bj :“ p1´ δqψ0{pκw
2
j q. Jensen’s inequality thus gives

Erηi s ě
´

E
”
b

řn
j“1 b

´1
j ϕ´1

j,i

ı¯´1
ě

´

řn
j“1 b

´1
j Erϕ´1

j,i s

¯´1{2
. (4.6)

Using (C-ϕbnd.c), it follows

Erηi s ě Cηi
1{2 for Cη :“

´

řm
j“1 b

´1
j c j

¯´1{2
. (4.7)

We recall (C-η) guaranteeing η̄i ě Erηi s. Consequently, we estimate ζN from (2.14)
by

ζN “
N´1
ÿ

i“0
η̄i ě

N´1
ÿ

i“0
Erηi s ě Cη

N´1
ÿ

i“0
i1{2 ě Cη

ż N´2

0
x1{2 dx ě

2Cη
3
pN ´ 2q3{2

“
2Cη

3
N 3{2

ˆ

N ´ 2
N

˙3{2
“

Cη
?

18
N 3{2, pN ě 4q.

(4.8)

Similarly ζ ,̊N de�ned in (2.18) satis�es

ζ ,̊N ě

N´1
ÿ

i“1
Erηi s ě

2Cη
3
ppN´2q3{2´1q ě

p23{2 ´ 1qCη
23{2

?
18

N 3{2 ě
Cη

2
?

18
N 3{2, pN ě 4q.

(4.9)
For the deterministic primal test update rule of Example 3.2, by Lemma 3.5, we still

need to satisfy (C-ϕdet), that is 2rγjγ̄jηi ď δϕj,iprγj ´ γ̄jq for j P Spiq and i P N. The
non-degeneracy assumption (C-κ.c) applied in (R-η) gives ηi ď

a

p1´ δqψ`,0ϕj,i{pκwjq.
Since under both rules Examples 3.1 and 3.2, ϕj,i is increasing in i , it therefore su�ces
to choose γ̄j ě 0 to satisfy

rγj “ γ̄j “ 0 or
2rγjγ̄j
rγj ´ γ̄j

d

1´ δ

κwj
ď δψ

´1{2
`,0 ϕ

1{2
j,0 . (C-ϕdet1)

These �ndings can be summarised as:

Proposition 4.1. Let δ P p0,1q and pκ1, . . . ,κnq P K pK ,P,Qq. Pick ρ j ě 0 and rγj P r0,γj s,
(j “ 1, . . . ,m). In Algorithm 1 or Algorithm 2, take

(i) the probabilities π̊j,i ” π̊j and (in Algorithm 1) ν̊`,i ” ν̊` constant over iterations,

(ii) ηi according to (R-η), and (in Algorithm 1) ηKτ ,i ,η
K
σ ,i ą 0 satisfying (C-η) and (C-ηK),

(iii) ϕj,0 ą 0 by free choice, and ϕj,i for i ě 1 following Example 3.2, taking 0 ď γ̄j ă rγj
or γ̄j “ 0, and satisfying (C-ϕdet1),

(iv) ψ`,i :“ ψ`,0 for some �xedψ`,0 ą 0, (` “ 1, . . . ,n).
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Suppose for each j “ 1, . . . ,m that ρ j ` γ̄j ą 0 and either ρ j “ 0 or (C-xbnd.a) holds with
the constant Cx . Let rck be the constant provided by Lemma 4.1. Then

m
ÿ

k“1
δrckγ̄kE

“

}xNk ´ pxk}
‰2
`

Cη
?

18
дN ď

C0 `CxCα p
řm

j“1 ρ jqN

N 3{2
, pN ě 4q, (4.10)

where

дN :“

$

’

&

’

%

GprxN ,ryN q, Algorithm 1, rγj ď γj{2 for all j,
1
2Gprx ,̊N ,ry ,̊N q, Algorithm 2, rγj ď γj{2 for all j,
0, otherwise.

Proof. By (4.5), we have ηi ě b
1{2
j minj ϕ

1{2
j,i for each j “ 1, . . . ,m, so (C-ϕbnd.e) holds

with p “ 1{2. Therefore, (4.10) is immediate from (C-ϕbnd.e), Corollaries 3.1 and 3.2,
and the estimates (4.8) and (4.9), whose assumptions follow from Lemmas 4.1 and 4.2
and (C-ϕdet1). �

Remark 4.3 (Practical parameter initialisation). In practise, we take τj,0, ηi , and δ P
p0,1q as the free step length parameters. Then (C-step.a) and (C-step.b) give ϕj,0 “
η0{pτj,0π̊j,0q. As ψ`,0 we take a value reaching the maximum in (R-η). In practise, we
take η0 “ 1{minj τj,0. This choice appears to work well, and is consistent with the basic
algorithm (2.2) corresponding to ϕj,0 “ τ´2

j,0 . For the deterministic update rule (R-ϕdet),
we use (C-ϕdet1) to bound γ̄j .

4.6. Partial strong convexity: Increasingψ

In (R-η), let us takeψ`,i`1 :“ ψ`,0ηi . Then

ηi “ min
`“1, ...,n

p1´ δqψ`,0

Wrκ`p. . . , µ̂
2
`,j,iϕ

´1
j,i , . . .q|Oi´1s

. (R-η2)

Adapting Lemma 4.2, we see that i ÞÑ ηi is non-decreasing. Thus i ÞÑ ψ`,i is also in-
creasing, so (C-ψ inc) holds. As (C-ybnd.b) does not hold, we need to assume (C-ybnd.a).
To obtain convergence rates, we need to estimate both the primal and the dual penalties
dxj,N prγjq and d

y
`,N , as well as ζN and Erψk,N s.

Similarly to the derivation of (4.7), we deduce with the help of (C-ϕbnd.c) that

Erηi s ě C2
ηi . (4.11)

Consequently

ζN “
N´1
ÿ

i“0
η̄i ě

N´1
ÿ

i“0
Erηi s ě C2

η

N´1
ÿ

i“0
i ě C2

η

ż N´2

0
x dx ě

C2
η

2
pN ´ 2q2

“
C2
η

2
N 2

ˆ

N ´ 2
N

˙2
ě

C2
η

8
N 2, pN ě 4q.

(4.12)

Similarly

ζ ,̊N ě

N´1
ÿ

i“1
Erηi s ě

C2
η

2
ppN ´ 2q2 ´ 1q “

3
4C

2
η

8
N 2, pN ě 4q. (4.13)

We still need to boundψ`,N`1 to bound d
y
`,N . To do this, we assume the existence of

some j˚ with γj˚ “ 0. With the help (C-κ.c), we then deduce from (R-η2) that

ηi ď
p1´ δqψ`˚pj˚q,0

κw2
`˚pj˚q

ϕj˚,i .
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Since γj˚ “ 0, a referral to (C-ϕbnd.b) shows that

Erϕj˚,N s “ ϕj˚,0 ` N ρ j˚ .

Consequently

ErdNy ,`s “ ψ`,0pErηN s´1q ď ψ`,0

˜

p1´ δqψ`˚pj˚q,0

κw2
j˚

Erϕj˚,N s ´ 1

¸

ď ψ`,0
`

Cη,˚N`δ˚
˘

(4.14)
for

Cη,˚ :“
p1´ δqψ`˚pj˚q,0ρ j˚

κwj˚
and δ˚ :“

p1´ δqψ`˚pj˚q,0ϕj˚,0

κwj˚
´ 1. (4.15)

For the deterministic primal test update rule of Example 3.2, we still need to satisfy
(C-ϕdet). Similarly to the derivation of (C-ϕdet1), we obtain for γ̄j ě 0 the condition

rγj “ γ̄j “ 0 or
2rγjγ̄j
rγj ´ γ̄j

p1´ δqψ`,0

κwj
ď δ , p` P Vpjqq. (C-ϕdet2)

In summary:

Proposition 4.2. Let δ P p0,1q and pκ1, . . . ,κnq P K pK ,P,Qq. Pick ρ j ě 0 and rγj P r0,γj s,
(j “ 1, . . . ,m). In Algorithm 1 or Algorithm 2, take

(i) the probabilities π̊j,i ” π̊j and (in Algorithm 1) ν̊`,i ” ν̊` constant over iterations,

(ii) ηi according to (R-η2), and (in Algorithm 1) ηKτ ,i ,η
K
σ ,i ą 0 satisfying (C-η) and

(C-ηK),

(iii) ϕj,0 ą 0 by free choice, and ϕj,i for i ě 1 following Example 3.2, taking 0 ď γ̄j ă rγj
or γ̄j “ 0, and satisfying (C-ϕdet1),

(iv) ψ`,i :“ ηiψ`,0 for some �xedψ`,0 ą 0, (` “ 1, . . . ,n).

