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Abstract
The diff-convex (DC) problem of perturbed spatial median and the Weiszfeld algo-
rithm in a framework for incomplete data is studied, and some level set theorems for
general DC problems are provided. These results are then applied to study certain
multiobjective formulations of clustering problems, and to yield a new algorithm for
solving the multisource Weber problem.
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1 Introduction

In this paper, we are interested in minimisation problems, where the objective
function can be modelled as a perturbed version of the spatial median objective∑n
k=1 d(ak, ·). More specifically, what concerns us are problems of the form

min
p

(
n∑
k=1

d(ak, p)− ν(p)

)
(1)

for some fixed points a1, . . . , an, a convex function ν, and a distance d generalising
the Euclidean metric.

On the application side, we are concerned with the general class of problems
of locating one or more points p1, . . . , ps according to some optimality criterion
involving another set of n fixed points and combinations of distances between all
these points. In the single-prototype case (s = 1), popular objectives are the data
means and the above-mentioned spatial median. In the latter case, the problem itself
is then also known as the (Fermat-)Weber problem, and the Weiszfeld algorithm
may be used to look for a solution [31, 16]. Multi-prototype (s > 1) variants of
the location problem often somehow involve the single-facility case. In particular, in
case of criteria of the K-means type [10, 25], the goal is to assign each vertex to the
closest prototype pj , with the prototypes being the data means, spatial medians, or
other points somehow descriptive of the centres of the corresponding clusters. For
an overview of work on this and other clustering problems, as well as a unifying
framework for smoothed and approximating problems, we point the reader to [26].
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Problem (1) seems at a first glance, to only involve a single prototype. How-
ever, we will work with a model for incomplete data that will let us model multi-
prototype problems as single-prototype ones. It then turns out that the classic mul-
tisource Weber problem – the problem of finding the K-spatial-medians – otherwise
also known as the location-allocation problem [9], fits this model, as well as do some
of our own multi-criteria formulations of the clustering problem, among others.

Indeed, the algorithm we develop for (1), will be a further extension of the
above-mentioned generalisation to incomplete data sets of the Weiszfeld algorithm
in [17, 18, 28, 29]. This algorithm in its basic form [31, 16] seeks a minimiser to∑n
i=1 wid(ai, ·) for the Euclidean distance in Rm by iterating

T : p 7→
∑n
i=1 siai∑n
i=1 si

with si = wi/d(ai, p). (2)

Since the objective in (1) is a difference of convex functions (DC function; see [27,
15]), it is generally not convex. Therefore, being a local algorithm, our convergence
results are weaker than in the above conventional case. The incomplete data sets
also bring their own considerable problems, even under rather strict assumptions.
In practise the results seem promising, however.

This paper is organised as follows. First, in Section 2 we elaborate the gen-
eralised Weiszfeld algorithm for problems of the form (1), and consider its conver-
gence to what we will call semi-critical points, extending the results in [28, 29]. In
Sections 3 and 4 we then study the application of our algorithm to solving some
multi-objective formulations of the clustering problems and the K-spatial-medians,
respectively. Finally, some experiments with these problems are presented in Section
5, and the paper is concluded in Section 6. Furthermore, Appendix A is devoted
to proving some general level set theorems for DC functions that are useful for
verifying the applicability of the algorithm. Moreover, some results relevant to the
implementation of the described algorithm for more complex data sets, are presented
in Appendix B.

2 The perturbed spatial median

Throughout most of this paper, we work with n ≥ 1 vertices a1, . . ., an ∈ Rm
and diagonal positive-semidefinite matrices W1, . . . ,Wn ∈ Rm×m. The matrices Wi

model the importance and incompleteness of the data, and typically have the form
Wi = wiρi, for a weight wi > 0 and a zero-one diagonal matrix ρi. A zero diagonal
element of ρi indicates that the corresponding field of ai is“missing”, and an element
with value one indicates that it is present. We assume (without loss of generality)
that the data covers the whole space, i.e.

∑n
i=1R(Wi) = Rm, with R denoting the

range. The identity matrix is denoted by I.
With ‖·‖ denoting the Euclidean norm in Rm, we now define the semi-norms

and distance functions di(p) , ‖ai − p‖i , ‖Wi(ai − p)‖, as well and the sum of
distances function f : Rm → R as

f(p) ,
n∑
i=1

di(p) =

n∑
i=1

‖Wi(ai − p)‖ . (3)

A minimiser of f is called a spatial median of the points {ai}. Existence and unique-
ness in case of non-collinear data covering the whole space, follows as in [28, Theorem
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3.1], where the problem (3) was studied under a more elaborate model for missing
data.

Now, consider the problem of finding the minimum of (3) perturbed with the
negation of a finite-valued convex function ν. That is, calling the objective function
fν , f − ν, we consider the problem

min
p∈Rm

fν(p) = min
p∈Rm

n∑
i=1

di(p)− ν(p). (4)

Any solution of problem (4) will be called a perturbed spatial median. It turns out
that a slightly modified Weiszfeld algorithm is still applicable for finding what we
will call semi- and more generally D-critical points, on the assumption that the
subdifferentials of ν are in some sense properly contained in the range of the subdif-
ferentials of

∑n
i=1 di or if we can otherwise guarantee some boundedness properties.

For now we will, however, only require that ν is finite-valued. Then it will also
have non-empty locally uniformly bounded subdifferentials, by e.g. [23, Corollary
24.5.1]. Recall that a set-valued mapping F : X ⇒ Y between metric spaces X and
Y is locally uniformly bounded at x ∈ X if there exists a neighbourhood U of x
such that

⋃
x′∈U F (x′) is bounded in Y .

2.1 Directions of descent

Notice that, since ν is convex, if we replace it with a linearisation ν̃vp (p′) , ν(p) +

vT (p′ − p) for v ∈ ∂ν(p), then −ν ≤ −ν̃vp and, furthermore, fν is dominated by the
upper convexification fνvp . Therefore, for any p′ ∈ Rm, for which f(p′) − ν̃vp (p′) <
f(p)− ν̃vp (p) = f(p)− ν(p) it follows that f(p′)− ν(p′) < f(p)− ν(p). This means
that if some upper convexification at p is descending to some direction, so is fν
itself.

The next theorem provides a sufficient condition for search direction and step
length for the minimisation of fν . To state it, we need to introduce some notation.
We write π(p) , {i |Wi(ai−p) = 0}. The gradient of the differentiable components
of f at p is then given by

gπ(p) ,
∑
i 6∈π(p)

W 2
i

p− ai
‖p− ai‖i

=
∑
i 6∈π(p)

Si(p)(p− ai),

for Si(p) ,W 2
i /di(p). We also define Sπ(p) ,

∑
i 6∈π(p) Si(p), and the pseudoinverse

of the (diagonal positive-semidefinite) matrix Sπ(p) as S†π(p). The orthogonal pro-
jection matrix into

∑
k∈π(p)R(Wk) is denoted ρπ(p), and the projection into the

orthogonal complement as ρ̄π(p). Let us also abbreviate gvπ(p) , gπ(p) − v, and
define

h(z, v; p) , gvπ(p)T z +
∑

k∈π(p)

‖z‖k .

Theorem 1. Suppose ν(p) = vT p for some v ∈ Rm, and let z ∈ Rm. Then fν(p+
ωz) < fν(p), if ω ∈ (0,Ω) with Ω , Ω(p, v, z) defined as the supremum of ω′

satisfying
ω′(zTSπ(p)z) < −2h(z, v; p). (5)

Additionally, there exists z 6= 0 with Ω(p, v, z) > 0 if and only if there exists a
direction of descent of fν at p.
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Proof. We will write p′ , p + ωz, gπ , gπ(p) and π , π(p) to make the equations
more legible.

Write

f(p) =
∑
i6∈π

di(p)
2

di(p)
and f(p′) =

∑
i 6∈π

di(p
′)di(p)

di(p)
+
∑
k∈π

dk(p′).

As di(p
′)di(p)− di(p)2 = 1

2

(
di(p

′)2 − di(p)2 − (di(p)− di(p′))2
)
, we have that

2(fν(p′)− fν(p)) =
∑
i 6∈π

di(p
′)2

di(p)
−
∑
i6∈π

di(p)
2

di(p)
+
∑
k∈π

2dk(p′)− 2vT (p′ − p)− C,

where C ,
∑
i 6∈π(di(p)− di(p′))2/di(p) is non-negative. Using p′ = p+ ωz gives

di(p
′)2 = ‖(p− ai) + ωz‖2i = di(p)

2 + 2ωzTW 2
i (p− ai) + ω2zTW 2

i z.

Thus, because dk(p′) = dk(p+ωz) = ω ‖z‖k for k ∈ π, we have that fν(p′)−fν(p) <
0 holds if

2ωzT

∑
i 6∈π

W 2
i

p− ai
di(p)

+ ω2
∑
i 6∈π

zTW 2
i z

di(p)
+ 2ω

∑
k∈π

‖z‖k − 2ωvT z < 0,

or, more compactly put,

ω(zTSπz) < 2(−(gπ − v)T z −
∑
k∈π

‖z‖k),

which gives the condition (5).
The second claim follows since, in fact, h(z, v; p) is the directional derivative

f ′ν(p; z).

The next result provides further detail on calculating a step z. To specify it,
we use the notation

Z(p) , {z ∈ Rm | ‖z‖ = 1, ρ̄π(p)z = 0} ∪ {0}

for the set of search directions in the subspace R(ρπ(p)) =
∑
k∈π(p)R(Wk) spanned

by the non-differentiable components of f .
Lemma 1. Let v and fν be as in Theorem 1. Let z̃ ∈ Z(p) be such that h(z̃, v; p) < 0
if such a choice exists. Otherwise choose z̃ = 0. Suppose ω ∈ (0, 2) and that p ∈ Rm
is not a minimiser of fν . Then

z = z(p, v) , −ρ̄π(p)S
†
π(p)gvπ(p) + αz̃ (6)

is a direction of descent for fν when α ∈ (0, α0), where α0 , α0(ω, z̃, v; p) > 0
is the supremum of α for which z satisfies (5) at p for ω and v. Furthermore,
α0(2, z̃, v; p) gives for any ω ∈ (0, 2) a lower bound α2(z̃, v; p) ∈ (0, α0] (strict if
−ρ̄π(p)g

v
π(p) 6= 0), obtained as the supremum of α satisfying

αz̃T ρπ(p)Sπ(p)z̃ ≤ −h(z̃, v; p). (7)
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Proof. We will abbreviate z , z(p, v), gvπ , gvπ(p), Sπ , Sπ(p), and π = π(p) for
legibility.

