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Abstract

We study the solution of minimax problems minx maxy G(x) + 〈K(x), y〉 − F ∗(y) in finite-dimensional
Hilbert spaces. The functionals G and F ∗ we assume to be convex, but the operator K we allow to be non-
linear. We formulate a natural extension of the modified primal-dual hybrid gradient method (PDHGM),
originally for linear K, due to Chambolle and Pock. We prove the local convergence of the method,
provided various technical conditions are satisfied. These include in particular the Aubin property of
the inverse of a monotone operator at the solution. Of particular interest to us is the case arising from
reformulation of regularisation problems minx ‖f−T (x)‖2/2+αR(x) with the operator T non-linear. For
such problems, we show that our general local convergence result holds when the noise level of the data f
is low, and the regularisation parameter α is correspondingly small. We verify the numerical performance
of the method by applying it to problems from magnetic resonance imaging (MRI) in chemical engineering
and medicine. The specific applications are in diffusion tensor imaging (DTI) and MR velocity imaging.
These numerical studies show very promising performance.

Mathematics subject classification: 49M29, 90C26, 92C55.
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1. Introduction

Let us be given convex, proper, lower semicontinuous functionals G : X → R and F ∗ : Y → R on
finite-dimensional Hilbert spaces X and Y . We then wish to solve the minimax problem

min
x

max
y

G(x) + 〈K(x), y〉 − F ∗(y), (1.1)

where we allow the operator K ∈ C2(X;Y ) to be non-linear. If K were linear, this problem could
be solved, among others, by the modified primal-dual hybrid gradient method (PDHGM) due to
Chambolle and Pock [8]. In Section 2 of this paper, we derive two extensions of the method for
non-linear K. The first, simpler, variant consists of the updates

xi+1 := (I + τG)−1(xi − τ [∇K(xi)]∗yi),

xi+1
ω := xi+1 + ω(xi+1 − xi),
yi+1 := (I + σF ∗)−1(yi + σK(xi+1

ω )).

The second variant linearises K(xi+1
ω ). Through a technical analysis in Section 3, we prove local

convergence of both variants of the method to critical points (x̂, ŷ) of the system (1.1). To do this, in
addition to trivial conditions familiar from the linear case, we need two non-trivial estimates. For one,
defining the set-valued map

Hx̂(x, y) :=

(
∂G(x) +∇K(x̂)∗y

∂F ∗(y)−∇K(x̂)x− cx̂,

)
, where cx̂ := ∇K(x̂)x̂−K(x̂),
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we require that the inverse H−1
x̂ is pseudo-Lipschitz [1], a condition also known as the Aubin property

[24]. The second, more severe, estimate is that the dual variable ŷ has to be small in the range of the
non-linear part of K. In Section 4, we study the satisfaction of these estimates for G, F ∗ and K of
forms most relevant to image processing applications that we study numerically in Section 5.

Problems of the form (1.1) with non-linear K arise, for instance, from various inverse problems in
magnetic resonance imaging (MRI). As a motivating example, we introduce the following problem
from velocity-encoded MRI. Other applications include the modelling of the Stejskal-Tanner equation
in diffusion tensor imaging (DTI). We will discuss this application in more detail in Section 5. In
velocity-encoded MRI, we seek to reconstruct a complex image v = r exp(iϕ) ∈ L1(Ω;C) from sub-
sampled k-space (Fourier transform) data f . In this application we are chiefly interested in the phase
ϕ, and eventually the difference of phases of two suitably acquired images, as the velocity of an imaged
fluid can be encoded into the phase difference [16]. Let us denote by S the sub-sampling operator, and
by F the Fourier transform. We observed in [3] that instead of, let’s say, defining total variation (TV)
for complex-valued functions v similarly to vector-valued functions, and solving

min
v

1

2
‖f − SFv‖2 + αTV(v), (1.2)

it may be better to regularise r and ϕ differently. This leads us to the problem

min
r,ϕ

1

2
‖f − T (r, ϕ)‖+ αrRr(r) + αϕRϕ(ϕ). (1.3)

Here Rr and Rϕ are suitable regularisation functionals for the amplitude map r and phase map ϕ,
respectively, of a complex image v = r exp(iϕ). Correspondingly, we define the operator T by

T (r, ϕ) := SF
(
x 7→ r(x) exp(iϕ(x))

)
.

Observe that we may rewrite

1

2
‖f − T (r, ϕ)‖2 = max

λ

(
〈T (r, ϕ), λ〉 − 〈f, λ〉 − 1

2
‖λ‖2

)
.

Generally also the regularisation terms can be written in terms of an indicator function and a bilinear
part in the form

αrRr(r) = max
ψ
〈Krr, ψ〉 − δCr(ψ).

In case of total variation regularisation, Rr(r) = TV(r), we have Cr = {ψ | supx ‖ϕ(x)‖ ≤ αr} and
Kr = ∇. With these transformations, the problem (1.3) can be written in the form (1.1) with G ≡ 0,

K(r, ϕ) = (T (r, ϕ),Krr,Kϕϕ),

and

F ∗(λ, ψr, ψϕ) = 〈f, λ〉+
1

2
‖λ‖2 + δCr(ψr) + δCr(ψϕ).

Observe that F ∗ is strongly convex in the range of the non-linear part of K, corresponding to T . Under
exactly this kind of structural assumptions, along with strict complementarity and non-degeneracy
assumptions from the solution, we can show in Section 4 that H−1

x̂ possesses the Aubin property
required for the general convergence theorem, Theorem 3.2, to hold. Moreover, in this case the condition
on ŷ being small in the non-linear range of K corresponds to ‖f − T (r̂, ϕ̂)‖ being small. This can be
achieved under low noise and a small regularisation parameter.

Computationally (1.3) is significantly more demanding than (1.2), as it is no longer a convex problem
due to the non-linearity of T . One option for locally solving problems of the form (1.3) is the Gauss-
Newton scheme. In this, one linearises T at the current iterate, solves the resulting convex problem, and
repeats until a stopping criterion is satisfied. Computationally such schemes combining inner and outer
iterations are expensive, unless one can solve the inner iterations to a very low accuracy. Moreover,
the Gauss-Newton scheme is not guaranteed to converge even locally – a fact that we did occasionally

2



observe when performing the numerical experiments for Section 5. The scheme is however very useful
when combined with iterative regularisation, and behaves in that case well for almost linear K [4, 25].
It can even be combined with Bregman iterations for contrast enhancement [2]. Unfortunately, our
operators of interest are not almost linear. Another possibility for the numerical solution of (1.3) would
be an infeasible semismooth Newton method, along the lines of [15], extended to non-linear operators.
However, second-order methods quickly become prohibitively expensive as the image size increases,
unless one can employ domain decomposition techniques – something that to our knowledge has not
yet been done for semismooth Newton methods relevant to total variation type regularisation. Based
on this, we find it desirable to start developing more efficient and provably convergent methods for
non-convex problems on large data sets. We now study one possibility.

2. The basics

We describe the proposed method, Algorithm 2.1, in Section 2.1 below. To begin its analysis, we study
in Section 2.2 the application of the Chambolle-Pock method to linearisations of our original problem
(1.1). We then derive in Section 2.3 basic descent estimates that motivate a general convergence
result, Theorem 2.1, stated in Section 2.4. This result will form the basis of the proof of convergence
of Algorithm 2.1. Our task in the following Section 3 will be to to derive the estimates required by
Theorem 2.1. We follow the theorem with a collection of remarks in Section 2.5.

2.1. The proposed method

Let X and Y be finite-dimensional Hilbert spaces. Suppose we are given two convex, proper, lower-
semicontinuous functionals G : X → R and F ∗ : X → R, and a possibly non-linear operator K ∈
C2(X;Y ). We are interested in solving the problem

min
x

max
y

G(x) + 〈K(x), y〉 − F ∗(y). (P)

The necessary first-order optimality conditions for (x̂, ŷ) to solve (P) may be derived as

−[∇K(x̂)]∗ŷ ∈ ∂G(x̂), (2.1a)

K(x̂) ∈ ∂F ∗(ŷ). (2.1b)

If K is linear, these conditions reduce to

−K∗ŷ ∈ ∂G(x̂), (2.2a)

Kx̂ ∈ ∂F ∗(ŷ). (2.2b)

The modified primal-dual hybrid gradient method (PDHGM) due to Chambolle and Pock [8], solves
this problem by iterating for σ, τ > 0 satisfying στ‖K‖2 < 1 the system

xi+1 := (I + τG)−1(xi − τK∗yi), (2.3a)

xi+1
ω := xi+1 + ω(xi+1 − xi), (2.3b)

yi+1 := (I + σF ∗)−1(yi + σKxi+1
ω ). (2.3c)

As such, the method is closely related to a large class of methods including in particular the Uzawa
method and the alternating direction method of multipliers (ADMM). For an overview, we recommend
[11].

In case the reader is wondering, the order of the primal (x) and dual (y) updates in (2.3) is reversed
from the original presentation in [8]. The reason is that reordered the updates can, as discovered in
[14], be easily written in a proximal point form. We will exploit this. Indeed, (2.3) already contains two
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proximal point sub-problems, specifically the computation of the resolvents (I+τG)−1 and (I+σF ∗)−1.
We recall that they may be written as

(I + τG)−1(x) = arg min
x′

{
‖x′ − x‖2

2τ
+G(x′)

}
.

For the good performance of (2.3), it is crucial that these sub-problems can be solved efficiently. Usually
in applications, they turn out to be simple projections or linear operations. Resolvents reducing to
small pointwise quadratic semidefinite problems have also been studied [28, 26].

Observe the correspondence between the (merely necessary) optimality conditions (2.1) for the
problem (P) with non-linear K and the optimality conditions (2.2) for the linear case. It suggests that
we could obtain a numerical method for solving (2.1) by replacing the applications K∗yi and Kxi+1

ω in
(2.3) by [∇K(xi)]∗yi and K(xi+1

ω ). We would thus linearise the dual application, but keep the primal
application non-linear. We do exactly that and propose the following method.

Algorithm 2.1 (Exact NL-PDHGM). Choose ω ≥ 0 and τ, σ > 0. Repeat the following steps until a
convergence criterion is satisfied.

xi+1 := (I + τG)−1(xi − τ [∇K(xi)]∗yi), (2.4a)

xi+1
ω := xi+1 + ω(xi+1 − xi), (2.4b)

yi+1 := (I + σF ∗)−1(yi + σK(xi+1
ω )). (2.4c)

In practise we require ω = 1. Exact conditions on the step length parameters τ and σ will be derived
in Section 3 along the course of the proof of local convergence; in the numerical experiments of Section
5, in practise we reweigh τ and σ dynamically to satisfy

στ

(
sup

k=1,...,i
‖∇K(xk)‖2

)
< 1.

We will base the convergence proof on the following fully linearised method, where we replace the
application K(xi+1

ω ) also by a linearisation.

Algorithm 2.2 (Linearised NL-PDHGM). Choose ω ≥ 0 and τ, σ > 0. Repeat the following steps
until a convergence criterion is satisfied.

xi+1 := (I + τG)−1(xi − τ [∇K(xi)]∗yi), (2.5a)

xi+1
ω := xi+1 + ω(xi+1 − xi), (2.5b)

yi+1 := (I + σF ∗)−1(yi + σ[K(xi) +∇K(xi)(xi+1
ω − xi)]). (2.5c)

In numerical practise, as we will see in Section 5, the convergence rate of both variants of the
algorithm is the same. Algorithm 2.1 is however faster in terms of computational time, as it needs less
operations per iteration in the evaluation of K(xi+1

ω ) versus K(xi) +∇K(xi)(xi+1
ω − xi).

2.2. Linearised problem and proximal point formulation

To start the convergence analysis of Algorithm 2.1, we study the application of the standard Chambolle-
Pock method (2.3) to linearisations of problem (P) at a base point x̄ ∈ X. Specifically, we define

Kx̄ := ∇K(x̄), and cx̄ := K(x̄)−Kx̄x̄.

Then we consider
min
x

max
y
G(x) + 〈cx̄ +Kx̄x, y〉 − F ∗(y). (2.6)
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This problem is of the form required by the method (2.3), if we write F ∗x̄ (y) = F (y)− 〈cx̄, y〉. Indeed,
we may write the updates (2.3) for this problem as

xi+1 := (I + τG)−1(xi − τK∗x̄yi), (2.7a)

xi+1
ω := xi+1 + ω(xi+1 − xi), (2.7b)

yi+1 := (I + σF ∗)−1(yi + σ(cx̄ +Kx̄x
i+1
ω )). (2.7c)

Observe how (2.5c) corresponds to (2.7c) with x̄ = xi.

From now on we use the general notation

u = (x, y),

and define

Hx̄(u) :=

(
∂G(x) +K∗x̄y

∂F ∗(y)−Kx̄x− cx̄

)
as well as

Mx̄ :=

(
I/τ −K∗x̄
−ωKx̄ I/σ

)
.

With these operators, 0 ∈ Hx̄(û) characterises solutions û to (2.6), and ui+1 computed by (2.7) is
according to [14] characterised as the unique solution to the proximal point problem

0 ∈ Hx̄(ui+1) +Mx̄(ui+1 − ui). (2.8)

In fact, returning to the original problem (P), the optimality conditions (2.1) may be written

0 ∈ Hx̂(û),

and (2.8) with x̄ = xi characterises the update (2.5) of Linearised NL-PDHGM (Algorithm 2.2). For
the update (2.4) of Exact NL-PDHGM (Algorithm 2.1), we derive the characterisation

0 ∈ Hxi(u
i+1) +Dxi(u

i+1) +Mxi(u
i+1 − ui) (2.9)

with

Dx̄(x, y) :=

(
0

Kx̄xω + cx̄ −K(xω)

)
=

(
0

K(x̄) +∇K(x̄)(xω − x̄)−K(xω)

)
and xω := x+ω(x− x̄). We therefore study next basic estimates that can be obtained from (2.8) with
an additional general discrepancy term νi. These form the basis of our convergence proof.

2.3. Basic descent estimate

We now fix ω = 1 and study solutions ui+1 to the general system

0 ∈ Hx̄(ui+1) + νi +Mx̄(ui+1 − ui) (2.10)

In Lemma 2.1 below, we show that ui+1 is better than ui in terms of distance to the “perturbed local
solution” ũi solving 0 ∈ Hx̄(ũi) + νi. Here we use the word perturbation to refer to νi, and local refers
to the linearisation point x̄. Observe that ũi depends on both ui and ui+1 in case of Algorithm 2.1,
resp. (2.9). In Section 3 we will lessen these dependencies, and convert the statement to be in terms
of local (unperturbed) optimal solutions ûi, satisfying 0 ∈ Hx̄(ûi).

