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Abstract. We consider a bilevel optimisation approach for parameter learning
in higher-order total variation image reconstruction models. Apart from the least
squares cost functional, naturally used in bilevel learning, we propose and analyse
an alternative cost, based on a Huber regularised TV-seminorm. Differentiability
properties of the solution operator are verified and a first-order optimality system
is derived. Based on the adjoint information, a quasi-Newton algorithm is pro-
posed for the numerical solution of the bilevel problems. Numerical experiments
are carried out to show the suitability of our approach and the improved perfor-
mance of the new cost functional. Thanks to the bilevel optimisation framework,
also a detailed comparison between TGV2 and ICTV is carried out, showing the
advantages and shortcomings of both regularisers, depending on the structure of
the processed images and their noise level.

1. Introduction

In this paper we propose a bilevel optimisation approach for parameter learning in
higher-order total variation regularisation models for image restoration. The recon-
struction of an image from imperfect measurements is essential for all research which
relies on the analysis and interpretation of image content. Mathematical image re-
construction approaches aim to maximise the information gain from acquired image
data by intelligent modelling and mathematical analysis.

A variational image reconstruction model can be formalised as follows. Given data
f which is related to an image (or to certain image information, e.g. a segmented or
edge detected image) u through a generic forward operator (or function) K the task
is to retrieve u from f . In most realistic situations this retrieval is complicated by
the ill-posedness of K as well as random noise in f . A widely accepted method that
approximates this ill-posed problem by a well-posed one and counteracts the noise is
the method of Tikhonov regularisation. That is, an approximation to the true image
is computed as a minimiser of

(1.1) α R(u) + d(K(u), f),

where R is a regularising energy that models a-priori knowledge about the image u,
d(·, ·) is a suitable distance function that models the relation of the data f to the
unknown u, and α > 0 is a parameter that balances our trust in the forward model
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against the need of regularisation. The parameter α in particular, depends on the
amount of ill-posedness in the operator K and the amount (amplitude) of the noise
present in f . A key issue in imaging inverse problems is the correct choice of α, image
priors (regularisation functionals R), fidelity terms d and (if applicable) the choice
of what to measure (the linear or nonlinear operator K). Depending on this choice,
different reconstruction results are obtained.

While functional modelling (1.1) constitutes a mathematically rigorous and phys-
ical way of setting up the reconstruction of an image – providing reconstruction
guarantees in terms of error and stability estimates – it is limited with respect to its
adaptivity for real data. On the other hand, data-based modelling of reconstruction
approaches is set up to produce results which are optimal with respect to the given
data. However, in general it neither offers insights into the structural properties of
the model nor provides comprehensible reconstruction guarantees. Indeed, we believe
that for the development of reliable, comprehensible and at the same time effective
models (1.1) it is essential to aim for a unified approach that seeks tailor-made regu-
larisation and data models by combining model- and data-based approaches.

To do so we focus on a bilevel optimisation strategy for finding an optimal setup
of variational regularisation models (1.1). That is, for a given training pair of noisy
and original clean images (f, f0), respectively, we consider a learning problem of the
form

(1.2) minF (u∗) = cost(u∗, f0) subject to u∗ ∈ arg min
u

{α R(u) + d(K(u), f)} ,

where F is a generic cost functional that measures the fitness of u∗ to the original im-
age f0. The argument of the minimisation problem will depend on the specific setup
(i.e. the degrees of freedom) in the constraint problem (1.1). In particular, we pro-
pose a bilevel optimisation approach for learning optimal parameters in higher-order
total variation regularisation models for image reconstruction in which the arguments
of the optimisation constitute parameters in front of the first- and higher-order regu-
larisation terms. Rather than working on the discrete problem, as is done in standard
parameter learning and model optimisation methods, we optimise the regularisation
models in infinite dimensional function space. We will explain this approach in more
detail in the next section. Before, let us give an account to the state of the art of
bilevel optimisation for model learning. In machine learning bilevel optimisation is
well established. It is a semi-supervised learning method that optimally adapts itself
to a given dataset of measurements and desirable solutions. In [34, 18, 14], for in-
stance the authors consider bilevel optimization for finite dimensional Markov random
field models. In inverse problems the optimal inversion and experimental acquisition
setup is discussed in the context of optimal model design in works by Haber, Horesh
and Tenorio [21, 20], as well as Ghattas et al. [8, 3]. Recently parameter learning
in the context of functional variational regularisation models (1.1) also entered the
image processing community with works by the authors [16, 9], Kunisch, Pock and
co-workers [26, 13], Chung et al. [15] and Hintermüller et al. [24].

Apart from the work of the authors [16, 9], all approaches so far are formulated
and optimised in the discrete setting. Our subsequent modelling, analysis and opti-
misation will be carried out in function space rather than on a discretisation of (1.1).
While digitally acquired image data is of course discrete, the aim of high resolution
image reconstruction and processing is always to compute an image that is close to
the real (analogue, infinite dimensional) world. Hence, it makes sense to seek images
which have certain properties in an infinite dimensional function space. That is, we
aim for a processing method that accentuates and preserves qualitative properties in
images independent of the resolution of the image itself [36]. Moreover, optimisation
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methods conceived in function space potentially result in numerical iterative schemes
which are resolution and mesh-independent upon discretisation [23].

Higher-order total variation regularisation has been introduced as an extension of
the standard total variation regulariser in image processing. As the Total Variation
(TV) [32] and many more contributions in the image processing community have
proven, a non-smooth first-order regularisation procedure results in a nonlinear smooth-
ing of the image, smoothing more in homogeneous areas of the image domain and
preserving characteristic structures such as edges. In particular, the TV regulariser is
tuned towards the preservation of edges and performs very well if the reconstructed
image is piecewise constant. The drawback of such a regularisation procedure becomes
apparent as soon as images or signals (in 1D) are considered which do not only con-
sist of constant regions and jumps, but also possess more complicated, higher-order
structures, e.g. piecewise linear parts. The artefact introduced by TV regularisation
in this case is called staircasing [31]. One possibility to counteract such artefacts is
the introduction of higher-order derivatives in the image regularisation. Chambolle
and Lions [10], for instance, propose a higher order method by means of an infimal
convolution of the TV and the TV of the image gradient called Infimal-Convolution
Total Variation (ICTV) model. Other approaches to combine first and second order
regularisation originate, for instance, from Chan, Marquina, and Mulet [11] who con-
sider total variation minimisation together with weighted versions of the Laplacian,
the Euler-elastica functional [29, 12] which combines total variation regularization
with curvature penalisation, and many more [27, 30] just to name a few. Recently
Bredies et al. have proposed Total Generalized Variation (TGV) [5] as a higher-order
variant of TV regularisation.

In this work we mainly concentrate on two second-order total variation models:
the recently proposed TGV [5] and the ICTV model of Chambolle and Lions [10].
We focus on second-order TV regularisation only since this is the one which seems to
be most relevant in imaging applications [25, 4]. For Ω ⊂ R2 open and bounded and
u ∈ BV (Ω), the ICTV regulariser reads

(1.3) ICTVα,β(u) := min
v∈W 1,1(Ω), ∇v∈BV (Ω)

α‖Du−∇v‖M(Ω;R2) + β‖D∇v‖M(Ω;R2×2).

On the other hand, second-order TGV [7, 6] for u ∈ BV (Ω) reads

(1.4) TGV2
α,β(u) := min

w∈BD(Ω)
α‖Du− w‖M(Ω;R2) + β‖Ew‖M(Ω;Sym2(R2)).

Here BD(Ω) := {w ∈ L1(Ω;Rn) | ‖Ew‖M(Ω;Rn×n) < ∞} is the space of vector fields

of bounded deformation on Ω, E denotes the symmetrised gradient and Sym2(R2) the
space of symmetric tensors of order 2 with arguments in R2. The parameters α, β are
fixed positive parameters and will constitute the arguments in the special learning
problem á la (1.2) we consider in this paper. The main difference between (1.3) and
(1.4) is that we do not generally have that w = ∇v for any function v. That results in
some qualitative differences of ICTV and TGV regularisation, compare for instance
[1]. Substituting αR(u) in (1.1) by TGV2

α,β(u) or ICTVα,β(u) gives the TGV image
reconstruction model and the ICTV image reconstruction model, respectively. In this
paper we only consider the case K = Id identity and d(u, f) = ‖u− f‖2L2(Ω) in (1.1)

which corresponds to an image de-noising model for removing Gaussian noise. With
our choice of regulariser the former scalar α in (1.1) has been replaced by a vector
(α, β) of two parameters in (1.4) and (1.3). The choice of the entries in this vector
now do not only determine the overall strength of the regularisation (depending on
the properties of K and the noise level) but those parameters also balance between
the different orders of regularity of the function u, and their choice is indeed crucial
for the image reconstruction result. Large β will give regularised solutions that are
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close to TV regularised reconstructions, compare Figure 1. Large α will result in TV2

type solutions, that is solutions that are regularised with TV of the gradient [22, 30],
compare Figure 2. With our approach described in the next section we propose a
learning approach for choosing those parameters optimally, in particular optimally
for particular types of images.