Suppose for each j “ 1, . . . ,m that ρ j ` γ̄j ą 0 and either ρ j “ 0 or (C-xbnd.a) holds with
the constant Cx . Also assume that γ̄j˚ “ 0 for some j˚ P t1, . . . ,mu, and that (C-ybnd.a)
holds with the corresponding constant Cy . Let rck be the constant provided by Lemma 4.1.
Then
m
ÿ

k“1
δrckγ̄kE

“

}xNk ´ pxk}
‰2
`
Cη

8
дN ď

C0 `CxCα p
řm

j“1 ρ jqN ` 9Cy
řn

`“1ψ`,0
`

Cη,˚N ` δ˚
˘

N 2

for N ě 4 with

дN :“

$

’

&

’

%

GprxN ,ryN q, Algorithm 1, rγj ď γj{2 for all j,
3
4Gprx ,̊N ,ry ,̊N q, Algorithm 2, rγj ď γj{2 for all j,
0, otherwise.

Proof. Similarly to the derivation of (4.5), by (R-η2), ηi ě bj minj ϕj,i , so (C-ϕbnd.e)
holds with p “ 1. Therefore, the claim is immediate from (C-ϕbnd.e), Corollaries 3.1
and 3.2, and the estimates (4.12)–(4.14), whose assumptions are provided by Lemmas 4.1
and 4.2 and (C-ϕdet2). �

Remark 4.4. Note from (4.15) and the estimates of Proposition (4.2) that the factors ρ j for
such j that γj “ 0 are very important for the convergence rate, and should therefore be
chosen small. That is, we should not try to accelerate non-strongly-convex blocks very
much, although some acceleration is necessary to obtain any estimates on the strongly
convex blocks. As we will next see, without any acceleration or strong convexity at all,
it is still however possible to obtain Op1{N q convergence of the ergodic duality gap.
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4.7. Unaccelerated algorithm

If ρ j “ 0 and rγj “ 0 for all j “ 1, . . . ,m, then ϕj,i ” ϕj,0. Consequently (R-η) shows
that ηi ” η0. Recalling ζN from (2.14), we see that ζN “ Nη0. Likewise ζ ,̊N from (2.18)
satis�es ζ ,̊N “ pN ´ 1qη0. Inserting this information into (3.30) in Proposition 3.1, we
immediately obtain the following result.

Proposition 4.3. Let δ P p0,1q and pκ1, . . . ,κnq P K pK ,P,Qq. In Algorithm 1 or 2, take

(i) ϕj,i ” ϕj,0 ą 0 constant between iterations,

(ii) the probabilities π̊j,i ” π̊j and (in Algorithm 1) ν̊`,i ” ν̊` constant over iterations,

(iii) ψ`,i ” ψ`,0 for some �xedψ`,0 ą 0, (` “ 1, . . . ,n), and

(iv) ηi ” η0, and (in Algorithm 1) ηKτ ,η
K
σ ą 0 satisfying (C-η).

Then

(I) The iterates of Algorithm 1 satisfy GprxN ,ryN q ď C0η
´1
0 {N , (N ě 1).

(II) The iterates of Algorithm 2 satisfy Gprx ,̊N ,ry ,̊N q ď C0η
´1
0 {pN ´ 1q, (N ě 2).

Remark 4.5. The obvious advantage of this unaccelerated algorithm is that in a parallel
implementation no communication between di�erent processors is necessary for the
formation of ηi , which stays constant even with the random primal test update rule of
Example 3.1.

4.8. Full primal strong convexity

Can we derive an Op1{N 2q algorithm if G is full strongly convex? We still concentrate
on the deterministic primal test updates of Example 3.2. Further, we follow the route of
constantψ`,i ” ψ`,0 in Section 4.5, as we seek to eliminate the penalties dy

`,N that any
other choice would include in the convergence rates.

To eliminate the penalty dxj,N prγjq, we take ρ j “ 0 and suppose γ :“ minj γ̄j ą 0. This
ensures (C-xbnd) as well as ρ j ` γ̄j ą 0. The primal test update rule (R-ϕdet) then gives

ϕj,N ě ϕ
0
` γ

N´1
ÿ

i“0
ηi ě ϕ

0
` γ

N´1
ÿ

i“0
ηi with ϕ

0
:“ min

j
ϕj,0 ą 0.

Continuing from (4.5), therefore

η2
N ě bϕ

0
` bγ

N´1
ÿ

i“0
ηi with b :“ min

j
bj .

Otherwise written this says η2
N ě rη2

N , where

rη2
N “ bϕ

0
` bγ

N´1
ÿ

i“0
rηi “ rη2

N´1 ` c2γrηN´1 “ rη2
N´1 ` bγrη´1

N´1.

This implies by the estimates in [23] for the acceleration rule (2.3) that for some Qη ą 0
holds ηi ě rηi ě Qηi . Replacing Cη by Qη , repeating (4.12), (4.13) and (C-ϕdet1), and
�nally inserting the fact that now ρ j “ 0, we deduce:

Proposition 4.4. Let δ P p0,1q and pκ1, . . . ,κnq P K pK ,P,Qq. Assume minj γj ą 0, and
pick 0 ă rγj ď γj , (j “ 1, . . . ,m). In Algorithm 1 or Algorithm 2, take
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(i) the probabilities π̊j,i ” π̊j and (in Algorithm 1) ν̊`,i ” ν̊` constant over iterations,

(ii) ηi according to (R-η), and (in Algorithm 1) ηKτ ,i ,η
K
σ ,i ą 0 satisfying (C-η) and (C-ηK),

(iii) ϕj,0 ą 0 by free choice, and ϕj,i`1 :“ ϕj,ip1 ` 2γ̄jτj,iq, (i ě 1), for some �xed
γ̄j P p0,rγjq, (j “ 1, . . . ,m), and

(iv) ψ`,i :“ ψ`,0 for some �xedψ`,0 ą 0, (` “ 1, . . . ,n), satisfying (C-ϕdet1).

Let rck be the constant provided by Lemma 4.1. Then

m
ÿ

k“1
δrckγ̄kE

“

}xNk ´ pxk}
‰2
` дN ď

8C0

QηN 2 , pN ě 4q,

where

дN :“

$

’

&

’

%

GprxN ,ryN q, Algorithm 1, rγj ď γj{2 for all j,
3
4Gprx ,̊N ,ry ,̊N q, Algorithm 2, rγj ď γj{2 for all j,
0, otherwise.

Remark 4.6 (Linear rates under full primal-dual strong convexity). If both G and F˚ are
strongly convex, then it is possible to derive linear rates using the ϕj,i`1 update rule
of either Example 3.1 or Example 3.2, however �xing τi to a constant. This will cause
Erϕj,i s to grow exponentially. Thanks to (C-step) exponential growth will also be the
case for Erηi s. Through (4.4), also Erψ`,i`1s will grow exponentially. To counteract this,
throughout the entire proof, starting from Theorems 2.1 and 2.2 we need to carry the
strong convexity of F˚ through the derivations similarly to how the strong convexity of
G is carried in rΓ within Ξi`1prΓq and ∆i`1prΓq.

4.9. Choices for ηKτ ,i and ηKσ ,i

We have not yet speci�ed how exactly to choose ηKτ ,i and ηKσ ,i in Algorithm 1, merely
requiring the satisfaction of (C-η) and (C-ηK).

Example 4.1 (Constant ηKτ ,i and ηKσ ,i ). We can take ηKτ ,i ” ηKτ and ηKσ ,i ” ηKσ for some
ηKσ ,η

K
τ ą 0. This satis�es (C-ηK). Since our constructions of i ÞÑ ηi are increasing, and

we assume �xed probabilities (R-πν ), the condition (C-η) is satis�ed for some ϵ P p0,1q
if

η0 ¨min
j
pπj ´ π̊jq ą ηKτ , and η0 ¨min

`
pν` ´ ν̊`q ą ηKσ .

