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Chapter 1

Introduction

1.1. About the course

Photographs and other natural images are usually not smooth maps, they contain edges (discontinuities)

and other non-smooth geometric features that should be preserved by image enhancement techniques. The

correct mathematical modelling of these features involves the space of functions of bounded variation and,

in consequence, aspects of geometric measure theory. The aim of this course is to provide an introduction to

functions of bounded variation and their applications in image processing.

Although we review measure theory in the beginning of this course, it is strongly recommended that the

reader be well acquainted with the topic. Introductions may be found in [28, 19] among other books. It is also

advisable, although not required, that the student be acquainted with the basics of Sobolev spaces and weak

topologies in function spaces. An introduction to the former may be found in [14], and to the latter in [23, 4]

This course is mainly based on the treatment of functions of bounded variation in [2] and [15]. The books

[10, 3] on mathematical imaging also provides good additional reading. Scienti�c articles detailing certain

aspects will be pointed to as encountered. Hausdor� measures and recti�able sets will be important through-

out the course. They also play an important role in the fascinating topic of fractal geometry. The interested

student may read more about Hausdor� measures and fractals in [25] and, in a more introductory style, in

[16].

1.2. Photographs

Take a look at the photograph in Figure 1.1. What do you see? A �ower, yes! But as a mathematician? A

function! Yes, photographs are functions, they map points on a rectangular domain Ω ⊂ R2
into colour

values, often in an RGB (Red-Green-Blue) space, embedded into R3
. In the print industry CMYK (Cyan-

Magenta-Yellow-Key(blacK)) is more popular. Mathematicians often still live in the 19th century, and study

greyscale photographs u : Ω → R.

What properties does the function portrayed in Figure 1.1 have? The green background features smooth
and buttery bokeh; an artistic e�ect created by the background being out-of-focus in the narrow depth of �eld

of the camera lens caused by a large aperture (small f-number). The �ower itself features plenty of texture in

the form of alternating streaks of red and yellow. But what about points x where there is a transition from

�ower into background? There is an edge! The colour values change abruptly. Mathematically, u has a jump;

the point x ∈ Ju , the jump set of u.

A large part of this course will concern Ju . It is important for image processing algorithms, such as denois-

ing, deblurring, and more advanced techniques in medical imaging, to preserve and to restore edges. They

represent depth information, and separate regions consisting of di�erent materials. It is also equally impor-

tant to preserve and to restore smooth areas and texture, but that will be of less concern to us in this course.

The question then is, what kind of function spaces allow for the jump set Ju in a controlled manner? Such

that we can expect more regularity from the image than the spaces Lp (Ω) provide?

4



Figure 1.1: A colourful �ower

Of course, our example image is of high quality, and does not need to be be processed. Even in photography,

with advanced technology, there is however, still need for image processing. Take low-light photography, for

example. In low light conditions, there is noise. The good photographs obtained with high ISO numbers

by top-of-the line DSLR (digital single lens re�ex) cameras are the result of image processing! In magnetic

resonance imaging, even physical limitations restrict the resolution of images, as does subject movement

(patient comfort).

1.3. Regularisation of inverse problems

Many image processing problems can be seen as instances of solving an operator equation

Ku + ν = f ,

for our known data f , noise ν , and unknown image u. This is an inverse problem. In general, such problems

are ill-posed, and we cannot expect to have a unique solution, or a solution at all. In order to impose well-

posedness, we introduce a regulariser R that models our prior assumptions on a good solution u, as well

as a �delity functional F that models the noise ν . The choice of R is speci�c to the problem at hand; a

prototypical choice in image processing is the total variation, which we will also discuss in this course. More

recent research has focused on higher-order [5, 9, 24] and curvature-based [11, 29] extensions, as well as

non-convex regularisers [22].

If we know a noise level σ , we may then try to solve the problem

min

u
R (u) subject to F (Ku − f ) ≤ σ . (1.1)

Often the noise level is not known. Moreover, this problem nformulation can be numerically very di�cult. It

is therefore more common to solve the Tikhonov regularised problem

min

u
F (Ku − F ) + αR (u), (1.2)



for a suitable regularisation parameter α . We refer to [13] the student interested in reading on more about

inverse problems theory, and the role α and σ play especially in their limit.

In image processing, for denoising K = I is the identity. For deblurring, K can be a convolution operation,

Ku = ρ ∗ u for a suitable blur kernel ρ. For sub-sampled reconstruction from Fourier samples, as is the case

with magnetic resonance imaging (MRI) reconstructions, K = SF for S a sub-sampling operator, and F the

Fourier transform. If simply K = S for a sub-sampling operator, then we are talking about inpainting. This

might be used, for example, to hide hairs and scratches in old photographs or �lms. For a detailed treament

of various image processing tasks, see, for example [10, 3].

The questions now are, when do (1.1) and (1.2) have solutions, and what are their properties? We will

discuss some of these questions at the end of the course. First we however need to �nd the right space for the

image u.

1.4. Sobolev functions

Sobolev spaces are common in various areas of mathematics. Given a domain Ω ⊂ Rn
, the space W 1,p (Ω),

for an exponent p ∈ [1,∞) may be de�ned as

W 1,p (Ω) := {u ∈ Lp (Ω) | ∇u ∈ Lp (Ω;Rn )}.
Here Lp (Ω;Rk ) is the space of functions v : Ω → Rk

, v = (v1, . . . ,vk ), such that

‖v ‖Lp (Ω;Rk ) :=
*.
,

k∑
i=1

∫
Ω
|vi (x ) |

p dx+/
-

1/p

< ∞, (1 ≤ p < ∞), and

‖v ‖L∞ (Ω;Rk ) := ess supx ∈Ω |u (x ) | < ∞. (1.3)

The integral is to be understood in the Lebesgue sense, and the supremum is the measure-theoretic essential

supremum that ignores the value of u on negligible sets. (We will get back to these later!) In other words,

W 1,p (Ω) = {u ∈ L1 (Ω) | ‖u‖Lp (Ω) + ‖∇u‖Lp (Ω;Rk ) < ∞}.
The space can be normed with

‖u‖W 1,p (Ω) := ‖u‖Lp (Ω) + ‖∇u‖Lp (Ω;Rk ) ,

and can be formulated as the completion

W 1,p (Ω) = C∞ (Ω)

with respect to the norm ‖ · ‖W 1,p (Ω) , (1 ≤ p < ∞).

To be precise the gradient ∇u is to be understood in the distributional sense: We require that the distribu-

tional gradient Du is actually a function, and denote this by ∇u. For u : Ω → R, the distributional gradient is

de�ned as the linear functional

Du (φ) := −

∫
Ω
u (x ) divφ (x ) dx , (φ ∈ C∞c (Ω;Rn )).

For Du to be a function, we require that we can actually write

Du (φ) =

∫
Ω
〈φ (x ),д(x )〉dx (1.4)

for some д ∈ L1 (Ω;Rn ). If u is smooth, the expression (1.4) holds for д = ∇u by the Gauss-Green theorem.

For non-smooth u, we therefore also denote ∇u := д when (1.4) holds.



The nice thing about Sobolev functions is that the distributional di�erential Du is a function much more

often than u is di�erentiable in the classical sense. Moreover, Sobolev functions are practical for formulations

of partial di�erential equations in a weak form, that can be solved and manipulated more easily than a classical

form; we point the interested reader to [14].

With p = 1, there is however a problem. For p ∈ (1,∞), the unit ball of W 1,p (Ω) is weakly compact. For

p = ∞ it is weakly* compact. Hence, given a bounded sequence {ui}∞i=1
⊂ W 1,p (Ω), (1 < p ≤ ∞), we can

extract a weakly(*) convergent subsequence {ui j }∞j=1
. This means in both cases that there exist u ∈W 1,p (Ω)

such that

ui j → u strongly in Lp (Ω) and ∇ui j → ∇u weakly(*) in Lp (Ω;Rn ).

For p = 1 this is not the case! The unit ball is neither weakly nor weakly* compact. There however exists a

slightly larger space, the space BV(Ω) ⊃W 1,1 (Ω) of functions of bounded variation that has a weakly* compact

unit ball. This space will be the main topic of this course.

Why do we want to use and study this space? Let us consider a simple example, and de�ne for ϵ > 0 on

Ω := [−1,1] the function

uϵ (x ) :=




−1, x < ϵ ,

x/ϵ , −ϵ ≤ x ≤ ϵ ,

1, x > ϵ .

(1.5)

This function is classically di�erentiable, and

∇uϵ (x ) =



1/ϵ , −ϵ ≤ x ≤ ϵ ,

0, otherwise.

It can easily be seen that uϵ ∈W
1,p (Ω) for every p ≥ 1.

The pointwise limit of uϵ is

u0 (x ) :=




−1, x < 0,

0, x = 0,

1, x > 0.

(1.6)

This function is not di�erentiable. Indeed the distributional gradient Du0 is given by

Du0 (φ) = 2φ (0), (1.7)

which does not have the integral representation of (1.4). So clearly u0 < W 1,p (Ω) for any p ≥ 1. Oh,

wait. . . Sobolev spaces cannot model edges?! Although useful in other contexts, they are not the right space

for image processing.

We may also calculate ‖∇uϵ ‖Lp (Ω) = 2/ϵp−1
, so

lim

ϵ↘0

‖∇uϵ ‖Lp (Ω) = ∞, for p ∈ (1,∞).

Thus u0 cannot even be approximated in the corresponding Sobolev norm by elements ofW 1,p (Ω) for p > 1.

But how about p = 1. We have

‖∇uϵ ‖L1 (Ω) = 2, for ϵ > 0,

so {uϵ}ϵ>0 forms a bounded set inW 1,1 (Ω). It therefore has a weakly* convergent subsequence in BV(Ω). In

fact, the whole sequence must converge weakly* in BV(Ω) to u as ϵ ↘ 0, because it converges in L1 (Ω). Thus

we have found a function u ∈ BV(Ω) \W 1,1 (Ω). We have also discovered that the space BV(Ω) can model

edges in a controlled manner. That sounds very very good and interesting for further study!



1.5. Functions of bounded variation in R1

We now brie�y look at the case Ω = (a,b) ⊂ R1
, in order to see what kind of bizarre creatures can inhabit

BV(Ω).

De�nition 1.1. Let Ω = (a,b) and u ∈ L1 (Ω). We de�ne the pointwise variation

pV(u,Ω) := sup

{ n∑
i=1

|u (ti+1) − u (ti ) |
���� n ≥ 2, a < t1 < · · · < tn < b

}
.

Roughly speaking pV(u,Ω) < ∞ de�nes functions in BV(Ω), but we have to be careful: functions in L1 (Ω)
are only de�ned almost everywhere, so we have to set

eV(u,Ω) := inf{pV(v,Ω) | v = u almost everywhere in Ω}.
Then

BV(Ω) = {u ∈ L1 (Ω) | eV(u,Ω) < ∞}.
We will get back to the rigorous de�nition of “almost everywhere”; for the rest of this section, we will only

work with such representatives u that pV(u,Ω) = eV(u,Ω).

Example 1.1. We now demonstrate that rather weird creatures satisfy pV(u,Ω) < ∞. We begin by construct-

ing the Cantor middle-third set. We setC0 = [0,1], and assumingCk has been constructed, we constructCk+1

as

Ck+1 := ψ1 (Ck ) +ψ2 (Ck )

where

ψ1 (x ) = x/3, and ψ2 (x ) = 2/3 + x/3.

In other words, we create Ck+1 by removing the middle-third of (0,1) altogether, and replacing the ends by

scaled-down copies of Ck . The Cantor set is then

C :=

∞⋂
k=0

Ck .

By construction, it is a self-similar fractal;

C = ψ−1

1
(C ∩ (0,1/3)) = ψ−1

2
(C ∩ (2/3,1)).

Let us then de�ne

fk (x ) :=

∫ x

0

(3/2)k χCk (t ) dt , (x ∈ (0,1)).

It can be seen that {fk}∞k=1
is a Cauchy sequence in C (0,1), and hence convergent to some f ∈ C (0,1). This

is called the Cantor-Vitali function. Observe that f ′k = 0 on [0,1] \Ck , so that also f ′ = 0 on [0,1] \
⋃k

i=1
Ck

for any k ≥ 1. It follows that in a sense (that we will make strict later), f ′ = 0 almost everywhere. Yet f is

continuous with f (0) = 0 and f (1) = 1. Indeed, pV( f , (0,1)) = 1!

It turns out thatDf is zero almost everywhere with respect to the Lebesgue measure, but is concentrated on

the setC , which has Hausdor� dimension log
3

2 < 1. Thus the di�erential ofC is “too small to be detected” by

classical tools. But now we really have to be rigorous and start de�ning the measure-theoretic notions we’ve

been waving our hands about.



Chapter 2

Sets and measures

2.1. Basic measure theory

A measure is a way to formalise the intuitive idea of the area of a set in R2
, as well as the length of a curve,

and the number of elements in a discrete set, under one concept. Measures are de�ned on sets that belong to a

σ -algebra. The σ -algebra de�nes sets that are measurable. We have to place restrictions on sets that are mea-

surable, otherwise we may reach conclusions like the Banach-Tarski paradox, which allows reconstructing a

solid three-dimensional ball into two exact copies of itself!

De�nition 2.1. Let Ω be a set, and denote by P (Ω) the collection of all subsets of Ω. Then a family Σ ⊂ P (Ω)
is a σ -algebra, if the following properties are satis�ed:

(i) Non-empty: Σ , ∅.

(ii) Closed under complement: If A ∈ Σ, then also Ac ∈ Σ.

(iii) Closed under countable unions: If {Ai}∞i=1
⊂ Σ, then also

⋃∞
i=1

Ai ∈ Σ.

A set A ∈ Σ is called a (Σ-)measurable set, and we call the pair (Ω,Σ) a measure space.

The idea is that if we can measure, let’s say, the area of a set, and take something measurable out of or add

to it, then the result should be measurable. Typically, in vector spaces, also any translation of a measurable set

is measurable. Indeed, in the setting of metric spaces, it usually su�ces to work with the smallest σ -algebra

containing all open (and hence all closed) sets.

De�nition 2.2. Let Ω be a metric space. Then we denote by B (Ω) the smallest σ -algebra containing all open

sets of Ω. We call it the Borel σ -algebra of Ω. A set A ∈ B (Ω) is called Borel-measurable.

Example 2.1. Another example of a σ -algebra is the discrete σ–algebra consisting of all subsets of Ω. It is

however rarely practical.

De�nition 2.3. Let (Ω,Σ) be a measure space. Then a mapping µ : Σ → [0,∞] is a (positive) measure if the

following properties are satis�ed:

(i) Non-negativity: µ (A) ≥ 0 for all A ⊂ Σ.

(ii) Null empty set: µ (∅) = 0.

(iii) Countable additivity: If the sets {Ai}∞i=1
⊂ Σ are pairwise disjoint, Ai ∩ Aj = ∅ for i , j, then

µ (
⋃∞

i=1
Ai ) =

∑∞
i=1

µ (Ai ).

Example 2.2. Let us de�ne for every A ⊂ Ω the set function

#(A) :=



n, A = {x1, . . . ,xn} is a �nite set,

∞, otherwise.

Then # is a measure on the discrete σ -algebra of Example 2.1.
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Example 2.3. Let us pick x ∈ Ω and de�ne for every A ⊂ Ω the set function

δx (A) :=



1, x ∈ A,

0, otherwise.

