Optimising Big Images

Tuomo Valkonen

Abstract We take a look at big data challenges in image processing. Real-life pho-
tographs and other images, such ones from medical imaging modalities, consist of
tens of million data points. Mathematically based models for their improvement —
due to noise, camera shake, physical and technical limitations, etc. — are moreover
often highly non-smooth and increasingly often non-convex. This creates significant
optimisation challenges for the application of the models in quasi-real-time software
packages, as opposed to more ad hoc approaches whose reliability is not as easily
proven as that of mathematically based variational models. After introducing a gen-
eral framework for mathematical image processing, we take a look at the current
state-of-the-art in optimisation methods for solving such problems, and discuss fu-
ture possibilities and challenges.

1 Introduction: Big image processing tasks

A photograph taken with current state-of-the-art digital cameras has between 10 and
20 million pixels. Some cameras, such as the semi-prototypical Nokia 808 Pure-
View have up to 41 million sensor pixels. Despite advances in sensor and optical
technology, technically perfect photographs are still elusive in demanding condi-
tions — although some of the more artistic inclination might say that current cam-
eras are already too perfect, and opt for the vintage. With this in mind, in low light
even the best cameras however produce noisy images. Casual photographers also
cannot always hold the camera steady, and the photograph becomes blurry despite
advanced shake reduction technologies. We are thus presented with the challenge
of improving the photographs in post-processing. This would desirably be an auto-
mated process, based on mathematically well understood models that can be relied
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upon to not introduce undesired artefacts, and to restore desired features as well as
possible.

The difficulty with real photographs of tens of millions of pixels is that the result-
ing optimisation problems are huge, and computationally very intensive. Moreover,
state-of-the-art image processing techniques generally involve non-smooth regu-
larisers for the modelling of our prior assumptions of what a good photograph
or image looks like. This causes further difficulties in the application of conven-
tional optimisation methods. State-of-the-art image processing techniques based on
mathematical principles are only up to processing tiny images in real time. Further,
choosing the right parameters for simple Tikhonov regularisation models can be dif-
ficult. Parametrisation can be facilitated by computationally more difficult iterative
regularisation models [67] with easier parametrisation, or through parameter learn-
ing [84, 74, 85, 54]. These processes are computationally very intensive, requiring
processing the data for multiple parameters in order to find the optimal one. The
question now is, can we design fast optimisation algorithms that would make this
and other image processing tasks tractable for real high-resolution photographs?

Fig. 1 Illustration of diffusion tensor imaging and tractography process. Multiple diffusion-
weighted MRI images with different diffusion-sensitising gradients are first taken (left). After pro-
cessing a tensor field that can be produced from these, neural pathways can be discovered through
the tractography process (right). (The author would like to thank Karl Koschutnig for the raw data,
and Kristian Bredies for producing with DSI Studio the tractography image with from the diffusion
tensor image computed by the author.)

Besides photography, big image processing problems can be found in various
scientific and medical areas, such magnetic resonance imaging (MRI). An example
is full three-dimensional diffusion tensor MRI, and the discovery of neural path-
ways, as illustrated in Figure 1. I will not go into physical details about MRI here,
as the focus of the chapter is in general-purpose image processing algorithms, not in
particular applications and modelling. It suffices to say that diffusion tensor imag-
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ing [127] combines multiple diffusion weighted MRI images (DWI) into a single
tensor image u. At each point, the tensor u(x) is the 3 x 3 covariance matrix of a
Gaussian probability distribution for the diffusion direction of water molecules at x.
Current MRI technology does not have nearly as high resolution as digital cameras;
a 256 x 256 x 64 volume would be considered to have high resolution by today’s
standards. However, each tensor u(x) has six elements. Combined this gives 25 mil-
lion variables. Moreover, higher-order regularisers such as TGV? [16], which we
will discuss in detail in Section 3, demand additional variables for their realisation;
using the PDHGM (Chambolle-Pock) method, one requires 42 variables per voxel
x [135], bringing the total count to 176 million variables. Considering that a double
precision floating point number takes eight bytes of computer memory, this means
1.4 gigabytes of variables. If the resolution of MRI technology can be improved, as
would be desirable from a compressed sensing point of view [1], the computational
challenges will grow even greater.

Due to sparsity, modelled by the geometric regularisers, imaging problems have
structure that sets them apart from general big data problems. This is especially the
case in a compressed sensing setting. Looking to reconstruct an image from, let’s
say, partial Fourier samples, there is actually very little source data. But the solution
that we are looking for is big, yet, in a sense, sparse. This, and the poor separability
of the problems, create a demand for specialised algorithms and approaches. Further
big data challenges in imaging are created by convex relaxation approaches that
seek to find global solutions to non-convex problems by solving a relaxed convex
problem in a bigger space [34, 108, 109, 110, 112, 77]. We discuss such approaches
in more detail in Section 7.1.

Overall, in this chapter, we review the state of the art of optimisation methods ap-
plicable to typical image processing tasks. The latter we will discuss shortly. In the
following two sections, Section 2 and Section 3, we then review the typical mathe-
matical regularisation of inverse problems approach to solving such imaging prob-
lems. After this, we look at optimisation methods amenable to solving the resulting
computational models. More specifically, in Section 4 we take a look at first-order
methods popular in the mathematical imaging community. In Section 5 we look at
suggested second-order methods, and in Section 6 we discuss approaches for the
two related topics of problems non-linear forward operators, and iterative regulari-
sation. We finish the chapter in Section 7 with a look at early research into handling
larger pictures through decomposition and preconditioning techniques, as well as
the big data challenges posed by turning small problems into big ones through con-
vex relaxation.

1.1 Types of image processing tasks

What kind of image processing tasks there are? At least mathematically the most
basic one is the one we began with, denoising, or removing noise from an image.
For an example, see Figure 1.1. In photography, noise is typically the result of low
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Fig. 2 Denoising of a noisy photograph
(top-left) by the geometric regularisers TV
(top-right) and TGV? (bottom-left). Ob-
serve the stair-casing effect exhibited by TV.
. (Freely available Kodak stock photo.)

light conditions, which in modern digital cameras causes the CCD (charge-coupled
device) sensor array of the camera to not be excited enough. As a result the sensor
images the electric current passing through it. Within the context of photography,
another important task is deblurring or deconvolution, see Figure 3. Here one seeks
to create a sharp image out of an unsharp image, which might be the result of camera
shake — something that can also be avoided to some extent in sufficient light condi-
tions by mechanical shake reduction technologies. In dehazing one seeks to remove
translucent objects — clouds, haze — that obscure parts of an image and make it un-
sharp; see [46] for an approach fitting our variational image processing framework
and further references.