Example 4.2 (Proportional ηKτ ,i and ηKσ ,i ). For some α P p0,1q let us take ηKτ ,i :“ ηKσ ,i :“
αηi . With the �xed probabilities (R-πν ), this choice satis�es (C-ηK). The condition (C-η)
holds for some ϵ P p0,1q if moreover

min
j
pπj ´ π̊jq ą α , and min

`
pν` ´ ν̊`q ě α .

4.10. Sampling pa�erns

Since we for simplicity make the �xed probability assumption (R-πν ), the only fully
deterministic sampling patterns allowed are to consistently take S̊piq “ t1, . . . ,mu and
V̊ pi`1q “ H, or alternatively S̊piq “ H and V̊ pi`1q “ t1, . . . ,nu. Regarding stochastic
algorithms, let us �rst consider a few options for sampling Spiq in Algorithm 2.

Example 4.3 (Independent unchanging probabilities). If all the blocks t1, . . . ,mu are
chosen independently of each other, we have Pptj,ku Ă Spiqq “ πjπk for j ‰ k , where
πj P p0,1s.
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(a) True image (b) Noisy image (c) Blurry image (d) Dimmed image

Figure 1: We use sample image (b) for TGV2 denoising, (c) for TV deblurring, and (d)
for TV undimming experiments.

Example 4.4 (Fixed number of random blocks). If we have a �xed numberM of processors,
we might choose a subset Spiq Ă t1, . . . ,mu such that #Spiq “ M .

The next example gives the simplest way to satisfy (C-nest.a) for Algorithm 1.

Example 4.5 (Alternating x-y and y-x steps). Let us randomly alternate between S̊piq “
H and V̊ pi ` 1q “ H, choosing the non-empty set by a suitable sampling rule, such as
those in Example 4.3 or Example 4.4. That is, with some probability px , we choose to
take an x-y step that omits lines 11 and 10 in Algorithm 1, and with probability 1´px , an
y-x step that omits the lines 6 and 9. If rπj “ Prj P S̊|S̊ ‰ Hs, and rν` “ Pr` P V̊ |V̊ ‰ Hs

denote the probabilities of the rule used to sample S̊ “ S̊piq and V̊ “ V̊ pi ` 1q when
non-empty, then (C-nest) gives

π̊j “ px rπj , πj “ px rπj ` p1´ px qPrj P V
´1pV̊ q|V̊ ‰ Hs,

ν̊` “ p1´ px qrν` , ν` “ p1´ px qrνj ` pxPr` P VpS̊q|S̊ ‰ Hs.

To compute πj and ν` we thus need to knowV and the exact sampling pattern.

Remark 4.7. Based on Example 4.5, we can derive an algorithm where the only random-
ness comes from alternating between full x-y and y-x steps.

5. Numerical experience

We now apply several variants of the proposed algorithms to image processing problems.
We generally consider discretisations, as our methods are formulated in Hilbert spaces,
but the space of functions of bounded variation—where image processing problems are
typically formulated—is only a Banach space. Our speci�c example problems will be
TGV2 denoising, TV deblurring, and TV undimming. In the latter, we solve

min
uPBVpΩq

1
2
}f ´ γ ¨ u}2 ` αTVpuq,

for a dimming mask γ : Ω Ñ R. In TGV2 denoising and TV deblurring, we likewise use
the L2-squared �delity term, modelling Gaussian noise in the discretised setting.

We present the corrupt and ground-truth images in Figure 1, with values in the range
r0,255s. We use the images both at the original resolution of 768 ˆ 512, and scaled
down to 192ˆ 128 pixels. To the noisy high-resolution test image in Figure 1b, we have
added Gaussian noise with standard deviation 29.6 (12dB). In the downscaled image, this
becomes 6.15 (25.7dB). The image in Figure 1c we have distorted with Gaussian blur of
standard deviation 4. To avoid inverse crimes, we have added Gaussian noise of standard
deviation 2.5. The dimmed image in Figure 1d, we have distorted by multiplying the
image with a sinusoidal mask γ . The details of our construction beyond that seen in
Figure 1c can be found in the source code that will be archived per EPSRC regulations
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Table 1: Algorithm variants. The letters indicate how to read names like A-PRBO (P:
only the primal variable x is randomly updated; R: the update rule for ϕ is
the random one, and I , the increasing η rule of Proposition 4.2 is used; O:
“Balanced” κ from Example 3.5).

Letter: 1st 2nd 3rd 4th
Randomisation ϕ rule η andψ rules κ choice

A- D: Deterministic R: Random, Ex. 3.1 B: Bounded, Pr. 4.1 O: Balanc., Ex. 3.5
P: Primal only D: Determ., Ex. 3.2 I: Increasing, Pr. 4.2 M: Max., Ex. 3.4
B: Primal & Dual C: Constant

when the �nal version of the manuscript is submitted. Again, we have added the small
amount of noise to the blurry image.

Besides the basic unaccelerated PDHGM (2.2)—note that our example problems are
not strongly convex and hence the basic PDHGM cannot be accelerated—we evaluate our
algorithms against the relaxed PDHGM of [44, 46], denoted in our results as ‘Relax’. In
our precursor work [3], we have evaluated these two algorithms against the mixed-rate
method of [47], and the adaptive PDHGM of [48]. To keep our tables and �gures easily
legible, we also do not include the algorithms of [3] in our evaluations. It is worth noting
that even in the two-block case, the algorithms presented in this paper will not reduce
to those of that paper: our rules for σ`,i are very di�erent from the rules for the single
σi therein.

We de�ne abbreviations of our algorithm variants in Table 1. We do not report the
results or apply all variants to all example problems. This would not be informative. We
generally only consider the deterministic variants, as our problems are not large enough
to bene�t from being split on a computer cluster, where the bene�ts of the stochastic
approaches would be apparent. We demonstrate the performance of the stochastic
variants on TGV2 denoising only.

To rely on Propositions 4.1 and 4.2 for convergence, we still need to satisfy (C-ybnd.a)
and (C-xbnd.a), or take ρ j “ 0. The bound Cy in (C-ybnd) is easily calculated, as in all
of our example problems, the functional F˚ will restrict the dual variable to lie in a ball
of known size. The primal variable, on the other hand, is not explicitly bounded. It is
however possible to prove data-based conservative bounds on the optimal solution, see,
e.g., [49, Appendix A]. We can therefore add an arti�cial bound to the problem to force
all iterates to be bounded, replacing G by rGpxq :“ Gpxq ` δBp0,Cx qpxq. In practise, to
avoid �guring out the exact magnitude ofCx , we update it dynamically, so as to avoid the
constraint ever becomeing active. It therefore does not a�ect the algorithm itself at all.
In [49] a “pseudo duality gap” based on this idea was introduced. It is motivated by the
fact that the real duality gap is also in practise in�nite in numerical TGV2 reconstructions.
We will also use this type of dynamic duality gaps in our reporting: we take the bound
Cx as the maximum over all iterations of all tested algorithms, and report the duality
gap for the problem with rG replacing G.

For each algorithm, we report the pseudo-duality gap, distance to a target solution, and
function value. The target solution pu we compute by taking one million iterations of the
basic PDHGM (2.2). In the calculation of the �nal duality gaps comparing each algorithm,
we then take as Cx the maximum over all evaluations of all the algorithms. This makes
the results fully comparable. We always report the pseudo-duality gap in decibels
10 log10pgap2{gap2

0q relative to the initial iterate. Similarly, we report the distance to
the target solution pu in decibels 10 log10p}u

i ´ pu}2{}pu}2q, and the primal objective value
valpxq :“ Gpxq ` F pKxq relative to the target as 10 log10ppvalpxq ´ valpx̂qq2{valpx̂q2q.
Our computations were performed in Matlab+C-MEX on a MacBook Pro with 16GB
RAM and a 2.8 GHz Intel Core i5 CPU.
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5.1. TGV2 denoising

In this problem, for regularisation parameters α ,β ą 0, we have x “ pv,wq and
y “ pϕ,ψ q, with

Gpxq “ G0pvq, K “

ˆ

∇ ´I
0 E

˙

, and F˚pyq “ δBp0,α qpϕq ` δBp0,βqpψ q,

where the balls are pointwise in L8, and E the symmetrised gradient. Since there is no
further spatial non-uniformity in this problem, it is natural to take as our projections
P1x “ v , P2x “ w ,Q1y “ ϕ, andQ2y “ ψ . It is then not di�cult to calculate the optimal
κ` of Example 3.5, so we use only the ‘xxxO’ variants of the algorithms in Table 1.

