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Abstract The primal–dual hybrid gradient method (PDHGM, also known as the Chambolle–

Pock method) has proved very successful for convex optimization problems involving linear

operators arising in image processing and inverse problems. In this paper, we analyze an

extension to nonconvex problems that arise if the operator is nonlinear. Based on the

idea of testing, we derive new step length parameter conditions for the convergence in

in�nite-dimensional Hilbert spaces and provide acceleration rules for suitably (locally

and/or partially) monotone problems. Importantly, we prove linear convergence rates as

well as global convergence in certain cases. We demonstrate the e�cacy of these step length

rules for PDE-constrained optimization problems.

1 introduction

Many optimization problems can be represented as minimizing a sum of two terms of the form

(P) min

G
� (G) + � ( (G))

for some (extended) real-valued functionals � and � and a (possibly nonlinear) operator  . For

instance, in inverse problems,� will typically be a �delity term, measuring �t to data, and � ◦ 
is a regularization term introduced to avoid ill-posedness and promote desired features in the

solution. In imaging problems in particular, quite often total variation type regularization is used,

in which case  is composed of di�erential operators [1, 5, 8]. In optimal control,  frequently

denotes the solution operator to partial or ordinary di�erential equations as a function of the

control input. In this case � and � stand for control- and state-dependent contributions to the

cost function, respectively. The function � might also account for state constraints [11].
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Since the above applications usually involve high and possibly in�nite-dimensional spaces,

�rst-order numerical methods can provide the best trade-o� between precision and computation

time. This, however, depends on the exact formulation of the problem and the speci�c algorithm

used. Nonsmooth �rst-order methods roughly divide into two classes: ones based on explicit

subgradients, and ones based on proximal maps as introduced in [19]. The former can exhibit

very slow convergence, while taking a step in the latter is often tantamount to solving the

original problem. As both � and � are often convex, introducing a dual variable H and the

convex conjugate � ∗ of � , we can rewrite (P) as

(S) min

G
max

H
� (G) + 〈 (G), H〉 − � ∗(H) .

Now, if we can decouple the primal and dual variables, and, instead of the proximal map of

G ↦→ � (G) + � ( (G)), individually and e�ciently compute the proximal maps (� + gm�)−1 and

(� + fm� ∗)−1, methods based on proximal steps can be highly e�cient. Based on this idea, for

linear  a decoupling algorithm – now commonly known as the Chambolle–Pock method –

was suggested in [7, 17]. In [7, 9] the authors proved the $ (1/# ) convergence of an ergodic

duality gap to zero and provided an $ (1/# 2) acceleration scheme when either the primal or

dual objective is strongly convex. In [12], the method was classi�ed as the Primal–Dual Hybrid

Gradient method, Modi�ed (PDHGM).

However, frequently in applications,  is not linear, making (P) nonconvex. This situation is

the focus in the present work. Our starting point is the extension of the PDHGM to nonlinear  

suggested in [11, 22], where the authors proved local weak convergence without a rate under a

metric regularity assumption. The method, called the NL-PDHGM (for “nonlinear PDHGM”), and

its ADMM variants have successfully been applied to problems in magnetic resonance imaging

and PDE-constrained optimization [4, 11, 22]. We state it in Algorithm 1.1, also incorporating

references to the step length rules of the present work.

Algorithm 1.1 (NL-PDHGM). Pick a starting point (G0, H0). Select step length parameters

g8 , f8 , l8 > 0 according to a suitable rule from one of Theorems 4.1, 4.3 and 4.4. Then iterate

G8+1 := (� + g8m�)−1(G8 − g8 [∇ (G8)]∗H8),
sG8+1 := G8+1 + l8 (G8+1 − G8),
H8+1 := (� + f8+1m� ∗)−1(H8 + f8+1 (sG8+1)) .

Besides nonconvex ADMM [4, 26] (which is a closely related algorithm), �rst-order alternatives

to the NL-PDHGM include iPiano [15], iPalm [18], and an extension of the PDHGM to semiconvex

functions [14]. The former two are inertial variants of forward–backward splitting, with iPalm

further splitting the proximal step into two sub-blocks. We stress that none of these can be

applied directly to (P) if � is nonsmooth and  is nonlinear, which is the focus of this work.

Another advantage of the approach based on the saddle point formulation (S) which moves all

nonconvexity to  is the following. Consider

(1.1) min

G

1

2

‖) (G) − I‖2 + �0( 0G),
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where  is linear and ) nonlinear. Such problems arise, e.g., from total variation regularized

nonlinear inverse problems, in which case  0 = ∇ and) is a nonlinear forward operator [22]. As

the function �0 is typically nonsmooth (e.g., �0 = ‖ · ‖ for total variation regularization), to apply

a simple forward–backward scheme to this problem one would have to compute the proximal

map of �0◦ 0, which is seldom feasible. On the other hand, even if) were linear, solving the dual

problem instead as in [3] will not work either unless ) is unitary. However, we can rewrite (1.1)

in the form (S) with H = (H1, H2),� ≡ 0,  (G) := ( 0G,) (G) − I), and � ∗(H) := � ∗
0
(H1) + 1

2
‖H2‖2.

Now we only need to be able to compute  , ∇ , and the proximal map of � ∗
0
, all of which are

typically easy. Observe also how � ∗ is strongly convex on the subspace corresponding to the

nonlinear part of  . This will be useful for estimating convergence rates.

In [11], based on small modi�cations to our original analysis in [22], we showed that the

acceleration scheme from [7] for strongly convex problems can also be used with Algorithm 1.1

and nonlinear  provided we stop the acceleration at some iteration. Hence, no convergence

rates could be obtained. In the present paper, based on a completely new and simpli�ed analysis,

we provide such rates and show that the acceleration does not have to be stopped. To the best

of our knowledge, this is the �rst work to prove convergence rates for a primal–dual method

for nonsmooth saddle point problems with nonlinear operators. Our new analysis of the NL-

PDHGM is based on the “testing” framework introduced in [23] for preconditioned proximal

point methods. In particular, we relax the metric regularity required in [22] to mere monotonicity

at a solution together with a three-point growth condition on  around this solution. Both are

essentially “nonsmooth” formulations of standard second-order growth conditions. We prove

weak convergence to a critical point as well as $ (1/# 2) convergence (which is even global

in some situations) with an acceleration rule if m� or [∇ (G)]∗H is strongly monotone at a

primal critical point Ĝ . If m� ∗ is also strongly monotone at a dual critical point Ĥ , we present

step length rules that lead to linear convergence. We emphasize that all the time we allow  

to be nonlinear, and through this the problem (P) to be globally nonconvex. In addition, our local

monotonicity assumptions are comparable nonsmooth counterparts to standard�2
and positive

Hessian assumptions in smooth nonconvex optimization.

This work is organized as follows. We summarize the “testing” framework introduced in [23]

for preconditioned proximal point methods in Section 2. We state our main results in Section 3.

Since block-coordinate methods have been receiving more and more attention lately – including

in the primal–dual algorithm designed in [24] based on the same testing framework – the main

technical derivations of Section 3.2 are implemented in a generalized operator form. Once we

have obtained these generic estimates, we devote Section 4 to scalar step length parameters and

formulate our main convergence results. These amount to basically standard step length rules for

the PDHGM combined with bounds on the initial step lengths. Finally, in Section 5, we illustrate

our theoretical results with numerical evidence. We study parameter identi�cation with !1

�tting and optimal control with state constraints, where the nonlinear operator  involves the

mapping from a potential term in an elliptic partial di�erential equation to the corresponding

solution.
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2 problem formulation

Throughout this paper, we write �(- ;. ) for the space of bounded linear operators between

Hilbert spaces - and . . We write � for the identity operator, 〈G, G ′〉 for the inner product,

and �(G, A ) for the closed unit ball of the radius A at G in the corresponding space. We set

〈G, G ′〉) := 〈)G, G ′〉 and ‖G ‖) :=
√
〈G, G〉) . For ), ( ∈ �(- ;. ), the inequality ) ≥ ( means ) − (

is positive semide�nite. Finally, ÈG1, G2ÉU := (1 − U)G1 + UG2; in particular, sG8+1 := ÈG8+1, G8É−l8
in Algorithm 1.1.

We generally assume� : - → ℝ and � ∗ → ℝ to be convex, proper, and lower semicontinuous,

so that their subgradients m� and m� ∗ are well-de�ned maximally monotone operators [2,

Theorem 20.25]. Under a constraint quali�cation, e.g., when  is �1
and either the null space of

[∇ (G)]∗ is trivial or dom � = - [20, Example 10.8], the critical point conditions for (P) and (S)

can be written as 0 ∈ � (D̂) for the set-valued operator � : - × . ⇒ - × . ,

(2.1) � (D) :=
(
m� (G) + [∇ (G)]∗H
m� ∗(H) −  (G)

)
,

and D = (G, H) ∈ - × . . Throughout the paper, D̂ := (Ĝ, Ĥ) always denotes an arbitrary root � ,

which can equivalently be characterized as D̂ ∈ �−1(0).
To formulate Algorithm 1.1 in terms suitable for the testing framework of [23], we de�ne the

step length and testing operator

,8+1 :=

(
)8 0

0 Σ8+1

)
and /8+1 :=

(
Φ8 0

0 Ψ8+1

)
,

respectively, where )8 ,Φ8 ∈ �(- ;- ) and Σ8+1,Ψ8+1 ∈ �(. ;. ) are the primal step length and

testing operators as well as their dual counterparts.

We also de�ne the linear preconditioner "8+1 and the partial linearization �̃8+1 of � by

"8+1 :=

(
� −)8 [∇ (G8)]∗

−l8Σ8+1∇ (G8) �

)
, and(2.2)

�̃8+1(D) :=
(

m� (G) + [∇ (G8)]∗H
m� ∗(H) −  (ÈG, G8É−l8 ) − ∇ (G8) (G − ÈG, G8É−l8 )

)
.(2.3)

Note that �̃8+1(D) simpli�es to � (D) for linear  . Now Algorithm 1.1 (which coincides with the

“exact” NL-PDHGM of [22]) can be written as

(PP) 0 ∈,8+1�̃8+1(D8+1) +"8+1(D8+1 − D8).

(For the “linearized” NL-PDHGM of [22], we would replace ÈG, G8É−l in (2.3) by G8 .) Following

[23], the step length operator,8+1 in (PP) acts on �̃8+1 rather than on the step D8+1 − D8 so

as to eventually allow zero-length steps on sub-blocks of variables as employed in [24]. The

testing operator /8+1 does not yet appear in (PP) as it does not feature in the algorithm. We

will shortly see that when we apply it to (PP), the product /8+1"8+1 will form a metric (in the

di�erential-geometric sense) that encodes convergence rates.
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Finally, we will also make use of the (possibly empty) subspace .NL of . in which  acts

linearly, i.e.,

.L := {H ∈ . | the mapping G ↦→ 〈H,  (G)〉 is linear} and .NL := .⊥
L
.

(For examples of such subspaces, we refer to the introduction or, in particular, to [22].) Further-

more, %NL will denote the orthogonal projection to .NL. We also write �NL(Ĥ, A ) := {H ∈ . |
‖H − Ĥ ‖%NL

≤ A } for a closed cylinder in . of the radius A with axis orthogonal to .NL.

Our goal in the rest of the paper is to analyze the convergence of (PP) for the choices (2.1)–(2.3).

We will base this analysis on the following abstract “meta-theorem”, which formalizes common

steps in convergence proofs of optimization methods. Its purpose is to reduce the proof of

convergence to showing that the “iteration gaps” Δ8+1 – which encode di�erences in function

values and whose speci�c form depend on the details of the algorithm – are non-positive. The

proof of the meta-theorem itself is relatively trivial, being based on telescoping and Pythagoras’

(three-point) formula.

Theorem 2.1 ([23, Theorem 2.1]). Suppose (PP) is solvable, and denote the iterates by {D8}8∈ℕ. If
/8+1"8+1 is self-adjoint, and for some Δ8+1 ∈ ℝ we have

(CI) 〈�̃8+1(D8+1), D8+1 − D̂〉/8+1 ≥
1

2

‖D8+1 − D̂‖2/8+2"8+2−/8+1"8+1 −
1

2

‖D8+1 − D8 ‖2/8+1"8+1 − Δ8+1

for all 8 ≤ # − 1 and some D̂ ∈ * , then

(DI)

1

2

‖D# − D̂‖2/# +1"# +1 ≤
1

2

‖D0 − D̂‖2/1"1

+
#−1∑
8=0

Δ8+1.

Note that the theorem always holds for some choice of the Δ8+1 ∈ ℝ. Our goal will be to

choose the step length and testing operators )8 , Σ8+1,Φ8 and Σ8+1 as well as the over-relaxation

parameter l8 such that Δ8+1 ≤ 0 and – in order to obtain rates – /8+1"8+1 grows fast as 8 →∞.