Another basic task is regularised inversion. This involves the computation of
an image from data in a different domain, such as the frequency domain. When
only partial data is available, we need to add additional information into the prob-
lem in terms of the aforementioned regularisers. Problems of this form can be
found in many medical imaging modalities such as magnetic resonance imaging
(MR, [135, 11, 69, 70]), positron emission tomography (PET, [141, 119]), elec-
trical impedance tomography (EIT, [90]), computed tomography (CT, [101]), and
diffuse optical tomography (DOT, [5, 71]) — the references providing merely a few
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Fig. 3 Deblurring example. Could we do better, and faster? (top) Lousy photograph. (middle)
TGV? deblurring. min, %Hf — pe xu|| + TGV?2(u) for blur kernel pe. (bottom) Ideal photograph.
(Author’s own photograph. All rights withheld. Reprinted with permission.)
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starting points. Related imaging modalities can be found in the earth and planetary
sciences, for example seismic tomography [83] and synthetic aperture radar (SAR,
[33]). In image fusion one seeks to combine the data from many such modalities
in order to obtain a better overall picture [15, 123, 68, 42]. In many computer vi-
sion tasks, including the automated understanding of medical imaging data, a task of
paramount importance is segmentation [138, 91, 34, 4, 109]. Here, we seek to differ-
entiate or detect objects in an image in order understand its content by higher-level
algorithms. This may also involve tracking of the objects [143, 93], and in turn pro-
vides a connection to video processing, and tasks such as optical flow computation
[65, 6, 30, 31, 130].

2 Regularisation of inverse problems

We consider image processing tasks as inverse problems whose basic setup is as
follows. We are presented with data or measurements f, and a forward operator A
that produced the data f, possibly corrupted by noise v, from an unknown # that
we wish to recover. Formally f = Al + v. In imaging problems i is the uncorrupted
ideal image that we want, and f the corrupted, transformed, or partial image that
we have. The operator A would be the identity for denoising, a convolution oper-
ator for deblurring, and a (sub-sampled) Fourier, Radon, or other transform opera-
tor for regularised inversion. Besides the noise v, the difficulty in recovering i is
that the operator A is ill-conditioned, or simply not invertible. The overall problem
is ill-posed. We therefore seek to add some prior information to the problem, to
make the it well-posed. This comes in terms of a regularisation functional R, which
should model our domain-specific prior assumptions of what the solution should
look like. Modelling the noise and the operator equation by a fidelity functional G,
the Tikhonov regularisation approach then seeks to solve

muin G(u)+ oR(u) (Py)

for some regularisation parameter o > 0 that needs to be determined. Its role is
to balance between regularity and good fit to data. If the noise v is Gaussian, as is
often assumed, we take

1
G(u) = 5 ||f —Aull3. (1)

The choice of the regulariser R depends heavily on the problem in question; we will
shortly discuss typical and emerging choices of R for imaging problems.

A major difficulty with the Tikhonov approach (Py) is that the regularisation
parameter ¢ is difficult to choose. Moreover, with the L?-squared fidelity (1), the
scheme suffers from loss of contrast, as illustrated in [11]. If the noise level G is
known, an alternative approach is to solve the constrained problem

min R(u) subjectto G(u) < 6. (P%)
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Computationally this problem tends to be much more difficult than (Py). An ap-
proach to estimate solutions to this is provided by iterative regularisation [43, 67,
120], which we discuss in more detail in Section 6.2. The basic idea is to take a suit-
ably chosen sequence o \, 0. Letting k — oo, one solves (Py) for o = o to obtain
u¥, and stops when F (uk) < 6. This stopping criterion is known as Morozov’s dis-
crepancy principle [89]. Various other a priori and a posteriori heuristics also exist.
Besides iterative regularisation and heuristic stopping rules, another option for fa-
cilitating the choice of o is computationally intensive parameter learning strategies
[84, 74, 85, 54], which can deal with more complicated noise models as well.

3 Non-smooth geometric regularisers for imaging

The regulariser R should try to restore and enhance desired image features without
introducing artefacts. Typical images feature smooth parts as well as non-smooth
geometric features such as edges. The first “geometric regularisation” models in
this context have been proposed in the pioneering works of Rudin-Osher-Fatemi
[118] and Perona-Malik [106]. In the former, total variation (TV) has been proposed
as a regulariser for image denoising, that is R(u) = TV (u). Slightly cutting corners
around distributional intricacies, this can be defined as the one-norm of the gradient.
The interested reader may delve into all the details by grabbing a copy of [3]. In
the typical case of isotropic TV that does not favour any particular directions, the
pointwise or pixelwise base norm is the two-norm, so that

V() i= [ Vuloa = [ [Vu()|ad
The Rudin-Osher-Fatemi (ROF) model is then
1 2

min §||f*“||2+aTV(M)a @)
where u € L' (Q) is our unknown image, represented by a function from the domain
Q C R” into intensities in R. Typically £ is a rectangle in R? or a cube in R3, and
its elements represent different points or coordinates x = (xi,...,x,) within the n-
dimensional image. For simplicity we limit ourselves in this introductory exposition

to greyscale images with intensities in R. With & := C*(2;R"), the total variation
may also be written

TV (u) = sup {/Q V¢ (x)u(x)dx

02, sup ()] < 1}, 3)
xeN

which is useful for primal-dual and predual algorithms. Here V* = —div is the con-
jugate of the gradient operator.

The ROF model (2) successfully eliminates Gaussian noise and at the same time
preserves characteristic image features like edges and cartoon-like parts. It however
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has several shortcomings. A major one is the staircasing effect, resulting in blocky
images; cf. Figure 1.1. It also does not deal with texture very well. Something better
is therefore needed. In parts of the image processing community coming more from
the engineering side, the BM3D block-matching filter [36] is often seen as the state-
of-the-art method for image denoising specifically. From the visual point of view, it
indeed performs very well with regard to texture under low noise levels. Not based
on a compact mathematical model, such as those considered here, it is however very
challenging to analyse, to prove its reliability. It, in fact, appears to completely break
down under high noise, introducing very intrusive artefacts [45]. In other parts of the
image and signal processing community, particularly in the context of compressed
sensing, promoting sparsity in a wavelet basis is popular. This would correspond to a
regulariser like R(u) = ||Wu/|;, for W a wavelet transform. The simplest approaches
in this category also suffer from serious artefacts, cf. [124, page 229] and [11].

To overcome some of these issues, second- (and higher-) order geometric regu-
larisers have been proposed in the last few years. The idea is to intelligently balance
between features at different scales or orders, correctly restoring all three, smooth
features, geometric features such as edges, and finer details. Starting with [87], pro-
posed variants include total generalised variation (TGV, [16]), infimal convolution
TV (ICTV, [25]), and many others [22, 103, 27, 37, 39]. Curvature based regularis-
ers such as Euler’s elastica [29, 122] and [12] have also recently received attention
for the better modelling of curvature in images. Further, non-convex total variation
schemes have been studied in the last few years for their better modelling of real
image gradient distributions [66, 60, 61, 99, 63], see Figure 4. In the other direc-
tion, in order to model texture in images, “lower-order schemes” have recently been
proposed, including Meyer’s G-norm [88, 139] and the Kantorovich-Rubinstein dis-
crepancy [76]. (Other ways to model texture include non-local filtering schemes
such as BM3D and NL-means [21, 36].) These models have in common that they
are generally non-smooth, and increasingly often non-convex, creating various op-
timisation challenges. The Mumford-Shah functional [91] in particular, useful as
a choice of R for segmentation, is computationally extremely difficult. As a result,
either various approximations [4, 138, 109] or convex relaxation techniques are usu-
ally employed. We will will take a brief look at the latter in Section 7.1.