For the statement of the lemma, we use the notation

〈a, b〉M := 〈a,Mb〉, and ‖a‖M :=
√
〈a, a〉M ,
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and denote by PV the linear projection operator into a subspace V of Y . We also say that F ∗ is
strongly convex on the subspace V with constant γ > 0 if

F ∗(y′)− F ∗(y) ≥ 〈z, y′ − y〉+
γ

2
‖PV (y′ − y)‖2 for all y, y′ ∈ Y and z ∈ ∂F ∗(y).

This is equivalent to saying that the operator ∂F ∗ is strongly monotone on V in the sense that

〈∂F ∗(y′)− ∂F ∗(y), y′ − y〉 ≥ γ

2
‖PV (y′ − y)‖2 for all y, y′ ∈ Y.

Lemma 2.1. Let ui ∈ X × Y and x̄ ∈ X. Suppose ui+1 ∈ X × Y solves (2.10) for some νi ∈ X × Y ,
and that ũi ∈ X × Y is a solution to

0 ∈ Hx̄(ũi) + νi. (2.11)

Then
‖ui − ũi‖2Mx̄

≥ ‖ui+1 − ui‖2Mx̄
+ ‖ui+1 − ũi‖2Mx̄

. (D̃2-loc)

If F ∗ is additionally strongly convex on a subspace V of Y with constant γ > 0, then we have

‖ui − ũi‖2Mx̄
≥ ‖ui+1 − ui‖2Mx̄

+ ‖ui+1 − ũi‖2Mx̄
+
γ

2
‖PV (yi+1 − ỹi)‖2. (D̃2-loc-γ)

Proof. Since the operator Hx̄ is monotone, we have

〈(Hx̄(ui+1) + νi)− (Hx̄(ũi) + νi), ui+1 − ũi〉 = 〈Hx̄(ui+1)−Hx̄(ũi), ui+1 − ũi〉 ≥ 0. (2.12)

It thus follows from (2.10) and (2.11) that

0 ≥ 〈ui+1 − ũi, ui+1 − ui〉Mx̄ .

Consequently

0 ≥ ‖ui+1 − ui‖2Mx̄
+ 〈ui − ũi, ui+1 − ui〉Mx̄

= ‖ui+1 − ui‖2Mx̄
− ‖ui − ũi‖2Mx̄

+ 〈ui − ũi, ui+1 − ũi〉Mx̄ ,

= ‖ui+1 − ui‖2Mx̄
− ‖ui − ũi‖2Mx̄

+ ‖ui+1 − ũi‖2Mx̄
+ 〈ui − ui+1, ui+1 − ũi〉Mx̄ ,

= ‖ui+1 − ui‖2Mx̄
− ‖ui − ũi‖2Mx̄

+ ‖ui+1 − ũi‖2Mx̄
.

(2.13)

This yields (D̃2-loc). The strong convexity estimate (D̃2-loc-γ) is proved analogously, using the fact
that instead of (2.12), we have the stronger estimate

〈Hx̄(ui+1)−Hx̄(ũi), ui+1 − ũi〉 ≥ γ

2
‖PV (yi+1 − ỹi)‖2.

Following [18], see also [23], if νi = 0, then it is not difficult to show from (D̃2-loc) the convergence
of the iterates {ui}∞i=0 generated by (2.10) to a solution of the linearised problem (2.6). The estimate

(D̃2-loc) also forms the basis of our proof of local convergence of Algorithm 2.1 and Algorithm 2.2.
However, we have to improve upon it to take into account that x̄ = xi changes on each iteration in
(2.4), and that the dual update in (2.4c) is not linearised. The consequence of these changes is that
also the weight operator Mxi of the local norm ‖ · ‖Mxi

changes on each iteration, as do the local

perturbed solution ũi and the local (unperturbed) solution ûi. Taking these differences into account,
it turns out that the correct estimate that we have to derive is (D̂) in the next theorem. There we have
improved (D̃2-loc) by these changes and additionally, due to proof-technical reasons, by the removal
of the squares on the norms.
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2.4. Idea of convergence proof

Theorem 2.1. Suppose that the operator K ∈ C1(X;Y ) and the constants σ, δ > 0 satisfy for some
Θ > θ > 0 the bounds

θ2I ≤Mxi ≤ Θ2I, (i = 1, 2, 3, . . .). (C-M)

Let the sequence {ui}∞i=1 solve (2.10) for some {νi}∞i=1 satisfying

lim
i→∞

νi = 0. (C-νi)

Suppose, moreover, that for some constant ζ > 0 and points {ûi}∞i=1 we have the estimate

‖ui − ûi‖Mxi
≥ ζ‖ui+1 − ui‖Mxi

+ ‖ui+1 − ûi+1‖Mxi+1 . (D̂)

Then the iterates ui → û for some û = (x̂, ŷ) that solves (2.1).

Proof. It follows from (D̂) that
∞∑
i=1

‖ui+1 − ui‖Mxi
<∞.

Consequently, an application of (C-M) shows that

∞∑
i=1

‖ui+1 − ui‖ ≤ Θ
∞∑
i=1

‖ui+1 − ui‖Mxi
<∞. (2.14)

This says that {ui}∞i=1 is a Cauchy sequence, and hence converges to some û.

Let
zi := νi +Mxi(u

i+1 − ui).

Since νi → 0 by (C-νi), and

‖Mxi(u
i+1 − ui)‖ ≤ Θ‖ui+1 − ui‖ → 0,

it follows that zi → 0. By (2.10), we moreover have −zi ∈ Hxi(u
i+1). Using K ∈ C1(X;Y ) and the

outer semicontinuity of the subgradient mappings ∂G and ∂F ∗, we see that

lim sup
i→∞

Hxi(u
i+1) ⊂ Hx̂(û).

Here the lim sup is in the sense of an outer limit [24], consisting of the limits of all converging sub-
sequences of elements vi ∈ Hxi(u

i+1). As by (2.10) we have −zi ∈ Hxi(u
i+1), it follows in particular

that 0 ∈ Hx̂(û). This says says precisely that (2.1) holds.

2.5. A few remarks

Remark 2.1 (Reference points). Observe that we did not need to assume the reference points {ûi}∞i=1

in the above proof to solve anything. We did not even need to assume boundedness, which follows
from (D̂) and (C-M).

Remark 2.2 (Gauss-Newton). Let νi = −Mxi(u
i+1 − ui) and x̄ = xi. In fact, we can even replace

Mxi by the identity I. Then ui+1 solves the local linearised problem (2.6), that is

0 ∈ Hxi(u
i+1),

and Lemma 2.1 together with Theorem 2.1 show the convergence of the Gauss-Newton method to
a critical point of (P), provided νi → 0. That is, either the iterates diverge, or the Gauss-Newton
method converges to a solution.
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Remark 2.3 (Varying over-relaxation parameter). We have assumed that ω = 1. It is however
possible to accommodate a varying parameter ωi → 1 through νi. In particular, one can easily show
the convergence (albeit merely sublinear) of the accelerated algorithm of [8] this way. In this variant,
dependent on the strong convexity of F or G, one updates the parameters at each step as ωi =
1/
√

1 + 2γτ i, τ i+1 = ωiτi, and, σi+1 = σi/τ i for γ the factor of strong convexity of either F ∗ or G.

Remark 2.4 (Interpolated PDHGM for non-linear operators). Our analysis, forthcoming and to this
point, applies to a yet further variant of Algorithm 2.1. Here we replace K(xi+1

ω ) in (2.4c) by

(1 + ω)K(xi+1)− ωK(xi) = K(xi) + (1 + ω)(K(xi+1)−K(xi)) ≈ K(xi+1
ω ).

For this method

νi =
(
0,∇K(xi)(xi+1

ω − xi)− (1 + ω)(K(xi+1)−K(xi))
)

= (1 + ω)Dxi(x
i+1).

Remark 2.5 (An alternative update). It is also interesting to consider using [∇K(xiω)]∗ instead of
[∇K(xi)]∗ in (2.4a). From the point of view of the convergence proof, this however introduces major
difficulties, as (xi+1, yi+1) no longer depends on just (xi, yi), but also on xi−1 through xiω. This kind
of dependence also makes analysis using the original ordering of the PDHGM updates in [8] difficult,
but is avoided by the reordering due to [14] that we employ in (2.3) and (2.4).

3. Detailed analysis of the non-linear method

We now proceed to verifying the assumptions of Theorem 2.1 for Algorithm 2.1 and Algorithm 2.2,
provided our initial iterate is close enough to a solution which satisfies certain technical conditions,
to be derived along the course of the proof. We will begin with the formal statement of our running
assumptions in Section 3.1, after which we prove some auxiliary results in Section 3.2. Our first task
in verifying the assumptions of Theorem 2.1 is to show that the discrepancy term νi = Dxi(u

i+1)→ 0.
This we do in Section 3.3. Then in Section 3.4 we begin deriving the estimate (D̂) by analysing the
switch to the new local norm at the next iterate. In Section 3.5 we introduce and study Lipschitz
type estimates on H−1

x̂ . We then then use these in Section 3.6 and Section 3.7, respectively, to remove
the squares from the estimate (2.13) and to bridge from one local solution to the next one. The
Lipschitz type estimates themselves we will derive in Section 4 to follow. We state and prove our main
convergence theorem, combining all the above-mentioned estimates, in Section 3.8. This we follow by
a collection of remarks in Section 3.9.

3.1. General assumptions

We assume that ω = 1 and study the sequence of iterates generated by solving

0 ∈ Si(ui+1) := Hxi(u
i+1) +Di(ui+1) +Mxi(u

i+1 − ui),

where we expect the discrepancy functional

Di : X × Y → {0} × Y, (i = 1, 2, 3, . . .),

to satisfy for any fixed i, C, ε > 0, the existence of ρ > 0 such that

‖Di(u)‖ ≤ ε‖xi − x‖, (‖xi − x‖ ≤ ρ, ‖ui‖ ≤ C). (A-Di)

For brevity, we denote
νi := Di(ui+1),

and take ũi as a solution of the perturbed linearised problem

0 ∈ Hxi(ũ
i) + νi,
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and ûi as a solution of the linearised problem

0 ∈ Hxi(û
i).

We fix R > 0 such that there exists a solution û to 0 ∈ Hx̂(û) with ‖û‖ ≤ R/2. Then, regarding the
operator K : X → Y and the step length parameters σ, τ > 0, we require that

K ∈ C2(X;Y ) and στ

(
sup
‖x‖≤R

‖∇K(x)‖2
)
< 1. (A-K)

We denote by L2 the Lipschitz factor of x 7→ ∇K(x) on the closed ball B(0, R) ⊂ X, namely

L2 := sup
‖x‖≤R

‖∇2K(x)‖

in operator norm. By (A-K), the supremum is bounded. Finally, we denote by PNL the orthogonal
projection into the “non-linear range” of K. Precisely, we define the subspace

YL := {z ∈ Y | the map x 7→ 〈z,K(x)〉 is linear},

and define PNL as the projection into YNL := Y ⊥L .

3.2. Auxiliary results

The assumption (A-K) guarantees in particular that the weight operators Mxi are uniformly bounded,
as we state in the next lemma. For Θ and θ as in the lemma, we also define the uniform condition
number

κ := Θ/θ.

Observe that κ→ 1 as τ, σ → 0.

Lemma 3.1. Suppose (A-K) holds. Then there exist Θ ≥ θ > 0 such that

θ2I ≤Mx ≤ Θ2I, (‖x‖ ≤ R).

Proof. This follows immediately from the fact that ∇K is bounded on B(0, R).

In case of Algorithm 2.2, showing (A-Di) is trivial because νi = 0. For Algorithm 2.1, we show this
in the next lemma.

Lemma 3.2. Suppose (A-K) holds, and let Di = Dxi, i.e., suppose {ui}∞i=1 is generated by Algorithm
2.1. Then (A-Di) holds. The same is the case with Di = 0, i.e., Algorithm 2.2.

Proof. To show (A-Di), let us define

Qx̄(x) := K(x̄) +∇K(x̄)(x− x̄)−K(x),

so that
Dx̄(x, y) = (0, Qx̄(x+ ω(x− x̄))).

Thanks to K being twice continuously differentiable, for any C > 0 there exist L > 0 and ρ1 > 0 such
that

‖Qx̄(x)‖ ≤ L‖x− x̄‖2, (‖x− x̄‖ ≤ ρ1, ‖x̄‖ ≤ C).

In particular, minding that

[xi+1 + ω(xi+1 − xi)]− xi = (1 + ω)(xi+1 − xi),

setting ρ2 := ρ1/(1 + ω), we find

‖Dxi(u
i+1)‖ ≤ L(1 + ω)2‖xi+1 − xi‖2, (‖xi+1 − xi‖ ≤ ρ2, ‖xi‖ ≤ C).

Choosing ρ ∈ (0, ρ2) small enough, (A-Di) follows.
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We will occasionally use the auxiliary mapping E defined in the following lemma. The motivation
behind it is that if v ∈ Hx̄′(u) then v + E(u; ū, ū′) ∈ Hx̄(u).

Lemma 3.3. Suppose (A-K) holds. Let ū, ū′ satisfy ‖ū‖, ‖ū′‖ ≤ R. Define

E(u) := E(u; ū, ū′) :=

(
(Kx̄ −Kx̄′)

∗y
(Kx̄′ −Kx̄)x+ cx̄′ − cx̄

)
. (3.1)

Then E is Lipschitz with Lipschitz factor `E ≤ L2‖ū− ū′‖, and

‖E(u)‖ ≤ L2‖x̄− x̄′‖
(
‖PNLy‖+ ‖x− x̄′‖+ ‖x̄− x̄′‖

)
. (3.2)

Proof. The fact that E is Lipschitz with the claimed factor is easy to see; indeed

E(u)− E(u′) =

(
(Kx̄ −Kx̄′)

∗(y − y′)
(Kx̄′ −Kx̄)(x− x′)

)
.

Since (A-K) holds and ‖x̄‖, ‖x̄′‖ ≤ R, as we have assumed, we have

‖Kx̄ −Kx̄′‖ ≤ L2‖x̄− x̄′‖, (3.3)

It follows that
‖E(u)− E(u′)‖ ≤ L2‖x̄− x̄′‖‖u− u′‖.

That is, the claimed Lipschitz estimate holds.

Regarding (3.2), we may rewrite

E(u) =

(
(Kx̄ −Kx̄′)

∗y
(Kx̄′ −Kx̄)(x− x̄′)−Qx̄(x̄′)

)
.

As in the proof of Lemma 3.2, the quantity

Qx̄(x̄′) = (Kx̄ −Kx̄′)x̄
′ + cx̄ − cx̄′ = K(x̄) +∇K(x̄)(x̄′ − x̄)−K(x̄′)

satisfies for some L′2 > 0 that
‖Qx̄(x̄′)‖ ≤ L′2‖x̄− x̄′‖2.