As the regularisation parameters pβ ,αq, we choose p4.4,4q for the downscaled image.
For the original image we scale these parameters by p0.25´2,0.25´1q corresponding
to the image downscaling factor [50]. Since G is not strongly convex with respect to
w , we have rγ2 “ 0. For v we take rγ1 “ 1{2, corresponding to the gap versions of our
convergence estimates.

We take δ “ 0.01, and parametrise the standard PDHGM with σ0 “ 1.9{}K} and
τ0 « 0.52{}K} solved from τ0σ0 “ p1 ´ δq}K}2. These are values that typically work
well. For forward-di�erences discretisation of TGV2 with cell width h “ 1, we have
}K}2 ď 11.4 [49]. For the ‘Relax’ method from [46], we use the same σ0 and τ0, as well
as the value 1.5 for the inertial ρ parameter. For the increasing-ψ ‘xxIx’ variants of our
algorithms, we take ρ1 “ ρ2 “ 5, τ1,0 “ τ0, and τ2,0 “ 3τ0. For the bounded-ψ ‘xxBx’
variants we take ρ1 “ ρ2 “ 5, τ1,0 “ τ0, and τ2,0 “ 8τ0. For both methods we also take
η0 “ 1{τ0,1. These parametrisations force ϕ1,0 “ 1{τ 2

1,0, and keep the initial step length τ1,0
for v consistent with the basic PDHGM. This justi�es our algorithm comparisons using
just a single set of parameters. To get an overview of the stability of convergence with
respect to initialisation, we experiment with both initialisations v0 “ 0 and v0 “ f the
noisy image. The remaining variables w0, ϕ0, andψ 0 we always initialise as zero.

The results for the deterministic variants of our algorithms are in Table 2 and Fig-
ure 2. For each algorithm we display the �rst 5000 iterations in a logarithmic fashion.
To reduce computational overheads, we compute the reported quantities only every
10 iterations. To reduce the e�ects of other processes occasionally slowing down
the computer, the CPU times reported are based on the average iteration_time “
total_time{total_iterations, excluding time spent initialising the algorithm.

Our �rst observation is that the variants ‘xDxx’ based on the deterministic ϕ rule
perform better than the “random” ϕ rule ‘xRxx’. Presently, with no randomisation, the
only di�erence between the rules is the value of γ̄ . The value 0.0105 from (C-ϕdet1) and
the value 0.0090 from (C-ϕdet2) appear to give better performance than the maximal
value rγ1 “ 0.5. Generally, the A-DDBO seems to have the best asymptotic performance,
with A-DRBO close. A-DDIO has good initial performance, although especially on the
higher resolution image, the PDHGM and ‘Relax’ perform initially the best. Overall,
however, the question of the best performer seems to be a rather fair competition
between ‘Relax’ and A-DDBO.

5.2. TGV2 denoising with stochastic algorithm variants

We also tested a few stochastic variants of our algorithms. We used the alternating
sampling based on Example 4.4 with M “ 1 and, when appropriate, Example 4.5. We
took all probabilities equal to 0.5, that is px “ rπ1 “ rπ2 “ rν1 “ rν2 “ 0.5. In the doubly-
stochastic ‘Bxxx’ variants of the algorithms, we have taken ηKτ ,i “ ηKσ ,i “ 0.9 ¨ 0.5ηi .

The results are in Figure 3. To conserve space, we have only included a few descriptive
algorithm variants. On the x axis, to better describe to the amount of actual work
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Figure 2: TGV2 denoising performance of fully deterministic variants of our algorithms
with pixelwise step lengths, 5000 iterations, high (hi-res) and low (lo-res)
resolution images.Two di�erent initialisations: x0 “ 0 (0-init) and x0 “ pf ,0q
(f-init). The plots are logarithmic.

performed by the stochastic methods, the “iteration” count refers to the expected number
of full primal-dual updates. For all the displayed stochastic variants, with the present
choice of probabilities, the expected number of full updates in each iteration is 0.75.

We run each algorithm 50 times, and plot for each iteration the 90% con�dence interval
according to Student’s t-distribution. Towards the 5000th iteration, these generally
become very narrow, indicating reliability of the random method. Overall, the full-dual-
update ‘Pxxx’ variants perform better than the doubly-stochastic ‘Bxxx’ variants. In
particular, A-PDBO has performance comparable to or even better than the PDHGM.

5.3. TV deblurring

We now want to remove the blur in Figure 1c. We use TV parameterα “ 2.55 for the high
resolution image and the scaled parameter α “ 2.55 ˚ 0.15 for the low resolution image.
We parametrise the PDHGM and ‘Relax’ algorithms exactly as for TGV2 denoising above,
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Table 2: TGV2 denoising performance: CPU time and number of iterations (at a resolu-
tion of 10) to reach given duality gap, distance to target, or primal objective
value.

low resolution / f-init
gap ď ´60dB tgt ď ´60dB val ď ´60dB

Method iter time iter time iter time
PDHGM 190 1.29s 100 0.67s 110 0.74s
Relax 130 1.21s 70 0.64s 70 0.64s
A-DRIO 140 0.83s 80 0.47s 140 0.83s
A-DRBO 140 0.83s 110 0.65s 120 0.71s
A-DDIO 130 0.78s 50 0.29s 110 0.66s
A-DDBO 120 0.70s 50 0.29s 90 0.53s

low resolution / 0-init
gap ď ´60dB tgt ď ´60dB val ď ´60dB
iter time iter time iter time
30 0.21s 100 0.72s 110 0.79s
20 0.20s 70 0.71s 70 0.71s
40 0.26s 230 1.55s 180 1.22s
80 0.54s 890 6.07s 500 3.41s
20 0.14s 50 0.36s 110 0.80s
30 0.19s 50 0.32s 90 0.58s

high resolution / f-init
gap ď ´50dB tgt ď ´50dB val ď ´50dB

Method iter time iter time iter time
PDHGM 250 32.17s 870 112.26s 370 47.67s
Relax 170 29.29s 580 100.34s 250 43.15s
A-DRIO 640 83.20s 2740 356.64s 1040 135.28s
A-DRBO 300 38.89s 790 102.63s 410 53.20s
A-DDIO 570 77.73s 2130 290.84s 900 122.81s
A-DDBO 260 34.23s 600 79.16s 340 44.80s

high resolution / 0-init
gap ď ´50dB tgt ď ´50dB val ď ´50dB
iter time iter time iter time
50 6.31s 870 111.83s 370 47.49s
40 6.93s 580 102.89s 250 44.25s
70 9.17s 2750 365.52s 1050 139.48s
80 10.56s 860 114.81s 420 56.00s
60 7.37s 2140 267.29s 900 112.34s
60 7.85s 600 79.67s 340 45.09s
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Figure 3: TGV2 denoising performance of stochastic variants of our algorithms: 5000
iterations, low resolution images, initialisation both by zero and noisy data.
Logarithmic plots with iteration counts scaled by the fraction of variables
updated on average. We plot for each iteration the 90% con�dence interval
according to the t-distribution over 50 random runs.

with the natural di�erence of using the estimate 8 ě }K}2 for K “ ∇ [51]. We write
the forward blur operator as elementwise multiplication by factors a “ pa1, . . . ,amq
in the discrete Fourier basis; that is Gpxq “ 1

2}f ´ F
˚paF xq}2 for F the discrete

Fourier transform. We then take as Pj the projection to the j:th Fourier component,
and as Q` the projection to the `:th pixel. This is to say that each dual pixel and each
primal Fourier component have their own step length parameter. We initialise this as
τj,0 “ τ0{pλ`p1´λqγjq, where the componentwise factor of strong convexity γj “ |aj |2.
For the bounded-ψ ‘xxBx‘ algorithm variants we take λ “ 0.01, and for the increasing-ψ
‘xxIx’ variants λ “ 0.1.
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Figure 4: TV deblurring performance of fully deterministic variants of our algorithms
with pixelwise step lengths, �rst 5000 iterations, high (hi-res) and low (lo-res)
resolution images.Two di�erent initialisations: x0 “ 0 (0-init) and x0 “ f
(f-init). The plots are logarithmic.

We only experiment with deterministic algorithms, as we do not expect small-scale
randomisation to be bene�cial. We also use the maximal κ ‘xxxM’ variants, as a more
optimal κ would be very di�cult to compute. The results are in Table 3 and Figure 4.
Similarly to A-DDBO in our TGV2 denoising experiments, A-DDBM performs reliably
well, indeed better than the PDHGM or ‘Relax’. However, in many cases, A-DRBM and
A-DDIM are even faster.