Inserting (6) into condition (5) of Theorem 1, we get

ω((gvπ)T ρ̄πS
†
πSπS

†
πρ̄πg

v
π + α2z̃T ρπSπρπ z̃ − 2αz̃T ρπSπρ̄πS

†
πg
v
π)

< −2(−(gvπ)T ρ̄πS
†
πg
v
π + α(gvπ)T ρπ z̃ +

∑
k∈π

‖αz̃‖k),

because Wkz = αWkz̃ for k ∈ π. As also ρπSπρ̄π = 0 and S†πSπS
†
π = S†π, this

reduces to

ω((gvπ)T ρ̄πS
†
πg
v
π + α2z̃T ρπSπ z̃)− 2((gvπ)T ρ̄πS

†
πg
v
π − αh(z̃, v; p)) < 0, (8)

where α has been taken outside norms because it is non-negative by assumption.
If z̃ = 0, then α does not contribute to (8), so its choice is irrelevant and

α0 infinite. If, furthermore, ρ̄πg
v
π = 0, then minh(z, v; p) = 0 over ‖z‖ = 1, and

therefore by Theorem 1, p is a minimiser of fν . If, on the other hand, ρ̄πg
v
π 6= 0,

then any ω < 2 is valid.
If ρπSπ z̃ = 0 but z̃ 6= 0, then since h(z̃, v; p) < 0, we see that α can still be

arbitrarily large, and any ω ∈ (0, 2) is valid even for small α.
Suppose then that all the terms in (8) involving z̃ are non-zero. Whenever

0 < ω < 2, the inequality is either satisfied for α = 0, or becomes an equality.
Therefore, because the inequality is quadratic in α with the multiplier of the second-
order term positive, and that of the first order term negative, there is for any
0 < ω < 2 an α0(ω, z̃, v; p) > 0, such that α ∈ (0, α0(ω, p, v)) satisfies the inequality.

Setting ω = 2 in (8), gives the condition for α2. Furthermore, if α2 satisfies
(8) for ω = 2, possibly non-strictly, it must continue to do so for ω < 2, strictly if
(gvπ)T ρ̄πS

†
πg
v
π 6= 0 (which is equivalent to the condition in the statement). The lower

bound on α0 follows.

Example 1.
i) When π(p) = ∅, necessarily z̃ = 0, and we get from (6) that z(p, v) =
−S†π(p)gvπ(p). If Wk = wkI, i.e. the weights are uniform and no data is missing,
Si = wiI/ ‖p− ai‖, and this step reduces to the the conventional Weiszfeld
step used in (2).

ii) When π(p) = {k} is a singleton, a z̃ may be easily found by minimising
h(z, v; p) = gvπ(p)T z + ‖z‖k over {z ∈ R(Wk) | ‖z‖k = 1}. By positive ho-
mogeneity of h, its minimum value is zero over this set exactly when it is
the same over Z(p), so that we may choose z̃ = 0 in this case. The result is

therefore z̃ = −(W †k )2gvπ(p)/
∥∥∥W †kgvπ(p)

∥∥∥ ∈ Z(p) when
∥∥∥W †kgvπ(p)

∥∥∥ ≥ 1, and

z̃ = 0 otherwise.
iii) When #π(p) > 1, but the data do not overlap, i.e. R(Wi)∩R(Wj) = {0} for

distinct i, j ∈ π(p), z̃ can be calculated independently on each R(Wi), with
the above result. This case is of importance in our application examples, and
also in relation to the convergence results below.

iv) When #π(p) > 1, but the data overlaps, the determination of appropriate z̃ is
more complicated. However, in practical data sets, it is rare to have multiple
vertices with partial coinciding information, furthermore agreeing with the
current iterate. Appendix B in any case establishes relevant formulae for the
non-partially-overlapping/hierarchical case.
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2.2 Optimality conditions and the method

Let us now examine when 0 ∈ ∂◦fν(p), where ∂◦ denotes the Clarke subdifferential;
cf. [8, 20]. A necessary condition for this is that 0 ∈ ∂f(p) − ∂ν(p) , {g − v | g ∈
∂f(p), v ∈ ∂ν(p)}, or, equivalently, ∂f(p)∩∂ν(p) 6= ∅. This is because ∂◦(f−ν)(p) ⊂
∂◦f(p) + ∂◦(−ν)(p) and ∂◦(−ν)(p) = −∂ν(p). But this means: for some v ∈ ∂ν(p),
the convex function f − vT : p 7→ f(p) − vT p (and then fν̃vp ) has minimum at p.
Therefore we define:
Definition 1. The point p is semi-critical for fν if ∂f(p) ∩ ∂ν(p) 6= ∅. The set of
semi-critical points for our problem of interest is denoted P∂ .

By Theorem 1, p is then semi-critical if and only if h(z, v; p) ≥ 0 for all
z ∈ Rm \ {0} for some (fixed) v ∈ ∂ν(p).

Semi-criticality isn’t generally sufficient for criticality in the sense 0 ∈ ∂◦fν(p)
(let alone local minimality). However, whenever either f or ν is differentiable at p,
then by [8, Proposition 2.3.3], convexity and finiteness, ∂◦fν(p) = ∂f(p)−∂ν(p), and
thus semi-criticality is equivalent to criticality. In particular, this holds whenever
π(p) = ∅. On the other hand, if some upper convexification of fν by ν̃vp does not
have a minimum at p, it then has a direction of descent, and so has fν . We can
improve from semi-criticality a bit, however. Recall that a set-valued mapping F is
outer-semicontinuous [24], if pi → p and vi ∈ F (pi), imply that every accumulation
point of {vi} is in F (p).
Definition 2. Let Dν be an outer-semicontinuous mapping, such that ∅ 6= Dν(p) ⊂
∂ν(p), for p ∈ Rm. If ∂f(p) ∩ Dν(p) 6= ∅, we refer to p as D-critical for fν . The set
of D-critical points for our problem of interest is denoted PD.

By Theorem 1, D-criticality is equivalent to h(z, v; p) ≥ 0 holding for all z for
some v ∈ Dν(p). The maximal system of such sets is, of course, the system ∂ν (as
the subdifferential of a finite convex function is outer-semicontinuous). The minimal
system is of necessity

DNν(p) , { lim
i→∞

∇ν(pi) | pi → p, ν is differentiable at pi},

the convex hull of which is ∂ν(p).
These considerations finally lead us to extend the SOR-Weiszfeld iteration for

incomplete data as follows.
Algorithm 1 (The perturbed SOR-Weiszfeld method).

1. Set r = 0, and choose an initial iterate p0 ∈ Rm. Choose Dν satisfying Defi-
nition 2 (typically ∂ν or DNν), as well as a stopping criterion.

2. Choose vr ∈ Dν(pr), z̃ ∈ Z(pr), ω ∈ (1, 2) and α ∈ (0, α0(ω, z̃, vr; pr)), as
described in Lemma 1.

3. Calculate pr+1 , Tω(pr, vr) with z defined by (6), and

Tω(p, v) , p+ ωz(p, v).

4. If the stopping criterion is not satisfied, continue from Step 2 with r , r+ 1.
The choice of vr ∈ Dν(pr) is arbitrary because we only have partial conver-

gence to D-critical points, and if there is a single vr for which fν̃vrpr has no direction
of descent, we have found such a point.
Lemma 2. The iteration Tω is descending for fν if p 6∈ PD.

Proof. By Lemma 1, z(p, v) is a direction of descend for fν̃vp when v 6∈ ∂f(p), and
therefore for fν as well.
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2.3 Convergence

We now turn to the convergence properties. The following Lemma 3 is an essential
part that tells us that the iterates deflect from clusters of vertices at distance from
PD. This along with some additional assumptions on choice of step length and
the form of fν , allows us to exploit the continuity of Tω on a subspace to show the
convergence to D-critical points in Theorem 2, assuming the iterates do not diverge.

We denote p′ , Tω(p, v). We will sometimes omit v from the parameters for
brevity, and write z̃(p) etc. The specific selection is denoted v(p). The closed ball
of radius δ centred at x ∈ Rm, is denoted by B(x, δ).
Lemma 3. Let the points and subgradients pr ∈ Rm, vr ∈ Dν(pr) (r = 1, 2, . . .)
and q ∈ Rm, u ∈ Dν(q) be given, with constant π′ , π(pr) ( π(q). Suppose that
z̃ ∈ Z(q) with (i) ρπ′ z̃ = 0, and (ii) h(z̃, u; q) < 0. If (pr, vr) converge to (q, u), then
for all ω ≥ 1 and some k ∈ πz̃ , {k ∈ π(q) \ π′ |Wkz̃ 6= 0}, it holds that

lim sup
r→∞

dk(p′r)

dk(pr)
> 1. (9)

In fact, lim infr→∞ supk∈πz̃ dk(p′r)/dk(pr) > 1, since we may apply the argu-
ment to any subsequence of the original.

Proof. Denote p = pr and v = vr for arbitrary r, for lighter notation. We may write

gπ(p) =
∑
i6∈π′

Si(p)(p− ai) =

∑
i6∈π′

Si(p)(q − ai) + Sπ(p)(p− q)

 .

Since ρ̄π′S
†
π(p)Sπ(p) = ρ̄π′ by our prevailing assumption

∑
R(Wk) = Rm, as well

as ρπ′(p− q) = 0, we have according to (6) that

ρ̄π′(p
′ − q) = p− q − ωρ̄π′S†π(p)gvπ(p) = (1− ω)(p− q)− ωρ̄π′S†π(p)g̃v(p)(p), (10)

where g̃v(p) ,
∑
i 6∈π(q) Si(p)(q − ai)− v.

Let now k ∈ πz̃. Since Wkq = Wkak, (9) follows if

lim sup
r→∞

‖ρ̄π′(p′r − q)‖k
‖pr − q‖k

> 1.

Thus, by applying ω ≥ 1 and the reverse triangle inequality to the Wk-norm of (10),
it becomes sufficient to show that for some k, lim supr→∞(ωNk(pr)− |1− ω|) > 1,
i.e. lim supr→∞Nk(pr) > 1, where

Nk(p) ,

∥∥∥∥∥∥∥ρ̄π′
∑
i6∈π′

W 2
i

dk(p)

di(p)

† g̃v(p)(p)

∥∥∥∥∥∥∥
k

.