In fact, since ‖x̄‖, ‖x̄′‖ ≤ R, we may choose L′2 = L2 . We then observe that

(Kx̄ −Kx̄′)
∗y = (Kx̄ −Kx̄′)

∗PNLy.

Thus
‖E(u)‖ ≤ ‖Kx̄ −Kx̄′‖

(
‖PNLy‖+ ‖x− x̄′‖

)
+ L2‖x̄− x̄′‖2.

Using (3.3), we get (3.2).

3.3. Convergence of the discrepancy term

The convergence νi → 0 required by Theorem 2.1 follows from the following simple result that we will
also use later on.

Lemma 3.4. Suppose (A-Di), (A-K) hold, and let u1 ∈ X × Y and ui+1 ∈ S−1
i (0), (i = 1, . . . , k− 1).

If (D̂) holds for i = 1, . . . , k − 1, and

‖u1 − û‖ ≤ R/4 and ‖u1 − û1‖ ≤ Rζ/(4κ), (3.4)

then

‖uk‖ ≤ R, (3.5a)

‖uk − u1‖ ≤ (κ/ζ)‖u1 − û1‖, and (3.5b)

‖ûk − uk‖ ≤ κ‖u1 − û1‖. (3.5c)
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Proof. Choose ε > 0, and let ρ > 0 be prescribed by (A-Di) for C = R and ε. Since (D̂) holds, we have

‖ui − ûi‖Mxi
≥ ζ‖ui+1 − ui‖Mxi

+ ‖ui+1 − ûi+1‖Mxi+1 , (i = 1, . . . , k − 1).

Taking j ∈ {1, . . . , k}, this gives

‖u1 − û1‖Mx1 ≥ ζ
j−1∑
i=1

‖ui+1 − ui‖Mxi
+ ‖uj − ûj‖M

xj
. (3.6)

By (3.4), we have ‖u1‖ ≤ 3R/4. Making the induction assumption

sup
i=1,...,j

‖ui‖ ≤ R, (3.7)

we get using Lemma 3.1 and (3.6) that

Θ‖u1 − û1‖ ≥ ‖u1 − û1‖Mx1 ≥ θζ
j−1∑
i=1

‖ui+1 − ui‖ ≥ θζ‖uj − u1‖. (3.8)

This gives
‖uj‖ ≤ ‖uj − u1‖+ ‖u1‖ ≤ (κ/ζ)‖u1 − û1‖+ ‖u1‖.

Using (3.4), we thus have ‖uj‖ ≤ R, so that the induction assumption (3.7) is satisfied for j. Taking
j = k, (3.7) shows (3.5a) and (3.8) shows (3.5b). Furthermore, using (3.6) and Lemma 3.1, we get

κ‖u1 − û1‖ ≥ ‖uk − ûk‖.

This shows (3.5c).

Lemma 3.5. Under the assumptions of Lemma 3.4, νi → 0. In particular, the conditions (C-M) and
(C-νi) of Theorem 2.1 hold.

Proof. Firstly, applying (3.5a) and Lemma 3.1, we see that (C-M) holds. Secondly, by (3.6) we find that
‖ui+1 − ui‖ → 0. Thus eventually ‖ui+1 − ui‖ < ρ. Using (A-Di), we now see that νi = Di(ui+1)→ 0.
This proves (C-νi).

3.4. Switching local norms: estimates from strong convexity

We now finally begin deriving the descent inequality (D̂) that we so far have assumed. As a first step,
we set x̄ = xi in (D̃2-loc-γ), and use the extra slack that strong convexity gives to replace Mxi by
Mxi+1 in the term ‖ui+1 − ũi‖2Mxi

.

Lemma 3.6. Suppose (A-K) holds, and that F ∗ is strongly convex on the sub-space YNL with constant
γ > 0. Choose ζ1 ∈ (0, 1). If

‖ui − û‖ ≤ R/4 and ‖ui − ũi‖ ≤ min{
√
γ(1− ζ1)θ/(

√
2L2κ), R/(4κ)}, (3.9)

then
‖ui − ũi‖2Mxi

≥ ζ1‖ui+1 − ui‖2Mxi
+ ‖ui+1 − ũi‖2Mxi+1

. (D̃2-M)

Proof. Using (3.9) and ‖û‖ ≤ R/2, we have

‖ui‖ ≤ ‖ui − û‖+ ‖û‖ ≤ 3R/4. (3.10)

The estimate (D̃2-loc-γ) holds by Lemma 2.1. From this it follows that

‖ui+1 − ui‖ ≤ κ‖ũi − ui‖.
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Using (3.9) and (3.10), we thus get

‖ui+1‖ ≤ ‖ui+1 − ui‖+ ‖ui‖ ≤ κ‖ũi − ui‖+ ‖ui‖ ≤ R.

As both ‖ui‖, ‖ui+1‖ ≤ R, by (A-K) we have again

‖Kxi+1 −Kxi‖ ≤ L2‖xi+1 − xi‖.

This allows us to deduce

‖ui+1 − ũi‖2Mxi
− ‖ui+1 − ũi‖2Mxi+1

= −2〈yi+1 − ỹi, (Kxi+1 −Kxi)(x
i+1 − x̃i)〉

= −2〈yi+1 − ỹi, PNL(Kxi+1 −Kxi)(x
i+1 − x̃i)〉

≥ −2‖PNL(yi+1 − ỹi)‖‖Kxi+1 −Kxi‖‖xi+1 − x̃i‖
≥ −2L2‖PNL(yi+1 − ỹi)‖‖xi+1 − xi‖‖xi+1 − x̃i‖.

Using Young’s inequality we therefore have

‖ui+1 − ũ‖2Mxi
− ‖ui+1 − ũ‖2Mxi+1

+ γ‖PNL(yi+1 − ỹi)‖2 ≥ −2L2
2

γ
‖ui+1 − ui‖2‖ui+1 − ũi‖2.

By (D̃2-loc-γ) it follows

‖ui − ũ‖2Mxi
≥ ‖ui+1 − ui‖2Mxi

+ ‖ui+1 − ũ‖2Mxi+1
− 2L2

2

γ
‖ui+1 − ui‖2‖ui+1 − ũi‖2. (3.11)

An application of Lemma 3.1 and (D̃2-loc-γ) shows that

‖ui+1 − ũi‖2 ≤ θ−2‖ui+1 − ũi‖2Mxi
≤ κ2‖ui − ũi‖2, and

‖ui+1 − ui‖2 ≤ θ−2‖ui+1 − ui‖2Mxi
.

Using (3.9), therefore

2L2
2

γ
‖ui+1 − ui‖2‖ui+1 − ũi‖2 ≤ 2L2

2κ
2

γθ2
‖ui+1 − ui‖2Mxi

‖ui − ũi‖2 ≤ (1− ζ1)‖ui+1 − ui‖2Mxi
.

Applying this to (3.11) yields (D̃2-M).

3.5. Aubin property of the inverse

In [23], the Lipschitz continuity of the equivalent of the map H−1
x̂ was used to prove strong convergence

properties of basic proximal point methods for maximal monotone operators. In order to remove the
squares from (D̃2-M), and to bridge with ũi between the local solutions ûi and ûi+1, we follow the
same rough ideas. We however replace the basic form of Lipschitz continuity by a weaker version that
is localised in the graph of Hx̂. Namely, with 0 ∈ Hx̂(û), we assume that the map H−1

x̂ has the Aubin
property at 0 for û [24, 1]. This is also called metric regularity.

Generally, the inverse S−1 of a set-valued map S : X ⇒ Y having the Aubin property at ŵ for û
means that GraphS is locally closed, and there exist ρ, δ, ` > 0 such that

inf
v :w∈S(v)

‖u− v‖ ≤ `‖w − S(u)‖, (‖u− û‖ ≤ δ, ‖w − ŵ‖ ≤ ρ). (3.12)

We denote the infimum over valid constants ` by `S−1(ŵ|û), or `S−1 for short, when there is no
ambiguity about the point (ŵ, û). For bijective single-valued S the Aubin property reduces to Lipschitz-
continuity of the inverse S−1. For single-valued Lipschitz S, we also use the notation `S for the (local)
Lipschitz factor.

We can translate the Aubin property of H−1
x̂ to H−1

xi
, based on the following general lemma. This

is needed in order to perform estimation at an iterate ui, only assuming the Aubin property of Hx̂ at
a known solution û.
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Lemma 3.7. Suppose S−1 has the Aubin property at 0 for û. Let T (u) = S(u) + ∆(u) for a single-
valued Lipschitz map ∆ : X → Y . There exists a constant ¯̀ such that if `∆ < ¯̀, then T−1 has the
Aubin property at ∆(û) for û, and `T−1 = `S−1.

Proof. The proof is a minor modification of the main result of [10]. In that paper, it is proved that
T has the Aubin property if we assume that S−1 has locally closed values, and that ∆ is strictly
stationary at û. This means that for every ε > 0, there exists δ > 0 such that

‖∆(u)−∆(u′)‖ ≤ ε‖u− u′‖, (‖û− u‖, ‖û− u′‖ < δ).

Obviously, S−1 has closed values if GraphS is locally closed, which our definition of the Aubin property
includes. Moreover, the strict stationary is only used in (3) of [10] to show that ∆ is Lipschitz with
arbitrary constant ε > 0 in a neighbourhood of û. This follows from our assumptions as well, setting
¯̀ = ε. That `T−1 = `S−1 , i.e., we can take arbitrary ` > `S−1 in (3.12), follows from the remark after
the proof of the main theorem in [10].

Lemma 3.8. Suppose H−1
x̂ has the Aubin property at 0 for û, and that (A-K) holds. Given `∗ > `H−1

x̂
,

there exists δ ∈ (0, R/2) and ρ > 0 such that if

‖ui − û‖ ≤ δ,

then
inf

v :w∈Hxi (v)
‖u− v‖ ≤ `∗‖w −Hxi(u)‖, (‖u− û‖ ≤ δ, ‖w‖ ≤ ρ). (3.13)

Remark 3.1. The property (3.13) is formally the Aubin property of H−1
xi

at 0 for û, but cannot
strictly be called that, because generally 0 6∈ Hxi(û).

Proof. We use Lemma 3.7 on S = Hx̂, and ∆ = E(·; û, ui), where E is defined in (3.1). By Lemma
3.3, ∆ is Lipschitz with factor `∆ ≤ L2δ, so that `∆ < ¯̀ provided δ < ¯̀/L2. Thus by Lemma 3.7, we
have

inf
v :w∈Hxi (v)

‖u− v‖ ≤ `∗‖w −Hxi(u)‖, (‖u− û‖ ≤ δ′, ‖w −∆(û)‖ ≤ ρ′) (3.14)

for some ρ′, δ′ > 0. Referring to Lemma 3.3, we have

‖∆(û)‖ ≤ L2‖x̂− xi‖
(
‖PNLŷ‖+ 2‖x̂− xi‖

)
.

For δ > 0 small enough, we can thus force ‖∆(û)‖ ≤ ρ′/2. Thus ‖w‖ ≤ ρ guarantees ‖w −∆(û)‖ ≤ ρ′
for ρ < ρ′/2. This proves (3.13).

The next lemma bounds step lengths near a solution.

Lemma 3.9. Suppose that (A-Di) and (A-K) hold, and that H−1
x̂ has the Aubin property at 0 for û.

Let ûi ∈ H−1
xi

(0) and choose

ũi ∈ arg min{‖ûi − v‖ | v ∈ H−1
xi

(−νi)}.

Given ε > 0, there exists δ > 0 such that if

‖ui − û‖ ≤ δ, and ‖ûi − û‖ ≤ δ, (3.15)

then

‖ui‖ ≤ 3R/4, (3.16a)

‖ui − ui+1‖ ≤ ε, (3.16b)

‖ûi − ũi‖ ≤ ε, (3.16c)

‖ui − ũi‖ ≤ ε, (3.16d)

‖û− ũi‖ ≤ ε, and (3.16e)

‖νi‖ ≤ ε. (3.16f)
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Proof. First of all, since ‖û‖ ≤ R/2, (3.16a) trivially holds by choosing δ ∈ (0, R/4). To bound
‖ui − ui+1‖, we return to the algorithmic approach for computing ui+1 = (xi+1, yi+1) ∈ S−1

i (0).
Indeed, since Di(ui+1) = (0, vi) ∈ X × Y for some vi = vi(xi+1), we have

xi+1 := (I + τG)−1(xi − τ [∇K(xi)]∗yi), (3.17a)

xi+1
ω := xi+1 + ω(xi+1 − xi), (3.17b)

yi+1 := (I + σF ∗)−1(yi + σ[K(xi) +Kxi(x
i+1
ω − xi) + vi]). (3.17c)

From (3.17a) we see that xi+1 solves for x the problem

min
x

{
‖x− xi + τK∗xiy

i‖2 + τG(x)
}
. (3.18)

Therefore
‖xi+1 − xi + τK∗xiy

i‖2 + τG(xi+1) ≤ ‖x̂− xi + τK∗xiy
i‖2 + τG(x̂),

which leads to

‖xi+1 − xi‖2 ≤ ‖x̂− xi‖2 + τ
(
G(x̂)−G(xi+1) + 〈(x̂− xi) + (xi − xi+1),K∗xiy

i〉
)
.

We have −K∗x̂ŷ ∈ ∂G(x̂). Therefore

G(x̂)−G(xi+1) ≤ 〈(x̂− xi) + (xi − xi+1),−K∗x̂ŷ〉,

so that

‖xi+1 − xi‖2 = ‖x̂− xi‖2 + τ〈x̂− xi,K∗xiy
i −K∗x̂ŷ〉+ τ〈xi − xi+1,K∗xiy

i −K∗x̂ŷ〉.

An application of Young’s inequality gives

1

2
‖xi+1 − xi‖2 ≤ 3

2
‖x̂− xi‖2 + τ2‖K∗xiy

i −K∗x̂ŷ‖
2. (3.19)

The right hand side of (3.19) can be made arbitrarily close to zero by application of (A-K) and (3.15).
That is, for any ε′ > 0, there exists δ′ > 0 such that if (3.15) holds for some δ ∈ (0, δ′), then

‖xi+1 − xi‖ ≤ ε′. (3.20)

We now have to bound ‖yi+1−yi‖ through (3.17c). Similarly to (3.18), yi+1 solves for y the problem

min
y

{
‖y − yi + σ[K(xi) +Kxi(x

i+1
ω − xi) + vi]‖2 + σF (x)

}
. (3.21)

Proceeding as above, using the fact that K(x̂) ∈ ∂F ∗(ŷ) we get

1

2
‖yi+1 − yi‖2 ≤ 3

2
‖ŷ − yi‖2 + σ2‖K(xi) +Kxi(x

i+1
ω − xi) + vi −K(x̂)‖2.