Then δx is a measure on the discrete σ -algebra of Example 2.1, called the Dirac measure (at x ). It is the

measure-theoretic realisation of what is sometimes incorrectly referred to as the Dirac δ -function.

De�nition 2.4. We call a positive measure µ �nite if µ (Ω) < ∞. If Ω =
⋃∞

i=1
Ai with µ (Ai ) < ∞, we call µ

σ -�nite. A positive measure µ on B (Ω) is a Borel measure. If, moreover, |µ (K ) | < ∞ on compact sets K ⊂ Ω,

we call µ a positive Radon measure, and denote µ ∈ M (Ω).

We can also de�ne signed and general vector-valued measures. These will be useful later on, when we want

to di�erentiate functions of bounded variation.

De�nition 2.5. Let (Ω,Σ) be a measure space. Then a mapping µ : Σ → Rm
is a (vector-valued) measure if

the following properties are satis�ed:

(i) Null empty set: µ (∅) = 0.

(ii) Countable additivity: If {Ai}∞i=1
⊂ Σ with Ai pairwise disjoint, then µ (

⋃∞
i=1

Ai ) =
∑∞

i=1
µ (Ai ).

Ifm = 1, we also call µ a signed measure. We de�ne the total variation of µ for every A ∈ Σ by

|µ |(A) := sup{ ∞∑
k=1

‖µ (Ai )‖ | A =
∞⋃
k=1

Ai , Ai ∈ Σ pairwise disjoint}.
If µ : Σ→ R is a signed real measure, we de�ne the positive and negative parts by

µ+ :=
1

2

( |µ | + µ ), µ− :=
1

2

( |µ | − µ ).

We immediately observe that if µ is an Rm
-valued measure, then µi , de�ned by

µi (A) := 〈ei ,µ (A)〉

is a signed measure. Here ei is the standard unit vector with the i:th entry 1 and other entries zero.

De�nition 2.6. We call a Rm
-valued measure µ on B (Ω) a �nite Radon measure, and denote µ ∈ M (Ω;Rm ).

The �niteness in this de�nition is justi�ed by the exercise in example sheet 1, showing that |µ |, µ+, and µ−

are positive �nite measures if µ is signed or vector-valued measure.

We will often talk about a property holding “almost everywhere” with respect to a measure. Let us make

this precise.

De�nition 2.7. Let µ be a measure on a measure space (Ω,Σ), and A ∈ Σ. We say that a property P holds for

µ-almost every x ∈ A, in short µ-a.e., if there exists E ⊂ A such that P holds for every x ∈ E, and µ (A \ E) = 0.

Functions can also be measurable. This is important for de�ning integration by measures.

De�nition 2.8. Let (Ω,Σ) be a measure space, and f : Ω → R. Then we call f Σ-measurable if f −1 (A) ∈ Σ for

every open set A ⊂ R. If µ is a measure on (Ω,Σ), we call f µ-measurable if f is Σ-measurable. If Σ = B (Ω),
we call f Borel-measurable.



2.2. Integration

De�nition 2.9. Let (Ω,Σ) be a measure space, f : Ω → [0,∞) a measurable function, and µ a positive

measure on Σ. Let E ∈ Σ. We de�ne the integral

∫
E
f (x ) dµ (x ) := sup

s

n∑
i=1

αiµ (Ai ∩ E)

with the supremum taken over all simple functions

s =
n∑
i=1

αi χAi ≤ f , (αi > 0,Ai ∈ Σ; i = 1, . . . ,n; n ∈ N).

If f : Ω → R, we write f = f + − f − for f ± ≥ 0, and set∫
E
f (x ) dµ (x ) =

∫
E
f + (x ) dµ (x ) −

∫
E
f − (x ) dµ (x ).

We call f integrable, and denote f ∈ L1 (Ω; µ ), if∫
Ω
| f |(x ) dµ (x ) < ∞.

De�nition 2.10. Let (Ω,Σ) be a measure space. If µ is a signed measure on Σ, and f ∈ L1 (Ω; |µ |), we de�ne∫
E
f dµ =

∫
E
f dµ+ −

∫
E
f dµ−, (E ∈ Σ).

If µ is an Rm
-valued measure on Σ, and f = ( f1, . . . , fm ) : Ω → Rm

with each fi ∈ L
1 (Ω; |µi |), we de�ne

∫
E
〈f (x ), dµ (x )〉 :=

m∑
i=1

∫
E
fi (x ) dµi (x ), (E ∈ Σ).

Theorem 2.1 (Fatou’s lemma). Suppose {ui : Ω → [0,∞]}∞i=1
are µ-measurable with µ a positive measure.

Then ∫
Ω

lim inf

i→∞
ui (x ) dµ (x ) ≤ lim inf

i→∞

∫
Ω
ui (x ) dµ (x )

De�nition 2.11 (Product σ -algebras). Let (Ω1,Σ1) and (Ω2,Σ2) be measure spaces. Then we de�ne the prod-
uct σ -algebra Σ1×Σ2 on Ω1×Ω2 as the smallest σ -algebra that contains all sets of the formA1×A2 forA1 ∈ Σ1

and A2 ∈ Σ2.

Theorem 2.2 (Fubini). Let (Ω1,Σ1) and (Ω2,Σ2) be measure spaces and µ1 and µ2 be corresponding positive
σ -�nite measures. Then there exists a unique positive σ -�nite measure µ on (Ω1 × Ω2,Σ1 × Σ2) such that

µ (A1 ×A2) = µ1 (A1)µ2 (A2).

If u : Ω1 × Ω2 → [0,∞] is µ-measurable, then the marginal mappings

x 7→

∫
Ω2

u (x ,y ) dµ2 (y ) and y 7→

∫
Ω1

u (x ,y ) dµ1 (x )

are, respectively, Σ1-measurable and Σ2-measurable. Moreover, we can change the order of integration by the
formula ∫

Ω1×Ω2

u (x ,y ) dµ (x ,y ) =

∫
Ω1

∫
Ω2

u (x ,y ) dµ2 (y ) dµ1 (x )

=

∫
Ω2

∫
Ω1

u (x ,y ) dµ1 (x ) dµ2 (y ).



2.3. Lebesgue measure

Enough with toys like the counting measure! Let’s de�ne something really useful: a way to measure the

volume of general sets in Rn
.

To begin with, if Q = [a1,b1] × · · · × [an ,bn] ⊂ Rn
is an n-dimensional cube, we de�ne the volume

v (Q ) =
n∏
j=1

(bj − aj ).

We desire to extend this de�nition to general sets.

De�nition 2.12. Let A ⊂ Rn
, and de�ne the Lebesgue outer measure by

L̃n (A) = inf

∞∑
i=1

v (Qi )

where the in�mum is taken over all countable collections {Qi}∞i=1
of cubes in Rn

such that

A ⊂
∞⋃
i=1

Qi .

Theorem 2.3. Let Ω ∈ B (Rn ). The mapping L̃n restricted to the Borel σ -algebra B (Ω) is a positive measure.
We call it the Lebesgue measure, and denote it by Ln . We have

Ln (Q ) = v (Q ).

Proof. Let us show that L̃n (Q ) = v (Q ) for a cube Q . Clearly L̃n (Q ) ≤ v (Q ). To show the other inequality,

we take an ϵ-cover {Q j}∞j=1
of Q , i.e.,

∞∑
j=1

v (Q j ) ≤ L̃
n (Q ) + ϵ .

We may subdivide each Q j into a family of cubes Q1

j , . . . ,Q
2
n

j such that Q1

j = Q j ∩Q and v (Q j ) =
∑

2
n

i=1
v (Q i

j ).

But then v (Q ) ≤
∑∞

j=1
v (Q1

j ), so that

v (Q ) ≤ v (Q ) +
∞∑
j=1

2
n∑

i=2

v (Q i
j ) =

∞∑
j=1

v (Q j ) ≤ L̃
n (Q ) + ϵ .

Since ϵ > 0 was arbitrary, this concludes the proof.

In order to show that L̃n
is indeed a measure on B (Ω), we have to verify the axioms in De�nition 2.3. That

Ln (A) ≥ 0 for A ∈ B (Ω) is immediate because v ≥ 0. Picking Qi = [0,ϵ/2i/n], we have

∑∞
i=1

v (Qi ) = ϵ , so

letting ϵ ↘ 0, we see that clearly Ln (∅) = 0. We therefore just have to verify countable additivity. So suppose

Ai ∈ B (Ω), (i = 1,2,3, . . .) are pairwise disjoint, and let A :=
⋃∞

i=1
Ai . We may assume that L̃n (Ai ) < ∞,

(i = 1,2, . . .), because otherwise clearly L̃n (A) = ∞. Pick arbitrary ϵ > 0. By the de�nition of L̃n
, we may

�nd collections {Q j
i }∞j=1

of n-dimensional cubes such that

Ai ⊂

∞⋃
j=1

Q j
i ,

and
∞∑
j=1

v (Q j
i ) ≤ L̃

n (Ai ) + ϵ/2
i .



Then

A ⊂
∞⋃
i=1

∞⋃
j=1

Q j
i ,

so

L̃n (A) ≤
∞∑
i=1

∞∑
j=1

v (Q j
i ) ≤

∞∑
i=1

L̃n (Ai ) + ϵ .

Since ϵ > 0 was arbitrary, we conclude that

L̃n (A) ≤
∞∑
i=1

L̃n (Ai ).

We now have to prove the opposite inequality. Let us, �rst of all, verify that it holds for countably many

sets, if it holds for two disjoint sets, that is

L̃n (A) + L̃n (B) ≤ L̃n (A ∪ B), (A,B ∈ B (Ω), A ∩ B = ∅). (2.1)

Indeed, then for any k ≥ 2, we have

k∑
i=1

L̃n (Ai ) ≤ L̃
n (

k⋃
i=1

Ai ) ≤ L̃
n (A), (2.2)

where the last inequality holds because any cover of A by cubes also covers

⋃∞
i=1

Ai ⊂ A. Letting k → ∞
proves the claim under (2.1). Hence countable additivity follows from Lemma 2.3 below, where we prove (2.1).

It follows that Ln = L̃n
is a measure on B (Ω). �

De�nition 2.13. For A,B ⊂ Rn
, we de�ne the distance

d (A,B) := inf

x ∈A,y ∈B
‖x − y ‖.

Lemma 2.1. Let A,B ⊂ Ω. Then the inequality (2.1) holds in the following cases.

(i) d (A,B) = r > 0.

(ii) A and B are closed and disjoint.

Proof. (i) Pick ϵ > 0, and let {Q j}∞j=1
be a covering of A ∪ B by cubes such that

∞∑
j=1

v (Q j ) ≤ L̃
n (A ∪ B) + ϵ .

Subdividing each Q j into smaller sub-cubes, we may assume that there are two subsets of indices I,J ⊂ N

such that

A ⊂
⋃
j ∈I

Q j , B ⊂
⋃
j ∈J

Q j ,

and ∑
j ∈I∩J

v (Q j ) ≤ ϵ . (2.3)

Indeed, let k be such that

∞∑
j=k+1

v (Q j ) ≤ ϵ ,

and de�ne

Ã := A ∩
k⋃
j=1

Q j , and B̃ := B ∩
k⋃
j=1

Q j .



Because d (Ã, B̃) ≥ d (A,B) = r > 0, by possibly subdividing eachQ j for j = 1, . . . ,k into smaller cubes, we can

�nd Ĩ, J̃ ⊂ {1, . . . ,k}, such that Ĩ ∩ J̃ = ∅ and

Ã ⊂
⋃
j ∈Ĩ

Q j , B̃ ⊂
⋃
j ∈J̃

Q j .

We now simply let I = Ĩ ∪ {k,k + 1, . . .} and J = J̃ ∪ {k,k + 1, . . .} to construct covers of A and B. The

estimate (2.3) follows. With that at hand, we may calculate

L̃n (A) + L̃n (B) ≤
∑
j ∈I

v (Q j ) +
∑
j ∈J

v (Q j ) + ϵ ≤
∞∑
j=1

v (Q j ) + ϵ ≤ L̃
n (A ∪ B) + 2ϵ .

Since ϵ > 0 was arbitrary, this concludes the proof of (2.1).

(ii) Finally, if A and B are closed and disjoint, then Ã and B̃ are closed, bounded, and disjoint. Therefore

d (Ã, B̃) > 0. The previous argument applies. �

Lemma 2.2. Let A ∈ B (Rn ) and ϵ > 0. Suppose Ln (A) < ∞. Then there exist closed F ⊂ A and open G ⊃ A
such that L̃n (A \ F ) ≤ ϵ and L̃n (G \A) ≤ ϵ .

Proof. Suppose �rst that A is open. We may then choose G = A. Regarding F , we set

Fi := {x ∈ A | d (∂A,x ) ≥ 1/i}.
Then Fi is closed, and

A =
∞⋃
i=1

Fi .

Let Ti+1 := Fi+1 \ Fi , and observe that d (Tj ,Ti ) > 0 whenever |j − i | ≥ 2. Therefore by Lemma 2.1 and (2.2),

we have
∞∑
j=1

L̃n (T2j ) ≤ L̃
n (
∞⋃
j=1

T2j ) ≤ L̃
n (A) < ∞,

and likewise
∞∑
j=1

L̃n (T1+2j ) ≤ L̃
n (
∞⋃
j=1

T1+2j ) ≤ L̃
n (A) < ∞.

Thus
∞∑

j=N+1

L̃n (Tj ) < ϵ .

for large enough N . But A \ FN =
⋃∞

j=N+1
Tj , so that

L̃n (A \ FN ) ≤ ϵ .

If A is closed, we may choose F = A and G is obtained by a construction analogous to the above using

Gi := {x ∈ Ω | d (A,x ) < 1/i}.
Let D be the class of sets A on which the claim of the lemma holds for any ϵ > 0. Clearly, by the above, D

contains all open and closed sets A with Ln (A) < ∞. Here we recall that we have assumed the atter from our

set of interest as well. Moreover, if A,B ∈ D, then A \ B ∈ D. Indeed, if F ⊂ A and G ⊃ B, then

(A \ B) \ (F \G ) ⊂ (A \ F ) ∪ (G \ B).

Thus

L̃n
(
(A \ B) \ (F \G )

)
≤ ϵ .



whenever L̃n (A \ F ) ≤ ϵ/2 and L̃n (G \ B) ≤ ϵ/2. As F \G is closed for F closed and G open, one side of the

claim follows. The other is analogous.

Let then {Ai}∞i=1
∈ D, and pick closed Fi ⊂ Ai and open Gi ⊃ Ai such that

L̃n (Ai \ Fi ) ≤ ϵ/2
i , and L̃n (Gi \Ai ) ≤ ϵ/2

i .

If we set

A :=

∞⋂
i=1

Ai and F :=

∞⋂
i=1

Fi ,

Then

A \ F ⊂
∞⋃
i=1

(Ai \ Fi ),

so that

L̃n (A \ F ) ≤
∞∑
i=1

L̃n (Ai \ Fi ) ≤
∞∑
i=1

ϵ/2i = ϵ .

