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Abstract

In recent years there has been significant developments in the reconstruction of magnetic resonance
velocity images from sub-sampled k-space data. While showing a strong improvement in reconstruction
quality compared to classical approaches, the vast number of different methods, and the challenges in setting
them up, often leaves the user with the difficult task of choosing the correct approach, or more importantly,
not selecting a poor approach. In this paper, we survey variational approaches for the reconstruction of
phase-encoded magnetic resonance velocity images from sub-sampled k-space data. We are particularly
interested in regularisers that correctly treat both smooth and geometric features of the image. These
features are common to velocity imaging, where the flow field will be smooth but interfaces between the
fluid and surrounding material will be sharp, but are challenging to represent sparsely. As an example
we demonstrate the variational approaches on velocity imaging of water flowing through a packed bed of
solid particles. We evaluate Wavelet regularisation against Total Variation and the relatively recent second
order Total Generalised Variation regularisation. We combine these regularisation schemes with a contrast
enhancement approach called Bregman iteration. We verify for a variety of sampling patterns that Morozov’s
discrepancy principle provides a good criterion for stopping the iterations. Therefore, given only the noise
level, we present a robust guideline for setting up a variational reconstruction scheme for MR velocity
imaging.

1 Introduction

Phase-encoded Magnetic Resonance (MR) velocity imaging is used widely. In medical imaging, it is used
to study the distribution and variation in flow in blood vessels and around the heart to both diagnose and
understand congenital heart disease and the behaviour of heart valves [1]. In the physical sciences, MR velocity
imaging has been used to study the rheology of complex fluids [2], liquids and gases flowing through packed
beds [3, 4, 5], granular flows [6, 7] and multiphase turbulence [8]. The main advantage of MR for studying flow
is that it is possible to non-invasively image systems without the use of a tracer. However, a major drawback
of the technique, in both medical and non-medical applications, is the acquisition time of the measurement.
In the medical field, long acquisition times (∼min) necessitate breath hold or triggered acquisition techniques
that, although impressive, are susceptible to artefacts and may be impractical in certain cases. In non-medical
applications, long acquisition times require very stable systems and can prohibit the study of certain features,
e.g. fine vortices in turbulent flow. To overcome these limitations many studies have explored methods to
increase the temporal resolution of velocity-encoded imaging (e.g. [9, 10, 11]). These “ultra-fast” (< 1 s imaging
time) techniques have all been demonstrated to provide a substantial improvement in the temporal resolution.
However, despite these advances, each has limitations in terms of the systems that can be studied and the
trade-off between spatial and temporal resolution. Therefore, based on the theory of compressed sensing (CS)
[12, 13, 14] there has recently been increasing interest in introducing image reconstruction techniques that
exploit prior knowledge of the signal [5, 8, 15, 16, 17].

The image reconstruction problem for phase-encoded MR velocity imaging is modelled as follows. Let
Ω := {1, . . . , n1} × {1, . . . , n2} be our discrete image domain. In velocity-encoded MRI as described in [5] the
goal is to recover the phase of a complex signal u ∈ CΩ that is related to the k-space measurements via

SFu+ ν = f . (1)

Here, f ∈ Cm denotes the noisy subsampled k-space measurements with m � n1n2. The noise ν ∈ Cm
is assumed to be normal-distributed with deviation σ and mean zero. The linear operator F : CΩ → CΩ
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represents the discrete two-dimensional Fourier transform and S : CΩ → Cm the sampling pattern. It maps the
full two-dimensional k-space data Fu to the m-dimensional vector f consisting of the samples present in the
considered sampling pattern.

The problem (1) is ill-posed due to noise and sub-sampling. A naive approach to find a solution of (1) is to
compute its least-squares solution, i.e.

uz = F−1ST f , (2)

which simply aims at filling missing k-space entries with zero. Throughout this work we will refer to this
solution as backprojection (BP). However, this solution is dominated by noise and sub-sampling artefacts, since
no regularity is imposed on the solution. We therefore seek to find approximate solutions u to (1) by a variational
regularisation approach. Such an approach consists of balancing between the model (1), and prior assumptions
on the reconstruction u in terms of a regularisation functional J . Namely, we look for approximate solutions uσ
to

uσ ∈ arg min
u

{J(u)} subject to ‖f − SFu‖2 ≤ σ
√
m. (3)

Here ‖v‖2 :=
√∑m

i=1 |v(i)|2 is the standard Euclidean 2-norm. The role of the inequality constraint ‖f −
SFu‖2 ≤ σ is to model (1), where the 2-norm corresponds to our assumption of normally distributed noise with
standard deviation σ. The regularisation term J allows us to incorporate prior information on the reconstruction
uσ, that is essential to counteract the ill-posedness of the problem (1). Typically one either chooses a non-smooth
regulariser, such as Total Variation [18] (TV), if the image to reconstruct contains non-smooth features such as
edges, or a smooth regulariser, such as a Daubechies wavelet transform, if the intensities in the object change
smoothly. However, it is challenging to find a regulariser that is suitable for images that contain both smooth
and non-smooth variations in intensity. Therefore, in order to overcome deficiencies in first-order approaches
like TV, we also consider higher-order approaches, in particular second-order Total Generalised Variation [19],
J = TGV2, for which an example reconstruction is provided in Figure 1.

It can be shown through a Lagrange multiplier approach [20, VII], see also [21, Chapter 5], that for σ larger
than the realised noise level, there exists a parameter α > 0 such that uσ is equivalent to a signal uα that is the
minimiser of the Tikhonov regularisation approach

uα ∈ arg min
u

{
1

2
‖f − SFu‖22 + αJ(u)

}
. (4)

The parameter α > 0 is a positive regularisation parameter that weights the influence of the fidelity and the
regularisation term.

Approaches within the scheme (4) have been shown to be powerful but there are challenges associated with
the introduction of the adjustable ”regularisation” parameter α and choice of prior knowledge. In this article
we examine these challenges and present an approach to objectively determine the regularisation parameter.
Further, solutions of (4) (and therefore also of (3)) suffer from a loss of contrast, see for instance [22, 23]. An
approach to overcome this systematic bias is to replace the regulariser in (4) by its corresponding generalised
Bregman distance [24, 25]. This modification, known as Bregman iteration, has been proposed in [26] and shown
to significantly improve the signal contrast without accumulating the noise in the case of one-homogeneous
regularisers. However, in order to ensure Bregman iteration to be a regularisation method, the iteration needs
to be stopped with a suitable stopping criterion. In accordance with (3) a suitable stopping criterion is Morozov’s
discrepancy principle [27].

One of the main goals of this article is to demonstrate that the use of Bregman iteration in combination
with the discrepancy principle will help to overcome contrast loss and facilitate robust choice of the unknown
ideal regularisation parameter α. Moreover, we demonstrate that higher-order regularisation in the form of
J = TGV2 significantly outperforms first-order regularisation. We believe this is the first report of combining
Bregman iteration and higher-order regularisation in the context of sub-sampled MRI reconstructions, though
the combination has been investigated recently in a denoising application [28].

The paper is organised as follows. First in Section 2 we introduce our variational reconstruction approach
in more detail. We provide a detailed discusssion of different choices of the regularisation functional J , as well
as the Bregman iteration. We also introduce the sampling schemes used in our numerical work that will be
presented in Section 3, in which we do compare the different approaches on a computer-generated data set, as
well as a real data set. The paper is concluded with an outlook and summary in Section 4.