We approximate

‖K(xi) +Kxi(x
i+1
ω − xi) + vi −K(x̂)‖ ≤ ‖K(xi)−K(x̂)‖+ ω‖Kxi(x

i+1 − xi)‖+ ‖vi‖. (3.22)

By taking δ, ε > 0 small enough, which we may do, we can make the term ‖K(xi)−K(x̂)‖ arbitrarily
small by application of (A-K) and (3.15). Likewise, we can make the term ‖Kxi(x

i+1 − xi)‖ approach
zero by application (A-K), (3.15) and (3.20). Finally, the term ‖vi‖ = ‖νi‖ we can be make small by
additionally using (A-Di). Indeed, choosing ε′′ > 0, and employing (A-Di), we have

‖νi‖ ≤ ε′′‖xi − xi+1‖, (3.23)

provided ‖xi − xi+1‖ is small enough. This can be guaranteed by (3.20) above. Thus, choosing ε′ > 0
small enough, we can make ‖νi‖ arbitrarily small. This proves (3.16f), and shows that (3.22) can be
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made arbitrarily small. In summary, there exists δ′′ ∈ (0, δ′) such that if (3.15) holds for δ ∈ (0, δ′′),
then

‖yi+1 − yi‖2 + ‖xi+1 − xi‖2 ≤ ε2.

This proves (3.16b).

We now move on to the proof of (3.16e). By Lemma 3.8, for any `∗ > `H−1
x̂

, there exist ρ̄, δ̄ > 0 such

that
inf

v :w∈Hxi (v)
‖u− v‖ ≤ `∗‖w −Hxi(u)‖, (‖u− û‖ ≤ δ̄, ‖w‖ ≤ ρ̄).

With w = −νi, v = ũi and u = ûi, we thus have

‖ũi − ûi‖ ≤ `∗‖νi‖,

provided that ‖ûi − û‖ ≤ δ̄ and ‖νi‖ ≤ ρ̄. The former follows from (3.15) and taking δ small
enough. The latter follows from (3.20), (3.23) and choosing ε′ > 0 small enough. In fact, taking
ε′ ≤ min{ε/(`∗ε′′), ρ̄/ε′′}, we also show that ‖ũi − ûi‖ ≤ ε. This completes the proof of (3.16c).

Finally, to show (3.16d) and (3.16e) we simply bound

‖ui − ũi‖ ≤ ‖û− ui‖+ ‖û− ũi‖, and

‖û− ũi‖ ≤ ‖û− ûi‖+ ‖ûi − ũi‖.

Then we use (3.15)–(3.16c), assuming that these estimates hold to the higher accuracy ε/2 instead of
ε. By the arguments above, this can be done by making δ > 0 small enough.

3.6. Removing squares

With the Aubin property assumed, we are now able to remove the squares from (D̃2-M). Later in
Section 4 we will prove the Aubin property for important classes of G, F ∗ and K.

Lemma 3.10. Suppose (A-K) holds, and that H−1
x̂ has the Aubin property at 0 for û. Pick `∗ > `H−1

x̂
.

Then there exist δ > 0 such that if (D̃2-M) holds for ζ1 > 0, and (3.15) holds for δ, then

‖ũi − ui‖Mxi
≥ ζ2‖ui+1 − ui‖Mxi

+ ‖ũi − ui+1‖Mxi+1 (D̃-M)

for ζ2 := 1− 1/
√

1 + ζ1/(`∗Θ2)2.

Proof. Choosing δ > 0 small enough and applying Lemma 3.8, we have for some ρ′, δ′ > 0 that

inf
v :w∈Hxi (v)

‖u− v‖ ≤ `∗‖w −Hxi(u)‖, (‖u− û‖ ≤ δ′, ‖w‖ ≤ ρ′). (3.24)

Lemma 3.9 provides a further upper bound on δ such that if (3.15) holds with such a δ, then

‖ui‖ ≤ 3R/4, (3.25a)

‖ui − ui+1‖ ≤ ρ′/(2Θ), (3.25b)

‖νi‖ ≤ ρ′/2, and (3.25c)

‖ũi − û‖ ≤ δ′. (3.25d)

We have ũi ∈ H−1
xi

(−νi) and ui+1 ∈ H−1
xi

(w) for w = Mxi(u
i− ui+1)− νi. Moreover, ui+1 is unique,

as can be seen from the strictly convex problems (3.18), (3.21) for calculating ui+1. Thus H−1
xi

(w) is
single-valued. By (3.25a), (A-K) and Lemma 3.1, we have Mxi ≤ Θ2I. Therefore, using (3.25b) and
(3.25c), we have

‖w‖ ≤ ‖Mxi(u
i − ui+1)‖+ ‖νi‖ ≤ ρ′.
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Minding (3.25d), we may thus apply (3.24) to get

‖ũi − ui+1‖Mxi+1 ≤ Θ‖ũi − ui+1‖
≤ `∗Θ‖(Mxi(u

i − ui+1)− νi) + νi‖
≤ `∗Θ2‖ui − ui+1‖Mxi

.

(3.26)

Squaring this and applying it to (D̃2-M), we get for λ :=
√

1 + ζ1/(`∗Θ2)2 that

λ‖ũi − ui+1‖Mxi+1 ≤ ‖ũi − ui‖Mxi
. (3.27)

By application of (D̃2-loc), minding that λ > 1, we also have

‖ũi − ui‖Mxi
= λ‖ũi − ui‖Mxi

− (λ− 1)‖ũi − ui‖Mxi

≤ λ‖ũi − ui‖Mxi
− (λ− 1)‖ui+1 − ui‖Mxi

.
(3.28)

Together, (3.27) and (3.28) give (D̃-M) for ζ2 = 1− 1/λ.

3.7. Bridging local solutions

In order to finalise the proof of (D̂), we will now use the perturbed local linearised solution ũi to bridge
between the local linearised solutions ûi and ûi+1 . For this we again need the Aubin property of H−1

û .

Lemma 3.11. Assume that (A-Di) and (A-K) hold, and that H−1
x̂ has the Aubin property at 0 for û.

Suppose, moreover, that (D̃-M) holds for any choice of ũi ∈ H−1
xi

(−νi), and that

`H−1
x̂
κL2‖PNLŷ‖ < ζ2. (3.29)

Under these conditions there exist δ > 0 and ζ3 ∈ (0, 1] such that if ui+1 ∈ S−1
i (0) and ûi ∈ H−1

xi
(0)

are given and (3.15) holds with this δ, then there exists ûi+1 ∈ H−1
xi+1(0) satisfying

‖ûi − ui‖Mxi
≥ ζ3‖ui+1 − ui‖Mxi

+ ‖ûi+1 − ui+1‖Mxi+1 . (3.30)

That is, the descent inequality (D̂) holds.

Proof. Suppose there exists η ∈ (0, ζ2), independent of i, and some ũi ∈ H−1
xi

(−νi) and ûi+1 ∈ H−1
xi+1(0),

such that the double sensitivity estimate

‖ũi − ûi+1‖Mxi+1 + ‖ũi − ûi‖Mxi
≤ η‖ui − ui+1‖Mxi

(3.31)

holds. Then we may proceed as follows. We recall that by (D̃-M), we have

‖ũi − ui‖Mxi
≥ ζ2‖ui+1 − ui‖Mxi

+ ‖ũi − ui+1‖Mxi+1 .

Two applications of the triangle inequality give

‖ûi − ui‖Mxi
≥
(
ζ2‖ui+1 − ui‖Mxi

− ‖ũi − ûi‖Mxi
− ‖ũi − ûi+1‖Mxi+1

)
+ ‖ûi+1 − ui+1‖Mxi+1 .

Employing the sensitivity estimate (3.31), we now get (3.30) with ζ3 := (ζ2 − η) > 0.

We still have to show (3.31). We have −νi ∈ Hxi(ũ
i), so E − νi ∈ Hxi+1(ũi) for

E := E(ũi;xi+1;xi) :=

(
(Kxi+1 −Kxi)

∗ỹi

(Kxi −Kxi+1)x̃i + cxi − cxi+1

)
.
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With ûi ∈ H−1
xi

(0) fixed, we pick

ũi ∈ arg min{‖ûi − v‖ | v ∈ H−1
xi

(−νi)}
and

ûi+1 ∈ arg min{‖ũi − v‖ | v ∈ H−1
xi+1(0)}.

We also pick `∗ > `H−1
x̂

. Choosing δ > 0 small enough and applying Lemma 3.8, we have for some

ρ′, δ′ > 0 that

inf
v :w∈Hxi (v)

‖u− v‖ ≤ `∗‖w −Hxi(u)‖, (‖u− û‖ ≤ δ′, ‖w‖ ≤ ρ′). (3.32)

With w = −νi, v = ũi and u = ûi, we thus have

‖ũi − ûi‖Mxi
≤ `∗Θ‖νi‖, (3.33)

provided that ‖ûi−û‖ ≤ δ′ and ‖νi‖ ≤ ρ′. These conditions are guaranteed by Lemma 3.9 and choosing
ε, δ > 0 small enough.

With ε, δ > 0 small, applying (3.15) and (3.16b), we can also make ‖û − ui+1‖ small enough that
another application Lemma 3.8 gives

inf
v :w∈Hxi+1 (v)

‖u− v‖ ≤ `∗‖w −Hxi+1(u)‖, (‖u− û‖ ≤ δ′, ‖w‖ ≤ ρ′).

We may assume that ρ′, δ′ > 0 are the same as in (3.32). With w = 0, v = ûi+1 and u = ũi, we obtain

‖ũi − ûi+1‖Mxi+1 ≤ `∗Θ(‖E‖+ ‖νi‖), (3.34)

provided ‖ûi − û‖ ≤ δ′. This condition was already verified for (3.33).

To start approximating ‖E‖ and ‖νi‖, we use Lemma 3.3 with x̄ = xi+1 and x̄′ = xi, to obtain

‖E‖ ≤ L2‖xi − xi+1‖
(
‖PNLỹ

i‖+ ‖x̃i − xi‖+ ‖xi − xi+1‖
)
. (3.35)

We approximate
‖PNLỹ

i‖ ≤ ‖PNLŷ‖+ ‖PNL(ŷ − ỹi)‖,
and

‖x̃i − xi‖ ≤ ‖xi − x̂‖+ ‖x̂− x̃i‖.
Inserting these estimates back into (3.35), it follows for some constant C > 0 that

‖E‖ ≤ L2‖xi − xi+1‖A, (3.36)

where
A := ‖PNLŷ‖+ C‖û− ũi‖+ ‖ui − û‖+ ‖xi − xi+1‖.

Using (A-Di), we can for any ε > 0 find δ′′ > 0 such that

2‖νi‖ ≤ εL2‖xi − xi+1‖, (‖ui − ui+1‖ < δ′′).

The condition ‖ui − ui+1‖ < δ′′ can be guaranteed through Lemma 3.9 and choosing δ > 0 small
enough. Thus, using (3.33), (3.34) and (3.36), we have

‖ũi − ûi+1‖Mxi+1 + ‖ũi − ûi‖Mxi
≤ 2`∗Θ‖νi‖+ `∗ΘL2‖xi − xi+1‖A
≤ `∗ΘL2‖xi − xi+1‖(A+ ε)

≤ `∗κL2(A+ ε)‖ui − ui+1‖Mxi
.

In order to prove (3.31), we thus need to force η := `∗κL2(A+ ε) < ζ2. As ε > 0 and `∗ > `H−1
x̂

were

arbitrary, it suffices to show `H−1
x̂
κL2A < ζ2. Minding (3.29), we have

0 < ζ ′ := ζ2 − `H−1
x̂
κL2‖PNLŷ‖.

Thus it remains to force

C‖û− ũi‖+ κ‖ui − û‖+ ‖xi − xi+1‖ < ζ ′/(`H−1
x̂
κL2).

By Lemma 3.9, this holds for δ > 0 small enough. Thus (3.31) holds, and we may conclude the
proof.

17



3.8. Combining the estimates

Lemma 3.12. Suppose that (A-K) holds, and that given any choice of û1 ∈ H−1
x1 (0), (D̂) holds for

some ûi+1 ∈ H−1
ui+1(0), (i = 1, . . . , k − 1). Suppose, moreover, that 0 ∈ Hx̂(û) and that H−1

x̂ has the
Aubin property at 0 for û. In this case, given ε > 0, there exists δ1 > 0, independent of k, such that if

‖u1 − û‖ ≤ δ1, (3.37)

then there exists some û1 ∈ H−1
x1 (0) such that the following bounds hold:

‖uk − û‖ ≤ ε, (3.38a)

‖uk − ûk‖ ≤ ε, and (3.38b)

‖ûk − û‖ ≤ ε. (3.38c)

Proof. First of all, we require that δ1 ∈ (0, R/4), so that ‖u1‖ ≤ 3R/4. We then show that

‖û1 − u1‖ ≤ cδ1. (3.39)

for a choice of û1 ∈ H−1
x1 (0) and some constant c > 0. Indeed, letting w := E(û;u1, û) ∈ Hx1(û) and

choosing δ1 ∈ (0, δ) for δ small enough, by Lemma 3.8 we have

inf
û1∈H−1

x1 (0)
‖û− û1‖ ≤ `‖w‖.

Referring to Lemma 3.3, there exists δ′ > 0 such that if δ1 ∈ (0, δ′), and (3.37) holds, then `‖w‖ <
L2(R+ 1)‖u1 − û‖. Consequently we see that (3.39) by estimating

‖û1 − u1‖ ≤ ‖u1 − û‖+ ‖û− û1‖ ≤ (1 + L2(R+ 1))δ1.

Choosing δ1 ≤ δ′1 := min{δ, δ′, R/4, Rζ/(4κc)}, Lemma 3.4 now shows that

‖uk − u1‖ ≤ (κ/ζ)‖û1 − u1‖, and (3.40)

‖uk − ûk‖ ≤ κ‖û1 − u1‖. (3.41)

Thus, using (3.37), (3.39), and (3.40), we get

‖uk − û‖ ≤ ‖uk − u1‖+ ‖u1 − û‖ ≤ (κc/ζ + 1)δ1.

Likewise (3.37), (3.39), and (3.41) give

‖ûk − uk‖ ≤ κ‖û1 − u1‖ ≤ cκδ1.

Finally, these two estimates give

‖ûk − û‖ ≤ ‖ûk − uk‖+ ‖uk − û‖ ≤ Cδ1

for C := 1 + κc(1 + 1/ζ). Choosing δ1 ≤ min{δ′1, ε/C}, we get (3.38).

The following two theorems form our main convergence result.