Due to its increasing popularity, simplicity, and reasonably good visual perfor-
mance, we concentrate here on second-order fotal generalised variation (TGV [16],
pun intended) as our example higher-order regulariser. In the differentiation cascade
Jorm [20, 17], it may be written for two parameters (8, ) > 0 as

TGV o ()= min_ &||Vu—wllo1 +BlEwl|r.
’ weLl (Q;Rn)

Here &w is the symmetrised gradient, defined as

Ew(x) = %(Vu(x) + [Vu(x)]T) e R,

The norm in
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Fig. 4 Illustration of image gradient statistics. (left) Original image. (right) Log-probability (verti-
cal axis) of gradient magnitude (horizontal axis) and optimal ¢ — at? model fit. The optimal ¢ = 0.5
causes R(u) = [o ||[Vu(x)||9 dx to become non-convex. (Author’s own photograph. All rights with-
held. Reprinted with permission.)

I Ewllrai= [ 16w dx,

is based on the pointwise Frobenius norm, which makes the regulariser rotationally
invariant [135]. Again we slightly cut corners with distributional intricacies.

The idea in TGV? is that the extra variable w, over which we minimise, extracts
features from u that are rather seen as second-order features. The division between
first-order and second-order features is decided by the ratio /. If 8 is very large,
TGV? essentially becomes TV, i.e., a first-order regulariser, while if 8 is small, all
features of order larger than zero are gratis. In other words, only singularities, such
as edges, are penalised. The use of the symmetrised gradient demands an explana-
tion. A rationale is that if w = Vv is already the gradient of a smooth function v, then
Vw = V2yis symmetric. This connects TGV? to ICTV, which can be formulated as

ICTV(ﬁ’a)(u) = min (X”VM—VV”L]+ﬁ||V2V||F71.
veLl(Q)

Indeed,
TGV{j o) () SICTV g o) (1) < TV (u),

so that TGV? penalises higher-order features less than ICTV or TV.

A simple comparison of TGV? versus TV, showing how it avoids the stair-casing
effect of TV, can be found in Figure 1.1. While quite a bit is known analytically
about the artefacts introduced and features restored by TV [114, 23, 28, 41], a sim-
ilar study of TGV? and other advanced regularisers is a challenging ongoing effort
[17, 134, 131, 102, 104, 86]. A more complete analytical understanding would be
desirable towards the reliability of any regularisation method in critical real-life ap-
plications.
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4 First-order optimisation methods for imaging

Popular, well-performing, optimisation methods in the imaging community tend to
be based on variations of operator splitting and proximal (backward) steps. These
include the primal-dual method of Chambolle-Pock(-Bischof-Cremers) [26, 109],
the alternating directions method of multipliers (ADMM) and other Augmented
Lagrangian schemes [50], as well as FISTA [9, 8, 82]. While asymptotic conver-
gence properties of these methods are, in general, comparable to the gradient de-
scent method, in special cases they reach the O(1/N?) rate of Nesterov’s optimal
gradient method [94]. Folklore also tells us that they tend to reach a visually ac-
ceptable solution in fewer iterations. The performance of the methods unfortunately
decreases as the problems become increasingly ill-conditioned [81].

In all of the methods of this section, it is crucial to be able to calculate a proxi-
mal map, which we will shortly introduce. We gradually move from methods poten-
tially involving difficult proximal maps to ones that ease or partially eliminate their
computation. Generally the ones with difficult proximal maps are more efficient, if
the map can be computed efficiently. We first look at primal methods, especially
FISTA and its application to TV denoising in Section 4.2. We then study primal-
dual methods in Section 4.3, concentrating on the PDHGM, and Section 4.4, where
we concentrate on the GIST. First we begin with a few remarks about notation and
discretisation, however.

4.1 Remarks about notation and discretisation

Remark 1 (Discretisation). The methods considered in this section are in principle
for finite-dimensional problems, and stated in this way. We therefore have to discre-
tise our ideal infinite-dimensional models in Section 3. We take a cell width & > 0,
and set

Q,:=hZ"'NQ.

Then, if u : 2, — R, we define

VW= Y KV,

x€Q,

for V), a suitable discrete gradient operator on €2, e.g., a forward-differences oper-
ator. Similarly to the dual form (3), we also have

TV(u) = sup{ Z H'V* ¢ (x)u(x)

xXey,

¢ € D, sup [[9(x)]2 < 1},

xeQy,

where 7, denotes the set of all functions ¢ : Q, — R. Likewise, we replace the
operator A : L'(Q) — Z in (1), for any given space Z > f, by a discretisation Ay,



Optimising Big Images 11

discretising Z if necessary. Often in regularised inversion, Z is already discrete, how-
ever, as we have a finite number of measurements f = (f1,..., fi)-

In the following, we generally drop the subscript h and, working on an abstract
level, making no distinction between the finite-dimensional discretisations, and the
ideal infinite-dimensional formulations. The algorithms will always be applied to
the discretisations.

Remark 2 (Notation). In the literature more on the optimisation than imaging side,
often the primal unknown that we denote by u is denoted x, and the dual unknown
that we denote by p is denoted by y. We have chosen to use u for the unknown
image, common in the imaging literature, with x standing for a coordinate, i.e., the
location of a pixel within an image. Likewise, sometimes the role of the operators
A and K are interchanged, as is the role of the functionals F and G. With regard
to these, we use the convention in [26]. K is then always an operator occurring in
the saddle-point problem (Pg,4qie), and A occurs within the functional G, as in (1).
These notations are exactly the opposite in [82].

The spaces X and Y are always suitable finite-dimensional Hilbert spaces (iso-
morphic to R¥ for some k), usually resulting from discretisations of our ideal
infinite-dimensional image space and its predual.

4.2 Primal: FISTA, NESTA, etc.

Perhaps the best-known primal method for imaging problems is FISTA, or the
Fast Iterative Shrinkage-Thresholding Algorithm [9]. It is based on the forward-
backward splitting algorithm [79, 105]. A special case of this method has been de-
rived in the literature multiple times through various different means — we refer to
[38] for just one such derivation — and called the Iterative Shrinkage-Thresholding
Algorithm or ISTA. FISTA adds to this an acceleration scheme similar to Nesterov’s
optimal gradient method [94]. The method solves a general problem of the form

Il;nel)l(’l G(M) + F(I/t), (Pprirnal)
where X is a finite-dimensional Hilbert space, e.g., a discretisation of our image
space L'(£2). The functional F : X — (—oo,00] is convex but possibly non-smooth,
and G : X — R is continuous with a Lipschitz continuous gradient. It is naturally
assumed that the problem (Ppimar) has a solution.

