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Abstract. The recently introduced second order total generalised vari-
ation functional TGV2

β,α has been a successful regulariser for image pro-
cessing purposes. Its definition involves two positive parameters α and β
whose values determine the amount and the quality of the regularisation.
In this paper we report on the behaviour of TGV2

β,α in the cases where
the parameters α, β as well as their ratio β/α becomes very large or
very small. Among others, we prove that for sufficiently symmetric two
dimensional data and large ratio β/α, TGV2

β,α regularisation coincides
with total variation (TV) regularisation.
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1 Introduction

Parameterisation of variational image processing models has not yet been solved
to full satisfaction. Towards the better understanding of such models, we study
the behaviour of their solutions as the parameters change. Within the constraints
of these proceedings, we concentrate in particular on the asymptotic behaviour
of total generalised variation [2].

In the variational image reconstruction approach, one typically tries to re-
cover an improved version u of a corrupted image f as a solution of a minimisa-
tion problem of the type

min
u

Φ(f, Tu) + Ψ(u), (1.1)

where T is a linear operator that models the type of corruption. Here the term
Φ(f, Tu) ensures the fidelity of the reconstruction to the initial data. The term
Ψ(u), the regulariser, imposes extra regularity on u and it is responsible for
the overall quality of the reconstruction. The two terms are balanced by one or
more parameters within Ψ. A typical example is Ψ(u) = αTV(u), i.e., the total
variation of u weighted by a positive parameter α [5,11]. While total variation
regularisation leads to image reconstructions with sharp edges, it also promotes
piecewise constant structures leading to the staircasing effect. The second order
total generalised variation TGV2

β,α [2] resolves that issue by optimally balancing

first and second order information in the image data. The TGV2
β,α functional
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reads

TGV2
β,α(u) = min

w∈BD(Ω)
α‖Du− w‖M + β‖Ew‖M,

where ‖ · ‖M is the Radon norm, BD(Ω) is the space of functions of bounded
deformation in the domain Ω, E is the symmetrised gradient and α, β > 0.

Since the values of α and β determine the amount and the quality of the
reconstruction, it is important to understand their role in the regularisation
process. In this paper we study the asymptotic behaviour of TGV2

β,α regularised
solutions for the extremal cases, i.e., for large and small values of α, β and their
ratio β/α. For simplicity we focus on the case where Φ(f, Tu) = ‖f − u‖2L2(Ω)

but in most cases, our results can be extended to more general fidelities.
Summary of our results: In Section 3.1 we show that as long as at least

one of the parameters α, β is going to zero then the TGV2
β,α solutions converges

to the data f . In one dimension we obtain a stronger result, showing in addition
that for small values of β the solutions are continuous. In Section 3.2 we focus
on the case when the ratio β/α is large, proving that in this regime TGV2

β,α

is equivalent to TV modulo “an affine correction”. In Section 3.3 we show that
by setting the values of α and β large enough we obtain the linear regression of
the data as a solution. In Section 3.4, we exploit the result of Section 3.2 and
we show that for sufficiently symmetric data and large β/α, TGV2

β,α is equal to
αTV. Our paper is furnished with some numerical experiments in Section 3.5,
which verify our analytical results.

2 Preliminaries and Notation

In this section we briefly review the basic theory of functions of bounded varia-
tion, properties of TV and TGV2

β,α and we also fix our notation.

Let Ω be an open, bounded domain in Rd. A function u ∈ L1(Ω) is a function
of bounded variation (u ∈ BV(Ω)) if its distributional derivative Du is repre-
sented by an Rd–valued finite Radon measure. The total variation of u is defined
as TV(u) = ‖Du‖M, where ‖T ‖M denotes the Radon norm of an R`–valued
distribution T in Ω:

‖T ‖M := sup
{
〈T , v〉 : v ∈ C∞c (Ω;R`), ‖v‖∞ ≤ 1

}
, (2.1)

and it is equal to the total variation |Du|(Ω) of the measure Du when u ∈ BV(Ω).
The measure Du can be decomposed into the absolutely continuous and singular
part with respect to the Lebesgue measure Ld, Du = Dau+Dsu = ∇uLd+Dsu,
where ∇u is the Radon-Nikodým derivative Dau/Ld. The space BV(Ω) is a
Banach space endowed with the norm ‖u‖BV(Ω) = ‖u‖L1(Ω) + ‖Du‖M. We refer
the reader to [1] for a complete account on the functions of bounded variation.