Suppose lim suprNk(pr) ≤ 1 for all k ∈ πz̃, and choose ε > 0. Then, for
sufficiently large r, since ‖z̃‖k = 0 for k ∈ (π(q) \ π′) \ πz̃, an application of the
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Cauchy-Schwarz inequality shows

ε+
∑

k∈π(q)\π′
‖z̃‖k ≥

∑
k∈π(q)\π′

‖z̃‖kNk(pr)

≥ −
∑

k∈π(q)\π′
z̃TW 2

k (
ρ̄π′

dk(pr)
)

∑
i 6∈π′

ρ̄π′W
2
i

di(pr)

† g̃vr (pr)
= −z̃T

 ∑
k∈π(q)\π′

Γk(pr)

∑
i 6∈π′

Γi(pr)

† g̃vr (pr),
(11)

where Γi(p) , W 2
i ρ̄π′x(p)/di(p), and x(p) , 1/

∥∥∥∑k∈π(q)\π′W
2
k ρ̄π′/dk(p)

∥∥∥ is a

normalising factor.
Observe that Γi(pr) → 0 for i 6∈ π(q), faster than for i ∈ π(q) \ π′ (if such

were to happen). Therefore
∑
i 6∈π′ Γi(pr)−

∑
k∈π(q)\π′ Γk(pr)→ 0, and likewise for

the pseudo-inverses. Now letting ε↘ 0 and going to the limit in (11) yields∑
k∈π(q)\π′

‖z̃‖k ≥ −z̃
T ρ̄π′ρπ(q)g

u
π(q).

This combined with assumption (i) says that h(z̃, u; q) ≥ 0, in contradiction to
assumption (ii).

Lemma 4. Suppose (pr, vr)→ (q, u) with constant π(pr) = π′ and z̃(pr) = 0. Then
we may take ρπ′ z̃(q) = 0.

Proof. Since ρπ′(q − pr) = 0, we have as r →∞ that

ρπ′gπ(pr) = ρπ′
∑
i 6∈π′

Si(pr)(pr − ai) = ρπ′
∑
i 6∈π(q)

Si(pr)(pr − ai)→ ρπ′gπ(q).

Consequently, for z̃ ∈ Z(q),

guπ(q)T ρπ′ z̃ +
∑
k∈π′
‖z̃‖k = lim

r→∞
gvπ(pr)

T ρπ′ z̃ +
∑
k∈π′
‖z̃‖k = lim

r→∞
h(z̃, vr; pr) ≥ 0,

with the inequality holding by z̃(pr) = 0. Therefore, we can take ρπ′ z̃ = 0, as any
other choice would increase the value of the remaining ‖z̃‖k for k ∈ π(q) \ π′ in
h(·, u; q).

Assumption 1. The set of iterates {pr | r = 1, 2, . . .} generated by Algorithm 1 is
bounded. The function fν is bounded from below. The step sizes ωr satisfy the con-
ditions of Algorithm 1, and there exists ω < 2, such that ωr ∈ [1, ω]. Furthermore,
z̃(pr) = 0 (i.e. π(p′r) ⊃ π(pr)) eventually.
Lemma 5. The step sizes can be chosen to satisfy z̃(pr) = 0 eventually. Hence
eventually π(pr) = π′ is constant.

Proof. Choose ω (eventually) so as to avoid adding elements to π(pr). This can be
done, since in each direction z(pr, vr), there are finitely many step lengths for which
dk(pr) = 0 for some k 6∈ π(pr). Then π(p′r) ⊂ π(pr), which can be strict only finitely
many times, exactly when z̃(pr) 6= 0.

8



Lemma 6. Suppose Assumption 1 holds, and let (q, u) be a cluster point of {(pr, vr)}.
Then q ∈ PD, if h(·, u; q) ≥ 0 on Z(q).

Proof. Since {fν(pr)} is bounded from below by assumption, and monotonically
decreasing by Lemma 2, it holds that

lim
r→∞

(fν(pr)− fν(p′r)) = 0. (12)

Let then {(pr` , vr`)} be a subsequence convergent to (q, u). If pr` ∈ PD for
some `, then there’s nothing to prove, so suppose this is not the case. We may
assume that π(pr`) = π′ is constant. Also, since for i 6∈ π(q) it holds that di(q) > 0,
we must have π(pr`) ⊂ π(q), whence ρπ′(q − pr`) = 0.

If π(q) = ∅, then also π′ = ∅. If q were not D-critical, it would hold that
fν(q′) < fν(q) for all choices of v(q) ∈ Dν(q) and ω ∈ [1, ω]. But since Tω for fixed
ω is continuous around (q, u), and since (pr` , vr`) → (q, u), we get Tω(pr` , vr`) →
Tω(q, u). Therefore, lim fν(p′r`) = fν(q′) < fν(q) = lim fν(pr`), which contradicts
(12). Thus Tω(q, u) = q, and consequently in the case of varying ωr ∈ [1, ω], we see
that the line segment [T1(pr` , vr`), Tω(pr` , vr`)] 3 Tωr` (pr` , vr`) = p′r` vanishes at
the limit. Therefore, q ∈ PD.

Suppose then that π(q) 6= ∅. Since h(·, u; q) ≥ 0 over Z(q), we have z̃(q, u) =
0, and it remains to show that z(q, u) = 0, i.e. ρ̄π(q)S

†
π(q)guπ(q) = 0. We have

ρπ(q)ρ̄π′z(pr`) = −ρπ(q)ρ̄π′S
†
π(pr`)g

vr`
π (pr`) → 0, because vr` → u is bounded, and

ρπ(q)ρ̄π′S
†
π(pr`) goes to zero (with 1/dk(pr`) going to infinity in Sπ(pr`) for k ∈ π(q)\

π′). As ρ̄π(q)S
†
π(pr`)g

vr`
π (pr`) does not depend on ak for k ∈ π(q), it is convergent.

Therefore, in summary, we have ρ̄π′S
†
π(pr`)g

vr`
π (pr`)→ ρ̄π(q)S

†
π(q)guπ(q).

Consequently, lim` Tω(pr` , vr`) = Tω(q, u) for fixed ω, the choice of α being
irrelevant because z̃(pr` , vr`) = z̃(q, u) = 0.1 Now the same argument as was used
in the case π(q) = ∅ applies. We therefore have q ∈ PD.

Lemma 7. Suppose Assumption 1 holds. Let Qk denote the set of cluster points
(q, u) of {(pr, vr)}, such that k ∈ π(q) \ π′. We have,

i) If lim inf`→∞ dk(p′r`)/dk(pr`) > 1 for all subsequences approaching Qk, then
Qk = ∅.

ii) The above condition follows if for each (q, u) ∈ Qk, there exists z̃ ∈ Zk(q) ,
{z̃ ∈ Z(q) |Wiz̃ = 0 for i ∈ π(q) \ {k}} such that h(z̃, u; q) < 0.

Proof. Note that Qk is compact by boundedness of {(pr, vr)}, and that Zk(q) =
{z̃ ∈ Z(q) | ρπ′ z̃ = 0, πz̃ = {k}}. Let {(pr` , vr`)} be a subsequence of {(pr, vr)}
approaching Qk (with constant π(pr`) = π′). Under the conditions of (ii), we must
have lim inf`→∞ dk(p′r`)/dk(pr`) > 1, because otherwise we could find a subsequence
convergent to some (q, u) ∈ Qk, for which an application of Lemma 3 would yield
h(z̃, u; q) ≥ 0 for all z̃ ∈ Zk(q), in contradiction to our assumptions.

We may therefore assume that there exist δ > 0 and ε > 0, such that whenever
(pr, vr) ∈ Qk + B(0, δ), then dk(p′r) ≥ (1 + ε)dk(pr). Therefore, since dk(pr) > 0,
there exists a t > r such that (p[t], v[t]) 6∈ Qk + B(0, δ). Thus the whole sequence
cannot converge to Qk.

1In this lemma, α ↘ 0 would suffice, instead of z̃ = 0. This could be explicitly assumed,
but also follows from convergence assumptions, and sometimes from (7). The argument of Lemma
7 could also be extended to allow k ∈ π(pr), provided ‖αz̃‖k > 0 for a subsequence. However,
application/variant of Lemma 4 would demand additional assumptions.
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There then exists a subsequence {(pr` , vr`)} with (pr` , vr`) 6∈ Qk + B(0, δ),
and (p′r` , v

′
r`

) ∈ Qk+B(0, δ). Since Qk contains all the cluster points with k ∈ π(q),
there also exists δ′ > 0 such that dk(pr`) > δ′. Therefore, if there’s a subsequence
convergent to Qk, we must have dk(p′r`)→ 0. But, since the algorithm moves from
pr to a direction of descent of fν̃vrpr , we have

fν(pr)− fν(p′r) ≥ fν̃vrpr (pr)− fν̃vrpr (p′r) =
1

2

∑
i 6∈π(pr)

(di(pr)− di(p′r))2/di(pr), (13)

where the final estimate and term C/2 are from the proof of Theorem 1. This with
r = r` provides a contradiction to (12). Therefore Qk = ∅.

Theorem 2. Suppose Assumption 1 holds, and that for all π ∈ R(π(·)), k, i ∈ π,
k 6= i implies R(Wk) ∩ R(Wi) = {0}. Then either {(pr, vr)} has a cluster point
(q, u) with q ∈ PD, or the sequence diverges.

Proof. If there exists a cluster point (q, u), such that h(·, u; q) ≥ 0 on Z(q), Lemma
6 proves the claim.

Otherwise, to reach a contradiction, we may assume that (pr, vr) → (q, u),
where h(z̃, u; q) < 0 for some z̃ ∈ Z(q). According to Lemma 4, we may take
ρπ′ z̃(q) = 0. Furthermore, on the assumption that R(Wk) ∩R(Wi) = {0} for k, i ∈
π(q), h(·, u; q) is independent on each R(Wk). We may therefore choose z̃ ∈ Zk(q)
for some k ∈ π(q) \ π′. An application of Lemma 7 to Qk = {(q, u)} now provides
the desired contradiction.

Remark 1. We have the following further observations:
i) If pr → q, but {vr} diverges, then ν must be nondifferentiable at q.
ii) If a cluster point has π(q) = π′, q ∈ PD (by Lemma 6). In particular, any

cluster point with π(q) = ∅, is a solution.
iii) If #π(p) ≤ 1 for all p ∈ Rm, then there is a cluster point q ∈ PD. (Combine

Lemmas 6 and 7.) This is unfortunately not the case in our forthcoming
applications with “lifted” data.

iv) If there are multiple cluster points with differing π(q), there are actually
infinitely many of them: for some k, there are iterates with both dk(pr) > δ, as
well as dk(p′r`) ∈ [δ/2, δ), since dk(p′r`)→ 0 is not possible by (13). Therefore
there are cluster points in this distance range. Now let δ ↘ 0.