We describe FISTA in Algorithm 1. A basic ingredient of the method is the prox-
imal map or resolvent Pr; of F. This may for a parameter 7 > 0, be written as

1
Pr+(u) ;= argmin {F(u) +—|lu— u’||%} .
’ u 27

Alternatively
Pre(u) = (I+7dF) (),
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Algorithm 1 FISTA [9] for (Ppimal)

Require: Ly Lipschitz constant of V f.
1: Initialisev! =u® € X, 1 :=1,and 7 := 1/Ly. Setk:=1.
2: repeat

3:  Compute uk = Pr (V= TVG(W)),

14 4/1+4i}
4:

iy = ——————,
1 2
t—1 —
5: = b B k.
Ti+1

6:  Update k:=k+1.
7: until A stopping criterion is fulfilled.

for JF the subgradient of F in terms of convex analysis; for details we refer to
[115, 64]. More information about proximal maps may be found, in particular, in
[117]. The update

Wb = P (uF)

with step length 7 is known as the backward or proximal step. Roughly, the idea in
FISTA is to take a gradient step with respect to G, and a proximal step with respect
to F. This is done in Step 3 of Algorithm 1. However, the gradient step does not
use the main iterate sequence {u*}>_, but an alternative sequence {v}7_,, which
is needed for the fast convergence. Step 4 and Step 5 are about acceleration. Step
4 changes the step length parameter for the additional sequence {v}, while Step
5 updates it such that it stays close to the main sequence; indeed v**! is an over-
relaxed or inertia version of u* — a physical interpretation is a heavy ball rolling
down a hill not getting stuck in local plateaus thanks to its inertia. The sequence
tx — oo, so that eventually

k+

VL 2k,

In this way, by using two different sequences, some level of second order informa-
tion can be seen to be encoded into the first-order algorithm.

FISTA is very similar to Nesterov’s optimal gradient method [94, 95], however
somewhat simplified and in principle applicable to a wider class of functions. Step
3 is exactly the same, and the only difference is in the construction of the sequence
{y**+1}= . In Nesterov’s method a more general scheme that depends on a longer
history is used. NESTA [10], based on Nesterov’s method, is effective for some
compressed sensing problems, and can also be applied to constrained total variation
minimisation, that is the problem (P°) with R = TV and G(u) = || f — Aul|3.

In principle, we could apply FISTA to the total variation denoising problem (2).
We would set G(u) = || f —u||3, and F (u) = ||Vu||. However, there is a problem.
In order for FISTA to be practical, the proximal map P;  has to be computationally
cheap. This is not the case for the total variation seminorm. This direct approach to
using FISTA is therefore not practical. The trick here is to solve the predual problem
of (2). (In the discretised setting, it is just the dual problem.) This may be written
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1
min —

min 5 |f—V*¢||3 subjectto [¢(x)]2 < o forallx € Q. (4)

We set |
G(9):= 5[/ =V'0l3, and F(9):=du3(9),

for
By(¢):={9 € Z|supycq |9(x)[]2 < a}.

(We recall that for a convex set B, the indicator function dg(¢) is zero if ¢ € B,
and +oo otherwise.) Now, the proximal map P ; is easy to calculate — it is just the
pixelwise projection onto the ball B(0, ¢t) in R”. We may therefore apply FISTA to
total variation denoising [8].

One might think of using the same predual approach to solving the more difficult
TGV? denoising problem

1
min 5H]uu\|§+TGVf ). (5)

The predual of this problem however has a difficult non-pointwise constraint set,
and the resulting algorithm is not efficient [16]. Therefore, other approaches are
needed.

4.3 Primal-dual: PDHGM, ADMM, and other variants on a theme
Both (2) and (5), as well as many more problems of the form
o1
min ||f — Aul3 + R(u), (©6)

for R=oTV or R = TGV%B‘ o) can in their finite-dimensional discrete forms be
written as saddle-point problems

minmax G(u)+ (Ku, p) — F*(p). (Psagdre)

ueX pey
Here G: X — (—o0,00] and F* : Y — (—oo, 0] are convex, proper, and lower semicon-
tinuous, and K : X — Y is a linear operator. The functional F* is moreover assumed
to be the convex conjugate of some F satisfying the same assumptions. Here the
spaces X and Y are again finite-dimensional Hilbert spaces. If Fg, ; is easy to calcu-
late for Go(u) := 1||f — Au|)3, then for R = aTV, we simply transform (6) into the
form (Pgaqqre) by setting

G=Go, K=V, and F*(p)=0s(p). )

ForR = TGV%ﬁ‘a), we write u = (v,w), p = (¢, ), and set
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Algorithm 2 PDHGM [26] for (Pg,qdie)

Require: L a bound on ||K||, over-relaxation parameter 6 (6 = 1 usually, for convergence proofs
to hold), primal and dual step lengths 7,6 > 0 such that ToL? < 1.
1: Initialise primal and dual iterate ' € X and p' € Y. Setk:= 1.
2: repeat

3:  Compute u!:= PGWT(uk — K" ph),

4: A= e by,

5: pl= PF*‘G(pk+GKIZk+1).

6: Update k :=k+1.
7: until A stopping criterion is fulfilled.

Algorithm 3 Accelerated PDHGM [26] for (Psaqgdie)

Require: L a bound on ||K||, ¥ > 0 factor of strong convexity of G or F*, initial primal and dual
step lengths 71,07 > 0 such that 7,0 12 <1.
1: Initialise primal and dual iterate u' € X and p' € Y. Set k := 1.

2: repeat

3:  Compute u!:= PGz, (u* — oKk p),

4. 6 := l/\/ 142y, Tk :=6cTk, and Opy:= Gk/ek,
5. SR P s Gk(ukH —uk)

6: pk+1 = PF*,gk+1(pk+Gk+|Kﬁk+l).

7:  Update k :=k+1.
8: until A stopping criterion is fulfilled.

G(u) = Go(v), Ku=(Vv—w,Ew), and F(p)ZSB‘;((b)-i-SB‘E(l[/). (8

Observe that G in (7) for TV is strongly convex if the nullspace .4 (K) = {0}, but
G in (8) is never strongly convex. This has important implications.

Namely, problems of the form (Pgygq1c) can be solved by the Chambolle-Pock(-
Bischof-Cremers) algorithm [26, 109], also called the modified primal dual hybrid-
gradient method (PDHGM) in [44]. In the presence of strong convexity of either
F* or G, a Nesterov acceleration scheme as in FISTA can be employed to speed up
the convergence to O(1/N?). The unaccelerated variant has rate O(1/N). Therefore
the performance of the method for TGV? denoising is theoretically significantly
worse than for TV. We describe the two variants of the algorithm, accelerated and
unaccelerated, in detail in Algorithm 2 and Algorithm 3, respectively.