(a) Too low β / High oscil-
lation

(b) Optimal β (c) Too high β / almost TV

Figure 1. Effect of β on TGV2 denoising with optimal α

(a) Too low α, low β.
Good match to noisy data

(b) Too low α, optimal β.
optimal TV 2-like behaviour

(c) Too high α, high β.
Bad TV2-like behaviour

Figure 2. Effect of choosing α too large in TGV2 denoising

For the existence analysis of an optimal solution as well as for the derivation of
an optimality system for the corresponding learning problem (1.2) we will consider
a smoothed version of the constraint problem (1.1) – which is the one in fact used
in the numerics. That is, we replace R(u) – being TV, TGV or ICTV in this paper
– by a Huber regularised version and add an H1 regularisation with a small weight
to (1.1). In this setting and under the special assumption of box constraints on α
and β we provide a simple existence proof for an optimal solution. A more general
existence result that holds also for the original non-smooth problem and does not
require box constraints is derived in [17] and we refer the reader to this paper for a
more sophisticated analysis on the structure of solutions.

A main challenge in the setup of such a learning approach is to decide what is the
best way to measure fitness (optimality) of the model. In our setting this amounts to
choosing an appropriate distance F in (1.2) that measures the fitness of reconstructed
images to the ‘perfect’, noise-free images in an appropriate training set. We have
to formalise what we mean by an optimal reconstruction model. Classically, the
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difference between the original, noise-free image f0 and its regularised version uα,β is
computed with an L2

2 cost functional

(1.5) FL2
2
(uα,β) = ‖uα,β − f0‖2L2(Ω),

which is closely related to the PSNR quality measure. Apart from this, we propose
in this paper an alternative cost functional based on a Huberised total variation cost

(1.6) FL1
η∇(uα,β) :=

∫
Ω
|D(uα,β − f0)|γ dx,

where the Huber regularisation | · |γ will be defined later on in Definition 2.1. We
will see that the choice of this cost functional is indeed crucial for the qualitative
properties of the reconstructed image.

The proposed bilevel approach has an important indirect consequence: It estab-
lishes a basis for the comparison of the different total variation regularisers employed
in image denoising tasks. In the last part of the paper we exhaustively compare the
performance of TV, TGV2 and ICTV for various image datasets. The parameters are
chosen optimally, according to the proposed bilevel approach, and different quality
measures (like PSNR and SSIM) are considered for the comparison. The obtained
results are enlightening about when to use each one of the considered regularisers. In
particular, ICTV appears to behave better for images with arbitrary structure and
moderate noise levels, whereas TGV2 behaves better for images with large smooth
areas.

Outline of the paper In Section 2 we state the bilevel learning problem for the
two higher-order total variation regularisation models, TGV and ICTV, and prove
existence of an optimal parameter pair α, β. The bilevel optimization problem is anal-
ysed in Section 3, where existence of Lagrange multipliers is proved and an optimality
system, as well as a gradient formula, are derived. Based on the optimality condition,
a BFGS algorithm for the bilevel learning problem is devised in Section 5.1. For
the numerical solution of each denoising problem an infeasible semi-smooth Newton
method is considered. Finally, we discuss the performance of the parameter learning
method by means of several examples for the denoising of natural photographs in
Section 5. Therein, we also present a statistical analysis on how TV, ICTV and TGV
regularisation compare in terms of returned image quality, carried out on 200 images
from the Berkeley segmentation dataset BSDS300.

2. Problem statement and existence analysis

We strive to develop a parameter learning method for higher-order total variation
regularisation models that maximises the fit of the reconstructed images to training
images simulated for an application at hand. For a given noisy image f ∈ L2(Ω),
Ω ⊂ R2 open and bounded, we consider

(2.1) min
u

{
Rα,β(u) +

1

2
‖u− f‖2L2(Ω)

}
.

where, α, β ∈ R. We focus on TGV2 and ICTV image denoising:

Rα,β(u) = TGV2
α,β(u) := min

w∈BD(Ω)
‖α (Du− w)‖M(Ω;R2)

+ ‖β Ew‖M(Ω;Sym2(R2)).
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and (1.3) with spatial dependence

Rα,β(u) = ICTVα,β(u) := min
v∈W 1,1(Ω)
∇v∈BV (Ω)

‖α (Du−∇v)‖M(Ω;R2)

+ ‖β D∇v‖M(Ω;R2×2),

for u ∈ BV (Ω). For this model, we want to determine the optimal choice of α, β,
given a particular type of images and a fixed noise level. More precisely, we consider a
training pair (f, f0), where f is a noisy image corrupted by normally distributed noise
with a fixed variation, and the image f0 represents the ground truth or an image that
approximates the ground truth within a desirable tolerance. Then, we determine the
optimal choice of α, β by solving the following problem

(2.2) min
(α,β)∈R2

F (uα,β) s.t. α, β ≥ 0,

where F equals the L2
2 cost (1.5) or the Huberised TV cost (1.6) and uα,β for a given

f solves a regularised version of the minimization problem (2.1) that will be specified
in the next section, compare problem (2.3b). This regularisation of the problem is
a technical requirement for solving the bilevel problem that will be discussed in the
sequel. In contrast to learning α, β in (2.1) in finite dimensional parameter spaces (as
is the case in machine learning) we aim for novel optimisation techniques in infinite
dimensional function spaces.

2.1. Formal statement. Let Ω ⊂ Rn be an open bounded domain with Lipschitz
boundary. This will be our image domain. Usually Ω = (0, w) × (0, h) for w and h
the width and height of a two-dimensional image, although no such assumptions are
made in this work. Our data f and f0 are assumed to lie in L2(Ω).

In our learning problem, we look for parameters (α, β) that for some cost functional
F : H1(Ω)→ R solve the problem

(2.3a) min
(α,β)∈R2

F (uα,β)

subject to

uα,β ∈ arg min
u∈H1(Ω)

Jγ,µ(u;α, β)(2.3b)

α, β ≥ 0,(2.3c)

where

Jγ,µ(u;α, β) :=
1

2
‖u− f‖2L2(Ω) +Rγ,µα,β(u).

Here Jγ,µ(·;α, β) is the regularised denoising functional that amends the regularisa-
tion term in (2.1) by a Huber regularised version of it with parameter γ > 0, and an
elliptic regularisation term with parameter µ > 0. In the case of TGV2 the modified
regularisation term Rγ,µα,β(u) then reads for u ∈ H1(Ω)

TGV2,γ,µ
α,β (u) := min

w∈H1(Ω)

∫
Ω
α |Du− w|γ dx

+

∫
Ω
β |Ew|γ dx+

µ

2

(
‖u‖2H1(Ω) + ‖w‖2H1(Ω)

)
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and in the case of ICTV we have

ICTVγ,µ
α,β(u) := min

v∈W 1,1(Ω)
∇v∈BV (Ω,Rn)∩H1(Ω)

∫
Ω
α |Du−∇v|γ dx

+

∫
Ω
β |D∇v|γ dx+

µ

2

(
‖u‖2H1(Ω) + ‖∇v‖2H1(Ω)

)
.

Here, H1(Ω) = H1(Ω;Rn) and the Huber regularisation | · |γ is defined as follows.

Definition 2.1. Given γ ∈ (0,∞], we define for the norm ‖ · ‖2 on Rm, the Huber
regularisation

|g|γ =

{
‖g‖2 − 1

2γ , ‖g‖2 ≥ 1/γ,
γ
2‖g‖

2
2, ‖g‖2 < 1/γ.

For the cost functional F , given noise-free data f0 ∈ L2(Ω) and a regularised
solution u ∈ H1(Ω), we consider in particular the L2 cost

FL2
2
(u) :=

1

2
‖f0 − u‖2L2(Ω;Rd),

as well as the Huberised total variation cost

FL1
η∇(u) :=

∫
Ω
|D(f0 − u)|γ dx

with noise-free data f0 ∈ BV(Ω).

2.2. Existence of an optimal solution. The existence of an optimal solution for
the learning problem (2.3) is a special case of the class of bilevel problems considered in
[17], where existence of optimal parameters in (0,+∞]2N is proven. For convenience,
we provide a simplified proof for the case where box constraints on the parameters
are imposed. We start with an auxiliary lower semicontinuity result for the Huber
regularised functionals.