Theorem 3.1. Suppose that (A-Di) and (A-K) hold, ω = 1, and that F ∗ is strongly convex on the
subspace YNL. Let û solve 0 ∈ Hx̂(û), and R > 0 be such that ‖û‖ ≤ R/2. Suppose H−1

x̂ has the Aubin
property at 0 for û with

`H−1
x̂
κL2‖PNLŷ‖ < 1− 1/

√
1 + 1/(2`2

H−1
x̂

Θ4). (3.42)

Under these conditions, there exist δ1 > 0 and ζ ∈ (0, 1), such that if the initial iterate u1 ∈ X × Y
satisfies

‖u1 − û‖ ≤ δ1, (3.43)

and we let ui+1 ∈ S−1
i (0), (i = 1, 2, 3, . . .), then (D̂) holds, i.e.,

‖ui − ũi‖Mxi
≥ ζ‖ui+1 − ui‖Mxi

+ ‖ui+1 − ũi+1‖Mxi+1 , (i = 1, 2, 3, . . .).
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Proof. We prove the claim inductively using Lemma 3.12. Indeed, we let δ > 0 be small enough for
(3.15) to be satisfied for Lemma 3.10 and Lemma 3.11, and for (3.9) to be satisfied for Lemma 3.6.
Then we pick ζ1 = 1/2 in Lemma 3.6, so that

ζ2 = 1− 1/
√

1 + 1/(2(`∗)2Θ4).

Choosing `∗ > `H−1
x̂

small enough, (3.42) then guarantees (3.29). Inductively assuming that (D̂) holds

for i = 1, . . . , k − 1, we use Lemma 3.12 to show that

‖uk − û‖ ≤ δ and ‖ûk − û‖ ≤ δ,

provided δ1 > 0 is small enough. We then use Lemma 3.6 to show that the squared local norm descent
inequality (D̃2-M) holds. Next we apply Lemma 3.10 to show that unsquared local descent inequality
(D̃-M) holds. Finally, we employ Lemma 3.11 to derive (D̂) for i = k. As k was arbitrary, we may
conclude the proof.

Theorem 3.2. Suppose the conditions of Theorem 3.1 hold for û = (x̂, ŷ) and u1 = (x1, y1). In that
case there exists δ1 > 0 such that provided the initialisation u1 satisfies ‖u1− û‖ ≤ δ1, then the iterates
(xi, yi) produced by Algorithm 2.1 or Algorithm 2.2 converge to a solution u∗ = (x∗, y∗) of (2.1), i.e.,
a critical point of the problem (P).

Proof. We pick δ1 > 0 small enough that (3.43) is satisfied, and that Lemma 3.12 guarantees the
assumption (3.4) of Lemma 3.5. Then Theorem 3.1 and Lemma 3.5 verify the assumptions of the
general convergence result Theorem 2.1, from which the claim follows.

3.9. Some remarks

Remark 3.2 (Convergence to another solution). In principle the solution u∗ discovered in Theorem
3.2 may be distinct from û, also solving (2.1).

Remark 3.3 (Small non-linear dual). The condition (3.42) forces ‖PNLŷ‖ to be small. As we will
further discuss in Section 4.3, in the applications that we are primarily interested in, involving solving
minx ‖f −T (x)‖2/2 +αR(x), this this corresponds to ‖f −T (x̂)‖ being small. This says that the noise
level of the data f and regularisation parameter α have to be low.

Remark 3.4 (Inexact solutions). It is possible to accommodate for inexact solutions ui+1 in the
proof, if we relax the requirement Di(ui) = 0 to Di(ui) → 0, ‖Di(ui)‖ ≤ ε, and take ûi to solve
0 ∈ Hxi(ũ

i) + Di(ui). Since this involves significant additional technical detail that complicates the
already very technical proof, we have opted not to include this generalisation.

Remark 3.5 (Switch of local metric). The shift to the new local metric Mxi+1 , done in Lemma 3.6
using the strong convexity of F ∗ on YNL, can also be done similarly to the removal of squares in
Lemma 3.10. This suggests that the strong convexity might not be necessary. In practise we however
need the strong convexity for the Lipschitz continuity, so there is little benefit from that. Moreover, the
required strong convexity exists in case of regularisation problems of the form discussed in Remark 3.3.
As we are primarily interested in applying the method to such problems, assuming strong convexity
is natural.

4. Lipschitz estimates

We now need to show the Aubin property of the inverse H−1
xi

of the set-valued map Hxi , and to
bound ‖PNLŷ‖. We will calculate `H−1

xi
(0|û) through the Mordukhovich criterion, which brings us to

the topic of graphical differentiation of set-valued maps. We will introduce the necessary tools in
Section 4.1, following [24]; another treatment also covering the infinite-dimensional case can be found
in [20]. Afterwards we derive bounds on `H−1

xi
(0|û) for some general class of maps in Section 4.2. These

will then be used in the following Section 4.3 and Section 4.4 to study important special cases. These
include in particular total variation (TV) and total generalised variation (TGV2) [5] regularisation.
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4.1. Differentials of set-valued maps

Let S : X ⇒ Y be a set-valued map between finite-dimensional Hilbert spaces X,Y . The graph of S
is

GraphS := {(x, y) | y ∈ H(x)}.

The outer limit at x is defined as

lim sup
x′→x

S(x) := {y ∈ Y | there exist xi → x and yi ∈ S(xi) with yi → y}.

The inner limit is defined as

lim inf
x′→x

S(x) := {y ∈ Y | for every xi → x there exist yi ∈ S(xi) with yi → y}.

Pick x ∈ X and y ∈ S(x). The graphical derivative of S at x for y, denoted DS(x|y) : X ⇒ Y , is
defined by

DS(x|y)(w) = lim sup
τ↘0, w′→w

S(x+ τw′)− y
τ

.

Geometrically, GraphDS(x|y) is the tangent cone to GraphS at (x, y). If S is single-valued and
differentiable, then DS(x|y) = ∇S(x) for y = S(x). Observe that DS(x|y) satisfies

z ∈ DS(x|y)(w) ⇐⇒ w ∈ D(S−1)(y|x)(z).

There are also various other definitions of differentials for set-valued maps. In particular, the regular
derivative of S at x for y, denoted D̂S(x|y) : X ⇒ Y , is defined by

D̂S(x|y) = lim inf
(xi,yi)→(x,y)

Graph(DS(xi|yi)).

The importance of the regular derivative to us lies in following. The map S is said to be graphically
regular at (x, y) if D̂S(x|y) = DS(x|y). We stress that this correspondence does not hold generally. If
it does, we may express the coderivative D∗S(x|y) as

D∗S(x|y) = [DS(x|y)]∗+, (4.1)

where
H∗+(w) := {z | 〈z, q〉 ≤ 〈w, v〉 when v ∈ H(q)}.

Geometrically, GraphD∗S(x|y) is a normal cone to GraphS at (x, y) rotated such that it becomes
adjoint to DS(x|y) in the sense (4.1). Without graphical regularity, the coderivative has to be defined
through other means [24]; we will however always assume graphical regularity.

In our forthcoming analysis, we will occasionally employ the tangent and normal cones to a convex
set A at y. These are denoted TA(y) and NA(y), respectively.

Finally, with the above concepts defined, we may state a version of the Mordukhovich criterion [24,
Theorem 9.40] sufficient for our purposes.

Theorem 4.1. Let S : X ⇒ Y . Suppose GraphS is locally closed at (x, y) and

D∗S(x|y)(0) = {0}. (4.2)

Then
`S(x|y) = |D∗S(x|y)|+, (4.3)

where the outer norm
|H|+ := sup

‖w‖≤1
sup

z∈H(w)
‖z‖.
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We want to translate this result to be stated in terms of DS(x|y) for S−1, since the graphical
derivative is easier to obtain than the coderivative.

Proposition 4.1. Suppose S is graphically regular and GraphS locally closed at (x, y). Then

`S−1(y|x) ≤ sup{‖z‖ | 〈z, q〉 ≤ ‖v‖ when q ∈ DS(x|y)(v)}. (4.4)

Proof. From (4.1), we have that z ∈ D∗S−1(y|x)(w) if

〈z, q〉 ≤ 〈w, v〉 when (q, v) satisfy v ∈ DS−1(y|x)(q).

By the symmetricity of graphical differentials for S and S−1, this is the same as

〈z, q〉 ≤ 〈w, v〉 when (q, v) satisfy q ∈ DS(x|y)(v),

Thus, if (4.2) is satisfied, Theorem 4.1 gives

`S−1(y|x) = sup
‖w‖≤1

sup{‖z‖ | z ∈ D∗S−1(y|x)(w)}.

= sup
‖w‖≤1

sup{‖z‖ | 〈z, q〉 ≤ 〈w, v〉 when q ∈ DS(x|y)(v)}

≤ sup{‖z‖ | 〈z, q〉 ≤ ‖v‖ when q ∈ DS(x|y)(v)}

If (4.2) is not satisfied, then by (4.1) the supremum in (4.4) is infinite. Thus (4.4) holds whether (4.2)
holds or not.

4.2. Bounds on Lipschitz factors

We now want to approximate the local Lipschitz factor `H−1
x̂

(0|û) of H−1
x̂ at 0 for û. We apply Propo-

sition 4.1, assuming that Hx̂ is graphically regular and GraphHx̂ is locally closed at (û, 0). Then

`H−1
x̂

(0|û) ≤ sup{‖z‖ | 〈z, q〉 ≤ ‖v‖ when q ∈ DHx̂(û|0)(v)}.

Writing u = (x, y) and v = (ξ, ν), we have

DHx̂(û|0)(v) =

(
DG(x̂| −K∗x̂ŷ)(ξ) +K∗x̂ν
DF ∗(ŷ|Kx̂x̂+ cx̂)(ν)−Kx̂ξ

)
. (4.5)

Suppose there exist self-adjoint linear maps G : X → X and F : Y → Y and (possibly trivial)
subspaces VG ⊂ X and VF ⊂ Y such that

DG(x̂| −K∗x̂ŷ)(ξ) =

{
Gξ + V ⊥G , ξ ∈ VG
∅, ξ 6∈ VG, and

DF ∗(ŷ|Kx̂x̂+ cx̂)(ν) =

{
Fν + V ⊥F , ν ∈ VF ,
∅, ν 6∈ VF .

Then

DHx̂(û|0)(v) =

{
Av + V ⊥, v ∈ V,
∅, v 6∈ V.

(4.6)

for

A =

(
G K∗x̂
−Kx̂ F

)
, and V = VG × VF .
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With PV the orthogonal projection operator into V , this allows us to approximate

`H−1
x̂

(0|û) ≤ sup{‖z‖ | 〈z,Av + p〉 ≤ ‖v‖ when v ∈ V, p ∈ V ⊥}

= sup{‖z‖ | ‖PVA∗z‖ ≤ 1 when z ∈ V }
= sup{‖PV z‖ | ‖PVA∗PV z‖ ≤ 1}
≤ inf{c−1 | c‖PV z‖ ≤ ‖PVA∗PV z‖ for all z}.

(4.7)

In the following lemma, we show that c > 0. To do so, we have to assume various forms of boundedness
from the involved operators. We introduce the operator Ξ as a way to make the estimate hold for a
range of regularisation parameters; the details of the procedure will follow the lemma in Section 4.3.

Lemma 4.1. Let Ξ : X × Y → X × Y be a self-adjoint positive definite linear operator, Ξ(x, y) =
(ΞG(x),ΞF (y)). Suppose that ΞG commutes with G and PVG, that ΞF commutes with F and PVF , and
that one of the following conditions hold.

i) G ≥ γ̄ΞG and F ≥ γ̄ΞF for some γ̄ > 0.
ii) G = 0, VG = X, ΞG = I and MΞF ≥ F ≥ γ̄ΞF for some M, γ̄ > 0, as well as

‖PVFKx̂ζ‖ ≥ a‖ζ‖, (ζ ∈ X). (4.8)

Then there exists a constant c = c(M, γ̄, a), such that

‖PVA∗PV z‖ ≥ c‖ΞPV z‖, (z ∈ X × Y ). (4.9)

Proof. Let us write

AV := PVA
∗PV z =

(
GV −K∗V
KV F V

)
for GV := PVGGPVG , F V := PVFFPVF , and KV := PVFKx̂PVG . Then z = (ζ, η) satisfies

‖AV z‖2 = ‖GV ζ −K∗V η‖2 + ‖F V η +KV ζ‖2

= ‖GV ζ‖2 + ‖K∗V η‖2 − 2〈GV ζ,K∗V η〉+ ‖KV ζ‖2 + ‖F V η‖2 + 2〈KV ζ, F V η〉

We consider point (i) first. We write GV = Gγ̄ + γ̄ΞV,G and F V = Fγ̄ + γ̄ΞV,F for ΞV,F := ΞFPVF
and ΞV,G := ΞGPVG . Observe that the self-adjointness and positivity of ΞV,G and the commutativity
with G yield

〈ΞV,Gζ,Gγ̄ζ〉 = 〈Ξ1/2
V,Gζ,Gγ̄Ξ

1/2
V,Gζ〉 ≥ 0.

Therefore

‖GV ζ‖2 − 2〈GV ζ,K∗V η〉+ ‖K∗V η‖2 = ‖Gγ̄ζ‖2 + 2γ̄〈ΞV,Gζ,Gγ̄ζ〉+ γ̄2‖ΞV,Gζ‖2

− 2〈Gγ̄ζ,K∗V η〉 − 2γ̄〈ζ,K∗V η〉+ ‖K∗V η‖2

≥ γ̄2‖ΞV,Gζ‖2 − 2γ̄〈ζ,K∗V η〉.

Analogously
‖KV ζ‖2 + 2〈KV ζ, F V η〉+ ‖F V η‖2 ≥ γ̄2‖ΞV,F η‖2 + 2γ̄〈KV ζ, η〉,

so that

‖AV z‖2 ≥
(
γ̄2‖ΞV,Gζ‖2 − 2γ̄〈ζ,K∗V η〉

)
+
(
γ̄2‖ΞV,F η‖2 + 2γ̄〈KV ζ, η〉

)
= γ̄2‖ΞPV z‖2.

This shows that (4.9) holds with c = γ̄ in case (i).