2 Methods

As discussed in the introduction, our goal in this paper is to find approximate solutions to (1) by solving the
variational scheme (4) for uα, and to compare the solutions for different regularisation functionals J . First,
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(a) Original (b) BP (c) TGV2

Figure 1: Example reconstruction of a sub-sampled signal to demonstrate the impact of regularisation on the
reconstruction. The two images on the left show the ground truth magnitude and phase image of a computer-
generated velocity encoded dataset. The two images in the middle show the backprojection of the corresponding
noisy, sub-sampled k-space data, while the two images on the right show a regularised reconstruction (4) of the
same data with J = TGV.

in Section 2.1, we are going to recall three popular choices for J . The choices that we consider for J are,
more specifically, the Daubechies-3 wavelet, total variation, and the relatively new total generalised variation.
Afterwards, in Section 2.2, we are going to discuss different sampling strategies and will discuss reasons to
favour some schemes over others. We then introduce in Section 2.3 a strategy called Bregman iteration which
is used to enhance the contrast in solutions of (4). In Section 2.4, we introduce the discrepancy principle for
stopping the Bregman iterations and the measures of image quality used. Finally, we conclude the description of
methodology in Section 2.5 with a discussion of the advantages and disadvantages of the different regularisers.

2.1 Regularisation Methods

We now introduce our choices for J , starting with wavelets and then moving on to first- and higher-order total
variation schemes. The drawbacks and benefits of each of the schemes will be discussed in detail in Section 2.5.

Wavelets One standard regularisation approach for CS-MRI reconstructions is to penalise the 1-norm of the
wavelet-transformed signals (cf. [29]). That is, we take

J(u) = WAV(u) = ‖Wu‖1.

We recall that the 1-norm ‖v‖1 is defined by ‖v‖1 =
∑

(i,j)∈Ω |v(i, j)|. The operator W : CΩ → CΩ represents
a discrete wavelet transform. With this choice of regulariser one forces the reconstruction uα to be sparse
in the wavelet domain. The rationale for this approach is that many signals are “compressible” in the sense
that they are (almost) sparse in a suitable wavelet domain. In the present work we concentrate for W on the
two-dimensional six-level Daubechies-3 wavelet transform (cf. [30]). The variational scheme (4) with J = WAV
may then be written as

uα ∈ arg min
u

{
1

2
‖f − SFu‖22 + αWAV(u)

}
. (5)

Total Variation Total variation regularisation, i.e., the 1-norm penalty on a discrete finite difference approx-
imation of the two-dimensional gradient ∇ : CΩ → (C2)Ω with zero Neumann boundary conditions, that is
∇u(i, j) = (∇1u(i, j),∇2u(i, j))T , with

∇1u(i, j) =

{
u(i+ 1, j)− u(i, j) if i < n1

0 if i = n1,

∇2u(i, j) =

{
u(i, j + 1)− u(i, j) if j < n2

0 if j = n2,
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for i = 1, . . . , n1 and j = 1, . . . , n2. Then the discrete total variation functional is given by

J(u) = TV(u) = ‖∇u‖2,1.

This constitutes a popular regularisation functional in image processing due to its edge-preserving properties
(note that we fill up ∇ with zero rows so that the number of pixels is not decreased). Here, ‖∇u‖2,1 is defined
as

‖∇u‖2,1 =
∑

(i,j)∈Ω

√
|∇1u(i, j)|2 + |∇2u(i, j)|2,

to obtain isotropic (direction-invariant) total variation regularisation, which is more suitable compared to
anisotropic total variation (as it is used for instance in [14]) when dealing with circular structures as they
appear in the data we are going to analyse in Section 3. The variational scheme (4) with J = TV may then be
written as

uα ∈ arg min
u

{
1

2
‖f − SFu‖22 + αTV(u)

}
. (6)

Total Generalised Variation Simplifying the mathematical intricacies, second-order Total Generalised Vari-
ation [19] may for parameters (β, α) > 0 be written [31, 32] as the “differentiation cascade”

TGV2
(β,α)(u) = min

w
α‖∇u− w‖2,1 + β‖Ew‖F,1. (7)

Here

Ew(i, j) =
1

2

(
∇w(i, j) + (∇w(i, j))T

)
denotes a finite difference approximation of the symmetrised gradient of w = (w1, w2) ∈ (C2)Ω, where∇w(i, j) =
(∇w1(i, j),∇w2(i, j)). Note that ‖∇u − w‖2,1 is defined above, while ‖Ew‖F,1 is defined analogously as∑

(i,j)∈Ω ‖Ew(i, j)‖F,1, with ‖Ew(i, j)‖F,1 =
√∑2

k=1

∑2
`=1 |(Ew(i, j))k,`| being the Frobenius norm of a ma-

trix. If we fix the ratio β/α, the variational scheme (4) with J = TGV2
(β/α,1) may then be written as

uα ∈ arg min
u

{
1

2
‖f − SFu‖22 + αTGV2

(β/α,1)(u)

}
. (8)

From the expression (7) we may observe how TGV2 balances between first and second order features, by splitting
low-cost second order features, as defined by the ratio β/α, into the variable w. This is the crucial advantage
of TGV2 over first-order TV, as we will discuss in further detail in Section 2.5.

2.2 Sampling Schemes

Various different sampling strategies have been proposed in the compressed sensing literature. Compressed sens-
ing theory suggests that data should be sampled randomly throughout k-space [12, 13]. However, conventional
MR images are obtained using frequency encoding in one direction, which means that an entire line in k-space
is obtained from a single excitation. In this type of acquisition, an N -dimensional k-space is only undersampled
in N−1 dimensions. Ultra-fast imaging techniques utilising more complex trajectories are also possible, such as
variable density spiral acquisitions[33]. These potentially enable undersampling in all N dimensions. However,
variable desnity spiral acquisitions require all locations sampled to be connected smoothly and result in long
read-out times, which can be problematic in some heterogeneous systems. We make a choice of eight schemes
for sub-sampling velocity-encoded image data, including two purely random sampling schemes that guarantee
large incoherence, as well as one line and one spiral sampling scheme. Random sampling would correspond to
either pulse sequence implementations such as a purely phase-encoded scheme as might be used on a sample
that would yield a low signal-to-noise ratio, or to the acquisition in the 2nd and 3rd dimensions of a three-
dimensional image. Line sampling would correspond to a conventional two-dimensional imaging technique. The
spiral scheme would be most suitable for very fast imaging (e.g. [8]). We have designed two variants of each of
these schemes; the first variant samples 33% of the entire k-space, while the second variant samples 15%.

We have visualised the variants with 15% coverage of the k-space in Figure 2. For brevity, in the figure and
the rest of this paper, we use the notation N q%

σ for two-dimensional Gaussian sampling with variance 128σ and
q% coverage of the 256× 256 total k-space. The notation Lq%σ stands for one-dimensional Gaussian sampling of
lines with standard deviation 128σ, while Sq% denotes a spiral pattern with q% of k-space frequencies covered.
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(a) N 15%
0.35 (b) N 15%

0.15 (c) L15%
0.15 (d) S15%.

Figure 2: Sub-sampling patterns employed. N q%
σ denotes two-dimensional Gaussian sampling with variance

128σ and q% coverage of the 256 × 256 total space. Lq%σ denotes one-dimensional Gaussian sampling of lines
with variance 128σ, while Sq% denotes a spiral pattern with q% coverage.