Moreover, if we pick N ∈ N, and set

AN
:=

N⋂
i=1

Ai , and GN
:=

N⋂
i=1

Gi ,

then

GN \AN ⊂

N⋃
i=1

(Gi \Ai ),

so that

L̃n (GN \AN ) ≤
N∑
i=1

L̃n (Gi \Ai ) ≤ ϵ .

It follows that D contains �nite intersections. Analogously we show that D contains �nite unions, and that

if

A :=

∞⋃
i=1

Ai and G :=

∞⋃
i=1

Gi ,

then

L̃n (G \A) ≤
∞∑
i=1

L̃n (Gi \Ai ) ≤ ϵ .

Let us then consider countable unions. We set

A :=

∞⋃
i=1

Ai and Fk :=

k⋃
i=1

Fi ,

By the above, by possibly replacing Ai by Ai \
⋃i−1

j=1
Aj , we may assume that the sets {Ai}∞i=1

are disjoint.

Hence also {Fi}∞i=1
are disjoint. Now

L̃n (A \
∞⋃
i=1

Fi ) ≤
∞∑
i=1

Ln (Ai \ Fi ) ≤ ϵ .

It remains to show show that for some k

L̃n (
∞⋃
i=1

Fi \ F
k ) ≤ ϵ , (2.4)



because then

L̃n (A \ Fk ) ≤ L̃n (A \
∞⋃
i=1

Fi ) + L̃
n (
∞⋃
i=1

Fi \ Fk ) ≤ 2ϵ .

But the sets Fi are closed and disjoint, so by Lemma 2.1 and (2.2), and

∞ > Ln (A) ≥ L̃n (
∞⋃
i=1

Fi ) =
∞∑
i=1

L̃n (Fi ).

In particular Ln (Fi ) → 0. But

L̃n (
∞⋃
i=1

Fi \ F
k ) ≤

∞∑
i=k+1

L̃n (Fi ),

Thus (2.4) holds for large enough k , and in consequence D contains countable unions.

Finally, D contains countable intersections: If A =
⋂∞

i=1
Ai , we may assume A1 ⊃ A2 ⊃ . . .. Then A1 \A =⋃∞

i=1
(A1 \Ai ). But then A1 \A ∈ D, and so also A = A1 \ (A1 \A) ∈ D.

It follows that D contains all Borel sets A with L̃n (A) < ∞, constructed out of open and closed sets Ai
satisfying this assumption. To �nish the proof, we observe that we do not in fact need setsAi with L̃n (Ai ) = ∞
in the construction of Borel sets, as we can always writeAi =

⋃∞
j=1

Ai∩B (0, j ), where L̃n (Ai∩B (0, j )) < ∞. �

Lemma 2.3. Let A,B ∈ B (Ω) with A ∩ B = ∅. Then (2.1) holds.

Proof. Let ϵ > 0. By Lemma 2.2, we may �nd closed sets FA ⊂ A and FB ⊂ B such that L̃n (A \ FA) ≤ ϵ and

L̃n (B \ FB ) ≤ ϵ . Then

L̃n (A) + L̃n (B) ≤ L̃n (FA) + L̃
n (A \ FA) + L̃

n (FB ) + L̃
n (B \ FB )

≤ L̃n (FA) + L̃
n (FB ) + 2ϵ

It is an easy exercise to show that L̃n (A1) ≤ L̃
n (A2) if A1 ⊂ A2. Therefore, because (2.1) holds for disjoint

closed sets by Lemma 2.1, and FA ∪ FA ⊂ A ∪ B, we further obtain

L̃n (A) + L̃n (B) ≤ L̃n (FA ∪ FB ) + 2ϵ

≤ L̃n (A ∪ B) + 2ϵ .

As ϵ > 0 was arbitrary, (2.1) follows. �

Remark 2.1. The Lebesgue measure can be extended to a larger σ -algebra than B (Ω), consisting of so-called

Lebesgue measurable sets. For our purposes, it su�ces to limit the attention to Borel-measurable sets.

De�nition 2.14. We will denote integration by the Lebesgue measure by the usual notation for Riemann

integration, as these agree on continuous functions. That is∫
A
f (x ) dx :=

∫
A
f (x ) dLn (x ).

We also denote L1 (Ω) := L1 (Ω;Ln ).

2.4. Hausdor� measure

In the de�nition of the Lebesgue measure, we could calculate the the volume v (Q j ) of the cube Q j through

the diameter diamQ j as v (Q j ) = ω (n)2−n (diamQ j )
n

for a suitable dimensional constant ω (n), which gives

the volume of the unit ball. We could further place an upper bound on the diameter, diamQ j < ϵ , because

we can always decompose a cube into smaller subcubes without altering the total volume. In fact, we do not

even have to use cubes, since we can approximate an arbitrary set by cubes. This leads us to the de�nition

of the Hausdor� measure, where we also allow instead of the dimension n of Ω ⊂ Rn
an arbitrary possibly

non-integer dimension k ∈ [0,∞).



De�nition 2.15. Let A ∈ B (Ω), Ω ⊂ Rn
, and k ∈ [0,∞). Then the k-dimensional Hausdor� measure of A is

de�ned by

H k (A) := lim

ϵ↘0

H k
ϵ (A),

where

H k
ϵ (A) := inf{ ∞∑

j=1

ω (k )2−k (diamEj )
k | A ⊂

∞⋃
j=1

Ej , diamEj < ϵ}.
The normalisation constant is de�ned as

ω (k ) :=
πk/2

Γ(1 + k/2)
, Γ(s ) =

∫ ∞

0

e−xxs−1 dt .

The point of forcing ϵ ↘ 0 is to measure complicated sets accurately. For example, the set

A := {(x ,sin(1/x )) | 0 < x ≤ 1} ⊂ R2

has H 1

ϵ (A) < ∞ for every ϵ > 0, but H 1 (A) = ∞. We will get back to how to arrive at these, when we talk

about recti�able sets.

The idea behind using the 1-dimensional measure H 1
to measure sets A ⊂ R2

, is that H 1
measures the

length of curves. Likewise H 0
measures the number of points; it just the the counting measure. In Ω ⊂ R2

,

the measureH 2
coincides with the Lebesgue measure L2

(when both are restricted to the Borel measurable

sets B (Ω)). But we may also use H 2
on Ω ⊂ R3

to measure the area of more complicated surfaces, such as

the unit sphere S2
, where we generally de�ne

Sn−1
:= {x ∈ Rn | ‖x ‖ = 1}.

How aboutH s
non-integral s? These measure fractals! The Cantor middle-thirds setC de�ned in Example

1.1 has H k (C ) = 1 for k = k∗ := log 2/ log 3, but H k (C ) = ∞ for k < k∗ and H k (C ) = 0 for k > k∗. This

motivates the following.

De�nition 2.16. Let A ∈ B (Ω). The Hausdor� dimension of A is

dimH A := inf{s ≥ 0 | H s (A) = 0}.
The enthusiastic student may read more about fractals and Hausdor� dimensions in the literature listed

in the Bibliography. In the rest of this course, we will primarily concentrate on a particular type of sets of

dimension n − 1 in Rn
, as well as a “remainder set” of arbitrary dimension k ∈ (n − 1,n), arising from the

di�erentiation of functions of bounded variation.

2.5. Densities and derivation of measures

De�nition 2.17. Let µ be a measure on a measure space (Ω,Σ), and f : Ω → R measurable. We then de�ne

the measure f µ by

( f µ ) (A) =

∫
A
f (x ) dµ (x ), (A ∈ Σ).

Example 2.4. Let f (x ) := e−x
2/2/
√

2π and N := f L1
. Then N is a probability measure for the Gaussian

distribution. A probability measure is a positive measure with N (Ω) = 1.

De�nition 2.18. Let ν be a (signed or vector) measure and µ a positive measure. If

µ (A) = 0 =⇒ |ν |(A) = 0,

then we say that ν is absolutely continuous with respect to µ, denoted ν � µ. If, on the other hand, µ and ν
are positive measures, and there exists A ∈ Σ such that µ (E) = 0 and ν (Ω \ E) = 0, we say that µ and ν are

mutually singular, denoted µ ⊥ ν . If µ and ν are vector-valued, we say the same if this holds for |µ | and |ν |.



Example 2.5. We have δx ⊥ L
n

for x ∈ Rn
, and N � L1

.

Obviously µ � |µ |. In fact, we have the following.

Theorem 2.4 (Polar decomposition). Let µ be a (signed or vector) measure on a measure space (Ω,Σ). Then
µ � |µ |. In this case we write

µ =

(
dµ

d |µ |

)
|µ |

and call this the polar decomposition of µ.

This result is a corollary of the Radon-Nikodým theorem.

Theorem 2.5 (Radon-Nikodým). Let ν : Σ→ Rm be a (signed or vector) measure and µ a σ -�nite measure on a
measure space (Ω,Σ). Then there exist unique measures νa and ν s such that νa � µ and ν s ⊥ µ with ν = νa +ν s .
Moreover, there exists a unique function f ∈ [L1 (Ω; µ )]m such that νa = f µ.

Theorem 2.6 (Besicovitch derivation theorem). In Theorem 2.5, suppose ν and µ are Radon measures on B (Ω).
Then νa = f µ for

f = lim

ρ↘0

ν (B (x ,ρ))

µ (B (x ,ρ))
,

where the limit exists µ-a.e. If ν � µ, we thus denote

dν

dµ
:= f .

De�nition 2.19. We introduce the average integral notation

−

∫
A
f (x ) dµ (x ) :=

1

µ (A)

∫
A
f (x ) dµ (x ).

Corollary 2.1 (Lebesgue points). Let f ∈ L1 (Ω) with Ω ⊂ Rn open. Then for Ln-a.e. x ∈ Ω we have

lim

ρ↘0

−

∫
B (x,ρ )

| f (y ) − f (x ) | dy = 0.

Such a point x is called a Lebesgue point of f .

Proof. Apply Theorem 2.6 to ν = | f − q |Ln
and µ = Ln

with q ∈ Q to get

| f (x ) − q | = lim

ρ↘0

−

∫
B (x,ρ )

| f (y ) − q | dy

for x ∈ Aq ⊂ Ω, where Ln (Ω \ Aq ) = 0. Let A =
⋂

q∈QAq , and observe that Ln (Ω \ A) = 0 because Q is

countable. For x ∈ A, pick {qi}∞i=1
⊂ Q with qi → f (x ). Then

lim

ρ↘0

−

∫
B (x,ρ )

| f (y ) − f (x ) | dy ≤ lim

ρ↘0

−

∫
B (x,ρ )

| f (y ) − qi | dy + | f (x ) − qi | = 2| f (x ) − qi |,

where the right hand side tends to zero as i → ∞. �

De�nition 2.20. Let Ω ⊂ Rn
be open, and µ a positive Radon measure on Ω. For k ≥ 0, we de�ne the upper

and lower k–dimensional densities of µ at x ∈ Ω by

Θ∗k (µ,x ) := lim sup

ρ↘0

µ (B (x ,ρ))

ω (k )ρk
, and Θ∗k (µ,x ) := lim inf

ρ↘0

µ (B (x ,ρ))

ω (k )ρk
.

If these densities agree, we denote the common value by Θk (µ,x ).



In order to de�ne densities of sets, we introduce the following notation.

De�nition 2.21. Let µ be measure on a measure space (Ω,Σ), and A ∈ Σ. Then we de�ne the restriction of

µ to A, denoted µxA, by

(µxA) (E) := µ (A ∩ E), (E ∈ Σ).

De�nition 2.22. Let A ∈ B (Ω) We then de�ne the upper and lower k-dimensional densities of A at x ∈ Ω,

by

Θ∗k (A,x ) := Θ∗k (H
k xA,x ), and Θ∗k (A,x ) := Θ∗k (H

k xA,x ).

Again, the common value, if it exists, is denoted Θk (A,x ).

Remark 2.2. Observe in Theorem 2.6 that if µ = Ln
, then f (x ) = Θn (µ,x ). Thus Θn (µ,x ) gives the density

of µ with respect to the Lebesgue measure. Next we study densities with respect to the Hausdor� measure.

2.6. Rectifiable sets

De�nition 2.23. We call a set A ∈ B (Rn ) countably H k -recti�able if there exist Lipschitz functions fj :

Rk → Rn
, (j = 1,2, . . .) such that

H k *.
,
A \

∞⋃
j=1

fj (R
k )+/

-
= 0.

If alsoH k (A) < ∞, we say that A isH k
-recti�able.

Theorem 2.7. Let µ be a positive Radon measure on an open set Ω ⊂ Rn . If µ = θH k xS and S isH k -recti�able,
then θ (x ) = Θk (µ,x ) forH k -a.e. x ∈ S . Consequently

Θk (µ,x ) =
dµ

dH k xS
(x ).

Theorem 2.8 (Area formula). Let f : Rn → Rm be Lipschitz with m ≥ n, and E ⊂ Rn be Ln-measurable.
Then the function y 7→ H 0 (E ∩ f −1 (y )) =

∑
x ∈f −1 (y ) χE (x ) is measurable and∫

Rm
H 0 (E ∩ f −1 (y )) dH n (y ) =

∫
E
Jn[∇f (x )]dx

where the n-dimensional Jacobian of a linear map L : Rn → Rm is de�ned as

JnL :=
√

det(L∗L).

Remark 2.3. By the area formula, if f is one-to-one on E, then

H n ( f (E)) =

∫
E
Jn[∇f (x )]dx .

Example 2.6. Consider the set

A := {(x ,sin(1/x )) | 0 < x ≤ 1} ⊂ R2

from Section 2.4. Let us set I0 = [1,π ) and Ii = iπ + [0,π ) for i = 1,2,3, . . .. Write [ai ,bi ) = Ii and

fi (x ) =




(1/x ,sin(x )), x ∈ Ii ,

(1/ai ,sin(ai )), x < ai ,

(1/bi ,sin(bi )), x ≥ bi .

Then each fi Lipschitz, and A ⊂
⋃

fi (Ii ). Thus A is countably H 1
-recti�able. Let us show that it is not

H 1
-recti�able. Indeed, we have

∇fi (x ) = (−1/x2,cos(x )) on Ii ,



so that given c ∈ (0,1), we can �nd ϵ > 0 such that

J1[∇fi (x )] ≥ c on (ai ,ai + ϵ ) ∪ (bi − ϵ ,bi ), (i ≥ 1).

Thus by the area formula, Theorem 2.8, we have for i ≥ 1 that

H 1 (A ∩ fi (Ii )) =

∫
R2

H 0 (Ii ∩ f −1

i (y )) dH 1 (y ) =

∫
Ii
J1[∇fi (x )]dx ≥ 2ϵc .

Thus

H 1 (A) ≥
∞∑
i=1

H 1 (A ∩ fi (Ii )) = ∞.

2.7. Interlude: Convolution

Molli�cation by convolution is often used to approximate non-smooth functions and even measures by smooth

functions. Generally, convolution is de�ned as follows.

De�nition 2.24 (Convolution). Let f ∈ L1 (Rn ) and д ∈ L1 (Rn
;Rm ). We then de�ne the convolution f ∗д by

( f ∗ д) (x ) :=

∫
Rn

f (x − y )д(y ) dy .

Analogously, if µ ∈ M (Rn
;Rm ), we de�ne the convolution f ∗ µ by

( f ∗ µ ) (x ) :=

∫
Rn

f (x − y ) dµ (y ).