Analogously we define the space of functions of bounded deformation BD(Ω)
as the set of all the L1(Ω;Rd) functions whose symmetrised distributional deriva-
tive Eu is represented by an Rd×d–valued finite Radon measure [12]. Notation-
wise one can readily check that ‖Eu‖M = |Eu|(Ω). The space BV(Ω) is strictly
contained in BD(Ω) for d > 1 while BD(Ω) = BV(Ω) for one dimensional do-
mains Ω. We are not going to need much of the theory of BD functions apart
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from the so-called Sobolev–Korn inequality. The latter says that if Ω has a Lip-
schitz boundary then there exists a constant CBD > 0 that depends only on Ω
such that for every w ∈ BD(Ω) there exists an element rw ∈ KerE such that

‖w − rw‖L1(Ω) ≤ CBD‖Ew‖M. (2.2)

Here the kernel of E consists of all the functions of the form r(x) = Ax + b,
where b ∈ Rd and A ∈ Rd×d is a skew symmetric matrix.

The second order total generalised variation TGV2
β,α(u) of a function u ∈

L1(Ω) is defined as [2,3,4]

TGV2
β,α(u) = min

w∈BD(Ω)
α‖Du− w‖M + β‖Ew‖M, (2.3)

for α, β > 0. The above definition is usually referred to as the differentiation
cascade definition of TGV2

β,α, see [2] for the original formulation. It can be

shown that TGV2
β,α is a seminorm and together with ‖ · ‖L1(Ω) form a norm

equivalent to ‖ · ‖BV(Ω) [4], i.e., there exist constants 0 < c < C that depend

only on Ω such that for every u with TGV2
β,α(u) <∞

c‖u‖BV(Ω) ≤ ‖u‖L1(Ω) + TGV2
β,α(u) ≤ C‖u‖BV(Ω). (2.4)

Notice that the optimal w in (2.3) is not unique in general. In fact w is a
solution of an L1–‖E‖M problem (not strictly convex). Indeed since ‖Du‖M =
‖Dau‖M + ‖Dsu‖M, we have:

w ∈ argmin
w∈BD(Ω)

α‖Du− w‖M + β‖Ew‖M ⇐⇒

w ∈ argmin
w∈BD(Ω)

∫
Ω

|∇u− w| dx+
β

α
‖Eu‖M. (2.5)

In the following sections, we will take specific advantage of the fact that w solves
(2.5), a problem which can be seen as an analogous one to L1–TV minimisation.

Let us finally mention that properties of TGV2
β,α regularisation have been

studied in the one dimensional case and when Φ(f, Tu) = 1
p‖f − u‖pLp(Ω) for

p = 1 or 2, in [3,9,10].

3 Asymptotic behaviour

3.1 β → 0 while α is fixed and α → 0 while β is fixed

In this section we study the limiting behaviour of TGV2
β,α regularisation for

small values of α, β. We first prove that by fixing α or β and sending β or α to
zero respectively, then the regularised TGV2

β,α solution converges to the data f .

For simplicity we work on the L2–TGV2
β,α denoising problem, i.e., T = Id, but

the next result can be extended in the more general case e.g. when the fidelity
term reads 1

p‖f − Tu‖p, with p ≥ 1 and T being a bounded, linear operator

T : Lp(Ω)→ Lp(Ω). For convenience we set

(uβ,α, wβ,α) = argmin
u∈BV(Ω)
w∈BD(Ω)

1

2
‖f − u‖2L2(Ω) + α‖Du− w‖M + β‖Ew‖M. (3.1)
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Proposition 1 Let Ω ⊆ Rd, open and bounded and f ∈ L2(Ω) ∩ BV(Ω). Then

(i) Fixing α > 0 we have that ‖f − uβ,α‖2L2(Ω) → 0 as β → 0.