Lemma 2.1. Let u, v ∈ Lp(Ω), 1 ≤ p <∞. Then, the functional u 7→
∫

Ω |u− v|γ dx,
where | · |γ is the Huber regularisation in Definition 2.1, is lower semicontinuous with

respect to weak* convergence in M(Ω;Rd)

Proof. Recall that for g ∈ Rm, the Huber-regularised norm may be written in dual
form as

|g|γ = sup
{
〈q, g〉 − γ

2
‖q‖22 : ‖q‖2 ≤ 1

}
.

Therefore, we find that

G(u) :=

∫
Ω
|u− v|γ dx = sup

{∫
Ω
u(x) · ϕ(x) dx−

∫
Ω

γ

2
‖ϕ(x)‖22 dx :

ϕ ∈ C∞c (Ω), ‖ϕ(x)‖2 ≤ α for every x ∈ Ω
}
.

The functional G is of the form G(u) = sup{〈u, ϕ〉 −G∗(ϕ)}, where G∗ is the convex
conjugate of G. Now, let {ui}∞i=1 converge to u weakly* in M(Ω;Rd). Taking a
supremising sequence {ϕj}∞j=1 for this functional at any point u, we easily see lower

semicontinuity by considering the sequences {〈ui, ϕj〉 −G∗(ϕj)}∞i=1 for each j. �

Our main existence result is the following.
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Theorem 2.1. We consider the learning problem (2.3) for TGV2 and ICTV regu-
larisation, optimising over parameters (α, β) such that 0 ≤ α ≤ ᾱ, 0 ≤ β ≤ β̄. Here
(ᾱ, β̄) <∞ is an arbitrary but fixed vector in R2 that defines a box constraint on the

parameter space. Then, there exists an optimal solution (α̂, β̂) ∈ R2 for this problem
for both choices of cost functionals, F = L2

2 and F = FL1
η∇.

Proof. Let (αn, βn) ⊂ R2 be a minimising sequence. Due to the box constraints
we have that the sequence (αn, βn) is bounded in R2. Moreover, we get for the
corresponding sequences of states un := u(αn,βn) that

Jγ,µ(un;αn, βn) ≤ Jγ,µ(u;αn, βn), ∀u ∈ H1(Ω),

in particular this holds for u = 0. Hence,

(2.4)
1

2
‖un − f‖2L2(Ω) +Rγ,µαn,βn(un) ≤ 1

2
‖f‖2L2(Ω).

Exemplarily, we consider here the case for the TGV regulariser, that is Rγ,µαn,βn =

TGV2,γ,µ
α,β . The proof for the ICTV regulariser can be done in a similar fashion.

Inequality (2.4) in particular gives

‖un‖2H1(Ω) + ‖wn‖2H1(Ω) ≤
1

µ
‖f‖L2(Ω),

where wn is the optimal w for un. This gives that (un, wn) is uniformly bounded in
H1(Ω)×H1(Ω) and that there exists a subsequence {(αn, βn, un, wn)} which converges

weakly in R2×H1(Ω)×H1(Ω) to a limit point (α̂, β̂, û, ŵ). Moreover, un → û strongly
in Lp(Ω) and wn → ŵ in Lp(Ω;Rn). Using the continuity of the L2 fidelity term with
respect to strong convergence in L2, and the weak lower semicontinuity of the H1

term with respect to weak convergence in H1 and of the Huber regularised functional
even with respect to weak∗ convergence in M (cf. Lemma 2.1) we get

1

2
‖û− f‖2L2(Ω) +

∫
Ω
α̂ |Dû− ŵ|γ dx+

∫
Ω
β̂ |Ew|γ dx

+
µ

2

(
‖û‖2H1(Ω) + ‖ŵ‖2H1(Ω)

)
≤ lim inf

n

1

2
‖un − f‖2L2(Ω) +

∫
Ω
α̂ |Dun − wn|γ dx+

∫
Ω
β̂ |Ewn|γ dx

+
µ

2

(
‖un‖2H1(Ω) + ‖wn‖2H1(Ω)

)
≤ lim inf

n

1

2
‖un − f‖2L2(Ω) +

∫
Ω
αn |Dun − wn|γ dx+

∫
Ω
βn |Ewn|γ dx

+
µ

2

(
‖un‖2H1(Ω) + ‖wn‖2H1(Ω)

)
,

where in the last step we have used the boundedness of the sequence Rγ,µαn,βn(un) from

(2.4) and the convergence of (αn, βn) in R2. This shows that the limit point û is an

optimal solution for (α̂, β̂). Moreover, due to the weak lower semicontinuity of the
cost functional F and the fact that the set {(α, β) : 0 ≤ α ≤ ᾱ, 0 ≤ β ≤ β̄} is closed,

we have that (α̂, β̂, û) is optimal for (2.3). �

Remark 2.1.

• Using the existence result in [17], in principle we could allow infinite values for
α and β. This would include both TV2 and TV as possible optimal regularisers
in our learning problem.
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• In [17], in the case of the L2 cost and assuming that

Rγα,β(f) > Rγα,β(f0),

we moreover show that the parameters (α, β) are strictly larger than 0. In
the case of the Huberised TV cost this can only be proven in a discretised
setting. Please see [17] for details.
• The existence of solutions with µ = 0, that is without elliptic regularisation,

is also proven in [17]. Note that here, we focus on the µ > 0 case since the
elliptic regularity is required for proving the existence of Lagrange multipliers
in the next section.

3. Lagrange multipliers

In this section we prove the existence of Lagrange multipliers for the learning prob-
lem (2.3) and derive an optimality system that characterizes its solution. Moreover,
a gradient formula for the reduced cost functional is obtained, which plays an im-
portant role in the development of fast solution algorithms for the learning problems
(see Section 5.1).

In what follows all proofs are presented for the TGV2 regularisation case, that is
Rγα,β = TGV2,γ

α,β. However, possible modifications to cope with the ICTV model will

also be commented.
We start by investigating the differentiability of the solution operator.

3.1. Differentiability of the solution operator. We recall that the TGV2 denois-
ing problem is given by

u = (v, w) = arg min
BV×BD

{
1

2

∫
Ω
|v − f |2 +

∫
Ω
α|Dv − w|γ +

∫
Ω
β|Ew|γ

}
.

Using an elliptic regularization we then get

u = arg min
H1(Ω)×H1(Ω)

{
a(u, u) +

1

2

∫
Ω
|v − f |2 +

∫
Ω
α|Dv − w|γ +

∫
Ω
β|Ew|γ

}
,

where a(u, u) = µ
(
‖v‖2H1 + ‖w‖2H1

)
. A necessary and sufficient optimality condition

for the latter is then given by the following variational equation

(3.1) a(u,Ψ) +

∫
Ω
αhγ(Dv − w)(Dφ− ϕ) dx

+

∫
Ω
βhγ(Ew)Eϕdx+

∫
Ω

(v − f)φdx = 0, for all Ψ ∈ U,

where Ψ = (φ, ϕ) and U = H1(Ω)×H1(Ω).

Theorem 3.1. The solution operator S : R2 7→ U , which assigns to each pair (α, β) ∈
R2 the corresponding solution to the denoising problem (3.1), is Fréchet differentiable
and its derivative is characterized by the unique solution z = S′(α, β)[θ1, θ2] ∈ U of
the following linearized equation:

(3.2) a(z,Ψ) +

∫
Ω
θ1 hγ(Dv − w)(Dφ− ϕ) dx

+

∫
Ω
αh′γ(Dv − w)(Dz1 − z2)(Dφ− ϕ) dx+

∫
Ω
θ2 hγ(Ew)Eϕdx

+

∫
Ω
βh′γ(Ew)Ez2Eϕdx+

∫
Ω
z1φdx = 0, for all Ψ ∈ U.
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Proof. Thanks to the ellipticity of a(·, ·) and the monotonicity of hγ , existence of a
unique solution to the linearized equation follows from the Lax-Milgram theorem.