De�nition 2.25 (Family of molli�ers). We require a function ρ ∈ C∞c (Ω) satisfying ρ ≥ 0,

∫
ρ dx = 1 and

supp ρ ⊂ B (0,1). We then set ρϵ (x ) := ϵ−nρ (x/ϵ ) and call {ρϵ}ϵ>0 a family of molli�ers.

De�nition 2.26 (Standard molli�er). The standard molli�er that can be used in De�nition 2.25 is

ρ (x ) :=



e−1/(1−‖x ‖2) , ‖x ‖ < 1,

0, ‖x ‖ ≥ 1.

Theorem 2.9. Let f ∈ Lp (Rn
;Rm ), (p ∈ [1,∞)), and {ρϵ}ϵ>0 be a family of molli�ers. De�ne fϵ := f ∗ ρϵ .

Then

1. fϵ (x ) → f (x ) for every Lebesgue point x of f , hence hence almost everywhere in Rn .

2. fϵ |K → f |K in Lp (K ;Rm ) for every compact set K .

2.8. Weak* convergence

If {µi}∞i=1
is a sequence of measures on a measure space (Ω,Σ), they converge to µ strongly if |µ − µi |(Ω) → 0.

This kind of convergence is often di�cult to achieve. For example, let us de�ne on Ω = Rn
the Borel measure

µ (A) := δ0 (A) = χA (0).

concentrated at the point 0 ∈ Rn
. Let then {ρϵ}ϵ>0 be a family of molli�ers. We de�ne µi := (ρ1/i ∗ µ )L

n
,

that is

µi (A) :=

∫
A

∫
Rn

ρ1/i (x − y ) dµ (y ) dx =

∫
A
inρ (ix ) dx .

Thus µi � Ln
, but µ ⊥ Ln

. By mutual singularity

|µi − µ |(Rn ) = |µi |(Rn ) + |µ |(Rn ) = 2,

so µi does not converge to µ strongly. However∫
Rn

φ (x ) dµi (x ) =

∫
Rn

φ (x )inρ (ix ) dx → φ (0) =

∫
Rn

φ (x ) dµ (x )

for every φ ∈ C0 (R
n ). This motivates the following mode of convergence.



De�nition 2.27. Let {µi}∞i=1
⊂ M (Ω;Rm ). If there exists µ ∈ M (Ω;Rm ) such that∫

Ω
φ (x ) dµi (x ) →

∫
Ω
φ (x ) dµ (x ) for every φ ∈ C0 (Ω;Rm ),

we say that the measures µi converge to µ weakly*, denoted µi ∗⇀ µ.

Theorem 2.10 (Weak* compactness). Let {µi}∞i=1
⊂ M (Ω;Rm ), and suppose

sup

i
|µi |(Ω) < ∞.

Then there exists µ∗ ∈ M (Ω;Rm ) and a subsequence {µi j }∞j=1
such that µi j ∗⇀ µ∗. Moreover, the map µ 7→ |µ |(Ω)

is lower semicontinuous with respect to weak* convergence.

Proof. For convenience, we use the notation

µ (φ) :=

∫
Ω
〈φ (x ), dµ (x )〉.

The proof is a simple diagonal argument combined with the Riesz representation theorem, which we state

below in Theorem 2.11. Indeed, we may pick a countable set G = {φ j}∞j=1
with ‖φ j ‖∞ ≤ 1 such that G has

dense linear span inC0 (Ω;Rm ). By a diagonal argument, we can �nd a subsequence {µih}∞h=1
such that there

exist limits

α j := lim

h→∞

∫
Ω
〈φ j (x ), dµ

ih (x )〉, (j = 1,2, . . .).

Then |α j | ≤ M for M := supi |µ
i |(Ω).

If φ =
∑k

`=1
β`φ` ∈ spanG, let us de�ne

L(φ) :=

k∑
`=1

β`α` .

Then L is linear on spanG, and given ϵ > 0, for large enough h ≥ h0, we have


L(φ) −

∫
Ω
φ (x ) dµih (x )


≤ ϵ . (2.5)

It follows that

‖L(φ)‖ ≤ M ‖φ‖ + ϵ ,

so that by the arbitrariness of ϵ , we have ‖L‖ ≤ M .

Picking arbitrary φ ∈ C0 (Ω;Rm ), we may for any ϵ > 0 �nd k , β` , (` = 1, . . . ,k) such that

φ̃ =
k∑
`=1

β`φ`

satis�es

‖φ − φ̃‖∞ ≤ ϵ/(2M ). (2.6)

Then

L(φ̃) =
k∑
`=1

β`α` ,

and

‖µih (φ) − L(φ̃)‖ ≤ ‖µih (φ) − µih (φ̃)‖ + ‖µih (φ̃) − L(φ̃)‖ ≤ ϵ/2 + ‖µih (φ̃) − L(φ̃)‖.



Using (2.5), we thus observe the existence of h0 ∈ N
+

such that

‖µih (φ) − L(φ̃)‖ ≤ ϵ , (h ≥ h0).

It can easily be seen that approximating φ this way, L extends to a bounded linear functional L onC0 (Ω;Rm ).
Thus Theorem 2.11 below shows that there exists µ∗ ∈ M (Ω;Rm ) such that

L(φ) =

∫
Ω
〈φ (x ), dµ∗ (x )〉, (φ ∈ C0 (Ω;Rm )),

and

|µ∗ |(Ω) = ‖L‖ = M = sup

i
|µi |(Ω).

We have to show that µih ∗⇀ µ∗. Clearly µih (φ) → µ (φ) for φ ∈ spanG. By approximating general φ ∈
C0 (Ω;Rm ) as in (2.6), we get

��ν (φ − φ̃)�� ≤ |ν |(ϵ χΩ ) ≤ ϵM , (ν = µ∗,µ1,µ2, . . .). (2.7)

Letting ϵ ↘ 0, we deduce from µih (φ̃) → µ∗ (φ̃) that µih (φ) → µ∗ (φ).

Finally, the claimed lower semicontinuity of µ 7→ |µ |(Ω) follows easily from the De�nition (2.27) of weak*

converge �

2.9. The Riesz representation theorem

We required the following Riesz representation theorem in the proof of weak compactness. It will be important

for us in the next section as well, as we introduce functions of bounded variation. The content is: bounded
linear functionals are measures.

Theorem 2.11 (Riesz representation theorem). Let Ω ⊂ Rn , and suppose L : C0 (Ω;Rn ) → R is linear and
bounded, i.e.,

‖L‖ := sup{L(φ) | u ∈ C0 (Ω;Rn ), sup

x ∈Ω
‖φ (x )‖ ≤ 1} < ∞.

Then there exists a unique µ ∈ M (Ω;Rn ) such that

L(φ) =

∫
Ω
〈φ (x ), dµ (x )〉.

Moreover
|µ |(Ω) = ‖L‖.



Chapter 3

Functions of bounded variation

We are �nally ready to start a proper treatment of the main subject of the course.

3.1. Definition and basic properties

De�nition 3.1. Let u ∈ L1 (Ω) for an open set Ω ⊂ Rn
. We say that u is of bounded variation, denoted

u ∈ BV(Ω), if

TV(u) := sup

{∫
Ω

divφ (x )u (x ) dx ��� φ ∈ C
∞
c (Ω;Rn ), sup

x ∈Ω
‖φ (x )‖ ≤ 1

}
< ∞.

Remark 3.1. Observe that we have not de�ned the �nite-dimensional norm used in the constraint

‖φ (x )‖ ≤ 1.

For the basic theory, this makes no di�erence, since all �nite-dimensional norms are topologically equivalent
in the sense that any two norms ‖ · ‖ and ‖ · ‖ ′ on Rn

satisfy for some c,C > 0 the inequalities

c ‖x ‖ ≤ ‖x ‖ ′ ≤ C‖x ‖.

Geometrically the two norms however can be very di�erent, as the unit balls ‖x ‖ ≤ 1 and ‖x ‖ ′ ≤ 1 can di�er.

Consequently, the choice of the �nite-dimensional norm will play a role in image processing applications.

Typically we choose the 2-norm to get isotropic, direction-invariant, behaviour, but sometimes the ∞-norm

makes sense to get anisotropic behaviour that enhances vertical and horizontal lines, for example.

Theorem 3.1 (Structure theorem). Let u ∈ BV(Ω). Then there exists a measure Du ∈ M (Ω;Rn ) such that

TV(u) = |Du |(Ω)

and the following generalised Green’s identity holds,∫
Ω

divφ (x )u (x ) dx +

∫
Ω
〈φ (x ), dDu (x )〉 = 0, (φ ∈ C∞c (Ω;Rn )).

Moreover, if u ∈ C1 (Ω) and ∂Ω is of class C1, then Du = ∇uLn .

Proof. Let us set

L(φ) := −

∫
Ω

divφ (x )u (x ) dx .

Then L is a linear functional on C∞c (Ω;Rn ), and

|L(φ) | ≤ TV(u)‖φ‖L∞ (Ω;Rn ) , (φ ∈ C∞c (Ω;Rn )). (3.1)

We want to extend L toC0 (Ω;Rn ) and apply the Riesz representation theorem. AsC0 (Ω;Rn ) is the closure of

Cc (Ω;Rn ) in the in�nity norm, andCc (Ω;Rn ) can approximated by elements ofC∞c (Ω), given φ ∈ C0 (Ω;Rn ),
we can indeed �nd φi ∈ C∞c (Ω), (i = 1,2, . . .) with φi → φ. Using (3.1), we see that

|L(φi ) − L(φ j ) | ≤ TV(u)‖φi − φ j ‖, (i, j = 1,2, . . .).
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Therefore {L(φi )}∞i=1
forms a Cauchy sequence, so that the following limit exists

L(φ) := lim

i→∞
L(φi ).

An analogous argument shows that limit is independent of the approximating sequence.

We also easily see that L is linear and ‖L‖ = TV(u). An application of the Riesz representation theorem,

Theorem 2.11, therefore shows that

L(φ) =

∫
Ω
〈φ (x ), dDu (x )〉

for some measure Du ∈ M (Ω;Rn ). Moreover

|Du |(Ω) = ‖L‖ = TV(u).

Finally, if u ∈ C1 (Ω), using the fact that φ |∂Ω = 0, Green’s identity shows that

L(φ) = −

∫
Ω

divφ (x )u (x ) dx =

∫
Ω
〈φ (x ),∇u (x )〉dx .

Since φ was arbitrary, it follows that ∇uLn = Du. �

Theorem 3.2. The space BV(Ω) is a Banach space when equipped with the norm

‖u‖BV(Ω) := ‖u‖L1 (Ω) + |Du |(Ω).

Moreover, u 7→ |Du |(Ω) is lower semicontinuous with respect to convergence in L1 (Ω).

Proof. We have to show that BV(Ω) is complete with respect to the the BV-norm ‖ · ‖BV(Ω) . Let {ui}∞i=1
be a

Cauchy sequence in BV(Ω) with respect to the BV-norm. Then {ui}∞i=1
is also a Cauchy sequence in L1 (Ω),

and hence converges to some u ∈ L1 (Ω) strongly in L1 (Ω).

Given φ ∈ C∞c (Ω), by Hölder’s inequality we have

�����

∫
Ω

divφ (x ) (u − ui (x )) dx
�����
≤ ‖ divφ‖L∞ (Ω;Rn ) ‖u − u

i ‖L1 (Ω) .

It therefore follows that∫
Ω

divφ (x )u (x ) dx ≤ lim inf

i→∞

∫
Ω

divφ (x )ui (x ) dx ≤ lim inf

i→∞
|Dui |(Ω).

Thus u ∈ BV(Ω), and by Theorem 3.1, Du exists. This also shows the claimed lower semicontinuity.

We want to show that |Dui − Du | → 0, as that would establish the convergence ui → u in the BV-norm,

and show completeness. Minding that {Dui}∞i=1
is a Cauchy sequence inM (Ω;Rm ), let us pick ϵ > 0, and

choose i0 large enough that |Dui − Du j |(Ω) ≤ ϵ for i, j ≥ i0. Then for φ ∈ C∞c (Ω;Rn ) with ‖φ‖L∞ (Ω;Rn ) ≤ 1,

we have ∫
Ω
〈φ (x ), d (Du − Dui ) (x )〉 =

∫
Ω
〈φ (x ), d (Du − Du j ) (x )〉 +

∫
Ω
〈φ (x ), d (Du j − Dui ) (x )〉

= −

∫
Ω

divφ (x ) (u − u j ) (x ) dx +

∫
Ω
〈φ (x ), d (Du j − Dui ) (x )〉

≤ ‖ divφ‖L∞ (Ω) ‖u − u
j ‖L1 (Ω) + ϵ .

Choosing j large enough, we conclude that∫
Ω
〈φ (x ), d (Du − Dui ) (x )〉 ≤ 2ϵ .

Thus

|Du − Dui |(Ω) = sup

φ

∫
Ω
〈φ (x ), d (Du − Dui ) (x )〉 ≤ 2ϵ

with the supremum over φ ∈ C∞c (Ω;Rn ) with ‖φ‖L∞ (Ω;Rn ) ≤ 1. Since ϵ was arbitrary, this concludes the

proof. �



3.2. Smooth approximation

Theorem 3.3 (Smooth approximation). Suppose Ω ⊂ Rn is open and let u ∈ BV(Ω). Then there exists a
sequence {ui}∞i=1

∈ C∞ (Ω) with ui → u in L1 (Ω) and |Dui |(Ω) → |Du |(Ω).

Proof. Given a positive integerm, we set Ω0 = ∅ as well as

Ωk := B (0,k +m) ∩ {x ∈ Ω | inf

y ∈∂Ω
‖x − y ‖ ≥ 1/(m + k ))}.

We pickm large enough that

|Du |(Ω \ Ω1) < 1/i . (3.2)

With

Vk := Ωk+1 \ Ωk−1,

each x ∈ Ω belongs to at most four sets Vk . We may then �nd a partition of unity {ζk}∞k=1
with ζk ∈ C

∞
c (Vk ),

0 ≤ ζk ≤ 1 and

∑∞
k=1

ζk ≡ 1 on Ω.

With {ρϵ}ϵ>0 a family of molli�ers, and ϵk > 0, we let

uk := ρϵk ∗ (uζk ).

We select ϵk > 0 small enough that suppuk ⊂ Vk (doable because ζk ∈ C
∞
c (Vk )), and

‖uk − uζk ‖ ≤ 1/(2ki ), and ‖ρϵk ∗ (u∇ζk ) − u∇ζk ‖ ≤ 1/(2ki ). (3.3)

We then let

ui :=

∞∑
k=1

uk .

By the construction of the partition of unity, for every x ∈ Ω there is a neighbourhood of x such that there

are only �nitely many non-zero terms in this sum. Hence ui ∈ C∞ (Ω). Moreover, as u =
∑∞

k=1
ζku, (3.3) gives

‖u − ui ‖ ≤
∞∑
k=1

‖uk − uζk ‖ < 1/i .

Thus ui → u in L1 (Ω) as i → ∞.

By Theorem 3.2, we have

|Du |(Ω) ≤ lim inf

i→∞
|Dui |(Ω).