2.3 Contrast-Enhancement via Bregman Iteration

It is well known that for one-norm based regularisations as the ones described in Section 2.1 the solutions of
variational schemes like (4) suffer from a loss of contrast (cf. [22, 23]). In order to compensate for this systematic
bias, in [26] the use of the so-called Bregman iteration has been proposed. This procedure is a modification of
(4) where the regulariser J has been replaced by what is called the generalised Bregman distance with respect
to J (cf. [24, 25]).
It has been pointed out in [34] that Bregman iteration is equivalent to solving

u ∈ arg min
u

{J(u)} subject to f = SFu (9)

numerically via a scaled alternating direction method of multipliers (ADMM) of the augmented Lagrangian
formulation of (9). Thus, after appropriate rescaling and substitution of variables, Bregman iteration equals

ukα ∈ arg min
u

{
1

2
‖fk−1 − SFu‖22 + αJ(u)

}
, (10a)

fk = fk−1 + f − SFukα , (10b)

for f0 = f . Hence, instead of solving (4) once for a fixed α we solve a sequence of similar problems but add
back the residual to the data in each iterate. This intuitively explains why the contrast is enhanced. However,
one might argue that by adding back the residual, errors will also accumulate. Remarkably, this is not the case
for one-norm based regularisers, as it has been pointed out in [23, 35] (for appropriately chosen α and k).

2.4 Discrepancy Principle and Image Quality Measures

Discrepancy Principle A significant issue in the application of variational regularisation schemes is the
correct choice of the regularisation parameter α. It depends on both the noise level σ and the sampling scheme
in a non-linear fashion. One standard strategy is Morozov’s discrepancy principle [27]. The idea is to choose as
large α as possible that u = uα satisfies

‖f − SFu‖2 ≤ σ
√
m, (11)

where m is the number of samples. It has been used widely in the inverse problems literature (e.g. [36]),
although often visually satisfactory results can be obtained using alternative stopping criteria; see, e.g., [37].
We will, however, find that the discrepancy principle works very well in our application in combination with the
Bregman iteration. Here the idea, which also goes back to [26], is to choose a significantly large fixed α and stop
iterations (10) as soon as u = ukα satisfies (11). Observe that this involves solving the variational problem (4)
multiple times. However, this additional computational effort allows us to find solutions that can be superior
to solutions of (3). Assume for instance that we want to solve (3) for J(u) = ‖u‖1, f = (1, 0)T , σ = 0 and SF
given in terms of

SF =

(
1√
2

1 0
1√
2

0 1

)
.

Following [23] it can easily be seen that the one-norm minimizing solution u of SFu = f is given by u = (0, 1, 0)T .
On the other hand, u does not fulfil the optimality condition of (4) for any α > 0. It would satisfy it in the
limit α = 0, but due to the ill-posedness of the problem we cannot in practice solve (3) via (4) in that case. In
contrast to that, for the Bregman iteration (10) with 1 > α > 0, we would obtain u1

α = (1−α)u and ulα = u for
l ≥ 2, thus solving (3). Thus, the Bregman iteration-based solution does not suffer loss of contrast. In Section
3.3 we will further support this result using computational simulation of noisy data.
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Image Quality Measures In order to compare the different regularisation functionals J , and to justify the
use of the disrepancy principle for stopping the Bregman iterations, we have to be able to compare the quality of
solutions ukα to the scheme (10) with respect to a ground-truth u. The standard quality measure is the so-called
peak signal-to-noise ratio (PSNR), which is defined with the dynamic range L = maxi |ui| as

PSNR(u, uα) = 10 log10

(
L

‖u− uα‖22/(n1n2)

)
.

The perfect reconstruction would have PSNR =∞.
Another recently proposed measure for assessing the quality of the reconstruction uα is the structural simi-

larity index (SSIM). It is based on computing in a window around every pixel of the image the local structural
similarity measure

LSSIM(u, uα) =
(2µuµuα + C1)(2σuuα + C2)

(µ2
u + µ2

uα + C1)(σ2
u + σ2

uα + C2)
.

Here µu, σ2
u are the mean and variance of u in the local Gaussian window, and σuuα is, likewise, the covariance

between u and uα in the local window. The global SSIM is then computed by averaging the LSSIM estimates
over the whole image; for the exact expression we refer to [38]. In contrast to traditional quality measures like
the PSNR, the SSIM index also assesses the conservation of the structural information of the reconstructed
image, compare [38] for details. Note that the perfect reconstruction would have SSIM value equal to 1.

2.5 Comparison of TV, TGV and WAV

The regularisers presented in Section 2.1 all have different benefits and drawbacks. As a prototype wavelet
basis we choose the six-level Daubechies wavelets. This constitutes an orthonormal transform that allows to
sparsify relatively smooth signals. Moreover, due to the orthonormality, the effort required to implement the
corresponding regulariser is comparably low. However, this wavelet basis might introduce scaling artefacts for
large regularisation parameters, which is a common problem within the class of complete wavelet bases (cf.
[39, page 229]). This may be due to the commitment of the so-called wavelet crime [39, page 232]; however,
discussing effective pre-filtering of our signal to avoid the wavelet-crime is beyond the scope of this paper.
Moreover, the Daubechies wavelet basis is not capable of recovering sharp transitions like edges. This is often
desirable in imaging applications, including the present application of a packed bed of solid particles.

Some of the drawbacks of the Daubechies wavelet basis could be overcome by the use of another basis, such
as the Haar basis, which is capable of recovering edges, to an extent. A drawback is that it does not preserve
smooth parts of the signal. In this way the Haar basis is similar to Total Variation (TV). In theory and in
practice TV however has advantages over the Haar wavelet. This is why we have chosen it as the representative
first-order non-smooth regulariser.

Total Variation however suffers from the stair-casing effect. It promotes sparsity of the gradient, which
results in flat areas with sharp transitions in the reconstruction. In order to overcome this problem, higher-
order approaches have been recently proposed. These move the sparsity to higher-order gradients, while still
preserving edges and other non-smooth features. The earliest work in this category is to our knowledge [40].
Total Generalised Variation, as defined above, is a more recent and sophisticated approach that has experimental
and theoretical advantages over approaches proposed earlier; compare, e.g., [41, 42, 43]. It does, however, have
the drawback of causing flat regions to slant. This will also be observed around the solid particles in our
magnitude reconstructions below.

3 Results

To test the regularisation functions and optimisation procedures with a noise-free data set, a velocity map
was obtained from a lattice-Boltzmann (LB) simulation of water flowing through a 39 mm diameter column
that was randomly packed with 3 mm diameter spheres. The geometry for the simulation was derived from a
three-dimensional spin-echo MR image of the bed that was obtained at a resolution of 164 µm × 164 µm × 164
µm. This data set was converted to a binary image and used as input to the LB simulation. The LB method
models the hydrodynamics of a fluid on a mesoscopic scale, where fluid kinetics are described by probability
distribution functions of the location of particles. The LB code used has been described and validated previously
[44, 45]. The time step for the simulations was 4.5 × 10−3 s, such that the dimensionless relaxation was 1,
which optimises the simulation accuracy and stability [45]. The velocity map resulting from the LB simulation
was converted to a phase-encoded image suitable for testing the CS algorithm by selecting a single axial (z)
slice from the centre of the image. This velocity image was converted to a phase map by assuming that the
maximum velocity in the image corresponded to a phase shift of 1.8π radians, thus ensuring that the total range
of velocities was less than 2π radians. The phase map and the binary signal intensity map were then converted
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Figure 3: The computer-generated test data, magnitude on the left and phase on the right. The rectangles
indicate the detail on which we concentrate our attention on.

to a complex image, thus giving real and imaginary intensity data. The data are discretised on a grid of size
256× 256× 256.