Let ξ := u+ − u− z, where u = S(α, β) and u+ = S(α+ θ1, β + θ2). Our aim is to
prove that ‖ξ‖U = o(|θ|). Combining the equations for u+, u and z we get that

a(ξ,Ψ) +

∫
Ω

(α+ θ1) hγ(Dv+ − w+)(Dφ− ϕ) dx−
∫

Ω
α hγ(Dv − w)(Dφ− ϕ) dx

−
∫

Ω
θ1 hγ(Dv − w)(Dφ− ϕ) dx−

∫
Ω
αh′γ(Dv − w)(Dz1 − z2)(Dφ− ϕ) dx

+

∫
Ω

(β + θ2)hγ(Ew+)Eϕdx−
∫

Ω
βhγ(Ew)Eϕdx

−
∫

Ω
θ2 hγ(Ew)Eϕdx−

∫
Ω
β h′γ(Ew)Ez2Eϕdx+ 2

∫
Ω
ξ1φdx = 0, for all Ψ ∈ U,

where ξ := (ξ1, ξ2) ∈ H1(Ω)×H1(Ω). Adding and subtracting the terms∫
Ω
αh′γ(Dv − w)(Dδv − δw)(Dφ− ϕ) dx

and ∫
Ω
βh′γ(Ew)Eδw : Eϕdx,

where δv := vα+θ − v and δw := wα+θ − w, we obtain that

a(ξ,Ψ) +

∫
Ω
αh′γ(Dv − w)(Dξ1 − ξ2)(Dφ− ϕ)

+

∫
Ω
βh′γ(Ew)Eξ2 : Eϕdx+ 2

∫
Ω
ξ1φdx

= −
∫

Ω
α
[
hγ(Dv+ − w+)− hγ(Dv − w)− h′γ(Dv − w)(Dδv − δw)

]
(Dφ− ϕ)

−
∫

Ω
θ1

[
hγ(Dv+ − w+)− hγ(Dv − w)

]
(Dφ− ϕ) dx

−
∫

Ω
β
[
hγ(Ew+)− hγ(Ew)− h′γ(Ew)Eδw

]
: Eϕdx

−
∫

Ω
θ2 [hγ(Ewα+θ)− hγ(Ew)] : Eϕdx, for all Ψ ∈ U.

Testing with Ψ = ξ and using the monotonicity of h′γ(·) we get that

‖ξ‖U ≤ C
{
|α|
∥∥hγ(Dv+ − w+)− hγ(Dv − w)− h′γ(Dv − w)(Dδv − δw)

∥∥
L2

+ |θ1|
∥∥hγ(Dv+ − w+)− hγ(Dv − w)

∥∥
L2

+|β|
∥∥hγ(Ew+)− hγ(Ew)− h′γ(Ew)Eδw

∥∥
L2

+|θ2| ‖hγ(Ewα+θ)− hγ(Ew)‖L2

}
,

for some generic constant C > 0. Considering the differentiability and Lipschitz
continuity of h′γ(·), it then follows that

(3.3) ‖ξ‖U ≤ C
(
|α| o(

∥∥u+ − u
∥∥

1,p
) + |θ1| ‖uα+θ − u‖U

+ |β| o(
∥∥w+ − w

∥∥
1,p

) + |θ2| ‖wα+θ − w‖H1(Ω)

)
,
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where ‖ · ‖1,p stands for the norm in the space W1,p(Ω). From regularity results for
second order systems (see [19, Thm. 1, Rem. 14]), it follows that∥∥u+ − u

∥∥
1,p
≤ L|θ| (‖Div hγ(Dv − w)‖−1,p + ‖hγ(Dv − w)‖−1,p + ‖Div hγ(Ew)‖−1,p)

≤ L|θ| (2‖hγ(Dv − w)‖L∞ + ‖hγ(Ew)‖L∞)

≤ L̃|θ|,

since |hγ(·)| ≤ 1. Inserting the latter in estimate (3.3), we finally get that

‖ξ‖U = o(|θ|).

�

Remark 3.1. The Fréchet differentiability proof makes use of the quasilinear struc-
ture of the TGV2 variational form, making it difficult to extend to the ICTV model
without further regularisation terms. For the latter, however, a Gateaux differentia-
bility result may be obtained using the same proof technique as in [16].

3.2. The adjoint equation. Next, we use the Lagrangian formalism for deriving the
adjoint equations for both the TGV2 and ICTV learning problems. Existence of a
solution to the adjoint equation then follows from the well-posedness of the linearized
equation.

Defining the Lagrangian associated to TGV2 learning problem by:

L(v, w, α, β, p1, p2) = F (u) + µ(v, p1)H1 + µ(w, p2)H1

+

∫
Ω
αhγ(Dv − w)(Dp1 − p2) +

∫
Ω
βhγ(Ew)Ep2 +

∫
Ω

(v − f)p1,

and taking the derivative with respect to the state variable (v, w), we get the necessary
optimality condition

L′(u,v)(u, v, α, β, p1, p2)[(δv, δw)] = F ′(u)δu + µ(p1, δv)H1 + µ(p2, δw)H1

+

∫
Ω
αh′γ(Dv − w)(Dδv − δw)(Dp1 − p2)

+

∫
Ω
βh′γ(Ew)EδwEp2 +

∫
Ω
p1δv = 0.

If δw = 0, then

µ(p1, δv)H1 +

∫
Ω
αh′γ(Dv − w)(Dp1 − p2)Dδv +

∫
Ω
p1δv = −∇vF (u)δv,

whereas if δv = 0, then

µ(p2, δw)H1 −
∫

Ω
αh′γ(Dv − w)(Dp1 − p2)δw

+

∫
Ω
βh′γ(Ew) Ep2 Eδw = −∇wF (u)δw.

Existence of a unique solution then follows from the transposition method, since
the linearised equation is well-posed.

Remark 3.2. For the ICTV model it is possible to proceed formally with the La-
grangian approach. We recall that a necessary and sufficient optimality condition for
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the ICTV functional is given by

(3.4) µ(u, φ)H1 + µ(∇v,∇ϕ)H1 +

∫
Ω
αhγ(Du−∇v)(Dφ−∇ϕ)

+

∫
Ω
βhγ(D∇v)D∇ϕ+

∫
Ω

(u− f)φ = 0, for all (φ, ϕ) ∈ H1(Ω)×H1(Ω)

and the correspondent Lagrangian functional L is given by

L(u, v, α, β, p1, p2) = F (u) + µ(u, p1)H1 + µ(∇v,∇p2)H1

+

∫
Ω
αhγ(Du−∇v)(Dp1 −∇p2) +

∫
Ω
βhγ(D∇v)D∇p2 +

∫
Ω

(u− f)p1.

Deriving the Lagrangian with respect to the state variable (u, v) and setting it equal
to zero yields

L′(u,v)(u, v, α, β, p1, p2)[(δu, δv)] = F ′(u)δu + µ(p1, δu)H1 + µ(∇p2,∇δv)H1

+

∫
Ω
αh′γ(Du−∇v)(Dδu −∇δv)(Dp1 −∇p2)

+

∫
Ω
βh′γ(D∇v)D∇δvD∇p2 +

∫
Ω
p1δu = 0.

By taking succesively δv = 0 and δu = 0, the following system is obtained

(3.5a) µ(p1, δu)H1 +

∫
Ω
αh′γ(Du − ∇v)(Dp1 − ∇p2)Dδu +

∫
Ω
p1δu = −F ′(u)δu.

(3.5b) µ(∇p2,∇δv)H1 +

∫
Ω
αh′γ(Du−∇v)(Dp1 −∇p2)∇δv

+

∫
Ω
βh′γ(D∇v)D∇p2D∇δv = 0.

3.3. Optimality condition. Using the differentiability of the solution operator and
the well-posedness of the adjoint equation, we derive next an optimality system for
the characterization of local minima of the bilevel learning problem. Besides the opti-
mality condition itself, a gradient formula arises as byproduct, which is of importance
in the design of solution algorithms for the learning problems.

Theorem 3.2. Let (ᾱ, β̄) ∈ R2
+ be a local optimal solution for problem (2.3). Then

there exist Lagrange multipliers Π ∈ U and λ1, λ2 ∈ L2(Ω) such that the following
system holds:

(3.6a) a(u,Ψ) + α

∫
Ω
hγ(Dv − w)(Dφ− ϕ) dx

+ β

∫
Ω
hγ(Ew)Eϕdx+ 2

∫
Ω

(v − f)φdx = 0, for all Ψ ∈ H1(Ω)×H1(Ω),

(3.6b) a(Π,Ψ) + α

∫
Ω
h′γ(Dv − w)(Dp1 − p2)(Dφ− ϕ) dx

+β

∫
Ω
h′γ(Ew) Ep2 Eϕdx+2

∫
Ω
p1φdx = −Fu(u)[Ψ], for all Ψ ∈ H1(Ω)×H1(Ω),

(3.6c) λ1 =

∫
Ω
hγ(Dv − w)(Dp1 − p2)
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(3.6d) λ2 =

∫
Ω
hγ(Ew) Ep2

(3.6e) λ1 ≥ 0, λ2 ≥ 0

(3.6f) λ1 · ᾱ = λ2 · β̄ = 0.