It therefore only remains to prove the opposite inequality. Let φ ∈ C1

c (Ω;Rn ) with supx ∈Ω |φ (x ) | ≤ 1. We

have ∫
Ω

divφ (x )uk (x ) =

∫
Ω

divφ (x ) (ρϵk ∗ ζku) (x ) dx

=

∫
Ω

div(ρϵk ∗ φ) (x )ζk (x )u (x ) dx

=

∫
Ω

div[ζk (ρϵk ∗ φ)](x )u (x ) dx −

∫
Ω
〈∇ζk (x ), (ρϵk ∗ φ) (x )〉u (x ) dx

=

∫
Ω

div[ζk (ρϵk ∗ φ)](x )u (x ) dx

−

∫
Ω
〈φ (x ), (ρϵk ∗ (u∇ζk )) (x ) − (u∇ζk ) (x )〉dx −

∫
Ω
〈φ (x ), (u∇ζk ) (x )〉dx .

Since

∑∞
k=1
∇ζk = 0, we have

∞∑
k=1

∫
Ω
〈φ (x ), (u∇ζk ) (x )〉dx = 0.



Thus using (3.3), we get∫
Ω

divφ (x )ui (x ) =
∞∑
k=1

∫
Ω

divφ (x )uk (x )

=

∞∑
k=1

∫
Ω

div[ζk (ρϵk ∗ φ)](x )u (x ) dx

−

∞∑
k=1

(∫
Ω
〈φ (x ), (ρϵk ∗ (u∇ζk )) (x ) − (u∇ζk ) (x )〉dx

)

≤

∞∑
k=1

∫
Ω

div[ζk (ρϵk ∗ φ)](x )u (x ) dx + 1/i

Observing that ζk (ρϵk ∗ φ) ≤ 1, and using the fact that

∑∞
k=1

χVk ≤ 4, we further get

∫
Ω

divφ (x )ui (x ) ≤

∫
Ω

div[ζ1 (ρϵ1
∗ φ)](x )u (x ) dx +

∞∑
k=2

∫
Ω

div[ζk (ρϵk ∗ φ)](x )u (x ) dx + 1/i

≤ |Du |(Ω) +
∞∑
k=2

|Du |(Vk ) + 1/i

≤ |Du |(Ω) + 4|Du |(Ω \ Ω1) + 1/i

≤ |Du |(Ω) + 5/i .

In the �nal step we have used (3.2). This concludes the proof. �

3.3. Traces and extensions

Theorem 3.4. Suppose Ω ⊂ Rn is open and bounded with a Lipschitz boundary. Then there exists a bounded
linear mapping

T : BV(Ω) → L1 (∂Ω;H n−1),

such that∫
Ω
〈φ (x ), dDu (x )〉 = −

∫
Ω

divφ (x )u (x ) dx +

∫
∂Ω
〈φ (x ),ν (x )〉Tu (x ) dH n−1, (u ∈ BV(Ω), φ ∈ C∞c (Rn

;Rn )),

(3.4)

with ν the unit outer normal �eld to ∂Ω. We call Tu the trace of u on ∂Ω.

Proof. Since ∂Ω is Lipschitz, at every x ∈ ∂Ω, we can �nd a neighbourhood Q of x such that ∂Ω ∩ Q is the

graph of a Lipschitz mapψ . By rotation and translation if necessary, we may assume that x = 0 and

Q = U × (−ρ,ρ)

for some ball U ⊂ Rn−1
, as well as

∂Ω ∩Q = {(v,ψ (v )) | v ∈ U }.
and

Ω ∩Q = Q ∩ {(v,t ) | v ∈ U , ρ > t > ψ (v )}.
Suppose �rst that u ∈ C∞ (Ω), and de�ne the slice

uϵ (y ) := u (v,ψ (v ) + ϵ ), (y = (v,t ) ∈ ∂Ω ∩Q )

whenever ϵ ∈ (0,ρ/2). Then for 0 < δ < ϵ < ρ/2 we have

|uδ (y ) − uϵ (y ) | ≤

∫ ϵ

δ

�����
∂u

∂xn
(v,ψ (v ) + t )

�����
dt ≤

∫ ϵ

δ

��∇u (v,ψ (v ) + t )�� dt .



Sinceψ is Lipschitz, the area formula shows for some constant C > 0 that∫
∂Ω∩Q

|uδ (y ) − uϵ (y ) | dH
n−1 (y ) ≤ C

∫
Aδ ,ϵ
|∇u (y ) | dy = C |Du |(Aδ ,ϵ ),

where

Aδ ,ϵ := {(v,t ) | v ∈ U ,t ∈ ψ (v ) + (δ ,ϵ )}.
It follows that {uϵ}ϵ>0 is Cauchy in L1 (∂Ω∩Q ;H n−1), and hence convergent to someTu ∈ L1 (∂Ω∩Q ;H n−1).
Moreover, the above arguments yield∫

∂Ω∩Q
|Tu (y ) − uϵ (y ) | dH

n−1 (y ) ≤ C |Du |(A0,ϵ ). (3.5)

Let then φ ∈ C1

c (Q ;Rn ). By the Gauss-Green theorem, we have∫
Ω∩Q\A0,ϵ

divφ (y )u (y ) dy = −

∫
Ω∩Q\A0,ϵ

〈φ (y ),∇u (y )〉dy +

∫
∂Ω∩Q

uϵ (y )〈φ (y ),ν∂Ω (y )〉dH
n−1 (y ).

Here we have translated the boundary {(v,ψ (v ) + ϵ ) | v ∈ U } to ∂Ω. Letting ϵ ↘ 0, we thus get∫
Ω∩Q

divφ (y )u (y ) dy = −

∫
Ω∩Q
〈φ (y ), dDu (y )〉 +

∫
∂Ω∩Q

Tu (y )〈φ (y ),ν∂Ω (y )〉dH
n−1 (y ) (3.6)

Let us then �nally consider the general case u ∈ BV(Ω). We construct using Theorem 3.3 a sequence{ui}∞i=1
∈ C∞ (Ω) with ui → u in L1 (Ω) and |Dui |(Ω) → |Du |(Ω). By Theorem 2.10, we may assume that

Dui ∗⇀ Du weakly* inM (Ω;Rn ). We claim that Tui is Cauchy in L1 (∂Ω ∩Q ;H n−1). Indeed, let

ui,ϵ (y ) :=
1

ϵ

∫ ϵ

0

ui (v,ψ (v ) + t ) dt =
1

ϵ

∫ ϵ

0

uiϵ (y ) dt . (3.7)

Then using (3.5) we get∫
∂Ω∩Q

|Tui (y ) − ui,ϵ (y ) | dH n−1 (y ) ≤
1

ϵ

∫ ϵ

0

∫
∂Ω∩Q

|Tui (y ) − uiϵ (y ) | dH
n−1 (y ) dt ≤ C |Dui |(A0,ϵ ).

It follows∫
∂Ω∩Q

|Tui (y ) −Tu j (y ) | dH n−1 (y ) ≤

∫
∂Ω∩Q

|Tui (y ) − ui,ϵ (y ) | dH n−1 (y )

+

∫
∂Ω∩Q

|Tu j (y ) − u j,ϵ (y ) | dH n−1 (y )

+

∫
∂Ω∩Q

|ui,ϵ (y ) − u j,ϵ (y ) | dH n−1 (y )

≤ C |Dui |(A0,ϵ ) +C |Du
j |(A0,ϵ ) +

C

ϵ

∫
A0,ϵ

|ui (y ) − u j (y ) | dy .

(3.8)

In the �nal step we have used the de�nition (3.7). Using ui → u in L1 (Ω) for the �nal term, thus

lim sup

i,j→∞

∫
∂Ω∩Q

|Tui (y ) −Tu j (y ) | dH n−1 (y ) ≤ C ′ |Du |(A0,ϵ ∩Q ).

Since ϵ > 0 was arbitrary, and |Du |(A0,ϵ ∩Q ) → 0 as ϵ ↘ 0, the claim is proved. Thus we may again de�ne

Tu := lim

i→∞
Tui

in the sense of strong convergence in L1 (∂Ω ∩ Q ;H n−1). Reasoning as in (3.8), it is not di�cult to see that

this limit is independent of the selection of ui in the sense of L1
equivalence classes. Further, the reasoning



in (3.8) shows thatT is bounded onC∞ (Ω ∩Q ), and consequently on BV(Ω ∩Q ). Taking the limit in (3.6) for

ui , we moreover see that it holds for u as well.

Finally, since ∂Ω is compact, we can cover it by �nitely many sets {Ui}Ni=1
as above. Then we may form

a partition of unity {ζi}N
0=1

with 0 ≤ ζi ≤ 1, supp ζi ⊂ Ui for i = 1, . . . ,N , and supp ζ0 ⊂ Ω. Moreover∑N
i=1

ζi (x ) = 1 for x ∈ ∂Ω and

∑N
i=0

ζi (x ) = 1 for x ∈ Ω. Then we de�ne T : C∞ (Ω) → L1 (∂Ω;H n−1) by

Tu (x ) :=

N∑
i=1

ζi (x )[Tiu](x ),

where Ti is the extension operator on Ui as constructed above. Observe from the construction above that,

moreover

ζiTiu = Ti (ζiu).

Thus for φ ∈ C1

c (R
n

;Rn ), using (3.6), we get

∫
Ω

divφ (y )u (y ) dy =
N∑
i=0

∫
Ω

divφ (y )ζi (y )u (y ) dy

= −

N∑
i=0

∫
Ω
〈φ (y ), dD (ζiu) (y )〉 +

N∑
i=1

∫
∂Ω

ζi (y )Tiu (y )〈φ (y ),ν∂Ω (y )〉dH
n−1 (y )

= −

∫
Ω
〈φ (y ), dDu (y )〉 +

∫
∂Ω

Tu (y )〈φ (y ),ν∂Ω (y )〉dH
n−1 (y ).

This establishes (3.4). The boundedness and linearity of T follows from the boundedness and linearity of

Ti �

Theorem 3.5. Suppose Ω ⊂ Rn is open and bounded with a Lipschitz boundary, and u ∈ BV(Ω). Let

w (x ) :=



u (x ), x ∈ Ω,

0, otherwise,

Thenw ∈ BV(Rn ) with ‖w ‖BV(Rn ) ≤ C‖u‖BV(Ω) for some constant C = C (Ω).

Proof. Given φ ∈ C∞c (Rn ), we have∫
Rn

divφ (x )w (x ) dx =

∫
Ω

divφ (x )u (x ) dx

Using Theorem 3.4, we obtain∫
Ω

divφ (x )u (x ) dx = −

∫
Ω
〈φ (x ), dDu (x )〉 +

∫
∂Ω
〈φ (x ),ν (x )〉Tu (x ) dH n−1,

with the trace Tu ∈ L1 (∂Ω;H n−1), and ν the unit outer normal �eld to ∂Ω. Thus∫
Rn

divφ (x )w (x ) dx ≤ ‖φ‖L∞ (Ω;Rn )

(
|Du |(Ω) + ‖Tu‖L1 (∂Ω;Hn−1)

)
.

It follows that w ∈ BV(Rn ) and

|Dw |(Ω) ≤ |Du |(Ω) + ‖Tu‖L1 (∂Ω;Hn−1) ≤ C‖u‖BV(Ω) .

Since ‖w ‖L1 (Rn ) = ‖u‖L1 (Ω) , this concludes the proof. �

Sometimes the above extension introduces di�culties because |Dw |(∂Ω) , 0. We can also make this kind

of extension.



Theorem 3.6. Suppose Ω ⊂ Rn is open and bounded with a Lipschitz boundary, and u ∈ BV(Ω). Then there
exists w ∈ BV(Rn ) with w |Ω = u, satisfying |Dw |(∂Ω) = 0 and ‖w ‖BV(Rn ) ≤ C‖u‖BV(Ω) for some constant
C = C (Ω).

Proof. We skip the details of the proof. It may be found in [2], and is based on locally “mirroring” u over Ω.

Namely if Q andψ are is Theorem 3.4, we de�ne

w (y ) =




u (v,t ), y = (v,t ) ∈ Q ,t > ψ (v ),

Tu (v,t ), y = (v,t ) ∈ Q ,t = ψ (v ),

u (v,2ψ (v ) − t ), y = (v,t ) ∈ Q ,t < ψ (v ).

Then we glue the extensions together with a partition of unity. The most work is in showing that |Dw |(Q \Ω)
is bounded byC |Du |(Q ∩Ω). This depends on results showing that u ◦д is of bounded variation for Lipschitz

д. �

3.4. Weak modes of convergence

De�nition 3.2. Let {u,u1,u2, . . .} ⊂ BV(Ω). We say that {ui}∞i=1
converge to u

(i) strongly, denoted ui → u, if ‖ui − u‖BV(Ω) → 0.

(ii) strictly, if ui → u strongly in L1 (Ω), and |Dui |(Ω) → |Du |(Ω).

(iii) weakly*, if ui → u strongly in L1 (Ω), and Dui ∗⇀ Du weakly* inM (Ω;Rn ).

Clearly strong convergence implies strict convergence, but the converse is not true. Exercise 2.24 shows

that weak* convergence does not imply strict convergence. A consequence of the next proposition is that

strict convergence implies weak* convergence.

Proposition 3.1. Let {ui}∞i=1
⊂ BV(Ω). Then ui ∗⇀ u weakly* in BV(Ω) if and only if supi |Du

i |(Ω) < ∞ and
ui → u strongly in L1 (Ω).

Proof. Suppose supi |Du
i |(Ω) < ∞ andui → u strongly in L1 (Ω). By Theorem 2.10, we can �nd a subsequence{uik }∞k=1

such that Duik ∗⇀ µ for some µ ∈ M (Ω;Rn ). If we show that µ = Du, the weak* convergenceui ∗⇀ u
follows. Indeed, by the convergence of uik to u in L1

, we have∫
Ω
〈φ (x ), dDuik (x )〉 = −

∫
Ω

divφ (x )uik (x ) → −

∫
Ω

divφ (x )u (x ), (φ ∈ C∞c (Ω;Rn )).

But also by Duik ∗⇀ µ we have∫
Ω
〈φ (x ), dDuik (x )〉 →

∫
Ω
〈φ (x ), dµ (x )〉, (φ ∈ C∞c (Ω;Rn )).

By the de�nition of Du, this shows that Du = µ.

For the opposite direction, one may apply the Banach-Steinhaus theorem, also known as the principle of
uniform boundedness. Applied to our present situation, it says that if

sup

i=1,2,3, ...
‖Dui (φ)‖ < ∞ for all φ ∈ C∞c (Ω;Rn ),

then
sup

i=1,2,3, ...
|Dui |(Ω) < ∞.

This is exactly what we need. �



Lemma 3.1. Let {ρϵ}ϵ>0 be a family of molli�ers. We have∫
Rn
|(w ∗ ρϵ ) (x ) −w (x ) | dx ≤ ϵ |Dw |(Ω), (w ∈ BV(Rn ) with compact support).

Proof. Indeed, by Theorem 3.3 we may assume that w ∈ C∞c (Rn ). Thus with y ∈ B (0,ϵ ) and x ∈ Rn
, by the

fundamental theorem of calculus

w (x − y ) −w (x ) = −

∫
1

0

〈∇w (x − ty ),y〉dt .

Taking norms, integrating, applying Fubini’s theorem and ‖y ‖ ≤ ϵ , gives∫
|w (x − y ) −w (x ) | dx ≤

∫
1

0

∫
|∇w (x − ty ) |‖y ‖ dx dt ≤ ϵ |Dw |(Rn ).