2.4 Boundedness

For the above partial convergence results to be of any use, an easily checkable con-
dition is needed to ensure that fν is bounded from below, and that there are cluster
points: the iterates stay bounded. Because the sequence {fν(pr)}∞r=1 is descending,
it suffices to show that the level sets of fν are bounded. This is where we need the
general results of Appendix A, relating clR(∂ν) ⊂ intR(∂f) to this. To apply these
results, we need to calculate the boundary of R(∂f) for f defined by (3). We denote
by clA, bdA, and intA, the closure, border, interior of the set A, respectively.
Lemma 8. Let A ,

⋃
p∈Rm ∂f(p). Then clA is convex and bounded, and

bdA = Z ,
⋃
πb

Zπb ,

10



with the union taken over πb ⊂ {1, . . . , n} such that R(ρπb) ( Rm and k ∈ πb
whenever R(Wk) ⊂ R(ρπb). Here

Zπb = {
∑
k 6∈πb

W 2
k q/ ‖q‖k + v | q ∈ Qπb , v ∈ clAπb},

Qπb , {q ∈ Rm |Wjq = 0 (j ∈ πb),Wkq 6= 0 (k 6∈ πb)},

Aπb ,
⋃
p∈Rm

∂(
∑
k∈πb

dk)(p).

Proof. The subdifferentials of f are clearly uniformly bounded: for g ∈ ∂f(p), ‖g‖ ≤∑n
k=1 ‖Wk‖. Hence A is bounded. By e.g. [23, Section 24] clA is also convex. It

remains to prove that bdA is of the claimed form.
Let q 6= 0. Then maxg∈clA g

T q is attained by any g ∈ Zπb obtained (as seen by
considering qT∇(qT∇f)(p) = qT∇2f(p)q) as a limit of some sequence gi ∈ ∂f(pi)
as ‖pi‖ → ∞ with W 2

k (pi − ak)/ ‖pi − ak‖k → W 2
k q/ ‖q‖k, when Wkq 6= 0. It then

has the form
g =

∑
k 6∈πb

W 2
k q/ ‖q‖k + v (14)

with πb = {j ∈ {1, . . . , n} | Wjq = 0}, and v ∈ clAπb . Therefore, all the exposed
faces of clA are contained in the sets Zπb , that are closures of unions of these faces.
It remains to prove that their union forms all of bdA.

The exposed faces of clA are precisely the sets of the form clA ∩ H, where
H is a supporting hyperplane to clA; see [23]. But clA is the intersection of the
corresponding half-spaces. Thus, if g ∈ clA has a ball B(g, ε) around it that is not
intersected by any of the hyperplanes H (and thus not by any of the Zπb), then
g 6∈ bdA. Otherwise, since the intersecting hyperplanes are defined by a compact
set of parameters (closed subset of bdA × bdB(0, 1)), we may find a supporting
hyperplane H that contains g. But then g ∈ clA ∩H, an exposed face.

3 Applications: bi-objective clustering

Consider a multiobjective formulation of the multifacility location problem:

min
p̄∈(Rm)s

(f1, f2)(p̄; ā), (15)

where the minimum is in the sense of Pareto-optimality, p̄ = (p1, . . . , ps) ∈ (Rm)s,
and ā = (a1, . . . , an) ∈ (Rm)n. The objectives are defined as

f1(p̄) =

s∑
i=1

n∑
j=1

dj(pi), f2(p̄) = −
s∑
i=1

s∑
j=1

d(pj , pi)

for some distance functions dj dependent on aj , and d. The objective f1 indicates
our desire to place cluster centres {pj} as close to the data as possible as defined by
means of the distances dj , while f2 indicates our desire to place the cluster centres
as far apart from each other as possible. (We want to minimise f1 and at the same
time maximise −f2.)

11



3.1 Squared Euclidean distance

Although it does not fit in the framework derived in the earlier sections, for com-
parison to what will follow and also to the classical K-means (which uses the same

distance; see [10]), we will first consider the case when d(x, y) = 1
2 ‖x− y‖

2
is the

squared distance. For simplicity we limit ourselves to the case of complete informa-
tion, dj = d(aj , ·). We then get as the Karush-Kuhn-Tucker necessary condition for
Pareto optimality (see e.g. [19, Chapter I.3]) that

λ1

n∑
j=1

(pi − aj)− λ2

s∑
j=1

(pi − pj) = 0 for all i = 1, . . . , s,

or that

(λ1n− λ2s)pi − λ1

n∑
j=1

aj + λ2

s∑
j=1

pj = 0 for all i = 1, . . . , s, (16)

for some λ1, λ2 ≥ 0 with strict inequality for at least one of λ1 or λ2.
If λ1n = λ2s, we get the solution candidates

1

s

s∑
i=1

pi =
1

n

n∑
j=1

aj . (17)

If, on the other hand λ1n− λ2s 6= 0, we find that all the {pi}si=1 are equal by
subtracting the term (16) for pi and pj (i 6= j). Hence, unless λ1 = 0, in fact (17)
holds. In the case λ1 = 0 there is no finite minimum, so we may ignore it.

Let us now check when solutions of (17) are Pareto-optimal. Expand the
expressions for d to yield

f1(p̄) =

s∑
i=1

n∑
j=1

1

2

(
‖pi‖2 + ‖aj‖2

)
−
( s∑
i=1

pi
)T ( n∑

j=1

aj
)

and

f2(p̄) = −
s∑
i=1

s∑
j=1

1

2

(
‖pi‖2 + ‖pj‖2

)
+
( s∑
i=1

pi
)T ( s∑

j=1

pj
)
.

Thus if (17) holds, then both f1 and f2 have a constant term at the end and f2

decreases iff
∑
i ‖pi‖

2
increases. But since this means that f1 increases, the solutions

of (17) are precisely the Pareto-optimal solutions of the original problem. This says
that the Pareto-optima are where the cluster centre means equal the data means.
The condition for Pareto-optimality is therefore very weak, and the solutions are
abundant.

3.2 Euclidean distance

With the Euclidean distance d(x, y) = ‖x− y‖, and dj defined as in Section 2, we
get more interesting results. The scalarisation of the problem (15) by the factor
λ ≥ 0 then reads as

min f1(p̄) + λf2(p̄) (18)

(cf. [19, Section II.3.1]). This problem can be cast as a problem of finding a perturbed
spatial median as follows. For each i = 1, . . . , s and j = 1, . . . , n, let

aij , ( 0, . . . , 0︸ ︷︷ ︸
m(i−1) times

, aTj , 0, . . . , 0︸ ︷︷ ︸
m(s−i) times

)T ,
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and W i
j be such that W i

j (p̄− aij) = Wj(pi − aj). Then

f1(p̄) =
∑
i,j

∥∥W i
j (p̄− aij)

∥∥ .
Because f2 is concave and finite, the problem can be modelled as a perturbed spatial
median problem with vertices {aij} and perturbation −λf2. Note that if {Wj} satisfy

the range non-overlap assumption of Theorem 2, so do {W i
j}. Hence, by Theorem

2, Theorem 7, and Lemma 11 in Appendix A, Algorithm 1 is applicable for finding
semi-critical points (Kuhn-Tucker points of the multiobjective problem), if we can
bound R(∂(−λf2)) within R(∂f1).

With f denoting here and throughout the paper, the function defined by (3)
with the original data {aj}, not {aij}, we note that ∂f1(p̄) = ∂f(p1)× · · · × ∂f(ps),
since f1 consists of s sets of n terms depending on different components of p̄. Also,
since f2 is positively homogeneous, we have R(∂(−λf2)) = ∂(−λf2)(0). Now, since
R(∂f1) is a product space, it suffices to consider the slices [∂(−λf2)(0)]i of this
subdifferential independently. At differentiable points

[∇(−λf2)(p̄)]i = 2λ
∑
j 6=i

pi − pj
‖pi − pj‖

.

Therefore, by the limit characterisation of the subdifferential, it suffices to check
that

lim
q1,...qs−1→0

2λ

s−1∑
j=1

qj
‖qj‖

∈ intR(∂f)

or that
B(0, 2λ(s− 1)) ∈ intR(∂f).

In the simple case with Wk = I for all k = 1, . . . , n, this follows if 2λ < n/(s − 1)
(when s > 1), because clR(∂f) = B(0, n) then. For incomplete and weighted data,
we must consider the“minimal dimension”of A: by Lemma 8, we must find minimum
‖z‖ for z =

∑
k 6∈πbW

2
k q/ ‖q‖k + v ∈ Zπb , among all πb. The sets Qπb and Aπb are

orthogonal, and the v can be made arbitrarily close to zero, being a subgradient of
a reduced spatial median problem. Therefore, it can and must be chosen to be zero,
and the remaining sum sets the bound. Thus we may state:
Theorem 3.

i) The level sets of the scalarised problem (18) are bounded if 0 ≤ 2λ < β/(s−1)

with β = min
∥∥∥∑k 6∈πbW

2
k q/ ‖q‖k

∥∥∥, with the minimum taken over all q ∈ Qπb
and πb ⊂ {1, . . . , n} satisfying the conditions of Lemma 8.

ii) If, furthermore, Wk = ρk for zero-one diagonal matrices ρk, β ≥ min #πcb
with πcb , {1, . . . , n} \ πb. In particular, β ≥ #{ρk = I}.

Proof. Only the lower bound min #πcb ≤ β demands further proof. Since ρπbq = 0,
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we have ∥∥∥∥∥∥
∑
k∈πcb

W 2
k q/ ‖q‖k

∥∥∥∥∥∥ ≥
√√√√ ∑
i:(ρ̄πb )ii=1

q2
i

( ∑
k∈πcb :(ρk)ii=1

1

‖ρkq‖
)2

≥
√ ∑
i:(ρ̄πb )ii=1

q2
i#{k ∈ πcb : (ρk)ii = 1}2/ ‖q‖2

≥ min
i:(ρ̄πb )ii=1

#{k ∈ πcb : (ρk)ii = 1}.

If (ρk)ii = 0 and (ρ̄πb)ii = 1, then (ρ̄πb∪{k})ii = 1. Therefore, for some πb′ ⊃ πb∪{k},
with πb′ ( {1, . . . , n} since ρk 6= I, both the set the minimum taken over is larger,
as well as the values smaller. Therefore, taking the minimum over the admissible
set of πb as defined in Lemma 8, we get the first claimed lower bound. Finally, if
R(ρk) is full, k is never contained in πb.

With such choices of λ as above, Algorithm 1 can thus in principle be ap-
plied to finding semi-critical points of the scalarised problem (18). We emphasise
that Theorem 3(ii) provides a simple and explicit lower bound for the supremum
of practical scalarisation values, as the amount of complete data. On the other
hand, when 2λ > β/(s − 1), 2λ

∑s−1
j=1 qj/ ‖qj‖ ∈ clR(∂f) can be violated, whence

R(∂(−λf2)) 6⊂ R(∂f1). Problem (18) is not bounded from below then, wherefore no
finite pareto-optimal solution is generated by scalarisation parameters much larger
than Algorithm 1 can be expected to handle.
Remark 2. Although we used the lifting of ai to aji in modelling the problem
as a problem of perturbed spatial median, it is not necessary to work with such
expanded data sets in practical implementations. Since the aij for differing j have
no coordinates with overlapping information, we have in particular that gπ(p̄) =
(gπ(p1), . . . , gπ(ps)) and Sπ(p̄) = (Sπ(p1), . . . , Sπ(ps)), where the right-hand-sides
have been defined for the original data {ai}. In consequence, there is no dependency
between the pj within the iterations of the SOR-Weiszfeld algorithm aside from
calculating the “tilt” v ∈ ∂(−f2)(p̄). Therefore, each iteration of Algorithm 1 can be
calculated in parallel using the same step size for the different cluster centres after
a subgradient of −f2 has been calculated.
Remark 3. The convergent sequences of our method are to semi-critical points,
not necessarily (local) minima. In addition to standard second degree conditions
for a posteriori optimality checking, we do, however, have at least the following
necessary optimality condition with a clear interpretation.
Lemma 9. Suppose pj = pk (j 6= k) and rank(ρπ) < m for π , π(pj) = π(pk).
Then p̄ is not a local minimiser.

