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Abstract Employing the ideas of non-linear preconditioning and testing of the classi-

cal proximal point method, we formalise common arguments in convergence rate and

convergence proofs of optimisation methods to the veri�cation of a simple iteration-wise

inequality. When applied to �xed point operators, the latter can be seen as a generalisation

of �rm non-expansivity or the α-averaged property. The main purpose of this work is to

provide the abstract background theory for our companion paper “Block-proximal methods

with spatially adapted acceleration”. In the present account we demonstrate the e�ective-

ness of the general approach on several classical algorithms, as well as their stochastic

variants. Besides, of course, the proximal point method, these method include the gradient

descent, forward–backward splitting, Douglas–Rachford splitting, Newton’s method, as well

as several methods for saddle-point problems, such as the Alternating Directions Method

of Multipliers, and the Chambolle–Pock method.

1 introduction

The proximal point method for monotone operators [22, 28], while infrequently used by itself, can

be found as a building block of many popular optimisation algorithms. Indeed, many important

application problems can be written in the form

(P) min

x
G(x) + J (x) + F (Kx)

for convexG, J and F , and a linear operatorK , withG and F non-smooth and J smooth. Examples

abound in image processing and data science. The problem (P) can often be solved by methods

such as forward–backward splitting, ADMM (alternating directions method of multipliers) and

their variants [2, 7, 13, 20]. They all involve a proximal point step.

The equivalent saddle point form of (P) is

(S) min

x
max

y
G(x) + J (x) + 〈Kx ,y〉 − F ∗(y).

In particular within mathematical image processing and computer vision, a popular algorithm

for solving (S) with J = 0 is the primal–dual method of Chambolle and Pock [7]. As discovered
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in [14], the method can most concisely be written as a preconditioned proximal point method,

solving on each iteration for ui+1 = (x i+1,y i+1) the variational inclusion

(PP0) 0 ∈ H (ui+1) +Mi+1(u
i+1 − ui ),

where the monotone operator

H (u) :=

(
∂G(x) + K∗y
∂F ∗(y) − Kx

)
encodes the optimality condition 0 ∈ H (û) for (S). In the standard proximal point method [28],

one would take Mi+1 = I the identity. With this choice, (PP0) is generally di�cult to solve.

In the Chambolle–Pock method the preconditioning operator is given for suitable step length

parameters τi ,σi+1,θi > 0 by

(1.1) Mi+1 :=

(
τ−1i I −K∗

−θiK σ−1i+1I

)
.

This choice of Mi+1 decouples the primal x and dual y updates, making the solution of (PP0)

feasible in a wide range of problems. IfG is strongly convex, the step length parameters τi ,σi+1,θi
can be chosen to yield O(1/N 2) convergence rates of an ergodic duality gap and the quadratic

distance ‖x i − x̂ ‖2.
In our earlier work [32], we have modi�ed Mi+1 as well as the condition (PP0) to still allow a

level of mixed-rate acceleration whenG is strongly convex only on sub-spaces. Our convergence

proofs were based on testing the abstract proximal point method by a suitable operator, which

encodes the desired and achievable convergence rates on relevant subspaces.

In the present paper, we extend this theoretical approach to non-linear preconditioning,

non-invertible step-length operators, and arbitrary monotone operators H . Our main purpose

is to provide the abstract background theory for our companion paper [31]. Here, within these

pages, we demonstrate that several classical optimisation methods—including the second-order

Newton’s method—can also be seen as variants of the proximal point method, and that their

common convergence rate and convergence proofs reduce to the veri�cation of a simple iteration-

wise inequality. Through application of our theory to Browder’s �xed point theorem [4] in

Section 2.6, we see that our inequality generalises the concepts of �rm non-expansivity or the

α-averaged property. Our theory also covers stochastic variants of the considered algorithms.

In Section 2, we start by developing our theory for general monotone operators H . This

extends, simpli�es, and clari�es the more disconnected results from [32] that concentrated

on saddle-point problems with preconditioners derived from (1.1). We demonstrate our results

on the basic proximal point method, gradient descent, forward–backward splitting, Douglas–

Rachford splitting, and Newton’s method. The proximal step in forward–backward splitting

and proximal Newton’s method can be introduced completely “free”, without any additional

proof e�ort, in our approach.

In Section 3 we demonstrate the further �exibility of our techniques by application to stochas-

tic block coordinate methods. We refer to [34] for a review of this class of methods. In the �nal

Sections 4 and 5 we specialise our work to saddle-point problems, and demonstrate the results

on variants of the Chambolle–Pock method, and the Generalised Iterative Soft Thresholding

(GIST) algorithm of [20]. Some of the derivations in these last two sections are quite abstract
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and general, as we will need this for our companion paper [31] where we develop stochastic

primal-dual methods with coordinate-wise adapted step lengths.

Besides already cited works, other previous work related to ours includes that on generalised

proximal point methods, such as [6, 9], as well inertial methods for variational inclusions [19].

2 an abstract preconditioned proximal point iteration

2.1 notation and general setup

We use cpl(X ) to denote the space of convex, proper, lower semicontinuous functions from X to

the extended reals R := [−∞,∞], and L(X ;Y ) to denote the space of bounded linear operators

between Hilbert spaces X and Y . We denote the identity operator by I . For T , S ∈ L(X ;X ),
we write T ≥ S when T − S is positive semide�nite. Also for possibly non-self-adjoint T , we

introduce the inner product and norm-like notations

(2.1) 〈x , z〉T := 〈Tx , z〉, and ‖x ‖T :=
√
〈x ,x〉T .

For a set A ⊂ R, we write A ≥ 0 if every element t ∈ A satis�es t ≥ 0.

Our overall wish is to �nd some û ∈ U , on a Hilbert space U , solving for a given set-valued

map H : U ⇒ U the variational inclusion

(2.2) 0 ∈ H (û).

Throughout the manuscript, û stands for an arbitrary root of a relevant map H . In the present

Section 2, H will be arbitrary, but in Sections 4 and 5, where we specialise the results, we

concentrate on H arising from the saddle point problem (S).

Our strategy towards �nding a solution û is to introduce an arbitrary non-linear iteration-

dependent preconditioner Vi+1 : U → U and a step length operatorWi+1 ∈ L(U ;U ). With these,

we de�ne the generalised proximal point method, which on each iteration i ∈ N solves ui+1

from

(PP) 0 ∈Wi+1H (u
i+1) +Vi+1(u

i+1).

We assume that Vi+1 splits into Mi+1 ∈ L(U ;U ), and V ′i+1 : U → U as

(2.3) Vi+1(u) = V
′
i+1(u) +Mi+1(u − u

i ).

More generally, to rigorously extend our approach to cases that would otherwise involve set-

valued Vi+1, we also consider for H̃i+1 : U ⇒ U the iteration

(PP
∼

) 0 ∈ H̃i+1(u
i+1) +Mi+1(u

i+1 − ui ).

We say that (PP) or (PP
∼

) is solvable for the iterates {ui+1}i ∈N ⊂ U if given any u0 ∈ U , we can

solve the corresponding inclusion to iteratively calculate ui+1 from ui for each i ∈ N.
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2.2 basic estimates

We analyse the preconditioned proximal point methods (PP) and (PP
∼

) by applying a testing
operator Zi+1 ∈ L(U ;U ), following the ideas introduced in [32]. The product Zi+1Mi+1 with the

linear part of the preconditioner, will, as we soon demonstrate, be an indicator of convergence

rates. In essence, as seen in the descent inequality (DI) of the next result, the operator forms a

local metric (in the di�erential geometric sense) that measures closeness to a solution.

Theorem 2.1. On a Hilbert spaceU , let H̃i+1 : U ⇒ U , andMi+1,Zi+1 ∈ L(U ;U ) for i ∈ N. Suppose
(PP
∼

) is solvable for {ui+1}i ∈N ⊂ U . Let û ∈ U . If for all i ∈ N, Zi+1Mi+1 is self-adjoint, and for
some ∆i+1(û) ∈ R the fundamental condition

〈H̃i+1(u
i+1),ui+1 − û〉Zi+1 ≥

1

2

‖ui+1 − û‖2Zi+2Mi+2−Zi+1Mi+1

−
1

2

‖ui+1 − ui ‖2Zi+1Mi+1
− ∆i+1(û)

(CI
∼

)

holds, then so do the quantitative ∆-Féjer monotonicity (with respect to û)

(QF)

1

2

‖ui+1 − û‖2Zi+2Mi+2
≤

1

2

‖ui − û‖2Zi+1Mi+1
+ ∆i+1(û) (i ∈ N)

as well as the descent inequality

(DI)

1

2

‖uN − û‖2ZN+1MN+1
≤

1

2

‖u0 − û‖2Z1M1

+

N−1∑
i=0

∆i+1(û) (N ≥ 1).

The main condition (CI
∼

) of Theorem 2.1 essentially writes in abstract and step-dependent

form the three-point formulas that hold for convex smooth functions (see Appendix b). The term

1

2
‖ui+1−û‖2Zi+2Mi+2−Zi+1Mi+1

is able to measure the strong monotonicity ofH or the approximation

H̃i+1. Indeed, if we have the estimate

〈H̃i+1(u
i+1),ui+1 − û〉Zi+1 ≥

1

2

‖ui+1 − û‖2Zi+1Γ,

then this suggests to update the local metrics as

Zi+2Mi+2 ' Zi+1(Mi+1 + Γ),

where we write ' to indicate that only the norm induced by the two operators has to be the

same: Zi+1Γ might not be self-adjoint, while Zi+2Mi+2 has to be self-adjoint. As we will see

in Section 4.2, these metric update and self-adjointness conditions e�ectively give popular

primal–dual optimisation methods their necessary forms. The term
1

2
‖ui+1 − ui ‖2Zi+1Mi+1

, on the

other hand, as we shall see in more detail in Section 2.3, gives the necessary leeway for taking a

forward step instead of a proximal step with respect to some components of H . The term ∆i+1
can model function value di�erences or duality gaps, as will be the case in this work, but in

other contexts, such as the stochastic methods of our companion paper [31], it will be a penalty

for the dissatisfaction of the metric update; hence the negated sign and the right-hand position

in (DI).
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Specialised to (PP), we obtain the following result. The condition (CI) is often more practical

to verify than (CI
∼

) thanks to the additional structure introduced by H (û) 3 0. Indeed, in many

of our examples, we can eliminate H through monotonicity. To derive gap and function value

estimates in Section 5, we will however need (CI
∼

).

Corollary 2.2. On a Hilbert space U , let H : U ⇒ U . Also let Zi+1,Wi+1,Mi+1 ∈ L(U ;U ), and
V ′i+1 : U → U for i ∈ N. Suppose (PP) is solvable for {ui+1}i ∈N ⊂ U with Vi+1 as in (2.3). Let
û ∈ H−1(0). If for all i ∈ N,Zi+1Mi+1 is self-adjoint, and for some ∆i+1 ∈ R and û ∈ U the condition

〈Wi+1[H (u
i+1) − H (û)] +V ′i+1(u

i+1),ui+1 − û〉Zi+1 ≥
1

2

‖ui+1 − û‖2Zi+2Mi+2−Zi+1Mi+1

−
1

2

‖ui+1 − ui ‖2Zi+1Mi+1
− ∆i+1(û),

(CI)

holds, then (CI
∼

), (QF), and (DI) hold for H̃i+1(u) :=Wi+1H (u) +V
′
i+1(u).

Proof of Theorem 2.1. Inserting (PP
∼

) into (CI
∼

), we obtain

(2.4)

1

2

‖ui+1 − ui ‖2Zi+1Mi+1
+

1

2

‖ui+1 − û‖2Zi+1Mi+1−Zi+2Mi+2

− 〈ui+1 − ui ,ui+1 − û〉Zi+1Mi+1 ≥ −∆i+1(û).

We recall for general self-adjoint M the three-point formula

(2.5) 〈ui+1 − ui ,ui+1 − û〉M =
1

2

‖ui+1 − ui ‖2M −
1

2

‖ui − û‖2M +
1

2

‖ui+1 − û‖2M .

Using this with M = Zi+1Mi+1, we rewrite (2.4) as the quantitative ∆-Féjer monotonicity (QF).

Summing this over i = 0, . . . ,N − 1, we obtain the descent inequality (DI). �

Remark 2.3 (Bregman divergences and Banach spaces). Let X be a Banach space and J ∈ cpl(X ).
Then for x ∈ dom J andp ∈ ∂J (x) one can de�ne the asymmetric Bregman divergence (or distance)

D
p
J (z,x) := J (z) − J (x) − 〈p | z − x〉X , (x ∈ X ),

where 〈 · | · 〉X : X ∗×X → R denotes the dual product. This is non-negative, but not a true distance,
as it can happen that Dp

J (z,x) = 0 for z , x . However with x̂ , z ∈ dom J and q ∈ ∂J (z), we deduce
[9]

D
p
J (x̂ ,x) − D

q
J (x̂ , z) + D

q
J (x , z) = [J (x̂) − J (x) − 〈p | x̂ − x〉X ] − [J (x̂) − J (z) − 〈q | x̂ − z〉X ]

+ [J (x) − J (z) − 〈q | x − z〉X ]

= 〈p − q | x − x̂〉X .

Therefore, the Bergman distance satis�es an analogue of the standard three-point identity (2.5). It
allows generalising our techniques to Banach spaces and the algorithm

0 ∈ Zi+1H̃i+1(u
i+1) + (pi+1 − qi ) with qi ∈ ∂Ji+1(u

i ) and pi+1 ∈ ∂Ji+1(ui+1)
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where for each i ∈ N now Zi+1Mi+1 has been replaced by Ji+1 ∈ cpl(X ). The convergence will,
however, be with respect to D Ji+1 . Indeed, if X is, in fact, a Hilbert space and we take Ji+1(x) =
1

2
‖x ‖2Zi+1Mi+1

, then Dx−z
Ji+1
(z,x) = 1

2
‖z − x ‖2Zi+1Mi+1

.
Proximal point methods based on general Bregman divergences in place of the squared norm are

studied in, e.g., [6, 9, 15, 16].

The next two results demonstrate how the estimate of Theorem 2.1 can be used to prove

convergence with or without rates.

Proposition 2.4 (Convergence with a rate). Suppose the descent inequality (DI) holds with
∆i+1(û) ≤ 0, and that ZN+1MN+1 ≥ µ(N )I for all N ≥ 1. Then ‖uN − û‖2 → 0 at the rate
O(1/µ(N )).

Proof. Immediate from (DI). �

We can also obtain superlinear convergence from (QF), a form of quantitative Féjer mono-

tonicity when ∆i+1(û) ≤ 0.

Proposition 2.5 (Superlinear convergence). Suppose (QF) holds with ∆i+1(û) ≤ 0, and that
Zi+1Mi+1 = ϕi I for some ϕi for all i ∈ N. If ϕi/ϕi+1 → 0, then uN → û superlinearly.

Proof. Immediate from (QF). �

The scalar ϕN has its index o�-by-one intentionally; the reason will become more apparent

once we get to primal–dual methods. It is also possible to obtain superlinear convergences of

di�erent orders q > 1 from (DI) or (QF). However, the conventional notions ‖ui+1 − û‖/‖ui −
û‖q → c ∈ R cannot be characterised without involving the iterates. Indeed, assuming ϕi+1 ≥
C/‖x i −x̂ ‖2q , eqrefeq:convergence-result-main-h characterises superlinear convergence of order

q. It would also be possible to introduce new notions of the order of superlinear convergence,

not involving the iterates and more in spirit with the testing approach, such as ϕ
q
i /ϕi+1 → c , if

such a notion would turn out to be useful.

To obtain weak convergence, we do not need Zi+1Mi+1 to grow, but we need some additional

technical assumptions. First of all, some of the leeway that the fundamental condition (CI
∼

)

included for the forward steps, is now required to obtain convergence. Secondly, we need some

weak-to-strong outer semicontinuity from H , which we write more abstractly in terms of H̃i+1.