For example, if Δ8+1 ≤ 0 and /#+1"#+1 ≥ `# � with `# → ∞, then clearly ‖D# − D̂‖2 → 0 at

the rate $ (1/`# ). In other contexts, Δ8+1 can be used to encode duality gaps [23] or a penalty

on convergence rates due to inexact, stochastic, updates of the local metric /8+1"8+1 [24].

To motivate the following, consider the “generalized descent inequality” (CI) in the simple

case �̃8+1 = � . If we now had at D̂ for F̂ := 0 ∈ � (D̂) the “operator-relative strong monotonicity”

〈� (D8+1) − F̂,D8+1 − D̂〉/8+1,8+1 ≥ ‖D8+1 − D̂‖2/8+1Γ8+1
for some suitable operator Γ8+1, then the local metrics should ideally be updated as /8+1"8+2 =
/8+1("8+1+2Γ8+1). Part of our work in the following sections is to �nd such a Γ8+1 while maintaining

self-adjointness and obtaining fast growth of the metrics. However, our speci�c choices of �̃8+1
and "8+1 switch parts of � to take the gradient step −[∇ (G8)]∗H8 in the primal update and

an over-relaxed step in the dual update. We will approximately undo these changes using the

term − 1

2
‖D8+1 −D8 ‖2

/8+1"8+1
in (CI). This component of (CI) can also be related to the “three-point

hypomonotonicity” 〈∇� (G8) − ∇� (Ĝ), G8+1 − Ĝ〉 ≥ −!
4
‖G8+1 − G8 ‖2 that holds for convex� with

an !-Lipschitz gradient [23].

Before proceeding with deriving convergence rates using this approach, we show that we

can still obtain weak convergence even if /#+1"#+1 does not grow quickly.
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Proposition 2.2 (weak convergence). Suppose the iterates of (PP) satisfy (CI) for some D̂ ∈ �−1(0)
with /8+1"8+1 self-adjoint and Δ8+1 ≤ −

ˆX
2
‖D8+1 − D8 ‖2

/8+1"8+1
for some

ˆX > 0. Assume that

(i) Y� ≤ /8+1"8+1 for some Y > 0;

(ii) for some nonsingular, ∈ �(* ;* ),

/8+1"8+1(D8+1 − D8) → 0, D8: ⇀ sD =⇒ 0 ∈,� (sD);

(iii) there exists a constant � such that ‖/8"8 ‖ ≤ �2
for all 8 , and for any subsequence D8: ⇀ D

there exists �∞ ∈ �(* ;* ) such that /8:+1"8:+1D → �∞D strongly in* for all D ∈ * .

Then D8 ⇀ sD weakly in* for some sD ∈ �−1(0).

Proof. This is an improvement of [23, Proposition 2.5] that permits nonconstant /8+1"8+1 and

a nonconvex solution set. The proof is based on the corresponding improvement of Opial’s

lemma (Lemma a.2) together with Theorem 2.1. Using Δ8+1 ≤ −
ˆX
2
‖D8+1 −D8 ‖2

/8+1"8+1
, (DI) applied

with # = 1 and D8 in place of D0 shows that 8 ↦→ ‖D8 − D̂‖2
/8+1"8+1

is nonincreasing. This

veri�es Lemma a.2 (i). Further use of (DI) shows that

∑∞
8=0

ˆX
2
‖D8+1 − D8 ‖2

/8+1"8+1
< ∞. Thus

/8+1"8+1(D8+1−D8) → 0. By (PP) and (ii), any weak limit point sD of the {D8}8∈ℕ therefore satis�es

sD ∈ �−1(0). This veri�es Lemma a.2 (ii) with
ˆ- = �−1(0). The remaining assumptions of

Lemma a.2 are veri�ed by conditions (i) and (iii), which yields the claim. �

3 abstract analysis of the nl-pdhgm

We will apply Theorem 2.1 to Algorithm 1.1, for which we have to verify (CI). This inequality

always holds for some Δ8+1, but for obvious reasons we aim for Δ8+1 ≤ 0. To obtain fast conver-

gence rates, our second goal is to make the metric /8+1"8+1 grow as quickly as possible; the rate

of this growth is constrained through (CI) by the term
1

2
‖D8+1 − D̂‖2

/8+1"8+1−/8+2"8+2 . In this section,

we therefore reduce (CI) into a few simple conditions on the step length and testing operators.

After stating our fundamental assumptions in Section 3.1, we �rst derive in Section 3.2 explicit

(albeit somewhat technical) bounds on the step length operators to ensure (CI). These require

that the iterates {D8}8∈ℕ stay in a neighborhood of the critical point D̂. Therefore, in Section 3.3,

we provide su�cient conditions for this requirement to hold in the form of additional step length

bounds. We will use these conditions in Section 4, where we will derive the actual convergence

rates for scalar step lengths.

3.1 fundamental assumptions

In what follows, we will need  to be locally Lipschitz di�erentiable.

Assumption 3.1 (locally Lipschitz ∇ ). The operator  : - → . is Fréchet di�erentiable, and

for some ! ≥ 0 and a neighborhood X of Ĝ ,

(3.1) ‖∇ (G) − ∇ (G ′)‖ ≤ !‖G − G ′‖ (G, G ′ ∈ X ) .
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Remark 3.1. Using Assumption 3.1 and the mean value equality

 (G ′) =  (G) + ∇ (G) (G ′ − G) +
∫

1

0

(∇ (G + B (G ′ − G)) − ∇ (G)) (G ′ − G)3B,

we obtain for any G, G ′ ∈ X and H ∈ dom � ∗ the useful inequality

(3.2) 〈 (G ′) −  (G) − ∇ (G) (G ′ − G), H〉 ≤ (!/2)‖G − G ′‖2‖H ‖%NL
,

where the norm in the dual space consists of only the .NL component because by de�nition, the

function G ↦→ 〈 (G), H〉 is linear in G for H ∈ .L. Consequently, for such H , the left-hand side of

(3.2) is zero.

We also require a form of “local operator-relative strong monotonicity” of the saddle-point

mapping � . Let * be a Hilbert space, and Γ ∈ �(* ;* ), Γ ≥ 0. We say that the set-valued map

� : * ⇒ * is Γ-strongly monotone at D̂ for F̂ ∈ � (D̂) if there exists a neighborhoodU 3 D̂ such

that

(3.3) 〈F − F̂,D − D̂〉 ≥ ‖D − D̂‖2Γ, (D ∈ U,F ∈ � (D)).

If Γ = 0, we say that � is monotone at D̂ for F̂ .

In particular, we will assume this monotonicity in terms of m� and m� ∗. The idea is that �

and � ∗ can have di�erent level of strong convexity on sub-blocks of the variables G and H ; we

will in particular use this approach to assume strong convexity from � ∗ on the subspace .NL

only. We will �rst need the following assumption in Lemma 3.6.

Assumption 3.2 (monotone m� and m� ∗). The set-valued map m� is (Γ� -strongly) monotone at

Ĝ for −[∇ (Ĝ)]∗Ĥ in the neighborhood X� of Ĝ , and the set-valued map m� ∗ is (Γ� ∗-strongly)

monotone at Ĥ for  (Ĝ) in the neighborhood Y� ∗ of Ĥ .

Of course, in view of the assumed convexity of � and � ∗, Assumption 3.2 is always satis�ed

with Γ� = Γ� ∗ = 0.

Our next three-point assumption on  is central to our analysis. It combines a second-order

growth condition with a smoothness estimate, and the operator Γ̃� that we now introduce will

later be employed as an acceleration factor.

Assumption 3.3 (three-point condition on  ). For given Γ� , Γ̃� ∈ �(- ;- ), neighborhood X of

Ĝ , and some Λ ∈ �(- ;- ), \ ≥ 0, and ? ∈ [1, 2] we have

(3.4) 〈[∇ (G ′) − ∇ (Ĝ)]∗Ĥ, G − Ĝ〉 + ‖G − Ĝ ‖2
Γ�−Γ̃�

≥ \ ‖ (Ĝ) −  (G) − ∇ (G) (Ĝ − G)‖? − 1

2

‖G − G ′‖2Λ, (G, G ′ ∈ X ) .

We typically have that 0 ≤ Γ̃� ≤ Γ� . For linear  , Assumption 3.3 trivially holds for any

Γ̃� ≤ Γ� , Λ = 0, and \ ≥ 0. To motivate the assumption in nontrivial cases, consider the

following example.
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Example 3.1. Let � ∗ = X {1} and take Γ̃� = Γ� as well as  (G) = � (G) for some � ∈ �2(- ),
which corresponds to the problem minG ∈- � (G) + � (G) where � is smooth and possibly

nonconvex but � can be nonsmooth. In this case, both the over-relaxation step and dual

update of Algorithm 1.1 are super�uous, and the entire algorithm reduces to conventional

forward–backward splitting. If G and G ′ are suitably close to Ĝ , Taylor expansion shows that

(3.4) can be expressed as

(3.5) 〈G ′ − Ĝ, G − Ĝ〉∇2 � (G̃′) ≥ \ ‖G − Ĝ ‖
2?

∇2 � (G̃) −
1

2

‖G − G ′‖2Λ

for some G̃ = G̃ (G, Ĝ), G̃ ′ = G̃ ′(G ′, Ĝ) ∈ - . If ∇2 � (G̃ ′) is positive de�nite, i.e. ∇2 � (G̃ ′) ≥ Y� for

some Y > 0, then writing

(3.6) 〈G ′ − Ĝ, G − Ĝ〉∇2 � (G̃′) = ‖G − Ĝ ‖2∇2 � (G̃′) + 〈G
′ − G, G − Ĝ〉∇2 � (G̃′)

≥ ‖G − Ĝ ‖2∇2 � (G̃′) − (1 − U)‖G − Ĝ ‖
2

∇2 � (G̃′)

− 1

4(1 − U) ‖G
′ − G ‖2∇2 � (G̃′)

≥ UY‖G − Ĝ ‖2 − !

4(1 − U) ‖G
′ − G ‖2,

we see that (3.5) holds in some neighborhood X of Ĝ , for any ? ∈ [1, 2], \ > 0 small enough,

and Λ > 0 large enough. The positivity of ∇2 � (G̃ ′) is guaranteed by the positivity of ∇2 � (Ĝ)
for G ′ close to Ĝ . Alternatively, recalling the full expression (3.4), we can use the strong

monotonicity of m� at Ĝ . Overall, we therefore require Γ� + ∇2 � (Ĝ) to be positive, which is a

standard condition in nonconvex optimization.

If dom � ∗ is not a singleton, we can apply the reasoning of Example 3.1 to � (G) :=  (G)∗Ĥ .

The positivity of Γ� + ∇2( ( · )∗Ĥ) (Ĝ) then amounts to a second-order optimality condition on

the solution Ĝ to the problem minG � (G) + 〈 (G), Ĥ〉. Indeed, we can can verify Assumption 3.3

simply based on the monotonicity of m� + ∇ ( · )∗Ĥ at Ĝ .

Proposition 3.2. Suppose Assumption 3.1 (locally Lipschitz ∇ ) and Assumption 3.2 (monotone m�

and m� ∗) hold and for some WG > 0,

(3.7) ‖G − Ĝ ‖2
Γ�−Γ̃�

+ 〈(∇ (G) − ∇ (Ĝ)) (G − Ĝ), Ĥ〉 ≥ WG ‖G − Ĝ ‖2 (∀G ∈ X ).

Then Assumption 3.3 holds with ? = 1, \ = 2(WG − b)!−1, and Λ = !2‖%NLĤ ‖2(2b)−1� for any
b ∈ (0, WG ].

Proof. An application of Cauchy’s inequality, Assumption 3.1, and (3.7) yields for any b > 0 the

estimate

〈[∇ (G ′) − ∇ (Ĝ)]∗Ĥ, G − Ĝ〉 + ‖G − Ĝ ‖2
Γ�−Γ̃�

= 〈[∇ (G) − ∇ (Ĝ)]∗Ĥ, G − Ĝ〉 + ‖G − Ĝ ‖2
Γ�−Γ̃�

+ 〈(∇ (G ′) − ∇ (G)) (G − Ĝ), Ĥ〉
≥ (WG − b)‖G − Ĝ ‖2 − !2‖%NLĤ ‖2(4b)−1‖G ′ − G ‖2.
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At the same time, using (3.1) and the reasoning of (3.2), ‖ (Ĝ)− (G)−∇ (G) (Ĝ−G)‖ ≤ (!/2)‖G−
Ĝ ‖2. So Assumption 3.3 holds if we take ? = 1, \ ≤ 2(WG − b)/!, and Λ = !2‖%NLĤ ‖2(2b)−1� . �

Remark 3.3. Observe that if Γ� − Γ̃� ≥ Y� for some Y > !‖%NLĤ ‖, then Assumption 3.1 (locally

Lipschitz ∇ ) guarantees (3.7) for WG = Y − !‖%NLĤ ‖. This requires ‖%NLĤ ‖ to be small, which was

a central assumption in [22] that we intend to avoid in the present work. Also note that if 〈 ( · ), Ĥ〉
is convex, then (3.7) holds for WG = Y, so estimating WG based on the Lipschitz continuity of ∇ alone

provides a too conservative estimate.