Consider then case (ii). Now PVG = I, so KV = PVFKx̂ and ΞV,G = I. Let us pick arbitrary
γ̃ ∈ (0, γ̄/2). Then F V = Fγ̃ + γ̃ΞV,F . Expanding, we have

‖AV z‖2 = ‖K∗V η‖2 + ‖KV ζ‖2 + ‖F V η‖2 + 2〈KV ζ, F V η〉
= ‖K∗V η‖2 + ‖KV ζ‖2 + ‖Fγ̃η‖2

+ 2γ̃〈ΞV,F η, Fγ̃η〉+ γ̃2‖ΞV,F η‖2 + 2〈KV ζ, Fγ̃η〉+ 2γ̃〈KV ζ, η〉.
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Using the Young’s inequalities

2γ̃〈KV ζ, η〉 ≤ γ̃2‖ζ‖2 + ‖K∗V η‖2,

and
2〈KV ζ, Fγ̃η〉 ≤ µ‖KV ζ‖2 + (1/µ)‖Fγ̃η‖2, (µ > 0),

give

‖AV z‖2 ≥ (1− µ)‖KV ζ‖2 + (1− 1/µ)‖Fγ̃η‖2 + 2γ̃〈ΞV,F η, Fγ̃η〉+ γ̃2‖ΞV,F η‖2 − γ̃2‖ζ‖2. (4.10)

Observe, that the self-adjointness and positivity of ΞV,F and the commutativity with F yield

MΞV,F ≥ Fγ̃ ≥ (γ/2)ΞV,F ,

as well as

〈ΞV,F η, Fγ̃η〉 = 〈Ξ1/2
V,F η, Fγ̃Ξ

1/2
V,F η〉 ≥

γ̃

2
‖ΞV,F η‖2.

Therefore, using these estimates and (4.8)in (4.10), we obtain for µ < 1 the estimate

‖AV z‖2 ≥
(
(1− µ)a− γ̃2

)
‖ζ‖2 +

(
(1− 1/µ)M2 + γ̃γ̄ + γ̃2

)
‖ΞV,F η‖2.

We require
(1− µ)a− γ̃2 > 0 and (1− 1/µ)M2 + γ̃γ̄ + γ̃2 > 0.

Solving for γ̃, we get the conditions

γ̃ < g1(µ) :=
√

(1− µ)a

and

γ̃ > g2(µ) :=
−γ̄ +

√
γ̄2 + 4(1/µ− 1)M2

2
.

We have g1(1) = g2(1) = 0. Further g1(µ)/g2(µ)→∞ as µ↗ 1 (L’Hôpital). Thus there exists µ < 1
and γ̃ satisfying g2(µ) < γ̃ < g1(µ), and dependent only on M , γ̄, and a. The existence of c > 0
satisfying

‖AV z‖2 ≥ c2‖ζ‖2 + c2‖ΞV,F η‖2

follows. Since ΞV,G = I, the proof is finished.

4.3. Regularisation functionals with L1-type norms

Writing Y = YNL × YL and y = (λ, ϕ), we now restrict our attention to

F ∗(y) = (F ∗NL(λ), F ∗L,α(ϕ)) and K(x) = (T (x),KLx), (4.11)

where the operator KL : X → YL is linear, ϕ = (ϕ1, . . . , ϕN ) ∈
∏N
i=1 Rmj , and

F ∗L,α(ϕ) =
N∑
i=1

(
δB(0,α)(ϕj) +

γ

2α
‖ϕj‖2

)
. (4.12)

for some γ ≥ 0 and α > 0. Here B(0, α) ⊂ Rmj are closed Euclidean unit balls of radius α. We assume
that T ∈ C2(X;YNL), and the functionals G ∈ C2(X) and F ∗NL ∈ C2(YNL) to be strongly convex,
however also allowing G = 0.
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Example 4.1 (Total variation, TV). Let Ωd = {0, . . . , n1− 1}×{0, . . . , n2− 1} be a discrete domain,
f ∈ Rm, and T : (Ωd → R) → Rm a possibly non-linear forward operator. We are interested in the
total variation regularised reconstruction problem

min
v

1

2
‖f − T (v)‖2 + αTV(v). (4.13)

Denoting by
∇d : (Ωd → R)→ (Ωd → R2)

a discrete gradient operator, we define the discrete total variation by

TV(v) := ‖∇du‖L1(Ωd).

We may then write
αTV(v) = max

ϕ
〈KLu, ϕ〉 − F ∗L,α(ϕ),

where ϕ : Ωd → R2, KL = ∇d, and

F ∗L,α(ϕ) =

n1∑
i=1

n2∑
j=1

δB(0,α)(ϕ(i, j)).

A non-zero γ > 0 in (4.12) corresponds to Huber-regularisation of the L1 norm, that is to the functional

TVγ(v) =

n1∑
i=1

n2∑
j=1

|∇du(i, j)|γ ,

where

|g|γ =

{
‖g‖ − γ

2 , ‖g‖ ≥ γ,
1

2γ ‖g‖
2, ‖g‖ < γ.

Example 4.2 (Second-order total generalised variation, TGV2). Let us now replace TV by TGV2

in (4.13). This regularisation functional was introduced in [5] as a higher-order extension of TV that
tends to avoid the stair-casing effect while still preserving edges. Parametrised by ~α = (β, α), it can
according to [7], see also [6], be written as the differentiation cascade

TGV2
~α(v) = min

w
α‖Dv − w‖+ β‖Ew‖.

for E the symmetrised gradient. The parameter α is the conventional regularisation parameter, whereas
the ratio β/α controls the smoothness of the solution. With a large ratio, one obtains results similar
to TV, but as the ratio becomes smaller, TGV2 better reconstructs smooth features of the image.

In the discrete setting, on the two-dimensional domain Ωd = {1, . . . , n1}×{1, . . . , n2}, we may write

TGV2
~α(v) = min

w
max
ϕ,ψ
〈KL(v, w), (ϕ,ψ)〉 − F ∗L,α(ϕ,ψ),

where w,ϕ : Ωd → R2, ψ : Ωd → R2×2 and

F ∗L,α(ϕ) =

n1∑
i=1

n2∑
j=1

δB(0,α)(ϕi,j) +

n1∑
i=1

n2∑
j=1

δB(0,α)(ψi,j). (4.14)

The operator KL is defined by

KL(v, w) = (∇du− w, (β/α)Edw), Edw = (∇′dw + (∇′dw)T )/2,

for ∇′d : (Ωd → R2) → (Ωd → R2×2) another discrete gradient operator. Instead of the ratio β/α
in front of Ed, we could remove this and set the radii in (4.14) for ψi,j to β. The present approach
however makes the forthcoming analysis simpler.
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We now wish to apply Lemma 4.1 to obtain bounds on the Lipschitz factor of H−1
x̂ at a solution

û = (x̂, λ̂, ϕ̂) to 0 ∈ Hx̂(û). From (4.5), we see that we have to calculate D(∂F ∗L,α)(ϕ̂|KLx̂). We begin
by calculating D(∂δB(0,α)) and studying conditions for the graphical regularity of ∂δB(0,α) = NB(0,α).

Lemma 4.2. Let f(y) = δB(0,α)(y), (y ∈ Rm), and pick v ∈ ∂f(y). Then

D(∂f)(y|v)(w) =


‖v‖w/α+ Ry, ‖y‖ = α, ‖v‖ > 0, 〈y, w〉 = 0,

[0,∞)y, ‖y‖ = α, ‖v‖ = 0, 〈y, w〉 ≤ 0,

0, ‖y‖ < α

∅, otherwise.

(4.15)

Moreover ∂f is graphically regular and Graph ∂f is locally closed at (y, v) for v ∈ ∂f(y) whenever
either ‖v‖ > 0 or ‖y‖ < α.

Remark 4.1. The condition in the final statement can be seen as a form of strict complementarity,
commonly found in the context of primal-dual interior point methods [30].

Proof. We first show graphical regularity and local closedness assuming (4.15). Indeed, local closedness
of ∂f is a direct consequence of f being convex and lower semicontinuous [22]. With regard to graphical
regularity, let (yi, vi) → (y, v). Then for large enough i, ‖vi‖ > 0. This forces ‖yi‖ = α, because
vi 6∈ {0} = ∂f(yi) if ‖yi‖ < α. Consequently we get from (4.15) the expression

D(∂f)(yi|vi)(wi) = ‖vi‖wi/α+ Ryi

for any large enough index i and any wi with 〈yi, wi〉 = 0. Choosing w with 〈y, w〉 = 0, and z ∈
‖v‖w/α + Ry, we can find wi → w and zi → z with 〈yi, wi〉 = 0 and zi ∈ ‖vi‖wi/α + Ryi. It is now
immediate that

lim inf
i→∞

GraphD(∂f)(yi|vi) ⊃ GraphD(∂f)(y|v).

The inclusion in the other direction is obvious from the definitions. This proves that D̂(∂f)(y|v) =
D(∂f)(y|v), i.e., graphical regularity in the case ‖v‖ > 0. The case ‖y‖ < α is trivial, because ∂f(yi) =
{0} for any yi close enough to y.

Let us now prove (4.15). We do this by calculating the second-order subgradient d2f(y|v). In the
present situation, writing

C := B(0, α) = {x ∈ Rm | g(y) ∈ D}, D := (−∞, α2/2], g(y) = ‖y‖2/2,

the latter is given by [24, 13.17] as

d2f(y|v)(w) = δK(y,v)(w) + max
x∈X(y,v)

〈w, x∇2g(y)w〉, (4.16)

provided the following constraint qualification is satisfied:

x ∈ ND(g(y)), x∇g(y) = 0 =⇒ x = 0. (4.17)

Here
K(y, v) := {w ∈ Rm | ∇g(y)w ∈ TD(g(y)), 〈w, v〉 = 0}

is the normal cone to NC(y) at v, and

X(y, v) := {x ∈ ND(g(y)) | v − x∇g(y) = 0}.

The constraint qualification (4.17) is trivially satisfied: if 0 6= x ∈ ND(g(y)), then necessarily
‖y‖ = α, so that x∇g(y) = xy 6= 0. We may thus proceed to expanding (4.16). We find for v ∈ NC(y)
that

K(y, v) =


{w ∈ Rm | 〈y, w〉 = 0}, ‖y‖ = α, ‖v‖ > 0

{w ∈ Rm | 〈y, w〉 ≤ 0}, ‖y‖ = α, ‖v‖ = 0

Rm, ‖y‖ < α,
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and
X(y, v) = ‖v‖/α.

Thus for v ∈ NC(y) we have maxx∈X(y,v)〈w, x∇2g(y)w〉 = ‖v‖‖w‖2/α. It follows from (4.16) that

d2f(y|v)(w) =


‖v‖‖w‖2/α, ‖y‖ = α, ‖v‖ > 0, 〈y, w〉 = 0,

0, ‖y‖ = α, ‖v‖ = 0, 〈y, w〉 ≤ 0,

0, ‖y‖ < α.

∅, otherwise.

(4.18)

We still have to calculate D(∂f)(y|v). Since f is proper, convex, and lower semi-continuous, it is
also prox-regular and subdifferentiably continuous [24, 13.30] in the senses defined in [24], that we
introduce here by name just for the sake of binding various results from that book rigorously together.
By [24, 13.17], f is also twice epi-differentiable. It therefore follows from [24, 13.40] that

D(∂f)(y|v) = ∂h for h :=
1

2
d2f(y|v).

Applying this to (4.18), we easily calculate (4.15).

Lemma 4.3. If ϕ = (ϕ1, . . . , ϕN ) ∈ YL and v = (v1, . . . , vN ) ∈ ∂FL,α(ϕ) satisfy

either ‖ϕj‖ < α or ‖vj − γϕj/α‖ > 0, (j = 1, . . . , N), (4.19)

then ∂F ∗L,α is graphically regular and Graph ∂F ∗L,α locally closed at (ϕ, v), and

D(∂FL,α)(ϕ|v)(w) =

{
AL,α(ϕ, v)w + VL,α(ϕ)⊥, w ∈ VL,α(ϕ),

∅, w 6∈ VL,α(ϕ).

Here AL,α(ϕ, v) := (A′α(ϕ1, v1), . . . , A′α(ϕN , vN )) and VL,α(ϕ) := V mi
α (ϕ1)× · · · × V mN

α (ϕN ) with

A′α(ϕj , vj)wj :=

{
‖vj−γϕj/α‖+γ

α wj , ‖ϕj‖ = α,
γ
αwj , ‖ϕj‖ < α,

and V
mj
α (ϕj) :=

{
(Rϕj)⊥ ‖ϕj‖ = α,

Rmj , ‖ϕj‖ < α.

Proof. Let gj(ϕj) := γ/(2α)‖ϕj‖2. Then F ∗L,α(ϕ) =
∑N

i=1 fj(ϕj) + gj(ϕj), for fj = f as in Lemma 4.2.
It follows that

D(∂F ∗L,α)(ϕ|v)(w) =

N∏
i=1

D(∂(fj + gj))(ϕj |vj)(wj),

and that ∂FL,α is graphically regular and the graph locally closed if ∂(fj + gj) satisfies the same for
each i = 1, . . . , N . By sum rules for graphical differentiation [24, 10.43], we have

D(∂(fj + gj))(ϕj |vj)(wj) = D(∂fj)(ϕj |vj −∇gj(ϕj))(wj) +∇2g(ϕj).

Moreover, since g is twice continuously differentiable, ∂(fj + gj) is graphically regular if ∂fj is. By
Lemma 4.2, this is the case if ‖ϕj‖ < α, or ‖vj − ∇gj(ϕj)‖ > 0. Minding that ∇gj(ϕj) = γϕj/α,
referring to Lemma 4.2 once again for the expression of D(∂fj)(ϕj |vj − γϕj/α)(wj), the claim of the
present lemma follows.

We now have the necessary results to bound `H−1
x̂

(0|û).

Proposition 4.2. Suppose F ∗NL is twice continuously differentiable and strongly convex, and G = 0
or G is twice continuously differentiable and strongly convex. Define F ∗ and K by (4.11) for some
α > 0. Suppose 0 ∈ Hx̂(û). If ϕ̂ = (ϕ̂1, . . . , ϕ̂N ) and x̂ satisfy for some a, b > 0 the conditions

γ(1− ‖ϕ̂j‖/α) + ‖[KLx̂]j − γϕ̂j/α‖ > b, (j = 1, . . . , N), (4.20)
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and
‖∇KNL(x̂)ζ‖2 + ‖PVL,α(ϕ̂)KLζ‖2 ≥ a2‖ζ‖2. (4.21)

then H−1
x̂ has the Aubin property at 0 for û. In particular, given ᾱ > α, (j = 1, . . . , N), there exists a

constant c = c(a, b+ γ,R, ᾱ) > 0 such that

`H−1
x̂

(0|û) ≤ c−1. (4.22)

Proof. We calculate D(∂F ∗L,α)(ϕ̂|KLx̂). using Lemma 4.3, whose condition (4.19) at v = KLx̂ is guar-
anteed by (4.20). Then we use (4.5), (4.6) to obtain

DHx̂(û|0)(v) =

{
Av + V ⊥, v ∈ V,
∅, v 6∈ V,

A =

(
G K∗x̂
Kx̂ F

)
,

where

G = ∇2G(x̂) V = X × YNL × VL,α(ϕ̂),

F =

(
∇2F ∗NL(λ̂) 0

0 AL,α(ϕ̂,KLx̂)

)
Kx̂ =

(
∇T (x̂) 0

0 KL

)
.