Proof. Consider the reduced cost functional F(α, β) = F (u(α, β)). The bilevel opti-
mization problem can then be formulated as

min
(α,β)∈C

F(α, β),

where F : R2 → R and C corresponds to the positive orthant in R2. From [38,
Thm. 3.1], there exist multipliers λ1, λ2 such that

λ1 = ∇αF(ᾱ, β̄)

λ2 = ∇βF(ᾱ, β̄)

λ1 ≥ 0, λ2 ≥ 0

λ1 · ᾱ = λ2 · β̄ = 0,

By taking the derivative with respect to (α, β) and denoting by u′ the solution to
the linearized equation (3.2) we get, together with the adjoint equation (3.6b), that

F ′(α, β)[φ] = Fu(u)u′(α, β)[φ]

= −a(Π, u′)− α
∫

Ω
h′γ(Dv − w)(Dp1 − p2)(Dv′ − w′)

− β
∫

Ω
h′γ(Ew)Ep2 Ew

′ − 2

∫
Ω
p1v
′

= −a(u′,Π)− α
∫

Ω
h′γ(Dv − w)(Dv′ − w′)(Dp1 − p2)

− β
∫

Ω
h′γ(Ew)Ew′ Ep2 − 2

∫
Ω
v′p1

which, taking into account the linearized equation, yields

(3.7) F ′(α, β)[φ] = φ1

∫
Ω
hγ(Dv − w)(Dp1 − p2) + φ2

∫
Ω
hγ(Ew)Ep2.

Altogether we proved the result. �

Remark 3.3. From the existence result (see Remark 2.1), we actually know that,
under some assumptions, ᾱ and β̄ are strictly greater than zero. This implies that
the multipliers λ1 = λ2 = 0 and the problem is of unconstrained nature. This plays
an important role in the design of solution algorithms, since only a mild treatment of
the constraints has to be taken into account, as will be showed in Section 6.

4. Numerical algorithms

In this section we propose a second order quasi-Newton method for the solution of
the learning problem with scalar regularisation parameters. The algorithm is based
on a BFGS update, preserving the positivity of the iterates through the line search
strategy and updating the matrix cyclically depending on the satisfaction of the cur-
vature condition. For the solution of the lower level problem, a semismooth Newton
method with a properly modified Jacobi matrix is considered. Moreover, warm ini-
tialisation strategies have to be taken into account in order to get convergence for
the TGV2 problem. The developed algorithm is also extended to a simple linear
polynomial case.
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4.1. BFGS algorithm. Thanks to the gradient characterization obtained in The-
orem 3.2, we next devise a BFGS algorithm to solve the bilevel learning problems.
We employ a few technical tricks to ensure convergence of the classical method. In
particular, for numerical stability we need to avoid the boundary of the constraint
set on the parameters, so we pick 0 < θ < Θ, considered numerically almost zero or
infinity, respectively, and require the box constraints

(4.1) θ ≤ α, β ≤ Θ.

We also limit the step length to get at most a fraction closer to the boundary. As we
show in [17] the solution is in the interior for the regularisation and cost functionals
we are interested in. Below this limit, we use Armijo line search.

Moreover, the good behaviour of the BFGS method depends upon the BFGS matrix
staying positive definite. This would be ensured by the Wolfe conditions, but because
of our step length limitation, the curvature condition is not necessarily satisfied. (The
Wolfe conditions are guaranteed to be satisfied for some step length σ, if our domain
is unbounded, but the range where the step satisfies the criterion, may be beyond
our maximum step length, and is not necessarily satisfied closer to the current point.)
Instead we skip the BFGS update if the curvature is negative.

Overall our learning algorithm may be written as follows.

Algorithm 4.1 (BFGS for denoising parameter learning). Pick Armijo line search
constant c, and target residual ρ. Pick initial iterate (α0, β0). Solve the denoising
problem (2.3b) for (α, β) = (α0, β0), yielding u0. Initialise B1 = I. Set i := 0, and
iterate the following steps:

(1) Solve the adjoint equation (3.6b) for Πi, and calculate ∇F(αi, βi) from (3.7).
(2) If i ≥ 2 do the following:

(a) Set s := (αi, βi)− (αi−1, βi−1), and r := ∇F(αi, βi)−∇F(αi−1, βi−1).
(b) Perform the BFGS update

Bi :=

{
Bi−1, sT r < 0,

Bi−1 − Bi−1s⊗Bi−1s
tTBi−1s

+ r⊗r
sT r

sT r ≥ 0.

(3) Compute δα,β from

Biδα,β = gi.

(4) Initialise σ := min{1, σmax/2}, where

σmax := max{σ ≥ 0 | (αi, βi) + σδα,β satisfies (4.1)}.
Repeat the following:
(a) Let (ασ, βσ) := (αi, βi) + σδα,β, and solve the denoising problem (2.3b)

for (α, β) = (ασ, βσ), yielding uσ.
(b) If the residual ‖(ασ, βσ)− (αi, βi)‖/‖(ασ, βσ)‖ < ρ do the following:

(i) If minσ F(ασ, βσ) < F(αi, βi) over all σ tried, choose σ∗ the min-
imiser, set (αi+1, βi+1) := (ασ∗ , βσ∗), u

i+1 := uσ∗ , and continue
from Step 5

(ii) Otherwise end the algorithm with solution (α∗, β∗) := (αi, βi).
(c) Otherwise, if Armijo condition F(ασ, βσ) ≤ F(αi, βi)+σc∇F(αi, βi)T δα,β

holds, set (αi+1, βi+1) := (ασ, βσ), ui+1 := uσ, and continue from Step 5.
(d) In all other cases, set σ := σ/2 and continue from Step 4a.

(5) If the residual ‖(αi+1, βi+1)− (αi, βi)‖/‖(αi+1, βi+1)‖ < ρ, end the algorithm
with (α∗, β∗) := (αi+1, βi+1). Otherwise continue from Step 1 with i := i+ 1.

Step (4) ensures that the iterates remain feasible, without making use of a pro-
jection step. This is justified since it’s been analytically proved that the optimal
parameters are greater than zero (see [17]).
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4.2. An infeasible semi-smooth Newton method. In variational form, the TGV2

denoising problem can be written as

µ

∫
Ω

(Dv ·Dφ+ vφ) +

∫
Ω
αhγ(Dv − w)Dφ+

∫
Ω

(v − f)φ = 0, ∀φ ∈ H1(Ω)

µ

∫
Ω

(Ew : Eϕ+ wϕ)−
∫

Ω
αhγ(Dv − w)Dϕ

+

∫
Ω
βhγ(Ew) Eϕ = 0, ∀ϕ ∈ H1(Ω)

or, in general abstract primal-dual form, as

Lu+

N∑
i=1

A∗jqj = f in Ω(4.2a)

max{1/γ, |[Aju](x)|2}qj(x)− αj [Aju](x) = 0 a.e. in Ω, j = 1, . . . , N.(4.2b)

where L ∈ L(H1(Ω;Rm), H1(Ω;Rm)′) is a second order linear elliptic operator, Aj , j =
1, . . . , N , are linear operators acting on u and qj(x), j = 1, . . . , N , correspond to the
dual multipliers.

Let us set

mj(u) := max{1/γ, |[Aju](x)|2}.
Let us also define the diagonal application D(u) : L2(Ω;Rm)→ L2(Ω;Rm) by

[D(u)q](x) = u(x)q(x), (x ∈ Ω)

We may derive ∇u[D(mj(u))qj ] being defined by

∇u[D(mj(u))pj ] = A∗jD(qj)N(Aju) where N(z) :=

{
0, |z(x)|2 < 1/γ
z(x)
|z(x)|2 , |z(x)|2 ≥ 1/γ.

Then (4.2a), (4.2b) may be written as

Lu+

N∑
i=1

A∗jqj = f in Ω

D(mj(u))qj − αjAju = 0, a.e. in Ω, (j = 1, . . . , N).

Linearising, we obtain the system
(SSN-1)

L A∗1 . . . A∗N
−α1A1 + N(A1u)D(q1)A1 D(mj(u)) 0 0

... 0
. . . 0

−αNAN + N(ANu)D(qN )AN 0 0 D(mN (u))



δu
δq1
...

δqN

 = R

where

R :=


−Lu−

∑N
i=1A

∗
jqj + f

α1A1u−D(m1(u))q1
...

αNANu−D(mN (u))qN

 .

The semi-smooth Newton method solves (SSN-1) at a current iterate (ui, qi1, . . . q
i
N ).

It then updates

(SSN-2) (ui+1, q̃i+1
1 , . . . q̃i+1

N ) := (ui + τδu, qi1 + τδq1, q
i
N + τδqN ),
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for a suitable step length τ , allowing q̃i+1 to become infeasible in the process. That
is, it may hold that |q̃i+1

j (x)|2 > αj , which may lead to non-descent directions. In
order to globalize the method, one projects

(SSN-3) qi+1
j := P(q̃i+1

j ;αj), where P(q, α)(x) := sgn(q(x)) min{α, |q(x)|},
in the building of the Jacobi matrix. Following [23, 33], it can be shown that a
discrete version of the method (SSN-1)–(SSN-3) converges globally and locally su-
perlinearly near a point where the subdifferentials of the operator on (u, q1, . . . qN )
corresponding (4.2) are non-singular. Further dampening as in [23] guarantees local
superlinear convergence at any point. We do not represent the proof, as going into
the discretisation and dampening details would expand this work considerably.