Multiplying by ρϵ (y ) and integrating over y , we have∫ ∫
|w (x − y ) −w (x ) |ρϵ (y ) dx dy ≤ ϵ |Dw |(R

n ).

But ∫
|(w ∗ ρϵ ) (x ) −w (x ) | dx =

∫ �����

∫
w (x − y )ρϵ (y ) dy −w (x )

�����
dx

=

∫ �����

∫
w (x − y ) −w (x ))ρϵ (y ) dy

�����
dx

≤

∫ ∫
|w (x − y ) −w (x ) |ρϵ (y ) dx dy ,

which shows the claim. �

Theorem 3.7 (Weak* compactness). Suppose Ω ⊂ Rn is open and bounded with Lipschitz boundary. The space
BV(Ω) has a weak* compact unit ball. That is, any bounded sequence {ui}∞i=1

⊂ BV(Ω) has a weak* convergent
subsequence.

Proof. We extend each ui by Theorem 3.5 to w i ∈ BV(Rn ). Then ‖w i ‖BV(Rn ) ≤ C‖ui ‖BV(Ω) for some constant

C = C (Ω). If we can show that w ik ∗⇀ w weakly* in BV(Rn ) for some subsequence, then uik ∗⇀ u for

u := w |Ω weakly* in BV(Ω). Indeed, we immediately see that uik → u strongly in L1 (Ω). Therefore, as

supik |Du
ik |(Ω) < ∞, Proposition 3.1 proves the claim.

So we have to show the weak* convergence of a subsequence {w ik }∞k=1
. Let us pick a family {ρϵ}ϵ>0 of

molli�ers, and de�ne w i
ϵ := ρϵ ∗w

i
. Using Lemma 3.1 we have∫

Rn
|w i (x ) −w j (x ) | dx ≤

∫
Rn
|w i
ϵ (x ) −w

j
ϵ (x ) | dx +

∫
Rn
|w i
ϵ −w

i (x ) | + |w j (x ) −w j
ϵ (x ) | dx

≤

∫
Rn
|w i
ϵ (x ) −w

j
ϵ (x ) | dx + 2ϵ sup

k
|Dwk |(Ω).

If we can �nd a subsequence {w ik }∞k=1
such that {w ik

1/`
}∞k=1

convergences for every ` = 1,2,3, . . ., this shows

that {w ik }∞k=1
is a Cauchy sequence in L1 (K ) for any compact set K ⊃ Ω + B (0,1). By completeness w ik

converges to some w ∈ L1 (K ). Since

sup

k
|Dwk |(Ω) ≤ C sup

i
‖ui ‖BV(Ω) ,

Proposition 3.1 shows the required weak* convergence.



We still have to �nd {w ik }∞k=1
. We have

‖w i
ϵ ‖C (Rn ) ≤ ‖w

i ‖L1 (Ω) ‖ρϵ ‖C (Rn ) and ‖∇w i
ϵ ‖C (Rn

;Rn ) ≤ ‖w
i ‖L1 (Ω) ‖∇ρϵ ‖C (Rn

;Rn ) .

It follows that for �xed ϵ > 0, the sequence {w i
ϵ}∞i=1

is uniformly bounded and equicontinuous. By the Arzelà-

Ascoli theorem, we can therefore �nd a subsequence {w ik
ϵ }∞k=1

convergent in C (Rn ). By diagonalising, we

can thus �nd {w ik }∞k=1
such that {w ik

1/`
}∞k=1

is convergent in C (Rn ) for every ` = 1,2,3, . . .. This concludes

the proof. �

3.5. The Poincaré inequality

Theorem 3.8. Let Ω ⊂ Rn be a connected bounded open set with Lipschitz boundary, and de�ne

uΩ := −

∫
Ω
u (x ) dx :=

1

Ln (Ω)

∫
Ω
u (x ) dx .

Then there exists a constant C = C (Ω) such that

‖u − uΩ‖L1 (Ω) ≤ C |Du |(Ω), (u ∈ BV(Ω)). (3.9)

Proof. Suppose the inequality (3.9) does not hold for anyC > 0. Then there exist a sequence {ui}∞i=1
⊂ BV(Ω)

with

‖ui − uiΩ‖L1 (Ω) ≥ i |Dui |(Ω), (i = 1,2,3, . . .).

Since D (ui −uiΩ ) = Dui , and this inequality is homogeneous on both sides, we may assume that ‖ui ‖L1 (Ω) = 1

and uiΩ = 0. Thus we have

1/i ≥ |Dui |(Ω),

∫
Ω
|ui (x ) | dx = 1, and

∫
Ω
ui (x ) dx = 0, (i = 1,2,3, . . .). (3.10)

Hence by Theorem 3.7, we may assume that ui ∗⇀ u for some u ∈ BV(Ω). But |Dui |(Ω) ≤ 1/i , so by lower

semicontinuity |Du |(Ω) = 0. Therefore u = c is a constant by Exercise 3.4. But by (3.10) we also have

|c |Ln (Ω) =

∫
Ω
|u (x ) | dx = 1, and |c |Ln (Ω) =

�����

∫
Ω
u (x ) dx

�����
= 0.

This is a contradiction. Therefore (3.9) must hold for some C = C (Ω). �

Example 3.1. In recent years, research in variational image processing techniques has attempted many

higher-order generalisation of total variation. This is due to the stair-casing e�ect that the latter exhibits:

due to noise and other imperfections ind ata, processed images may exhibit large �at areas where there orig-

inally was a smooth gradient. This is avoided by higher-order approaches. One of them is total generalised
variation [5] or TGV. For two parameters β ,α > 0, in the second order case, we may write it as the di�eren-

tiation cascade

TGV
2

(β,α ) (u) := min

w ∈BV(Ω;Rn )
α ‖Du −w ‖M (Ω;Rn ) + β ‖Ew ‖M (Ω;Rn×n ) . (3.11)

Here Ew is the symmetrised gradient, which for w ∈ C1 (Ω;Rn ) may be written as Ew = EwLn
for

Ew (x ) :=
1

2

(
∇w (x ) + [∇w (x )]T

)
.

(Observe that by smooth approximation, we may always take an in�mum over w ∈ C1 (Ω;Rn ) in (3.11).)

Using Poincaré and more general Sobolev-Korn inequalities – the counterpart of the Poincaré inequality

for the symmetrised gradient – it can be shown [7, 6] that the norm

‖u‖BGV(Ω) := ‖u‖L1 (Ω) + TGV
2

(β,α ) (u),

is equivalent to the standard BV-norm ‖u‖BV(Ω) . This allows us to use a large part of the BV theory, including

existing of weak* converging subsequence and solutions to variational problems, to image processing with

TGV
2

regularisation.



Corollary 3.1. Let x ∈ Ω ⊂ Rn and ρ > 0 be such that B (x ,ρ) ⊂ Ω. Then

‖u − uB (x,ρ ) ‖L1 (Ω) ≤ Cρ |Du |(B (x ,ρ)), (u ∈ BV(Ω)),

for some constant C = C (n).

The proof is an easy exercise employing the area formula.

3.6. Fine properties

We now study the �ne stucture of u through the decomposition of Du into di�erent parts. Of particular

interest to use are the jump part and the absolutely continuous part, which, roughly, correspond to image

edges and smooth parts. However, the Cantor part causes some extra headaches!

De�nition 3.3. Let u ∈ L1 (Ω), and x ∈ Ω. Then u has an approximate limit at x if there exists z ∈ R such

that

lim

ρ↘0

−

∫
B (x,ρ )

|u (y ) − z | dx = 0.

We then set ũ (x ) := z. We denote the set of points where the ũ (x ) does not exist by Su , and call it the

approximate discontinuity set.

Remark 3.2. The de�nition of Su is independent of the representative of u in the L1
equivalence class. Ap-

proximate continuity depends on the representative, but we can always �nd a representative that is absolutely

continuous in Ω \ Su : we just set u (x ) = ũ (x ) outside Su .

Remark 3.3. By Corollary 2.1, we have Ln (Su ). The next result shows that x < Su when both u and Du are,

in a sense, non-singular.

Proposition 3.2. Let u ∈ BV(Ω), and x ∈ Ω. Suppose Θ∗n (Du,x ) < ∞ and Θ∗n (uL
n ,x ) < ∞. Then the

approximate limit ũ (x ) exists.

Proof. Let

zρ := −

∫
B (x,ρ )

u (y ) dy .

Then by Corollary 3.1, for small enough ρ that B (0,ρ) ⊂ Ω, we have∫
B (x,ρ )

|u (y ) − zρ | dy ≤ Cρ |Du |(B (x ,ρ)).

Thus

lim sup

ρ↘0

−

∫
B (x,ρ )

|u (y ) − zρ | dy ≤ lim sup

ρ↘0

Cρ
|Du |(B (x ,ρ))

ω (n)ρn
= 0, (3.12)

where the latter inequality follows from

lim sup

ρ↘0

|Du |(B (x ,ρ))

ω (n)ρn
= Θ∗n (Du,x ) < ∞.

If we can show for equence ρi ↘ 0 that zρi → z for some z ∈ R, then ũ (x ) = z. Indeed z satis�es

lim

i→∞
−

∫
B (x,ρi )

|u (y ) − z | dy ≤ lim

i→∞

(
−

∫
B (x,ρi )

|u (y ) − zρi | dy + |z − zρi |

)
= 0.



To see that only a subsequence su�ces, suppose we had two subsequences zρ1

i
→ z̄1 and zρ2

i
→ z̄2. Then

|z̄1 − z̄2 | ≤ lim inf

ρ↘0

(
−

∫
B (y ,ρ )

|u (y ) − z̄1 | dy + −

∫
B (y ,ρ )

|u (y ) − z̄2 | dy

)
≤ lim sup

i→∞

*
,
−

∫
B (y ,ρ2

i )
|u (y ) − z̄1 | dy + −

∫
B (y ,ρ1

i )
|u (y ) − z̄2 | dy+

-

≤ lim sup

i→∞

*
,
−

∫
B (y ,ρ2

i )
|u (y ) − zρ1

| dy + −

∫
B (y ,ρ1

i )
|u (y ) − zρ2

| dy + |z̄1 − zρ1
| + |z̄2 − zρ2

|+
-
= 0.

We still have to produce zρi → z. Given ϵ , by (3.12) for small enough ρ > 0, we have

|zρ | ≤ −

∫
B (x,ρ )

|u (y ) | dy + ϵ . ≤ Θ∗n (uL
n ,x ) + 2ϵ .

It follows that {zρ}ρ>0 is bounded, and we may �nd a subsequence convergent to some z. �

In order to shed more light on Su , we next look at the jumps of u.

De�nition 3.4. Let u ∈ L1 (Ω), and x ∈ Ω. Then x is an approximate jump point of u if there exist a+,a− ∈ R
and ν ∈ Sn−1

such that a+ , a− and

lim

ρ↘0

−

∫
B±ν (x,ρ )

|u (y ) − a± | dy = 0,

where the half-ball

B±ν (x ,ρ) = {y ∈ B (x ,ρ) | ±〈y − x ,ν〉 ≥ 0}.
We then set u± (x ) := a± and νu (x ) := ν . We denote the set of points x where (u+ (x ),u− (x ),ν (x )) exists Ju ,

and call it the (approximate) jump set.

Obviously Ju ⊂ Su . The next result details the relationship for u ∈ BV(Ω).

Theorem 3.9 (Federer–Vol’pert). Let u ∈ BV(Ω). Then the approximate discontinuity set Su is countably
H n−1-recti�able andH n−1 (Su \ Ju ) = 0. Moreover

DuxJu = (u+ − u−)νuH
n−1xJu .

How about Du outside Ju? Just as approximate limits, we may de�ne approximate di�erentials.

De�nition 3.5. Let u ∈ L1 (Ω), and x ∈ Ω \ Su . Then u is approximately di�erentiable at x if there exists

z ∈ Rn
such that

lim

ρ↘0

−

∫
B (x,ρ )

|u (y ) − ũ (x ) − 〈z,y − x〉|

ρ
dy = 0. (3.13)

We then denote ∇u (x ) := z, and say that ∇u (x ) is the approximate di�erential of u at x .

Theorem 3.10 (Calderón–Zygmund). Let u ∈ BV(Ω). Then u is approximately di�erentiable at Ln-almost
every x ∈ Ω, and

dDau

dLn (x ) = ∇u (x ), (Ln-a.e. x ∈ Ω). (3.14)



Proof. Let v = dDau/dLn
. We show that z = ṽ (x ) satis�es (3.13) for every x ∈ A with

A := {x ∈ Ω \ (Su ∪ Sv ) | Θn (D
su;x ) = 0}

By the Besicovitch derivation Theorem 2.6 and Remark 2.2, Ln
-almost every x ∈ Ω \ (Su ∪ Sv ) satis�es

Θn (D
su;x ) = 0. Since Ln (Su ∪ Sv ) = 0, we have Ln (Ω \ A) = 0, so proving (3.13) and (3.14) for x ∈ A will

show our claims.

Let us do that. We pick x ∈ A, and set

w (y ) := u (y ) − ũ (x ) − 〈ṽ (x ),y − x〉.

Then

Dw =
(
v − ṽ (x )

)
Ln + Dsu,

so that

lim

ρ↘0

|Dw |(B (x ,ρ))

Ln (B (x ,ρ))
= lim

ρ↘0

(
−

∫
B (x,ρ )

|v (y ) − ṽ (x ) | dy +
|Dsu |(B (x ,ρ))

Ln (B (x ,ρ))

)
= 0 + Θn (D

su;x ) = 0.

Using w̃ (x ) = 0 then

lim

ρ↘0

−

∫
B (x,ρ )

|u (y ) − ũ (x ) − 〈ṽ (x ),y − x〉|

|y − x |
dy = lim

ρ↘0

−

∫
B (x,ρ )

|w (y ) − w̃ (x ) |

|y − x |
dy

≤ lim

ρ↘0

sup

t ∈(0,ρ )

|Dw |(B (x ,t ))

Ln (B (x ,t ))
= 0.

In the �nal step, we have applied Lemma 3.2 below. Thus ∇u (x ) = ṽ (x ). �

Lemma 3.2. Suppose u ∈ BV(B (x ,r )) and that the approximate limit ũ (x ) exists. Then

−

∫
B (x,r )

|u (y ) − ũ (x ) |

|y − x |
dy ≤ −

∫ r

0

|Du |(B (x ,t ))

Ln (B (x ,t ))
dt ≤ sup

t ∈(0,r )

|Du |(B (x ,t ))

Ln (B (x ,t ))
dt .

Proof. We me assume without loss of generality that x = 0. Then, if u ∈ C∞ (B (0,r )) and ρ ∈ (0,1), the

fundamental theorem of calculus gives

|u (y ) − u (ρy ) |

|y |
≤

∫
1

ρ
|∇u |(ty ) dt .

Thus application of Fubini’s theorem and the area formula give∫
B (0,r )

|u (y ) − u (ρy ) |

|y |
dy ≤

∫
1

ρ

∫
B (0,r )

|∇u |(ty ) dy dt

=

∫
1

ρ

∫
B (0,tr )

t−n |∇u |(y ) dy dt

=

∫
1

ρ
t−n |Du |(B (0,tr )) dt .