More generally, while based on our discussion above the satisfaction of (3.3) seems reasonable

to expect, its veri�cation can demand some e�ort. To demonstrate that the condition can be

satis�ed, we verify this in Appendix b for a simple example of reconstructing the phase and

amplitude of a complex number from a noisy measurement.

Combining Assumptions 3.1 to 3.3, we assume throughout the rest of the paper that for some

dH ≥ 0, the corresponding neighborhood

(3.8) U(dH ) := (X� ∩ X ) × (�NL(Ĥ, dH ) ∩ Y� ∗)

of D̂ is nonempty.

3.2 general estimates

We verify the conditions of Theorem 2.1 in several steps. First, we ensure that the operator

/8+1"8+1 giving rise to the local metric is self-adjoint. Then we show that/8+2"8+2 and the update

/8+1("8+1 +Ξ8+1) performed by the algorithm yield identical norms, where Ξ8+1 represents some

o�-diagonal components from the algorithm as well as any strong monotonicity. Finally, we

estimate �̃8+1(D) in order to verify (CI).

We require for some ^ ∈ [0, 1), [8 > 0, Γ̃� ∈ �(- ;- ), and Γ̃� ∗ ∈ �(. ;. ) the following

relationships:

l8 := [8/[8+1, Ψ8Σ8 = [8� ,(3.9a)

Φ8)8 = [8� , (1 − ^)Ψ8+1 ≥ [28 ∇ (G8)Φ−18 [∇ (G8)]∗,(3.9b)

Φ8 = Φ∗8 ≥ 0, Ψ8+1 = Ψ∗8+1 ≥ 0,(3.9c)

Φ8+1 = Φ8 (1 + 2)8 Γ̃� ), Ψ8+2 = Ψ8+1(1 + 2Σ8+1Γ̃� ∗).(3.9d)

In Section 4, we will verify these relationships for speci�c scalar step length rules in Algorithm 1.1.

Lemma 3.4. Fix 8 ∈ ℕ and suppose (3.9) holds. Then /8+1"8+1 is self-adjoint and satis�es

/8+1"8+1 ≥
(
XΦ8 0

0 (^−X) (1−X)−1Ψ8+1

)
for any X ∈ [0, ^] .

Proof. From (2.2) and (3.9), we have Φ8)8 = [8� and Ψ8+1Σ8+1l8 = [8� . Hence

(3.10) /8+1"8+1 =

(
Φ8 −[8 [∇ (G8)]∗

−[8∇ (G8) Ψ8+1

)
,
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and therefore /8+1"8+1 is self-adjoint. Cauchy’s inequality furthermore implies that

(3.11) /8+1"8+1 ≥
(
XΦ8 0

0 Ψ8+1 −
[2
8

1−X∇ (G
8)Φ−18 [∇ (G8)]∗

)
.

Now (3.9) ensures the remaining part of the statement. �

Our next step is to simplify /8+1"8+1 −/8+2"8+2 in (CI) while keeping the option to accelerate

the method when some of the blocks of � exhibit strong monotonicity.

Lemma 3.5. Fix 8 ∈ ℕ, and suppose (3.9) holds. Then
1

2
‖ · ‖2

/8+1 ("8+1+Ξ8+1)−/8+2"8+2 = 0 for

(3.12) Ξ8+1 :=

(
2)8 Γ̃� 2)8 [∇ (G8)]∗

−2Σ8+1∇ (G8+1) 2Σ8+1Γ̃� ∗

)
.

Proof. Using (3.9) and (3.10) can write

/8+1("8+1 + Ξ8+1) − /8+2"8+2 =

(
0 [[8+1∇ (G8+1) + [8∇ (G8)]∗

−[8+1∇ (G8+1) − [8∇ (G8) 0

)
.

Inserting this into the de�nition of the weighted norm yields the claim. �

The next somewhat technical lemma estimates the linearizations of �̃8+1 that are needed to

make the abstract algorithm (PP) computable for nonlinear  .

Lemma 3.6. Suppose Assumption 3.1 (locally Lipschitz ∇ ), Assumption 3.2 (monotone m� and

m� ∗), and (3.9) hold. For a �xed 8 ∈ ℕ, let sG8+1 ∈ X and let dH ≥ 0 be such that D8 , D8+1 ∈ U(dH ).
Also suppose Assumption 3.3 (three-point condition on  ) holds with \ ≥ d2−?H ?−?l−18 Z

1−?
for some

Z > 0 and ? ∈ [1, 2]. Then

〈�̃8+1(D8+1), D8+1 − D̂〉/8+1"8+1 −
1

2

‖D8+1 − D̂‖2/8+1Ξ8+1

≥ ‖H8+1 − Ĥ ‖2
[8+1 [Γ� ∗−Γ̃� ∗−(?−1)Z%NL ]

− 1

2

‖G8+1 − G8 ‖2
[8 [Λ+! (2+l8 )dH � ] .

Proof. From (2.3), (3.9), and (3.12), we have

(3.13) � := 〈�̃8+1(D8+1), D8+1 − D̂〉/8+1"8+1 −
1

2

‖D8+1 − D̂‖2/8+1Ξ8+1
= 〈� (D8+1), D8+1 − D̂〉/8+1,8+1
+ [8 〈[∇ (G8) − ∇ (G8+1)] (G8+1 − Ĝ), H8+1〉
+ [8+1〈 (G8+1) −  (sG8+1) − ∇ (G8) (G8+1 − sG8+1), H8+1 − Ĥ〉
+ 〈([8+1∇ (G8+1) − [8∇ (G8)) (G8+1 − Ĝ), H8+1 − Ĥ〉.
− [8 ‖G8+1 − Ĝ ‖2Γ̃� − [8+1‖H

8+1 − Ĥ ‖2
Γ̃� ∗
.
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Since 0 ∈ � (D̂), we have I� := −[∇ (Ĝ)]∗Ĥ ∈ m� (Ĝ) and I� ∗ :=  (Ĝ) ∈ m� ∗(Ĥ). Using (3.9), we

can therefore expand

〈� (D8+1), D8+1 − D̂〉/8+1,8+1 = [8 〈m� (G8+1) − I� , G8+1 − Ĝ〉 + [8+1〈m� ∗(H8+1) − I� ∗, H8+1 − Ĥ〉
+ [8 〈[∇ (G8+1)]∗H8+1 − [∇ (Ĝ)]∗Ĥ, G8+1 − Ĝ〉
+ [8+1〈 (Ĝ) −  (G8+1), H8+1 − Ĥ〉.

Using the local (strong) monotonicity of � and � ∗ (Assumption 3.2) and rearranging terms, we

obtain

(3.14) 〈� (D8+1), D8+1 − D̂〉/8+1,8+1 ≥ [8 ‖G8+1 − Ĝ ‖2Γ� + [8+1‖H
8+1 − Ĥ ‖2Γ� ∗

+ [8 〈∇ (G8+1) (G8+1 − Ĝ), H8+1〉
− [8 〈∇ (Ĝ) (G8+1 − Ĝ), Ĥ〉
+ [8+1〈 (Ĝ) −  (G8+1), H8+1 − Ĥ〉.

Now we plug the estimate (3.14) into (3.13) and rearrange to arrive at

� ≥ [8 ‖G8+1 − Ĝ ‖2Γ�−Γ̃� + [8+1‖H
8+1 − Ĥ ‖2

Γ� ∗−Γ̃� ∗

− [8 〈∇ (Ĝ) (G8+1 − Ĝ), Ĥ〉 + [8 〈∇ (G8) (G8+1 − Ĝ), H8+1〉
+ [8+1〈 (Ĝ) −  (sG8+1) − ∇ (G8) (G8+1 − sG8+1), H8+1 − Ĥ〉
+ 〈([8+1∇ (G8+1) − [8∇ (G8)) (G8+1 − Ĝ), H8+1 − Ĥ〉

= [8 ‖G8+1 − Ĝ ‖2Γ�−Γ̃� + [8+1‖H
8+1 − Ĥ ‖2

Γ� ∗−Γ̃� ∗

+ [8 〈[∇ (G8) − ∇ (Ĝ)] (G8+1 − Ĝ), Ĥ〉
+ [8+1〈 (Ĝ) −  (G8+1) − ∇ (G8+1) (Ĝ − G8+1), H8+1 − Ĥ〉
+ [8+1〈 (G8+1) −  (sG8+1) + ∇ (G8+1) (sG8+1 − G8+1), H8+1 − Ĥ〉
+ [8+1〈(∇ (G8) − ∇ (G8+1)) (sG8+1 − G8+1), H8+1 − Ĥ〉.

Applying Assumption 3.1, (3.2), and sG8+1 − G8+1 = l8 (G8+1 − G8) to the last two terms, we obtain

〈 (G8+1) −  (sG8+1) + ∇ (G8+1) (sG8+1 − G8+1), H8+1 − Ĥ〉 ≥ −
!l2

8

2

‖G8+1 − G8 ‖2‖H8+1 − Ĥ ‖%NL

and

〈(∇ (G8) − ∇ (G8+1)) (sG8+1 − G8+1), H8+1 − Ĥ〉 ≥ −!l8 ‖G8+1 − G8 ‖2‖H8+1 − Ĥ ‖%NL
.

These estimates together with (3.9) and D8+1 ∈ U(dH ) now imply that

(3.15) � ≥ [8� 8+1 + [8+1‖H8+1 − Ĥ ‖2Γ� ∗−Γ̃� ∗

for

� 8+1 := 〈[∇ (G8) − ∇ (Ĝ)] (G8+1 − Ĝ), Ĥ〉 + ‖G8+1 − Ĝ ‖2Γ�−Γ̃� − !(1 + l8/2)dH ‖G
8+1 − G8 ‖2

− ‖H8+1 − Ĥ ‖%NL
‖ (Ĝ) −  (G8+1) − ∇ (G8+1) (Ĝ − G8+1)‖/l8 .
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Finally, we use Assumption 3.3 to estimate

(3.16) � 8+1 ≥ \ ‖ (Ĝ) −  (G8+1) − ∇ (G8+1) (Ĝ − G8+1)‖? −
1

2

‖G8+1 − G8 ‖2Λ+! (2+l8 )dH �
− ‖H8+1 − Ĥ ‖%NL

‖ (Ĝ) −  (G8+1) − ∇ (G8+1) (Ĝ − G8+1)‖/l8 .

We now use the following Young’s inequality for any positive 0, 1, ? and @ such that @−1+?−1 = 1:

01 =

(
01

2−?
?

)
1
2
?−1
? ≤ 1

?

(
01

2−?
?

)?
+ 1

@
1
2
?−1
?
@
=

1

?
0?12−? +

(
1 − 1

?

)
12.

With this inequality applied to the last term of (3.16) for

0 = (Z?)−1/2‖ (Ĝ) −  (G8+1) − ∇ (G8+1) (Ĝ − G8+1)‖, 1 = (Z?)1/2‖H8+1 − Ĥ ‖%NL
,

and any Z > 0, we arrive at the estimate

� 8+1 ≥ \ ‖ (Ĝ) −  (G8+1) − ∇ (G8+1) (Ĝ − G8+1)‖? −
1

2

‖G8+1 − G8 ‖2Λ+! (2+l8 )dH �

−
‖H8+1 − Ĥ ‖2−?

%NL

??l8Z
?−1 ‖ (Ĝ) −  (G8+1) − ∇ (G8+1) (Ĝ − G8+1)‖? − ? − 1

l8
Z ‖H8+1 − Ĥ ‖2%NL

.

Now observe that \ − ‖H8+1 − Ĥ ‖2−?
%NL

(??l8Z ?−1)−1 ≥ \ − d2−?H (??l8Z ?−1)−1 ≥ 0. Therefore

(3.17) � 8+1 ≥ −
1

2

‖G8+1 − G8 ‖2Λ+! (2+l8 )dH � −
? − 1
l8

Z ‖H8+1 − Ĥ ‖2%NL

.

Combining this with (3.15) we �nally obtain

� ≥ ‖H8+1 − Ĥ ‖2
[8+1 [Γ� ∗−Γ̃� ∗−(?−1)Z%NL ]

− 1

2

‖G8+1 − G8 ‖2
[8 [Λ+! (2+l8 )dH � ],

which was our claim. �

We now have all the necessary tools in hand to formulate the main estimate.