It would be possible to improve this requirement based on the Brezis–Crandall–Pazy property

[3].

Proposition 2.6 (Weak convergence). Suppose for all i ∈ N that ZiMi = Z0M0 ≥ 0 is self-adjoint,
and that the iterates of the preconditioned proximal point method (PP

∼
) satisfy the fundamental

condition (CI
∼

) with ∆i+1(û) ≤ −
δ
2
‖ui+1 − ui ‖2Zi+1Mi+1

for all û ∈ H−1(0) and some δ > 0. Suppose
either that Z0M0 has a bounded inverse, or that (Z0H + Z0M0)

−1 ◦ Z0M0 is bounded on bounded
sets. If H is strong-to-strong outer semicontinuous and

(2.6) w i+1
:= −Z0M0(u

i+1 − ui ) → 0, w ik ∈ Z0H̃ik (u
ik ), uik ⇀ ũ =⇒ 0 ∈ H (ũ),

then Z0M0(u
i − û)⇀ 0 weakly inU for some û ∈ H−1(0).
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For the proof, we use the next lemma. Its earliest version is contained in the proof of [23,

Theorem 1], but can be found more explicitly stated as [5, Lemma 6].

Lemma 2.7. On a Hilbert space X , let X̂ ⊂ X be closed and convex, and {x i }i ∈N ⊂ X . If the
following conditions hold, then x i ⇀ x∗ weakly in X for some x∗ ∈ X̂ :

(i) i 7→ ‖x i − x∗‖ is non-increasing for all x∗ ∈ X̂ (Féjer monotonicity).

(ii) All weak limit points of {x i }i ∈N belong to X̂ .

Proof of Proposition 2.6. To use Lemma 2.7, we need a closed and convex solution set. However,

H−1(0) may generally be non-convex and not closed. Since Zi+1Mi+1 = Zi+2Mi+2, using the

strong-to-strong outer semicontinuity of H , it is easy to see that (CI
∼

) holds for all û ∈ Û :=

cl convH−1(0). Consequently the descent inequality (DI) holds for all û ∈ Û .

We apply Theorem 2.1 on any û ∈ Û . From the quantitative ∆-Féjer monotonicity (QF), since

∆i+1(û) ≤ −
δ
2
‖ui+1 − ui ‖2Zi+1Mi+1

and Zi+1Mi+1 ≡ Z0M0 =: A, we have

(2.7)

1

2

‖ui+1 − û‖2A +
δ

2

‖ui+1 − ui ‖2A ≤
1

2

‖ui − û‖2A

This implies the condition Lemma 2.7(i) for the sequence {x i := A1/2ui }i ∈N.

Let then w i+1
:= −A(ui+1 − ui ) as in (2.6). From (2.7), we deduce that w i+1 → 0 as i →∞. By

(PP
∼

) and (2.6), any weak limit point u∗ of the sequence {ui }i ∈N then satis�es u∗ ∈ H−1(0) ⊂ Û .

Let then x∗ be any weak limit point of {x i }i ∈N. We need to show that x∗ ∈ X̂ := A1/2Û . If

Z0M0 = A has a bounded inverse, then this is clear as the weak convergence of {x ik } implies the

weak convergence of {uik = A−1/2x ik }. Otherwise, when (Z0H + Z0M)
−1
0
◦ Z0M0 is bounded on

bounded sets, sinceui+1 ∈ (Z0H +Z0M0)
−1(Z0M0u

i ) = (H +A)−1(A1/2x i ), we see that {ui+1}i ∈N is

bounded. Hence a subsequence converges to someu∗ ∈ H−1(0). But this implies that x∗ = A1/2u∗

as required.

By Lemma 2.7 now x i ⇀ x∗ ∈ A1/2Û . This implies Z0M0(u
i − u∗) ⇀ 0 weakly for some

u∗ ∈ H−1(0). �

2.3 examples of first-order methods

We now look at several concrete examples.

Example 2.1 (The proximal point method). For all i ∈ N, take Mi = I , V ′i = 0, andWi+1 = τi I
for some τi > 0. Then (PP) is the standard proximal point methodui+1 ∈ (I +τiH )

−1(ui ). If the

operator H : U ⇒ U is maximal monotone, {ui }i ∈N converges weakly to some û ∈ H−1(0)
for any starting point u0 ∈ U .

Proof of convergence. We take Zi+1 = ϕi I for some ϕi > 0. Then the fundamental condition (CI)

reads

(2.8) ϕiτi 〈H (u
i+1) − H (û),ui+1 − û〉 ≥

ϕi+1 − ϕi
2

‖ui+1 − û‖2 −
ϕi
2

‖ui+1 − ui ‖2 − ∆i+1(û).
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As long as ϕi ≥ ϕi+1, the monotonicity of H clearly proves (2.8), thus (CI), with ∆i+1(û) =

−
ϕi
2
‖ui+1−ui ‖2. Using the maximal monotonicity, Minty’s theorem guarantees the solvability of

(PP). Thus the conditions of Corollary 2.2 are satis�ed. Maximal monotonicity also guarantees

that H is weak-to-strong outer semicontinuous; see Lemma a.1. This establishes the iteration

outer semicontinuity condition (2.6). Taking ϕi ≡ ϕ0 for constant ϕ0 > 0, so that Zi+1Mi+1 =

Z0M0 = ϕ0I , it remains to refer to Proposition 2.6. �

Suppose H is strongly monotone, that is, for some γ > 0 holds

〈H (u) − H (u ′),u − u ′〉 ≥ γ ‖u − u ′‖2 (u,u ′ ∈ U ).

Then from (2.8), we immediately also derive convergence rates as follows. Letting ϕi ↗∞ will

obviously give the fastest convergence, however, the O(1/N 2) step length rule will be useful

later on with splitting methods, combining the simple proximal step with other algorithmic

elements.

Example 2.2 (Acceleration and linear convergence of the proximal point method). Suppose

H is strongly monotone for some factor γ > 0. If we choose τi+1 := τi/
√
1 + 2γτi , then the

proximal point method satis�es ‖uN − û‖2 → 0 at the rate O(1/N 2). If we keep τi = τ0 > 0

constant, we get linear convergence of the iterates. Ifτi ↗∞, we get superlinear convergence.

Proof of convergence. Clearly (2.8) holds with ∆i+1(û) = 0 provided we update

ϕi+1 := ϕi (1 + 2γτi ).

Then Theorem 2.1 gives the descent inequality (DI), which now reads

ϕN
2

‖uN − û‖2 ≤
ϕ0
2

‖u0 − û‖2 (N ≥ 1).

If we take ϕi = τ
−1/2

i , this reads ϕi+1 := ϕi + 2γϕ−1/2i . Since ϕN is of the order Θ(N 2) [7, 32],

we get the claimed O(1/N 2) convergence from (2.3). If, on the other hand, we keep τi ≡ τ0
�xed, then clearly ϕN = (1 + 2γτ0)

Nϕ0. Since this is exponential when γ > 0, we get linear

convergence from (2.3). Finally, if τi ↗∞, we see from (2.3) that ϕi/ϕi+1 ↘ 0. We now obtain

superlinear convergence from Corollary 2.2 and Proposition 2.5. �

The next lemma starts our analysis of gradient descent and forward–backward splitting. It

relies on the three-point smoothness inequalities of Appendix b, which the reader may want to

study at this point.

Lemma 2.8. Let H = ∂G + ∇J for G, J ∈ cpl(X ) such that ∇J is L-Lipschitz. For all i ∈ N, take
Mi+1 ≡ I and V ′i+1(u) := τi (∇J (u

i ) − ∇J (u)) withWi+1 = τi I as well as Zi+1 ≡ ϕi I for some
τi ,ϕi > 0. Then the fundamental condition (CI) holds if

(i) ϕi = ϕ0 is constant, τiL < 2, and ∆i+1(û) := −ϕi (1 − τiL/2)‖u − u
i ‖2/2. In this case the

iteration outer semicontinuity condition (2.6) moreover holds provided inf i τi > 0.
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If J is strongly convex with factor γ > 0, alternatively:

(ii) τ0L2 < γ , ϕi+1 := ϕi (1 + τi (2γ − τiL2)), τi := ϕ
−1/2

i or τi := τ0, and ∆i+1(û) = 0.

Proof. We expand the fundamental condition (CI) as

ϕi
2

‖u − ui ‖2 +
ϕi − ϕi+1

2

‖u − û‖2 + ϕiτi 〈H (u
i+1) − H (û),u − û〉 ≥ 0.

By the monotonicity of ∂G, this holds if

(2.9)

ϕi
2

‖u − ui ‖2 +
ϕi − ϕi+1

2

‖u − û‖2 + ϕiτi 〈∇J (u
i ) − ∇J (û),u − û〉 ≥ 0.

(i) The three-point inequality (b.1) in Lemma b.1 states

〈∇J (ui ) − ∇J (û),u − û〉 ≥ −
L

4

‖u − ui ‖2.

This clearly reduces (2.9) to

ϕi − Lτi/2

2

‖u − ui ‖2 +
ϕi − ϕi+1

2

‖u − û‖2 ≥ ∆i+1(û),

which holds under the conditions of (i). The satisfaction of (2.6) is immediate from the weak-to-

strong outer semicontinuity of ∂F (Lemma a.1), the Lipschitz continuity of ∇G , and the bounds

on τi .
(ii) The three-point smoothness inequality (b.4) in Lemma b.2 gives

〈∇J (ui ) − ∇J (û),u − û〉 ≥
2γ − τiL

2

2

‖u − û‖2 −
1

2τi
‖u − ui ‖2.

Inserting this into (2.9), we see it to hold with ∆i+1(û) = 0 if

(2.10) ϕi + ϕiτi (2γ − τiL
2) ≥ ϕi+1.

Clearly our two alternative choices of {τi }i ∈N are non-increasing. Therefore, (2.10) follows from

the initialisation condition τ0L
2 < γ and the update rule ϕi+1 := ϕi + ϕiτi (γ − τiL

2) in (ii). �

Remark 2.9. It is also possible to exploit the strong convexity of G instead of J for acceleration.

Example 2.3 (Gradient descent). Let H = ∇J for J ∈ cpl(U ) with ∇J L-Lipschitz. Taking

τi = τ and G = 0 constant in Lemma 2.8, (PP) reads

0 = τ∇J (ui ) + ui+1 − ui .

This is the gradient descent method. Direct application of Lemma 2.8(i) with u = ui+1 and

u∗ = û together with Corollary 2.2 and Proposition 2.6 now veri�es the well-known weak

convergence of the method to a root û of H when τL < 2.

Observe that Vi+1 = ∇Qi+1 for

Qi+1(u) :=
1

2

‖u − ui ‖2 + τ
[
J (ui ) + 〈∇J (ui ),u − ui 〉 − J (u)

]
.
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Each step of (PP) therefore minimises the surrogate objective [11]

(2.11) u 7→ J (u) + τ−1Qi+1(u).

The function Qi+1 on one hand penalises long steps, and on the other hand allows longer

steps when the local linearisation error is large. In this example, Qi+1 is, in fact, a Bregman

divergence.

Under strong convexity, we again get rates via Lemma 2.8(ii). Minding our remarks before

Example 2.2, we only state the case τi = τ0. Due to the upper bound τ0 < γ/L
2
, we cannot get

superlinear convergence as in Example 2.2.

Example 2.4 (Acceleration and linear convergence of gradient descent). Continuing from

Example 2.3, if J is strongly convex with factor γ > 0 and ∇J is L-Lipschitz, and we keep

τi = τ0 < γ/L
2

�xed, we get linear convergence.

Now comes the full power of Lemma 2.8: we can easily bolt on a proximal step to gradient

descent.

Example 2.5 (Forward–backward spli�ing). Let H = ∂G + ∇J for G, J ∈ cpl(X ) with ∇J
Lipschitz. Taking Mi+1,Wi+1, and V ′i+1 as in Lemma 2.8, the preconditioned proximal point

method (PP) becomes

0 ∈ τi∂G(u
i+1) + τi∇J (u

i ) + ui+1 − ui .

This is the forward–backward splitting method

ui+1 := (I + τi∂G)
−1(ui − τi∇J (u

i )).

By Lemma 2.8, convergence and acceleration work exactly as for gradient descent in Exam-

ples 2.3 and 2.4.

We can also do fully non-smooth splitting methods by a lifting approach:

Example 2.6 (Douglas–Rachford spli�ing). Let A,B : U ⇒ U be maximal monotone opera-

tors. Consider the problem of �nding û with 0 ∈ A(û) + B(û). For λ > 0, let

H (u,v) :=

(
λB(u) + u −v
λA(u) +v − u

)
, Mi+1 :=

(
0 0

0 I

)
, and

H̃i+1(u,v) :=

(
λB(ui+1) + ui+1 −vi

λA(ui+1 +vi+1 −vi ) +vi − ui+1

)
.(2.12)

Then 0 ∈ A(û) + B(û) if and only if 0 ∈ H (û, v̂), where v̂ ∈ (û − λA(û)) ∩ (û + λB(û)). The

preconditioned proximal point method (PP
∼

) becomes the Douglas–Rachford splitting [12]

ui+1 := (I + λB)−1(vi ),(2.13a)

vi+1 := vi + (I + λA)−1(2ui+1 −vi ) − ui+1.(2.13b)
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We work with (PP
∼

) since in (PP), V ′i+1 would have to be set-valued. If A and B are maximal

monotone, the variables {vi }i ∈N converge weakly to v̂ .

Proof of convergence. Write sui := (ui ,vi ) and ŝu := (û, v̂). Observe that

ui+1 −vi+1 =: qi+1 ∈ λA(ui+1 −vi+1 −vi ) and û − v̂ =: q̂ ∈ λA(û).

Using the monotonicity of A and B, with Zi+1 := I , we have

〈H̃i+1(su
i+1),Z ∗i+1(su

i+1 − ŝu)〉 ⊂ 〈H̃i+1(su
i+1) − H (̂su),Z ∗i+1(su

i+1 − ŝu)〉

= λ〈B(ui+1) − B(û),ui+1 − û〉 + λ〈qi+1 − q̂,vi+1 − v̂〉

+ 〈ui+1 −vi , (ui+1 −vi+1) − (û − v̂)〉

= λ〈B(ui+1) − B(û),ui+1 − û〉 + λ〈qi+1 − q̂,ui+1 +vi+1 −vi − v̂〉 ≥ 0.

Thus the fundamental condition (CI
∼

) holds with ∆i+1(̂su) := −
1

2
‖sui+1 − sui ‖2Zi+1Mi+1

. Using (2.12)

and the weak-to-strong outer semicontinuity of A and B (see Lemma a.1), we easily verify (2.6).

Since Zi+1Mi+1 ≡ Z0M0 is non-invertible, we also have to verify that (Z0H + Z0M0)
−1 ◦ Z0M0 is

bounded on bounded sets. This is to say that (2.13) bounds sui+1 = (ui+1,vi ) in terms ofvi . This is

an easy consequence of the Lipschitz-continuity of the resolvent of maximal monotone operators

[1, Corollary 23.10]. Weak convergence now follows from Theorem 2.1 and Proposition 2.6. �

2.4 examples of second-order methods

We now look at how are techniques are applicable to Newton’s method. Through the three-

point inequalities of Lemma b.3 for C2
functions, the analysis turn out to be very close to

that of gradient descent. Our analysis is not as short as the conventional analysis of Newton’s

method, but has its advantages. Indeed, the convergence of proximal Newton’s method will be

an automatic corollary of our approach, exactly how the convergence of forward–backward

splitting was a corollary of the convergence of gradient descent.