(ii) Fixing β > 0 we have that ‖f − uβ,α‖2L2(Ω) → 0 as α→ 0.

Proof. (i) Let ε > 0 and {ρδ}δ>0 be a standard family of mollifiers, i.e., ρδ(x) =
δ−dρ(x/δ), where ρ ∈ C∞c (Rd), and set fδ := ρδ ∗ f . Because (uβ,α, wβ,α) is an
optimal pair in (3.1) by setting u = fδ and w = ∇fδ we have the following
estimates, for some constant C > 0

1

2
‖f − uβ,α‖2L2(Ω) ≤

1

2
‖f − uβ,α‖2L2(Ω) + α‖Duβ,α − wβ,α‖M + β‖Ewβ,α‖M

≤ 1

2
‖f − fδ‖2L2(Ω) + β‖E(∇fδ)‖M

≤ 1

2
‖f − fδ‖2L2(Ω) + β‖Eρδ ∗Df‖M

≤ 1

2
‖f − fδ‖2L2(Ω) + β

1

δ
‖Df‖M.

We set δ small enough such that ‖f−fδ‖2L2(Ω) ≤ ε/2. By choosing β < δε/2‖Df‖M,
the result follows.
(ii) The proof is very similar to the (i) case, by setting u = fδ and w = 0,
instead. ut
Remark: Of course in both (i)–(ii) cases of Proposition 1, we also get
‖Duβ,α − wβ,α‖M → 0 as well as ‖Ewβ,α‖M → 0 as β → 0 or α→ 0.

Another interesting behaviour occurs when β → 0. In [13], it is proved that
for an arbitrary dimension and a fixed α > 0 we have

‖Dsuβ,α‖M → 0, as β → 0.

However it turns out that in dimension one we are able to prove something
stronger, provided the data are bounded:

Proposition 2 Let Ω = (a, b) ⊆ R, f ∈ L∞(Ω)∩BV(Ω) and α > 0. Then there
exists a threshold β∗ > 0 such that for every β < β∗ we have that

‖Dsuβ,α‖M = 0 and wβ,α = ∇uβ,α.
In particular this means that for β < β∗

uβ,α = argmin
u∈BV(Ω)

1

2
‖f − u‖2L2(Ω) + β‖D2u‖M. (3.2)

Proof. From the optimality conditions derived in [9], we have that (uβ,α, wβ,α)
solve (3.1) if and only if there exists a dual variable v ∈ H2

0 (Ω) such that

v′′ = f−uβ,α (Cf ), −v′ ∈ αSgn(Duβ,α−wβ,α) (Cα), v ∈ βSgn(Dwβ,α) (Cβ),

where for a finite Radon measure µ we define

Sgn(µ) :=

{
v ∈ L∞(Ω) ∩ L∞(Ω, |µ|) : ‖v‖∞ ≤ 1, v =

µ

|µ|
, |µ| − a.e.

}
.

Note also that there exists a constant C depending only on Ω such that the
following interpolation inequality holds [8, Section 5.10, ex. 9]

‖Dv‖L2(Ω) ≤ C‖v‖
1/2
L2(Ω)‖D

2v‖1/2L2(Ω), for all v ∈ H2
0 (Ω). (3.3)
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Observe first that (denoting this dual function v by vβ,α)

‖Dvβ,α‖L2(Ω) → 0 as β → 0. (3.4)

Indeed, from Proposition 1 and condition (Cf ) we have that ‖D2vβ,α‖L2(Ω) → 0
while from condition (Cβ) we have that ‖vβ,α‖∞ → 0 and thus ‖vβ,α‖L2(Ω) → 0
as β → 0. Then we just apply the estimate (3.3).