Out of this 3D data set, we extract slice 100 in the z direction. This is displayed in Figure 3, where we also
indicate a detail on which we concentrate our attention in the later figures containing computational results.
We add normal-distributed noise to the computer-generated 2D image constructed this way. This is done for
two different noise levels, the “low-noise case” with pointwise standard deviation σ = 0.2 and the “high-noise
case” with σ = 0.5. We then sub-sample the noisy image using all the sampling patterns described in Section
2.2. For this data set, Ω = {1, . . . , n}2 with n = 256.

We begin by describing how we have obtained our computational results in Section 3.1. We then move
on to analysing these results. First, in Section 3.2, we study the effect of the different sampling schemes
on the reconstruction quality. Then, in Section 3.3 we verify the contrast-enhancing effect of the Bregman
iteration for our application. We are then going to focus on justifying the use of the discrepancy principle as a
stopping criterion in Section 3.4. To conclude our analysis on the computer-generated data set, we compare the
reconstruction quality of the different regularisers in Section 3.5. We want to emphasise that we claim validity
of all our conclusions only for the particular data set described above. However, we believe that our results are a
good indicator of the overall performance of the considered approaches, working as a guideline for the selection
of regularisation methods and sampling patterns for velocity-encoded MRI imaging. To support this claim, we
finish our comparative evaluation in Section 3.6 by applying the methods on a real data set.

3.1 Regularisation Methods

We are now going to describe the details of the computational realisation of each of the variational regularisation
approaches, whose application to MRI phase recovery we evaluate. As we recall, these approaches are Breg-
manised regularisation by Daubechies wavelets, total variation, and second-order total generalised variation.
For each of these approaches, we consider a range of regularisation parameters and fix the maximum number
of Bregman iterations. Moreover, for each approach we pick a numerical method for the approximate solution
of the corresponding minimisation problem in each Bregman iteration.

Computational Realisation for WAV We compute (10) with J = WAV for 100 values of α from the interval
[0.1, 10] with equidistant spacing 0.1. The Daubechies wavelet transformation is calculated with WaveLab [46].
We perform 20 Bregman iterations for each α. The computations are done by solving each iterate of (10) via
ADMM applied to the augmented Lagrangian formulation of (4), see for instance [47]. With a slightly different
scaling this is also know as the split Bregman method [48]. We choose the additional stepsize parameter of
the ADMM method according to a heuristic rule presented in [49]. For each α, the computation for the first
Bregman iterate is initialised with the least squares solution F−1ST f , also known as the backprojection or zero-
filling solution. The computations for all subsequent Bregman iterates are initialised with the previous Bregman
iterate. Computations are stopped as soon as two subsequent ADMM iterates satisfy ‖uj−uj−1‖2/‖uj‖2 ≤ 10−4.
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Computational Realisation for TV and TGV2 For the numerical solution of (10) with J = TV and
J = TGV2, we perform the computations for

α ∈ {0.05, 0.075, 0.1, 0.2, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 4, 5}

and, for TGV2, the second-order parameter

β ∈ {1, 1.1, 2, 10}α.

We use the formulation (10a)–(10b) of the Bregman iterative scheme. For the solution of (10a) we write it in
saddle-point form and use the Chambolle-Pock primal-dual hybrid gradient method (PDHGM) [50]. Details of
our implementation of the method and parameter choice are described in [43, 51, 52].

In each Bregman iteration, we perform a maximum of 10000 iterations of the Chambolle-Pock algorithm,
stopping earlier if the fractional pseudo-duality gap, described in detail in [43], is less than 0.1% of the fractional
pseudo-duality gap for a zero initialisation. We use this zero initialisation of the Chambolle-Pock algorithm for
the first Bregman step, k = 0. As in the wavelet case, for the subsequent steps, k ≥ 1, we initialise the method
with the results of the previous Bregman step. Experiments suggest that this provides faster convergence than
zero initialisation.

We want to point out that the use of different computational methods (ADMM versus PDHGM) for the
different regularisers does not affect the results. Moreover, the Chambolle-Pock method can be seen as a precon-
ditioned ADMM [53]. Both methods applied to (10a) yield the same results up to computational precision for
the same choice of J and α. The use of differing methods is based on the availability of existing implementations
for the different regularisation functionals.

3.2 Sampling Schemes

For evaluating the quality of reconstruction for the different sampling schemes from Section 2.2, we employ
the two error measures, PSNR and SSIM, introduced in Section 2.4. We report the value of the chosen error
measure (SSIM or PSNR of phase or magnitude) at both the optimal Bregman iterate and at the iterate where
the discrepancy principle is violated. The numerical values are presented in Tables 1–4 for all of the variational
approaches and the backprojection, explained in Section 3.1. For J = TV,TGV2 we use α = 1.6 and for
J = WAV we use α = 6. These choices will be justified in Section 3.4, as we study the performance of the
discrepancy principle. Note that we have decided not to include values for the 15% line sampling strategy, as it
did not perform well in practice.

Studying Tables 1–4, we observe that the 33% line sampling scheme L33%
0.35 and the widely spread 15%

normal-distributed scheme N 15%
0.35 perform worse than the other sampling strategies. For the latter, this might

be expected as we miss too much of the centre of k-space. For the former, the samples are too coherent in one
direction of k-space, while missing the other. In fact, several 15% schemes perform better than L33%

0.35, although
less of k-space is sampled. As a consequence, we are going to eliminate these two poorly-performing schemes
from further consideration.

Our second observation is that the sample count to quality ratio of N 15%
0.15 is clearly the best. Overall N 33%

0.15

provides slightly better performance, but at the cost of significantly more samples.
Based on the above observations, and for the sake of conciseness, we mainly focus on just two sampling

patterns in the remainder of this comparative analysis. As the first sampling pattern we pick N 15%
0.15 that we

have observed to provide the best sample count to quality ratio. We were unable to detect significant differences
in performance within the 33% sampling patterns, with the exception of line sampling. As spiral patterns are
in practise widely used for velocity-encoded MRI, we pick S33% as our second pattern of choice.

3.3 Contrast-Enhancement via Bregman Iteration

As described in Section 2.3, we employ Bregman iterations in order to correct for the inevitable loss of contrast,
characteristic of quadratic fidelity terms. That is, we compute solutions to (10) rather than (4). To visualise
the improvement of contrast, in Figure 4 we compare a solution u2 of (10), which has been stopped via (11),
to a solution u1 of (4). We want to emphasize that in order to guarantee an absolute fair comparison, we have
computed u1 such that ‖f −SFu1‖2 = ‖f −SFu2‖2 = σ̃ ≤ σ, instead of ‖f −SFu1‖2 = σ. Note that in order
to do so, we need to pick an optimal regularisation α parameter to guarantee this discrepancy, which can be
computationally as complex as performing several Bregman iteration steps.