Remark 4.1. The system (SSN-1) can be simplified, which is crucial to obtain ac-
ceptable performance with TGV2. Indeed observe that B is invertible, so we may
solve δu from

(4.3) Bδu = R1 −
N∑
j=1

A∗jδqj .

Thus we may simplify δu out of (SSN-1), and only solve for δq1, . . . , δqN using a
reduced system matrix. Finally we calculate δu from (4.3).

For the denoising sub-problem (2.3b) we use the method (SSN-1)–(SSN-3) with
the reduced system matrix of Remark 4.1. Here, we denote by z in the case of TGV2

the parameters
z = (v, w),

and in the case of ICTV
z = (u, v).

For the calculation of the step length τ , we use Armijo line search with parameter
c = 1e−4. We end the SSN iterations when

τ
‖δyi‖

max{1, ‖yi‖}
≤ 1e−5,

where δyi = (δzi, δqi1, . . . , δq
i
N ), and yi = (zi, qi1, . . . , q

i
N ).

4.3. Warm initialisation. In our numerical experimentation we generally found Al-
gorithm 4.1 to perform well for learning the regularisation parameter for TV denoising
as was done in [16]. For learning the two (or even more) regularisation parameters for
TGV2 denoising, we found that a warm initialisation is needed to obtain convergence.
More specifically, we use TV as an aid for discovering both the initial iterate (α0, β0)
as well as the initial BFGS matrix B1. This is outlined in the following algorithm.

Algorithm 4.2 (BFGS initialisation for TGV2 parameter learning). Pick a heuristic
factor δ0 > 0. Then do the following:

(1) Solve the corresponding problem for TV using Algorithm 4.1. This yields
optimal TV denoising parameter α∗TV, as well as the BFGS estimate BTV for
∇2F(α∗TV).

(2) Run Algorithm 4.1 for TGV2 with initialisation (α0, β0) := (α∗TVδ0, α
∗
TV), and

initial BFGS matrix B1 := diag(BTVδ0, BTV).

With Ω = (0, 1)2, we pick δ0 = 1/`, where the original discrete image has ` × `
pixels. This corresponds to the heuristic [35, 2] that if ` ≈ 128 or 256 and the discrete
image is mapped into the corresponding domain Ω = (0, `)2 directly (corresponding
to spatial step size of one in the discrete gradient operator), then β ∈ (α, 1.5α) tends
to be a good choice. We will later verify this through the use of our algorithms.
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Now, if f ∈ BV((0, `)2) is rescaled to BV((0, 1)2), i.e. f̃(x) := f(x/`), then with
ũ(x) := u(x/`) and w̃(x) := w(x/`)/`, we have

(4.4)
1

2
‖f − u‖2L2((0,`)2) + α‖Du− w‖M((0,`)2;R2) + β‖Ew‖M((0,`)2;R2×2)

= n2

(
1

2
‖f̃ − ũ‖2L2((0,1)2) + nα‖Dũ− w̃‖M((0,1)2;R2) + n2β‖Ew̃‖M((0,1)2;R2×2)

)
.

This introduces the factor 1/` = |Ω|−1/2 between rescaled α, β.

5. Experiments

In this section we present some numerical experiments to verify the theoretical
properties of the bilevel learning problems and the efficiency of the proposed solution
algorithms. In particular, we exhaustively compare the performance of the new pro-
posed cost functional with respect to well-known quality measures, showing a better
behaviour of the new cost for the chosen tested images. The performance of the
proposed BFGS algorithm, combined with the semismooth Newton method for the
lower level problem, is also examined.

5.1. Gaussian denoising. We tested Algorithm 4.1 for TV and Algorithm 4.2 for
TGV2 Gaussian denoising parameter learning on various images. Here we report the
results for two images, the parrot image in Figure 4a, and the geometric image in
Figure 5. We applied synthetic noise to the original images, such that the PSNR of
the parrot image is 24.7, and the PSNR of the geometric image is 24.8.

In order to learn the regularisation parameter α for TV, we picked initial α0 =
0.1/`. For TGV2 initialisation by TV was used as in Algorithm 4.1. We chose the
other parameters of Algorithm 4.1 as c = 1e−4, ρ = 1e−5, θ = 1e−8, and Θ = 10.
For the SSN denoising method the parameters γ = 100 and µ = 1e−10 were chosen.

We have included results for both the L2-squared cost functional L2
2 and the Hu-

berised total variation cost functional L1
η∇. The learning results are reported in

Table 1 for the parrot images, and Table 2 for the geometric image. The denoising
results with the discovered parameters can be found in the aforementioned Figure 4
and Figure 5. We report the resulting optimal parameter values, the cost functional
value, PSNR, SSIM [37], as well as the number of iterations taken by the outer BFGS
method.

Our first observation is that all approaches successfully learn a denoising parameter
that gives a good-quality denoised image. Secondly, we observe that the gradient cost
functional L1

η∇ performs visually and in terms of SSIM significantly better for TGV2

parameter learning than the cost functional L2
2. In terms of PSNR the roles are

reversed, as should be, since the L2
2 is equivalent to PSNR. This again confirms that

PSNR is a poor quality measure for images. For TV there is no significant difference
between different cost functionals in terms of visual quality, although the PSNR and
SSIM differ.

We also observe that the optimal TGV2 parameters (α∗, β∗) generally satisfy
β∗/α∗ ∈ (0.75, 1.5)/`. This confirms the earlier observed heuristic that if ` ≈ 128, 256
then β ∈ (1, 1.5)α tends to be a good choice. As we can observe from Figure 4 and
Figure 5, this optimal TGV2 parameter choice also avoids the stair-casing effect that
can be observed with TV in the results.

In Figure 3, we have plotted by the red star the discovered regularisation parameter
(α∗, β∗) reported in Figure 4. Studying the location of the red star, we may conclude
that Algorithm 4.1 and Algorithm 4.2 manage to find a nearly optimal parameter in
very few BFGS iterations.
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Figure 3. Cost functional value versus (α, β) for TGV2 denoising,
for the parrot test images, for both L2

2 and L1
η∇ cost functionals. The

illustrations are contour plots of function value versus (α, β).

Table 1. Quantified results for the parrot image (` = 256 =
image width/height in pixels)

Denoise Cost Initial (α, β) Result (α∗, β∗) Cost SSIM PSNR Its. Fig.

TGV2 L1
η∇ (α∗TV/`, α

∗
TV) (0.069/`2, 0.051/`) 6.615 0.897 31.720 12 4(c)

TGV2 L2
2 (α∗TV/`, α

∗
TV) (0.058/`2, 0.041/`) 6.412 0.890 31.992 11 4(d)

ICTV L1
η∇ (α∗TV/`, α

∗
TV) (0.068/`2, 0.051/`) 6.656 0.895 31.667 16 4(e)

ICTV L2
2 (α∗TV/`, α

∗
TV) (0.051/`2, 0.041/`) 6.439 0.887 31.954 7 4(f)

TV L1
η∇ 0.1/` 0.057/` 6.944 0.887 31.298 10 4(g)

TV L2
2 0.1/` 0.042/` 6.623 0.879 31.710 12 4(h)

Table 2. Quantified results for the synthetic image (` = 256 =
image width/height in pixels)

Denoise Cost Initial ~α Result ~α∗ Value SSIM PSNR Its. Fig.