Example 2.7 (Newton’s method). Suppose H = ∇J for J ∈ C2(U ). Take

Vi+1(u) := ∇
2 J (ui )(u − ui ) + ∇J (ui ) − ∇J (u), and Wi+1 := I

Then the preconditioned proximal point method (PP) reads

0 = ∇J (ui ) + ∇2 J (ui )(ui+1 − ui ).

This is Newton’s method. By Lemma 2.10 (below) and Proposition 2.4, we obtain local linear

convergence if ∇2 J (û) > 0. By Lemma 2.11 (below), this convergence is, further, superlinear

(quadratic if ∇2 J is locally Lipschitz near x̂ ).

Observe that now Vi+1(u) is the gradient of

Qi+1(u) := J (u
i ) + 〈∇J (ui ),u − ui 〉 +

1

2

‖u − ui ‖2
∇2 J (u i ) − J (u).
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In the surrogate objective (2.11), this allows longer steps when the second-order Taylor

expansion under-approximates, and forces shorter steps when it over-approximates.

Again, we can easily bolt on a proximal step:

Example 2.8 (Proximal Newton’s method). Let H = ∂G + ∇J for J ∈ C2(X ), and G ∈ cpl(X ).
Taking Mi+1,Wi+1, and V ′i+1 as in Example 2.7, the preconditioned proximal point method

(PP) becomes

0 ∈ ∂G(ui+1) + ∇J (ui ) + ∇2 J (ui )(ui+1 − ui ).

This is the proximal Newton’s method [see, e.g., 18]

ui+1 := (I + [∇2 J (ui )]−1∂G)−1(ui − [∇2 J (ui )]−1∇J (ui )),

where (I +A−1∂G)−1(v) solves minu
1

2
‖u −v ‖2A +G(u). Convergence and acceleration work

exactly as for Newton’s method in Example 2.7, based on the same lemmas that we state

next.

Lemma 2.10. Let H = ∂G + ∇J for G ∈ cpl(U ) and J ∈ C2(U ). Take

Vi+1(u) := ∇
2 J (ui )(u − ui ) + ∇J (ui ) − ∇J (u), and Wi+1 := I

For an initial iterate u0 ∈ U , let {ui+1}i ∈N be de�ned through (PP). If ∇2 J (û) > 0, there exists ϵ > 0

such that if ‖u0 − û‖∇2 J (û) ≤ ϵ , then the fundamental condition (CI) holds with ∆i+1(û) = 0 and
Mi+1 = ∇

2 J (ui ) for all i ∈ N. Moreover, we can take Zi+1 = ϕi I such that ZNMN ≥ κ
N∇2 J (û) for

some κ > 1. In particular, ‖ui − û‖2 → 0 at the linear rate O(1/κN ).

Proof. We set Mi+1 := ∇
2 J (ui ) and Zi+1 := ϕi I for some ϕi > 0. Then ∇2 J (û) > 0 imply that

Zi+1Mi+1 = ϕi∇
2 J (ui ) is positive and self-adjoint for ui close to û.

By assumption, for some ϵ > 0, we have

u0 ∈ B̂(ϵ) := {u ∈ U | ‖u − û‖∇2 J (û) ≤ ϵ}.

For a �xed i ∈ N, let us assume that ui ∈ B̂(ϵ). Since ∂F is monotone, similarly to the proof of

Lemma 2.8, the fundamental condition (CI) holds if

(2.14) ϕiDi+1 ≥
1

2

‖ui+1 − û‖2ϕi+1∇2 J (u i+1)−ϕi ∇2 J (u i ) −
1

2

‖ui+1 − ui ‖2ϕi ∇2 J (u i ) − ∆i+1(û),

where we use (b.6) in Lemma b.3 with τ = 1 + δi to estimate

Di+1 := 〈∇J (u
i ) − ∇J (û),ui+1 − û〉 ≥

(1 − δi )
2

2

‖ui+1 − û‖2
∇2 J (u i ) −

1

2

‖ui+1 − ui ‖2
∇2 J (u i )

for

(2.15) δi := inf

{
δ ′ ≥ 0

���� (1 − δ ′)∇2 J (ui ) ≤ ∇2 J (ζ ) ≤ (1 + δ ′)∇2 J (ui )
for all ζ ∈ B̂(‖ui − û‖∇2 J (û))

}
.
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Consequently, (2.14) holds with ∆i+1(û) = 0 if we take ϕi+1 > 0 such that

(2.16) ϕi (1 + (1 − δi )
2)∇2 J (ui ) ≥ ϕi+1∇

2 J (ui+1).

This can always be satis�ed for some ϕi+1 > 0 for ϵ > 0 small enough because ∇2 J (û) > 0 then

implies ∇2 J (ui ) > 0.

Now Corollary 2.2 shows the quantitative ∆-Féjer monotonicity (QF), which with (2.16) implies

(2.17) ‖ui+1 − û‖2
[1+(1−δ 2

i )]∇
2 J (u i ) ≤ ‖u

i − û‖2
∇2 J (u i ).

If δi ∈ (0, 1), this implies by (2.15) that ‖ui+1 − û‖2
[1+(1−δ 2

i )]/(1+δi )∇
2 J (û)

≤ ‖ui − û‖2
∇2 J (û)/(1−δi )

.

Consequently, if δi ∈ (0, 1) is small enough, that is, if ϵ > 0 is small enough due to the continuity

of ∇2 J , we obtain ‖ui+1 − û‖∇2 J (û) ≤ ‖u
i − û‖∇2 J (û) so that also ui+1 ∈ B̂(ϵ). In particular, our

assumption u0 ∈ B̂(ϵ) guarantees {ui }i ∈N ⊂ B̂(ϵ). Consequently also δi+1 ≤ δi ≤ δ0 for all i ∈ N.

We can now take ζ = ui+1 in (2.15), so that (2.16) gives

ϕi (1 + (1 − δi )
2) ≥ (1 − δi )ϕi+1.

Since κ(δ ) := (1 + (1 − δ )2)/(1 − δ ) is increasing within (0, 1), and κ := κ(0) = 2, we see that

ϕi+1 ≥ κϕi . Taking ϕ0 := 1 + δ0 we now get ZNMN ≥ κ
N (1 + δ0)∇

2 J (uN ) ≥ κN∇2 J (û). This

implies the convergence rate claim. �

We can also show superlinear convergence, however, this is somewhat more elaborate as we

need to make use of ∆i+1(û).

Lemma 2.11. With everything as in Lemma 2.10, the convergence rate claim can be improved to
superlinear. If ∇2 J is locally Lipschitz near û, for example, if J ∈ C3(U ), then this convergence is
quadratic (superlinear convergence of order q = 2).

Proof. We continue with the initial setup of the proof of Lemma 2.10 until (2.14). Now, for δi
given by (2.15), (b.11) in Lemma b.4 gives

Di+1 ≥
1 − δi
2

‖ui+1 − û‖2
∇2 J (u i ) +

1 − δi
2

‖ui − û‖2
∇2 J (u i ) −

1

2

‖ui+1 − ui ‖2
∇2 J (u i ).

With this, (2.14), hence the fundamental condition (CI), holds if

∆i+1(û) ≥
1

2

‖ui+1 − û‖2ϕi+1∇2 J (u i+1)−(2−δi )ϕi ∇2 J (u i ) −
1

2

‖ui − û‖2ϕi (1−δi )∇2 J (u i ).

This holds for

(2.18) ∆i+1(û) :=
1

2

‖ui+1 − û‖2ϕi+1(1−δi+1)∇2 J (u i+1) −
1

2

‖ui − û‖2ϕi (1−δi )∇2 J (u i )

provided

(2.19) ϕi (2 − δi )∇
2 J (ui ) ≥ ϕi+1δi+1∇

2 J (ui+1).
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This can always be satis�ed for some ϕi+1 > 0 if ϵ > 0 is small enough because then ∇2 J (ui ) > 0

due to ∇2 J (û) > 0.

By Corollary 2.2 we now obtain the quantitative ∆-Féjer monotonicity (QF), which with (2.18)

gives

(2.20) ‖ui+1 − û‖2ϕi+1δi+1∇2 J (u i+1) ≤ ‖u
i − û‖2ϕiδi ∇2 J (u i ).

Due to (2.15), we have (1 − δi )∇
2 J (û) ≤ ∇2 J (ui ) ≤ (1 + δi )∇

2 J (û). Hence, also using (2.19), (2.20)

implies

(2.21) ‖ui+1 − û‖2
(2−δi )(1−δi )∇2 J (û)

≤ ‖ui − û‖2δi (1+δi )∇2 J (û).

If δi ∈ (0, 1/2], this and ui ∈ B̂(ϵ) imply ui+1 ∈ B̂(ϵ), hence our assumption u0 ∈ B̂(ϵ) implies

{ui }i ∈N ⊂ B̂(ϵ). Consequently also δi+1 ≤ δi ≤ δ0 for all i ∈ N, If now δ0 < 1/2, which is

guaranteed by ϵ > 0 small enough and the continuity of∇2 J , then (2.21) implies ‖ui −û‖∇2 J (û) →
0. Consequently δi → 0.

Let δ̃i := δi (1+δi )/[(2−δi )(1−δi )]. From (2.21), we get superlinear convergence if δ̃i → 0, which

follows from δi → 0. Superlinear convergence of order q > 1 occurs if ‖ui+1 − û‖∇2 J (û)/‖u
i −

û‖
q
∇2 J (û) → c for some c ≥ 0. From (2.21), we see this to hold if δ̃i/‖u

i − û‖2(q−1) → c ∈ R. If ∇2 J

is Lipschitz near û, then δi ≤ C‖ui − û‖ for some constant C > 0. Therefore we get superlinear

convergence of order q = 2. �

2.5 convergence of function values

We now study how our framework can be used to derive the convergence, or ergodic convergence,

of function values. We concentrate on algorithms that are variants of forward–backward splitting,

including gradient descent and the proximal point method, although other algorithms can be

handled similarly. We again use the three-point inequalities of Appendix b.

Lemma 2.12. Let H = ∂G + ∇J forG, J ∈ cpl(X ) with ∇J L-Lipschitz. For all i ∈ N, takeMi+1 ≡ I
and V ′i+1(u) := τi (∇J (u

i ) − ∇J (u)) withWi+1 = τi I as well as Zi+1 ≡ ϕi I for some τi ,ϕi > 0. Then
the fundamental condition (CI

∼
) holds if

(i) ϕi ≡ ϕ0 is constant, τiL < 1, and

∆i+1(û) := −ϕiτi ([G + J ](u
i+1) − [G + J ](û)) − ϕi (1 − τiL)‖u − u

i ‖2/2.

If J is strongly convex with factor γ > 0, alternatively:

(ii) τ0L2 < γ , ϕi+1 := ϕi (1 + τi (γ − τiL2)), τi := ϕ
−1/2

i or τi := τ0, and

∆i+1(û) = −ϕiτi ([G + J ](u
i+1) − [G + J ](û)).

Proof. We fellow the proof of Lemma 2.8, where we start by expanding (CI
∼

) (instead of (CI)) as

ϕi
2

‖u − ui ‖2 +
ϕi − ϕi+1

2

‖u − û‖2 + ϕiτi 〈H (u
i+1),u − û〉 ≥ 0.
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Note that we have not inserted H (û) 3 0 here. Now, as the next step, we do not eliminate G
through monotonicity of ∂G, but use the de�nition of the convex subdi�erential. Then we use

the value three-point inequality (b.2) in place of the non-value inequality (b.1) and the value

inequality (b.5) in place of the non-value inequality (b.4). From here the claims follow as in

the proof of Lemma 2.8. Note the factor-of-two di�erences between these formulas, which are

re�ected in the step length rules: τiL < 1 instead of τiL < 2; τ0L
2 < γ instead of τ0L

2 < 2γ ; and

ϕi+1 := ϕi (1 + τi (γ − τiL
2)) instead of ϕi+1 := ϕi (1 + τi (2γ − τiL

2)). �

We now obtain the convergence to zero of a weighted function value di�erence over the

history of iterates, and as a consequence, for an ergodic sequence formed from the iterates:

Corollary 2.13. Suppose the conditions of Lemma 2.12 hold. Then

(2.22)

ϕN
2

‖uN − û‖2 +
N−1∑
i=0

ϕiτi ([G + J ](u
i+1) − [G + J ](û)) ≤ C0 :=

ϕ0
2

‖u0 − û‖2.

In consequence, if we de�ne the ergodic sequence

ũN := ζ −1N

N−1∑
i=0

ϕiτix
i+1, where ζN :=

N−1∑
i=0

ϕiτi ,

then

(2.23) [G + J ](ũN ) − [G + J ](û) ≤
ϕ0
2ζN
‖u0 − û‖2.

In particular, if Lemma 2.12(i) holds, then [G + J ](ũN ) → [G + J ](û) at the rateO(1/N ). If, instead,
Lemma 2.12(ii) holds, then this convergence is linear.

Proof. The basic inequality (2.22) is a consequence of the fundamental Theorem 2.1. The ergodic

estimate (2.23) follows from there by Jensen’s inequality. The �rst convergence rate estimate

follows from (2.23) are based on the fact that under Lemma 2.12(i) ϕiτi = ϕ0τ0 is a constant, so

ζN = Nϕ0τ0. Under Lemma 2.12(i) we recall from Example 2.2 that the rule for ϕi+1 shows that

ϕi+1 is grows exponentially with τi = τ0 constant. Then also ζN is exponential, so we obtain

linear rates. �

The following three examples follow from Corollary 2.13. For the proximal point method,

additionally, since we can still let τi ↗∞ due to L = 0, we can also get superlinear convergence.

Also, in the case of the proximal point method, we use the strong convexity of F , which is for

simplicity not considered in (2.12), but can easily be added.

Example 2.9 (Proximal point method ergodic function value). For the proximal point method

of Examples 2.1 and 2.2, applied to H = ∂G with G ∈ cpl(U ), we have G(ũN ) → G(û) at the

rate O(1/N ) when τi ≡ τ0 and no strong convexity is present. If G is strongly convex, and

τi ≡ τ0, the convergence is linear; if τi ↗∞, the convergence is superlinear.
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Example 2.10 (Gradient descent ergodic function value). For the gradient descent method of

Examples 2.3 and 2.4, applied to J ∈ cpl(U ) with L-Lipschitz gradient, if τi ≡ τ0 with τ0L ≤ 1,

we have J (ũN ) → J (û) at the rate the O(1/N ). If J is strongly convex, τ0L
2 < γ , and we

update τi+1 := τi/
√
1 + (2γ − τiL2), then this convergence is O(1/N 2).

Example 2.11 (Forward–backward spli�ing ergodic function value). For the forward–backward

splitting of Example 2.5, [G + J ](ũN ) → [G + J ](û) at exactly the same rates and conditions

are for gradient descent in Example 2.10.

For Newton’s method, we can use similar arguments: we can replace (b.6) by (b.8) in Lemma 2.10,

and (b.11) by (b.12) in Lemma 2.11. This can be done because the preceding non-value lemmas

show that {ui }i ∈N ∈ B̂(ϵ). In Lemma 2.10 the e�ect of the change is to replace (1 − δi )
2

by

δ 2i − 3δi everywhere, and in Lemma 2.11, to replace 2 − δi by 1 − 2δi . With these changes, the

main arguments go through, although the exact value of κ and the upper bounds for δi in the

�nal paragraphs are changed.

Example 2.12 (Newton’s method function value). For Newton’s method in Example 2.7, we

have τi = 1 and ϕN := κNϕ0 for some κ > 1. We have J (ũN ) → J (û) (super)linearly.

We can also obtain non-ergodic convergence for monotone methods. We demonstrate the idea

only for the unaccelerated (ϕiτi = ϕ0τ0) proximal point method, but unaccelerated forward–

backward splitting and gradient descent can be handled analogously.