Here AL,α and VL,α are given by Lemma 4.2. The lemma together with (4.20) also show that ∂FL is
graphically regular and Graph ∂FL is locally closed at (ϕ̂,KLx̂). From our standing assumptions, both
F ∗ and G are convex and lower semicontinuous. Therefore Graph ∂F and Graph ∂G are locally closed.
Moreover ∂F ∗NL and ∂G are graphically regular, F ∗NL and GNL being twice continuously differentiable.
It follows that Hx̂ is graphically regular and GraphHx̂ is locally closed at (0, û).

Let us define

Ξα(x, λ, ϕ) = (x,Ξα,F (λ, ϕ)) with Ξα,F (λ, ϕ) = (λ, ϕ1/α, . . . , ϕN/α).

The operator Ξα,F commutes with F and PVF . Moreover, using (4.20) and the strong convexity of
F ∗NL, we see that there exist M = M(R) > 0 and γ̄ = γ̄(ᾱ, b+ γ) such that

MΞα,F ≥ F ≥ γ̄Ξα,F .

The dependence of M on R comes through sup‖λ‖≤R ‖∇2F ∗NL(λ)‖. Since commutativity with G = 0 is
automatic, and (4.21) guarantees (4.8), we may therefore apply Lemma 4.1 to derive the bound

‖PVA∗PV z‖ ≥ c‖ΞPV z‖, (z ∈ X × Y ).

Here the constant c = c(M, γ̄, a) = c(a, b+ γ,R, ᾱ). Recalling (4.7), this proves (4.22).

Remark 4.2 (Huber regularisation). Condition (4.20) is difficult to satisfy without Huber regulari-
sation. Indeed, with γ = 0, the condition becomes ‖[KLx̂]j‖ > 0 for each i = 1, . . . , N . In case of total
variation regularisation in Example 4.1, this says that we cannot have [∇dx̂]j = 0; there can be no flat
areas in the image x. This kind of requirement is, however, almost to be expected: The dual variable
ϕ̂j , solving

max
ϕj∈B(0,α)

〈ϕj , [KLx̂]j〉

is not uniquely defined. Any small perturbation of x can send it anywhere on the boundary ∂B(0, α).

This oscillation is avoided by Huber regularisation., i.e., γ > 0. In this case optimal ϕ̂j for x̂ solves

max
ϕj∈B(0,α)

〈ϕj , [KLx̂]j〉+ γ‖ϕj‖2/(2α),

If ‖[KLx̂]j‖ < γ, necessarily ‖ϕ̂j‖ < α. Clearly (4.20) follows. If, on the other hand, ‖[KLx̂]j‖ > γ,
necessarily ‖[KLx̂]j − γϕ̂j/α‖ > 0. Thus (4.20) holds again.

Even with γ > 0, we do however have a problem when ‖[KLx̂]j‖ = γ: the solution is not necessarily
strictly complementary in the sense (4.19). A way to avoid this theoretical problem would be to replace
the 2-norm cost in (4.12) by a barrier function of B(0, α). This would, however, cause the resolvent
(I + σF ∗)−1(y) to become very expensive to calculate. We therefore do not advise this in practise.
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4.4. Squared L2 cost functional with L1-type regularisation

We now make further assumptions on our problem, and limit ourselves to reformulations of

min
x

1

2
‖f − T (x)‖2 + αR(x). (4.23)

Here we assume that T ∈ C2(X;Rm), and that the regularisation term αR(x) be for some linear
operator KL : X → YL and F ∗L,α as in (4.12), be written in the form

αR(x) = max
ϕ
〈ϕ,KLx〉 − F ∗L,α(ϕ).

This covers in particular Example 4.1 and Example 4.2.

Setting

F ∗NL(λ) :=
1

2
‖λ‖2 + 〈f, λ〉

we may write
1

2
‖f − T (x)‖2 = max

λ
〈λ, T (x)〉 − F ∗NL(λ).

Observe that F ∗NL is strongly convex. Thus with y = (λ, ϕ), we may reformulate (4.23) in the saddle
point form

min
x

max
y
G(x) + 〈K(x), y〉 − F ∗(y) (4.24)

for
G = 0, K(x) = (T (x),KLx), and F ∗(y) = (F ∗NL(λ), F ∗L,α(ϕ)).

The optimality conditions (2.1) presently expand to ûα = (x̂α, λ̂α, ϕ̂α) satisfying

[∇T (x̂α)]∗λ̂α +K∗Lϕ̂α = 0, (4.25a)

T (x̂α)− f = λ̂α, and (4.25b)

[KLx̂α]j − γϕ̂α,j/α ∈ NB(0,α)(ϕ̂α,j), (j = 1, . . . , N). (4.25c)

Since Proposition (4.2) only shows the Aubin property of H−1
x̂α

without any guarantees of smallness
of the Lipschitz factor, we have to make ‖PNLŷα‖ small in order to satisfy (3.42) for Theorem 3.2. As
PNLŷα = λ̂α, a solution to (4.25) necessarily satisfies

‖PNLŷα‖ = ‖f − T (x̂α)‖.

We will discuss how to make this small after the next proposition, rewriting Theorem 3.2 for the
present setting.

Proposition 4.3. Suppose ûα = (x̂α, λ̂α, ϕ̂α) satisfies the optimality conditions (4.25) and for some
a, b > 0 the strict complementarity condition

γ(1− ‖ϕ̂α,j‖/α) + ‖[KLx̂α]j − γϕ̂α,j/α‖ > b, (i = 1, . . . , N), (4.26)

as well as the non-degeneracy condition

‖∇T (x̂α)ζ‖2 + ‖PVL,α(ϕ̂α)KLζ‖2 ≥ a2‖ζ‖2. (4.27)

Suppose, moreover, that K and the step lengths τ, σ > 0 satisfy (A-K). Pick ᾱ > α, and let c =
c(a, b+ γ,R, ᾱ) be given by Proposition 4.2. Then there exists δ1 > 0 such that Algorithm 2.1 applied
to the saddle point form (4.24) of (4.23) converges provided

‖u1 − ûα‖ ≤ δ1,

and

‖f − T (x̂α)‖ <
1− 1/

√
1 + c2/(2Θ4)

c−1κL2
. (4.28)

28



Proof. As (4.26) and (4.27) hold, Proposition 4.2 shows that H−1
x̂α

has the Aubin property at 0 for

ûα with `H−1
x̂α

≤ c−1 for some constant c > 0. The condition (4.28) then implies condition (3.42) of

Theorem 3.2. The rest now follows from that theorem.

Remark 4.3 (Non-degeneracy condition). The non-degeneracy condition (4.27) may also be stated

∇T (x̂α)ζ = 0 and PVL,α(ϕ̂α)KLζ = 0 =⇒ ζ = 0.

Verifying this is easy if ∇T (x̂α) has full range, but otherwise it can be quite unwieldy thanks to the
projection PVL,α(ϕ̂α). Unfortunately, we have found no way to avoid this condition or (4.28).

We conclude our theoretical study with a simple exemplary result on the satisfaction of (4.28). The
problem with simply letting α ↘ 0 in order to get ‖f − T (x̂α)‖ → 0 is that the constant c might
blow up, depending on ûα through a and b. We therefore need to study the uniform satisfaction of
these conditions. In order to keep the present paper at a reasonable length, we limit ourselves to a
very simple result that assumes the existence of a convergent sequence {uα} of solutions to (4.25) as
α ↘ 0. The entire topic of the existence of such a sequence merits an independent study involving
set-valued implicit function theorems (e.g. [9]) and source conditions on the data (cf., e.g. [25]). Besides
the existence of the minimising sequence, we assume the existence of x∗ such that f = T (x∗). It is not
difficult to formulate and prove equivalent results for the noisy case, where we only have the bound
infx ‖f − T (x)‖ ≤ σ for small σ.

Proposition 4.4. Suppose f = T (x∗) for some x ∈ X. Let ûα = (x̂α, λ̂α, ϕ̂α) solve (4.25) for α > 0,
and suppose that

(x̂α, ϕ̂α/α)→ (x̄, ϕ̄), (α↘ 0). (4.29)

If x̄ and ϕ̄ satisfy for some ā, b̄ > 0 the strict complementarity condition

γ(1− ‖ϕ̄j‖) + ‖[KLx̄]j − γϕ̄j‖ > b̄, (j = 1, . . . , N), (4.30)

and the non-degeneracy condition

‖∇T (x̄)ζ‖2 + ‖PVL,α(ϕ̂)KLζ‖2 ≥ ā2‖ζ‖2, (4.31)

then there exists α∗ > 0 such that (4.26)–(4.28) hold for û = ûα whenever α ∈ (0, α∗).

In consequence, there exist ᾱ > 0 and δ1 > 0 such that Algorithm 2.1 applied to the saddle point
form (4.24) of (4.23) converges whenever α ∈ (0, ᾱ), and the initial iterate u1 = (x1, λ1, ϕ1) satisfies

λ1 = T (x1)− f and ‖(x1, ϕ1/α)− (x̄, ϕ̄)‖ ≤ δ1.

Remark 4.4. If each x̂α, (α > 0), solves the minimisation problem (4.23), instead of just the first-order
optimality conditions (4.25), so that ‖f − T (x̂α)‖ → 0, then the limit x̄ solves

minR(x) such that T (x) = f.

Proof. Let us begin by defining

Ψα(x, ϕ) = (x, ϕ1/α, . . . , ϕN/α).

Minding the renormalisation of ϕ through Ψα in (4.29), the conditions (4.30) and (4.31) arise in
the limit from (4.26) and (4.27). Indeed, if there were sequences αi ↘ 0, ζi → ζ, ‖ζ‖ > 0, and
Ψαi(x̂αi , ϕ̂αi) → (x̄, ϕ̄), such hat (4.26) or (4.27) would not eventually hold for a = ā/2 and b = b̄/2,
we would find a contradiction to (4.30) or (4.31), respectively. We may thus pick α∗∗ > 0 such that
(4.26) and (4.27) hold for a = ā/2 and b = b̄/2 and α ∈ (0, α∗∗). Denoting by Hα the operator Hx̂α

for a specific choice of α, Proposition 4.2 now shows that

`H−1
α

(0|ûα) ≤ c−1, (α ∈ (0, α∗∗)),
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for some c = c(a, b+ γ,R, α∗∗) independent of α and ûα. Observing that κ and Θ are independent of
α (which is encoded into FL,α in our formulation), it follows that (4.28) holds if

‖f − T (x̂α)‖ < ε :=
1− 1/

√
1 + c2/(2Θ4)

c−1κL2
.

Because f = T (x∗), this can be achieved whenever α ∈ (0, α∗) for some α∗ ∈ (0, α∗∗).

Proposition 4.3 now provides δ > 0 such that Algorithm 2.1 converges if

‖ûα − u1‖ ≤ δ.

Setting λ1 = T (x1)− f and using T ∈ C2(X;Rm), we have

‖λ̂α − λ1‖ = ‖T (x̂α)− T (x1)‖ ≤ `‖x̂α − x1‖

for ` the Lipschitz factor of T on a suitable compact set around x̄. Therefore, whenever α ∈ (0, α∗),
we may estimate with C = (1 + `) max{1, α∗} that

‖ûα − u1‖ ≤ (1 + `)‖(x̂α, ϕ̂α)− (x1, ϕ1)‖
≤ (1 + `)‖Ψ−1

α ‖‖Ψα((x̂α, ϕ̂α)− (x1, ϕ1))‖
≤ C

(
‖Ψα(x̂α, ϕ̂α)− (x̄, ϕ̄)‖+ ‖Ψα(x1, ϕ1)− (x̄, ϕ̄)‖

)
.

By the convergence Ψα(x̂α, ϕ̂α)→ (x̄, ϕ̄), choosing ᾱ ∈ (0, α∗) small enough, we can force

C‖Ψα(x̂α, ϕ̂α)− (x̄, ϕ̄)‖ ≤ δ/2, (α ∈ (0, ᾱ)).

Choosing δ1 = δ/(2C), we may thus conclude the proof.

5. Applications and computational experience

With convergence theoretically studied, and total variation type regularisation problems reformulated
into the minimax form, we now move on to studying the numerical performance of NL-PDHGM. We
do this by applying the method to two problems from magnetic resonance imaging: velocity imaging
in Section 5.1, and diffusion tensor imaging in Section 5.2.

5.1. Phase reconstruction for velocity-encoded MRI

As our first application, we consider the phase reconstruction problem (1.3) for magnetic resonance
velocity imaging. We are given a complex sub-sampled k-space data f = SFu∗ + ν ∈ Rm corrupted
by noise ν. Here S is the sparse sampling operator, F the discrete two-dimensional Fourier transform,
and u∗ ∈ L1(Ωd;C) the noise-free complex image in the discrete spatial domain Ωd = {0, . . . , n− 1}2.
We seek to find a complex image u = r exp(iϕ) approximating u∗. Motivated by the discoveries in [3],
we wish to regularise r and ϕ separately. Introducing non-linearities into the reconstruction problem,
we therefore define the forward operator

u = T (r, ϕ) := SF [x 7→ r(x) exp(iϕ(x))].

For the phase ϕ, we choose to use second order total generalised variation regularisation, and for
the magnitude r, total variation regularisation. Choosing regularisation parameters αr, αϕ, βϕ > 0
appropriate for the data at hand, we then seek to solve

min
r,ϕ∈L1(Ωd)

1

2
‖f − T (r, ϕ)‖2 + αrTV(r) + TGV2

(βϕ,αϕ)(ϕ). (5.1)

30



For our experiments, due to trouble obtaining real data, we use a simple synthetic phantom on
Ω = [−1, 1]2, depicted in Figure 1a. It simulates the speed along the y axis of a fluid rotating in a
ring. Specifically

r(x, y) = χ
0.3<
√
x2+y2<0.9

(x, y), and ϕ(x, y) = x/
√
x2 + y2.

The image is discretised on a n× n grid with n = 256. To the discrete Fourier-transformed k-space
image, we add pointwise Gaussian noise of standard deviation σ = 0.2. For the sub-sampling operator
S, we choose a centrally distributed Gaussian sampling pattern with variance 0.15 · 128 and 15%
coverage of the n × n image in k-space. For the regularisation parameters, which we do not claim to
have chosen optimally in the present algorithmic paper, we choose αϕ = 0.15 ·(2/n), βϕ = 0.20 ·(2/n)2,
and αr = 2/n. (The factors 2/n are related to spatial step size 1/n of the discrete differential on the
[−1, 1]2 domain. When the step size is omitted, i.e., implicitly taken as 1, the factors disappear.)