TGV2 L1
η∇ (α∗TV/`, α

∗
TV) (0.453/`2, 0.071/`) 3.769 0.989 36.606 17 5(c)

TGV2 L2
2 (α∗TV/`, α

∗
TV) (0.307/`2, 0.055/`) 3.603 0.986 36.997 19 5(d)

ICTV L1
η∇ (α∗TV/`, α

∗
TV) (0.505/`2, 0.103/`) 4.971 0.970 34.201 23 5(e)

ICTV L2
2 (α∗TV/`, α

∗
TV) (0.056/`2, 0.049/`) 3.947 0.965 36.206 7 5(f)

TV L1
η∇ 0.1/` 0.136/` 5.521 0.966 33.291 6 5(g)

TV L2
2 0.1/` 0.052/` 4.157 0.948 35.756 7 5(h)

5.2. Statistical testing. To obtain a statistically significant outlook to the perfor-
mance of different regularisers and cost functionals, we made use of the Berkeley
segmentation dataset BSDS300 [28], displayed in Figure 6. We resized each image to
128 pixels on its shortest edge, and take the 128 × 128 top-left square of the image.
To this data set, we applied pixelwise Gaussian noise of variance σ2 = 2, 10, and
20. We tested the performance of both cost functionals, L1

η∇ and L2
2, as well as the

TGV2, ICTV, and TV regularisers on this dataset, for all noise levels. In the first
instance, reported in Figures 7–10 (noise levels σ2 = 2, 20 only), and Tables 3–5, we
applied the proposed bi-level learning model on each image individually, to learn the
optimal parameters specifically for that image, and a correponding noisy image for
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(a) Original image (b) Noisy image

(c) TGV2 denoising, L1
η∇ cost (d) TGV2 denoising, L2

2 cost

(e) ICTV denoising, L1
η∇ cost (f) ICTV denoising, L2

2 cost

(g) TV denoising, L1
η∇ cost (h) TV denoising, L2

2 cost

Figure 4. Optimal denoising results for initial guess ~α =
(α∗TV/`, α

∗
TV) for TGV2 and ~α = 0.1/` for TV
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(a) Original image (b) Noisy image

(c) TGV2 denoising, L1
η∇ cost (d) TGV2 denoising, L2

2 cost

(e) ICTV denoising, L1
η∇ cost (f) ICTV denoising, L2

2 cost

(g) TV denoising, L1
η∇ cost (h) TV denoising, L2

2 cost

Figure 5. Optimal denoising results for initial guess ~α =
(α∗TV/`, α

∗
TV) for TGV2 and ~α = 0.2/` for TV
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Figure 6. The 200 images of the Berkeley segmentation dataset
BSDS300 [28], cropped to be rectangular, keeping top left corner, and
resized to 128× 128.

all of the noise levels separately. For the algorithm, we use the same parametrisation
as in Section 5.1.

The figures display the noisy images, and indicate by colour coding the best result
as judged by the structural similarity measure SSIM [37], PSNR, and the objective
function value (L1

η∇ or L2
2 cost). These criteria are, respectively, the top, middle, and

bottom rows of colour-coding squares. Red square indicates that TV performed the
best, green square indicates that ICTV performed the best, and blue square indicates
that TGV2 performed the best—this is naturally for the optimal parameters for the
corresponding regulariser and cost functional discovered by our algorithms.

In the tables, we report the information in a more concise numerical fashion, indi-
cating the mean, standard deviation, and median for all the different criteria (SSIM,
PSNR, and cost functional value), as well as the number of images for which each reg-
ulariser performed the best. We recall that SSIM is normalised to [0, 1], with higher
value better. Moreover, we perform a statistical 95% one-tailed paired t-test on each
of the criteria, and a pair of regularisers, to see whether any pair of regularisers can
be ordered. If so, this is indicated in the last row of each of the tables.

Overall, studying the t-test and other data, the ordering of the regularisers appears
to be

ICTV > TGV2 > TV.

This is rather surprising, as in many specific examples, TGV2 has been observed to
perform better than ICTV, see our Figures 4 and 5, as well as [5, 1]. Only when the
noise is high, appears TGV2 to come on par with ICTV with the L1

η∇ cost functional
in Figure 9 and Table 5.

A more detailed study of the results in Figures 7–10 seems to indicate that TGV2

performs better than ICTV when the image contains large smooth areas, but ICTV
generally performs better for more chaotic images. This observation agrees with the
results in Figures 4 and 5, as well as [5, 1], where the images are of the former type.

One possible reason for the better performance of ICTV could be that TGV2 has
more degrees of freedom—in ICTV we essentially constrain w = ∇v for some function
v—and therefore overfits to the noisy data, until the noise level becomes so high that
overfitting would become too high for any parameter. To see whether this is true, we
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Figure 7. Ordering of regularisers with individual learning, L1
η∇ cost,

and noise variance σ2 = 2, on the 200 images of the BSDS300 dataset,
resized. Best regulariser: red=TV, green=ICTV, blue=TGV2;
top=SSIM, middle=PSNR, bottom=objective value.

Figure 8. Ordering of regularisers with individual learning, L2
2 cost,

and noise variance σ2 = 2, on the 200 images of the BSDS300 dataset,
resized. Best regulariser: red=TV, green=ICTV, blue=TGV2;
top=SSIM, middle=PSNR, bottom=objective value.

also performed batch learning, learning a single set of parameters for all images with
the same noise level. That is, we studied the model

min
~α

N∑
i=1

Fi(ui,~α) s.t. ui,~α ∈ arg min
u∈H1(Ω)

1

2
‖fi − u‖2L2(Ω) +Rγ,µ~α (u),

with

Fi(u) =
1

2
‖f0,i − u‖2L2(Ω), or Fi(u) =

∫
Ω
|∇(f0,i − u)|γ dx,
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Figure 9. Ordering of regularisers with individual learning, L1
η∇ cost,

and noise variance σ2 = 20, on the 200 images of the BSDS300 dataset,
resized. Best regulariser: red=TV, green=ICTV, blue=TGV2;
top=SSIM, middle=PSNR, bottom=objective value.

Figure 10. Ordering of regularisers with individual learning, L2
2 cost,

and noise variance σ2 = 20, on the 200 images of the BSDS300 dataset,
resized. Best regulariser: red=TV, green=ICTV, blue=TGV2;
top=SSIM, middle=PSNR, bottom=objective value.

where ~α = (α, β), f1, . . . , fN are the N = 200 noisy images with the same noise level,
and f0,1, . . . , f0,N the original noise free images.

The results are in Figures 11–14 (noise levels σ2 = 2, 20 only), and Tables 6–8.
The results are still roughly the same as with individual learning. Again, only with
high noise in Table 8, does TGV2 not lose to ICTV. Another interesting observation
is that TV starts to be frequently the best regulariser for individual images, although
still statistically does worse than either ICTV or TGV2.
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SSIM PSNR value

mean std med best mean std med best mean std med best

Noisy data 0.978 0.015 0.981 0 41.56 0.86 41.95 0 2.9e4 3.1e2 2.9e4 0

L1
η∇-TV 0.988 0.005 0.989 1 42.57 1.10 42.46 5 2.4e4 3.7e3 2.5e4 1

L1
η∇-ICTV 0.989 0.005 0.990 141 42.74 1.16 42.62 143 2.3e4 3.9e3 2.4e4 137

L1
η∇-TGV2 0.989 0.005 0.989 58 42.70 1.17 42.55 52 2.4e4 4.0e3 2.5e4 62

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

L2
2-TV 0.988 0.005 0.988 2 42.64 1.14 42.50 2 0.41 0.08 0.43 2

L2
2-ICTV 0.988 0.005 0.989 142 42.79 1.18 42.64 148 0.39 0.08 0.41 148

L2
2-TGV2 0.988 0.005 0.989 56 42.76 1.19 42.58 50 0.40 0.08 0.42 50

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

Table 3. Regulariser performance with individual learning, L2
2 and

L1
η∇ costs and noise variance σ2 = 2; BSDS300 dataset, resized.

SSIM PSNR value

mean std med best mean std med best mean std med best

Noisy data 0.731 0.120 0.744 0 27.72 0.88 28.09 0 1.4e5 2.5e3 1.4e5 0

L1
η∇-TV 0.898 0.036 0.900 4 31.28 1.63 30.97 8 7.3e4 2.2e4 7.3e4 1

L1
η∇-ICTV 0.906 0.034 0.909 139 31.54 1.68 31.21 142 7.1e4 2.2e4 7.1e4 121

L1
η∇-TGV2 0.905 0.035 0.907 57 31.47 1.72 31.10 50 7.1e4 2.2e4 7.1e4 78

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

L2
2-TV 0.897 0.033 0.898 9 31.54 1.76 31.15 2 5.52 1.89 5.51 2

L2
2-ICTV 0.903 0.032 0.903 131 31.72 1.76 31.33 148 5.30 1.81 5.35 148

L2
2-TGV2 0.902 0.033 0.903 60 31.67 1.80 31.28 50 5.38 1.87 5.39 50

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

Table 4. Regulariser performance with individual learning, L2
2 and

L1
η∇ costs and noise variance σ2 = 10; BSDS300 dataset, resized.