The method is based on proximal or backward steps for both the primal and
dual variables. Essentially one holds u and p alternatingly fixed in (Pgyqqie), and
takes a proximal step for the other. However, this scheme, known as PDHG (primal-
dual hybrid gradient method, [147]), is generally not convergent. That is why the
over-relaxation or inertia step it* ! := uF*1 + 0 (uk+1 — u¥) for the primal variable
is crucial. We also need to take 6 = 1 for the convergence results to hold [26].
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Algorithm 4 Augmented Lagrangian method for min, F («) subject to Au = f

Require: A sequence of penalty parameters kN, 0, initial iterate u® € X, and initial Lagrange
multiplier ! € Y.
1: Define the Augmented Lagrangian

1
L, Ay ) = F () + (A, Au— ) + ﬂ\lAu—fH%

2: repeat

k—1

3:  Compute uk := argmin & (u, A¥; u*) starting from u*~!, and

4: AL = Ak (Auk —b) /u*.

5:  Update k:=k+1.
6: until A stopping criterion is fulfilled.

Naturally inertia step on the primal variables u could be replaced by a corresponding
step on the dual variable p.

It can be shown that the PDHGM is actually a preconditioned proximal point
method [56], see also [116, 133]. (This reformulation is the reason why the ordering
of the steps in Algorithm 2 is different from the original one in [26].) Proximal point
methods apply to general monotone inclusions, not just convex optimisation, and the
inertial and splitting ideas of Algorithm 2 have been generalised to those [80].

The PDHGM is very closely related to a variety other algorithms popular in
image processing. For K = I, the unaccelerated version of the method reduces [26]
to the earlier alternating direction method of multipliers (ADMM, [50]), which itself
is a variant of the classical Douglas-Rachford splitting algorithm (DRS, [40]), and
an approximation of the Augmented Lagrangian method. The idea here is to consider
the primal problem corresponding to (Pgaqqie), that is

min G(u)+ F(Ku).
Then we write this as

nulipn G(u)+F(p) subjectto Ku=p.
The form of the Augmented Lagrangian method in Algorithm 4 may be applied to
this. If, in the method, we perform Step 3 first with respect to u# and then respect to
p. keeping the other fixed, and keep the penalty parameter pu* constant, we obtain
the ADMM. For K = I, this will be just the PDHGM. For K # I, the PDHGM can
be seen as a preconditioned ADMM [44].

The ADMM is further related to the split inexact Uzawa method, and equals on
specific problems the alternating split Bregman method. This is again based on a
proximal point method employing in Fg ¢, instead of the standard L?-squared dis-
tance, alternative so-called Bregman distances related to the problem at hand; see
[121] for an overview. We refer to [121, 44, 26] for even further connections.
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Generalising, it can be said that FISTA performs better than PDHGM when
the computation of the proximal mappings it requires can be done fast [26]. The
PDHGM is however often one of the best performers, and often very easy to im-
plement thanks to the straightforward linear operations and often easy proximal
maps. It can be applied to TGV? regularisation problems, and generally outper-
forms FISTA, which was still used for TGV? minimisation in the original TGV
paper [16]. The problem is that the proximal map required by FISTA for the predual
formulation of TGV? denoising is too difficult to compute. The primal formulation
would be even more difficult, being of same form as the original problem. This lim-
its the applicability of FISTA. But the PDHGM is also not completely without these
limitations.

4.4 When the proximal mapping is difficult

In typical imaging applications, with R = TV or R = TGV?, the proximal map Pr+
corresponding to the regulariser is easy to calculate for PDHGM - it consists of
simple pointwise projections to unit balls. But there are many situations, when the
proximal map Fg, . corresponding to the data term is unfeasible to calculate on
every iteration of Algorithm 2. Of course, if the operator A = I is the identity, this is a
trivial linear operation. Even when A = S.% is a sub-sampled Fourier transform, the
proximal map reduces to a simple linear operation thanks to the unitarity % *.% =
F F* =1 of the Fourier transform. But what if the operator is more complicated,
or, let’s say

1
Go(v) = 51 — 4vl}3 + & (v)

for some difficult constraint set C? In a few important seemingly difficult cases,
calculating the proximal map is still very feasible. This includes a pointwise posi-
tive semi-definiteness constraint on a diffusion tensor field when A = I [135]. Here
also a form of unitary invariance of the constraint set is crucial [78]. If A # I with
the positivity constraint, the proximal mapping can become very difficult. If A is a
pointwise (pixelwise) operator, this can still be marginally feasible if special small
data interior point algorithms are used for its pointwise computation [136, 132].
Nevertheless, even in this case [136], a reformulation tends to be more efficient.
Namely, we can rewrite

1
Go(s) =sup (Av—£.3) = 343+ ()
Then, in case of TV regularisation, we set p = (¢, A4 ), and

Gluw) 1= bclu), Ku=(VuAu), and F*(p) = 8s;(9) + (1,2 + 5213
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Algorithm 5 GIST [82] for (Psaqqre) With (9)

1: Initialise primal and dual iterate u' € X and p' €Y. Setk := 1.
2: repeat

3:  Compute @' :=ut+AT(f—Au)— KT p¥,

4: pk+l = PF*‘] (pk+KIZk+l),
3- uk+l — uk -‘y—AT(f—Auk) _KTkar].

6:  Update k:=k+1.
7: until A stopping criterion is fulfilled.

The modifications for TGV? regularisation are analogous. Now, if the projection
into C is easy, and A and A* can be calculated easily, as is typically the case, appli-
cation of Algorithm 2 becomes feasible. The accelerated version is usually no longer
applicable, as the reformulated G is not strongly convex, and F* usually isn’t.

However, there may be better approaches. One is the GIST or Generalised It-
erative Soft Thresholding algorithm of [82], whose steps are laid out in detail in
Algorithm 5. As the name implies, it is also based on the ISTA algorithm as was
FISTA, and is a type of forward-backward splitting approach. It is applicable to
saddle-point problems (Pgaqqie) With

1
G(u) = S |If — Aul® ©)

In essence, the algorithm first takes a forward (gradient) step for u in the saddle-
point formulation (Pg,q4q1e), keeping p fixed. This is only used to calculate the point
where to next take a proximal step for p keeping u fixed. Then it takes a forward step
for u at the new p to actually update u. In this way, also GIST has a second over-
relaxation type sequence for obtaining convergence. If [|A|| < v/2 and ||K| < 1,
then GIST converges with rate O(1/N). We recall that forward-backward splitting
generally has rather stronger requirements for convergence, see [128] as well as
[62, 121] for an overview and relevance to image processing. Also, in comparison to
the PDHGM, the calculation of the proximal map of G is avoided, and the algorithm
requires less variables and memory than PDHGM with the aforementioned “dual
transportation” reformulation of the problem.

5 Second-order optimisation methods for imaging

Although second-order methods are more difficult to scale to large images, and the
non-smoothness of typical regularisers R causes complications, there has been a
good amount of work into second-order methods for total variation regularisation,
in particular for the ROF problem (2). Typically some smoothing of the problem is
required. The first work in this category is [140]. There, the total variation seminorm
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[IVul|2,1 is replaced by the smoothed version

Ve (u) ::/Q Va2 + edx. (10)

Then the Newton method is applied — after discretisation, which is needed for u
to live in and TV, to have gradients in a “nice” space. In the following, we will
discuss one further development, primarily to illustrate the issues in the application
of second order method to imaging problems, not just from the point of view of
big data, but also from the point of view of imaging problems. Moreover, second-
order methods generally find high-precision solutions faster than first-order methods
when it is feasible to apply one, and are in principle more capable of finding actual
local minimisers to non-convex problems. These include non-convex total variation
regularisation or inversion with non-linear forward operators.