It can be observed that the contrast of the Bregman iteration-based reconstruction is better than the
Tikhonov-based reconstruction, in particular by looking at the line profile in Figure 4b. This is due to the
fact that the TV value of the Bregman iteration-based reconstruction is TV(u2) = 27.96, while the TV value
of the Tikhonov-based reconstruction is TV(u1) = 25.03, though both reconstructions have exactly the same
discrepancy with respect to the noisy measurement data. By allowing for larger values of the regularisation func-
tional, Bregman iteration realises contrast-enhanced reconstructions compared to solutions of (3) for identical
σ. Further, according to [23] this holds true for all the regularisers considered in this work.
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Table 1: PSNR values of the complex signal magnitude for various sampling patterns: optimal value over
Bregman iterations (OV), and value at violation of disrepancy principle (DV). For J = TV,TGV2 we use
parameter α = 1.6 and for J = WAV we use α = 6.

Method
Crite-
rion

N 33%
0.35 N 15%

0.35 N 33%
0.15 N 15%

0.15 S33% S15% L33%
0.35

BP 18.9 15.7 20.4 20.3 19.4 17.8 16.0
WAV OV 19.8 15.9 20.4 19.6 19.5 17.3 15.9
WAV DV 19.6 15.9 20.3 19.6 19.5 17.3 15.9
TV OV 23.7 19.1 24.1 22.2 23.3 20.6 20.2
TV DV 23.7 19.0 24.0 22.1 23.1 20.4 20.0

TGV2 OV 23.4 15.8 24.0 21.5 22.8 19.4 18.6
TGV2 DV 23.2 14.4 23.7 21.1 22.2 19.1 18.0

Table 2: PSNR values of the complex signal phase for various sampling patterns: optimal value over Bregman
iterations (OV), and value at violation of disrepancy principle (DV). For J = TV,TGV2 we use parameter
α = 1.6 and for J = WAV we use α = 6.

Method
Crite-
rion

N 33%
0.35 N 15%

0.35 N 33%
0.15 N 15%

0.15 S33% S15% L33%
0.35

BP 29.3 24.7 31.8 31.5 29.7 26.8 24.6
WAV OV 29.2 23.5 30.4 29.3 28.7 25.4 23.2
WAV DV 29.1 23.5 30.4 29.2 28.7 25.3 23.2
TV OV 31.4 26.7 32.2 31.1 31.0 28.0 27.1
TV DV 30.3 26.2 30.4 30.1 30.0 27.5 26.5

TGV2 OV 31.4 22.6 32.4 31.3 30.9 27.5 26.0
TGV2 DV 31.1 20.4 31.6 30.8 30.5 27.5 24.7

Table 3: SSIM values of the complex signal magnitude for various sampling patterns: optimal value over
Bregman iterations (OV), and value at violation of disrepancy principle (DV). For J = TV,TGV2 we use
parameter α = 1.6 and for J = WAV we use α = 6.

Method
Crite-
rion

N 33%
0.35 N 15%

0.35 N 33%
0.15 N 15%

0.15 S33% S15% L33%
0.35

BP 0.436 0.288 0.475 0.461 0.440 0.347 0.312
WAV OV 0.457 0.268 0.514 0.475 0.454 0.312 0.281
WAV DV 0.439 0.266 0.483 0.470 0.432 0.312 0.279
TV OV 0.754 0.448 0.773 0.720 0.746 0.585 0.569
TV DV 0.747 0.447 0.773 0.717 0.730 0.559 0.563

TGV2 OV 0.616 0.279 0.665 0.544 0.586 0.433 0.443
TGV2 DV 0.616 0.268 0.665 0.541 0.584 0.409 0.436

Table 4: SSIM values of the complex signal phase for various sampling patterns: optimal value over Bregman
iterations (OV), and value at violation of disrepancy principle (DV). For J = TV,TGV2 we use parameter
α = 1.6 and for J = WAV we use α = 6.

Method
Crite-
rion

N 33%
0.35 N 15%

0.35 N 33%
0.15 N 15%

0.15 S33% S15% L33%
0.35

BP 0.906 0.806 0.947 0.948 0.917 0.858 0.807
WAV OV 0.914 0.771 0.937 0.923 0.910 0.823 0.760
WAV DV 0.914 0.768 0.937 0.921 0.909 0.823 0.769
TV OV 0.946 0.865 0.955 0.947 0.942 0.894 0.873
TV DV 0.936 0.851 0.937 0.936 0.931 0.886 0.861

TGV2 OV 0.947 0.755 0.959 0.951 0.942 0.886 0.847
TGV2 DV 0.945 0.674 0.953 0.948 0.941 0.886 0.816
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Bregman Reconstruction
Tikhonov Reconstruction

(b) Line profile

(c) Tikhonov reconstruction (d) Bregman iteration based reconstruction

Figure 4: Difference between a solution u1 of (3) and u2 of (10), for J(u) = TV(u) and the spiral sampling
pattern S15%. We denote the value of ‖f−SFu2‖2 by σ̃ and choose α such that ‖f−SFu1‖2 = ‖f−SFu2‖2 = σ̃.
Figure 4a shows the magnitude of the ground truth described in Section 3, and a horizontal line at pixel 76
indicating the profile that is being visualised in Figure 4b. Figure 4c and Figure 4d show the magnitude of u1

and u2, respectively. It is clearly visible from the line profile, but also from the magnitude images, that the
contrast of the Bregman iterated reconstruction is better preserved when compared to the ground truth.
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Figure 5: A plot of α(σ) against the noiselevels σ = ‖SFuα − yσ‖2. Here, uα is the solution of (4) for input
data yσ = y + nσ, with nσ being normal-distributed with zero mean and standard deviation σ. The clean data
y is produced via y = SFu, where u is the velocity phantom described above, and S is the sampling operator
derived from either S33% (blue line) or S15% (red line).

What remains is to further quantify the choice of the regularisation parameter α. In the absence of noise
we want to point out that the amount of samples basically affects the scales of features that can be recovered,
but does not seem to affect the scaling of the regularisation parameter (unless we miss the centre frequency y0).
That is due to the fact that sub-sampling only alters the number of k-space elements, but not their scaling.
However, if we change either mean (and therefore the scaling) or the number of grid points of the image, this
clearly affects the scaling of the data in k-space. For the normalized discrete Fourier-transform that satisfies
F∗F = I the centre k-space frequency equals

y0 =
1

√
n1n2

n1∑
i=1

n2∑
j=1

ui,j =
√
n1n2mean(u) .

Thus, either rescaling u by a factor c or by regriding u with a factor of c (leading to a multiplication of the
product n1n2 with c2) yields to a scaling cy in k-space, and therefore requires a rescaling of α by the same
factor in order to obtain the similar results. Thus, if we have a reference choice α̂ for the Bregman iteration for
a given k-space centre frequency ŷ0 and number of pixels n̂1n̂2, we can basically rescale α̂ for a k-space centre
frequency ỹ0, and number of pixels ñ1ñ2 via

α̃ =

√
ñ1ñ2

n̂1n̂2

|ỹ0|
|ŷ0|

α̂ . (12)

The scale of the magnitude image of the simulated data described in this section is [0, 1], whereas the mean of
the absolute image is about 0.316. In order to obtain similar results on any other dataset as in this paper, the
data should be scaled accordingly.

However, in the presence of noise it can be observed that the number of samples m affects the scaling of the
regularization parameter. For instance, for the spiral sampling schemes S33% and S15% we observe a behaviour
as described in Figure 5. The plot in this figure shows the regularization parameters α that correspond to values
σ = ‖SFuα − y‖2. There is a linear relation between the choice of α and the values of σ, but we also discover
that the slope of these linear relations differs for the two sampling schemes S15% and S33%.