Proof. The term ‖pj − pk‖ is not differentiable at pj = pk, Therefore, with v̄ =
(v1, . . . , vs), there are multiple choices for vj and vk (dependent on each other) in
all m dimensions, and we can in (5) choose vj so that [gπ(p̄)]j − vj 6= 0, and the
same for k. Because rank(ρπ) < m, the term

∑
i∈π ‖zj‖i does not pose problems in

forcing h(·; v, p) negative in (5). Thus the claim of the lemma follows from Theorem
1.
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4 Applications: the multisource Weber problem

The K-spatial median or the multisource Weber problem is a K-means type cluster-
ing criteria. Instead of the squared distance, the Euclidean distance is simply used.
The standard formulation is

min
wij ,p̄

n∑
i=1

s∑
j=1

wijdi(pj) with wij ∈ {0, 1} and

s∑
j=1

wij = 1, (19)

with K denoted by s here. The weights wij indicate to which cluster j the vertex i
belongs to, and pj is the cluster prototype.

The standard K-means-type algorithm [10, 25, 9] proceeds by assigning each ai
to the closest cluster centre pj (setting wij = 1), calculating the spatial median p′j for
each of the clusters Aj = {ai | wij = 1}, and repeating this until there is no change
in the assignments. Convergence of this class of methods to (differentiable) Karush-
Kuhn-Tucker points for some classes of distance functions in Rm is proved in [25],
along with providing an extension to find local minima. The proof readily generalises
to our case of incomplete data. For some other heuristic and local methods for
solving the problem, see [9, 4, 2]. The global solution with outer approximation
methods of the diff-convex formulation to be given below, is studied in [7]. Other
approximation schemes are derived in [1].

Given the constraints on the weights, for fixed i, minwij
∑s
j=1 wijdi(pj) =

minj=1,...,s di(pj). Therefore, an alternative way to write (19) is

min
p̄

n∑
i=1

min
j=1,...,s

di(pj). (20)

Because min{x, y} = x+ y−max{x, y}, this formulation can be further recast as a
DC problem by writing the objective function as

f1(p̄) + fKM
2 (p̄) ,

( n∑
i=1

s∑
j=1

di(pj)
)
−
( n∑
i=1

max
j=1,...,s

∑
k 6=j

di(pk)
)
.

But, indeed, using the lifting of ai to aji for j = 1, . . . , s as in Section 3.2, this
problem is seen to be a problem of perturbed spatial median. This problem, however,
has unbounded level sets: any change in pj sufficiently far from the data when some
other cluster centre is close to it, does not affect the function value. In other words,
the problem may have “degenerate” solutions; cf. also [5]. Therefore, Theorem 7
(in Appendix A) can not be used to prove the applicability of our Weiszfeld-like
algorithm. However, we can prove boundedness of the iterates directly with some
conditions on the step sizes and the tilt v̄(p̄), after first analysing Algorithm 1
applied to this problem, in further detail.

4.1 Algorithm analysis and reduction

Let us calculate ∂(−f2). Similarly to the derivation of ∂f1 in Section 3.2, we get

∂
(∑
k 6=j

di(pk)
)
(p̄) = ∂di(p1)× · · · ∂di(pj−1)× {0} × ∂di(pj+1)× · · · ∂di(ps)
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and therefore, with Ji , Ji(p̄) denoting the set of indices j for which
∑
k 6=j di(pk)

reaches its maximum (di(pj) reaches minimum),

∂(−fKM
2 )(p̄) =

⋃
Λ∈W

n∑
i=1

∑
j∈Ji

λj,i∂
(∑
k 6=j

di(pk)
)
(p̄)

=
⋃

Λ∈W

n∑
i=1

s∏
j=1

 ∑
k∈Ji\{j}

λk,i

 ∂di(pj) =
⋃

Λ∈W

n∑
i=1

s∏
j=1

Gj,i

(21)

with

Gj,i =

{
∂di(pj), j 6∈ Ji,
(1− λj,i)∂di(pj), j ∈ Ji.

(22)

Here Λ , {λj,i | j ∈ Ji, i = 1, . . . , n} and W , W(p̄) , {Λ |
∑
j∈Ji λj,i = 1, λj,i ≥

0}. Also let Wext , {Λ |
∑
j∈Ji λj,i = 1, λj,i ∈ {0, 1}} be the extreme points of W.

After choosing the weights {λj,i}, we may therefore choose for v̄(p̄) = v̄ =
(v1, . . . , vs) each vj ∈

∑n
i=1Gj,i independently. Noting that j 6∈ Ji implies di(pj) > 0

and hence i 6∈ π(pj), let

vj ,
∑

i6∈π(pj)
Ji3j

(1− λj,i)∇di(pj) +
∑

i 6∈π(pj)
Ji 63j

∇di(pj) +
∑

i∈π(pj)

(1− λj,i)W 2
i zj/ ‖zj‖i . (23)

Then v̄ ∈ ∂(−fKM
2 )(p̄), and ρ̄π(p̄)g

v
π(p̄) = (ρ̄π(p1)g1, . . . , ρ̄π(ps)gs) for

gj =
∑

i 6∈π(pj)

∇di(pj)− ρ̄π(pj)vj =
∑

i 6∈π(pj),
Ji3j

λj,i∇di(pj),

which are the gπ(pj) for the s reduced spatial median problems with vertices Aj ,
{ai | j ∈ Ji} and weights λj,i. Likewise h(z̄, v̄; p̄) =

∑s
j=1 h(zj , vj ; pj), where

h(zj , vj ; pj) = (
∑

i6∈π(pj)

∇di(pj)− vj)T zj +
∑

i∈π(pj)

‖zj‖i = gTj zj +
∑

i∈π(pj)
Ji3j

λj,i ‖zj‖i ,

(24)
which are h for the same reduced problems. It follows that z̃ required by Lemma
1 can be chosen independently for each j, together with vj . (Note that vj only
depends on the R(ρπ(pj)) part of zj , i.e. z̃j .) However, Sπ(p̄) does not split into
clusters quite so well: it remains dependent on the whole original data set, Sπ(p̄) =
(Sπ,full(p1), . . . , Sπ,full(pj)), where Sπ,full(pj) ,

∑
i∈{1,...,n}\π(pj)

Si(ps). Despite this,

the direction of (6),

z(p̄, v̄) = (. . . ,−ρ̄π(pj)S
†
π,full(pj)gj + αρπ(pj)z̃j , . . .),

can be calculated almost independently for each j, and we in fact have:
Theorem 4. For the multisource Weber problem, Algorithm 1 reduces to calculating
at each step, for the spatial median problems

min
p′j

∑
i:j∈Ji

λj,idi(p
′
j) (j = 1, . . . , s), (25)
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one iteration starting from pj, of the convex SOR-Weiszfeld algorithm, modified to
use Sπ,full(pj) (instead of Sπ(pj) for the data set Aj), in the direction (6). If the
sum is empty, the point remains unaltered. The step sizes ω and α must be the same
for all j, and valid for the full problem.

Since Sπ,full ≥ Sπ ≥ 0 (component-wise), the effect of this modification in
both (6) and (7) (for the problem (25)), is to shorten the step. In our study on how
the choice of step lengths affects the boundedness of the iterates, we may therefore
consider the application of the unperturbed Weiszfeld algorithm (for incomplete
data) without the Sπ,full-modification, to the problems (25).

4.2 Boundedness and convergence

If we are working with complete data and step size ω = 1, it is well known that each
iterate of the (convex unperturbed) Weiszfeld algorithm is in the convex hull of the
data points when the current iterate is not one of the vertices; cf. [16]. In fact, when
an iterate equals one of the vertices, we can freely choose the step size as small as
we want – the condition ω ≥ 1 does not apply to such points – and therefore keep
things bounded. Since the convex hull of a subset of points belongs in the convex
hull of the full set, we can therefore keep the iterates bounded in this case.

Similarly in our case of incomplete data, for π(p) = ∅ and convex problems of
spatial medians, each coordinate of T1(p) is in the convex hull of the corresponding
(non-missing) coordinates of the data. (We drop v from the parameters of Tω for
the convex sub-problems, since it is zero.) But our convergence theorem does not
guarantee convergence for a fixed step size for all kinds of incomplete data sets. It
is therefore imperative to study how the selection of step sizes affects boundedness
of the iterates.

Let p̂ ∈ Rm be some reference point, e.g. a spatial median of the data, L > 1,
and π , π(pj). Then, for the difference of p′j , Tω(pj) and p̂, following (10), we
have for the coordinates k present in R(ρ̄π) that∣∣(p′j − p̂)k∣∣ = |((1− ω)(pj − p̂) + ω(c− p̂))k| ≤ |1− ω| |(pj − p̂)k|+ ω |(c− p̂)k|

≤ |1− ω| |(pj − p̂)k|+ ωCk,

with c some point in the coordinate-wise convex hull of the data (as an average
of ak weighted by Sk), and Ck = maxc |(c− p̂)k|. Therefore, if |(pj − p̂)k| < (L −
ω)/(ω − 1)Ck for some valid ω > 1, then we have that

∣∣(p′j − p̂)k∣∣ < LCk. Since for
L > 1, (L− ω)/(ω − 1)↗∞ as ω ↘ 1, such an ω can always be found.

To bound (p′j − p̂)k for coordinates in R(ρπ), we alter the parameter α in the

iteration. By the definition of the step z(p) in (6),
∣∣(p′j − p̂)k∣∣ ≤ |(pj − p̂)k| + αω.

By Lemma 1, the iteration is descending for each ω ∈ (1, 2) and α ∈ (0, α0), with
α0 > 0. We may therefore make αω > 0 arbitrarily close to zero. Thus, with
|(pj − p̂)k| < LCk − αω, we have

∣∣(p′j − p̂)k∣∣ < LCk. Hence we can state:
Theorem 5. With the choice of α and ω as above, the sequence of iterates for
the perturbed SOR-Weiszfeld algorithm of Theorem 4 can be held bounded for the
K-spatial-medians objective. In consequence, the convergence results of Theorem 2
apply. Furthermore, with choices of Λ ∈ Wext, we can take D = DN .