We perform computations with Algorithm 2.1 (Exact NL-PDHGM), Algorithm 2.2 (Linearised NL-
PDHGM), and the Gauss-Newton method. As we recall, the latter is based on linearising the non-linear
operator T at the current iterate, solving the resulting convex problem, and repeating until hopeful
convergence. We solve each of the inner convex problems by PDHGM, (2.3). We initialise each method
with the backprojection (SF)∗f of the noisy sub-sampled data f . We use two different choices for the
PDHGM step length parameters σ and τ . The first one has equal primal and dual parameters, both
σ, τ = 0.95/L. We update L = supk=1,...,i ‖∇K(xk)‖ dynamically for NL-PDHGM; for linear PDHGM,
used within Gauss-Newton, this simply reduces to L = ‖K‖. This choice of τ and σ is somewhat näıve,
and it has been observed that sometimes choosing σ and τ in different proportions can improve the
performance of PDHGM for linear operators [21]. Therefore, as our second step length parameter
choice we use τ = 0.5/L and σ = 1.9/L.

We limit the number of PDHGM iterations (within each Gauss-Newton iteration) to 100000, and
limit the number of Gauss-Newton iterations to 100. As the primary stopping criterion for the NL-
PDHGM methods, we use ‖xi − xi+1‖ < ρ for ρ = 1e−4. The same criterion is used to stop the outer
Gauss-Newton iterations. As the stopping criterion of PDHGM within each Gauss-Newton iteration,
we use the decrease of the pseudo-duality gap to less than ρ2 = 1e−3 = ρ/10; higher accuracy than
this would penalise the computational times of the Gauss-Newton method too much in comparison to
NL-PDHGM. Much lower accuracy would almost reduce it to NL-PDHGM, if convergence would be
observed at all; we will get back to this in our next application.

The pseudo-duality gap is discussed in detail in [27]. We use use it to work around the fact that in
reformulations of the linearised problem into the form (P), G = 0. This causes the duality gap to be
in practise infinite. This could be avoided if we could make G to be non-zero, for example by taking
G(x) = δB(0,M)(x) for M a bound on x. Often the primal variable x can indeed be be shown to be
bounded. The problem is that the exact bound is not known. The idea of the pseudo-duality gap,
therefore, is to update the bound M dynamically. Assuming it large enough, it does not affect the
PDHGM itself. It only affects the duality gap, and is updated whenever the duality gap is violated. For
the artificially dynamically bounded problem the duality gap is finite, and called the pseudo-duality
gap.

We perform the computations with OpenMP parallelisation on 6 cores of an Intel Xeon E5-2630 CPU
at 2.3GHz, with 64GB (that is, enough!) random access memory available. The results are displayed in
Table 1 for the first choice of σ and τ , and in Table 2 for the second choice. In the tables we report the
number of PDHGM and Gauss-Newton iterations taken along with the computational time in seconds,
as well as the PSNR of both the magnitude and the phase for the reconstructions. For the calculation
of the PSNR of ϕ, we have only included the ring 0.3 <

√
x2 + y2 < 0.9, as the phase is meaningless

outside this, the magnitude being zero. The results of the second parameter choice are also visualised
in Figure 1. It shows the original noise-free synthetic data, the backprojection of the noisy sub-sampled
data, and the obtained reconstructions, which have little difference between the methods, validating
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Table 1: Phase/magnitude reconstruction using Exact NL-PDHGM, Linearised NL-PDHGM, and the Gauss-
Newton method: equal primal and dual step length parameters. For Gauss-Newton, PDHGM is used in the
inner iterations, and the number of PDHGM iterations reported is the total over all Gauss-Newton iterations.
The PSNR of ϕ excludes the area outside the ring, where r = 0. The stopping criterion for NL-PDHGM and
Gauss-Newton is ‖xi − xi+1‖ < ρ. The stopping criterion for linear PDHGM, used for inner Gauss-Newton
iterations, is pseudo-duality gap less than ρ2.

ρ = 1e−4, ρ2 = 1e−3, τ = 0.95/L, σ = 0.95/L for L = supi ‖∇K(xi)‖

Method PDHGM iters. GN iters. Time PSNR(r) PSNR(ϕ)

Backprojection – – – 19.2 41.0
Exact NL-PDHGM 15800 – 129.1s 25.5 52.7
Linearised NL-PDHGM 15800 – 171.2s 25.5 52.7
Gauss-Newton 137900 12 1353.7s 25.5 53.9

Table 2: Phase/magnitude reconstruction using Exact NL-PDHGM, Linearised NL-PDHGM, and the Gauss-
Newton method: unequal primal and dual step length parameters. For Gauss-Newton, PDHGM is used in the
inner iterations, and the number of PDHGM iterations reported is the total over all Gauss-Newton iterations.
The PSNR of ϕ excludes the area outside the ring, where r = 0. The stopping criterion for NL-PDHGM and
Gauss-Newton is ‖xi − xi+1‖ < ρ. The stopping criterion for linear PDHGM, used for inner Gauss-Newton
iterations, is pseudo-duality gap less than ρ2.

ρ = 1e−4, ρ2 = 1e−3, τ = 0.5/L, σ = 1.9/L for L = supi ‖∇K(xi)‖

Method PDHGM iters. GN iters. Time PSNR(r) PSNR(ϕ)

Backprojection – – – 19.2 41.0
Exact NL-PDHGM 8200 – 57.8s 25.5 51.2
Linearised NL-PDHGM 8200 – 87.6s 25.5 51.2
Gauss-Newton 112145 12 1119.1s 25.5 53.7

the results. Also, because there is no difference Linearised and Exact NL-PDHGM, we only display
the results for the latter.

The main observation from Table 1, with equal τ and σ, is that Exact NL-PDHGM, Algorithm
2.1, is significantly faster than Gauss-Newton, taking only around two minutes in comparison to
almost an hour for Gauss-Newton. Gauss-Newton nevertheless appears to converge for the present
problem, having taken 13 iterations to each the stopping criterion. Another observation is that although
Linearised NL-PDHGM, Algorithm 2.2, takes exactly as many iterations as Exact NL-PDHGM, it
requires far more computational time, as the linearisation of K is more expensive to calculate than K
itself. Observing Table 2, we see that choosing τ and σ, in unequal proportion significantly improves the
performance of NL-PDHGM, taking less than a minute. In case of Gauss-Newton the improvement
is merely marginal. Finally, studying Figure 1, we may verify that the method has converged to a
reasonable solution.

5.2. Diffusion tensor imaging

As a continuation of our earlier work on TGV2 denoising of diffusion tensor MRI (DTI) [27, 28, 29]
using linear models, we now consider an improved model. Here the purpose of the non-linear operator
T is to model the so-called Stejskal-Tanner equation

sj(x) = s0(x) exp(〈bj , v(x)bj〉), (j = 1, . . . , N).

Here v : Ω → Sym2(R3), Ω ⊂ R3 is a mapping to symmetric second order tensors (representable as
symmetric 3 × 3 matrices). Each v(x) models the covariance of a Gaussian probability distribution
at x for the diffusion of water molecules. Each of the diffusion-weighted MRI measurements sj , (j =
1, . . . , N), is obtained with a different non-zero diffusion sensitising gradient bj , while s0 is obtained
with a zero gradient. After correct the original k-space data for coil sensitivities, each sj is assumed
real. As a consequence, sj has in effect Rician noise distribution [13].
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Our goal is to denoise v. We therefore consider

min
v

N∑
j=1

1

2
‖sj − Tj(v)‖2 + TGV2

(β,α)(v), (5.2)

where
Tj(v)(x) := s0(x) exp(〈bj , v(x)bj〉), (j = 1, . . . , N).

Due to the Rician noise of sj , the Gaussian noise model implied by the L2-norm is not entirely correct.
However, the L2 model is not necessary too inaccurate, as for suitable parameters the Rician distri-
bution is not too far from a Gaussian distribution. For correct modelling, there would be approaches.
One would be to modify the fidelity term to model Rician noise, as was done in [12, 19] for single
MR images. The second option would be to include the coil sensitivities in an L2 model, either by
knowing them, or by estimating them simultaneously, as was done in [17] for parallel MRI. This kind
of models with direct tensor reconstruction will be the subject of a future study. For the present work,
we are content with the simple L2 model, which already presents computational challenges through
the non-linearities of the Stejskal-Tanner equation.

As our test data set, we have an in vivo measurement of the human brain, The data set is three-
dimensional with 25 slices of size 128×128 for 21 different diffusion sensitising gradients, including the
zero gradient. Moreover, 9 measurement were measured to construct by averaging the ground truth
depicted in Figure 2a. Only the first of the measurements is used for the backprojection in Figure 2b
and the reconstructions with (5.2). It has about 8.5 million data points. The diffusion tensor image v
is correspondingly 128× 128× 25 with 6 components for each symmetric tensor element v(x) ∈ R3×3.
In addition we have the additional variable w, and dual variables. This gives altogether 42 values per
voxel in the reconstruction space, or 17 million values. Considering the size of a double data type
(8 bytes), and the need for copies and temporary variables, the (C language) program solving this
problem has a rather significant memory footprint of about one gigabyte.

As in Section 5.1, we evaluate all three, Algorithm 2.1 (Exact NL-PDHGM), Algorithm 2.2 (Lin-
earised NL-PDHGM), and the Gauss-Newton method. The parametrisation and method setup is the
same as in the previous section, except for the step length parameter choice τ = σ = 0.95/L, we use
the lower accuracy ρ = 1e−3. For the choice τ = 0.5/L, σ = 1.9/L we use ρ = 1e−4 as before. Also,
in both cases, in addition to ρ2 = ρ/10, we perform Gauss-Newton computations with the higher
accuracy ρ2 = ρ for the inner PDHGM iterations. The regularisation parameters are also naturally
different. We choose α = 0.0006/(256 · 256 · 25), and β = 0.00066/(256 · 256 · 25)2.

The results of the computations are reported in Table 3, Table 4, and Figure 3. They confirm
our observations in the velocity imaging example, but we do have some convergence issues. In case
of Gauss-Newton, we do not observe convergence with accuracy ρ2 = ρ/10 for the inner PDHGM
iterations, and have to use ρ2 = ρ. We find this quite interesting, since NL-PDHGM gives better
convergence results, and is essentially Gauss-Newton with just a single step in the inner iteration. The
reader may observe that the PSNR of the unconverged solution is better than the other solutions; this
is simply because we did not choose the regularisation parameters optimally, only being interested in
studying convergence of the methods for the present paper. Regarding convergence, we also observed
that if using the more accurate stopping threshold ρ = 1e−4, instead of 1e−3 for the computations in
Table 3, with equal σ and τ , NL-PDHGM did not appear to convergence until reaching the maximum
iteration count of 100000. This may be due to starting too far from the solution, or due to the fact
that convergence of even the linear PDHGM can become very slow in the limit. Nevertheless, with
the stopping threshold ρ = 1e−3, we quickly obtained satisfactory solutions, as can be observed by
comparing the PSNRs between Table 3 and Table 4, as well as Figure 3, which visualises the results
from the latter. Minding the large scale of the problem, we also had reasonably quick convergence to
a greater accuracy with the unequal parameter choice. This gives us confidence for further application
and study of NL-PDHGM in future work.
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(a) Original (b) Backprojection (c) Exact NL-PDHGM (d) Gauss-Newton

1

0

1

0
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Figure 1: Visualisation of phase/magnitude reconstruction using Exact NL-PDHGM and the Gauss-Newton
method. Also pictured is the original noise-free test data, and the backprojection of the noisy sub-sampled data.
The upper image in each column is the magnitude r, and the lower image the phase ϕ.

(a) Ground truth (b) Backprojection

(c) Exact NL-PDHGM (d) Gauss-Newton

x
y

z

Colour-coding of the principal
eigenvector of the tensor
u(x) ∈ R3 ×3. The intensity is
the function of the fractional
anisotropy

(∑3
i=1(λi − λ̄)2∑3

i=1 λ
2
i

)1/2

,

where λi are the eigenvalues of
u(x) and λ̄ =

∑m
i=1 λi/3.

Figure 2: Visualisation of one slice of the DTI reconstruction using Exact NL-PDHGM and the Gauss-Newton
method. Also pictured is the ground truth and the backprojection reconstruction. The data displayed is colour-
coded principal eigenvector. The area outside the brain has been masked out.
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Table 3: DTI reconstruction using Exact NL-PDHGM, Linearised NL-PDHGM, and the Gauss-Newton
method: equal primal and dual step length parameters. For Gauss-Newton, PDHGM is used in the inner it-
erations, and the number of PDHGM iterations reported is the total over all Gauss-Newton iterations. The
stopping criterion for NL-PDHGM and Gauss-Newton is ‖xi − xi+1‖ < ρ. The stopping criterion for linear
PDHGM within Gauss-Newton iterations is pseudo-duality gap less than ρ2. The number of PDHGM iterations
(per Gauss-Newton iteration) is limited to 100000, and the number of Gauss-Newton iterations to 100.

ρ = 1e−3, τ = 0.95/L, σ = 0.95/L for L = supi ‖∇K(xi)‖

Method PDHGM iters. GN iters. Time PSNR

Backprojection – – – 14.6
Exact NL-PDHGM 4600 – 1351.8s 17.1
Linearised NL-PDHGM 4600 – 2068.9s 17.1
Gauss-Newton; ρ2 = ρ 36600 6 8222.4s 17.6
Gauss-Newton; ρ2 = ρ/10 5338 100 1384.8s 18.9

Table 4: DTI reconstruction using Exact NL-PDHGM, Linearised NL-PDHGM, and the Gauss-Newton
method: primal step length smaller than dual. For Gauss-Newton, PDHGM is used in the inner iterations,
and the number of PDHGM iterations reported is the total over all Gauss-Newton iterations. The stopping
criterion for NL-PDHGM and Gauss-Newton is ‖xi − xi+1‖ < ρ. The stopping criterion for linear PDHGM
within Gauss-Newton iterations is pseudo-duality gap less than ρ2. The number of PDHGM iterations (per
Gauss-Newton iteration) is limited to 100000, and the number of Gauss-Newton iterations to 100.

ρ = 1e−4, τ = 0.5/L, σ = 1.9/L for L = supi ‖∇K(xi)‖

Method PDHGM iters. GN iters. Time PSNR

Backprojection – – – 14.6
Exact NL-PDHGM 8700 – 2381.9s 17.3
Linearised NL-PDHGM 8700 – 3302.5s 17.3
Gauss-Newton; ρ2 = ρ 77264 8 18679.1s 17.4
Gauss-Newton; ρ2 = ρ/10 33601 100 8442.2s 18.2
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