(3.15)

Smoothing u ∈ BV(B (0,r )) using Theorem 3.3, we see that this inequality holds generally. (Fatou’s inequality

on the left, dominated convergence theorem on the right.) By assumption 0 < Su . Therefore

lim

ρ↘0

∫
B (0,r )

|u (ρy ) − ũ (0) | dy = lim

ρ↘0

ρ−n
∫
B (0,ρr )

|u (y ) − ũ (0) | dy = 0.



Thus the blow-up mappings vρ (y ) := u (ρy ) converge to v (y ) := ũ (0) in L1 (B (0,r )). Consequently, we can

�nd ρi ↘ 0 such that vρi (y ) → ũ (0) for Ln
-a.e. y ∈ B (0,r ). Fatou’s inequality and (3.15) now give

−

∫
B (0,r )

|u (y ) − ũ (0) |

|y |
dy = −

∫
B (0,r )

lim inf

i→∞

|u (y ) − u (ρiy ) |

|y |
dy

≤ lim inf

i→∞
−

∫
B (0,r )

|u (y ) − u (ρiy ) |

|y |
dy

≤ lim inf

i→∞

1

Ln (B (0,r ))

∫
1

ρi
t−n |Du |(B (0,tr )) dt

=

∫
1

0

|Du |(B (0,tr ))

Ln (B (0,tr ))
dt = −

∫ r

0

|Du |(B (0,t ))

Ln (B (0,t ))
dt . �

Lemma 3.3. Let u ∈ BV(Ω), and A ⊂ Ω be a Borel set. Then we have the following.

(i) IfH n−1 (A) = 0, then |Du |(A) = 0.

(ii) IfH n−1 (A) < ∞ and Su ∩A = 0, then |Du |(A) = 0.

Remark 3.4. The �rst part of the lemma in particular shows that Du has no features of dimension less than

n − 1, which turn out to correspond principally to the jump set Ju , as we see in the next theorem.

Motivated by the above results, we make the following de�nition.

De�nition 3.6. Let u ∈ BV(Ω), and let Dau and Dsu, respectively, be the absolutely continuous and singular
parts of Du with respect to Ln

, as given by the Radon-Nikodým Theorem 2.5. Then we call

D ju := DsuxJu

the jump part of Du, and

Dcu := Dsux(Ω \ Su ).

the Cantor part of Du.

We may summarise the various results above in the following

Theorem 3.11. Let u ∈ BV(Ω). Then
Du = Dau + D ju + Dcu,

where the absolutely continuous part and jump part satisfy

Dau = ∇uLn and D ju = (u+ − u−)νuH
n−1xJu , (3.16)

respectively. Moreover the Cantor partDcu vanishes on setsA that are σ -�nite with respect toH n−1: Dcu (A) = 0

if A =
⋃∞

i=1
Ai = 0 withH n−1 (Ai ) < ∞, (i = 1,2,3, . . .).

Proof. By the Radon-Nikodým Theorem 2.5, we have

Du = Dau + Dsu,

By the Calderón–Zygmund Theorem 3.10, and the Federer–Vol’pert Theorem 3.9, the expressions (3.16) hold.

It therefore remains to show that

Dsu = D ju + Dcu, (3.17)

and that Dcu is σ -�nite. By Lemma 3.3, indeed Dux(Su \ Ju ) = 0. Because DauxSu = 0 (since Ln (Su ) = 0),

it follows that Dsux(Su \ Ju ) = 0. Thus (3.17) holds. Finally, if A =
⋃∞

i=1
Ai = 0 with H n−1 (Ai ) < ∞, then

in particular H n−1 (Ãi ) < ∞ for Ãi := Ai \ Su . Therefore Lemma 3.3 shows that Dsu (Ai ) = Du (Ãi ) = 0. It

follows that Dsu (A) = 0. �



3.7. The co-area formula

De�nition 3.7. We say that a Borel set E ⊂ Ω has �nite perimeter if χE ∈ BV(Ω). We then denote Per(E; Ω) =
|DχE |(Ω).

Theorem 3.12 (Co-area formula). Suppose Ω ⊂ Rn is open and bounded with Lipschitz boundary. Let u ∈
BV(Ω), and denote by

Et := Et (u) := {x ∈ Ω | u (x ) > t}, (t ∈ R),

the level sets of u. Then Et has �nite perimeter for L1-a.e. t ∈ R, and

|Du |(Ω) =

∫ ∞

−∞

Per(Et ; Ω) dt . (3.18)

Conversely, u ∈ BV(Ω) if u ∈ L1 (Ω) and ∫ ∞

−∞

Per(Et ; Ω) dt < ∞. (3.19)

Proof. We �rst prove that∫
Ω

divφ (x )u (x ) dx =

∫ ∞

−∞

(∫
Ω

divφ (x )χEt (x ) dx

)
dt , (φ ∈ C1

c (Ω;Rn )). (3.20)

Let us write u = u+ − u− where u± ≥ 0. Then

u+ (x ) =

∫ ∞

0

χEt (x ) dt ,

so that ∫
Ω

divφ (x )u+ (x ) dx =

∫
Ω

divφ (x )

(∫ ∞

0

χEt (x ) dt

)
dx

=

∫ ∞

0

∫
Ω

divφ (x )χEt (x ) dx dt

Analogously

u− (x ) =

∫
0

−∞

χEt (x ) − 1dt ,

so that ∫
Ω

divφ (x )u− (x ) dx =

∫
Ω

divφ (x )

(∫
0

−∞

χEt (x ) − 1dt

)
dx

=

∫ ∞

0

∫
Ω

divφ (x ) (χEt (x ) − 1) dx dt

=

∫ ∞

0

∫
Ω

divφ (x )χEt (x ) dx dt

Summing the contributions from u+ and u−, we deduce (3.20). This also shows that∫
Ω

divφ (x )u (x ) dx ≤

∫ ∞

−∞

Per(Et ; Ω) dt , (φ ∈ C1

c (Ω;Rn )).

Thus

|Du |(Ω) ≤

∫ ∞

−∞

Per(Et ; Ω) dt . (3.21)

In particular u ∈ BV(Ω) if u ∈ L1 (Ω) and (3.19) holds.



To prove the converse and (3.18), we suppose �rst that u ∈ BV(Ω) ∩C∞ (Ω). We let

m(t ) :=

∫
Ω

1 − χEt (x ) d |Du |(x ) =

∫
Ω
χ{u≤t} (x ) d |Du |(x ).

Lemma 3.4 below shows that

m′(t ) ≥ Per(Et ; Ω), (L1
-a.e. t ∈ R)

and ∫ ∞

−∞

m′(t ) ≤ |Du |(Ω).

Thus ∫ ∞

−∞

Per(Et ; Ω) dx ≤ |Du |(Ω).

This proves (3.18) for u ∈ BV(Ω) ∩C∞ (Ω).

To prove the general case, we take a sequence {ui}∞i=1
∈ BV(Ω) ∩C∞ (Ω) strictly approximating u, as given

by Theorem 3.3. Since ui → u in L1 (Ω), we also have

χEt (u i ) → χEt in L1 (Ω) for L1
-a.e. t . (3.22)

To see this, one may apply Fatou’s inequality on∫ ∞

−∞

lim

i→∞
‖χEt (u i ) − χEt (u ) ‖L1 (Ω) dt .

By Theorem 2.10,

Per(Et ; Ω) ≤ lim inf

i→∞
Per(Et (u

i ); Ω).

Thus by another referral to Fatou’s inequality∫ ∞

−∞

Per(Et ; Ω) dt ≤ lim inf

i→∞

∫ ∞

−∞

Per(Et (u
i ); Ω) = lim

i→∞
|Dui |(Ω) = |Du |(Ω).

Together with (3.21) this proves the coarea formula (3.18). That Per(Et ; Ω) < ∞ forL1
-a.e. t ∈ R is immediate

from (3.18). �

Lemma 3.4. Let u ∈ C∞ (Ω) ∩ BV(Ω). Letting

m(t ) :=

∫
Ω
χ{u≤t} (x ) d |Du |(x ),

we have
m′(t ) ≥ Per(Et ; Ω), (L1-a.e. t ∈ R). (3.23)

and ∫ ∞

−∞

m′(t ) ≤ |Du |(Ω). (3.24)

Proof. From the construction, we immediately see that the function m is non-decreasing and the derivative

m′ exists L1
-a.e. . The fundamental theorem of calculus shows (3.24). To show (3.23), it su�ces to show that

given φ ∈ C∞c (Ω;Rn ) and ‖φ‖L∞ (Ω;Rn ) ≤ 1, it holds

m′(t ) ≥ −

∫
Ω

divφ (x )χEt dx , (whenm′(t ) exists). (3.25)

Fixing any t ∈ R and r > 0, we de�ne to χEt the approximation η ◦ u using

η(s ) :=




0, s ≤ t ,
s−t
r , t ≤ s ≤ t + r ,

1, s ≥ t + r .



Then

η′(s ) =



1/r , t < s < t + r ,

0, otherwise.

Hence

−

∫
Ω

divφ (x )η(u (x )) dx =

∫
Ω
η′(u (x ))〈∇u (x ),φ (x )〉dx

=
1

r

∫
Ω

(
χEt (x ) − χEt+r (x )

)
〈∇u (x ),φ (x )〉dx .

≤
1

r

∫
Ω

(
χEt (x ) − χEt+r (x )

)
|∇u (x ) | dx

=
m(t + r ) −m(t )

r
.

Letting r → 0, (3.25) follows. �



Chapter 4

Total variation denoising

4.1. Problem statement

Let f ∈ L2 (Ω) be a noisy image. The Rudin-Osher-Fatemi (ROF) total variation denoising problem is stated

min

u ∈BV(Ω)

1

2

‖ f − u‖2L2 (Ω)
+ αTV(u). (4.1)

Here α > 0 is a parameter that balances between restoring f perfectly (not removing noise) as α ↘ 0 and

simply averaging f as α ↗ ∞.

4.2. Level set formulation

Theorem 4.1. Let f ∈ L2 (Ω) ∩ BV(Ω), where Ω ⊂ Rn is open and bounded with Lipschitz boundary. Then û
solves (4.1) if and only if the super/sub-level sets

E∗t (û) :=



Et (û), t ≥ 0,

E−t (−û), t < 0,

and the function
дt (x ) := sgn(t ) (t − f (x ))

solve for corresponding t the minimal surface problem

min

E⊂Ω

∫
E
дt (x ) dx + αPer(E; Ω), (L1-a.e. t ∈ R), (4.2)

Lemma 4.1. Let f ∈ L2 (Ω) ∩ BV(Ω) and u ∈ BV(Ω). Then

1

2

‖ f − u‖2L2 (Ω)
+ αTV(u) =

∫ ∞

0

*
,

∫
E∗t (u )

дt (x ) dx + Per(E∗t (u); Ω)+
-
dt +

1

2

‖ f ‖2L2 (Ω)
.

Proof. By the co-area formula

TV(u) =

∫ ∞

−∞

Per(Et (u); Ω) dt =

∫ ∞

−∞

Per(E∗t (u); Ω) dt ,

so it remains to expand the �delity term in terms of level sets. We have

1

2

| f (x ) − u (x ) |2 −
1

2

| f (x ) |2 =
1

2

|u (x ) |2 − f (x )u (x ) =



∫ u (x )
0

(
t − f (x )

)
dt , u (x ) ≥ 0,

−
∫

0

u (x )

(
t − f (x )

)
dt , u (x ) < 0,

39



Therefore

1

2

‖ f −u‖2L2 (Ω)
−

1

2

‖ f ‖2L2 (Ω)
=

∫
Ω

(
1

2

| f (x ) − u (x ) |2 −
1

2

| f (x ) |2
)
dx

=

∫
Ω

(∫ u (x )

0

χE0 (u ) (x )
(
t − f (x )

)
dt −

∫
0

u (x )
χE0 (−u ) (x )

(
t − f (x )

)
dt

)
dx

=

∫
Ω

(∫ ∞

−∞

χE0 (u )∩Et (u ) (x )
(
t − f (x )

)
dt −

∫ ∞

−∞

χE0 (−u )∩E−t (−u ) (x )
(
t − f (x )

)
dt

)
dx

=

∫
Ω

∫ ∞

−∞

χE∗t (u ) (x ) sgn(t )
(
t − f (x )

)
dt dx .

Referral to Fubini’s theorem now establishes the claim. �

Lemma 4.2. Suppose h,д ∈ L1 (Ω) with д(x ) < h(x ) for Ln-almost every x ∈ Ω. If Ê and F̂ solve, respectively

min

E⊂Ω
Per(E; Ω) −

∫
E
д(x ) dx , and min

F ⊂Ω
Per(F ; Ω) −

∫
F
h(x ) dx ,

then Ln (Ê \ F̂ ) = 0.

Proof. Observe that if A,B ⊂ Ω are Borel sets, then

Per(A ∪ B; Ω) + Per(A ∩ B; Ω) ≤ Per(A; Ω) + Per(B; Ω). (4.3)

If now Ln (Ê \ F̂ ) > 0, we have

−

∫
Ê
д(x ) dx = −

∫
Ê∩F̂

д(x ) dx −

∫
Ê\F̂

д(x ) dx

> −

∫
Ê∩F̂

д(x ) dx +

∫
Ê\F̂

h(x ) dx .

Thus(
Per(Ê; Ω) −

∫
Ê
д(x ) dx

)
+

(
Per(F̂ ; Ω) −

∫
F̂
h(x ) dx

)
>

(
Per(Ê ∩ F̂ ; Ω) −

∫
Ê∩F̂

д(x ) dx

)
+

(
Per(Ê ∪ F̂ ; Ω) −

∫
Ê∪F̂

h(x ) dx

)
.

This contradicts the optimality of Ê and F̂ . �

Proof of Theorem 4.1. Applying Lemma 4.2 on д = −(t − f ) and h = −(s − f ) for t > s ≥ 0, we see that

solutions At and As to

min

A⊂Ω

∫
A

(
t − f (x )

)
dx + αPer(A; Ω) (4.4)

at corresponding levels t and s satisfy Ln (At \As ) = 0.

Likewise, applying Lemma 4.2 on д = t − f and h = s − f for t < s ≤ 0, we see that the solutionsCt andCs
to

min

C⊂Ω

∫
C
−
(
t − f (x )

)
dx + αPer(C; Ω) (4.5)

at corresponding levels t and s satisfy Ln (Ct \Cs ) = 0.

Most of the work is now done. We just have show that we get no growth of the level sets at t = 0, that is

Ln (At ∩Cs ) = 0, (s < 0 < t ). (4.6)



Indeed, because Per(A0; Ω) = Per(Ω \A0; Ω), we have∫
Ω\A0

f (x ) dx + αPer(Ω \A0; Ω) =

∫
Ω
f (x ) dx +

(∫
A0

−f (x ) dx + αPer(A0; Ω)

)
.

As the term in parentheses achieves the minimum in (4.4) for t = 0, we see that C ′
0

:= Ω \ A0 solves (4.5) for

t = 0. LikewiseA′
0

:= Ω \C0 solves (4.4) for t = 0. It follows that Ln (At \A
′
0
) = 0 for t > 0 and Ln (Ct \C

′
0
) = 0

for t < 0. Consequently (4.6) holds. Therefore, if we de�ne

Et =



At , t > 0,

Ω \Ct , t < 0,

and set

u (x ) = sup{t ∈ R \ {0} | x ∈ Et},
then Et (u) = Et for L1

-a.e. t ∈ R. Now, since by construction Et solves (4.2) for t , using Lemma 4.1, we see

that u solves (4.1).