Proof. Above we have derived upper bounds for ω and α for each cluster centre to
stay in the box (p− p̂) +

∏m
k=1(−LCk, LCk) for arbitrary L > 1 and reference point

ṗ, if the previous iterates satisfy this. Because the number of conditions is finite,
and allow for ω to vary in some non-singleton range above and including 1, there’s
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enough leeway for ω for it to be altered in such a manner that the conditions in
Theorem 2 on ω are met. Furthermore, the K-spatial-medians objective function
clearly is bounded from below, so the theorem applies.

In the choice (23) of vj used to obtain (24), we choose W 2
i z̃/ ‖z̃‖i ∈ ∂di(pj) for

i ∈ π(pj). These are in the limit of gradients of differentiable points of −fKM
2 , for at

these points ∇di(pj) takes the form W 2
i (pj − ai)/di(pj). Furthermore, directions in

DN(−f2
KM)(p̄) have Λ ∈ Wext. For, if #Ji(p̄) > 1, then −fKM

2 is not differentiable,
and hence at differentiable points W = Wext. As directions in DN are limits of
directions at differentiable points, by the preceding we must have have Λ ∈ Wext for
such directions. Now, if p̄ is DN-critical, then there’s a choice of weights Λ ∈ Wext for
which (p̄,Λ) solves (25) for each j. Therefore, with such choice of Λ, v̄ ∈ DN (p̄).

4.3 Optimality

Extend Λ by setting λj,i = 0 for j 6∈ Ji. For fixed Λ, we may then reformulate the
objective of Theorem 4 in a combined form as finding p̄′ such that F (p̄′; Λ) < F (p̄; Λ)
for the function

F (p̄; Λ) ,
∑
j

∑
i

λj,idi(pj). (26)

Theorem 6. The point p̄∗ is a local minimum of (20) if and only if it minimises
F (·; Λ) for all Λ ∈ W(p̄∗).

Proof. Necessity is obvious: (f1 + fKM
2 )(p̄) =

∑s
i=1 minj di(pj) ≤ F (p̄; Λ) with

equality at p̄∗, for all Λ ∈ W(p̄∗). Hence if p̄∗ isn’t a minimiser of the convex
function F (·; Λ) for some such Λ, it can’t minimise (20) even locally.

As for sufficiency: for all p̄ sufficiently close to p̄∗, W(p̄) ⊂ W(p̄∗) (with the
identification λj,i = 0 for j 6∈ Ji). Therefore, sufficiently close to p̄∗, by the definition
of W(p̄), f1(p̄) + fKM

2 (p̄) = min{F (p̄; Λ) | Λ ∈ W(p̄)} ≥ min{F (p̄; Λ) | Λ ∈ W(p̄∗)}.
But since F (·; Λ) is minimised at p̄∗ for all Λ ∈ W(p̄∗), it must be a local minimiser
of f1 + fKM

2 as well.

Corollary 1. i) If #Ji(p̄
∗) = 1 for all i = 1, . . . , n, and p̄∗ minimises F (·; Λ∗) for

the unique Λ∗ ∈ W(p̄∗), then p̄∗ is a local minimiser of (20). ii) If #Ji(p̄) > 1, and
we have π(pj) = ∅ for some j ∈ Ji(p̄), then p̄ is not a local minimiser.

Proof. The first claim is obvious from the preceding theorem. As for the sec-
ond claim, suppose p̄ minimises F (·; Λ∗) for some Λ∗ ∈ W(p̄). Let j, j′ ∈ Ji(p̄),
j 6= j′, and π(pj) = ∅. Let Λ be altered from Λ∗ by moving weight between
λj,i and λj′,i. This will not change the value of F at p̄. However, the condition
0 ∈ {∇

∑
i λj,id(ai, pj)} will be upset, and hence the value of f1 + fKM

2 can be
improved locally.

Corollary 2. If p̄∗ is DN-critical and #Ji(p̄
∗) = 1 for all i, then p̄∗ is a local

solution of (20).

Proof. The condition #Ji(p̄
∗) = 1 forces Λ∗ to be unique. Therefore, also (1 −

λj,i)∂di(p
∗
j ) reduces to the singleton {0} in (22). Hence v̄(p̄∗) is uniquely determined.

It then follows from DN -criticality that p̄∗ minimises (25) for all j, and consequently
minimises (26). That p̄∗ is a local solution follows from Corollary 1.

Remark 4. In fact, that #Ji(p
∗) = 1 or minj di(p

∗
j ) > 0 for all i forces v̄(p̄∗) to be

uniquely determined by Λ. We may show that such points are in fact critical and
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not only semi-critical. However, a simple example on the real line furnishes that the
relaxed condition does not guarantee local optimality:

a1

rp1

a2 a3

rp2

a4

Here p1 and p2 are at equal distance from a3. If a3 is assigned to the cluster of p2,
we have a critical point, yet assignment to p1 shows that both cluster centres can
be improved by just a small move of either or both p1 or p2 to the right.
Corollary 3. Under conditions of Theorem 5, with choices of Λ ∈ Wext(p̄), if the
iterates {p̄r} of the algorithm of Theorem 4 converge to p̄∗, then it is either a local
minimiser, or has disputed vertices: #Ji(p̄

∗) > 1 for some i ∈ {1, . . . , n}.

Proof. Since {p̄r} converge to p̄∗, if {v̄(p̄r)} diverges, then−fKM
2 is non-differentiable

at p̄∗ (cf. Remark 1(i)). This says that there are disputed vertices. If {v̄(p̄r)} also
converges, then by Theorem 5 (and Theorem 2), p̄∗ is DN-critical, and the previous
corollary applies.

Remark 5. Suppose that eventually in the method, the assignments of vertices to
clusters is unique. Then, if the data set is complete (or more generally #π(pi) ≤ 1
always), we have convergence to the set of local minimisers (being able to analyse
the method on each cluster separately, applying Remark 1(iii)). Therefore, with
such simple data, non-convergence is always a case of dispute over assignment of
vertices to clusters.

4.4 Discussion and multiobjective interpretation

We have thus provided a method for the multisource Weber problem, providing
convergent sequences to semi-critical points of the problem and often, in fact, to
local minima. Our method does not depend on solving s inner spatial median prob-
lems (likely with the Weiszfeld algorithm) between each step of allocating vertices
to clusters. Instead, we only solve a single perturbed spatial median problem, which
amounts to running s “tilted” SOR-Weiszfeld iterations in parallel, with tilts calcu-
lated from the results of all the s previous iterations, as was explained in Section
3.2.

If we choose {λj,i} as extreme points of the feasible sets, then in some sense,
our method is“dual” to the basic K-means type algorithm: in that algorithm, spatial
medians are calculated between assignments of vertices to clusters, whereas in our
method vertices are assigned to clusters between iterations of a method to find
spatial medians. To summarise, Algorithm 1 reduces to the following:
Algorithm 2 (K-means type method with single step SOR-Weiszfeld).

1. Choose some starting points pj (j = 1, . . . , s).
2. Assign each vertex ai (i = 1, . . . , n) to one of the clusters Aj corresponding

to closest pj (j = 1, . . . , s).
3. To obtain p′j , calculate for the (convex) spatial median problem on Aj , one

iteration of Algorithm 1 with the modified direction

zKM(pj) , −ρ̄π(pj)S
†
π,full(pj)gπ(pj) + αρπ(pj)z̃j , (27)

where gπ(pj) and z̃j are calculated for the data Aj . See below for constraints
on step sizes.

4. Continue from step 2 unless a stopping criterion is satisfied.

19



The step lengths ω ∈ [1, 2) and α should be the same for each cluster, according
to Theorem 4. Since (7) defining the bound α2 for the whole problem, is the sum
of Sπ,full-modified conditions for the sub-problems, it suffices to to bound α from
above by the minimum of the upper bounds for the sub-problems. Theorem 2 sets
some minor restrictions on ω ∈ [1, 2) to avoid oscillation. Theorem 5 sets additional
upper bounds on the step lengths by the coordinate-wise bound LCk > Ck on∣∣(ṗ′j)k∣∣, which we may, however, choose arbitrarily large.
Example 2. When Wk = wkI for all k = 1, . . . , n, Sπ,full is proportional to the
identity; cf. Example 1. Therefore, in that case, (27) is simply a shortened standard
Weiszfeld step for the data Aj . The effect of the data outside the cluster Aj is
therefore to damp too quick convergence to its centre. For more complex weights
Wk, the same conclusion holds coordinate-wise.

In light of the multiobjective clustering criteria considered in Section 3, it is
interesting to interpret the K-spatial-medians as one scalarisation of a more general
problem

min
p̄

(f1, f
KM
2 )(p̄).

The meaning of the objective f1 is the same as before. What the objective fKM
2

means is: place all but the closest cluster centre as far from ai as possible. This
sounds like a very natural criteria. Thus, it will be interesting to look at the results
of minp̄ f1(p̄) + λfKM

2 (p̄) for λ ∈ [0, 1].
For λ ∈ [0, 1), Theorem 7 is applicable to proving boundedness of the level sets.

To see this, consider the inclusions λR(∂(−fKM
2 )) ⊂ λ

⋃
ΛR(∂fΛ) ⊂ intR(∂f1),

where fΛ : p̄ 7→
∑s
j=1

∑n
i=1(1 − λj,i)di(pj), and Λ ranges over all the admissible

weights {λj,i} with λj,i ≥ 0 and
∑
i λj,i = 1}. The first inclusion can be seen from

taking the union over p̄ in the expression (21). To see the second inclusion, note
that f1 = fΛ1 for Λ1 with all zero weights. Therefore f1 − λfΛ is a convex function
with bounded level sets for λ ∈ [0, 1) and admissible Λ. Thus an application of
Theorem 7 yields that λR(∂fΛ) ⊂ intR(∂f1). Finally since the inclusions above
hold for some other λ′ ∈ (λ, 1), the result must hold for the closure as well, i.e.
clR(∂(−λfKM

2 )) ⊂ intR(∂f1). Now Theorem 7 applies again.

5 Experiments

In this section we present some experiments with the proposed algorithm(s) and
clustering formulations. It is not our intent to provide thorough statistically signifi-
cant testing and comparison of the method with alternatives, but rather to provide
minimal experimental proof that the method works, and to visually compare the
KM and MO clustering objectives. Especially, the statistical and computational
properties of the K-spatial medians, along with significant amount of tests with real
and simulated data, are covered in [32]. Our forthcoming paper [30] will also in-
clude more extensive computational results with Algorithm 1 in other applications,
related to the MO clustering objective.