Note however, that in order to find a suitable α for the Bregman iteration we basically just to need to make
sure that α is sufficiently large. From Figure 5 we observe that a larger m yields a larger α, and thus, a large
choice of α for a fully sampled reconstruction will work for an under-sampled one as well (at the cost of slightly
more Bregman iterations). Nevertheless, from experimental validation we usually found

α ∼ c‖F−1ST y‖∞ , (13)

to be a good choice to create an over-regularized initial Bregman iterate, with c depending on the scaling of the
regularisation operator in J .

3.4 Discrepancy Principle and Image Quality Measures

We now justify the use of the discrepancy principle to identify the point at which to stop the Bregman iterations.
For the sake of brevity, we concentrate on J = TV, remarking that the observations derived are generally
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comparable for J = TGV2 and J = WAV. As described, we compute the solutions of (10) for a range of
parameters α and iterations k = 1, . . . , 15. This is done for all the sampling patterns with the exception of line
sampling. We plot in Figure 6 and Figure 7, respectively, colour-coded SSIM and PSNR values of α and k.
In this, we follow the visualisation approach employed in [42]. Superimposed over the colour-coded results is
the choice of the Bregman iterate by the discrepancy principle (white line) as well as by the optimal SSIM or
PSNR (dashed black line). We also plot the optimal (dashed line) and discrepancy principle (solid line) SSIM
or PSNR values against α below the colour-coded graph along with the value at the initial iterate (dash-dotted
line).

Our principal observations from the analysis of Figures 6 and 7 are as follows. First of all, the lines indicating,
respectively, the violation of the discrepancy principle and the optimal PSNR or SSIM value, both follow the
same trend. Typically for the magnitude, the two lines are off by just one or two iterates. For PSNR the
violation of the disrepancy principle is reached slightly earlier than the optimal quality measure value, while
for SSIM the situation is reversed. For the phase the picture looks similar for both SSIM and PSNR, with
the disrepancy principle being reached earlier than the optimal quality measure value. Here, in contrast to the
magnitude, a larger number of iterations may be needed after the violation of the disrepancy principle to reach
an optimal result. Nevertheless, the exact difference in value at both of the iterations is small.

We now verify that this difference for the two sampling patterns N 15%
0.15 and S33% is indeed small. The

corresponding reconstructions for S33% and α = 1.5 are plotted in Figure 8. Visually, we in fact prefer the overall
appereance of the reconstructions obtained at the violation of the discrepancy principle. The reconstructions
obtained at optimal SSIM or PSNR value reintroduce more wanted small-scale structures at the cost of unwanted
noise. It is also worth mentioning that it is difficult to find significant differences between the considered sampling
schemes with regard to the performance of the discrepancy principle.

As a short remark on the case J = WAV, we have observed that the agreement between the discrepancy
principle and optimal iterate is even better. This, however, does not imply the superiority of wavelets in terms
of quality of reconstruction. We will discuss this in the next section.

Returning to Figures 6 and 7, we observe that the plots support the view that 1/α behaves as a step size
parameter for the approximate solution of the constrained problem (9). Indeed, larger choices of α correspond
to smaller differences of SSIM and PSNR between subsequent iterates. This leads to the question of how to
choose α initially. Smaller values lead to an earlier violation of the discrepancy principle. However, for such
a choice we may miss an optimal solution, because the accuracy of the iterations is low for small α (i.e., large
step size). The goal is then to choose α such that the correct balance between accuracy and computational cost
(number of iterations) is obtained. Our results indicate that a good choice for the present data set and J = TV
is α = 1.5. As the regularisation parameter is primarily influenced by the domain Ω, the noise level σ, and the
sampling pattern, a similar choice should be reasonable for other problems with similar experimental setup. For
J = TGV2 we find that the same (large) choice of α works as for TV, since the regularisation functionals are
closely related. For J = WAV the parameter α in general lies in a different range, due to the different scale of
the operator. For the present setting we find the choice α = 6 reasonable.

3.5 Comparison of TV, TGV and WAV

We are now going to compare computational results of (10) between J = WAV, J = TV and J = TGV. We
consider two noise levels, σ = 0.2 and σ = 0.5, and the two sampling patterns N 15%

0.15 and S33% that we have
chosen above.

For J = TV and J = TGV2 we use the choice α = 1.5 of the first-order regularisation parameter, that we
have justified above. Moreover, for TGV2 we pick the second order regularisation parameter β = 1.1α = 1.65.
The study of SSIM/PSNR values (from similar plots as Figures 6 and 7 for TV) and visual inspection of
the results indicate that this is a good choice for all the different sampling patterns and methods. It will be
observed to provide improved phase reconstruction in comparison to TV at the cost of some loss in the quality
of magnitude reconstruction. The choice β = 2α would provide results closer to TV in both respects – in
particular with phase reconstruction worse than with the present choice of β = 1.1α, which provides a good
balance between the reconstruction quality of magnitude and phase. This choice of β is in the usual range
[1, 10]α of sensible values for β on Ω = [1, 256]2, cf. [43, 51]. The exact choice depends on the qualities desired
from the solution.

Low-Noise Results For these results we apply additional Gaussian noise of standard deviation σ = 0.2 to the
original noise-free computer-generated data. The quality measures of the results for all methods are displayed in
Table 5 and Table 6, respectively, for the two different sampling patterns. The corresponding reconstructions are
visualised in Figure 9 and Figure 10, respectively. Some of the artefacts that we discuss in the next paragraph
are emphasised as an example with arrows in Figure 9.

Our main observation is that J = TGV2 performs best with regard to the reconstruction of the phase, while
J = TV can be considered to be somewhat better in reconstructing the magnitude. The choice J = WAV
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Figure 6: SSIM of magnitude (ρ, top row) and phase (φ, bottom row) for Bregmanised TV reconstruction of
the computer-generated test data with various sampling patterns and noise σ = 0.2. The parameter α is on the
horizontal and the Bregman iteration on the vertical axis. The colours code the SSIM value, also shown in the
small lower graph. The continuous line corresponds to violation of the discrepancy principle, and the dashed
line to the optimal SSIM. The dash-dotted line in the small graph indicates the SSIM for the first iteration.
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Figure 7: PSNR of magnitude (ρ, top row) and phase (φ, bottom row) for Bregmanised TV reconstruction of
the computer-generated test data with various sampling patterns and noise σ = 0.2. The parameter α is on the
horizontal and the Bregman iteration on the vertical axis. The colours code the PSNR value, also shown in the
small lower graph. The continuous line corresponds to violation of the discrepancy principle, and the dashed
line to the optimal PSNR. The dash-dotted line in the small graph indicates the PSNR for the first iteration.
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(a) Original (b) BP (c) Discrepancy Principle (d) Best PSNR (e) Best SSIM

Figure 8: Optimal reconstructions of (10) with J = TV and α = 1.5 for the sampling pattern S33% in terms
of discrepancy, and SSIM and PSNR of the phase of the complex image.

performs clearly worst in our experiments, introducing significant artefacts. The rationale for the differences
between TV and TGV2 is that the small choice of β in TGV2 allows good reconstruction of the smooth
higher-order features in the phase, while TV, closely corresponding to a large choice of β in TGV2, is good at
reconstructing piecewise-constant functions. This is the situation with the magnitude picture. As indicated in
Figure 9, TGV2 introduces some waviness and slanting in the magnitude, too closely modelling the higher-order
features introduced by noise and sparse sampling. On the other hand, TV tries to approximate the originally
smooth phase by a piecewise constant function, thus exhibiting the well-known stair-casing effect. This prohibits
the reconstruction of small-scale features. TGV2 performs better at reconstructing small-scale features of the
phase, and preserving its smoothness.