Theorem 3.7. Fix 8 ∈ ℕ, and suppose (3.9) andAssumption 3.1 (locally Lipschitz∇ ), Assumption 3.2

(monotone m� and m� ∗), and Assumption 3.3 (three-point condition on  ) hold. Also suppose

sG8+1 ∈ X and that D8 , D8+1 ∈ U(dH ) for some dH ≥ 0. Furthermore, for 0 ≤ X ≤ ^ < 1 de�ne

(8+1 :=

(
XΦ8−[8 [Λ+! (2+l8 )dH � ] 0

0 Ψ8+1−
[2
8

1−^ ∇ (G
8 )Φ−1

8
[∇ (G8 ) ]∗

)
.

Finally, suppose Assumption 3.3 holds with \ ≥ d
2−?
H ?−?l−18 Z

1−?
for some Z > 0. Then (CI) is

satis�ed (for this 8) if

(3.18)

1

2

‖D8+1 − D8 ‖2(8+1 + ‖H
8+1 − Ĥ ‖2

[8+1 [Γ� ∗−Γ̃� ∗−(?−1)Z%NL ]
≥ −Δ8+1.
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In particular, under the above assumptions, we may take Δ8+1 = 0 in (CI) provided

Φ8 ≥ [8X−1 [Λ + !(2 + l8)dH � ],(3.19a)

Ψ8+1 ≥
[28

1 − ^∇ (G
8)Φ−18 [∇ (G8)]∗, and(3.19b)

Γ� ∗ ≥ Γ̃� ∗ + (? − 1)Z%NL.(3.19c)

Proof. Using the de�nition of (8+1 and (3.10), we have that

1

2

‖D8+1 − D8 ‖2(8+1 ≤
1

2

‖D8+1 − D8 ‖2/8+1"8+1 −
1

2

‖G8+1 − G8 ‖2
[8 [Λ+! (2+l8 )dH � ] .

Since Assumption 3.3 holds with \ ≥ d2−?H ?−?l−18 Z
1−?

for some Z > 0, we can apply Lemma 3.6

to further bound

1

2

‖D8+1 − D8 ‖2(8+1 + ‖H
8+1 − Ĥ ‖2

[8+1 [Γ� ∗−Γ̃� ∗−(?−1)Z%NL ]

≤ 1

2

‖D8+1 − D8 ‖2/8+1"8+1 + 〈�̃8+1(D
8+1), D8+1 − D̂〉/8+1"8+1 −

1

2

‖D8+1 − D̂‖2/8+1Ξ8+1 .

Using Lemma 3.5, we may insert ‖D8+1 − D̂‖2
/8+1Ξ8+1

= ‖D8+1 − D̂‖2
/8+2"8+2−/8+1"8+1 and use (3.18) to

obtain

−Δ8+1 ≤
1

2

‖D8+1 − D8 ‖2(8+1 + ‖H
8+1 − Ĥ ‖2

[8+1 [Γ� ∗−Γ̃� ∗−(?−1)Z%NL ]

≤ 1

2

‖D8+1 − D8 ‖2/8+1"8+1 + 〈�̃8+1(D
8+1), D8+1 − D̂〉/8+1"8+1

− 1

2

‖D8+1 − D̂‖2/8+2"8+2−/8+1"8+1 .

Rearranging the terms, we arrive at

〈�̃8+1(D8+1), D8+1 − D̂〉/8+1"8+1 ≥
1

2

‖D8+1 − D̂‖2/8+2"8+2−/8+1"8+1 −
1

2

‖D8+1 − D8 ‖2/8+1"8+1 − Δ8+1.

Hence, (CI) is satis�ed.

Finally, if in addition the relations (3.19) are satis�ed, then the left-hand side of (3.18) is trivially

bounded from below by zero. �

We close this section with some remarks on the conditions (3.19):

• While (3.19a) and (3.19b) are stated in terms of Φ8 and Ψ8+1, they actually provide bounds

on the step length operators)8 and Σ8 : Since [8� = Φ8)8 = Ψ8Σ8 by (3.9), Φ8 and Ψ8+1 can be

eliminated from (3.19), and we will do so for scalar step lengths in Section 4. Thus, while

(3.9) provides valid update rules for the parameters in Algorithm 1.1, (3.19) will provide

upper bounds on step lengths under which convergence can be proven.

• If  is linear, (3.19a) reduces to Φ8 ≥ 0 since %NL = 0 and hence dH = 0 and Λ = 0. We can

thus take ^ = 0, so that (3.19b) turns into an operator analogue of the step length bound

g8f8 ‖ ‖2 < 1 of [7].
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• Recall from (3.8) that dH only bounds the dual variable on the subspace.NL. Therefore, most

of the requirements for convergence introduced in Section 4.2 to account for nonlinear  

(e.g., upper bounds on the primal step length, initialization of the dual variable close to a

critical point, or the strong convexity of � ∗ at Ĥ) will only be required with respect to .NL.

• Comparing (3.19) with the requirements of [22], a crucial di�erence is that in (3.19c), Γ� ∗

is allowed to be zero when ? = 1 and hence we do not require strong convexity from � ∗;
see also [11]. In fact, for ? = 1 the inequality on \ in Theorem 3.7 reduces to dH ≤ l8\ . We

therefore only need to ensure that the dual variable is initialized close to a critical point

within the subspace .NL. If ? ∈ (1, 2], the factor \ imposes a lower bound on the dual

factor of strong monotonicity over .NL. Indeed, the minimal Z allowed in Theorem 3.7

is given by Z = d
(2−?)/(?−1)
H (??l8\ )−1/(?−1) , and (3.19c) requires that the factor of strong

convexity of � ∗ at Ĥ with respect to the subspace .NL is not smaller than this Z .

• Finally, while (3.19) says nothing about Γ� or Γ̃� , the discussion in and after Example 3.1 in-

dicates that the solution Ĝ to� ( · ) + 〈 ( · ), Ĥ〉 should satisfy a “nonsmooth” second-order

growth condition to compensate for the nonlinearity of  . Therefore, Γ̃� is implicitly

bounded from above by the strong convexity factor of the primal problem in Assump-

tion 3.3.

3.3 local step length bounds

In order to apply Lemma 3.6 and therefore Theorem 3.7, we need one �nal technical result to

ensure that the new iterates D8+1 remain in the local neighborhoodU(dH ) of D̂. The following

lemma provides the basis from which we further work in Section 4.3 and puts a limit on how

far the next iterate can escape from a given neighborhood of D̂ in terms of bounds on the step

lengths.

Lemma 3.8. Fix 8 ∈ ℕ. Suppose Assumption 3.1 (locally Lipschitz ∇ ) holds and D8+1 solves (PP).

For simplicity, assume l8 ≤ 1. For some AG,8 , AH > 0, and XG,8 , XH ≥ 0, let �(Ĝ, AG,8 + XG,8) ⊂ X ,
G8 ∈ �(Ĝ, AG,8), and H8 ∈ �(Ĥ, AH ). If

(3.20) ‖)8 ‖ ≤
XG,8/2

‖∇ (G8)‖AH + !‖%NLĤ ‖AG,8
, and ‖Σ8+1‖ ≤

2XH (AG,8 + XG,8)−1

!(AG,8 + XG,8) + 2‖∇ (Ĝ)‖
,

then G8+1, sG8+1 ∈ �(Ĝ, AG,8 + XG,8) and H8+1 ∈ �(Ĥ, AH + XH ).

Proof. We want to show that the step length conditions (3.20) imply that

‖G8+1 − Ĝ ‖ ≤ AG,8 + XG,8 , ‖sG8+1 − Ĝ ‖ ≤ AG,8 + XG,8 , and ‖H8+1 − Ĥ ‖ ≤ AH + XH .

We do this by applying the testing argument on the primal and dual variables separately.

Multiplying (PP) by / ∗8+1(D8+1 − D̂) with Φ8 = � and Ψ8+1 = 0, we get

0 ∈ 〈m� (G8+1) + [∇ (G8)]∗H8 , G8+1 − Ĝ〉)8 + 〈G8+1 − G8 , G8+1 − Ĝ〉.
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Using the three-point version of Pythagoras’ identity,

(3.21) 〈G8+1 − G8 , G8+1 − Ĝ〉 = 1

2

‖G8+1 − G8 ‖2 − 1

2

‖G8 − Ĝ ‖2 + 1

2

‖G8+1 − Ĝ ‖2,

we obtain

‖G8 − Ĝ ‖2 ∈ 2〈m� (G8+1) + [∇ (G8)]∗H8 , G8+1 − Ĝ〉)8 + ‖G8+1 − G8 ‖2 + ‖G8+1 − Ĝ ‖2.

Using 0 ∈ m� (Ĝ) + [∇ (Ĝ)]∗Ĥ and the monotonicity of m� , we then arrive at

‖G8+1 − G8 ‖2 + ‖G8+1 − Ĝ ‖2 + 2〈[∇ (G8)]∗H8 − [∇ (Ĝ)]∗Ĥ, G8+1 − Ĝ〉)8 ≤ ‖G8 − Ĝ ‖2.

With �G := ‖ [∇ (G8)]∗H8 − [∇ (Ĝ)]∗Ĥ ‖) 2

8
, this implies that

(3.22) ‖G8+1 − G8 ‖2 + ‖G8+1 − Ĝ ‖2 ≤ 2�G ‖G8+1 − Ĝ ‖ + ‖G8 − Ĝ ‖2.

Rearranging the terms and using ‖G8+1 − Ĝ ‖ ≤ ‖G8+1 − G8 ‖ + ‖G8 − Ĝ ‖ yields

(‖G8+1 − G8 ‖ −�G )2 + ‖G8+1 − Ĝ ‖2 ≤ (‖G8 − Ĝ ‖ +�G )2,

which further leads to

(3.23) ‖G8+1 − Ĝ ‖ ≤ ‖G8 − Ĝ ‖ +�G .

To estimate the dual variable, we multiply (PP) by / ∗8+1(D8+1 − D̂) with Φ8 = 0,Ψ8+1 = � , yielding

0 ∈ 〈m� ∗(H8+1) −  (sG8+1), H8+1 − Ĥ〉Σ8+1 + 〈H8+1 − H8 , H8+1 − Ĥ〉.

Using 0 ∈ m� ∗(Ĥ) −  (Ĝ) and following the steps leading to (3.23), we deduce

(3.24) ‖H8+1 − Ĥ ‖ ≤ ‖H8 − Ĥ ‖ +�H

with �H := ‖ (Ĝ) −  (sG8+1)‖Σ2
8+1

.

We now proceed to deriving bounds on�G and�H with the goal of bounding (3.23) and (3.24)

from above. Using Assumption 3.1 and arguing as in (3.2), we estimate

�G ≤ ‖)8 ‖(‖∇ (G8)‖‖H8 − Ĥ ‖ + !‖%NLĤ ‖‖G8 − Ĝ ‖) =: 'G ,(3.25)

and, if sG8+1 ∈ X ,

�H ≤ ‖Σ8+1‖(!‖sG8+1 − Ĝ ‖/2 + ‖∇ (Ĝ)‖)‖sG8+1 − Ĝ ‖ =: 'H .(3.26)

We thus need to verify �rst that sG8+1 ∈ X . By de�nition,

‖sG8+1 − Ĝ ‖2 = ‖G8+1 − Ĝ + l8 (G8+1 − G8)‖2

= ‖G8+1 − Ĝ ‖2 + l2

8 ‖G8+1 − G8 ‖2 + 2l8 〈G8+1 − Ĝ, G8+1 − G8〉
= (1 + l8)‖G8+1 − Ĝ ‖2 + l8 (1 + l8)‖G8+1 − G8 ‖2 − l8 ‖G8 − Ĝ ‖2

≤ (1 + l8) (‖G8+1 − Ĝ ‖2 + ‖G8+1 − G8 ‖2) − l8 ‖G8 − Ĝ ‖2.
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Now, the bound (3.20) on )8 together with the de�nition of 'G implies that �G ≤ 'G ≤ XG,8/2.

Applying (3.22) and (3.23), we obtain from this that

‖sG8+1 − Ĝ ‖2 ≤ 4�G ‖G8+1 − Ĝ ‖ + ‖G8 − Ĝ ‖2 ≤ 4�G (AG,8 +�G ) + A 2G,8 ≤ (AG,8 + XG,8)2.

In addition, (3.23) shows that ‖G8+1 − Ĝ ‖ ≤ AG,8 + XG,8 as well. Similarly, the bound (3.20) on Σ8+1
implies that�H ≤ 'H ≤ XH , and hence (3.24) and (3.26) lead to ‖H8+1 − Ĥ ‖ ≤ AH + XH , completing

the proof. �

Note that only the radii AG,8 , AG,8 + XG,8 of the primal neighborhoods depend on the iteration,

and we will later seek to control these based on actual convergence estimates.