Example 2.13 (Proximal point method function value). For the proximal point method of

Examples 2.1 and 2.2, applied to H = ∂G with G ∈ cpl(U ), we have G(uN ) → G(û) at the

rate O(1/N ) when τi ≡ τ0 and no strong convexity is present. If G is strongly convex, and

τi ≡ τ0, the convergence is linear; if τi ↗∞, the convergence is superlinear.

Proof of convergence. From (PP), that is 0 ∈ ∂F (ui+1) + τi (u
i+1 − ui ), we have

(2.24) 0 ≤ τ−1i ‖x
i+1 − x i ‖2X = 〈∂G(x

i+1),x i − x i+1〉X ≤ G(x i ) −G(x i+1).

That is, the proximal point method is monotone: Now we use Corollary 2.13. Using (2.24) to

unroll the function value sum in (2.22) gives ζN [G(u
N ) − G(û)] ≤ C0. The rates follow as in

Corollary 2.13 and Example 2.9. �

2.6 connections to fixed point theorems

We demonstrate connections of our approach to established �xed point theorems. The following

result in its modern form, stated for �rmly non-expansive or more generally α-averaged maps,

can be �rst found in [5]. Similar results for what are now known as Krasnoselski–Mann iterations,

closely related to α-averaged maps, were, however, stated earlier for more limited settings in

[17, 21, 23, 24, 29].
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Example 2.14 (Browder’s fixed point theorem). Let T : U → U be α-averaged, that is

T = (1− α)J + αI for some non-expansive J and α ∈ (0, 1). Suppose there exists a �xed point

û = T (û). Let ui+1 := T (ui ). Then ui ⇀ u∗ for some �xed point u∗ of T .

Proof. Let us set H (u) := T (u) − u, as well as Zi+1 :=Wi+1 := Mi+1 := I and V ′i+1(u) := T (u
i ) +

ui −T (u) − u. We have

(2.25) H̃i+1(u
i+1) :=Wi+1H (u

i+1) +V ′i+1(u
i+1) = T (ui ) + ui − 2ui+1 = ui − ui+1,

where the last step follows by observing from the previous steps that (PP) says ui+1 = T (ui ).
The expression (2.25) easily gives the iteration outer semicontinuity condition (2.6), and reduces

the fundamental condition (CI
∼

) to

1

2

‖ui+1 − ui ‖2 + 〈ui − ui+1,ui+1 − û〉 ≥ −∆i+1(û).

Using ui+1 = T (ui ) and û = T (û), and taking β > 0, (CI
∼

) therefore holds for

(2.26) ∆i+1(û) =
α + 2β − 1

2(1 − α)
‖ui+1 − ui ‖2

provided

0 ≤ D :=
β

1 − α
‖T (ui ) − ui ‖2 + 〈ui − û − (T (ui ) −T (û)),T (ui ) −T (û)〉.

Using the α-averaged property and û = J (û), we expand

D

1 − α
= β ‖ J (ui ) − ui ‖2 + 〈ui − û − J (ui ) + J (û), (1 − α)(J (ui ) − J (û)) + α(ui − û)〉

= (α + β)‖ui − û‖2 + (β + α − 1)‖ J (ui ) − J (û)‖2 − (2α + 2β − 1)〈J (ui ) − J (û),ui − û〉.

We take β := max{0, 1/2 − α }. Then 2α + 2β ≥ 1. Cauchy’s inequality and non-expansivity of J
thus give

D

1 − α
≥

1

2

‖ui − û‖2 −
1

2

‖ J (ui ) − J (û)‖2 ≥ 0.

This veri�es (CI
∼

). From (2.26), ∆i+1(û) ≤ −
1

2
min{1,α/(1 − α)}‖ui+1 − ui ‖2. We now obtain the

claimed convergence from Corollary 2.2 and Proposition 2.6. �

3 stochastic methods

We now exploit the fact that the step length Wi+1 can be a non-invertible operator. We do

this in the context of stochastic block-coordinate methods. Towards this end we introduce the

following probabilistic notations:
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Definition 3.1. We write x ∈ R(X ) if x is an X -valued random variable: x : Ω → X for some

(in the present work �xed) probability space (Ω,O), where O is a σ -algebra on Ω. We denote

by E the expectation with respect to a probability measure P on Ω. As is common, we abuse

notation and write x = x(ω) for the unknown random realisation ω ∈ Ω. We also write E[·|i]
for the conditional expectation with respect to random variable realisations up to and including

iteration i .

We refer to [30] for more details on measure-theoretic probability.

The following is an immediate corollary of Theorem 2.1, obtained by taking the expectation

of both (CI
∼

) and (DI). By only requiring these inequalities to hold in expectation may may

produce more lenient step length and other conditions. In the section, we demonstrate the

�exibility of our techniques to stochastic methods with a few basic examples. We refer to the

review article [34] for an introduction and further references to stochastic coordinate descent,

and to our companion paper [31] for primal–dual methods based on the work here.

Corollary 3.1. On a Hilbert space U and a probability space (Ω,O), let H̃i+1 : R(U ⇒ U ), and
Mi+1,Zi+1 ∈ R(L(U ;U )) for i ∈ N. Suppose (PP

∼
) is solvable for {ui+1}i ∈N ⊂ R(U ). If for all i ∈ N

and almost all random events ω ∈ Ω, (Zi+1Mi+1)(ω) is self-adjoint, and for some ∆i+1 ∈ R(R) and
û ∈ U the expected fundamental condition

E[〈H̃i+1(u
i+1),ui+1 − û〉Zi+1] ≥ E

[
1

2

‖ui+1 − û‖2Zi+2Mi+2−Zi+1Mi+1

]
− E

[
1

2

‖ui+1 − ui ‖2Zi+1Mi+1

]
− E[∆i+1(û)],

(CE∼)

holds, then so does the expected descent inequality

(DE) E

[
1

2

‖uN − û‖2ZN+1MN+1

]
≤ E

[
1

2

‖u0 − û‖2Z1M1

]
+

N−1∑
i=0

E[∆i+1(û)] (N ≥ 1).

In block-coordinate descent methods, we write u =
∑m

j=1 Pju for some mutually orthogonal

projections operators, and on each step of the method, only update some of the “blocks” Pju.

Functions with respect to which we take a proximal step, we assume separable with respect

to these projections or subspaces: G =
∑m

j=1G j ◦ Pj . To perform forward steps, we introduce a

blockwise version of standard smoothness conditions of convex functions. The idea is that the

factor LS (i) for the subset of blocks S(i) can be better than the global smoothness or Lipschitz

factor L.

Definition 3.2. We write (P1, . . . , Pm) ∈ P(U ) if P1, . . . , Pm are projection operators in U with∑m
j=1 Pj = I , and PjPi = 0 for i , j. For random S(i) ⊂ {1, . . . ,m} and an iteration i ∈ N, we

then set

PS (i) :=
∑
j ∈S (i)

Pj , and ΠS (i) :=
∑
j ∈S (i)

π−1j,iPj , where πj,i := P[j ∈ S(i)] > 0.

For smooth J ∈ cpl(U ), we let LS (i) > 0 be the ΠS (i)-relative smoothness factor, satisfying

(3.1) J (u + ΠS (i)h) ≤ J (u) + 〈∇J (u),h〉ΠS (i ) +
LS (i)

2

‖h‖2ΠS (i ) (u,h ∈ U ),
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and consequently (see Lemma c.1)

(3.2) L−1S (i)‖∇J (u) − ∇J (v)‖
2

ΠS (i )
≤ 〈∇J (u) − ∇J (v),u −v〉, (u,v ∈ U ).

Example 3.1 (Stochastic block-coordinate descent). Let H = ∇J for J ∈ cpl(U )with Lipschitz

gradient. Also let (P1, . . . , Pm) ∈ P(U ). For each i ∈ N, take random S(i) ⊂ {1, . . . ,n}, and

set

(3.3) Wi+1 := τiΠS (i), Mi+1 := I , and V ′i+1(u) :=Wi+1[∇J (u
i ) − ∇J (u)].

Then (PP) says that we take a forward step on the random subspace range(ΠS (i)):

(3.4) ui+1 = ui − τiΠS (i)∇J (u
i ).

If the step lengths are deterministic and satisfy ϵ ≤ τi and τiLS (i) ≤ πj,i for all j ∈ S(i) for

some ϵ > 0, we have E[J (ũN )] → J (û) at the rate O(1/N ) for the ergodic sequence

ũN := ζ −1N

N−1∑
i=0

E[τiΠS (i)u
i+1] where ζN :=

N−1∑
i=0

τi (N ≥ 1).

Through the use of the “local” smoothness factors LS (i), the method may be able to take

larger steps τi than those allowed by the global factor L in Example 2.3.

The smoothness of G limits the usefulness of Example 3.1. However, it forms the basis for

popular stochastic forward–backward splitting methods, of which we now provide an example.

Example 3.2 (Stochastic forward–backward spli�ing). Let (P1, . . . , Pm) ∈ P(U ). Suppose

H = ∂G + ∇J for J ,G ∈ cpl(U ), where J has Lipschitz gradient, and G is separable: G =∑m
j=1G j ◦ Pj . Take Mi+1,Wi+1, and V ′i+1 as in Example 3.1. Then (PP) describes the stochastic

forward–backward splitting method

ui+1 := (I + τiΠS (i)∂G)
−1

(
ui − τiΠS (i)∇J (u

i )
)
.

With uj := Pju, this can be written

ui+1j :=

{
(I + τiπ

−1
j,i∂G j )

−1
(
uij − τiπ

−1
j,iPj∇J (u

i )
)
, j ∈ S(i),

uj , j < S(i).

The method has exactly the same convergence properties as the stochastic gradient descent

of Example 3.1.

Remark 3.2. Following Example 2.4, if G or J is strongly convex, it is also possible to construct
accelerated versions of both Examples 3.1 and 3.2. Then we can obtain from (DE) convergence rates
for E[‖ui+1 − û‖2].
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Proof of convergence of stochastic gradient descent and forward–backward splitting. We take as

the testing operator Zi+1 := I . Then, since Zi+1Mi+1 ≡ I , (CE∼) expands as

(3.5) E[τi 〈∂G(u
i+1) + ∇J (ui ),ui+1 − û〉ΠS (i )] ≥ −E

[
1

2

‖ui+1 − ui ‖2
]
− E[∆i+1(û)].

From the decomposition G =
∑m

j=1G j ◦ Pj and the convexity of G j , we observe that

τi 〈∂G(u
i+1),ui+1 − û〉ΠS (i ) =

m∑
j=1

τiπ
−1
j,i χS (i)(j)〈∂G j (Pju

i+1), Pj (u
i+1 − û)〉

≥

m∑
j=1

τiπ
−1
j,i χS (i)(j)(G j (Pju

i+1) −G j (Pjû)).

Since τi is deterministic and E[π−1j,i χS (i)(j)Pj ] = E[ΠS (i)] = I , such that

∑N−1
i=0 E[τiπ

−1
j,i χS (i)(j)Pj ] =

ζN for all j = 1, . . . ,m, by Jensen’s inequality, therefore,

(3.6)

N−1∑
i=0

E[τi 〈∂G(u
i+1),ui+1 − û〉ΠS (i )] ≥ ζN (G(ũN ) −G(û)) .

If we show the ergodic three-point smoothness condition

(3.7) J (û) − J (ũN ) ≥
N−1∑
i=0

E
[
ζ −1N τi 〈∇J (u

i ), û − ui+1〉ΠS (i ) −
LS (i)ζ

−1
N τi

2

‖ui+1 − ui ‖2ΠS (i )
]
,

then using our assumption τiLS (i) ≤ πj,i and (3.6), we verify (3.5), hence (CE∼), for some ∆i+1(û)
such that

N−1∑
i=0

E[∆i+1(û)] = −ζN (G(ũN ) −G(û)) .

Since ζN ≥ ϵN by our assumption τi ≥ ϵ , Corollary 3.1 now shows the O(1/N ) convergences of

function values for the ergodic sequence {ũN }N ≥1.
To prove (3.7), from (3.1) with h := ui+1 − ui and sui+1 := (I − ΠS (i))u

i + ΠS (i)u
i+1

we have

(3.8) J (ui ) − J (sui+1) ≥ 〈∇J (ui ),ui − ui+1〉ΠS (i ) −
LS (i)

2

‖ui+1 − ui ‖2ΠS (i ) .

By convexity, we also have

J (û) − J (ui ) ≥ 〈∇J (ui ), û − ui 〉 = 〈∇J (ui ), û − ui 〉E[ΠS (i ) |i]

= E[〈∇J (ui ), û − ui 〉ΠS (i ) |i].
(3.9)

Summing (3.8) and (3.9), multiplying by τ̃i , and taking the expectation,

(3.10) J (û) − E[τi J (su
i+1)] ≥ E

[
τi 〈∇J (u

i ), û − ui+1〉ΠS (i ) −
LS (i)τi

2

‖ui+1 − ui ‖2ΠS (i )
]
.
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Since

∑N−1
i=0 τi = ζN , Jensen’s inequality shows

N−1∑
i=0

E[ζ −1N τi J (su
i+1)] ≥ J

(
N−1∑
i=0

E[ζ −1N τisu
i+1]

)
≥ J

(
N−1∑
i=0

E[ζ −1N τiΠS (i)u
i+1]

)
= J (ũN ).

Therefore, summing (3.10) over i = 0, . . . ,N − 1 veri�es (3.7). �

Example 3.3 (Stochastic Newton’s method). Suppose (P1, . . . , Pm) ∈ P(U ) and J ∈ C2(U ).
Take H = ∇J ,Wi+1 := PS (i), and

Vi+1(u) := [∇
2 J (ui ) − (I − PS (i))∇

2 J (ui )PS (i)](u − u
i ) + PS (i)[∇J (u

i ) − ∇J (u)].

Then (PP) reads

0 = PS (i)∇J (u
i ) + [∇2 J (ui )]S (i)(u

i+1 − ui ) + [∇2 J (ui )]S (i)c (u
i+1 − ui ),

where we abbreviate AS (i) := PS (i)APS (i). We get

ui+1 = ui + [∇2 J (u)]†S (i)∇J (u
i ),

where we de�neA†S (i) to satisfyA†S (i) = PS (i)A
†

S (i)PS (i) andAS (i)A
†

S (i) = A†S (i)AS (i) = PS (i). This

is a variant of stochastic Newton’s method and “sketching” [25, 26]. Notice how [∇2 J (u)]†S (i)
can be signi�cantly cheaper to compute than [∇2 J (u)]−1.

Let

(3.11) δ J := inf

{
δ ≥ 0

���� (1 − δ )∇2 J (η) ≤ ∇2 J (ζ ) ≤ (1 + δ )∇2 J (η)
for all η, ζ ∈ U

}
,

as well as

(3.12) sp := sup

{
sp ∈ (0, 1]

���� E[(I − PS (i))∇
2 J (ζ )(I − PS (i))|i] ≤ (1 − sp)∇2 J (ζ )
for all ζ ∈ U and iterations i ∈ N

}
.

If 0 ≤ δ J <
3−
√
9−8sp
4

, then E[‖uN − û‖2] → 0 at a linear rate.

Remark 3.3. If J (u) = 〈u,Au − c〉 for some self-adjoint positive de�nite A ∈ L(U ;U ) and c ∈ U ,
then δ J = 0, so the upper bound on δ J is satis�ed for any sp ∈ (0, 1]. If E[PS (i) |i] ≡ pI for some
p > 1/2, then sp > 0 due to

E[(I − PS (i))∇
2 J (ζ )(I − PS (i))|i] = (1 − 2p)∇

2 J (ζ ) + E[PS (i)∇
2 J (ζ )PS (i) |i] ≤ 2(1 − p)∇2 J (ζ ).

An advantage of our techniques is the immediate convergence of:
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Example 3.4 (Stochastic proximal Newton’s method). Let (P1, . . . , Pm) ∈ P(U ). Let H =
∂G + ∇J for G ∈ cpl(U ) and J ∈ C2(X ) with G =

∑m
j=1G j ◦ Pj . Take Mi+1,Wi+1, and V ′i+1 as

in Example 3.3. Then we obtain the algorithm

ui+1 := (I + [∇2 J (u)]†S (i)P∂G)
−1

(
ui − [∇2 J (u)]†S (i)∇J (u

i )
)
.