5.4. TV undimming

For TV undimming, our setup is exactly the same as TV deblurring, with the natural
di�erence that the projection Pj are no longer to the Fourier basis, but to individual
image pixels. The results are in Figure 5, and Table 4. They tell roughly the same story
as TV deblurring, with A-DDBM performing well and reliably.
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Table 3: TV deblurring performance: CPU time and number of iterations (at a resolution
of 10) to reach given duality gap, distance to target, or primal objective value.

low resolution / f-init
gap ď ´30dB tgt ď ´60dB val ď ´60dB

Method iter time iter time iter time
PDHGM 60 0.38s 280 1.78s 60 0.38s
Relax 40 0.23s 190 1.14s 40 0.23s
A-DRIM 30 0.22s 220 1.67s 80 0.60s
A-DRBM 50 0.38s 310 2.42s 90 0.70s
A-DDIM 30 0.22s 140 1.07s 70 0.53s
A-DDBM 40 0.32s 140 1.12s 60 0.48s

low resolution / 0-init
gap ď ´60dB tgt ď ´60dB val ď ´60dB
iter time iter time iter time
30 0.18s 330 2.05s 70 0.43s
20 0.11s 220 1.30s 50 0.29s
20 0.14s 280 2.08s 80 0.59s
20 0.14s 490 3.58s 90 0.65s
20 0.14s 170 1.25s 70 0.51s
20 0.15s 180 1.37s 60 0.45s

high resolution / f-init
gap ď ´5dB tgt ď ´40dB val ď ´40dB

Method iter time iter time iter time
PDHGM 70 5.93s 330 28.25s 110 9.36s
Relax 60 5.46s 220 20.25s 90 8.23s
A-DRIM 40 4.44s 280 31.77s 310 35.19s
A-DRBM 80 8.97s 240 27.14s 220 24.87s
A-DDIM 40 4.43s 260 29.43s 230 26.02s
A-DDBM 70 7.84s 230 26.00s 150 16.92s

high resolution / 0-init
gap ď ´50dB tgt ď ´40dB val ď ´40dB
iter time iter time iter time
60 5.04s 330 28.12s 110 9.31s
50 4.32s 220 19.30s 90 7.84s
30 3.27s 280 31.41s 320 35.92s
60 6.48s 240 26.27s 220 24.07s
30 3.17s 260 28.35s 230 25.06s
50 5.56s 230 25.98s 150 16.90s

Table 4: TV undimming performance: CPU time and number of iterations (at a resolu-
tion of 10) to reach given duality gap, distance to target, or primal objective
value.

low resolution / f-init
gap ď ´80dB tgt ď ´60dB val ď ´60dB

Method iter time iter time iter time
PDHGM 110 0.30s 200 0.54s 120 0.32s
Relax 70 0.16s 130 0.30s 80 0.18s
A-DRIM 50 0.13s 150 0.39s 80 0.21s
A-DRBM 40 0.10s 170 0.45s 60 0.16s
A-DDIM 50 0.13s 100 0.25s 60 0.15s
A-DDBM 30 0.07s 70 0.18s 40 0.10s

low resolution / 0-init
gap ď ´80dB tgt ď ´60dB val ď ´60dB
iter time iter time iter time
70 0.18s 200 0.51s 120 0.30s
50 0.16s 130 0.41s 80 0.25s
30 0.10s 160 0.57s 80 0.28s
20 0.05s 170 0.47s 60 0.16s
30 0.08s 110 0.30s 60 0.16s
20 0.05s 70 0.18s 40 0.10s

high resolution / f-init
gap ď ´80dB tgt ď ´60dB val ď ´60dB

Method iter time iter time iter time
PDHGM 170 5.75s 290 9.83s 210 7.11s
Relax 110 4.42s 200 8.07s 140 5.64s
A-DRIM 320 13.44s 750 31.56s 630 26.50s
A-DRBM 240 9.87s 370 15.24s 380 15.65s
A-DDIM 240 10.03s 570 23.88s 420 17.58s
A-DDBM 140 5.84s 230 9.61s 200 8.35s

high resolution / 0-init
gap ď ´80dB tgt ď ´60dB val ď ´60dB
iter time iter time iter time
100 3.41s 300 10.31s 210 7.21s
70 3.03s 200 8.73s 140 6.10s
80 3.52s 760 33.82s 640 28.48s
90 3.95s 370 16.39s 380 16.84s
70 3.05s 580 25.57s 430 18.94s
60 2.63s 230 10.22s 200 8.88s

Conclusions

We have derived from abstract theory several accelerated block-proximal primal-dual
methods, both stochastic and deterministic. So far, we have primarily concentrated
on applying them deterministically, taking advantage of blockwise—indeed pixelwise—
factors of strong convexity, to obtain improved performance compared to standard
methods. In future work, it will be interesting to evaluate the methods on real large
scale problems to other state-of-the-art stochastic optimisation methods. Moreover,
interesting questions include heuristics and other mechanisms for optimal initialisation
of the pixelwise parameters.
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Figure 5: TV undimming performance of fully deterministic variants of our algorithms
with pixelwise step lengths, 5000 iterations, high (hi-res) and low (lo-res)
resolution images.Two di�erent initialisations: x0 “ 0 (0-init) and x0 “ f
(f-init). The plots are logarithmic.
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A. Proofs of the general estimates

Here, we prove Theorems 2.1 to 2.3. In fact, as the technique streamlines the proof, we
consider instead of (PP) for convex Vi`1 : X ˆ Y Ñ R the general iteration

0 P Zi`1Wi`1Hpu
i`1q ` BVi`1pu

i`1q. (B-PP)

Our motivation is that under (C0), Zi`1Li`1 is self-adjoint, which has the e�ect

Zi`1Li`1pu
i`1 ´ uiq “ ∇Vi`1pu

i`1q for Vi`1puq :“
1
2
}u ´ ui}2Zi`1Li`1

. (A.1)

In (B-PP), we therefore take Vi to be an arbitrary convex function satisfying for each
i P N for some ∆i`1 P LpX ˆ Y ;X ˆ Y q and δi ě 0 the condition

Vi`1puq`δi`1 ď Vipuq`xp,u
i´uy`

1
2
}u´ui}2ZiΞi pΓq`∆i`1pΓq

, pu P XˆY , p P BVipu
iqq.

(B-C0)

Example A.1. For the choice (A.1), using (2.10) in (B-C0), we obtain the requirement

0 ď
1
2
}u ´ ui´1}2ZiLi ` xp,u

i ´ uy ´
1
2
}u ´ ui}2ZiLi , pu P X ˆ Y q, (A.2)

where p “ L˚i Z
˚
i pu

i ´ ui´1q. We observe for self-adjoint M the identity

xui ´ ui´1,ui ´ uyM “
1
2
}ui ´ ui´1}2M ´

1
2
}ui´1 ´ u}2M `

1
2
}ui ´ u}2M .

Applying this to M “ ZiLi , we verify (A.2) for δi :“ 1
2}u

i ´ ui´1}2ZiLi . By (C0), δi ě 0.

Example A.2 (Bregman distances, cf. [52]). Suppose that V is a Bregman distance, that
is, for some convex function J and some pi P BJpuiq to be �xed, we take

Vi`1puq “ Jpuq ´ xpi ,u ´ uiy ´ Jpuiq.

Then (B-C0) is satis�ed ∆i`1pΓq “ ZiΞipΓq if

Jpuq ´ xpi ,u ´ui`1y ´ Jpui`1q ď Jpuq ´ xpi´1,u ´uiy ´ Jpuiq ` xp,ui`1´uy. (A.3)

We have p P BVipu
iq if and only if p P BJpuiq ´ pi´1. Taking pi :“ p ` pi´1, (A.3)

becomes

xp ` pi ,u
i`1 ´ uy ´ Jpui`1q ď ´xpi ,u ´ uiy ´ Jpuiq ` xp,ui`1 ´ uy.

In other words
Jpuiq ` xpi ,u

i`1 ´ uiy ď Jpui`1q.

This automatically holds by the convexity of J . Since there is no acceleration, Theo-
rem A.1 will not give any kind of convergence rates for this choice of Vi . We at most
obtain obtain the convergence of the ergodic gap from Lemma A.1.