Remark 3.9. Suppose that X = X� = - . Then we can take XG,8 arbitrarily large in order to satisfy

the bound on )8 while still satisfying �(Ĝ, AG,8 + XG,8) ⊂ X . On the other hand, the bound on Σ8+1
will go to zero as XG,8 →∞, which seems at �rst very limiting. However, we observe from the proof

that this bound is actually not required to satisfy G8+1, sG8+1 ∈ �(Ĝ, AG,8+XG,8). Furthermore, if dom � ∗

is bounded and we take AH large enough that dom � ∗ ⊆ �(Ĥ, AH ), the property H8+1 ∈ �(Ĥ, AH +XH )
is automatically satis�ed by the iteration and does not require dual step length bounds. Hence if

X = X� = - and dom � ∗ is bounded, we can expect global convergence. We will return to this

topic in Remark 4.5.

4 refinement to scalar step lengths

To derive convergence rates, we now simplify Theorem 3.7 to scalar step lengths. Speci�cally,

we assume for some scalars W� , WL, WNL, g8 , q8 , f8 ,k8 ≥ 0, and _ ∈ ℝ the structure

(4.1)

{
)8 = g8� , Φ8 = q8� , Γ� = W� � ,

Σ8 = f8� , Ψ8 = k8� , Γ� ∗ = WL%L + WNL%NL, and Λ = _� .

Consequently, the preconditioning, step length, and testing operators simplify to

"8+1 :=

(
� −g8 [∇ (G8)]∗

−l8f8+1∇ (G8) �

)
,

,8+1 :=

(
g8� 0

0 f8+1�

)
and /8+1 :=

(
q8� 0

0 k8+1�

)
.

This reduces (PP) to Algorithm 1.1, which for convex, proper, lower semicontinuous � and � ∗ is

always solvable for the iterates {D8 := (G8 , H8)}8∈ℕ. Before proceeding to the main results, we

state next all our assumptions in scalar form. We then derive in Section 4.2 our main convergence

rates results for Algorithm 1.1 under speci�c update rules depending on monotonicity properties

of� and � ∗. The �nal Section 4.3 is devoted to giving su�cient conditions for the scalar version

of the assumptions of Lemma 3.8 to hold.
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4.1 general derivations and assumptions

Under the setup (4.1), the update rules (3.9) and the conditions (3.19) simplify to

l8 = [8/[8+1, [8 = k8f8 = q8g8 ,(4.2a)

q8+1 = q8 (1 + 2g8W̃� ), k8+2 = k8+1(1 + 2f8+1W̃� ∗),(4.2b)

q8 ≥ [8X−1(_ + (l8 + 2)!dH ), k8+1 ≥
[28 q

−1
8

1 − ^ ‖∇ (G
8)‖2,(4.2c)

WL ≥ W̃� ∗, WNL ≥ W̃� ∗ + (? − 1)Z ,(4.2d)

for some [8 > 0, ? ∈ [1, 2], Z > 0, 0 ≤ X ≤ ^ < 1, and W̃� ∗ , for which we will from now on

further assume W̃� ∗ ≥ 0. To formulate the scalar version of Assumption 3.3, we also introduce

the corresponding factor W̃� ≥ 0; see Assumption 4.1 (iv) below.

Let us comment on these relations in turn. The conditions (4.2a) and (4.2b) limit the rate of

growth of the testing parameters – and thus the convergence rate – and set basic coupling

conditions for the step length parameters. They are virtually unchanged from the standard case

of linear  ; see [23, Example 3.2].

The conditions in (4.2c) are essentially step length bounds: Substituting [8 = q8g8 and [28 =

q8g8k8f8 in (4.2c), we obtain

(4.3) g8 ≤
X

_ + (l8 + 2)!dH
, and f8g8 ≤

1 − ^
'2
 

,

where ' = supX ‖∇ (G)‖. In the latter bound, we also used k8+1 ≥ k8 , which follows from

(4.2b) and W̃� ∗ ≥ 0. We point out that this condition is simply a variant for nonlinear  of the

standard initialization condition gf ‖ ‖2 < 1 for the PDHGM for linear  . From (4.3), we see

that we need to initialize and keep the dual iterates at a known �nite distance dH from Ĥ . It also

individually bounds the primal step length based on further properties of the speci�c saddle-

point problem. The nonconvexity enters here via the factor _ from the three-point condition on

 (Assumption 3.3).

The �nal condition (4.2d) bounds the acceleration parameters W̃� ∗ based on the actually avail-

able strong monotonicity minus any penalties we get from nonlinearity of  if Assumption 3.3

is satis�ed with ? ∈ (1, 2]. However,  may contribute to strong monotonicity of the primal

problem at Ĝ , so it can in some speci�c problems be possible to choose W̃� > W� .

Before we will further re�ne these bounds in the following sections, we collect the scalar

re�nements of all the structural assumptions of Section 3.

Assumption 4.1. Suppose� : - → ℝ and � ∗ → ℝ are convex, proper, and lower semicontinuous,

and  ∈ �1(- ;. ). Furthermore:

(i) (locally Lipschitz ∇ ) There exists ! ≥ 0 with ‖∇ (G) − ∇ (G ′)‖ ≤ !‖G − G ′‖ for any

G, G ′ ∈ X .

(ii) (locally bounded ∇ ) There exists ' > 0 with supG ∈X ‖∇ (G)‖ ≤ ' .

(iii) (monotone m� and m� ∗) The mapping m� is (W� � -strongly) monotone at Ĝ for −[∇ (Ĝ)]∗Ĥ
in X� with W� ≥ 0; and the mapping m� ∗ is (WL%L + WNL%NL-strongly) monotone at Ĥ for

b̂ +  (Ĝ) in Y� ∗ with WL, WNL ≥ 0.
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(iv) (three-point condition on  ) For some ? ∈ [1, 2], some _, \ ≥ 0, and any G, G ′ ∈ X ,

〈[∇ (G ′) − ∇ (Ĝ)]∗Ĥ, G − Ĝ〉 + (W� − W̃� )‖G − Ĝ ‖2

≥ \ ‖ (Ĝ) −  (G) − ∇ (G) (Ĝ − G)‖? − _
2

‖G − G ′‖2.

(v) (neighborhood-compatible iterations) The iterates of Algorithm 1.1 satisfy {D8}8∈ℕ ∈ U(dH )
and {sG8+1}8∈ℕ ∈ X for some dH ≥ 0, whereU(dH ) is given by (3.8).

We again close with remarks on the assumptions.

• Assumptions (i) and (ii) are standard assumptions in nonlinear optimization of smooth

functions.

• Assumption (iii) is always satis�ed due to the assumed convexity of � and � ∗; it only

becomes restrictive under the additional requirement thatW� orW!, W#! are positive, which

will be needed to derive convergence rates in the next section. However, we stress that

we never require the functions to be strongly monotone globally; rather we only require

the strong monotonicity at Ĝ or at Ĥ . Furthermore – and this is a crucial feature of our

operator-based analysis – we can split the strong monotonicity of m� ∗ on the subspaces

.NL and.L. We will more depend on the former, which is often automatic as in the example

given in the introduction.

• We have already elaborated on (iv) in Example 3.1 and Proposition 3.2. In particular, this

condition holds if the saddle-point problem satis�es a standard second-order growth

condition at D̂ with respect to the primal variable.

• Finally, only assumption (v) is speci�c to the actual algorithm (i.e., the choice of step sizes);

it requires that the iterates of Algorithm 1.1 remain in the neighborhood in which the �rst

four assumptions are valid. We will prove in Section 4.3 that this can be guaranteed under

additional bounds on the step lengths. Moreover, we will demonstrate in Remark 4.5

that Assumption 4.1 (v) is always satis�ed for a speci�c class of problems, for which we

therefore obtain global convergence.

4.2 convergence results

We now come to the core of our work, where we apply the analysis of the preceding sections to

derive convergence results under explicit step lengths rules. We start with a weak convergence

result that requires no (partial) strong monotonicity, which however needs to be replaced with

additional assumptions on  .

Theorem 4.1 (weak convergence). Suppose Assumption 4.1 holds for some ! ≥ 0, ' > 0, _ ≥ 0,

and dH ≥ 0 and choose the step lengths as g8 ≡ g , f8 ≡ f , and l8 ≡ 1. Assume that for some Z > 0

and ? ∈ [1, 2] that

(4.4) WNL ≥ (? − 1)Z and \ ≥ d2−?H ?−?Z 1−? ,
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and for some 0 < X < ^ < 1 that

(4.5) 0 < g <
X

3!dH + _
and 0 < fg <

1 − ^
'2
 

.

Furthermore, suppose that

(i) G8 ⇀ sG implies that ∇ (G8)G → ∇ (sG)G for all G ∈ - ,

and either

(iia) � (D) is maximally monotone inU(dH );

(iib) the mapping (G, H) ↦→ ([∇ (G)]∗H,  (G)) is weak-to-strong continuous inU(dH ); or

(iic) the mapping (G, H) ↦→ ([∇ (G)]∗H,  (G)) is weak-to-weak continuous, and in addition

Assumption 4.1 (iii) (monotone m� and m� ∗) and Assumption 4.1 (iv) (three-point condition

on  ) hold at any weak limit sD = (sG, sH) of {D8} in addition to D̂ with \ ≥ (2dH )2−??−?Z 1−? .

Then the sequence {D8} generated by (PP) converges weakly to some sD ∈ �−1(0) (possibly di�erent
from D̂).

Proof. We wish to apply Proposition 2.2 and therefore need to verify its assumptions. For the

basic assumptions of (CI) and the self-adjointness of /8+1"8+1, we will use Theorem 3.7 together

with Lemma 3.4. Most of their assumptions are directly veri�ed by Assumption 4.1; it only

remains to verify (3.9) and (3.19), which reduce to (4.2) in the scalar case. By taking W̃� = W̃� ∗ = 0

and any positive constants k and q such that kf = qg , the relations (4.2a), (4.2b), and (4.2d)

hold. Furthermore, since l8 ≡ 1, (4.5) is equivalent to (4.3). This yields (4.2c), completing the

veri�cation of (4.2) and thus the conditions of Theorem 2.1 and Proposition 2.2.

Since the inequalities in (4.5) are strict, we can deduce from Theorem 3.7 that (3.18) even

holds for Δ8+1 ≤ − ˆX ‖D8+1 − D8 ‖2 for some
ˆX > 0. Combining (3.11) and (4.5), we thus obtain that

condition (i) of Proposition 2.2 holds. Furthermore, the condition (iii) follows from the assumed

constant step lengths and the assumption (i).

It remains to show the condition (ii) of Proposition 2.2. First, if the assumption (iia) holds, the

inclusion in condition (ii) follows directly from the fact that maximally monotone operators

have sequentially weakly–strongly closed graphs [2, Proposition 20.38].

The two other cases are more di�cult to verify. First, we note that for any G8+1 ⇀ sG and

H8+1 ⇀ sH we have,8+1 ≡, , and (PP) implies that E8+1 ∈,�(D8+1) for

�(D8+1) :=
(

m� (G8+1) − W� (G8+1 − sG)
m� ∗(H8+1) − WNL%NL(H8+1 − sH)

)
and

E8+1 :=,

(
−[∇ (G8+1)]∗H8+1 − W� (G8+1 − sG)
 (G8+1) − WNL%NL(H8+1 − sH)

)
−,

(
[∇ (G8) − ∇ (G8+1)]∗H8+1

 (G8+1) −  (sG8+1) − ∇ (G8) (G8+1 − sG8+1).

)
−"8+1(D8+1 − D8) .

(4.6)
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Therefore, we need to show that

E8+1 ⇀ sE :=,

(
−[∇ (sG)]∗sH

 (sG)

)
and sE ∈ �(sD),

which by construction is equivalent to the inclusion sD ∈ �−1(0). Note that due to Assump-

tion 4.1 (iii), � is maximally monotone since it only involves subgradient mappings of proper,

convex, and lower semicontinuous functions. From Theorem 2.1, we obtain (DI), which in turn

implies that /8+1"8+1(D8+1 − D8) → 0. The scalar case of Lemma 3.4 together with the condition

0 < X < ^ < 1 and positive k and q then results in ‖D8+1 − D8 ‖ → 0, so the last two terms in

(4.6) go to zero. We therefore only have to consider the �rst term, for which we make a case

distinction:

If assumption (iib) holds, we obtain that E8+1 → sE , and the required inclusion sE ∈ �(sD)
follows from the fact that the graph of the maximally monotone operator � is sequentially

weakly–strongly closed; see [2, Proposition 16.36].