Figures 1 and 2 show results for two cases using both the problem of Sec-
tion 3.2 (MO), and the multi-objective formulation of the K-spatial-medians (KM)
discussed in Section 4. The number of clusters is three, and the total number
of vertices is 90. The weight λ was randomly varied between zero and the indi-
cated upper limit for 30 samples in each case. The stopping criterion used was
maxj=1,2,3

∥∥p′j − pj∥∥ < 10−6 and the maximum number of iterations was 300. The
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(a) MO, λsup = 90/4 (b) KM, λmax = 1

Figure 1: Results for a task with three clear clusters with varying λ and ω = 1.5.

actual mean, median, minimum and maximum numbers of iterations (nits) of the
perturbed SOR-Weiszfeld method to reach the threshold is given in the figures (in
that order: mean/median/min/max). The bigger dots in the figures denote the data,
and the smaller dots the clusters centres.

As we can see, for λ = 0 the result is in both cases the spatial median of the
data. From there, the solutions continuously move towards the centres of clusters, as
λ varies towards the respective upper bound for λ (λsup = (n/2)/(s−1) for MO, from
Theorem 3, and λmax = 1 for KM, from the analysis of Section 4.2), just as suggested
by results of sensitivity analysis of optimisation problems under some assumptions
on the second-order behaviour of the objective function at the solution; cf. e.g. [3].
Interestingly, the paths the solutions travel are very similar for both KM and MO,
and the paths for MO pass closely to the cluster centres for KM, but “overshoot”
slightly for big λ. This resemblance isn’t entirely unexpected, however: for tightly
packed clusters, we should have d(p∗k, p

∗
j ) ≈

∑
i:k∈Ji d(ai, p

∗
j )/#{i : k ∈ Ji} for all

k 6= j. In case of the K-spatial-medians, the small amount of total iterations used
is also noteworthy when compared to the basic K-means-type algorithm, where
a comparable number of iterations would be used in the inner (SOR-Weiszfeld)
algorithm used to calculate the spatial medians [18]. One may also note that the
MO formulation has required more iterations in our tests. But since this number
is dependent on the stopping criterion, and absolute quality of the solutions is not
known, not much conclusions can be drawn.
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Figure 2: Results for a task with three less clear clusters with varying λ and ω = 1.5.

6 Miscellaneous applications and final remarks

The Weber problem with attraction and repulsion studied in [6] is also a problem
of perturbed spatial median. In this problem, some of the weights wi are allowed
to be negative, creating repulsive points and making the problem diff-convex. The
problem is also studied on the plane in [11], where another modification of the
Weiszfeld algorithm is developed.

It is also interesting to note the superficial similarity of the scalarisation of our
bi-objective clustering formulation to the Euclidean multifacility location problem.
In the latter problem, the f2 component has sign changed from ours, aside from
including weights for all the distances, needed for the problem to not reduce to a
single-facility problem. Our algorithm is therefore not directly suited for solving this
problem, yet a Weiszfeld-type algorithm can be derived for it; see [21].

As for the applicability of our algorithms, we did manage to characterise the
local minimisers of the multisource Weber problem in such a manner that our al-
gorithm can be seen to converge to local minimisers in a wide variety of cases.
For our multiobjective clustering formulation such an easily “interpretable” char-
acterisation of local minima has been elusive, however. Nevertheless, our limited
numerical experiments suggest potentially good clustering behaviour.
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[30] T. Valkonen and T. Kärkkäinen, Continuous reformulations and heuris-
tics for the Euclidean travelling salesperson problem, ESAIM: Control, Opti-
mization and Calculus of Variations, (2008). published online (E-first).

[31] E. Weiszfeld, Sur le point pour lequel la somme des distances de n points
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A Boundedness of level sets of DC functions

In this section some conditions are provided for the boundedness of level sets of
differences of convex functions (DC functions). These are functions of the form
fν , f − ν with both f and ν convex. See, for example, the survey papers [27, 15]
for an overview of results related to optimisation theory for such functions, and
application examples. For some optimality conditions – that unfortunately do not
seem to provide a simple characterisation of optimality for our application examples
– see [13, 14, 12].

We will denote the range of the subgradient of a convex function f byR(∂f) ,⋃
p∈Rm ∂f(p), which is non-empty for proper convex functions. The convex conjugate

is denoted by f∗(ξ) , supp∈Rm{ξT p− f(p)}.
Lemma 10. Let f : Rm → R be a closed proper convex function. Suppose that for
some p ∈ dom f , for some v ∈ ∂f(p), we have v ∈ bdR(∂f). Then ∂f(p + αz) ⊂
bdR(∂f) ∩R(∂f) ∩ (v + {z}⊥) for all α > 0 and z ∈ NclR(∂f)(v) \ {0}.

Proof. The set clR(∂f) is convex (see e.g. [23, Section 24]). Set p′ = p + αz for
z ∈ NclR(∂f)(v) \ {0}, and suppose v′ ∈ ∂f(p′). (If ∂f(p′) = ∅, the claim of the
lemma is immediate.) Then by the monotonicity of ∂f as the subgradient of a
convex function, we have (p′ − p)T (v′ − v) ≥ 0. That is, zT (v′ − v) ≥ 0. This
says that either v′ 6∈ clR(∂f) or zT (v′ − v) = 0. Since the former is by definition
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not possible, v′ must lie in the plane orthogonal to z anchored at v. Because z is
normal to the convex set clR(∂f) at v, it must be that v′ 6∈ intR(∂f). Because
v′ ∈ ∂f(p′) ⊂ R(∂f), the claim of the lemma follows.

From the assumption in the following theorem, thatR(∂f) bounded, it follows
of course that f is finite-valued, so that the difference fν = f − ν is also pointwise
well-defined, even if ν were not finite-valued.
Theorem 7. Suppose that f and ν are closed proper convex functions in Rm, with
R(∂f) bounded. For the level sets levc fν , {p | fν(p) ≤ c} to be bounded, it is
sufficient that clR(∂ν) ⊂ intR(∂f) and necessary that R(∂ν) ⊂ intR(∂f).

Proof. Let A , R(∂f) and C , R(∂ν).
First we tackle sufficiency. We may assume that 0 ∈ intA, because if the

interior is empty, the required condition cannot hold, and for arbitrary ξ ∈ intA,
we may rewrite (f − ν)(p) = (f(p) − ξT p) − (ν(p) − ξT p), yielding another DC
representation of the same function fν , for which 0 ∈ R(∂(f−ξT )), and the required
inclusion condition holds. Likewise we may assume that ν(0) is finite.

Recall that ν̃vq (p) , ν(q)+vT (p−q). Since ν(p) = supq∈Rm,v∈∂ν(q) ν̃
v
q (p), with

the supremum achieved (at least by q = p), we may expand

levc fν = {p | f(p)− sup
q,v

ν̃vq (p) ≤ c}

= {p | inf
q,v

(f(p)− ν̃vq (p)) ≤ c}

=
⋃

q∈Rm,v∈∂ν(q)

{p | f(p)− ν(q)− vT (p− q) ≤ c}.

But, since v ∈ ∂ν(q), we have ν(0) − ν(q) ≥ vT (0 − q), or that ν(q) − vT q ≤ ν(0).
Hence q can be removed from the equation, and we have

levc fν ⊂
⋃
v∈C
{p | f(p)− vT p ≤ c0} =

⋃
v∈C

levc0(f − v)

with c0 = c+ν(0). Therefore it suffices to prove that the sets levc(f−v) are uniformly
bounded over v for any fixed c. Boundedness of levc(f − v) when v ∈ intA is well
known; see e.g. [22]. For the uniform boundedness of this family of sets a little more
work is needed.

By the inclusion clC ⊂ intA, 0 ∈ A and clA being convex (cf. [23, Section 24])
and bounded, every v ∈ clC \ {0} has an εv ∈ (0, 1/4) such that B(v, 4εv) ⊂ intA
and v/(1 − 4εv) ∈ clA. Since clC is a subset of the bounded set A, it is compact,
and we can find a finite set C∗ ⊂ clC \{0} such that the sets v∗+2εv∗A for v∗ ∈ C∗
cover C. It then suffices to prove that each of the sets Lv∗ ,

⋃
v∈v∗+2εv∗A

levc(f−v)
is bounded for v∗ ∈ C∗, which are finite in number.

To prove this, first notice that for any p ∈ Rm,∣∣(f(p)− (v∗)T p)− (f(p)− vT p)
∣∣ =

∣∣(v∗ − v)T p
∣∣ .

But
sup

v∈v∗+2εv∗A

∣∣(v∗ − v)T p
∣∣ = sup

z∈A
2εv∗

∣∣zT p∣∣ = 2εv∗
∣∣z∗(p)T p∣∣

for some z∗(p) on the border of A. Therefore, for v ∈ v∗ + 2εv∗A,

Lv∗ ⊂ {p | f(p)− (v∗)T p ≤ c+ 2εv∗
∣∣z∗(p)T p∣∣}.
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But as v∗/(1− 4εv∗) ∈ clA by our choice of εv∗ , it holds that∣∣(v∗)T p∣∣ = (1− 4εv∗)
∣∣(v∗/(1− 4εv∗))

T p
∣∣ ≤ (1− 4εv∗)

∣∣z∗(p)T p∣∣ ,
and

Lv∗ ⊂ {p | f(p) ≤ c+ (1− 2εv∗)
∣∣z∗(p)T p∣∣}.

We must still bound f from below. For this, notice that

f(p) = sup{zT p− f∗(z) | z ∈ Rm}
≥ sup{zT p− f∗(z) | z ∈ A′}
≥ (1− εv∗)

∣∣z∗(p)T p∣∣− sup{f∗(z) | z ∈ A′}

for A′ = (1− εv∗)(intA) ⊂ intA. Thus, if f∗ is bounded within A′ by c′, we get

Lv∗ ⊂ {p | εv∗
∣∣z∗(p)T p∣∣ ≤ c+ c′},

and this is clearly bounded, because we have assumed 0 ∈ intA, whence
∣∣z∗(p)T p∣∣ ≥

δ ‖p‖ for some δ > 0.
To prove the boundedness of f∗ within A′, we note that the interior of the

finite domain of f∗ is contained in intA; see [23, Section 24] again. Hence if f∗ wasn’t
bounded in A′, a bounded set, we could find a sequence {vi}∞i=1 ⊂ A′ converging to
some v ∈ bdA′ for which f∗(v) = ∞. But this contradicts the finiteness of f∗ on
intA.

As for necessity of C ⊂ intA, suppose first that for some for some q and
v ∈ ∂ν(q), v 6∈ A. Then v 6∈ ∂f(p) for any p ∈ Rm, i.e. 0 ∈ ∂(f − v) has no solution.
Therefore f − v must be descending in some direction p for infinitely large values
of ‖p‖. Since f − ν ≤ f − ν̃vq , it follows that f − ν must have unbounded level sets.