For better rates, we need more structure, and to incorporate acceleration parameters
in Vi . Normally in the algorithm (2.2) & (2.3), we would for c “ }K}2{p1´ δq have

Zi`1Li`1 “

ˆ

τ´2
i I ´τ´1

i K˚

´τ´1
i K cI

˙

This suggests to use

Vi`1puq “ τ´2
i Vx,i`1pxq ` cVy ,i`1pyq ´ τ´1

i xKpx ´ x iq,y ´ y iy

for Vx,i`1 and Vy ,i`1 the Bregman distances corresponding to some Jx and Jy at x i and
y i . If Jx and Jy possess su�cient strong convexity, Vi`1 will also be strongly convex. In
that case, we could by adapting (C1) and the analysis of Example A.2, get convergence
similar to [52].

40



We have the following abstract convergence estimate. To keep the necessary setup
short, and to avoid introducing additional notation, we do not represent the result in
the full generality of Banach spaces. Such a generalisation is, however, immediate.

Theorem A.1. Let us be given K P LpX ;Y q, and convex, proper, lower semicontinuous
functionals G : X Ñ R and F˚ : Y Ñ R on Hilbert spaces X and Y , satisfying (G-PM)
and (F˚-PM) for some 0 ď Γ P LpX ;X q. Suppose (B-PP) is solvable, and that (B-C0) is
satis�ed for each i P N for some operators Ti ,Φi P LpX ;X q and Σi`1,Ψi`1 P LpY ;Y q,
with ΦiTi P T and Ψi`1Σi`1 P S. Then the iterates ui “ px i ,y iq of (B-PP) satisfy

VN`1ppuq `
N´1
ÿ

i“0
δi`1 ď V0ppuq `

1
2

N´1
ÿ

i“0
}ui`1 ´ pu}2∆i`2pΓq

, pN ě 1q (A.4)

Proof. We take pi`1 P Hpu
i`1q such that ´Zi`1Wi`1pi`1 P BVi`1pu

i`1q, guaranteed to
exist by the iteration (B-PP) being by assumption solvable. Using the expansion

Zi`1Wi`1 “

ˆ

ΦiTi 0
0 Ψi`1Σi`1

˙

,

and the fact that 0 P Hppuq, we deduce

xpi`1,W
˚
i`1Z

˚
i`1pu

i`1 ´ puqy Ă xHpui`1q ´ Hppuq,W ˚
i`1Z

˚
i`1pu

i`1 ´ puqy

“ xBGpx i`1q ´ BGppxq,T ˚i Φ
˚
i px

i`1 ´ pxqy

` xBF˚py i`1q ´ BF˚ppyq,Σ˚i`1Ψ
˚
i`1py

i`1 ´ pyqy

` xK˚py i`1 ´ pyq,T ˚i Φ
˚
i px

i`1 ´ pxqy

´ xKpx i`1 ´ pxq,Σ˚i`1Ψ
˚
i`1py

i`1 ´ pyqy.

An application of (G-PM) and (F˚-PM) consequently gives

xpi`1,W
˚
i`1Z

˚
i`1pu

i`1 ´ puqy ě }x i`1 ´ px}2ΦiTi Γ

` xΦiTiK
˚py i`1 ´ pyq,x i`1 ´ pxy

´ xΨi`1Σi`1Kpx
i`1 ´ pxq,y i`1 ´ pyy.

“
1
2
}ui`1 ´ pu}2Zi`1Ξi`1pΓq

.

(A.5)

Next, (B-C0) at u “ pu gives

Vi`1ppuq´Vi`2ppuq´δi`1`
1
2
}ui`1´pu}2Zi`1Ξi`1pΓq`∆i`2pΓq

ě xZi`1Wi`1pi`1,u
i`1´puy.

(A.6)
Combining (A.5) with (A.6), we thus deduce

Vi`2ppuq ` δi`1 ď Vi`1ppuq `
1
2
}ui`1 ´ pu}2∆i`2pΓq

. (A.7)

Summing (A.7) over i “ 0, . . . ,N ´ 1, we obtain (A.4). �

Proof of Theorem 2.1. Insert Vi from (A.1) into (A.4), and use Theorem A.1 and Exam-
ple A.1. �

Lemma A.1. LetX andY be Hilbert spaces,K P LpX ;Y q, andG : X Ñ R and F˚ : Y Ñ R

be convex, proper, lower semicontinuous. Take 0 ď Γ P LpX ;X q. Suppose (B-PP) is
solvable, and that (B-C0) is satis�ed for each i P N for some Ti ,Φi P LpX ;X q and
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Σi`1,Ψi`1 P LpY ;Y q, with ΦiTi P T and Ψi`1Σi`1 P S. Then the iterates ui “ px i ,y iq
of (B-PP) satisfy

VN`1ppuq `
N´1
ÿ

i“0

`

G1i`1 ` δi`1
˘

ď V0ppuq `
1
2

N´1
ÿ

i“0
}ui`1 ´ pu}2∆i`2pΓ{2q, pN ě 1q (A.8)

for

G1i`1 :“xBGpx i`1q,T ˚i Φ
˚
i px

i`1 ´ pxqy ´ }x i`1 ´ px}2ΦiTi Γ{2

` xBF˚py i`1q,Σ˚i`1Ψ
˚
i`1py

i`1 ´ pyqy

´ xpy ,pKT ˚i Φ
˚
i ´ Ψi`1Σi`1Kqpxy ´ xy

i`1,Ψi`1Σi`1Kpxy ` xpy ,KT
˚
i Φ

˚
i x

i`1y.

Proof. Similarly to the proof of Theorem 2.1, we takepi`i P Hpui`1q such that´Zi`1pi`i P
BVi`1pu

i`1q, guaranteed to exist by the iteration (B-PP) being by assumption solvable.
Then

xZi`1Wi`1pi`i ,u
i`1 ´ puy “ xBGpx i`1q,T ˚i Φ

˚
i px

i`1 ´ pxqy

` xBF˚py i`1q,Σ˚i`1Ψ
˚
i`1py

i`1 ´ pyqy

` xK˚y i`1,T ˚i Φ
˚
i px

i`1 ´ pxqy ´ xKx i`1,Σ˚i`1Ψ
˚
i`1py

i`1 ´ pyqy

“ дi`1 ` }x
i`1 ´ px}2ΦiTi Γ{2

` xy i`1,pKT ˚i Φ
˚
i ´ Ψi`1Σi`1Kqx

i`1y

´ xy i`1,KT ˚i Φ
˚
i pxy ` xpy ,Ψi`1Σi`1Kx

i`1y.

for

дi`1 :“ xBGpx i`1q,T ˚i Φ
˚
i px

i`1´pxqy´}x i`1´px}2ΦiTi Γ{2`xBF
˚py i`1q,Σ˚i`1Ψ

˚
i`1py

i`1´pyqy.

A little bit of reorganisation and referral to the expression for ∆i`1 in (2.9) gives

xZi`1Wi`1pi`i ,u
i`1 ´ puy ě дi`1 ` }x

i`1 ´ px}2ΦiTi Γ{2

` xy i`1 ´ py ,pKT ˚i Φ
˚
i ´ Ψi`1Σi`1Kqpx

i`1 ´ pxqy

´ xpy ,pKT ˚i Φ
˚
i ´ Ψi`1Σi`1Kqpxy

´ xy i`1,Ψi`1Σi`1Kpxy ` xpy ,KT
˚
i Φ

˚
i x

i`1y

“ G1i`1 `
1
2
}ui`1 ´ pu}2Ξi`1pΓ{2q.

Combining (A.6) and (A.9), we obtain

Vi`2ppuq ` G
1
i`1 ` δi`1 ď Vi`1ppuq `

1
2
}ui`1 ´ pu}2∆i`2pΓ{2q.

Summing this for i “ 0, . . . ,N ´ 1 gives (A.8). �

Proof of Theorem 2.2. We use Lemma A.1. We already veri�ed (B-C0) in Example A.1,
so it remains to derive (2.17). Using (CG), (G-EC), and (F˚-EC), we compute

N´1
ÿ

i“0
ErG1i`1s :“

N´1
ÿ

i“0
E
”

xBGpx i`1q,T ˚i Φ
˚
i px

i`1 ´ pxqy ´ }x i`1 ´ px}2ΦiTi Γ{2

ı

` E
“

xBF˚py i`1q,Σ˚i`1Ψ
˚
i`1py

i`1 ´ pyqy
‰

´ ζN xryN ,Kpxy ` ζN xpy ,KrxN y

ě ζNGprxN ,ryN q ´ ζN xryN ,Kpxy ` ζN xpy ,KrxN y.