If assumption (iic) holds, then only E8+1 ⇀ sE . In this case, we can apply the Brezis–Crandall–

Pazy Lemma [2, Corollary 20.59 (iii)] to obtain the required inclusion under the additional condi-

tion that lim sup8→∞ 〈D8 − sD, E8 −sE〉 ≤ 0. In our case, lim sup8→∞ 〈D8 − sD, E8 −sE〉 = lim sup8→∞ @8
for

@8 := 〈[∇ (sG)]∗sH − [∇ (G8+1)]∗H8+1, G8+1 − sG〉 + 〈 (G8+1) −  (sG), H8+1 − sH〉
− WNL‖H8+1 − sH ‖2%NL

− W� ‖G8+1 − sG ‖2.

Note that ‖H8+1 − sH ‖%NL
≤ 2dH because ‖H8+1 − Ĥ ‖%NL

, ‖Ĥ − sH ‖%NL
≤ dH . With this, (3.2), and both

Assumption 4.1 (iii) and (iv) at sD, we similarly to (3.17) estimate

(4.7) @8 = 〈 (G8+1) −  (sG) + ∇ (G8+1) (sG − G8+1), H8+1 − sH〉
− (〈(∇ (G8) − ∇ (sG)) (G8+1 − sG), sH〉 + W� ‖G8+1 − sG ‖2)
− WNL‖H8+1 − sH ‖2%NL

+ 〈(∇ (G8) − ∇ (G8+1)) (G8+1 − sG), sH〉
≤ (‖H8+1 − sH ‖2−?

%NL

?−?Z 1−? − \ )‖ (sG) −  (G8+1) − ∇ (G8+1) (sG − G8+1)‖?

+ ((? − 1)Z − WNL)‖H8+1 − sH ‖2%NL

+$ (‖G8+1 − G8 ‖) .

Since

‖H8+1 − sH ‖2−?
%NL

?−?Z 1−? − \ ≤ (2dH )2−??−?Z 1−? − \ ≤ 0,

(? − 1)Z − WNL ≤ 0, and /8+1"8+1(D8+1 − D8) → 0, we obtain that lim sup8→∞ @8 ≤ 0. The

Brezis–Crandall–Pazy Lemma thus yields the desired inclusion sE ∈ �(sD).
Hence in all three cases, the condition (ii) of Proposition 2.2 holds with D8 ⇀ sD ∈ �−1(0),

which completes the proof. �

Remark 4.2. It is instructive to consider the two limiting cases ? = 1 and ? = 2 in the conditions

(4.4) of Theorem 4.1:

(i) If ? = 1, the condition on WNL is trivially satis�ed, while the one on \ reduces to dH ≤ \ .
Therefore, we only require the dual variable to be initialized close to Ĥ (and only when

projected into the subspace .NL).

20



(ii) In contrast, if ? = 2, the condition on \ does not involve dH and hence there will be no dual

initialization bound; on the other hand, Z ≥ (4\ )−1 will be required. Therefore, we need � ∗
to be strongly convex with the factor WNL ≥ (4\ )−1, but only at Ĥ within the subspace .NL.

The remaining cases ? ∈ (1, 2) can be seen as an interpolation between these conditions. The

same observations hold for the other results of this section.

We now turn to convergence rates under strong monotonicity assumptions, starting with the

case that merely � is strongly convex. Since we obtain a fortiori strong convergence from the

rates, we do not require the additional assumptions on  needed to apply Proposition 2.2; on

the other hand, we only obtain convergence of the primal iterates. In the proof of the following

result, observe how the step length choice follows directly from having to satisfy (4.2b) and the

desire to keep f8g8 constant to satisfy (4.2c) via the bound (4.3) on the initial choice.

Theorem 4.3 (convergence rates under acceleration). Suppose Assumption 4.1 holds for some

! ≥ 0, ' > 0, _ ≥ 0, and dH ≥ 0 with W̃� > 0, WNL ≥ (? − 1)Z , and \ ≥ d2−?H ?−?
√
1 + 2g0W̃�Z 1−?

for some Z > 0 and ? ∈ [1, 2]. Choose

(4.8) g8+1 = g8l8 , f8+1 = f8/l8 , l8 = 1/
√
1 + 2g8W̃�

with

(4.9) 0 < g0 ≤
X

3!dH + _
, and 0 < g0f0 ≤

1 − ^
'2
 

.

for some 0 < X ≤ ^ < 1. Then ‖G8 − Ĝ ‖2 converges to zero at the rate $ (1/# 2).

Proof. The �rst stage of the proof is similar to Theorem 4.1, where we verify (4.2) to use The-

orem 3.7 (but need not apply Proposition 2.2). Since we do not assume any (partial) strong

convexity of � ∗, we have to take W̃� ∗ = 0, and thus (4.2d) is satis�ed by assumption. Note that

by (4.8), we have f8g8 = f0g0 for all 8 ∈ ℕ, l8 < 1, and g8+1 < g0. Then (4.9) leads to (4.3), which

is equivalent to (4.2c). Taking now [8 := f8 > 0,k8 ≡ 1, and q8 := f0g0g
−2
8 > 0, (4.2a) and (4.2b)

follow from (4.8) since [8 := f8 = f8+1l8 = [8+1l8 and

q8g8 =
f0g0

g8
=
f8g8

g8
= k8f8 and q8+1 :=

kf0g0

g2
8+1

=
kf0g0

g2
8
l2

8

= q8 (1 + 2g8W̃� ) .

Furthermore, (4.8) also implies that

1/l8 ≤ 1/l0 =
√
1 + 2g0W̃� ,

and together with our assumption on \ we obtain that \ ≥ d2−?H ?−?l−18 Z
1−?

. We can thus apply

Theorems 2.1 and 3.7 to arrive at (DI) with each Δ8+1 ≤ 0.

We now estimate the convergence rate from (DI) by bounding /#+1"#+1 from below. Using

Lemma 3.4, we obtain that

(4.10) Xq# ‖G# − Ĝ ‖2 ≤ ‖D0 − D̂‖2/1"1

.

But from [7, Corollary 1], we know that g# = O(# −1) as # →∞ and hence q# ∼ g−2# = O(# 2)
by our choice of q# , which yields the desired convergence rate. �
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If both m� and m� ∗ are strongly monotone, Algorithm 1.1 with constant step lengths leads to

convergence of both primal and dual iterates at a linear rate.

Theorem 4.4 (linear convergence). Suppose Assumption 4.1 holds for some ! ≥ 0, ' > 0, _ ≥,
and dH ≥ 0, W̃� > 0, W̃� ∗ := min{WL, WNL − (? − 1)Z } > 0, and \ ≥ d2−?H ?−?l−1Z 1−? for some Z > 0

and ? ∈ [1, 2]. Choose

(4.11) 0 < g8 ≡ g ≤ min

{
X

3!dH+_ ,
√
(1−^)W̃� ∗/W̃�

' 

}
, f8 ≡ f :=

W̃�
W̃� ∗
g, l8 ≡ l := 1

1+2W̃�g

for some 0 ≤ X ≤ ^ < 1. Then ‖D8 − D̂‖2 converges to zero at the rate $ (l# ).

Proof. The proof follows that of Theorem 4.3. To verify (4.2), we takek0 := 1/f , and q0 := 1/g ,

for which (4.2b) is satis�ed due to the second relation of (4.11). By induction, we further obtain

from this

(4.12) q8g = k8f = (1 + 2W̃�g)8

for all 8 ∈ ℕ, verifying (4.2a). Inequality (4.2d) holds due to W̃� ∗ = min{WL, WNL − (? − 1)Z } > 0. It

remains to prove (4.2c), which follow via (4.3) from the bound on g in (4.11). Finally, we apply

Lemma 3.4, (4.12) for 8 = # , and Theorem 2.1 to conclude that

(1 + 2W̃�g)#
(
X

2g
‖G# − Ĝ ‖2 + ^ − X

2f (1 − X) ‖H
# − Ĥ ‖2

)
≤ 1

2

‖D0 − D̂‖2/1"1

,

which yields the desired convergence rate. �

Remark 4.5 (global convergence). Following Remark 3.9, suppose that Assumption 4.1 (i)–(iv) hold

for X = X� = - and that dom � ∗ is bounded. If we then take dH large enough that dom � ∗ ⊆
�NL(Ĥ, dH ), Assumption 4.1 (v) will be satis�ed for any choice of starting pointD0 = (G0, H0) ∈ -×. ,
i.e., we have global convergence. Note, however, that in this case we need ∇ to be bounded on the

whole space, i.e., ' = supG ∈- ‖∇ (G)‖ < ∞ has to hold.

4.3 neighborhood-compatible iterations

To conclude our analysis, we provide explicit conditions on the initialization of Algorithm 1.1 to

ensure that Assumption 4.1 (v) (neighborhood-compatible iterations) holds in cases where the

global convergence of Remark 4.5 cannot be guaranteed.

To begin, the following result shows that the rules (4.2) are consistent with the sequence

{D8}8∈ℕ generated by (PP) remaining inU(dH ), provided that g0 is su�ciently small and that

the starting point D0 = (G0, H0) is su�ciently far inside the interior ofU(dH ).

Lemma 4.6. Let 0 ≤ X ≤ ^ < 1 and dH > 0 be given, and assume (4.2) holds with

(4.13) 1/
√
1 + 2g8W̃� ≤ l8 ≤ l8+1 ≤ 1 (8 ∈ ℕ).

Assume further that supG ∈X ‖∇ (G)‖ ≤ ' . De�ne

(4.14) Amax :=

√
2X−1(‖G0 − Ĝ ‖2 + `−1‖H0 − Ĥ ‖2) with ` := f1l0/g0.
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Assume also that �(Ĝ, Amax + XG ) × �(Ĥ, AH + XH ) ⊆ U(dH ) for some XG , XH > 0 as well as

AH ≥ Amax

√
` (1 − X)X/(^ − X). If the initial primal step length g0 satis�es

(4.15) g0 ≤ min

{
XG

2' AH + 2!‖%NLĤ ‖Amax

,
2XHl0(Amax + XG )−1

(!(Amax + XG ) + 2' )`

}
,

then Assumption 4.1 (v) (neighborhood-compatible iterations) holds.

Proof. We �rst set up some basic set inclusions. Without loss of generality, we can assume that

k1 = 1, as we can always rescale the testing variables q8 andk8 by the same constant without

violating (4.2). We then de�ne AG,8 := ‖D0 − D̂‖/1"1
/
√
Xq8 , XG,8 :=

√
q0/q8XG , and

U8 :=
{
(G, H) ∈ - × .

�� ‖G − Ĝ ‖2 + k8+1
q8

^−X
(1−X)X ‖H − Ĥ ‖

2 ≤ A 2G,8
}
.

We then observe from Lemma 3.4 that

(4.16) {D ∈ - × . | ‖D − D̂‖/8+1"8+1 ≤ ‖D0 − D̂‖/1"1
} ⊂ U8 .

From (4.2), we also deduce that q8+1 ≥ q8 and hence that AG,8+1 ≤ AG,8 as well as XG,8 ≤ XG .

Consequently, if AG,0 ≤ Amax, then

(4.17) �(Ĝ, AG,8 + XG,8) ×�(Ĥ, AH + XH ) ⊆ �(Ĝ, Amax + XG ) ×�(Ĥ, AH + XH ) ⊆ U(dH ),

so it will su�ce to show that D8 ∈ �(Ĝ, AG,8 + XG,8) ×�(Ĥ, AH + XH ) for each 8 ∈ ℕ to prove the

claim. We do this in two steps. The �rst step shows that AG,8 ≤ Amax and

(4.18) U8 ⊆ �(Ĝ, AG,8) ×�(Ĥ, AH ) (8 ∈ ℕ) .

In the second step, we then show that D8 ∈ U8 as well as sG8+1 ∈ X for 8 ∈ ℕ. The two inclusion

(4.17) and (4.18) then imply that Assumption 4.1 (v) holds.

Step 1 We �rst prove (4.18). Since U8 ⊆ �(Ĝ, AG,8) × . , we only have to show that U8 ⊆
- ×�(Ĥ, AH ). First, note that (4.2) implies that W̃� ∗ ≥ 0 and thereforek8+1 ≥ k8 ≥ k1 = 1 as well

as q8+1 ≥ q8 ≥ q0 = [1l0/g0 = `. We then obtain from the de�nition of AG,8 that

A 2G,8Xq8 = ‖D0 − D̂‖2/1"1

= `‖G0 − Ĝ ‖2 − 2[0〈G0 − Ĝ, [∇ (G0)]∗(H0 − Ĥ)〉 + ‖H0 − Ĥ ‖2.

Using Cauchy’s inequality, the fact that q8 ≥ `, and the assumption ‖∇ (G0)‖ ≤ ' , we arrive

at

A 2G,8 ≤ (2`‖G0 − Ĝ ‖2 + (1 + [20q−10 '2 )‖H0 − Ĥ ‖2)/(X`) .