We have E[‖uN − û‖2] → 0 at a linear rate under the same conditions as in Example 3.3.

Proof of convergence of stochastic Newton’s and proximal Newton’s methods. We set as the pre-

conditioner Mi+1 := ∇
2 J (ui ) and as the test Zi := ϕi I for some ϕi > 0. Clearly we have the

following simpler non-value version of the value estimate (3.6):

(3.13) 〈∂G(ui+1) − ∂G(û),ui+1 − û〉Zi+1Wi+1 = ϕi 〈∂G(u
i+1) − ∂G(û),ui+1 − û〉PS (i )

=

m∑
j=1

ϕi χS (i)(j)〈∂G j (Pju
i+1) − ∂G j (Pjû), Pj (u

i+1 − û)〉 ≥ 0.

Therefore, since 0 ∈ ∂G(û) + ∇J (û), the expected fundamental condition (CE∼) becomes

(3.14) E[ϕiDi+1 + ∆i+1(û)] ≥ E

[
1

2

‖ui+1 − û‖2ϕi+1∇2 J (u i+1)−ϕi ∇2 J (u i ) −
1

2

‖ui+1 − ui ‖2ϕi ∇2 J (u i )

]
.

for

Di+1 := 〈∇J (u
i ) − ∇J (û),ui+1 − û〉PS (i ) − 〈(I − PS (i))∇

2 J (ui )PS (i)(u
i+1 − ui ),ui+1 − û〉.

Adapting the argumentation of Lemmas b.3 and b.4 to the present projected setting, by the

mean value theorem, for some ζ between ui and û, and using the de�nition of δ J in (3.11) and

the three-point identity (2.5), we rearrange

Di+1 = 〈∇
2 J (ui )(ui − û),ui+1 − û〉PS (i ) + 〈[∇

2 J (ζ ) − ∇2 J (ui )](ui − û),ui+1 − û〉PS (i )

− 〈(I − PS (i))∇
2 J (ui )PS (i)(u

i+1 − ui ),ui+1 − û〉

= 〈∇2 J (ui )(ui − û),ui+1 − û〉 + 〈[∇2 J (ζ ) − ∇2 J (ui )](ui − û),ui+1 − û〉PS (i )

− 〈(I − PS (i))∇
2 J (ui )PS (i)(u

i+1 − û),ui+1 − û〉

=
1

2

‖ui+1 − û‖2
∇2 J (u i ) +

1

2

‖ui − û‖2
∇2 J (u i ) −

1

2

‖ui+1 − ui ‖2
∇2 J (u i )

+ 〈[∇2 J (ζ ) − ∇2 J (ui )](ui − û),ui+1 − û〉PS (i )

− 〈(I − PS (i))∇
2 J (ui )PS (i)(u

i+1 − û),ui − û〉.

By the de�nition of sp in (3.12) and by Cauchy’s inequality, for any α > 0, we obtain the expected

three-point inequality

E[Di+1] ≥ E
[
1 − δ J − α

−1

2

‖ui+1 − û‖2
∇2 J (u i ) +

1 − δ J − α(1 − sp)

2

‖ui − û‖2
∇2 J (u i )

−
1

2

‖ui+1 − ui ‖2
∇2 J (u i )

]
.
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We take α = (1 − δ J )/(1 − sp). Then (3.14) holds when

E[∆i+1(û)] ≥ E
[
1

2

‖ui+1 − û‖2ϕi+1∇2 J (u i+1)−ϕi (2−δ J −α−1)∇2 J (u i )

]
.

This is the case for some ∆i+1(û) ∈ R(R) with E[∆i+1(û)] = 0 provided 2 > δ J + α
−1

and

ϕi+1 > 0 is small enough that ϕi+1∇
2 J (ui+1) ≤ ϕi (2−δ J −α

−1)∇2 J (ui ). Due to (3.11), we can take

ϕi+1 ≥ ϕiκ for

κ :=
2 − δ J − α

−1

1 + δ J
=

2 − δ J −
1−sp
1−δ J

1 + δ J
=

1 + sp − 3δ J + δ
2

J

1 − δ 2J
.

In particular, we obtain exponential growth of {ϕi }k ∈N provided κ > 1, which holds when

−3δ J + 2δ
2

J + sp > 0, which is the case under our assumption 0 ≤ δ J <
3−
√
9−8sp
4

. Consequently,

we can take ϕi := κ
i/(1 − δ J ) for κ > 1. By Corollary 3.1 we have

E

[
1

2

‖uN − û‖2ZN+1MN+1

]
≤ E

[
1

2

‖u0 − û‖2Z1M1

]
(N ≥ 1).

Since ZN+1MN+1 = ϕN∇
2 J (ui ) ≥ κN∇2 J (û), we obtain the claimed linear expected convergence

of iterates. �

Remark 3.4 (Variance estimates). From an estimate of the type E[‖uN − û‖2] ≤ CN , as above,
Jensen’s inequality gives ‖E[uN ] − û‖2 ≤ CN . From this, with the application of the triangle and
Cauchy’s inequalities, it is easy to derive the variance estimate E[‖E[uN ] − uN ‖2] ≤ 4CN .

4 saddle point problems

We now momentarily forget the stochastic setting and ergodic estimates to which we will

return in Section 5, and introduce our overall approach to primal–dual methods for saddle-point

problems. With K ∈ L(X ;Y );G, J ∈ cpl(X ); and F ∗ ∈ cpl(Y ) on Hilbert spaces X and Y , we now

wish to solve the following version of (S). The �rst-order necessary optimality conditions read

−K∗ŷ ∈ ∂[G + J ](x̂), and Kx̂ ∈ ∂F ∗(ŷ).

Setting U := X × Y and introducing the variable splitting notation u = (x ,y), û = (x̂ , ŷ), etc.,

this can succinctly be written as 0 ∈ H (û) in terms of the operator

(4.1) H (u) :=

(
∂[G + J ](x) + K∗y
∂F ∗(y) − Kx

)
.

In this section, concentrating on this speci�c H , we specialise the theory of Section 2.2 to

saddle point problems. Throughout, for some primal and dual step length and testing operators

Ti ,Φi ∈ L(X ;X ), and Σi+1,Ψi+1 ∈ L(Y ;Y ), we take

(4.2) Wi+1 :=

(
Ti 0

0 Σi+1

)
, and Zi+1 :=

(
Φi 0

0 Ψi+1

)
.
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To work with arbitrary step length operators, which will be necessary for stochastic algorithms

in Section 3, as well as the partially accelerated algorithms of [32], we will need abstract forms

of partial strong monotonicity of G and F ∗. As a �rst step, we take subspaces of operators

T ⊂ L(X ;X ), and S ⊂ L(Y ;Y ).

We suppose that ∂G is partially (strongly) T -monotone, which we take to mean

(G-PM) 〈∂G(x ′) − ∂G(x),x ′ − x〉T̃ ≥ ‖x
′ − x ‖2

T̃ Γ
, (x ,x ′ ∈ X ; T̃ ∈ T )

for some linear operator 0 ≤ Γ ∈ L(X ;X ). The operator T̃ ∈ T acts as a testing operator.

Observe that we have already proven this in (3.13) for the setting of the stochastic Newton’s

method. Similarly, we assume that ∂F ∗ is S-monotone in the sense

(F
∗
-PM) 〈∂F ∗(y ′) − ∂F ∗(y),y ′ − y〉Σ̃ ≥ 0 (y ,y ′ ∈ Y ; Σ̃ ∈ S).

Regarding J , we assume that ∇J exists and is partially T -co-coercive in the sense that for some

L ≥ 0 holds

(J-PC) 〈∇J (x ′) − ∇J (x),x ′ − x〉T̃ ≥ L−1‖∇J (x ′) − ∇J (x)‖2
T̃
, (x ,x ′ ∈ X ; T̃ ∈ T ).

(We allow L = 0 for the case J = 0.)

We also introduce

(4.3) Ξi+1(Γ) :=

(
2TiΓ 2TiK

∗

−2Σi+1K 0

)
, and Qi+1(L) :=

(
LTi 0

0 0

)
,

which are operator measures of strong monotonicity and smoothness of H . Finally, we introduce

the forward–step preconditioner with respect to J , familiar from Example 2.3 as

(4.4) V J
i+1(u) :=

(
Ti (∇J (x

i ) − ∇J (x))
0

)
.

Example 4.1 (Block-separable structure, monotonicity). Let P1, . . . , Pm be projection opera-

tors in X with

∑m
j=1 Pj = I and PjPi = 0 if i , j. Suppose G1, . . . ,Gm ∈ cpl(X ) are (strongly)

convex with factors γ1, . . . ,γm ≥ 0. Then the partial strong monotonicity (G-PM) holds with

Γ =
∑m

j=1 γjPj for

G(x) =
m∑
j=1

G j (Pjx), and T =

{
T :=

∑
j ∈S

tjPj

���� tj > 0, S ⊂ {1, . . . ,m}

}
.(4.5)

4.1 estimates

Using the (strong) T -monotonicity of ∂G, and the T -co-coercivity of ∇J , the next lemma

simpli�es Corollary 2.2 for H given by (4.1). We introduce Γ̃ = Γ to facilitate later gap estimates

that will require the conditions in the lemma to hold for Γ̃ = Γ/2 instead of Γ̃ = Γ.
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Theorem 4.1. Let H have the structure (4.1) and assume û ∈ H−1(0). SupposeG satis�es the partial
strong monotonicity (G-PM) for some 0 ≤ Γ ∈ L(X ;X ), F ∗ similarly satis�es (F

∗
-PM), and J

satis�es the partial co-coercivity (J-PC) for some L ≥ 0. For each i ∈ N, let Ti ,Φi ∈ L(X ;X ) and
Σi+1,Ψi+1 ∈ L(Y ;Y ) be such that ΦiTi ∈ T and Ψi+1Σi+1 ∈ S. De�ne Zi+1 andWi+1 through
(4.2). Also take V ′i+1 : X × Y → X × Y , andMi+1 ∈ L(X × Y ;X × Y ). Suppose (PP) is solvable for
{ui+1}i ∈N ⊂ X × Y . Then the fundamental conditions (CI), (CI

∼
) and the descent inequality (DI)

hold if for all i ∈ N, the operator Zi+1Mi+1 is self-adjoint and for Γ̃ = Γ and Li ≡ L/2 we have the
fundamental inequality for saddle-point problems

(CI-Γ)

1

2

‖ui+1 − ui ‖2Zi+1(Mi+1−Qi+1(Li )) +
1

2

‖ui+1 − û‖2
Zi+1(Ξi+1(Γ̃)+Mi+1)−Zi+2Mi+2

+ 〈V ′i+1(u
i+1) −V J

i+1(u
i+1),ui+1 − û〉Zi+1 ≥ −∆i+1(û).

We have introduced Γ̃ and Li for later gap estimates, where the speci�c choices of these will

di�er by a factor of two, similarly to the di�erences in the step length bounds for the function

value estimates of Section 2.5 compared to the non-value estimates of Section 2.3.

Proof. Note that Zi+1Mi+1 being self-adjoint implies that so is ΦiTi . Using (J-PC), similarly to

Lemma b.1 we derive

〈∇J (x i ) − ∇J (x̂),x i+1 − x̂〉ΦiTi ≥ −
L

4

‖x i+1 − x i ‖2ΦiTi .

Using (4.4), therefore

〈V J
i+1(u

i+1),ui+1 − û〉Zi+1 ≥ −
L

4

‖x i+1 − x i ‖2ΦiTi − 〈∇J (x
i+1) − ∇J (x̂),x i+1 − x̂〉ΦiTi .

With this, (G-PM), and (F
∗
-PM), we observe (CI-Γ) to imply

(4.6)

1

2

‖ui+1 − ui ‖2Zi+1Mi+1
+

1

2

‖ui+1 − û‖2Zi+1(Ξi+1(0)+Mi+1)−Zi+2Mi+2

+ 〈∂[G + J ](x i+1) − ∂[G + J ](x̂),x i+1 − x̂〉ΦiTi + 〈∂F
∗(y i+1) − ∂F ∗(ŷ),y i+1 − ŷ〉Ψi+1Σi+1

+ 〈V ′i+1(u
i+1),ui+1 − û〉Zi+1 ≥ −∆i+1(û).

Here pay attention to the fact that (4.6) employs Ξi+1(0) while (CI-Γ) employs Ξi+1(Γ̃). If we

show that (CI) follows from (4.6), then the descent inequality (DI) follows from Corollary 2.2.

Indeed, using the expansion

Zi+1Wi+1 =

(
ΦiTi 0

0 Ψi+1Σi+1

)
,

we expand for any ũ = (x̃ , ỹ) that

〈Zi+1Wi+1(H (u
i+1) − H (ũ)),ui+1 − ũ〉

= 〈∂G(x i+1) − ∂G(x̃),x i+1 − x̃〉ΦiTi + 〈∂F
∗(y i+1) − ∂F ∗(ỹ),y i+1 − ỹ〉Ψi+1Σi+1

+ 〈ΦiTiK
∗(y i+1 − ỹ),x i+1 − x̃〉 − 〈Ψi+1Σi+1K(x

i+1 − x̃),y i+1 − ỹ〉.
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With the help of Ξi+1(0) we then obtain

〈H (ui+1) − H (ũ),ui+1 − ũ〉Zi+1Wi+1 ≥
1

2

‖ui+1 − ũ‖Zi+1Ξi+1(0)

+ 〈∂G(x i+1) − ∂G(x̃),x i+1 − x̃〉ΦiTi + 〈∂F
∗(y i+1) − ∂F ∗(ỹ),y i+1 − ỹ〉Ψi+1Σi+1 .

Inserting this into (4.6), we obtain the fundamental inequality (CI). It implies (CI
∼

) via Corol-

lary 2.2. Finally, Theorem 2.1 gives (DI). �

4.2 examples of primal–dual methods

We now look at several known methods for the saddle point problem (S). The fundamental idea

in all of them is to design Mi+1 such that the primal variable y i+1 and the dual variable y i+1 can

be updated independently unlike in the standard proximal point method with Mi+1 = I . To help

verifying the condition Theorem 4.1 for these methods, we reformulate the result for scalar

step length and testing parameters: we will only use the full power of the operator setup in our

companion paper [31].

If for each i ∈ N, we pick τi ,ϕi ,σi+1,ψi+1 > 0 and γ ≥ 0, and de�ne Ti = τi I , Φi = ϕi I ,
Σi+1 = σi+1I ,Ψi+1 = ψi+1I , and Γ := γ I , then (4.2), (4.3), and (4.7c) reduce to

Wi+1 :=

(
τi I 0

0 σi+1I

)
, Zi+1 :=

(
ϕi I 0

0 Ψi+1I

)
.(4.7a)

Ξi+1(Γ̃) :=

(
2τiγ̃ 2τiK

∗

−2σi+1K 0

)
, Qi+1(L) :=

(
Lτi I 0

0 0

)
, and(4.7b)

V J
i+1(u) :=

(
τi (∇J (x

i ) − ∇J (x))
0

)
.(4.7c)

Then we have the following corollary of Theorem 4.1.