Let then v ∈ bdA ∩ A, and v ∈ ∂f(q) for some q. By Lemma 10, since the
normal cone at the border of a convex set contains non-zero elements, it follows that
there exists a direction z such that for qr , q + rz, there exists vr ∈ bdA ∩ ∂f(qr)
such that (vr − v)T z = 0. But then

f(qr)− vT qr ≤ f(q)− vr(q − qr)− vT qr
= f(q) + rvTr z − vT q − rvT z
= f(q)− vT q.

The values of f − v along the line α 7→ q+αz are thus bounded by f(q)− vT q and
therefore f − v and consequently fν must have unbounded level sets.

To see that clR(∂ν) ⊂ intR(∂f) is not necessary, consider the real functions
f : p 7→ |p| and

ν : p 7→ sup
k=1,2,3,...

νk(p) with νk(p) =

k∑
i=1

2−i(|p| − 2i). (28)

Then R(∂f) = [−1, 1] and R(∂ν) = (−1, 1). But,

f(p)− νk(p) =

∞∑
i=1

2−i |p| − νk(p) =

∞∑
i=k+1

2−i |p|+
k∑
i=1

1
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and f(p)− ν(p) = mink(f(p)− νk(p)) = f(p)− ν`(p) with ` = max{k | 2k ≤ |p|}, as
(f(p)− νk(p))− (f(p)− νk+1(p)) = 2−k−1 |p| − 1 ≤ 0, when |p| ≤ 2k+1. Therefore,

f(p)−ν(p) >
∑k
i=1 1 = k for sufficiently large |p|. Thus, the level sets are bounded.

To see that R(∂ν) ⊂ intR(∂f) is not sufficient, one only needs to consider f
with open R(∂f), and set ν = f . One example of such a function is the ν of (28).

Regarding conditions on f , we have the following extension:
Corollary 4. For proper convex functions f and ν such that the difference f − ν
is well-defined, the level sets levc fν are bounded if ν is closed, R(∂ν) bounded, and
clR(∂ν) ⊂ intR(∂f).

Proof. Let A ⊂ intR(∂f) be a bounded set such that clR(∂ν) ⊂ A, and approxi-
mate f from below by f̃(p) , sup{f(q) + ξT (p− q) | ξ ∈ A∩ ∂f(q)}. R(∂f̃) is then
bounded, and the previous theorem yields that f̃−ν and therefore also f−ν ≥ f̃−ν
has bounded level sets.

Similar conclusions do not necessarily follow if R(∂ν) is unbounded. This
can be illustrated by considering the functions p 7→ αp2 for varying α ∈ R. The
difference of functions in this class is still a function in this class, and for α ≤ 0 the
level sets are unbounded.

The next lemma is also of use for the verification of the assumptions of The-
orem 2.
Lemma 11. Let f and ν be proper convex functions, such that f−ν is well-defined.
If f − ν has some bounded level set, it is bounded from below.

Proof. Let A be that bounded level set. We may assume that it is non-empty,
for otherwise there’s nothing to prove. Then f is bounded from below on A, for
otherwise it could not be proper. But ν must also be bounded from above on A, for
otherwise it would attain the value +∞ on some half-line starting from the border
of A. Then f−ν would also have to attain −∞ on this line to be well-defined, which
would contradict the boundedness of A. Therefore, f − ν is bounded from below on
A and consequently on all of Rm.

B Calculating ẑ for non-partially-overlapping ρk

As noted in Section 2, we are concerned with finding the ẑ ∈ Z(p) (we omit the
point p from notation in this section) that minimises h(z, v; p), that is, solves

min
z∈Z(p)

(
gT z +

∑
k∈π

‖z‖k

)
(29)

for arbitrary g ∈ Rm in a special case. This is the case when Wk = wkρk for some
wk > 0 and a zero-one diagonal matrix wk, and such that the ρk do not “overlap”
only partially. To define this notion, we introduce the notation A @ B for B − A
being positive definite. Equivalently, in case of the ρ-matrices, @ is set inclusion of
the coordinates on with 1-entries on the diagonal. We also denote by ρ @! ρ

′ the
strict ordering ρ @ ρ′, ρ 6= ρ′.

Now, there are said to be no partially overlapping ρk, if for all k, i ∈ π, one
of the following holds: ρkρi = 0, ρk @ ρi, or ρi @ ρk. These constraints are satisfied
in cases like ρk = diag(1, 1, 0), ρi = diag(0, 1, 0), as well as ρk = diag(1, 0, 0), ρk =
diag(0, 0, 1), but are not satisfied in cases like ρk = diag(1, 1, 0), ρi = diag(0, 1, 1).
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To start solving (29), we need to do some partitioning of the coordinate ranges.
Thus, let ψ be the set of maximal elements of the set of operators

{ρ | ρρk = ρ or ρρk = 0 for all k ∈ π, ρρπ = ρ}.

Then
ẑ = −

∑
ρ∈ψ

βρgρ (30)

for some βρ ≥ 0 and gρ , ρg; see [28] for a more detailed argument.
We denote by ρ̂k the orthogonal projection into R(ρk) \

⋃
ρi@!ρk

R(ρi), and

abbreviate β̂k , βρ̂k . Then ψ = {ρ̂k | k ∈ π}, and ρ̂k corresponds to the fields
present in ρk, but not in any ρi @! ρk.
Lemma 12. Suppose ρτ is maximal (in @). If β̂τ > 0 and ‖ρτ ẑ‖ > 0, then β̂τ ∝
1− wτ/θτ (wrt. scaling of the final result), and β̂k = β̂τγk for ρk @! ρτ , where

θτ ,
∥∥∥gρ̂τ +

∑
ρk@!ρτ

γkgρ̂k

∥∥∥,
and γk are the multipliers for the smaller problem with the τ -component removed:
wτ = 0 and gρ̂τ = 0.

Proof. The problem (29) is a convex problem, and therefore the Karush-Kuhn-
Tucker conditions being fulfilled is sufficient for a minimum. Let αk , ‖ρkz‖ =∥∥∥∑ρ′@ρk

βρ′gρ′
∥∥∥. Then, inserting (30) into (29), differentiating wrt. βρ, adding the

constraints −βρ ≤ 0 and ‖z‖2 ≤ 1, we get after dividing by ‖gρ‖2,

λρ ≥ 0, λρβρ = 0∀ρ ∈ ψ, λ ≥ 0, λ(‖z‖2 − 1) = 0

1−
∑

k∈π:ρ@ρk

wkδ
( βρ
αk

)
− λβρ + λρ 3 0,∀ρ ∈ ψ, (31)

where δ(·) is a formal expression for handling non-differentiability. (If ‖gρ‖2 is zero,
the condition for ρ may still be inserted, because the result does not then depend
on βρ.) We may take λ = 1, for by positive homogeneity of h, the constraint on
the norm is active unless the minimum is zero, and for any solution {βρ} with
λ = λ′ > 0, {λ′βρ} is a solution for λ = 1 (βρ/αk being independent of such
scaling).

For the maximal ρτ , by assumption ατ = ‖ρτ ẑ‖ > 0. Therefore β̂τ/ατ > 0 is
defined, and (31) becomes for ρ̂τ ,

1− wτ
β̂τ
ατ
− β̂τ = 0,

so that β̂τ = γτ , 1−wτ/θ′τ with θ′τ , ατ/β̂τ . If γτ ≤ 0, our assumptions must be

wrong, and β̂τ = 0. So suppose this is not so.
If ρτ is also minimal, we get γτ = 1−wτ/ ‖gρ̂τ ‖, so that it is fully determined,

and θ′τ = θτ . Otherwise, set β̂k = γkβ̂τ for some unknown γk for ρk @! ρτ . Then
also θ′τ = θτ , and (31) becomes for ` with ρ` @! ρτ ,

1− wτ
γ`β̂τ
ατ
−

∑
k∈π:k 6=τ,ρ̂`@ρk

wkδ
( γ`
α′k

)
− γ`β̂τ − λρ̂` 3 0
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where α′k , αk/β̂τ =
∥∥∥∑ρ̂j@ρk

γjgρ̂j

∥∥∥. But γ`β̂τ (1 + wτ/ατ ) = γ`, so that we get

the condition

1−
∑

k∈π′:ρ̂`@ρk

wkδ
( γ`
α′k

)
− γ` − λρ̂` 3 0, ∀ρ̂` ∈ ψ′

for π′ , π\{τ} and ψ′ , ψ\{ρ̂τ}. This is a smaller problem of the original form.

Note that the assumption ‖ρτ ẑ‖ > 0 follows from gρ̂τ 6= 0 by β̂τ > 0. The

lemma suggests the following method to find the multipliers β̂k: assume β̂τ > 0
for maximal ρτ . Recursively repeat the procedure for the maximal ρk @! ρτ from
the smaller problems defined by the lemma, until ρk is also minimal, in which case
the lowest-depth factor 1 − wk/ ‖gρ̂k‖ can readily be calculated. Then calculate
the higher factors 1 − wτ/θτ based on the information obtained from the deeper
recursion levels. Finally scale the result. (This is not strictly necessary: the step
size bounds α0(ω, z̃, v; p) include the scaling.) If ever 1 − wτ/θτ ≤ 0, the original
assumption must be wrong, and we must have βτ = 0. This could result in a new
set of problems, but we do actually have the following:
Theorem 8. Lemma 12 continues to hold without the assumption β̂τ > 0, so that
we have (modulo scaling the final result) β̂τ = max{0, 1 − wτ/θτ} for maximal ρτ ,

and β̂k = β̂τγk for ρk @! ρτ , with γk defined recursively from smaller problems.

Proof. If β̂τ = 0, and ατ > 0, as we have assumed, then δ(β̂τ/ατ ) = 0, as there are
no differentiability troubles. But then the condition (31) for maximal ρ̂τ becomes

1 +λρ̂τ = 0, which has no solution, since λρ̂τ ≥ 0. Therefore, the only way for β̂τ to

be zero, is to have ατ = ‖ρτz‖ = 0, so that δ(β̂τ/ατ ) is not a singleton. But ατ = 0

says that we can choose β̂k = 0 for all ρk @! ρτ .

Remark 6. Theorem 2 continues to hold with the range non-overlap assumption
replaced by non-partial overlap assumption: If z = −βρ̂kgρ̂k 6= 0 for some k ∈
π(q) \ π′ with minimal ρk, then (since we have assumed ρπ′z = 0), 0 > gT z + ‖z‖k
with z ∈ R(ρ̂k). The argument of Lemma 3 may therefore be applied to this sub-
problem to show deflection for k. Otherwise, k may be ignored (considered to be in
π′ for the purposes of this argument), and we may repeat the argument recursively.
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