We obtain from (4.2c) that [2
0
q−1
0
'2
 
≤ 1 − ^ ≤ 1 and hence that A 2G,8 ≤ A 2max

. The assumption on

AH then yields that

(4.19) A 2H ≥ A 2max
q0
(1 − X)X
^ − X ≥

A 2G,0q0

k8+1

(1 − X)X
^ − X =

A 2G,8q8

k8+1

(1 − X)X
^ − X

for all 8 ∈ ℕ, and (4.18) follows from the de�nition ofU8 .

23



Step 2 We next show by induction that D8 ∈ U8 , sG8+1 ∈ X , and

(4.20) g8 ≤
XG,8

2' AH + 2!‖%NLĤ ‖AG,8
, and f8+1(AG,8 + XG,8) ≤

2XH

!(AG,8 + XG,8) + 2' 

hold for all 8 ∈ ℕ.

Since (4.2) holds, we can apply Lemma 3.4 to ‖D0 − D̂‖/1"1
to verify that D0 ∈ U0. Moreover,

since f1 = `g0/l0, the bound (4.20) for 8 = 0 follows from (4.15) and the bound AG,0 ≤ Amax from

Step 1. This gives the induction basis.

Suppose now that D# ∈ U# and that (4.20) holds for 8 = # . By (4.18), we have that D# ∈
�(Ĝ, AG,# ) ×�(Ĥ, AH ). Since (4.20) guarantees (3.20), we can apply Lemma 3.8 to obtain

D#+1 ∈ �(Ĝ, AG,# + XG,# ) ×�(Ĥ, AH + XH ) and sG#+1 ∈ �(Ĝ, AG,# + XG,# ) .

Together with (4.17), we obtain that D#+1 ∈ U(dH ) and sG#+1 ∈ X . Theorems 2.1 and 3.7 now

imply that (DI) is satis�ed for 8 ≤ # with Δ#+1 ≤ 0, which together with (DI) and (4.16) yields

that D#+1 ∈ U#+1. This is the �rst part of the claim. To show (4.20), we deduce from (4.2) that

g#+1 =
g#q#

q#+1l#
=

g#

l# (1 + 2g# W̃� )
, AG,#+1 =

AG,#√
1 + 2g# W̃�

,(4.21)

f#+2 =
f#+1k#+1
k#+2l#+1

=
f#+1

l#+1(1 + 2f#+1W̃� ∗)
, XG,#+1 =

XG,#√
1 + 2g# W̃�

.(4.22)

Hence, using l#+1 ≥ l# , l#
√
1 + 2g# W̃� ≥ 1, and AG,#+1 ≤ AG,# , as well as the inductive

assumption (4.20) shows that

g#+1 =
XG,#+1
XG,#

g#

l#
√
1 + 2g# W̃�

≤ XG,#+1
2' AH + 2!‖%NLĤ ‖AG,#+1

, and

f#+2(AG,#+1 + XG,#+1) ≤
f#+1(AG,# + XG,# )
l#

√
1 + 2g# W̃�

≤
2XH

!(AG,#+2 + XG,#+2) + 2' 
.

This completes the induction step and hence the proof. �

If the step lengths and the over-relaxation parameter l8 are constant, we can remove the

lower bound on l8 in Lemma 4.6.

Lemma 4.7. The claims of Lemma 4.6 also hold for g8 ≡ g0, f8 ≡ f1, and any choice of l8 ≡ l ≤ 1.

In particular, l can be chosen according to (4.11).

Proof. The proof proceeds exactly as that of Lemma 4.6, replacing AG,8 by AG,0 and XG,8 by XG
everywhere. Since AG,8 ≤ AG,0 and XG,8 ≤ XG,0, the bound (4.16) holds in this case as well, while

(4.18) reduces to the case 8 = 0 that was shown in Step 1. Observe also that the only place where

we needed the lower bound on l8 was in the proof of (4.20) as part of the inductive step of

Step 2. As the bound and the step lengths remain unchanged between iterations in this case,

this is su�cient to conclude the proof, and the lower bound on l8 is thus not required. �
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Finally, as long as we start close enough to a solution, no additional step length bounds are

needed to guarantee Assumption 4.1 (v) .

Proposition 4.8. Under the assumptions of Theorem 4.1, 4.3, or 4.4, suppose that dH > 0. Then there

exists an Y > 0 such that for all D0 = (G0, H0) satisfying

(4.23)

√
2X−1(‖G0 − Ĝ ‖2 + `−1‖H0 − Ĥ ‖2) ≤ Y with ` := f1l0/g0,

Assumption 4.1 (v) (neighborhood-compatible iterations) holds.

Proof. For given Y > 0, set AH = Y
√
` (1 − X)X/(^ − X) as well as XG =

√
Y and XH = dH − AH . Then

for Y > 0 su�ciently small, both XH > 0 and �(Ĝ, Amax + XG ) × �(Ĥ, AH + XH ) ⊆ U(dH ) hold.

Furthermore, (4.23) yields that Amax ≤ Y in Lemma 4.6. Since

min

{
Y−1/2

2' 
√
` (1 − X)X/(^ − X) + 2!‖%NLĤ ‖

,
2XHl0Y

−1/2

(!(Y +
√
Y) + 2' ) (

√
Y + 1)`

}
→∞

for Y → 0, we can guarantee that (4.15) holds for any given g0 > 0 by further reducing Y > 0.

The claim then follows from Lemma 4.6. �

5 numerical examples

We now illustrate the convergence and the e�ects of acceleration for a nontrivial example

from PDE-constrained optimization. Following [11], we consider as the nonlinear operator the

mapping from a potential coe�cient in an elliptic equation to the corresponding solution, i.e.,

for a Lipschitz domain Ω ⊂ ℝ3 , 3 ≤ 3 and - = . = !2(Ω), we set ( : G ↦→ I for I satisfying

(5.1)

{
ΔI + GI = 5 on Ω,

maI = 0 on mΩ.

Here 5 ∈ !2(Ω) is given; for our examples below we take 5 ≡ 1. The operator ( is uniformly

bounded for all G ≥ Y > 0 almost everywhere as well as completely continuous and twice Fréchet

di�erentiable with uniformly bounded derivatives. Furthermore, for any ℎ ∈ - , the application

∇( (G)∗ℎ of the adjoint Fréchet derivative can be computed by solving a similar elliptic equation;

see [11, Section 3]. For our numerical examples, we take Ω = (−1, 1) and approximate ( by a

standard �nite element discretization on a uniform mesh with 1000 elements with piecewise

constant G and piecewise linear I. We use the MATLAB codes accompanying [11] that can be

downloaded from [10].

The �rst example is the !1 �tting problem

(5.2) min

G ∈!2 (Ω)

1

U
‖( (G) − IX ‖!1 +

1

2

‖G ‖2
!2
,

for some noisy data IX ∈ !2(Ω) and a regularization parameter U > 0; see [11, Section 3.1] for

details. For the purpose of this example, we take IX as arising from random-valued impulsive
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� ∗ and di�erent values of W̃� ∗

noise applied to I† = ( (G†) for G†(C) = 2 − |C | and U = 10
−2

. This �ts into the framework

of problem (P) with � (H) = 1

U
‖H ‖!1 , � (G) = 1

2
‖G ‖2

!2
, and  (G) = ( (G) − IX . (Note that in

contrast to [11], we do not introduce a Moreau–Yosida regularization of � here.) Due to the

properties of ( , the gradient of  is uniformly bounded and Lipschitz continuous; cf. [13].

Hence, following Remark 4.5, we can expect that Assumption 4.1 (v) holds independent of the

initialization. Furthermore, � and � ∗ are convex and hence Assumption 4.1 (iii) is satis�ed for

W̃� , W̃� ∗ ≥ 0. This leaves Assumption 4.1 (iv), which amounts to quadratic growth condition of

(5.2) near the minimizer; cf. Proposition 3.2. Similar assumptions are needed for the convergence

of Newton-type methods, see, e.g., [21]. In the context of PDE-constrained optimization, they

are generally di�cult to prove a priori and have to be assumed. To set the initial step lengths,

we estimate as in [11] the Lipschitz constant ! by !̃ = max{1, ‖∇( ′(D0)D0‖/‖D0‖} ≈ 1. We then

set g0 = (4!̃)−1 and f0 = (2!̃)−1. The starting points are chosen as G0 ≡ 1 and H0 ≡ 0 (which are

not close to the expected saddle point). Figure 1 shows the convergence behavior ‖G# − Ĝ ‖2
!2

of

the primal iterates for # ∈ {1, . . . , #max} for #max = 10
4
, both without and with acceleration.

Since the exact minimizer to (5.2) is unavailable, here we take Ĝ := G2#max
as an approximation.

As can be seen, the convergence in the �rst case (corresponding to W̃� = 0) is at best O(# −1),
while the accelerated algorithm according to Theorem 4.3 with W̃� = 1

2
< W� indeed eventually

enters a region where the rate is O(# −2). If we replace � by its Moreau–Yosida regularization

�W , i.e., replace � ∗ by � ∗W := � ∗ + W
2
‖ · ‖2

.
, Theorem 4.4 is applicable for W̃� ∗ = W > 0. As Figure 2

shows for di�erent choices of W and constant step sizes g =
√
W̃� ∗/W̃� !̃−1, f = (W̃�/W̃� ∗)g , the

corresponding algorithm leads to linear convergence of the full iterates ‖D# − D̂‖2
!2×!2 with a

rate of (1 + 2W̃�g)−# (which depends on W by way of g).

We also consider the example of optimal control with state constraints mentioned in the

Introduction, i.e.,

(5.3) min

G ∈!2
1

2U
‖( (G) − I3 ‖2

!2
+ 1

2

‖G ‖2
!2

s. t. [( (G)] (C) ≤ 2 a. e. in Ω,
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see [11, Section 3.3] for details. Here we choose I3 = ( (G†) with G† as above, U = 10
−3

, and

2 = 0.68 such that the state constraints are violated for I3 . Again, this �ts into the framework

of problem (P) with � (H) = 1

2U
‖H − I3 ‖2

!2
+ X (−∞,2 ] (H), � (G) = 1

2
‖G ‖2

!2
, and  (G) = ( (G). With

the same parameter choice as in the last example, we again eventually observe the convergence

rate of O(# −2) for the accelerated algorithm (see Figure 3) as well as linear convergence if the

state constraints are replaced by a Moreau–Yosida regularization (see Figure 4).

6 conclusions

We have developed su�cient conditions on primal and dual step lengths that ensure (in some

cases global) convergence and higher convergence rates of the NL-PDHGM method for nons-

mooth nonconvex optimization. We have proved that usual acceleration rules give local$ (1/# 2)
convergence, justifying their use in previously published numerical examples [11]. Furthermore,

we have derived novel linear convergence results based on bounds on the initial step lengths.

Since our main derivations hold for general operators, one potential extension of the present

work is to combine its approach with that of [24] to derive block-coordinate methods for

nonconvex problems.
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a data statement for the epsrc

All data and source codes will be publicly deposited when the �nal accepted version of the

manuscript is submitted.

appendix a a small improvement of opial’s lemma

The earliest version of the next lemma is contained in the proof of [16, Theorem 1].

Lemma a.1 ([6, Lemma 6]). On a Hilbert space- , let ˆ- ⊂ - be closed and convex, and {G8}8∈ℕ ⊂ - .
Then G8 ⇀ sG weakly in - for some sG ∈ ˆ- if:

(i) 8 ↦→ ‖G8 − sG ‖ is nonincreasing for all sG ∈ ˆ- .

(ii) All weak limit points of {G8}8∈ℕ belong to ˆ- .

We can improve this result to the following

Lemma a.2. Let - be a Hilbert space, -̂ ⊂ - (not necessarily closed or convex), and {G8}8∈ℕ ⊂ - .
Also let �8 ∈ �(- ;- ) be self-adjoint and �8 ≥ Ŷ2� for some Ŷ ≠ 0 for all 8 ∈ ℕ. If the following
conditions hold, then G8 ⇀ sG weakly in - for some sG ∈ ˆ- :

(i) 8 ↦→ ‖G8 − Ĝ ‖�8 is nonincreasing for some Ĝ ∈ -̂ .

(ii) All weak limit points of {G8}8∈ℕ belong to ˆ- .

(iii) There exists � such that ‖�8 ‖ ≤ �2
for all 8 , and for any weakly convergent subsequence G8:

there exists �∞ ∈ �(- ;- ) such that �8:G → �∞G strongly in - for all G ∈ - .

Proof. For G ∈ cl conv ˆ- , de�ne ? (G) := lim inf8→∞ ‖G − G8 ‖�8 . Clearly (i) yields

? (Ĝ) = lim

8→∞
‖Ĝ − G8 ‖�8 ∈ [0,∞).