Conversely, ifu solves (4.1), then Et = Et (u) necessarily solves (4.2), because otherwise the argument above

would construct more optimal At orCt for t in a set of positive measure. This way v violating the optimality

of u could be constructed. �

Remark 4.1. We may extend the statement of Theorem 4.1 to Ω = Rn
; the only point where the the assump-

tions of open and bounded with Lipschitz boundary were needed, was the smooth approximation in the proof

of Theorem 3.12. This can also be done in Ω = Rn
simply by molli�cation.

Example 4.1. Let f = χA for a Borel set A ⊂ Ω. Then

дt (x ) =



t − χA (x ), t ≥ 0,

χA (x ) − t , t < 0,

so that

дt (x )




≥ 0, t ≥ 1,

≤ 0, t ≤ 0,

= t χAc (x ) + (t − 1)χA (x ), 0 < t < 1.

It follows that Et (û) = ∅ if t > 1 and Et (û) = Ω if t < 0.

If Ω = R2
andA is closed and convex, it can be further shown that Et (û) ⊂ A for 0 < t < 1. In fact, applying

the results for L1
�delities in [12], it is not di�cult to show that in this case

Et (û) =
⋃{Bx | x ∈ Ω, Bx := B (x ,ρ (α ,t )) ⊂ A}

for a suitable radius ρ (α ,t ),

We may have Et (û) = ∅ for t ∈ (0,1). Also, if we had Ω ( R2
, we would not necessarily have Et (û) ⊂ A for

t ∈ (0,1). Both of these e�ects are part of the contrast loss that the L2
-TV model exhibits, but L1

-TV doesn’t.

4.3. Structure of the jump set

Theorem 4.2. Let f ∈ L∞ (Ω) ∩ BV(Ω), where Ω ⊂ Rn is open and bounded with Lipschitz boundary. If û
solves (4.1), then

H n−1 (Jû \ Jf ) = 0. (4.7)

For the proof, we follow [8]. We require the following result based on regularity results for minimal surfaces.



Theorem 4.3. Denote the symmetric di�erence of two sets A,B by

A∆B := (A \ B) ∪ (B \A).

Let λ > 0, and suppose A ∈ B (Ω) satis�es for every compact K ⊂ Ω and B ∈ B (Ω) with

Ln ((A∆B) \ K ) = 0,

the inequality
Per(A;K ) ≤ Per(B;K ) + λLn (A∆B).

Then, except for a singular set Σ of Hausdor� dimension at most n − 8, the boundary ∂A is of class C1,α for any
α ∈ (0,1). That is, for every x ∈ ∂E \ Σ, there exists ρ > 0 such that up to rotation, B (x ,ρ) ∩ ∂A is the graph of a
C1,α function, i.e., a continuously di�erentiable functionψ with ∇ψ Hölder continuous of exponent α . Moreover,

H s (Σ) = 0, (s > n − 8).

Proof. See [1]. The proof therein only directly applies to 2 ≤ n ≤ 7 (in which case Σ = ∅). The case n = 1 is

trivial with regard to regularity. For n > 8 we may extend the proof based on regularity results for minimal

surfaces in higher dimensions. These can be found in [21, 17]. A very recommendable introductory book to

the entire topic is [26]. �

Proof of Theorem 4.2. Let Et := Et (û) and M := ‖ f ‖L∞ (Ω) . By Theorem 4.1, Et solves (4.2). Thus, with дt (x ) :=

sgn(t ) (t − f (x )), we have

αPer(Et ; Ω) +

∫
Et
дt (x ) dx ≤ αPer(B; Ω) +

∫
B
дt (x ) dx , (B ∈ B (Ω)).

In particular with K ⊂ Ω compact, we have

αPer(Et ;K ) +

∫
Et∩K

дt (x ) dx ≤ αPer(B;K ) +

∫
B∩K

дt (x ) dx ,

whenever B ∈ B (Ω) with Ln ((Et ∆B) \ K ) = 0. If t ∈ [−M ,M], we have

�����

∫
Et
дt (x ) dx −

∫
B
дt (x ) dx

�����
≤ 2MLn (Et ∆B)).

It follows from Theorem 4.3 that Et is of classC1,α
for t ∈ [−M ,M]. Regarding t > M and t < −M , we clearly

have, Et = ∅ and Et = Ω, respectively. In both cases ∂Et = ∅.

We want to show that if t > s , then

H n−1 (∂Es ∩ ∂Et \ Jf ) = 0. (4.8)

This would imply (4.7). Indeed, any point x ∈ Jû satis�es x ∈ ∂Ea−ϵ ∩ ∂Eb+ϵ for a = max{u+ (x ),u− (x )},

b = min{u− (x ),u+ (x )}, and any ϵ ∈ (0,a − b). In particular, by the density of Q in R, we can pick s,t ∈ Q,

s , t , such that x ∈ ∂Es ∩ ∂Et . Thus

Jû ⊂
⋃

s,t ∈Q;s,t

∂Es ∩ ∂Et .

Since the union is over a countable set, (4.8) implies (4.7). We can also take sgn t = sgn s .

Let Σt be the singular set of Et , given by 4.3. Assuming that (4.7) does not hold, we can �nd x ∈ Ju \ Jf
with x < Σt ∩ Σs . By Theorem 3.9, the set Sf is countablyH n−1

recti�able, andH n−1 (Sf \ Jf ) = 0. It follows

that forH n−1
–a.e. y ∈ Ju \ Jf , the approximate limit f̃ (y ) exists. We may therefore assume that f̃ (x ) exists.

Choosing an appropriate representative of the L1
equivalence class of f , we may further assume that x is a

Lebesgue point of f .



By rotation and translation if necessary, we may take x = 0 and

νEt (x ) = en , (the n:th unit vector). (4.9)

Therefore, locally Et can be written as graph ofψt ∈ C
1,α (Ut ), withψt (0) = 0 and

Ut = B (0,δt ) ⊂ Rn−1

for some δt > 0. This means that within Qt := Ut × (−δt ,δt ) we have

Et ∩Qt = {(v,ρ) | −δt ≤ ρ ≤ ψt (v ),v ∈ Ut}
and

∂Et ∩Qt = {(v,ψt (v )) | v ∈ Ut} =: Ψt (Ut ).

Since Es ⊃ Et , (s < t ) and x ∈ ∂Et ∪ ∂Es , we have that the outer normals agree, νEt (x ) = νEs (x ). Therefore

we may locally parametrise ∂Es analogously to ∂Et withUs = Ut and Qs = Qt . Thenψs ≥ ψt . Henceforth we

denote Q := Qt and U := Ut .

With r = t ,s , we may write

[∇Ψr (v )]
∗w = (w ,0) + (0,〈∇ψr (v ),w〉).

Thus

〈[∇Ψr (v )]
∗w ,[∇Ψr (v )]

∗w〉 =



‖w ‖2 (1 + ‖∇ψr (v )‖
2), w ∝ ∇ψr (v ),

‖w ‖2, w ⊥ ∇ψr (v ).

It follows that the eigenvalues of ∇Ψr (v )[∇Ψr (v )]
∗

are λ1 = 1 + ‖∇ψr (v )‖
2

and λk = 1 for k = 1, . . . ,n − 2.

Thus the (n − 1)-dimensional Jacobian

Jn−1 ([∇Ψr (v )]
∗) =

√
det

(
∇Ψr (v )[∇Ψr (v )]∗

)
=

√
1 + ‖∇ψr (v )‖2.

By the area formula, Theorem 2.8, we can write

Per(Er ;Q ) = Hm−1 (∂Er ∩Q ) =

∫
U

√
1 + ‖∇ψr (v )‖2 dH

m−1 (v )

and ∫
Er∩Q

sgn(t ) (t − f (x )) dx =

∫
U

∫ ψr (v )

−δ
sgn(t ) (t − f (v,ρ)) dρ dv .

Let us now consider local variations to (4.2), adding h ∈ C1

0
(U ) toψr . Then we have the problem

min

h∈C1

0
(U )

(∫
U

√
1 + |∇(ψr + h) (v ) |2 dH

m−1 (v ) +

∫
U

∫ (ψr+h) (v )

−δ
sgn(r ) (r − f (v,ρ)) dρ dv

)
.

Since Er is optimal by Theorem 4.1, h = 0 must solve this problem. Di�erentiating to get the �rst order

optimality conditions, we therefore see that

− α div

∇ψr (v )√
1 + ‖∇ψr (v )‖2

+ sgn(r ) (r − f (v,ψr (v ))) = 0, (v ∈ U ; r = t ,s ) (4.10)

in a weak sense. Using results for higher regularity of solutions to elliptic partial di�erential equations (see,

e.g., [20]), we can show that actually ψr ∈ C2 (U ′) for any 0 ∈ U ′ b U . Thus (4.10) holds in the depicted

classical sense onU ′. As x = 0 is a Lebesgue point of f , the value f (0) = f (0,ψr (0)) has a pointwise meaning.

Using (4.9), we also see that ∇ψr (0) = 0, (r = t ,s). With v = 0, (4.10) therefore gives

− α∆ψr (0) + sgn(r ) (r − f (0,ψr (0))) = 0, (r = t ,s ). (4.11)

Subtracting (4.11) for r = t ,s we get when sgn t = sgn s = 1 that

α∆(ψt (0) −ψs (0)) = t − s > 0.

This contradictsψs > ψt (i.e., Es ⊃ Et ). The case sgn t = sgn s = −1 is analogous. �

Remark 4.2. We now know that the L2
-TV denoising model does not introduce artefacts in terms of edges.

But does it preserve edges? Generally Hm−1 (Jf \ Jû ) = 0 does not hold. But can we say, let’s say, that

limα↘0H
m−1 (Jf \ Jûα ) = 0, where ûα solves (4.1) for α? In some explicit cases yes, as in the case of convex

sets in Example 4.1.



Chapter 5

Special functions of bounded variation

We �nish the course with a quick look into special functions of bounded variation, and the Mumford–Shah

image segmentation problem.

5.1. Basics

De�nition 5.1. We call functions u ∈ BV(Ω) with Dcu = 0 special functions of bounded variation, and denote

the space by SBV(Ω).

This kind of functions are important in various free discontinuity problems, see [2]. These include in partic-

ular the Mumford–Shah image segmentation problem. Image segmentation is an important task in computer

vision, and attempts to discover di�erent objects in the scene by dividing it into segments. Before looking at

this problem in more detail, we have to establish some facts about SBV.

5.2. Compactness

Although SBV gets rid of the sometimes nasty Cantor part Dcu, it comes with its own problems. In particular,

if we have a sequence {ui}∞i=1
⊂ SBV(Ω), converging in any of the standard senses – strongly, strictly, or

weakly* – to some u ∈ BV(Ω), we do not necessarily have u ∈ SBV(Ω). This problem is related to similar

di�culties with compactness in the space L1 (Ω), and the associated Dunford–Pettis theorem; see [18].

Fortunately, we do have a following compactness result, for whose statement we introduce a few shorthand

notations.

De�nition 5.2. If φ : [0,∞) → [0,∞), we write

φ0 := lim

t↘0

φ (t )/t , and φ∞ := lim

t↗∞
φ (t )/t ,

implicitly assuming that the (possibly in�nite) limits exist.

De�nition 5.3. Let u ∈ BV(Ω). Introducing the function θu ∈ L
1 (Ju ), we write |D ju | = θuH

n−1xJu .

Theorem 5.1 (SBV compactness). Let Ω ⊂ Rn be open and bounded. Suppose φ,ψ : [0,∞) → [0,∞) are lower
semicontinuous and increasing with φ∞ = ∞ and ψ0 = ∞. Suppose {ui}∞i=1

⊂ SBV(Ω) and ui ∗⇀ u ∈ SBV(Ω)
weakly* in BV(Ω). If

sup

i=1,2,3, ...

*
,

∫
Ω
φ (‖∇ui (x )‖) dx +

∫
Jui
ψ (θu i (x )) dH

n−1 (x )+
-
< ∞,

then u ∈ SBV(Ω) and there exists a subsequence of {ui}∞i=1
, unrelabelled, such that

ui → u strongly in L1 (Ω), (5.1)

∇ui ⇀ ∇u weakly in L1 (Ω;Rn ), (5.2)

D jui ∗⇀ D ju weakly* inM (Ω;Rn ). (5.3)
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If, moreover,ψ is subadditive withψ (0) = 0, then∫
Ju
ψ (θu (x )) dH

n−1 (x ) ≤ lim inf

i→∞

∫
Jui
ψ (θu i (x )) dH

n−1 (x ). (5.4)

Roughly, the idea with φ∞ = ∞ is to prevent the absolutely continuous part from forming higher-density

Cantor or jump parts in the limit. Likewise, the idea withψ 0 = ∞ is to prevent jumps from �attening out into

lower-density Cantor or absolutely continuous parts in the limit.

5.3. The Mumford–Shah problem

The Mumford–Shah segmentation problem, originally stated in a discrete setting [27], is often stated in the

form

inf{J (K ,u) | K ⊂ Ω closed, u ∈ C1 (Ω \ K )} (5.5)

for

J (K ,u) :=

∫
Ω\K

(
‖∇u (x )‖2 + α (u (x ) − f (x ))2

)
dx + βH n−1 (K \ Ω).

Here α ,β > 0 are two regularisation parameters, and f ∈ L2 (Ω) our source image. The idea is to �nd a set

K modelling the boundaries between di�erent image segments, and then approximate f – which may have

Gaussian noise as modelled by the squared L2
term – by a C1

function u within each of the segments. To

keep the solution reasonably simple, we penalise the complexity and count of the segments by the Hausdor�

measure of their boundary K . The term ‖∇u‖2 likewise penalises the complexity of the image within the

segments – it should be smooth, and not cross any natural segment boundaries, where the gradient would

blow up and not be an L2
function, but a measure.

The above formulation of the segmentation problem is mathematically troublesome, because of the depen-

dence on bothu andK . On the surface of it, there is no simple natural space where the solution lives. A natural

idea is to replace K by the jump set Ju of an SBV function u, relaxing the requirements that K is closed and u
smooth. The SBV compactness theorem immediately shows existence of solutions to the relaxed problem

min

u ∈SBV(Ω)
α ‖u − f ‖2L2 (Ω)

+
(
‖∇u‖2L2 (Ω;Rn )

+ βH n−1 (Ju )
)
. (5.6)

The question is, are the solutions of (5.5) and (5.6) related? Fortunately, yes, if we relax the C1
requirement

toW 1,2
loc

.

Theorem 5.2. Suppose f ∈ L∞ (Ω)∩L2 (Ω). Letv ∈ SBV(Ω) solve (5.6). Then K = Sv and u = v ∈W 1,2
loc

(Ω \K )
solve (5.5).

The proof is very long, and we point the interested reader to [2]. The crucial bit in the proof is the density
lower bound

H n−1 (Su ∩ B (x ,ρ)) ≥ θρn−1, (0 < ρ < min{d (x , ∂Ω),βα−1‖ f ‖−2

L∞ (Ω)}),
for some constant θ = θ (n) > 0 and any x ∈ Su . This allows to show that Su is not too much of a point cloud,

such that taking its closure will not add too much to it.
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