High-Noise Results For these results we apply additional Gaussian noise of standard deviation σ = 0.5 to
the original noise-free computer-generated data. The quality measure values of all the methods are displayed
in Table 7 and Table 8 for two different sampling patterns. The corresponding reconstructions are visualised
in Figure 11 and Figure 12, respectively. Our conclusions from observing these results are more or less the
same as in the low noise case. The stair-casing of TV is even more prominent now, as is the over-smoothing of
the magnitude by TGV2. However, the phase reconstruction by TGV2 is not significantly degraded from the
low-noise test case.

Proposed Guideline The analysis presented suggests the following:

1. Pick a regularisation functional J with desirable characteristics.

2. Select parameter α according to (12) and (13), with c chosen according to the scaling of the regulariser,
and to balance between the requirement of efficient computation (small α) and high precision (the larger
α, the better).

3. In the case of TGV2 regularisation, select the 2nd parameter β. The object here is to balance between
the requirement of good recovery of smooth features (β ∼ α), and the recovery of flat areas (β � α). We
stress that these ratios hold for spatial discretisation with step size h = 1, as is the case with ∇ defined
as in Section 2.1, and typical image sizes. In general the ratio between β/α is multiplied by h.

4. Estimate noise level σ for data; ideally it would be known or is obtained with an additional experiment.

5. Iterate (10) until the discrepancy principle (11) is violated.

3.6 Application to Real Data

In the previous sections, we have analysed extensive computations on computer-generated test data. We have
sought to justify the use of the discrepancy principle as a stopping criterion for Bregman iterations, and to find
a good initial regularisation parameter α. Moreover, we have evaluated a range of sampling patterns for the
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(a) Original (b) BP, N 15%
0.15 (c) WAV, N 15%

0.15 (d) TV, N 15%
0.15 (e) TGV2, N 15%

0.15

Figure 9: Results of Bregmanised TV, TGV2, and WAV reconstruction with the discrepancy principle as
stopping criterion, along with the backprojection, of the computer-generated test data with noise σ = 0.2 for
the sampling pattern N 15%

0.15 . The top picture presents the magnitude and the bottom picture the phase. The
arrows in (d) indicate areas where the stair-casing of TV is particularly noticeable. In (e) the arrow points to
the “slanting” of TGV2, noticeable around other pebbles as well. The “blockiness” of WAV is visible overall in
(c).

(a) Original (b) BP, S33% (c) WAV, S33% (d) TV, S33% (e) TGV2, S33%

Figure 10: Results of Bregmanised TV, TGV2, and WAV reconstruction with discrepancy principle as stopping
criterion, along with the backprojection, of the computer-generated test data with noise σ = 0.2 for the sampling
pattern S33%. The top picture presents the magnitude and the bottom picture the phase.
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(a) Original (b) BP, N 15%
0.15 (c) WAV, N 15%

0.15 (d) TV, N 15%
0.15 (e) TGV2, N 15%

0.15

Figure 11: Results of Bregmanised TV, TGV2, and WAV reconstruction with discrepancy principle as stopping
criterion, along with the backprojection, of the computer-generated test data with noise σ = 0.5 for the sampling
pattern N 15%

0.15 . The top picture presents the magnitude and the bottom picture the phase.

(f) Original (g) BP, S33% (h) WAV, S33% (i) TV, S33% (j) TGV2, S33%

Figure 12: Results of Bregmanised TV, TGV2, and WAV reconstruction with discrepancy principle as stopping
criterion, along with the the backprojection, of the computer-generated test data with noise σ = 0.5 for the
sampling pattern S15%. The top picture presents the magnitude and the bottom picture the phase.
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Table 5: SSIM and PSNR values of both magnitude (ρ) and phase (φ) for Bregmanised TV, TGV2 (α = 1.5)
and WAV (α = 6) reconstruction, along with the backprojection, of the computer-generated test data with noise
σ = 0.2, and sampling pattern N 15%

0.15 . Both the discrepancy principle value (DV) and optimal value (OV) by
corresponding SSIM/PSNR are indicated, along with the Bregman iteration number on which this is reached.

Method
Crite-
rion

SSIM(ρ) SSIM(φ) PSNR(ρ) PSNR(φ)
value iter. value iter. value iter. value iter.

BP 0.461 0.948 20.3 31.5
WAV OV 0.475 11 0.923 18 19.6 13 29.3 18
WAV DV 0.470 12 0.921 12 19.6 12 29.2 12
TV OV 0.720 4 0.947 12 22.2 6 31.1 13
TV DV 0.717 5 0.936 5 22.1 5 30.1 5

TGV2 OV 0.544 7 0.951 9 21.5 10 31.3 14
TGV2 DV 0.541 6 0.948 6 21.1 6 30.8 6

Table 6: SSIM and PSNR values of both magnitude (ρ) and phase (φ) for Bregmanised TV, TGV2 (α = 1.5)
and WAV (α = 6) reconstruction, along with the backprojection, of the computer-generated test data with noise
σ = 0.2, and sampling pattern S33%. Both the discrepancy principle value (DV) and optimal value (OV) by
corresponding SSIM/PSNR are indicated, along with the Bregman iteration number on which this is reached.

Method
Crite-
rion

SSIM(ρ) SSIM(φ) PSNR(ρ) PSNR(φ)
value iter. value iter. value iter. value iter.

BP 0.440 0.917 19.4 29.7
WAV OV 0.454 9 0.910 13 19.5 12 28.7 12
WAV DV 0.432 12 0.909 14 19.5 14 28.7 14
TV OV 0.746 4 0.942 8 23.3 6 31.0 9
TV DV 0.730 5 0.931 5 23.1 5 30.0 5

TGV2 OV 0.586 7 0.942 8 22.8 8 30.9 9
TGV2 DV 0.584 6 0.941 6 22.2 6 30.5 6

regularisation functionals J = TV, J = TGV2 and J = WAV. We have concluded that TGV2 performs overall
best for phase reconstruction, and picked two sampling patterns of primary interest. These were the centrally
concentrated 15% normal-distributed sampling patterns N 15%

0.15 , and the 33% spiral S33%.
We now plan to verify our conclusions by applying the methods to a real data set obtained from the

literature [5]. All experiments were performed on a Bruker DMX 200 spectrometer with a vertical 4.7 T
superconducting magnet. The experiments were performed using a 64 mm diameter radiofrequency (r.f.) coil
operating at 199.7 MHz for proton (1H). The magnet was equipped with a three-axis shielded gradient producing
a maximum gradient strength of 0.136 T m−1 in the x, y, and z directions.