We therefore obtain (2.17) by taking the expectation in (A.8). �
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Proof of Theorem 2.3. Using (G-PM) and (OC), we deduce

G11 ě xBF
˚py1q,Σ˚1Ψ

˚
1 py

1 ´ pyqy ` xpy ,Ψ1Σ1Kpxy ´ xy
1,Ψ1Σ1Kpxy.

Likewise (F˚-PM) and (OC) give

G1N ě xBGpx
N q,T ˚N´1Φ

˚
N´1px

N ´ pxqy ´ }xN ´ px}2ΦN´1TN´1Γ{2

´ xpy ,KT ˚N´1Φ
˚
N´1pxy ` xpy ,KT

˚
N´1Φ

˚
N´1x

N y.

Shifting indices of y i by one compared to G1i`1, we de�ne

G1 ,̊i`1 :“xBGpx i`1q,T ˚i Φ
˚
i px

i`1 ´ pxqy ´ }x i`1 ´ px}2ΦiTi Γ{2

` xBF˚py iq,Σ˚i Ψ
˚
i py

i ´ pyqy

´ xpy ,pKT ˚i Φ
˚
i ´ ΨiΣiKqpxy ´ xy

i ,ΨiΣiKpxy ` xpy ,KT
˚
i Φ

˚
i x

i`1y,

Correspondingly reorganising terms, we observe

N´1
ÿ

i“0
G1i`1 “ G

1
1 `

N´2
ÿ

i“1
G1i`1 ` G

1
N ě

N´1
ÿ

i“1
G1 ,̊i`1.

We now estimate
řN´1

i“1 ErG1 ,̊i`1s analogously to the proof of Theorem 2.2. �

B. An inequality

We needed the following for convergence rates in Section 4.2.

Lemma B.1. Suppose ϕN ě ϕ0 ` b
řN´1

i“0 pi ` 1qp for each N ě 0 for some constants
p ě 0 and ϕ0,b ą 0. Then ϕN ě ϕ0 `CN p`1 for some constant C “ Cpb,ϕ0,pq ą 0.

Proof. We calculate

ϕN ě ϕ0 ` b
N
ÿ

i“1
ip ě ϕ0 ` b

ż N

2
xp dx ě ϕ0 ` p´1bpN p`1 ´ 2q.

The lower bound ϕN ě ϕ0 for 0 ď N ď 2, and suitably choice of C ą 0 verify the
claim. �

References

[1] J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization
for nonconvex and nonsmooth problems, Mathematical Programming 146 (2013),
459–494, doi:10.1007/s10107-013-0701-9.

[2] T. Möllenho�, E. Strekalovskiy, M. Moeller and D. Cremers, The primal-dual hybrid
gradient method for semiconvex splittings, SIAM Journal on Imaging Sciences 8
(2015), 827–857, doi:10.1137/140976601.

[3] T. Valkonen and T. Pock, Acceleration of the PDHGM on partially strongly convex
functions (2015), submitted, arXiv:1511.06566.
URL http://iki.fi/tuomov/mathematics/cpaccel.pdf

[4] P. Ochs, Y. Chen, T. Brox and T. Pock, iPiano: Inertial proximal algorithm for
non-convex optimization (2014), preprint, arXiv:1404.4805.

43

http://dx.doi.org/10.1007/s10107-013-0701-9
http://dx.doi.org/10.1137/140976601
http://arxiv.org/abs/1511.06566
http://iki.fi/tuomov/mathematics/cpaccel.pdf
http://arxiv.org/abs/1404.4805


[5] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal
algorithms, Physica D 60 (1992), 259–268.

[6] K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM Journal on
Imaging Sciences 3 (2011), 492–526, doi:10.1137/090769521.

[7] A. Chambolle and P.-L. Lions, Image recovery via total variation mini-
mization and related problems, Numerische Mathematik 76 (1997), 167–188,
doi:10.1007/s002110050258.

[8] I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint, Communications on Pure and
Applied Mathematics 57 (2004), 1413–1457, doi:10.1002/cpa.20042.

[9] I. Loris and C. Verhoeven, On a generalization of the iterative soft-thresholding
algorithm for the case of non-separable penalty, Inverse Problems 27 (2011), 125007,
doi:10.1088/0266-5611/27/12/125007.

[10] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for
linear inverse problems, SIAM Journal on Imaging Sciences 2 (2009), 183–202,
doi:10.1137/080716542.

[11] S. Wright, Coordinate descent algorithms, Mathematical Programming 151 (2015),
3–34, doi:10.1007/s10107-015-0892-3.

[12] Y. Nesterov, E�ciency of coordinate descent methods on huge-scale optimization
problems, SIAM Journal on Optimization 22 (2012), 341–362, doi:10.1137/100802001.

[13] P. Richtárik and M. Takáč, Parallel coordinate descent methods for big data optimiza-
tion, Mathematical Programming (2015), 1–52, doi:10.1007/s10107-015-0901-6.

[14] O. Fercoq and P. Richtárik, Accelerated, parallel and proximal coordinate descent
(2013), preprint, arXiv:1312.5799.

[15] P. Richtárik and M. Takáč, Distributed coordinate descent method for learning with
big data (2013), arXiv:1310.2059.

[16] Z. Qu, P. Richtárik and T. Zhang, Randomized dual coordinate ascent with arbitrary
sampling (2014), preprint, arXiv:1411.5873.

[17] P. Zhao and T. Zhang, Stochastic optimization with importance sampling (2014),
preprint, arXiv:1401.2753.

[18] S. Shalev-Shwartz and T. Zhang, Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization, Mathematical Programming 155 (2014),
105–145, doi:10.1007/s10107-014-0839-0.

[19] Z. Qu, P. Richtárik, M. Takáč and O. Fercoq, SDNA: stochastic dual newton ascent
for empirical risk minimization (2015), arXiv:1502.02268.

[20] D. Csiba, Z. Qu and P. Richtárik, Stochastic dual coordinate ascent with adaptive
probabilities, preprint, arXiv:1502.08053.

[21] P. L. Combettes and J.-C. Pesquet, Stochastic forward-backward and primal-dual
approximation algorithms with application to online image restoration (2016),
arXiv:1602.08021.

44

http://dx.doi.org/10.1137/090769521
http://dx.doi.org/10.1007/s002110050258
http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1088/0266-5611/27/12/125007
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1007/s10107-015-0892-3
http://dx.doi.org/10.1137/100802001
http://dx.doi.org/10.1007/s10107-015-0901-6
http://arxiv.org/abs/1312.5799
http://arxiv.org/abs/1310.2059
http://arxiv.org/abs/1411.5873
http://arxiv.org/abs/1401.2753
http://dx.doi.org/10.1007/s10107-014-0839-0
http://arxiv.org/abs/1502.02268
http://arxiv.org/abs/1502.08053
http://arxiv.org/abs/1602.08021


[22] Z. Peng, Y. Xu, M. Yan and W. Yin, ARock: an algorithmic framework for asyn-
chronous parallel coordinate updates (2015), uCLA CAM Report 15-37.
URL ftp://ftp.math.ucla.edu/pub/camreport/cam15-37.pdf

[23] A. Chambolle and T. Pock, A �rst-order primal-dual algorithm for convex problems
with applications to imaging, Journal of Mathematical Imaging and Vision 40 (2011),
120–145, doi:10.1007/s10851-010-0251-1.

[24] T. Pock, D. Cremers, H. Bischof and A. Chambolle, An algorithm for minimizing
the mumford-shah functional, in: 12th IEEE Conference on Computer Vision, 2009,
1133–1140, doi:10.1109/ICCV.2009.5459348.

[25] E. Esser, X. Zhang and T. F. Chan, A general framework for a class of �rst order
primal-dual algorithms for convex optimization in imaging science, SIAM Journal
on Imaging Sciences 3 (2010), 1015–1046, doi:10.1137/09076934X.

[26] D. Gabay, Applications of the method of multipliers to variational inequalities,
in: Augmented Lagrangian Methods: Applications to the Numerical Solution of
Boundary-Value Problems, volume 15, Edited by M. Fortin and R. Glowinski, North-
Holland1983, 299–331.