Corollary 4.2. Let H have the structure (4.1) and assume û ∈ H−1(0). Assume thatG is (γ -strongly)
convex and ∇J is L-Lipschitz for some γ ≥ 0 and L > 0. For each i ∈ N, assume the structure (4.7)

for τi ,ϕi ,σi+1,ψi+1 > 0. Also take V ′i+1 ∈ X × Y → X × Y andMi+1 ∈ L(X × Y ;X × Y ). Suppose
(PP) is solvable for {ui+1}i ∈N ⊂ X ×Y . Suppose for all i ∈ N that Zi+1Mi+1 is self-adjoint, and that
the fundamental condition for saddle-point problems (CI-Γ) holds for Γ̃ = γ I and Li ≡ L/2. Then
the fundamental conditions (CI), (CI

∼
) and the descent inequality (DI) hold.

Proof. Clearly ΦiTi ∈ T := [0,∞)I and Ψi+1Σi+1 ∈ S := [0,∞)I . Moreover, F ∗ satis�es the

partial monotonicity condition (F
∗
-PM) andG satis�es the partial partial monotonicity condition

(G-PM) with Γ = γ I by the corresponding (strong) monotonicity of the subdi�erentials. The

rest follows from Theorem 4.1. �

Example 4.2 (The primal–dual method of Chambolle and Pock [7]). With J = 0, this method
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consists of iterating the system

x i+1 := (I + τi∂G)
−1(x i − τiK

∗y i ),(4.8a)

sx i+1 := ωi (x
i+1 − x i ) + x i+1,(4.8b)

y i+1 := (I + σi+1∂F
∗)−1(y i + σi+1Ksx i+1).(4.8c)

In the basic version of the algorithm, ωi = 1, τi ≡ τ0 > 0, and σi ≡ σ0 > 0, assuming the step

length parameters to satisfy

(4.9) τ0σ0‖K ‖
2 < 1.

If K is compact, the iterates convergence weakly, and the method has O(1/N ) rate for the

ergodic duality gap, to which we will return in Section 5. If G is strongly convex with factor

γ > 0, we may accelerate

(4.10) ωi := 1/
√
1 + 2γτi , τi+1 := τiωi , and σi+1 := σi/ωi .

This yields O(1/N 2) convergence of ‖xN − x̂ ‖2 to zero.

Proof of convergence of iterates. We formulate the method in our proximal point framework

with J = 0 and G = G following [14, 32] by taking as the preconditioner

Mi+1 =

(
I −τiK

∗

−σiK I

)
and V ′i+1 = 0.

For the rest of the operators, we use the setup of (4.7). Taking ∆i+1(û) := −
1

2
‖ui+1 − ui ‖2Zi+1Mi+1

,

we now reduce (CI-Γ) to

(4.11)

1

2

‖ui+1 − û‖2Di+2
≥ 0 for Di+2 := Zi+1(Ξi+1(γ I ) +Mi+1) − Zi+2Mi+2.

We may expand

Zi+1Mi+1 =

(
ϕi I −ϕiτiK

∗

−ψi+1σiK ψi+1I

)
, and(4.12a)

Di+2 =

(
(ϕi (1 + 2γτi ) − ϕi+1)I (ϕiτi + ϕi+1τi+1)K

∗

(ψi+2σi+1 − 2ψi+1σi+1 −ψi+1σi )K (ψi+1 −ψi+2)I

)
.(4.12b)

We have ‖ · ‖Di+2 = 0 (but not Di+2 = 0, as the former depends on the o�-diagonals cancelling

out), and Zi+1Mi+1 is self-adjoint, if for some constantψ we take

(4.13) ϕi+1 := ϕi (1 + 2γτi ), τi := ϕ
−1/2

i , σi := ϕiτi/ψ , and ψi+1 := ψ .

This gives the acceleration scheme (4.10). Moreover, for any δ ∈ (0, 1) holds

(4.14) Zi+1Mi+1 ≥

(
δϕi I 0

0 ψI − (1 − δ )−1ϕiτ
2

i KK
∗

)
.
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Thus Zi+1Mi+1 ≥ 0 if ψ ≥ (1 − δ )−1ϕiτ
2

i ‖K ‖
2
. By (4.13), σiτi = 1/ψ . Since this �xes the ratio of

σi to τi , we need to takeψ := 1/(σ0τ0) as well as δ := 1 − σ0τ0‖K ‖
2
. Through the positivity of δ ,

we recover the initialisation condition (4.9).

Recall that subdi�erentials are weak-to-strong outer-semicontinuous. By the continuity of

K , we thus deduce the strong-to-strong outer semicontinuity of H . To verify (2.6), we use the

assumed compactness of K , which implies for a further unrelabelled subsequence of {uik }k ∈N
that w ik ∈ H (uik ) satisfy 0 = limk→∞w

ik ∈ H (ũ). Corollary 4.2 and Proposition 2.6 now shows

weak convergence of the iterates without a rate.

If G is strongly convex with factor γ ≥ 0, the results in [7, 32] show that τN is of the order

O(1/N ), and consequently ϕN is of the order Θ(N 2). By Proposition 2.4, ‖xN − x̂ ‖2 converges

to zero at the rate O(1/N 2). �

Remark 4.3 (Brezis–Crandall–Pazy property). It is possible to show that H satis�es the Brezis–
Crandall–Pazy property [3] without a compactness assumption on K . With a corresponding im-
provement to Proposition 2.4, the assumption could be dropped.

Remark 4.4 (Linear convergence). If F ∗ is strongly convex with factor ρ > 0, the last equation of
(4.13) gets similar form as the �rst,ψi+1 := ψi (1 + 2ρσi ). From here, if both G and F ∗ are strongly
convex, it is possible to show linear convergence.

We can also add an additional forward step to the method. With that the method resembles

the method of Vũ–Condat [10, 33], which also incorporates an additional outer over-relaxation

step on the whole algorithm.

Example 4.3 (Chambolle–Pock with a forward step). Suppose G is (strongly) convex with

factor γ ≥ 0, and ∇J Lipschitz with factor L. In [8], the Chambolle–Pock method was

extended to take forward steps with respect to J . With everything else as in Example 4.2,

takeV ′i+1(u) := (τi (∇J (x
i ) − ∇J (x)), 0). Then the preconditioned proximal point method (PP)

can be rearranged as

x i+1 := (I + τi∂G)
−1(x i − τi∇J (x

i ) − τiK
∗y i ),(4.15)

sx i+1 := ωi (x
i+1 − x i ) + x i+1,(4.16)

y i+1 := (I + σi+1∂F
∗)−1(y i + σi+1Ksx i+1).(4.17)

The method inherits the convergences properties of Example 4.2 if we use the step length

update rules (4.10), and initialise τ0,σ0 > 0 subject to (4.9), and

(4.18) 0 < θ := 1 − Lτ0/(1 − τ0σ0‖K ‖
2).

Proof of convergence. WithDi+2 as in (4.11), the fundamental condition for saddle-point problems

(CI-Γ) becomes

(4.19)

1

2

‖ui+1 − ui ‖2Zi+1Mi+1
−
τiϕiL

4

‖x i+1 − x i ‖2 +
1

2

‖ui+1 − û‖2Di+2
≥ −∆i+1(û).
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The rules (4.13) force ‖ · ‖Di+2 = 0. We take ∆i+1(û) = −
θ
2
‖ui+1 −ui ‖2Zi+1Mi+1

for some θ > 0, and

deduce using Cauchy’s inequality that (4.19) holds if

(1 − θ )Zi+1Mi+1 ≥ τiϕiL

(
I 0

0 0

)
.

Recalling (4.14), this is true if (1−θ )δϕi ≥ τiϕiL andψ ≥ (1−δ )−1ϕiτ
2

i ‖K ‖
2
. Further recalling (4.13),

and observing that {τi } is non-increasing, we only have to satisfy (1 − θ )(1 − τ0σ0‖K ‖
2) ≥ Lτ0.

Otherwise put, we obtain (4.18). �

Finally, we have the following Generalised Iterative Soft Thresholding (GIST) method from

[20].

Example 4.4 (GIST). Suppose G = 0, J (x) = 1

2
‖ f −Ax ‖2, ‖A‖ <

√
2, and ‖K ‖ ≤ 1. Take

V ′i+1(u) :=

(
∇J (x i ) − ∇J (x)

0

)
, and Mi+1 :=

(
I 0

0 I − KK∗

)
.

With Ti := I and Σi+1 := I , we obtain the method

y i+1 := (I + ∂F ∗)−1((I − KK∗)y i + K(x i − ∇G(x i ))),

x i+1 := x i − ∇G(x i ) − K∗y i+1.

If K is compact, the iterates {x i }i ∈N converge weakly to x̂ .

Proof of convergence. Observe that the partial co-coercivity (J-PC) holds with L = ‖A‖2. Clearly

Zi+1Mi+1 is positive semi-de�nite self-adjoint. If we take Φi = I and Ψi+1 = I , then

Di+2 := Zi+1(Ξi+1(0) +Mi+1) − Zi+2Mi+2 =

(
0 2K∗

−2K 0

)
.

Thus
1

2
‖u‖2Di+2

= 0. Eliminating ∂F ∗ by monotonicity, the fundamental condition for saddle-point

problems (CI-Γ) thus holds if

1

2

‖ui+1 − ui ‖2Zi+1Mi+1
−
L

4

‖x i+1 − x̂ ‖2 ≥ −∆i+1(û).

Expanding Zi+1Mi+1, we see this to hold when ‖K ‖ < 1 and L < 2, which are exactly our

assumptions. Using Corollary 4.2 and Proposition 2.4, and reasoning as in Example 4.2 to verify

the outer-semicontinuity properties of H , we obtain weak convergence. �

5 an ergodic duality gap

We now study the extension of the testing approach of Section 2.2 to produce the convergence

of an ergodic duality gap. Throughout this section, we are in the saddle point setup of Section 4.

In particular, the operator H is as in (4.1), and the step length and testing operatorsWi+1 and

Zi+1 as in (4.2).

29



5.1 preliminary gap estimates

Our �rst lemma demonstrates how to obtain a “preliminary” gap G′i+1(u) from H . If the step

lengths and tests are scalar, Ti = τi I , and Φi = ϕi I , etc., and satisfy τiϕi = σiψi+1, it is easy to

bound this preliminary gap from below by τiϕi times the “relaxed” duality gap

(5.1) G(x ,y) :=
(
[G + J ](x) + 〈ŷ,Kx〉 − F (ŷ)

)
−

(
[G + J ](x̂) + 〈y,Kx̂〉 − F ∗(y)

)
.

To do the same for more general step length operators, we will in Section 5.3 introduce abstract

notions of convexity that incorporate ergodicity and stochasticity.

Observe that the “relaxed” gap (5.1) satis�es

0 ≤ G(x ,y) ≤ [G + J ](x) + F (Kx) + [G + J ]∗(−Kŷ) + F ∗(ŷ),

where the right-hand side is the conventional duality gap guaranteed to be non-zero for a

non-solution x .

Lemma 5.1. For a �xed i ∈ N, suppose ΦiTi and Ψi+1Σi+1 are self-adjoint. Then for H as in (4.1),
we have

(5.2) 〈H (ui+1),ui+1 − û〉Zi+1Wi+1 = G
′
i+1(u

i+1) +
1

2

‖ui+1 − û‖Zi+1Ξi+1(0),

where the “preliminary gap”

G′i+1(u) := 〈∂[G + J ](x),x − x̂〉ΦiTi + 〈∂F
∗(y),y − ŷ〉Ψi+1Σi+1

− 〈ŷ , (KT ∗i Φ
∗
i − Ψi+1Σi+1K)x̂〉 − 〈y ,Ψi+1Σi+1Kx̂〉 + 〈ŷ ,KT

∗
i Φ
∗
i x〉.

(5.3)

Proof. Similarly to the proof of Theorem 4.1, we have

〈H (ui+1),ui+1 − û〉Zi+1Wi+1 = 〈∂[G + J ](x
i+1),x i+1 − x̂〉ΦiTi + 〈ΦiTiK

∗y i+1,x i+1 − x̂〉

+ 〈∂F ∗(y i+1),y i+1 − ŷ〉Ψi+1Σi+1 − 〈Ψi+1Σi+1Kx
i+1,y i+1 − ŷ〉.

A little bit of reorganisation gives (5.2). Indeed

〈H (ui+1),ui+1 − û〉Zi+1Wi+1 = 〈∂[G + J ](x
i+1),x i+1 − x̂〉ΦiTi + 〈∂F

∗(y i+1),y i+1 − ŷ〉Ψi+1Σi+1

+ 〈y i+1 − ŷ, (KT ∗i Φ
∗
i − Ψi+1Σi+1K)(x

i+1 − x̂)〉

− 〈ŷ , (KT ∗i Φ
∗
i − Ψi+1Σi+1K)x̂〉

− 〈y i+1,Ψi+1Σi+1Kx̂〉 + 〈ŷ,KT
∗
i Φ
∗
i x

i+1〉

= G′i+1(u
i+1) +

1

2

‖ui+1 − û‖Zi+1Ξi+1(0). �

The next lemma extends Theorem 4.1 to estimate the preliminary gap.

Lemma 5.2. Let H have the structure (4.1) and assume û ∈ H−1(0). For each i ∈ N, let Ti ,Φi ∈

L(X ;X ) and Σi+1,Ψi+1 ∈ L(Y ;Y ), as well asV ′i+1 ∈ X ×Y → X ×Y andMi+1 ∈ L(X ×Y ;X ×Y ).
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De�ne Zi+1 andWi+1 through (4.2). Suppose (PP) is solvable for {ui+1}i ∈N ⊂ X ×Y . If for all i ∈ N,
Zi+1Mi+1 is self-adjoint, and

(5.4)

1

2

‖ui+1 − ui ‖2Zi+1Mi+1
+

1

2

‖ui+1 − û‖2Zi+1(Ξi+1(0)+Mi+1)−Zi+2Mi+2
+ 〈V ′i+1(u

i+1),ui+1 − û〉Zi+1

≥ −∆̃i+1(û),

then

(5.5)

1

2

‖uN − û‖2ZN+1MN+1
+

N−1∑
i=0

G′i+1(u
i+1) ≤

1

2

‖u0 − û‖2Z1M1

+

N−1∑
i=0

∆̃i+1(û) (N ≥ 1).

Proof. Inserting (5.2) from Lemma 5.1 into (5.4) shows that

1

2

‖ui+1 − ui ‖2Zi+1Mi+1
+

1

2

‖ui+1 − û‖2Zi+1(Mi+1+Ξi+1(0))−Zi+2Mi+2

+ 〈Wi+1H (u
i+1) +V ′i+1(u

i+1),ui+1 − û〉Zi+1 ≥ G
′
i+1(u

i+1) − ∆̃i+1(û).

Hence the fundamental condition (CI
∼

) holds for ∆i+1(û) := ∆̃i+1(û) − G
′
i+1(u

i+1). Now we use

Theorem 2.1. �

5.2 general conversion formulas of preliminary gaps to ergodic gaps

The “preliminary gaps” are not as such very useful. To go further, the abstract partial mono-

tonicity assumptions (G-PM) and (F
∗
-PM) are not enough, and we need analogous convexity

formulations. We formulate these conditions directly in the stochastic setting (recall Section 3).

For the moment, we assume for all N ≥ 1 that whenever T̃i (:= ΦiTi ) ∈ R(T ) and x i+1 ∈ R(X )
for each i = 0, . . . ,N − 1 with

∑N−1
i=0 E[T̃i ] = I , then for some δ i+1G ∈ R(R) holds

(5.6) [G + J ](x̂) − [G + J ]

(
N−1∑
i=0

E[T̃ ∗i x
i+1]

)
≥

N−1∑
i=0

E
[
〈∂[G + J ](x i+1), x̂ − x i+1〉T̃i + δ

i+1
G+J ,N

]
.