From the fact that we are in dimension one and from (2.4) we have for a
generic constant C

‖uβ,α‖L∞(Ω) ≤ C‖uβ,α‖BV(Ω) ≤ C(‖uβ,α‖L2(Ω) + TGV2
β,α(uβ,α))

≤ C(‖f − uβ,α‖L2(Ω) + ‖f‖L2(Ω) + TGV2
β,α(uβ,α))

≤ C(‖f‖L2(Ω),TGV2
β,α(f)) := M,

which in combination with (Cf ) and the fact that f ∈ L∞(Ω) implies that
‖D2vβ,α‖∞ ≤ M . Thus from the Arzelà-Ascoli theorem we get the existence of
a sequence βn → 0 and a continuous function ṽ such that vβn,α → ṽ uniformly.
We immediately deduce using (3.4) that vβ,α → 0 uniformly as β → 0. But then
condition (Cα) implies that there must exist a β0 such that for every β < β0

we have Duβ,α = wβ,α, as measures, i.e., Dsuβ,α = 0 and wβ,α = ∇uβ,α since
otherwise there would exist a point xβn,α ∈ (a, b) with Dvβn,α(xβn,α) = α for a
sequence (βn)n∈N converging to 0, a contradiction. ut

Remark: We believe that the above proof sets the basis for an analogue proof in
higher dimensions even though admittedly this is a hard task. That would require
an interpolation inequality for v, divv and div2v analogous to (3.3), as well as a
proof that the TGV2

β,α regularised solution remains bounded, for bounded data
f .

3.2 Large ratio β/α

Recall from (2.5) that the optimal w is a solution to a L1–‖E‖M type of problem.
This motivates us to study some particular properties of the general form of such
a problem:

min
w∈BD(Ω)

‖g − w‖L1(Ω;Rd) + λ‖Ew‖M, g ∈ L1(Ω;Rd), λ > 0. (3.5)

The next theorem states that if the parameter λ is larger than a certain threshold
(depending only on Ω) then a solution w of (3.5) will belong to KerE . This is
analogous to the L1–TV problem [6,7], where there for large enough value of the
parameter λ, the solution is constant, i.e., belongs to the kernel of TV.

Proposition 3 Let Ω ⊆ Rd be an open, bounded set with Lipschitz boundary,
g ∈ L1(Ω;Rd) and CBD the constant that appears in the Sobolev–Korn inequality
(2.2). Then if λ > CBD and wλ is a solution of (3.5) with parameter λ, then

wλ = mE(g) := argmin
w∈KerE

‖g − w‖L1(Ω;Rd). (3.6)

Proof. Since wλ is a solution of (3.5), it is easy to check that if rwλ is the
element of KerE that corresponds to wλ in the Sobolev-Korn inequality then,
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Wλ := wλ − rwλ solves the following problem:

min
w∈BD(Ω)

‖(g − wλ)− w‖L1(Ω;Rd) + λ‖Ew‖M. (3.7)

Indeed, we have for an arbitrary w ∈ BD(Ω)

‖(g − rwλ)−Wλ‖L1(Ω;Rd) + λ‖EWλ‖M ≤ ‖(g − rwλ)− w‖L1(Ω;Rd) + λ‖Ew‖M,
⇐⇒

‖g − wλ‖L1(Ω;Rd) + λ‖Ewλ‖M ≤ ‖g − (w + rwλ)‖L1(Ω;Rd) + λ‖E(w + rwλ)‖M,
with the latter being true since

‖g − wλ‖L1(Ω;Rd) + λ‖Ewλ‖M ≤ ‖g − w‖L1(Ω;Rd) + λ‖Ew‖M, ∀w ∈ BD(Ω).