SSIM PSNR value

mean std med best mean std med best mean std med best

Noisy data 0.505 0.143 0.516 0 21.80 0.92 22.14 0 2.8e5 7.9e3 2.8e5 0

L1
η∇-TV 0.795 0.063 0.799 7 27.27 1.64 27.02 11 1.0e5 3.5e4 9.7e4 1

L1
η∇-ICTV 0.810 0.061 0.814 120 27.52 1.66 27.24 125 9.7e4 3.4e4 9.6e4 79

L1
η∇-TGV2 0.808 0.062 0.814 73 27.50 1.74 27.15 64 9.8e4 3.5e4 9.5e4 120

95% t-test ICTV > TGV2 > TV ICTV, TGV2 > TV ICTV, TGV2 > TV

L2
2-TV 0.802 0.056 0.804 8 27.70 1.93 27.28 0 13.65 5.53 13.14 0

L2
2-ICTV 0.811 0.056 0.816 126 27.86 1.91 27.45 138 13.14 5.22 12.62 138

L2
2-TGV2 0.810 0.057 0.814 66 27.83 1.94 27.41 62 13.28 5.38 12.77 62

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

Table 5. Regulariser performance with individual learning, L2
2 and

L1
η∇ costs and noise variance σ2 = 20; BSDS300 dataset, resized.

For the first image of the data set, ICTV does in all of the Figures 7–14 better
than TGV2, while for the second image, the situation is reversed. We have highlighted
these two images for the L1

η∇ cost in Figures 15–18, for both noise levels σ = 2 and
σ = 20. In the case where ICTV does better, hardly any difference can be observed
by the eye, while for second image TGV2 clearly has less stair-casing in the smooth
areas of the image, especially with the noise level σ = 20.

Based on this study, it therefore seems that ICTV is the most reliable regulariser of
the ones tested, when the type of image being processed is unknown, and low SSIM,
PSNR or L1

η∇ cost functional value is desired. But as can be observed for individual
images, it can within large smooth areas exhibit artefacts that are avoided by the use
of TGV2.
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Figure 11. Ordering of regularisers with batch learning, L1
η∇ cost,

and noise variance σ2 = 2, on the 200 images of the BSDS300 dataset,
resized. Best regulariser: red=TV, green=ICTV, blue=TGV2;
top=SSIM, middle=PSNR, bottom=objective value.

Figure 12. Ordering of regularisers with batch learning, L2
2 cost, and

noise variance σ2 = 2, on the 200 images of the BSDS300 dataset,
resized. Best regulariser: red=TV, green=ICTV, blue=TGV2;
top=SSIM, middle=PSNR, bottom=objective value.

5.3. The choice of cost functional. The L2
2 cost functional naturally obtains bet-

ter PSNR than L1
η∇, as the two former are equivalent. Comparing the results for

the two cost funtionals in Tables 3–5, we may however observe that for low noise
levels σ2 = 2, 10, and generally for batch learning, L1

η∇ attains better (higher) SSIM.
Since SSIM better captures [37] the visual quality of images than PSNR, this recom-
mends the use of our novel total variation cost functional L1

η∇. Of course, one might
attempt to optimise the SSIM. This is however a non-convex functional, which will
pose additional numerical challenges avoided by the convex total variation cost.
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Figure 13. Ordering of regularisers with batch learning, L1
η∇ cost,

and noise variance σ2 = 20, on the 200 images of the BSDS300 dataset,
resized. Best regulariser: red=TV, green=ICTV, blue=TGV2;
top=SSIM, middle=PSNR, bottom=objective value.

Figure 14. Ordering of regularisers with batch learning, L2
2 cost, and

noise variance σ2 = 20, on the 200 images of the BSDS300 dataset,
resized. Best regulariser: red=TV, green=ICTV, blue=TGV2;
top=SSIM, middle=PSNR, bottom=objective value.

Conclusion and Outlook

In this paper we propose a bilevel optimisation method in function space for learn-
ing the optimal choice of parameters in higher-order total variation regularisation.
We present a rigorous analysis of this optimisation problem as well as a numerical
discussion in the context of image denoising. In particular, we make use of the bilevel
learning approach to compare the performance – in terms of returned image qual-
ity – of TV, ICTV and TGV regularisation. A statistical analysis, carried out on a
dataset of 200 images, suggest that ICTV performs slightly better than TGV, and
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SSIM PSNR value

mean std med best mean std med best mean std med best

Noisy data 0.978 0.015 0.981 16 41.56 0.86 41.95 24 2.9e4 3.1e2 2.9e4 16

L1
η∇-TV 0.987 0.006 0.988 23 42.43 1.07 42.37 21 2.5e4 3.4e3 2.5e4 20

L1
η∇-ICTV 0.988 0.006 0.989 119 42.56 1.06 42.51 135 2.4e4 3.5e3 2.5e4 113

L1
η∇-TGV2 0.987 0.006 0.989 42 42.51 1.09 42.44 20 2.4e4 3.6e3 2.5e4 51

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

L2
2-TV 0.986 0.007 0.987 13 42.46 0.95 42.43 17 0.42 0.07 0.43 17

L2
2-ICTV 0.987 0.007 0.988 139 42.57 0.95 42.56 128 0.41 0.07 0.42 128

L2
2-TGV2 0.987 0.007 0.988 38 42.53 0.97 42.51 40 0.41 0.07 0.42 40

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

Table 6. Regulariser performance with batch learning, L1
η∇ and L2

2

costs, noise variance σ2 = 2; BSDS300 dataset, resized.

SSIM PSNR value

mean std med best mean std med best mean std med best

Noisy data 0.731 0.120 0.744 8 27.72 0.88 28.09 2 1.4e5 2.5e3 1.4e5 0

L1
η∇-TV 0.893 0.035 0.897 23 31.24 1.87 30.94 23 7.5e4 2.2e4 7.3e4 18

L1
η∇-ICTV 0.897 0.034 0.902 134 31.36 1.81 31.11 150 7.4e4 2.2e4 7.2e4 107

L1
η∇-TGV2 0.896 0.035 0.901 35 31.31 1.88 31.01 25 7.4e4 2.3e4 7.2e4 75

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV, TGV2 > TV

L2
2-TV 0.887 0.035 0.889 29 31.31 1.50 31.15 25 5.72 1.91 5.51 25

L2
2-ICTV 0.889 0.036 0.893 127 31.41 1.44 31.28 131 5.57 1.83 5.37 131

L2
2-TGV2 0.888 0.035 0.891 44 31.38 1.50 31.20 44 5.64 1.90 5.44 44

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV ICTV > TGV2 > TV

Table 7. Regulariser performance with batch learning, L1
η∇ and L2

2

costs, noise variance σ2 = 10; BSDS300 dataset, resized.

SSIM PSNR value

mean std med best mean std med best mean std med best

Noisy data 0.505 0.143 0.516 4 21.80 0.92 22.14 1 2.8e5 7.9e3 2.8e5 0

L1
η∇-TV 0.789 0.067 0.798 18 27.37 2.13 26.98 24 1.0e5 3.7e4 9.8e4 14

L1
η∇-ICTV 0.795 0.065 0.804 139 27.46 2.10 27.05 141 1.0e5 3.6e4 9.6e4 91

L1
η∇-TGV2 0.794 0.066 0.804 39 27.44 2.12 27.04 34 1.0e5 3.7e4 9.6e4 95

95% t-test ICTV > TGV2 > TV ICTV > TGV2 > TV TGV2 > ICTV > TV

L2
2-TV 0.786 0.053 0.790 31 27.50 1.71 27.27 33 14.11 5.78 13.16 33

L2
2-ICTV 0.790 0.054 0.790 123 27.56 1.64 27.37 119 13.84 5.54 12.75 119

L2
2-TGV2 0.789 0.053 0.793 46 27.55 1.70 27.33 48 13.93 5.73 12.95 48

95% t-test ICTV, TGV2 > TV ICTV, TGV2 > TV ICTV > TGV2 > TV

Table 8. Regulariser performance with batch learning, L1
η∇ and L2

2

costs, noise variance σ2 = 20; BSDS300 dataset, resized.

both perform better than TV, in average. For denoising of images with a high noise
level ICTV and TGV score comparably well. For images with large smooth areas
TGV performs better than ICTV.

Moreover, we propose a new cost functional for the bilevel learning problem, which
exhibits interesting theoretical properties and has a better behaviour with respect to
the PSNR related L2 cost used previously in the literature. This study raises the
question of other, alternative cost functionals. For instance, one could be tempted
to used the SSIM as cost, but its non-convexity might present several analytical and
numerical difficulties. The new cost functional, proposed in this paper, turns out to
be a good compromise between image quality measure and analytically tractable cost
term.
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(a) Original (b) Individual L1
η∇-TGV2,

PSNR=42.06, SSIM=0.98
(c) Batch L1

η∇-TGV2,
PSNR=41.82, SSIM=0.98

(d) Noisy, σ = 2 (e) Individual L1
η∇-ICTV,

PSNR=42.13, SSIM=0.99
(f) Batch L1

η∇-ICTV,
PSNR=41.93, SSIM=0.98

Figure 15. Image for which ICTV performs better than TGV2, σ = 2
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