Analogously, we assume for Σ̃i+1 (:= Ψi+1Σi+1) ∈ R(S) and y i+1 ∈ R(Y ) for each i = 0, . . . ,N − 1
with

∑N−1
i=0 E[Σ̃i+1] = I that for some δ i+1F ∗ ∈ R(R) holds

(5.7) F ∗(ŷ) − F ∗

(
N−1∑
i=0

E[Σ̃∗i+1y
i+1]

)
≥

N−1∑
i=0

E
[
〈∂F ∗(y i+1), ŷ − y i+1〉Σ̃i+1 + δ

i+1
F ∗,N

]
.

These conditions can of course always be satis�ed for some δ i+1G and δ i+1F ∗ . After a few general

lemmas, we will replace these placeholder values by more meaningful ones.

To state those lemmas, we also assume for some scalars sηi ∈ R, (i ∈ N), either of the primal–
dual coupling conditions

E[ΦiTi ] = sηi I , and E[Ψi+1Σi+1] = sηi I , (i ≥ 1),(CG)
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or

E[ΦiTi ] = sηi I , and E[ΨiΣi ] = sηi I , (i ≥ 1),(CG∗)

As will see in Example 5.3, (CG∗) is satis�ed by the accelerated Chambolle–Pock method of

Example 4.2. In our companion paper [31], we will however see that (CG) is required to develop

doubly-stochastic methods.

Lemma 5.3. Assume (5.6), (5.7), and the �rst primal–dual coupling condition (CG). Given iterates
{(x i ,y i )}∞i=1 ⊂ X × Y , for all N ≥ 1 set

ζN :=

N−1∑
i=0

sηi ,

and de�ne the ergodic sequences

(5.8) x̃N := ζ −1N E

[
N−1∑
i=0

T ∗i Φ
∗
i x

i+1

]
, and ỹN := ζ −1N E

[
N−1∑
i=0

Σ∗i+1Ψ
∗
i+1y

i+1

]
.

Then
N−1∑
i=0

E[G′i+1(x
i+1,y i+1) + ζNδ

i+1
G+J ,N + ζNδ

i+1
F ∗,N ] ≥ ζNG(x̃N , ỹN ) (N ≥ 1).

Proof. Let N be �xed. With T̃i := ζ
−1
N ΦiTi over i = 0, . . . ,N − 1, (5.6) implies

(5.9) ζN
(
[G + J ](x̂) − [G + J ](x̃N )

)
≥

N−1∑
i=0

E
[
〈∂[G + J ](x i+1), x̂ − x i+1〉ΦiTi

]
+ ζNδ

i+1
G+J ,N .

Likewise, with Σ̃i+1 := ζ
−1
N Ψi+1Σi+1, (5.7) shows that

(5.10) ζN
(
F ∗(ŷ) − F ∗(ỹN )

)
≥

N−1∑
i=0

E
[
〈∂F ∗(y i+1), ŷ − y i+1〉Ψi+1Σi+1

]
+ ζNδ

i+1
F ∗,N .

From the de�nition of the preliminary gap in (5.3), applying (CG), we obtain

N−1∑
i=0

E[G′i+1(u
i+1)] =

N−1∑
i=0

E[〈∂[G + J ](x i+1),x i+1 − x̂〉ΦiTi + 〈∂F
∗(y i+1),y i+1 − ŷ〉Ψi+1Σi+1]

−

N−1∑
i=0

E[〈y i+1,Ψi+1Σi+1Kx̂〉 + 〈ŷ,KT
∗
i Φ
∗
i x

i+1〉].

Recalling the de�nition of the gap G in (5.1), and using the estimates (5.9), (5.10), as well as the

de�nition (5.8) of the ergodic sequences, we obtain the claim. �
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Lemma 5.4. SupposeG and F ∗ satisfy with Γ = 0 the corresponding partial monotonicities (G-PM)

and (F
∗
-PM). Also assume (5.6), (5.7), and the second primal–dual coupling condition (CG∗). Given

{(x i ,y i )}∞i=1 ⊂ X × Y , for all N ≥ 1 set

ζ∗,N :=

N−1∑
i=1

sηi ,

and de�ne the ergodic sequences

x̃∗,N := ζ −1∗,NE

[
N−1∑
i=1

T ∗i Φ
∗
i x

i+1

]
, and ỹ∗,N := ζ −1∗,NE

[
N−1∑
i=1

Σ∗iΨ
∗
i y

i

]
.

Then

N−1∑
i=0

E[G′i+1(x
i+1,y i+1) + ζ∗,Nδ

i+1
G+J ,N + ζ∗,Nδ

i+1
F ∗,N ] ≥ ζ∗,NG(x̃∗,N , ỹ∗,N ) (N ≥ 1).

Proof. Shifting indices of y i by one compared to G′i+1, we de�ne

G′∗,i+1 := 〈∂[G + J ](x
i+1),x i+1 − x̂〉ΦiTi + 〈∂F

∗(y i ), Σ∗iΨ
∗
i (y

i − ŷ)〉

− 〈ŷ, (KT ∗i Φ
∗
i − ΨiΣiK)x̂〉 − 〈y

i ,ΨiΣiKx̂〉 + 〈ŷ,KT
∗
i Φ
∗
i x

i+1〉.

Reorganising terms, therefore

N−1∑
i=0

G′i+1(x
i+1,y i+1) = 〈∂[G + J ](x 1) − K∗ŷ,x 1 − x̂〉Φ0T0

+ 〈∂F ∗(yN ) + Kx̂ ,yN − ŷ〉ΨN ΣN +

N−1∑
i=1

G′∗,i+1(x
i+1,y i+1).

By virtue of 0 ∈ H (û), we have K∗ŷ ∈ ∂G(x̂), and −Kx̂ ∈ ∂F ∗(ŷ). Estimating with (G-PM) and

(F
∗
-PM), and afterwards taking the expectation, we therefore obtain

N−1∑
i=0

E[G′i+1(x
i+1,y i+1)] ≥

N−1∑
i=1

E[G′∗,i+1(x
i+1,y i+1)].

From here we may proceed analogously to the proof of Lemma 5.3. �

5.3 final gap estimates

As now convert the abstract ergodic conditions (5.6) and (5.7) into ergodic strong convexity

and smoothness conditions that can be derived from the corresponding standard properties in

block-separable cases.
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Recall the spaces of operator T and S from Section 4. We assume for all N ≥ 1 that whenever

T̃i (:= ΦiTi ) ∈ R(T ) and x i+1 ∈ R(X ) for each i = 0, . . . ,N − 1 with

∑N−1
i=0 E[T̃i ] = I , then for

some 0 ≤ Γ ∈ L(X ;X ) we have the ergodic strong convexity

(G-EC) G(x̂) −G

(
N−1∑
i=0

E[T̃ ∗i x
i+1]

)
≥

N−1∑
i=0

E
[
〈∂G(x i+1), x̂ − x i+1〉T̃i +

1

2

‖x̂ − x i+1‖2
T̃i Γ

]
.

Analogously, we assume for Σ̃i+1 (:= Ψi+1Σi+1) ∈ R(S) and y i+1 ∈ R(Y ) for each i = 0, . . . ,N − 1
with

∑N−1
i=0 E[Σ̃i+1] = I the ergodic convexity

(F
∗
-EC) F ∗(ŷ) − F ∗

(
N−1∑
i=0

E[Σ̃∗i+1y
i+1]

)
≥

N−1∑
i=0

E
[
〈∂F ∗(y i+1), ŷ − y i+1〉Σ̃i+1

]
.

Finally, we assume J is di�erentiable and satis�es for some parameters Li ≥ 0 the 3-point ergodic
smoothness condition

(J-ES) J (x̂) − J

(
N−1∑
i=0

E[T̃ ∗i x
i+1]

)
≥

N−1∑
i=0

E
[
〈∇J (x i ), x̂ − x i+1〉T̃i −

Li
2

‖x i+1 − x i ‖2
T̃i

]
.

The shifting refers to uses of x i , where a typical de�nition of smoothness would use x̂ .

Example 5.1 (Block-separable structure, ergodic convexity). Let G and T have the separable

structure of Example 4.1. We claim that the ergodic strong convexity (G-EC) holds. Indeed, let

us introduce T̃i :=
∑m

j=1 τ̃j,iPj ≥ 0, satisfying

∑N−1
i=0 E[̃τj,i ] = 1 for each j = 1, . . . ,m. Splitting

(G-EC) into separate inequalities over all j = 1, . . . ,m, and using the strong convexity of G j ,

we see (G-EC) to be true with Γ =
∑m

j=1 γjPj if for all j = 1, . . . ,m holds

(5.11) G j (Pj x̂) −G j

(
N−1∑
i=0

E[̃τj,iPjx
i+1]

)
≥

N−1∑
i=0

E
[
τ̃i

(
G j (Pj x̂) −G j (Pjx

i+1)
) ]
.

The right hand side can also be written as

∫
ΩN G j (Pj x̂)−G j (Pjx

i (ω))dµN (i,ω) for the measure

µN := τ̃j
∑N−1

i=0 δi × P on the domain ΩN
:= {0, . . . ,N − 1} × Ω. Using our assumption∑N−1

i=0 E[̃τj,i ] = 1, we deduce µN (ΩN ) = 1. An application of Jensen’s inequality now shows

(5.11). Therefore (G-EC) is satis�ed for G = G.

Example 5.2 (Ergodic smoothness for smooth J ). If J ∈ C(x) has L-Lipschitz gradient, then

Lemma b.1 shows the three-point inequality

J (x̂) − J (x i+1) ≥ 〈∇J (x i ), x̂ − x i+1〉 −
L

2

‖x i+1 − x i ‖2.

If T̃i = τ̃i I for scalar τ̃i I , then proceeding as in (5.11) in Example 5.1, we deduce the 3-point

ergodic smoothness (J-ES) with Li = L. Similarly, we can treat the block-separable case
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J =
∑m

i=0 Jj (Pjx) when each Jj individually has Lipschitz gradient.

The next theorem is our main result for saddle point problems. To clarify the statement of

the theorem, which depends on various di�erent combinations of several conditions in the

de�nition of д̃N , we recall here the rough meaning of each:

(CI-Γ, p.25) Fundamental condition (CI
∼

) for saddle point problems.

(G-PM, p.24) Partial (testing and step length operator relative) strong monotonicity of G.

(F
∗
-PM, p.24) Partial monotonicity of F ∗.

(J-PC, p.24) Partial co-coercivity of J .

(G-EC, p.34) Partial strong ergodic convexity of G.

(F
∗
-EC, p.34) Partial ergodic convexity of F ∗.

(J-ES, p.34) Partial 3-point ergodic smoothness of J .

(CG, p.31) First alternative primal–dual coupling condition

(CG∗, p.32) Second alternative primal–dual coupling condition

Theorem 5.5. Let H have the structure (4.1) and assume û ∈ H−1(0). For each i ∈ N, let Ti ,Φi ∈

R(L(X ;X )) and Σi+1,Ψi+1 ∈ R(L(Y ;Y )) be such that ΦiTi ∈ R(T ) and Ψi+1Σi+1 ∈ R(S). De�ne
Zi+1 andWi+1 through (4.2). Also takeV ′i+1 ∈ R(X ×Y → X ×Y ) andMi+1 ∈ R(L(X ×Y ;X ×Y )).
Suppose (PP) is solvable for {ui+1}i ∈N ⊂ X × Y . Assuming one of the following cases to hold with
0 ≤ Γ ∈ L(X ;X ) and Li ≥ 0, let

д̃N :=


0, Γ̃ = Γ, (G-PM), (F

∗
-PM) and (J-PC) hold,

ζNG(x̃N , ỹN ), Γ̃ = Γ/2; (G-EC), (F
∗
-EC), (J-ES), and (CG) hold,

ζ∗,NG(x̃∗,N , ỹ∗,N ), Γ̃ = Γ/2; (G-PM) for Γ = 0, (F
∗
-PM),

(G-EC), (F
∗
-EC), (J-ES), and (CG) hold.

If for all i ∈ N,Zi+1Mi+1 is self-adjoint and (CI-Γ) holds for Γ̃ given above, then so does the following
ergodic gap descent inequality:

(DI-G) E
[
1

2

‖uN − û‖2ZN+1MN+1

]
+ д̃N ≤ E

[
1

2

‖u0 − û‖2Z1M1

]
+

N−1∑
i=0

E[∆i+1(û)] (N ≥ 1).

Proof. The case д̃N = 0 is simply the result of taking the expectation in the claim of Theorem 4.1;

compare how Corollary 3.1 follows form Theorem 2.1. Regarding the remaining two cases, clearly

(CI-Γ) implies (5.4) for

∆̃i+1(û) := ∆i+1(û) −
1

2

‖x̂ − x i+1‖ΦiTi Γ̃ +
Li
2

‖x i+1 − x i ‖2ΦiTi

+ 〈∇J (x i ) − ∇J (x i+1), x̂ − x i+1〉ΦiTi .

Thus Lemma 5.2 shows the descent estimate (5.5).
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The ergodic strong convexity (G-EC) and (J-ES) imply (5.6) for

δ i+1G+J ,N :=
1

2

‖x̂ − x i+1‖T̃i Γ −
Li
2

‖x i+1 − x i ‖2
T̃i
+ 〈∇J (x i ) − ∇J (x i+1), x̂ − x i+1〉T̃i ,

where T̃i ∈ R(T ). Likewise the ergodic convexity (F
∗
-EC) implies (5.7) for δ i+1F ∗,N := 0. When the

�rst primal–dual coupling condition (CG) holds, we take above T̃i = ζ
−1
N ΦiTi , which we have

assumed to belong to R(T ). If the alternative second primal–dual coupling condition (CG∗)

holds, we take T̃i = ζ
−1
∗,NΦiTi . Therefore, (5.5) can be rewritten

(5.12)

1

2

‖uN − û‖2ZN+1MN+1
+ д′N ≤

1

2

‖u0 − û‖2Z1M1

+

N−1∑
i=0

∆i+1(û)

for

д′N :=

N−1∑
i=0

[
G′i+1(x

i+1,y i+1) + ζNδ
i+1
G+J ,N + ζNδ

i+1
F ∗,N

]
.

Now we just take the expectation in (5.12), and apply Lemma 5.3 or Lemma 5.4. �

5.4 primal–dual examples revisited

We now study gap estimates for several of the examples from Section 4. We start by verifying

partial monotonicity and ergodic convexity and smoothness conditions for in the case of simple

deterministic scalar step length and testing operators: the block-separable and stochastic case

we leave to the companion paper [31].

Similarly to Corollary 4.2 of Theorem 4.1, we now have the following non-stochastic scalar

corollary of Theorem 5.5. From the corollary, if ∆i+1 ≤ 0, we clearly get the convergence of

G(x̃∗,N , ỹ∗,N ) or G(x̃N , ỹN ) to zero at the respective rate O(1/ζ∗,N ) or (1/ζN ).

Corollary 5.6. Let H have the structure (4.1) and assume û ∈ H−1(0). Assume thatG is (γ -strongly)
convex and ∇J is L-Lipschitz for some γ ≥ 0 and L > 0. For each i ∈ N, assume the structure
(4.7) for τi ,ϕi ,σi+1,ψi+1 > 0. Also take V ′i+1 ∈ X × Y → X × Y and Mi+1 ∈ L(X × Y ;X × Y ).
Suppose (PP) is solvable for {ui+1}i ∈N ⊂ X × Y . Suppose for all i ∈ N that ϕiτi = ψiσi , that
Zi+1Mi+1 is self-adjoint, and that the fundamental condition for saddle-point problems (CI-Γ) holds
for Γ̃ = (γ/2)I and Li ≡ L. Then

1

2

‖uN − û‖2ZN+1MN+1
+ ζ∗,NG(x̃∗,N , ỹ∗,N ) ≤

1

2

‖u0 − û‖2Z1M1

+

N−1∑
i=0

∆i+1(û) (N ≥ 1).