5.1 Huber-regularisation

In recent works on second order methods, Huber-regularisation, also sometimes
called Nesterov-regularisation, is more common than the smoothing of (10). This
has the advantage of only distorting the one-norm of TV locally for small gradients,
and has a particularly attractive form in primal-dual or (pre)dual methods. More-
over, Huber-regularisation tends to ameliorate the stair-casing effect of TV. The
Huber-regularisation of the two-norm on R"” may for a parameter y > 0 be written

as
lgle =% lgla= 177,
|g|Y L Y 2 (11)
5lgllz; lgllz < 1/7.
Alternatively, in terms of convex conjugates, we have the dual formulation
1
el =max{ (6.8) - 3_IEIBE <R gl <1 (12)

In other words, the sharp corner of the graph of the two-norm is smoothed around
zero — the more the smaller the parameter 7 is. (Sometimes in the literature, our 7 is
replaced by 1/7, and so smaller value is less regularisation.) In the dual formulation,
we just regularise the dual variable. This helps to avoid its oscillation. With (11), we
may then define the (isotropic) Huber-regularised total variation as

TV, (u) := /Q IVu(x)lyd.
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5.2 A primal-dual semi-smooth Newton approach

In the infinite-dimensional setting, we add for a small parameter € > 0 the penalty
€||Vul|3 to (2), to pose it in a Hilbert space. This will cause the corresponding func-
tional to have “easy” subdifferentials without the measure-theoretic complications
of working in the Banach space of functions of bounded variation. With Huber-
regularisation, (2) then becomes differentiable, or “semismooth” [111, 32]. A gen-
eralised Newton’s method can be applied. We follow here the “infeasible active set”
approach on the predual problem (4), developed in [59], but see also [73]. In fact,
we describe here the extension in [85] for solving the more general problem

1 N
min_ g||Vu|5+ S [|f —Aul5 + 05'/ Kiul(x)|,dx, P
MEHI(Q;RN) H H2 2||f ||2 ]:Xll ] QH J ]( )|Y ( SSN)

where A : H'(Q;R™) — L2(Q), and K; : H' (Q;R™) — LY (Q;R™), (j=1,...,N),
are linear operators with corresponding weights o; > 0. This formulation is applica-
ble to the TGV denoising problem (5) by setting u = (v,w), Au=v, Kju = Vv —w,
and Kru = &w. The first-order optimality conditions for (Pssn) may be derived as

N
—eAu+A*Au+Y Kipj=A*f, (13a)
i=1
max{1/y,|[Kjul(x)|2}p;(x) — a;[Kjul(x) =0, (j=1,...,N;x€ Q). (13b)

Here (13b) corresponds pointwise for the optimality of & = p;(x)/o; for g =
a[Kju)(x) and ¥ = y/a; in (12). To see why this is right, it is important to observe
that a|g|y = |aglyq. Even in a finite-dimensional setting, although we are naturally
in a Hilbert space, the further regularisation by €||Vu||3 is generally required to make
the system matrix invertible. If we linearise (13b), solve the resulting linear system
and update each variable accordingly, momentarily allowing each dual variable p;
to become infeasible, and then project back into the respective dual ball, we obtain
Algorithm 6. For details of the derivation we refer to [59, 85]. Following [125], it
can be shown that the method converges locally superlinearly near a point where
the subdifferentials of the operator on (u, py,... py) corresponding to (13) are non-
singular. Further dampening as in [59] guarantees local superlinear convergence at
any point.

Remark 3. If one wants to use a straightforward Matlab implementation of Algo-
rithm 6 with TGV? and expect anything besides a computer become a lifeless brick,
the system (14) has to be simplified. Indeed B is invertible, so we may solve du from

N
Béu=R,— Y Kjbp;. (15)
=1
Thus we may simplify du out of (14), and only solve for dp;,...,8py using a
reduced system matrix. Finally we calculate du from (15).
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Algorithm 6 An infeasible semi-smooth Newton method for (Pssn) [59, 85]

Require: Step length 7 > 0.
1: Define the helper functions

m;(u)(x) == max{1/7,|[Kju] ()|}, [D(p)g](x) := p(x)q(x),

0, ()2 < 1/7,
N(z)(x) := (x€ Q).
2 @l > 17,
2: Initialise primal iterate u' and dual iterates (p',...,p"). Set k := 1.
3: repeat
4:  Solve (6u,épi,...,0py) from the system
B, K Ky Su
—o1 K +m(K1uk)*'D(p1)K1 ’D(mj(uk)) 0 0 opi
. . . =R (14)
: 0 " 0 :
*(XNKN+m(KNMk)*©(pN)KN 0 0 @(mN(u)) (Sp}v
where
—Buk =Y Kiph+ AT f
alKlu"—D(ml(u))p’f
R .= . )
OtNKNuk fD(mN(uk))p’,i,
and
B:= —eA+A%A.
5:  Update
@ BB = (W 4 T8, i+ T8, pi + T8 pN),
6: Project

Pt =P ay), where B(p:ia)(x) = sgn(p(x)) min{a, |p(x)]},

7:  Update k :=k+ 1.
8: until A stopping criterion is satisfied.

In [85], the algorithm is compared against the PDHGM (Algorithm 2) both for
TV and TGV? denoising, (2) and (5), respectively. It is observed that the per-
formance can be comparable to PDHGM for TV with images up to size about
256 x 256. In case of TGV? the method performs significantly worse due to the
SSN system (14) being worse-conditioned, and the data size of TGV? being far
larger through the additional variables w and p,. For images in the range 512 x 512
the method is no longer practical on current desktop computers, so definitely not for
multi-million megapixel real-life photographs.
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5.3 A note on interior point methods

Application of interior point methods to (2) — which can be very easily done with
CVX [53, 52] — has similar scalability problems as Algorithm 6. This is mainly
due to excessive memory demands. For small problem sizes the performance can
be good when high accuracy is desired — especially the commercial MOSEK solver
performs very well. However, as is to be expected, the performance deteriorates
quickly as problem sizes increase and the interior point formulations become too
large to fit in memory [75, 107].

A way forward for second-order methods is to use preconditioning to make the
system matrix better conditioned, or to split the problem into smaller pieces using
domain decomposition techniques. We will discuss what early progress has been
made in this area in Section 7.2.

5.4 Methods for non-convex regularisers

One reason for us introducing Algorithm 6, despite being evidently not up to the
processing of big images at this stage, is that the same ideas can be used derive
methods for solving non-convex total variation problems [60, 61, 63]

1
min o1~ Aul3+ o | y(IVu(o)])dx. (16
u JQ

Here y : [0,00) — [0,0) is a concave energy that attempts to model real gradient
distributions in images, recall Figure 4. Usually y(¢) = ¢4 for ¢ € (0,1) although
this has significant theoretical problems [63]. Alternative, first-order, approaches
include the iPiano of [98], which looks a lot like FISTA, allowing F in (Pprimar) to be
non-convex and modifying the updates a little. The PDHGM has also recently been
extended to “semiconvex” F [92]; this includes (16) when the energies y(¢) = 7
are linearised for small 7. No comparisons between the methods are known to the
author.