Since Wλ solves (3.7), setting Gλ := g − wλ we have that

‖Gλ −Wλ‖L1(Ω;Rd) + λ‖EWλ‖M ≤ ‖Gλ‖L1(Ω;Rd),

and using the Sobolev–Korn inequality ‖Wλ‖L1(Ω;Rd) ≤ CBD‖EWλ‖M we have

‖Gλ −Wλ‖L1(Ω;Rd) +
λ

CBD
‖Wλ‖L1(Ω;Rd) ≤ ‖Gλ‖L1(Ω;Rd). (3.8)

A simple application of the triangle inequality in (3.8) yields that if λ > CBD,
then we must have Wλ = 0, i.e., wλ = rwλ from which (3.6) straightforwardly
follows. ut

The notation mE(g) can be interpreted as the median of g with respect to
KerE . If d = 1, then this is nothing else than the usual median since in that
case KerE consists of all the constant functions. The following corollary follows
immediately from (2.5) and Proposition (3). It says that for large β/α, TGV2

β,α

is almost equivalent to TV up to an “affine correction”.

Corollary 4 Let Ω ⊆ Rd be an open, bounded set with Lipschitz boundary and
let α, β > 0 such that β/α > CBD. Then for every u ∈ BV(Ω)

TGV2
β,α(u) = α‖Du−mE(∇u)‖M.

3.3 Thresholds for regression

In this section we show that there exist some thresholds for α and β above which
the solution to the L2–TGV2

β,α regularisation problem is the L2-linear regression
of the data f , denoted by f?:

f? := argmin
φ affine

‖f − φ‖2L2(Ω).

We are going to need the following proposition proved in [4]:

Proposition 5 ([4, Proposition 4.1]) Let Ω ⊆ Rd be a bounded, open set
with Lipschitz boundary. Then for every 1 ≤ p ≤ d/(d−1), there exists a constant
CBGV(β/α) > 0, that depends only on Ω, p and the ratio β/α such that

‖u− u?‖Lp(Ω) ≤ CBGV(β/α)TGV2
β/α,1(u). (3.9)

In the next proposition we show the existence of these regression thresholds
for d = 2 and also for d > 2 under the extra assumption that the Lp norm of
the data f controls the Lp norm of the solution for some p ∈ [d,∞].



Asymptotic behaviour of total generalised variation 7

Proposition 6 Let Ω ⊆ Rd be a bounded, open set with Lipschitz boundary.
Suppose that either

(i) d = 2 and f ∈ BV(Ω) or

(ii) d > 2, f ∈ L∞(Ω) ∩ BV(Ω) and there exists a constant C > 0 depending
only on the domain and p ∈ [d,∞] such that ‖u‖Lp(Ω) ≤ C‖f‖Lp(Ω) for u
solution to (3.1),

then there exist α?, β? > 0 such that whenever α > α?, β > β? then the solution
to the L2–TGV2

β,α regularisation problem is equal to f?.

Proof. Suppose initially that d = 2 and f ∈ BV(Ω). Then using the Hölder
inequality along with (3.9) and the fact that any function u ∈ BV(Ω) that solves
the L2–TGV2

β,α problem has a L2 norm bounded by a constant C depending
only on f and not on α, β

1

2
‖f − f?‖2L2(Ω) = min

φ affine

1

2
‖f − φ‖2L2(Ω) ≤

1

2
‖f − u?‖2L2(Ω)

=
1

2
‖f − u‖2L2(Ω) +

1

2
‖u− u?‖2L2(Ω) +

∫
Ω

(f − u)(u− u?)dx

≤ 1

2
‖f − u‖2L2(Ω) + C(f)‖u− u?‖L2(Ω) (3.10)

≤ 1

2
‖f − u‖2L2(Ω) + C(f)CBGV(β/α)TGV2

β/α,1(u).

Setting α? = C(f)CBGV(1) and β? = α? we have that if α > α? and β > β? we
can further estimate

1

2
‖f − f?‖2L2(Ω) ≤

1

2
‖f − u‖2L2(Ω) + C(f)CBGV(1)TGV2

β?/α?,1(u)

≤ 1

2
‖f − u‖2L2(Ω) + α?TGV2

β?/α?,1(u)

≤ 1

2
‖f − u‖2L2(Ω) + TGV2

β?,α?(u)

≤ 1

2
‖f − u‖2L2(Ω) + TGV2

β,α(u).