If, instead, ϕiτi = ψi+1σi+1, then the gap expression is replaced by ζNG(x̃N , ỹN ).

Proof. As in the proof of Corollary 4.2, clearly ΦiTi ∈ T := [0,∞)I and Ψi+1Σi+1 ∈ S := [0,∞)I ,
so that the partial monotonicities (F

∗
-PM) and (G-PM) (with Γ = 0) hold by the monotonicity

of the subdi�erentials of G and F ∗. Similarly, the ergodic (strong) convexity (G-EC) of G with

Γ = γ I and (F
∗
-EC) of F ∗ hold by a Jensen argument similar to Example 5.1. Likewise, the ergodic
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smoothness (J-ES) holds by the three-point inequality (b.2) and a Jensen argument similar to

Example 5.2. Note that with everything deterministic, the expectations disappear.

With this, the result follows immediately from Theorem 5.5 for the second and third cases of

д̃N . The primal–dual coupling conditions (CG∗) and (CG) reduce to our respective conditions

ϕiτi = ψiσi and ϕiτi = ψi+1σi+1, �

In Examples 4.2 and 4.4, we proved (CI-Γ) for the Chambolle–Pock method and the GIST

with Γ̃ = γ I and Li ≡ L/2. Now we have to do the same but with the factor-of-two di�erent

Γ̃ = (γ/2)I and Li ≡ L. The di�erent Γ̃ will merely change the acceleration factor of the method.

The larger Li , on the other hand, will change the step length bound (4.18) of the forward-step

Chambolle–Pock, Example 4.3, to

(5.13) 0 < θ := 1 − 2Lτ0/(1 − τ0σ0‖K ‖
2),

and the the bound ‖A‖ ≤
√
2 of the GIST of Example 4.4 to ‖A‖ ≤ 1.

Example 5.3 (Gap for Chambolle–Pock with a forward step). In the demonstration of Exam-

ples 4.2 and 4.3, we have seen the Chambolle–Pock method to satisfy ϕiτi = ψiσi and the

self-adjointness of Zi+1Mi+1. As discussed above, (CI-Γ) holds with ∆i+1 ≤ 0 subject to the

conditions γ̃ ∈ [0,γ/2] and (5.13). We now have ζ∗,N =
∑N−1

i=1 ϕ1/2i . In the unaccelerated case

(γ = 0), we get ζ∗,N = Nϕ1/2
0

. Therefore, we get from Corollary 5.6 the O(1/N ) convergence

of G(x̃∗,N , ỹ∗,N ) to zero. In the accelerated case (γ > 0), ϕi is of the order Θ(i2). Therefore

also ζ∗,N is of the order Θ(N 2), so we get O(1/N 2) convergence of G(x̃∗,N , ỹ∗,N ) to zero.

Example 5.4 (Gap for GIST). In Example 4.4 we have seen the GIST to satisfy τi = ϕi =
σi+1 = ψi+1 = 1, the self-adjointness of Zi+1Mi+1. Moreover, as discussed above, (CI-Γ) with

∆i+1 ≤ 0 if ‖A‖ ≤ 1. It therefore has ζN = N − 1 and ζ∗,N = N . Consequently, Corollary 5.6

yields the O(1/N ) convergence of both G(x̃∗,N , ỹ∗,N ) and G(x̃N , ỹN ) to zero.

conclusion

We have uni�ed common convergence proofs of optimisation methods, employing the ideas

of non-linear preconditioning and testing of the classical proximal point method. We have

demonstrated that popular classical and modern algorithms can be presented in this framework,

and their convergence, including convergence rates, proved with little e�ort. The theory was,

however, not developed with existing algorithms in mind. It was developed to allow the devel-

opment of new spatially adapted block-proximal methods in [31]. We will demonstrate there

and in other works to follow, the full power of the theory. For one, we did not yet fully exploit

the fact thatWi+1 and Zi+1 are operators, to construct step-wise step lengths and acceleration.

appendix a outer semicontinuity of maximal monotone operators

We could not �nd the following result explicitly stated in the literature, although it is hidden in,

e.g., the proof of [28, Theorem 1].
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Lemma a.1. Let H : U ⇒ U be maximal monotone on a Hilbert space U . Then H is is weak-to-
strong outer semicontinuous: for any sequence {ui }i ∈N, and any zi ∈ H (ui ) such that ui ⇀ u
weakly, and zi → z strongly, we have z ∈ H (u).

Proof. By monotonicity, for any u ′ ∈ U and z ′ ∈ U holds Di := 〈u
′ − ui , z ′ − zi 〉 ≥ 0. Since a

weakly convergent sequence is bounded, we have Di ≥ 〈u
′ − ui , z ′ − z〉 −C‖z − zi ‖ for some

C > 0 independent of i . Taking the limit, we therefore have 〈u ′ − u, z ′ − z〉 ≥ 0. If we had

z < H (u), this would contradict that H is maximal, i.e., its graph not contained in the graph of

any monotone operator. �

appendix b three-point inequalities

The following three-point formulas are central to handling forward steps with respect to smooth

functions.

Lemma b.1. If J ∈ cpl(X ) has L-Lipschitz gradient. Then

(b.1) 〈∇J (z) − ∇J (x̂),x − x̂〉 ≥ −
L

4

‖x − z‖2 (x̂ , z,x ∈ X ),

as well as

(b.2) 〈∇J (z),x − x̂〉 ≥ J (x) − J (x̂) −
L

2

‖x − z‖2 (x̂ , z,x ∈ X ).

Proof. Regarding the “three-point hypomonotonicity” (b.1), the L-Lipschitz gradient implies

co-coercivity (see [1] or Appendix c)

〈∇J (z) − ∇J (x̂), z − x̂〉 ≥ L−1‖∇J (z) − ∇J (x̂)‖2.

Thus using Cauchy’s inequality

〈∇J (z) − ∇J (x̂),x − x̂〉 = 〈∇J (z) − ∇J (x̂), z − x̂〉 + 〈∇J (z) − ∇J (x̂),x − z〉

≥ −
L

4

‖x − z‖2.

To prove (b.2), the Lipschitz gradient implies the smoothness or “descent inequality” (again,

[1] or Appendix c)

(b.3) J (z) − J (x) ≥ 〈∇J (z), z − x〉 −
L

2

‖x − z‖2.

By convexity J (x̂) − J (z) ≥ 〈∇J (z), x̂ − z〉. Summed, we obtain (b.2). �

Lemma b.2. If J ∈ cpl(X ) has L-Lipschitz gradient and is γ -strongly convex. Then for any τ > 0

holds

(b.4) 〈∇J (z) − ∇J (x̂),x − x̂〉 ≥
2γ − τL2

2

‖x − x̂ ‖2 −
1

2τ
‖x − z‖2 (x̂ , z,x ∈ X ),

as well as

(b.5) 〈∇J (z),x − x̂〉 ≥ J (x) − J (x̂) +
γ − τL2

2

‖x − x̂ ‖2 −
1

2τ
‖x − z‖2 (x̂ , z,x ∈ X ).
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Proof. To prove (b.5), using strong convexity,the Lipschitz gradient, and Cauchy’s inequality,

we have

〈∇J (z),x − x̂〉 = 〈∇J (x),x − x̂〉 + 〈∇J (z) − ∇J (x),x − x̂〉

≥ J (x) − J (x̂) +
γ

2

‖x − x̂ ‖2 −
1

2τ
‖x − z‖2 −

τL2

2

‖x − x̂ ‖2.

Regarding (b.4), using the γ -strong monotonicity of ∇J , we estimate completely analogously

〈∇J (z) − ∇J (x̂),x − x̂〉 = 〈∇J (x) − ∇J (x̂),x − x̂〉 + 〈∇J (z) − ∇J (x),x − x̂〉

≥ γ ‖x − x̂ ‖2 −
1

2τ
‖x − z‖2 −

τL2

2

‖x − x̂ ‖2. �

Since smooth functions with a positive Hessian are locally convex, the above lemmas readily

extend to this case, locally. In fact, we have following more precise result:

Lemma b.3. Suppose J ∈ C2(X ) with ∇2 J (x̂) > 0 at given x̂ ∈ X . Then for any τ ∈ (0, 2] and all
z,x ,η ∈ X , we have

(b.6) 〈∇J (z) − ∇J (x̂),x − x̂〉 ≥
(1 − δz,η)(2 − τ )

2

‖x − x̂ ‖2
∇2 J (η) −

1 + δz,η

2τ
‖x − z‖2

∇2 J (η)

with

(b.7) δz,η := inf

{
δ ≥ 0

���� (1 − δ )∇2 J (η) ≤ ∇2 J (ζ ) ≤ (1 + δ )∇2 J (η)for all ζ ∈ clB(‖z − x̂ ‖, x̂)

}
.

If x ∈ clB(‖z − x̂ ‖, x̂), then also

(b.8) 〈∇J (z),x−x̂〉 ≥ J (x)− J (x̂)+
(1 − δz,η)(1 − τ ) − 2δz,η

2

‖x−x̂ ‖2
∇2 J (η)−

1 + δz,η

2τ
‖x−z‖2

∇2 J (η).

Proof. By Taylor expansion, for some ζ between z and x̂ , and any τ > 0, we have

〈∇J (z) − ∇J (x̂),x − x̂〉 = 〈∇2 J (ζ )(z − x̂),x − x̂〉

= ‖x − x̂ ‖2
∇2 J (ζ ) + 〈∇

2 J (ζ )(z − x),x − x̂〉

≥
2 − τ

2

‖x − x̂ ‖2
∇2 J (ζ ) −

1

2τ
‖x − z‖2

∇2 J (ζ ).

(b.9)

Since ζ ∈ clB(‖z − x̂ ‖, x̂), by the de�nition of δz,η , we obtain (b.6).

Similarly, by Taylor expansion, for some ζ0 between x and x̂ , we have

(b.10) 〈∇J (z),x − x̂〉 − J (x) + J (x̂) = 〈∇J (z) − ∇J (x̂),x − x̂〉 −
1

2

〈∇2 J (ζ0)(x − x̂),x − x̂〉

Using (b.9) we obtain

〈∇J (z),x − x̂〉 − J (x) + J (x̂) ≥
1

2

‖x − x̂ ‖2
(2−τ )∇2 J (ζ )−∇2 J (ζ0)

−
1

2τ
‖x − z‖2

∇2 J (ζ ).

Using the assumption x ∈ clB(‖z − x̂ ‖, x̂), we have ζ0 ∈ clB(‖z − x̂ ‖, x̂). Hence we obtain (b.8)

by the de�nition of δz,η and (1 − δz,η)(2 − τ ) − (1 + δz,η) = (1 − δz,η)(1 − τ ) − 2δz,η . �
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We can also derive the following alternate result:

Lemma b.4. Suppose J ∈ C2(X ) with ∇2 J (x̂) > 0 at given x̂ ∈ X . Then for all z,x ,η ∈ X we have

(b.11) 〈∇J (z) − ∇J (x̂),x − x̂〉 ≥
1 − δz,η

2

‖x − x̂ ‖2
∇2 J (η) +

1 − δz,η

2

‖z − x̂ ‖2
∇2 J (η) −

1

2

‖x − z‖2
∇2 J (η)

for δz,η given by (b.7). If x ∈ clB(‖z − x̂ ‖, x̂), then also

〈∇J (z),x − x̂〉 ≥ −δz,η ‖x − x̂ ‖
2

∇2 J (η) +
1 − δz,η

2

‖z − x̂ ‖2
∇2 J (η) −

1

2

‖x − z‖2
∇2 J (η)

+ J (x) − J (x̂).
(b.12)

Proof. By Taylor expansion, for some ζ between z and x̂ , we have

〈∇J (z) − ∇J (x̂),x − x̂〉 = 〈∇2 J (ζ )(z − x̂),x − x̂〉

= 〈∇2 J (η)(z − x̂),x − x̂〉

+ 〈[∇2 J (ζ ) − ∇2 J (η)](z − x̂),x − x̂〉

≥ 〈∇2 J (η)(z − x̂),x − x̂〉

−
δz,η

2

‖x − x̂ ‖∇2 J (η) −
δz,η

2

‖z − x̂ ‖∇2 J (η).

(b.13)

In the last step we have used Cauchy’s inequality, and the de�nition of δz,η following ζ ∈
clB(‖z − x̂ ‖, x̂). The standard three-point or Pythagoras’ identity states

〈∇2 J (η)(z − x̂),x − x̂〉 =
1

2

‖z − x̂ ‖2
∇2 J (η) +

1

2

‖x − x̂ ‖2
∇2 J (η) −

1

2

‖x − z‖2
∇2 J (η).

Applying this in (b.13), we obtain (b.11).

To prove (b.12), we use (b.10), the de�nition of δz,η , and (b.11). �

appendix c projected gradients and smoothness

The next lemma generalises well-known properties [see, e.g., 1] of smooth convex functions

to projected gradients, when we take P as projection operator. With P a random projection,

taking the expectation in (c.3), we in particular obtain a connection to the Expected Separable

Over-approximation property in the stochastic coordinate descent literature [27].

Lemma c.1. Let J ∈ cpl(X ), and P ∈ L(X ;X ) be self-adjoint and positive semi-de�nite on a Hilbert
space X . Suppose P has a pseudo-inverse P† satisfying PP†P = P . Consider the properties:

(i) P-relative Lipschitz continuity of ∇J with factor L:

(c.1) ‖∇J (x) − ∇J (y)‖P ≤ L‖x − y ‖P † (x ,y ∈ X ).

(ii) The P-relative property

(c.2) 〈∇J (x + Ph) − ∇J (x), Ph〉 ≤ L‖h‖2P (x ,h ∈ X ).
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(iii) P-relative smoothness of J with factor L:

(c.3) J (x + Ph) ≤ J (x) + 〈∇J (x), Ph〉 +
L

2

‖h‖2P (x ,h ∈ X ).

(iv) The P-relative property

(c.4) J (y) ≤ J (x) + 〈∇J (y),y − x〉 −
1

2L
‖∇J (x) − ∇J (y)‖2P (x ,h ∈ X ).

(v) P-relative co-coercivity of ∇J with factor L−1:

(c.5) L−1‖∇J (x) − ∇J (y)‖2P ≤ 〈∇J (x) − ∇J (y),x − y〉 (x ,y ∈ X ).

We have (i) =⇒ (ii) ⇐⇒ (iii) =⇒ (iv) =⇒ (v). If P is invertible, all are equivalent.

Proof. (i) =⇒ (ii): Take y = x + Ph and multiply (c.1) by ‖h‖P . Then use Cauchy–Schwarz.

(ii) =⇒ (iii): Using the mean value theorem and (c.2), we compute (c.3):

J (x + Ph) − J (x) − 〈∇J (x), Ph〉 =

∫
1

0

〈∇J (x + tPh), Ph〉 dt − 〈∇J (x), Ph〉

=

∫
1

0

〈∇J (x + tPh) − ∇J (x), Ph〉 dt ≤

∫
1

0

t dt · L‖h‖2P =
L

2

‖h‖2P .

(iii) =⇒ (ii): Add together (c.3) for x = x ′ and x = x ′ + Ph.

(iii) =⇒ (iv): Adding −〈∇J (y),x + Ph〉 on both sides of (c.3), we get

J (x + Ph) − 〈∇J (y),x + Ph〉 ≤ J (x) − 〈∇J (y),x〉 + 〈∇J (x) − ∇J (y), Ph〉 +
L

2

‖h‖2P .

The left hand side is minimised with respect to x by taking x = y −Ph. Taking on the right-hand

side h = L−1(∇J (y) − ∇J (x)) therefore gives (c.4).

(iv) =⇒ (v): Summing the estimate (c.4) with the same estimate with x and y exchanged,

we obtain (c.5).

(v) =⇒ (i) when P is invertible: Cauchy–Schwarz. �
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