6 Non-linear operators and methods for iterative regularisation

We now discuss typical and novel approaches for two closely related topics: in-
verse problems with non-linear forward operators A, and iterative regularisation.
Overall, the workhorse algorithms in this category are much less developed than for
Tikhonov regularisation with linear forward operators, in which case both data and
convex terms are convex.
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Algorithm 7 Gauss-Newton method for (P) with (17)

1: Initialise primal iterate u' € X. Set k := 1.
2: repeat
3:  Solve for u**! := u the convex problem

min %HffA(uk)fVA(uk)(ufuk)H%wLaR(u). (18)

4:  Update k :=k+1.
S5: until A stopping criterion is fulfilled.

6.1 Inverse problems with non-linear operators

We now let A be a non-linear operator and set

1
Glu) = ||f = Aw)]3. (17)

Although second-order methods in particular could in principle be applied to smoothed
versions of the resulting Tikhonov problem (Pg), in inverse problems research, a
classical approach in this case is the Gauss-Newton method, described in Algorithm
7. It is based on linearising A at an iterate u* and solving the resulting convex prob-
lem at each iteration until hopeful eventual convergence. This can be very expensive,
and convergence is not generally guaranteed [97], as experiments in [133] numeri-
cally confirm. However, for the realisation of the algorithm, it is not necessary that
R is (semi-)smooth as with Newton type methods.

A more recent related development is the primal-dual hybrid gradient method
for non-linear operators (NL-PDHGM, [133]), which we describe in Algorithm 8.
It extends the iterations of the PDHGM (Algorithm 2) to non-linear K in the saddle-
point problem (Pg,qq1e). That is, it looks for critical points of the problem

minmax G(u)+ (K(u),p) — F*(p), (Phl-saddle)

where now K € C2(X;Y), but G : X — (—o0,00] and F* : ¥ — (—oo, 0] are still con-
vex, proper, and lower semicontinuous. Through the reformulations we discussed in
Section 4.4, it can also be applied when G is as in (17) with nonlinear A. Accord-
ing to the experiments in [133], the NL-PDHGM by far outperforms Gauss-Newton
on example problems from magnetic resonance imaging. Moreover, the non-linear
models considered improve upon the visual and PSNR performance of earlier linear
models in [135, 136] for diffusion tensor imaging, and in [11] for MR velocity imag-
ing, cf. also [145]. The method can be proved to converge locally on rather strict
conditions. For one, Huber-regularisation of TV or TGV? is required. The second
peculiar condition is that the regularisation parameter & and the noise level 6 have
to be “small”. An approximate linearity condition, as with the is common with the
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Algorithm 8 NL-PDHGM [133] for (Py1-sadde)

Require: L a local bound on ||VK(u)|| in a neighbourhood of a solution (u*, p*), over-relaxation
parameter 6 (usually 6 = 1 for convergence results to hold), primal and dual step lengths
7,0 > 0 such that ToL? < 1.

1: Initialise primal and dual iterate u' € X and p' € Y. Set k := 1.
2: repeat

3: Compute W= Pc‘r(uk - T[VK(Mk)]*Pk)’

4: L-‘k+l = uk+l + e(uk+1 —Mk),

5: pk+l = PF*,g(pk-FGK(ﬁkH)).

6: Update k:=k+1.
7: until A stopping criterion is fulfilled.

combination of the Gauss-Newton method with iterative regularisation, discussed
next, is however not required.

6.2 Iterative regularisation

We now briefly consider solution approaches for the constrained problem (P%),
which tends to be much more difficult than the Tikhonov problem (Pg). In some
special cases, as we’ve already mentioned, NESTA [10] can be applied. One can
also apply the classical Augmented Lagrangian method [97]. If one minimises R
subject to the exact constraint Au = f, the method has the form in Algorithm 4
with a suitable rule of decreasing the penalty parameter u¥. The latter has roughly
the same role here as « in the Tikhonov problem (P). Thus the Augmented La-
grangian method forms a way of iterative regularisation, if we actually stop the it-
erations when Morozov’s discrepancy principle is violated. (In this case, we do not
expect Au = f to have a solution, but require ||Au— f|| < & to have a solution.) If we
fix u* = 1 the Augmented Lagrangian method then corresponds [144] to so-called
Bregman iterations [100, 51] on (P). Another way to view this is that one keeps
o in (Py) fixed, but, iterating its solution, replaces on each iteration the distance
1||Au— £||3 by the Bregman distance

Dg(u,u ™) = Glu) = G ™) = (Au—u*),

for G(u) = %HAu — f|13, and A € dG(u*~1). This scheme has a marked contrast-
enhancing effect compared to the basic Tikhonov approach.

But how about just letting o \, 0 in (P¢), as we discussed in Section 2, and stop-
ping when Morozov’s discrepancy principle is violated? This is equally feasible for
linear A as the Augmented Lagrangian approach. But what if A is non-linear? The
Gauss-Newton approach for solving each of the inner Tikhonov problems results
in this case in three nested optimisation loops: one for o ~\, 0, one for solving the
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non-convex problem for & = 0y, and one for solving (18). Aside from toy problem:s,
this start to be computationally unfeasible. There is some light at the end of the tun-
nel however: the Levenberg-Marquardt, and iteratively regularised Landweber and
Gauss-Newton (IRGN) methods [14, 67]. Similar approaches can also be devised
for Bregman iterations when A is nonlinear [7].

The iteratively regularised Levenberg-Marquardt scheme [43, 55, 67] is the one
most straightforward for general regularisers, including the non-smooth ones we
are interested in. In the general case, a convergence theory is however lacking to
the best of our knowledge, unless the scheme is Bregmanised as in [7]. Bregman
distances have indeed been generally found useful for the transfer of various results
from Hilbert spaces to Banach spaces [120]. Nevertheless, the Levenberg-Marquardt
scheme combines the Gauss-Newton step (18) with the parameter reduction scheme
o \( 0 into a single step. It then remains to solve (18) for & = o with another
method, such as those discussed in Section 4. For the simple, smooth, regulariser
R(u) = ||u — uo||*, not generally relevant to imaging problems, the iteratively regu-
larised Landweber and Gauss-Newton methods can combine even this into a single
overall loop. Convergence requires, in general, a degree of approximate linearity
from A. In the worst case, this involves the existence of 17,p > 0 and a solution u*
of A(u*) = f such that

14 () = A(u) = VA(u) (@ —w)[| < nlju—ull|A(u) —A@)], (19)

whenever u and u satisfy ||u —u*||, ||@ — u*|| < p. Although (19) and related condi-
tions can be shown to hold for certain non-linear parameter identification problems,
in general it is rarely satisfied [43, 67]. For example, (19) is not satisfied by the oper-
ators considered for magnetic resonance imaging (MRI) in [133], where Algorithm
8 was developed.