The proof goes through for the case (ii) as well, where the only difference is
that Hölder inequality in (3.10) gives two terms ‖u − u?‖Lp(Ω)‖u − u?‖Lp∗ (Ω)

and ‖f −u‖Lp(Ω)‖u−u?‖Lp∗ (Ω), where p∗ = p/(p−1) and∞∗ := 1. These terms
can be further bounded using inequality (3.9) (note that p∗ ≤ d/(d − 1)) and
the fact that ‖u‖Lp(Ω) ≤ C‖f‖Lp(Ω). ut

More explicit regression thresholds have been given in [9] both for general and
specific one dimensional data f . Let us point out that the condition ‖u‖Lp(Ω) ≤
C‖f‖Lp(Ω) and in particular ‖u‖∞ ≤ C‖f‖∞ (which can be derived easily for TV
regularisation with C = 1), as natural as it may seems, it cannot be shown easily.
However, if proved, it will also have positive implications as far as the inclusion
of the jump set of the solution to the jump set of the data is concerned, see [13].
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3.4 Equivalence to TV for large ratio β/α and sufficiently
symmetric data

In Corollary 4 we obtained a more precise characterisation of TGV2
β,α for large

values of the ratio β/α. In this section we show that at least for symmetric
enough data f , TGV2

β,α regularisation is actually equivalent to αTV regularisa-
tion. For the sake of the simplicity of the analysis we assume here that Ω is a
two dimensional domain, i.e., Ω ⊆ R2. We will also need some symmetry for Ω,
for the time being let Ω be a square centered at the origin. We shall prove the
following theorem.

Theorem 7 Suppose that Ω ⊆ R2 is a bounded, open square, centred at the
origin and let f ∈ BV(Ω) satisfy the following symmetry properties:

(i) f is symmetric with respect to both axes, i.e.,

f(x1, x2) = f(−x1, x2), f(x1, x2) = f(x1,−x2), for a.e. (x1, x2) ∈ Ω.

(ii) f is invariant under π/2 rotations, i.e., f(Oπ/2x) = f(x), where Oπ/2
denotes counterclockwise rotation by π/2 degrees.

Then if β/α > CBD, the problems

min
u∈BV(Ω)

1

p

∫
Ω

|f −u|pdx+ TGV2
β,α(u) and min

u∈BV(Ω)

1

p

∫
Ω

|f −u|pdx+αTV(u)

for p ≥ 1 are equivalent.

Remark 8 The proof of Theorem 7 is essentially based on the fact that the
symmetry of the data f is inherited to the solution u and thus to ∇u. In that
case we can show that mE(∇u) = 0 something that shows the equivalence of
TGV2

β,α and αTV. Other symmetric domains, e.g. circles, rectangles, together
with appropriate symmetry conditions for f can also guarantee that ∇u has the
desired symmetry properties as well. The same holds for any fidelities Φ(f, Tu)
that ensure that the symmetry of f is passed to u.

Let us also mention that abusing the notation a bit, by mE(∇u) = 0 we mean
that zero is a solution of the problem (3.6) with g = ∇u.

Proof (of Theorem 7). Since β/α > CBD, from Corollary 4 we have that the
TGV2

β,α regularisation problem is equivalent to

min
u∈BV(Ω)

1

p

∫
Ω

|f − u|pdx+ α‖Du−mE(∇u)‖M. (3.11)

Thus it suffices to show that mE(∇u) = 0. Since f satisfies the symmetry proper-
ties (i)–(ii), from the rotational invariance of TGV2

β,α [2] we have that the same

conditions hold for the TGV2
β,α regularised solution u. This also means that

∇u = (∇1u,∇2u) has the following properties for almost all x = (x1, x2) ∈ Ω:

∇1u(x1, x2) = ∇1u(x1,−x2), ∇2u(x1, x2) = ∇2u(−x1, x2), (3.12)

∇u(x) = −∇u(−x), ∇1u(Oπ/2x) = ∇2u(x). (3.13)
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Recalling that

mE(∇u) = argmin
w∈KerE

‖∇u− w‖L1(Ω;Rd),

and that mE(∇u) has the form Ax + b it is easy to check, see the following
lemma, that mE(∇u) = 0. ut

Lemma 9 Let Ω be a square centred at the origin and suppose that g = (g1, g2) ∈
L1(Ω;R2) satisfies the symmetry properties

g(x) = −g(−x), g1(x1, x2) = g(x1,−x2), g2(x1, x2) = g2(−x1, x2), (3.14)

g1(Oπ/2x) = g2(x), (3.15)

for almost every x = (x1, x2) ∈ Ω. Then the minimisation problem

min
w∈KerE

‖g − w‖L1(Ω;R2), (3.16)

admits w = 0 as a solution.

Proof. Recalling that KerE consists of all the functions of the form r(x) = Ax+b
with A being a skew symmetric function, we have that the minimisation (3.16)
is equivalent to

min
A,b

∫
Ω

|g(x)−Ax− b|dx, (3.17)

with corresponding optimality conditions∫
Ω

〈
g(x)−AOπ/2x− b
|g(x)−AOπ/2x− b|

, Oπ/2x

〉
dx = 0, with Oπ/2 =

(
0 −1
1 0

)
.

Using the equalities g2(x1, x2) = g1(−x2, x1) and g1(−x2, x1) = g1(−x2,−x1) =
−g1(x1, x2) we have that A = 0, b = 0 solve (3.17) if∫

Ω

〈
Oπ/2g(x)

|Oπ/2g(x)|
, x

〉
dx = 0 ⇐⇒

∫
x2g1(x1, x2)− x1g2(x1, x2)

|g(x)|
dx = 0 ⇐⇒∫

Ω

x2g1(x1, x2)− x1g1(−x2, x1)√
g1(x1, x2)2 + g1(−x2, x1)2

dx = 0 ⇐⇒
∫

Ω

(x1 + x2)
g1(x1, x2)

|g1(x1, x2)|
dx = 0,

with last equality being true since −g(−x) = g(x). ut

3.5 Numerical experiments

In this section we verify some of our results using numerical experiments. In
Figure 1 we confirm Theorem 7. There, we apply αTV and TGV2

β,α denoising
with L2 fidelity, to a characteristic function of a disk centred at the middle of the
domain, Figure 1(a) and away from it, Figure 1(e). Notice that the symmetry
properties of Theorem 7 are satisfied for the first case. There, we observe that
by choosing the ratio β/α large enough, TGV2

β,α and αTV solutions coincide,
Figures 1(b) and 1(c) . However, they do not coincide for small ratio β/α, Figure
1(d), see also the middle row slices in Figure 1(i). In this case TGV2

β,α produces
a piecewise smooth result in comparison to the piecewise constant one of αTV.
Note that when the symmetry is broken, αTV and TGV2

β,α solutions do not
coincide even for large ratio β/α, Figures 1(g), 1(h) and 1(j).
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(a) Symmetric
data

(b) TV solution,
α = 10

(c) TGV solution,
α = 10, β = 106

(d) TGV solution,
α = 10, β = 200

(e) Non-symmetric
data

(f) TV solution,
α = 10

(g) TGV solution,
α = 10, β = 106

(h) TGV solution,
α = 10, β = 106
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f

TGV : α = 10, β = 106

TGV : α = 10, β = 200

TV : α = 10

(i) Corresponding middle row slices for
symmetric data
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f

TGV : α = 10, β = 106

TGV : α = 10, β = 200

TV : α = 10

(j) Corresponding middle row slices for
non-symmetric data

Fig. 1: Illustration of the two dimensional αTV and TGV2
β,α equivalence for

symmetric data when β/α is large enough. Notice that the equivalence does not
hold once the symmetry is broken.