Velocity images were acquired of water flowing through a packed bed. The bed used was a cylindrical
column of inner diameter 27 mm, randomly packed with 5 mm diameter glass spheres. The column was of
length 1 m. Deionised water was pumped in a closed circuit by a Verder VG330-10 gear pump and controlled
by a PC-operated Bronkhorst Cori-flow (model M55C4-AAD-11- K-C) mass flow controller; the flow rate of
water was varied from 0 to 60 kg h−1. The T1 relaxation time constant of the water was reduced to 50 ms by
adding gadolinium chloride to the water at a concentration of 0.49 g L−1. Velocity images were obtained using
a spin-echo sequence that was designed to minimise the total echo time [4, 7]. The flow-encoding gradients were
applied for duration δ = 1.19 ms and separated by an observation time (∆) of 3.3 ms. Velocity images were
obtained with a field-of-view of 30 mm × 30 mm at an in-plane resolution of 178 µm × 178 µm with a 1.5 mm
slice thickness. The repetition time of the experiment was 300 ms and a 4 step phase-cycle was used, giving a
total acquisition time of about 7 min. Data were acquired for the full k-space matrix to enable comparison with
a conventional fully sampled acquisition.

The methods are used as a guideline parametrised according to the good choices found above, including the
parameter choice α = 1.5 for J = TV and J = TGV2. This is justified, because the experimental setup of the
real data set matches the computer-generated data in terms of dynamic range, domain Ω = {1, . . . , 256}2, and
roughly the noise level. Regarding the noise level σ, we do not know it exactly in advance. In order to apply
the discrepancy principle, we therefore need to estimate it. We do this by calculating the standard deviation
of the data within the small top-left rectangle {1, . . . , 48}2 of Ω. This rectangle consists of only background, so
we may assume that the noise-free signal should be zero there. This gives σ ≈ 0.45.

The reconstructions are visualised in Figure 14 for N 15%
0.15 .We include the results for J = TV and J = TGV2,
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Table 7: SSIM and PSNR values of both magnitude (ρ) and phase (φ) for Bregmanised TV, TGV2 and
WAVreconstruction, along with the backprojection, of the computer-generated test data with noise σ = 0.5, and
sampling pattern N 15%

0.15 . Both the discrepancy principle value (DV) and optimal value (OV) by corresponding
SSIM/PSNR are indicated, along with the Bregman iteration number on which this is reached.

Method
Crite-
rion

SSIM(ρ) SSIM(φ) PSNR(ρ) PSNR(φ)
value iter. value iter. value iter. value iter.

BP 0.350 0.837 16.6 26.3
WAV OV 0.329 5 0.824 5 17.2 5 25.0 5
WAV DV 0.321 6 0.822 6 17.0 6 24.9 6
TV OV 0.533 2 0.867 3 19.6 3 27.0 4
TV DV 0.488 3 0.867 3 19.6 3 26.9 3

TGV2 OV 0.393 4 0.886 3 18.6 3 27.6 3
TGV2 DV 0.385 3 0.886 3 18.6 3 27.6 3

Table 8: SSIM and PSNR values of both magnitude (ρ) and phase (φ) for Bregmanised TV, TGV2 and
WAVreconstruction, along with the backprojection, of the computer-generated test data with noise σ = 0.5,
and sampling pattern S33%. Both the discrepancy principle value (DV) and optimal value (OV) by corresponding
SSIM/PSNR are indicated, along with the Bregman iteration number on which this is reached.

Method
Crite-
rion

SSIM(ρ) SSIM(φ) PSNR(ρ) PSNR(φ)
value iter. value iter. value iter. value iter.

BP 0.289 0.759 14.4 23.6
WAV OV 0.314 5 0.817 5 17.1 5 24.7 5
WAV DV 0.308 6 0.808 6 16.7 6 24.5 6
TV OV 0.516 2 0.857 3 19.5 3 26.5 3
TV DV 0.475 3 0.857 3 19.5 3 26.5 3

TGV2 OV 0.399 4 0.880 3 18.6 3 27.3 3
TGV2 DV 0.389 3 0.880 3 18.6 3 27.3 3
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Figure 13: Magnitude (left) and phase (right) of one frame of the real data set. The square marks the region
displayed in the computational results of Figure 14.

18



but exclude J = WAV due to unsatisfactory performance. We have no quality measures to report, since we do
not have a ground-truth to compare against. Our analysis of the results is therefore entirely visual. As can
be observed, the performance of the methods is very good indeed, for both TV and especially TGV2. Some
stair-casing artefacts can be observed with J = TV, but this is minor, and avoided by J = TGV2. Moreover,
the reconstruction of edges of the magnitude image, and the smoothness of the phase image is good for TGV2.
Further, not only TV, but also TGV2 manages to perform a flat reconstruction of the background (blue),
where there is mainly noise in the signal. In regions of the image that contain signal, the magnitude will vary
owing to partial volume effects and attenuation of the signal in regions of high shear. The TV and TGV2

reconstructions both yield high quality reconstructions of the magnitude, although there is some evidence of
unrealistic stair-casing artefacts in the TV reconstruction.

4 Conclusion

In this paper, by analysing computations on computer-generated test data, we have derived a guideline for the
reconstruction of sub-sampled MRI phase data. Our approach promotes sparsity of the reconstruction through
a regularisation functional, as well as contrast enhancement through an iterative reconstruction approach called
the Bregman iteration. We have verified our approach by application of the guideline to a real data set whose
experimental setup matches the computer-generated data in the essential parameters: domain, sampling pat-
terns, dynamic range, and noise level. These data parametrise the guideline, primarily the choice of the initial
parameter α.

Considering sampling schemes, our findings verify existing literature. The scheme should be a good mixture
of incoherent samples covering the most important parts of the k-space (which tends to be the centre). In the
present application, out of the schemes considered, a widely dispersed Gaussian pattern and a spiral satisfy
these requirements. Line sampling, as was used in earlier works, performs relatively poorly.

With regard to the different regularisers evaluated, we can say that Daubechies-3 wavelets perform unsat-
isfactorily for the low resolutions inherent in our application area. Total variation (TV) performs reasonably,
but suffers from stair-casing artefacts, which is in the nature of the TV model. Second-order Total Generalised
Variation (TGV2) significantly improves upon TV in the phase reconstruction that we are interested in; in
case of the computer-generated test data, better magnitude reconstruction cannot be expected, as the original
data set is piecewise constant. This is where TV performs the best. Best reconstruction for this data set with
the regularisers discussed in this paper should be achieviable with split TV regularisation of the magnitude
and TGV2 regularisation of the phase. In our real data experiment also the magnitude is smooth aside from
discontinuities arising from solid particles. TGV2 arguably offers overall best performance, providing a good
compromise between sharp boundaries and smoothness.

Finally, we can attest that Bregman iteration combined with the Morozov discrepancy principle as a stopping
criterion provides a good strategy in the absence of knowledge of ground truth. Knowing only the noise level, it
gives good quality reconstruction with much better preservation of contrast than with standard Tikhonov-type
reconstruction.
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(a) Original (b) BP, N 15%
0.15 (c) TV, N 15%

0.15 (d) TGV2, N 15%
0.15

Figure 14: Results of Bregmanised TV and TGV2 reconstruction with discrepancy principle as the stopping
criterion, along with the backprojection, of the real measurement data for the sampling pattern N 15%

0.15 . The top
picture presents the magnitude and the bottom picture the phase.

(e) Original (f) BP, N 15%
0.15 (g) TV, N 15%

0.15 (h) TGV2, N 15%
0.15
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Figure 15: Unwrapped velocity phase difference φ1−φ2 based on the phase φ1 in Figure 14 and corresponding
phase φ2 for a second measurement.
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