7 Emerging topics

We finish this chapter with a brief overlook at a couple of topics that have the poten-
tial to improve image optimisation performance, and turn other challenges into big
data challenges. The latter, discussed first, is convex relaxation, which transforms
difficult non-convex problems into large-scale convex problems. The former is de-
composition and preconditioning techniques, which seek to turn large problems into
smaller ones.

7.1 Convex relaxation

The basic idea behind convex relaxation approaches is to lift a non-convex problem
into a higher-dimensional space, where it becomes convex. This kind of approaches
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are becoming popular in image processing, especially in the context of the difficult
problem of segmentation, and the Mumford-Shah problem [91]. This may be written

1 -
min 3£ —ul3+a [ [Vu(o)Bax+ B (0) 20)

Here u is a function of bounded variation, which may have discontinuities J,,, corre-
sponding to boundaries of different objects in the scene f. The final term measures
their length, and the middle term forces u to be smooth outside the discontinuities;
for details we refer to [3]. The connected components of 2, as split by J,, allow us
to divide the scene into different segments.
Let us consider trying to solve for u € L'(2) and a general non-convex G the
problem
min  G(u). 21
uell(Q)

Any global solution of this problem is a solution of

min  G(u),
ueLll(Q) (u)

where G is the convex lower semicontinuous envelope of G, or the greatest lower
semicontinuous convex function such that G < G. The minimum values of the func-
tionals agree, and under some conditions, the minimisers of G and G agree.

But how to compute G? It turns out that in some cases [24], it is significantly
easier to calculate the convex lower semicontinuous envelope of

g@y:{aw,vM%

oo, otherwise,

Here
L={(x1) e QxR|r<ux)}

is the lower graph of u, while v € L' (Q x R;[0,1]). Then

G(u) =9 (xr,),

and instead of solving (21), one attempts to solve the convex problem

min G(v)
veL! (Q xR;[0,1])

Observe that v lives in a larger space than u. Although the problem has become
convex and more feasible to solve globally than the original one, it has become
bigger.

Often [24], one can write

Gv)=sup | VP(x0)v(x,1)d(x.1)
pck JOXR
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for some closed convex set K C Co(2 x R;R““). In some cases, the set K has a
numerically realisable analytical expression, although the dimensions of K make the
problem even bigger.

A particularly important case when K has a simple analytical expression is the
for the Mumford-Shah problem (20) [2]. Other problems that can, at least roughly,
be handled this way include regularisation by Euler’s elastica [18] and multi-label
segmentation [108]. Although not exactly fitting this framework, total variation reg-
ularisation of discretised manifold-valued data, such as normal fields or direction
vectors, can also be performed through convex relaxation in a higher-dimensional
space [77]. This approach also covers something as useless, but of utmost mathe-
matical satisfaction, as the smoothing of the path of an ant lost on the Mobius band.

7.2 Decomposition and preconditioning techniques

The idea in domain decomposition is to divide a big problem into small sub-
problems, solve them, and then combine the solutions. This area is still in its infancy
within image processing, although well researched in the context of finite element
methods for partial differential equations. The current approaches within the field
[57, 58, 48, 49] are still proof-of-concept meta-algorithms that have not replaced the
more conventional algorithms discussed in Section 4 and Section 5. They pose dif-
ficult (but smaller) problems on each sub-domain. These then have to be solved by
one of the conventional algorithms multiple times within the meta-algorithm, which
within each of its iterations performs subspace correction to glue the solutions to-
gether. In case of second-order methods, i.e., if high accuracy is desired, even cur-
rent domain decomposition techniques may however make problems of previously
untractable size tractable.

Depending on the operator A, the first-order methods discussed in Section 4 are
however usually easily parallelised within each iteration on multiple CPU cores
or on a graphics processing unit (GPU), cf. e.g. [137]. Any advantages of do-
main decomposition meta-algorithms are therefore doubtful. Intelligent decom-
position techniques could however help to reduce the workload within each it-
eration. This is, roughly, the idea behind stochastic coordinate descent methods,
popular in general big data optimisation. We point in particular to [47] for an
approach related to FISTA, to [126, 13] for ones related to the ADMM, and to
[129, 113,96, 72, 146, 35, 142] for just a small selection of other approaches. These
methods update on each of their iterations only small subsets of unknown variables,
even single variables or pixels, and obtain acceleration from local adaptation of step
lengths. All of this is done in a random fashion to guarantee fast expected conver-
gence on massive data sets. This type of methods form an interesting possibility for
image processing.

Stochastic coordinate descent methods generally, however, demand a degree of
separability from the problem, limiting the degree of dependence of each variable
from other variables. This is necessary both for parallelisation and to prevent lock-
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up — to guarantee, statistically, that the randomly chosen variable can be updated
without other variables restricting this. This is generally a problem for imaging ap-
plications that often lack this level of separability. However, the “coordinate-descent
FISTA” of [47], for example, is applicable to the predual formulation (4) of TV de-
noising. In our preliminary experiments (with Olivier Fercoq and Peter Richtérik),
we did not however obtain any acceleration compared to standard FISTA. The prob-
lem is that the matrix for the divergence operator in (4) is very uniform. The acceler-
ation features of the current line-up of stochastic gradient descent methods however
depend on varying “local curvature” of the problem in terms of local features of the
Hessian of the objective. In (4) the Hessian only involves the “uniformly curved”
divergence operator, and not the data itself. Therefore, no significant acceleration is
obtained, aside from possibly better parallelisation performance, for example on a
GPU.

Another alternative to typical domain decomposition techniques is precondition-
ing — something that has been studied for a long time for general numerical linear
algebra, but is still making its inroads into mathematical image processing. Domain
decomposition in its per-iteration form can also seen as an approach to precondi-
tioning, of course. Here the idea is to make each iteration cheaper, or, in a sense,
to adapt the step sizes spatially. This can be done in the context of the PDHGM,
exploiting the proximal point formulation; see [107], where spatial adaptation of
the step lengths reportedly significantly improved the performance of the PDHGM.
Another recent alternative for which promising performance has been reported, is
the use of the conventional Douglas-Rachford splitting method with Gauss-Seidel
preconditioning in [19].

Conclusions

In this chapter, we have taken a look into the state-of-the-art of optimisation algo-
rithms suitable for solving mathematical image processing models. Our focus has
been on relatively simple first-order splitting methods, as these generally provide
the best performance on large-scale images. Moving from FISTA and PDHGM to
GIST, we have gradually changed the types of proximal mappings that need to be
computed, at the cost of expanding the problem size or reducing theoretical conver-
gence rate. We have also taken a brief look at stochastic gradient descent methods,
popular for more general big data problems. At the present stage, such methods
are, however, unsuitable for imaging problems. There is thus still significant work
to be done in this area— can we come up with an optimisation method that would
put mathematically-based state-of-the-art image enhancement models on a pocket
camera?
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