[27] J. Douglas, Jim and J. Rachford, H. H., On the numerical solution of heat conduction
problems in two and three space variables, Transactions of the American Mathemat-
ical Society 82 (1956), pp. 421–439, doi:10.2307/1993056.

[28] K. Bredies and H. P. Sun, Preconditioned Douglas–Rachford algorithms for TV- and
TGV-regularized variational imaging problems, Journal of Mathematical Imaging
and Vision 52 (2015), 317–344, doi:10.1007/s10851-015-0564-1.

[29] T. Goldstein and S. Osher, The split bregman method for l1-regularized problems,
SIAM Journal on Imaging Sciences 2 (2009), 323–343, doi:10.1137/080725891.

[30] W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for `1-
minimization with applications to compressed sensing, SIAM Journal on Imaging
Sciences 1 (2008), 143–168, doi:10.1137/070703983.

[31] S. Setzer, Operator splittings, Bregman methods and frame shrinkage in im-
age processing, International Journal of Computer Vision 92 (2011), 265–280,
doi:10.1007/s11263-010-0357-3.

[32] T. Suzuki, Stochastic dual coordinate ascent with alternating direction multiplier
method (2013), preprint, arXiv:1311.0622.

[33] Y. Zhang and L. Xiao, Stochastic primal-dual coordinate method for regularized
empirical risk minimization (2014), arXiv:1409.3257.

[34] O. Fercoq and P. Bianchi, A coordinate descent primal-dual algorithm with large
step size and possibly non separable functions (2015), arXiv:1508.04625.

[35] P. Bianchi, W. Hachem and F. Iutzeler, A stochastic coordinate descent primal-
dual algorithm and applications to large-scale composite optimization, preprint,
arXiv:1407.0898.

[36] Z. Peng, T. Wu, Y. Xu, M. Yan and W. Yin, Coordinate friendly structures, algorithms
and applications (2016), arXiv:1601.00863.

45

ftp://ftp.math.ucla.edu/pub/camreport/cam15-37.pdf
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1109/ICCV.2009.5459348
http://dx.doi.org/10.1137/09076934X
http://dx.doi.org/10.2307/1993056
http://dx.doi.org/10.1007/s10851-015-0564-1
http://dx.doi.org/10.1137/080725891
http://dx.doi.org/10.1137/070703983
http://dx.doi.org/10.1007/s11263-010-0357-3
http://arxiv.org/abs/1311.0622
http://arxiv.org/abs/1409.3257
http://arxiv.org/abs/1508.04625
http://arxiv.org/abs/1407.0898
http://arxiv.org/abs/1601.00863


[37] J.-C. Pesquet and A. Repetti, A class of randomized primal-dual algorithms for
distributed optimization (2014), arXiv:1406.6404.

[38] A. W. Yu, Q. Lin and T. Yang, Doubly stochastic primal-dual coordinate method for em-
pirical risk minimization and bilinear saddle-point problem (2015), arXiv:1508.03390.

[39] C. Chen, B. He, Y. Ye and X. Yuan, The direct extension of ADMM for multi-block
convex minimization problems is not necessarily convergent, Mathematical Program-
ming 155 (2014), 57–79, doi:10.1007/s10107-014-0826-5.

[40] A. S. Lewis and S. Zhang, Partial smoothness, tilt stability, and generalized hessians,
SIAM Journal on Optimization 23 (2013), 74–94, doi:10.1137/110852103.

[41] A. S. Lewis, Active sets, nonsmoothness, and sensitivity, SIAM Journal on Optimiza-
tion 13 (2002), 702–725, doi:10.1137/S1052623401387623.

[42] J. Liang, J. Fadili and G. Peyré, Local linear convergence of forward–backward under
partial smoothness, Advances in Neural Information Processing Systems 27 (2014),
1970–1978.
URL http://papers.nips.cc/paper/5260-local-linear-convergence-of-

forward-backward-under-partial-smoothness.pdf

[43] T. Pock and A. Chambolle, Diagonal preconditioning for �rst order primal-dual algo-
rithms in convex optimization, in: Computer Vision (ICCV), 2011 IEEE International
Conference on, 2011, 1762 –1769, doi:10.1109/ICCV.2011.6126441.

[44] B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point
problem: From contraction perspective, SIAM Journal on Imaging Sciences 5 (2012),
119–149, doi:10.1137/100814494.

[45] A. N. Shir�iaev, Probability, Graduate Texts in Mathematics, Springer1996.

[46] A. Chambolle and T. Pock, On the ergodic convergence rates of a �rst-order primal–
dual algorithm, Mathematical Programming (2015), 1–35, doi:10.1007/s10107-015-
0957-3.

[47] Y. Chen, G. Lan and Y. Ouyang, Optimal primal-dual methods for a class of
saddle point problems, SIAM Journal on Optimization 24 (2014), 1779–1814,
doi:10.1137/130919362.

[48] T. Goldstein, M. Li and X. Yuan, Adaptive primal-dual splitting methods for statistical
learning and image processing, Advances in Neural Information Processing Systems
28 (2015), 2080–2088.

[49] T. Valkonen, K. Bredies and F. Knoll, Total generalised variation in di�u-
sion tensor imaging, SIAM Journal on Imaging Sciences 6 (2013), 487–525,
doi:10.1137/120867172.
URL http://iki.fi/tuomov/mathematics/dtireg.pdf

[50] J. C. de Los Reyes, C.-B. Schönlieb and T. Valkonen, Bilevel parameter learn-
ing for higher-order total variation regularisation models, Journal of Mathemat-
ical Imaging and Vision (2016), doi:10.1007/s10851-016-0662-8, published online,
arXiv:1508.07243.
URL http://iki.fi/tuomov/mathematics/tgv_learn.pdf

[51] A. Chambolle, An algorithm for mean curvature motion, Interfaces and Free Bound-
aries 6 (2004), 195.

46

http://arxiv.org/abs/1406.6404
http://arxiv.org/abs/1508.03390
http://dx.doi.org/10.1007/s10107-014-0826-5
http://dx.doi.org/10.1137/110852103
http://dx.doi.org/10.1137/S1052623401387623
http://papers.nips.cc/paper/5260-local-linear-convergence-of-forward-backward-under-partial-smoothness.pdf
http://papers.nips.cc/paper/5260-local-linear-convergence-of-forward-backward-under-partial-smoothness.pdf
http://dx.doi.org/10.1109/ICCV.2011.6126441
http://dx.doi.org/10.1137/100814494
http://dx.doi.org/10.1007/s10107-015-0957-3
http://dx.doi.org/10.1007/s10107-015-0957-3
http://dx.doi.org/10.1137/130919362
http://dx.doi.org/10.1137/120867172
http://iki.fi/tuomov/mathematics/dtireg.pdf
http://dx.doi.org/10.1007/s10851-016-0662-8
http://arxiv.org/abs/1508.07243
http://iki.fi/tuomov/mathematics/tgv_learn.pdf


[52] T. Hohage and C. Homann, A generalization of the Chambolle-Pock algorithm to
Banach spaces with applications to inverse problems (2014), preprint, arXiv:1412.0126.

47

http://arxiv.org/abs/1412.0126

	Introduction
	A general method with non-invertible step operators
	Background
	Non-invertible step length operators
	Stochastic variants
	Basic estimates on the abstract proximal point iteration
	Estimates on an ergodic duality gap
	Estimates on another ergodic duality gap
	Simplifications and summary so far
	Interpreting the conditions

	Block-proximal methods
	Structure of the step length operators
	Structure of G and F*
	Satisfaction of the off-diagonal conditions (C2.a)–(C2.c) and either (CG) or (CG*)
	Satisfaction of the primal penalty bound (C2.d)
	Satisfaction of the dual penalty bound (C2.e)
	Satisfaction of the positivity condition (C1')
	Summary so far

	Dual tests and penalty bounds for block-proximal methods
	Assumptions and simplifications
	Estimates for deterministic primal test updates
	Dual bounds—a first attempt
	Worst-case conditions
	Partial strong convexity: Bounded 
	Partial strong convexity: Increasing 
	Unaccelerated algorithm
	Full primal strong convexity
	Choices for ,i and ,i
	Sampling patterns

	Numerical experience
	TGV2 denoising
	TGV2 denoising with stochastic algorithm variants
	TV deblurring
	TV undimming

	Proofs of the general estimates
	An inequality