Figure 2 depicts another example of an image that satisfies the symmetry
properties of Theorem 7. The αTV solution coincides with the TGV2

β,α one for
large ratio β/α, Figures 2(b) and 2(c), but not for small ratio, Figure 2(d).

Finally in Figure 3, we solve the L2–TGV2
β,α regularisation problem in a

noisy image. We observe that for very small values of β or α, essentially we
have no regularisation at all, see Figures 3(c) and 3(d) respectively, verifying
Proposition 1. In Figure 3(e), we choose a large ratio β/α, obtaining a TV–like
result which is nevertheless quite different than the αTV result, Figure 3(f),
having staircasing only inside the ellipse. This is due to the “affine” correction
predicted by Corollary 4, see also the corresponding diagonal slices in Figure
3(i). Figure 3(g) depicts a typical TGV solution with no staircasing while in
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(a) Original image (b) TV solution,
α = 1

(c) TGV solution,
α = 1, β = 100

(d) TGV solution,
α = 1, β = 2

Fig. 2: Illustration of the two dimensional αTV and TGV2
β,α equivalence for

symmetric data when β/α is large enough.

(a) Original image (b) Noisy image (c) TGV solution,
α = 0.1, β = 10−4

(d) TGV solution,
α = 10−4, β = 0.15

(e) TGV solution,
α = 0.1, β = 100

(f) TV solution,
α = 0.1

(g) TGV solution,
α = 0.1, β = 0.15

(h) TGV solution,
α = 100, b = 1000

0
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0.7

0.8

0.9

1

Original Noisy TGV: α = 0.1, β = 100 TV: α = 0.1 TGV: α = 0.1, β = 0.15

(i) Corresponding diagonal slices

Fig. 3: L2–TGV2
β,α denoising for extremal values of α and β.

Figure 3(h) we set α and β large enough and we obtain the linear regression of
the data, as expected from Proposition 6.



12 K. Papafitsoros and T. Valkonen

Acknowledgements. This work is supported by the King Abdullah University
for Science and Technology (KAUST) Award No. KUK-I1-007-43. The first au-
thor acknowledges further support by the Cambridge Centre for Analysis (CCA)
and the Engineering and Physical Sciences Research Council (EPSRC). The sec-
ond author acknowledges further support from EPSRC grant EP/M00483X/1
“Efficient computational tools for inverse imaging problems”.

References

1. L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free
discontinuity problems. Oxford University Press, USA, 2000.

2. K. Bredies, K. Kunisch, and T. Pock. Total generalized variation. SIAM Journal
on Imaging Sciences, 3(3):492–526, 2010.

3. K. Bredies, K. Kunisch, and T. Valkonen. Properties of L1-TGV 2 : The one-
dimensional case. Journal of Mathematical Analysis and Applications, 398(1):438
– 454, 2013.

4. K. Bredies and T. Valkonen. Inverse problems with second-order total general-
ized variation constraints. In Proceedings of SampTA 2011 - 9th International
Conference on Sampling Theory and Applications, Singapore, 2011.

5. A. Chambolle and P. Lions. Image recovery via total variation minimization and
related problems. Numerische Mathematik, 76:167–188.

6. T. Chan and S. Esedoglu. Aspects of total variation regularized L1 function ap-
proximation. SIAM Journal on Applied Mathematics, pages 1817–1837, 2005.

7. V. Duval, J. Aujol, and Y. Gousseau. The TVL1 model: a geometric point of view.
SIAM Journal on Multiscale Modeling and Simulation, 8(1):154–189.

8. L. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Math-
ematics, Second Edition. American Mathematical Society, 2010.

9. K. Papafitsoros and K. Bredies. A study of the one dimensional total generalised
variation regularisation problem. Inverse Problems and Imaging, 9(2), 2015.
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