Using the triangle inequality and (iii), for any G, G ′ ∈ cl conv ˆ- moreover

0 ≤ ? (G) ≤ ? (G ′) + lim sup

8→∞
‖G ′ − G ‖�8 ≤ ? (G ′) +� ‖G ′ − G ‖ .(a.1)

Choosing G ′ = Ĝ we see from (a.1) that ? is well-de�ned and �nite. It is moreover bounded from

below. Given Y > 0, we can therefore �nd sGY ∈ cl conv ˆ- such that ? (sGY)2 − Y2 ≤ inf
cl conv -̂ ?

2
.

The norm ‖sGY ‖ is bounded from above for small values of Y: for the subsequence {G8: } realizing

the limes inferior in ? (sGY),

‖sGY ‖�8: ≤ ‖sGY − G
8: ‖�8: + ‖G

8: − Ĝ ‖�8: + ‖Ĝ ‖�8: ,

and consequently

Ŷ‖sGY ‖ ≤
(

inf

cl conv
ˆ-

?

)
+ Y + ‖G0 − Ĝ ‖�0

+� ‖Ĝ ‖,
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so there is a subsequence of ‖sGY ‖ weakly converging to some sG when Y ↘ 0. Without loss of

generality, by restricting the allowed values of Y, we may assume that sG is unique.

Let sG ′ be some weak limit of {G8}. By (ii), sG ′ ∈ -̂ . We have to show that sG = sG ′. For simplicity

of notation, we may assume that the whole sequence {G8} converges weakly to sG ′. By (iii), for

any G ∈ - , we have

(a.2) lim

8→∞
〈G, sGY − G8〉�8 = lim

8→∞

(
〈G, sGY − G8〉�∞ + 〈(�8 −�∞)G, sGY − G8〉

)
= 〈G, sGY − sG ′〉�∞ .

Moreover, for any _ ∈ (0, 1), we have sGY,_ := (1 − _)sGY + _sG ′ ∈ cl conv
ˆ- . Now, since sG is a

minimizer of ? on cl conv -̂ , we can estimate

(a.3) ? (sGY)2 − Y2 ≤ ? (sGY,_)2 = ? (sGY)2 + lim

8→∞

(
_2‖sGY − sG ′‖2�8 − 2_〈sGY − sG ′, sGY − G8〉�8

)
= ? (sGY)2 + (_2 − 2_)‖sGY − sG ′‖2�∞ .

In the second equality we have used (iii) and (a.2). Now, since _2 ≤ 2_, we obtain

0 ≤ (2_ − _2)‖sGY − sG ′‖2�∞ ≤ Y
2.

This implies sGY → sG ′ strongly as Y ↘ 0. But also sGY ⇀ sG . Therefore sG ′ = sG .

Finally, by �8 ≥ Ŷ� and (i), the sequence {G8} is bounded, so any subsequence contains a

weakly convergent subsequence. Since the limit is always sG , the whole sequence converges

weakly to sG . �

Remark a.3. The condition �8 ≥ Ŷ2� is automatically satis�ed if we replace (iii) by �8 → �∞ in

the operator topology with �∞ ≥ 2Ŷ2� .

appendix b reconstruction of the phase and amplitude of a
complex number

The purpose of this appendix is to verify Assumption 3.3 for a simpli�ed example related to the

MRI reconstruction examples from [22]. Consider

min

C,h∈ℝ

1

2

|I − C4 ih |2 +�0(C), where �0(C) :=
{
UC, C ≥ 0,

∞, C < 0.

for some data I ∈ ℂ and a regularization parameter U > 0. We point out that the following does

not depend on the speci�c structure of �0 for C ≥ 0, as long as it is convex and increasing. In

terms of real variables, this can be written in general saddle point form as

(b.1)  (C, h) :=
(
C cosh −<I
C sin h − =I

)
, � (C, h) := �0(C), and � ∗(_, `) := 1

2

(_2 + `2) .

To simplify the notiation, let G = (C, h) and H = (_, `).
We now make a case distinction based on the sign of the optimal Ĉ ≥ 0. We �rst consider the

case Ĉ > 0.
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Lemma b.1. Let D̂ ∈ �−1(0), where � (D) is de�ned in (2.1) for  , � , and � ∗ given by (b.1), and

suppose Ĉ > 0. Let ! > UĈ/4 as well as \ > 0 be arbitrary. Then Assumption 3.3 holds with ? = 2,

i.e., there exists Y > 0 such that for all G, G ′ ∈ �(Ĝ, Y),

(b.2) 〈[∇ (G ′) − ∇ (Ĝ)]∗Ĥ, G − Ĝ〉 ≥ \ ‖ (Ĝ) −  (G) − ∇ (G) (Ĝ − G)‖2 − !(h − h ′)2.

Proof. The saddle point condition 0 ∈ � (D̂) expands as (̂C, ĥ) ∈ m� ∗(_̂, ̂̀) and−[∇ (̂C, ĥ)]∗
(
_̂̂̀)
∈

m� (̂C, ĥ). Since

∇ (C, h) =
(
cosh −C sinh
sinh C cosh

)
and [∇ (C, h)]∗

(
_

`

)
=

(
_ cosh + ` sinh
`C cosh − _C sinh

)
,

the latter further expands as

(b.3) − (_̂ cos ĥ + ̂̀sin ĥ) ∈ m�0 (̂C), and ̂̀̂C cos ĥ = _̂̂C sin ĥ .

From the second equality, ̂̀cos ĥ = _̂ sin ĥ. Since m�0(C) = U for C > 0, multiplying the �rst

equality by cos ĥ and sin ĥ results in

(b.4) _̂ = −U cos ĥ, and ̂̀= −U sin ĥ .

We can thus write the left-hand side of (b.2) as

31 := 〈[∇ (G ′) − ∇ (Ĝ)]∗Ĥ, G − Ĝ〉
= _̂(cosh ′ − cos ĥ) (C − Ĉ) + ̂̀(sinh ′ − sin ĥ) (C − Ĉ)
+ _̂(−C ′ sinh ′ + Ĉ sin ĥ) (h − ĥ) + ̂̀(C ′ cosh ′ − Ĉ cos ĥ) (h − ĥ)

= −U
[
cos ĥ (cosh ′ − cos ĥ) (C − Ĉ) + sin ĥ (sinh ′ − sin ĥ) (C − Ĉ)
+ cos ĥ (−C ′ sinh ′ + Ĉ sin ĥ) (h − ĥ) + sin ĥ (C ′ cosh ′ − Ĉ cos ĥ) (h − ĥ)

]
= −U

[
cos ĥ (cosh ′ − cos ĥ) (C − Ĉ) + sin ĥ (sinh ′ − sin ĥ) (C − Ĉ)
+ C ′[sin ĥ cosh ′ − cos ĥ sinh ′] (h − ĥ)

]
.

Using the standard trigonometric identities

2 cos ĥ cosh ′ = cos(ĥ − h ′) + cos(ĥ + h ′), 2 sin ĥ sinh ′ = cos(ĥ − h ′) − cos(ĥ + h ′),(b.5a)

2 sin ĥ cosh ′ = sin(ĥ + h ′) + sin(ĥ − h ′), 2 cos ĥ sinh ′ = sin(ĥ + h ′) − sin(ĥ − h ′),(b.5b)

as well as cos
2 ĥ + sin2 ĥ = 1, this becomes

31 = −U
[
[cos(ĥ − h ′) − 1] (C − Ĉ) + C ′ sin(ĥ − h ′) (h − ĥ)

]
.

Using Taylor expansion, we obtain for some [1 and [2 between 0 and ĥ − h ′ that

31 = U

[
cos[1

2

(ĥ − h ′)2(C − Ĉ) − C ′ cos[2(ĥ − h ′) (h − ĥ)
]

= U

[
cos[1

2

(ĥ − h ′)2(C − Ĉ) + C ′ cos[2(h − ĥ)2 − C ′ cos[2(h − h ′) (h − ĥ)
]
.
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Note that cos[1, cos[2 ≈ 1 for h ′ close to ĥ. Using Cauchy’s inequality, we have for any V > 0

that

(b.6) 31 ≥ U
[
cos[1

2

(ĥ − h ′)2(C − Ĉ) + (1 − V)C ′ cos[2(h − ĥ)2 −
cos[2

4V
C ′(h − h ′)2

]
.

We also have
cos[1
2
(ĥ − h ′)2(C − Ĉ) ≥ −|C − Ĉ | [(h − ĥ)2 + (h − h ′)2] and hence

31 ≥ U
[
(1 − V)C ′ cos[2 − |C − Ĉ |

]
(h − ĥ)2 − U

[
cos[2

4V
C ′ + |C − Ĉ |

]
(h − h ′)2.

Choosing Y, X > 0 small enough, V < 1 large enough, and C ′ ∈ � (̂C, Y), we can thus ensure that

(b.7) 31 ≥ X\ (h − ĥ)2 − !(h − h ′)2.

We now turn to the right-hand side of (b.2), which we write as

�2 :=  (Ĝ) −  (G) − ∇ (G) (Ĝ − G)

=

(̂
C cos ĥ − C cosh − cosh (̂C − C) + C sinh (ĥ − h)
Ĉ sin ĥ − C sinh − sinh (̂C − C) − C cosh (ĥ − h)

)
=

(̂
C (cos ĥ − cosh) + C sinh (ĥ − h)
Ĉ (sin ĥ − sinh) − C cosh (ĥ − h)

)
.

Thus

‖�2‖2 = 2̂C2(1 − cos ĥ cosh − sin ĥ sinh) + C2(h − ĥ)2

+ 2CĈ (ĥ − h) [(cos ĥ − cosh) sinh − (sin ĥ − sinh) cosh] .

Using the trigonometric identities (b.5) and Taylor expansion, it follows that

‖�2‖2 = 2̂C2 [1 − cos(ĥ − h)] + C2(h − ĥ)2 − 2CĈ (ĥ − h) sin(ĥ − h)
≤ Ĉ2(ĥ − h)2 + C2(h − ĥ)2 − 2CĈ (ĥ − h)2 + 2CĈ (ĥ − h)4

= (̂C − C)2(ĥ − h)2 + 2CĈ (ĥ − h)4.

By taking Y > 0 small enough and G = (C, h) ∈ �(Ĝ, Y), we thus obtain for any X > 0 that

‖�2‖2 ≤ X (ĥ − h)2. We now obtain from (b.7) that

31 ≥ \ ‖�2‖2 − !(h − h ′)2,

which is exactly (b.2). �

The case of Ĉ = 0 is complicated by the fact that ĥ is then no longer unique. We therefore

cannot expect convergence of G8 = (C8 , h8) in the sense studied in this work; we would instead

need to consider convergence to the entire solution set; cf. [25] for such an abstract approach

for convex problems. However, under additional assumptions on the data I, we can proceed as

before. The next lemma lays the groundwork for showing that the algorithm actually converges

locally to ĥ = hI if CI > 0.

31



Lemma b.2. Suppose Ĉ = 0 and ĥ = hI for I = CI4
ihI

with CI > 0. Then the conclusions of Lemma b.1

hold for some Y > 0 and any \, ! > 0.

Proof. First we deduce from the optimality condition  (̂C, ĥ) ∈ m� ∗(_̂, ̂̀) that

_̂ = −<I = −CI coshI and ̂̀= −=I = −CI sinhI,

which is analogous to (b.4). Using the assumption that ĥ = hI , we can then proceed as in the

proof of Lemma b.1 to derive the estimate (b.6) with CI in place of U , which for V = 1 reads

31 ≥ CI
[
cos[1

2

C (ĥ − h ′)2 − cos[2

4

C ′(h − h ′)2
]
.

Now we have for any Z > 0 that

(ĥ − h ′)2 = (h − ĥ)2 + (h − h ′)2 − 2(h − ĥ) (h − h ′) ≥ (1 − Z ) (h − ĥ)2 − (Z −1 − 1) (h − h ′)2

and therefore

31 ≥
cos[1

2

(1 − Z )CIC (h − ĥ)2 − CI
[
cos[2

4

C ′ + cos[1

2

(Z −1 − 1)C
]
(h − h ′)2.

As in the proof of Lemma b.1, we also have that ‖�2‖2 = C2(ĥ − h)2. Now taking Z ∈ (0, 1) and

Y > 0 small enough, we can force 0 = Ĉ ≤ C ≤ Y su�ciently small that
1

2
(1 − Z ) cos[1CIC > \C2

for any given \ > 0. Likewise, we can guarantee

CI
[ 1
4

C ′ cos[2 +
Z −1 − 1

2

C cos[1
]
≤ !

for any Z > 0 provided C ′, C ≥ 0 are small enough. We therefore obtain that 31 ≥ \ ‖�2‖2 −!(h −
h ′)2 and hence the claim. �
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