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Abstract

We propose the use of the Kantorovich-Rubinstein norm from optimal
transport in imaging problems. In particular, we discuss a variational
regularisation model endowed with a Kantorovich-Rubinstein discrepancy
term and total variation regularization in the context of image denoising
and cartoon-texture decomposition. We point out connections of this ap-
proach to several other recently proposed methods such as total general-
ized variation and norms capturing oscillating patterns. We also show that
the respective optimization problem can be turned into a convex-concave
saddle point problem with simple constraints and hence, can be solved
by standard tools. Numerical examples exhibit interesting features and
favourable performance for denoising and cartoon-texture decomposition.

1 Introduction

In this paper we introduce a distance function from optimal transport to the
field of mathematical imaging. Optimal transport is the theory that answers
questions about how to transport a given initial mass distribution to a de-
sired new distribution and do so in the most efficient way (according to some
cost functions), see [63] for a recent review and further references. Distance
functions related to ideas from optimal transport have appeared in various
places in imaging problems in the last ten years. The main applications in
this context are image and shape classification [36–40, 45, 51, 59], segmenta-
tion [16,44,48,56,57], registration and warping [27,46,66], image smoothing [11],
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contrast and colour modification [22, 50], texture synthesis and texture mix-
ing [52], and surface mapping [6,10,32,33]. Being a distance function applicable
to very general densities (continuous and discrete (Dirac deltas) densities) the
Wasserstein distance had an increasing impact on robust distance measures in
imaging [11,12,26,31,48,52,54,64]. In most cases, the 2-Wasserstein distance [2]
is used.

In this work we propose the use of the so-called Kantorovich-Rubinstein norm
(KR-norm) in imaging. In combination with total variation (TV) denoising, we
investigate the KR-TV denoising problem. Consider a given noisy image u0 for
which a denoised version u is sought. In variation denoising one formulates this
problem as a minimization problem where on minimizes the sum of a discrepancy
term which measures the distance from the given image u0 to the image u, and
a penalty term that penalizes images u that are not natural in some sense [55].
We investigate the case in which the discrepancy term is the KR-norm and the
penalty term it the TV seminorm, i.e. for a given noisy image u0 on a set Ω
and two constants λ1, λ2 ≥ 0 we consider

min
u
‖u− u0‖KR,(λ1,λ2) + TV(u)

where the KR-norm is defined for a Radon measure µ (and hence, also for
L1-functions) on a set Ω ⊂ Rn by

‖µ‖KR,(λ1,λ2) = sup{
∫

Ω

f dµ : |f | ≤ λ1, Lip(f) ≤ λ2}.

The Kantorovich-Rubinstein norm [5, §8.3] is closely related to the 1-Wasserstein
distance and hence, to optimal transport problems. It will turn out that this
norm has interesting relations to other well known concepts in imaging: The
KR-norm is a generalization of the L1 norm, and hence, a KR-TV denoising
model inherits and generalizes some of the favorable properties of the L1-TV
denoising [15]. The generalization of L1-norm discrepancies to KR-norm dis-
crepancies shares some similarities with the generalization from the TV penalty
to the total generalized variation (TGV) penalty [7]. Finally, the KR-norm dis-
crepancy shares properties with Meyer’s G-norm model [41, 62] for oscillating
patterns and for cartoon-texture decomposition. Also from the computational
point of view, the KR-norm has favorable properties. It turns out that the KR-
TV denoising problem has a formulation as a saddle-point problem that can be
solved by means of several primal-dual methods. The computational cost per
iteration as well as the needed storage requirements are almost as low as for
similar algorithms for L1-TV denoising.

The paper is organized as follows: After fixing the notation we introduce and
recall transport metrics in Section 2. In Section 3 we derive two reformulations
of the KR-norm that will be used to analyze and interpret the KR-TV denoising
problem, which is the content of Section 4. In Section 5 we illustrate how the
KR-TV denoising problem can be solved numerically by primal-dual methods.
Finally, in Section 6 we present examples for KR-TV denoising and cartoon-
texture decomposition and then finish the paper with a conclusion.
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1.1 Notation

We work in a domain Ω ⊂ Rn and use |x| as the euclidean absolute value for
x ∈ Ω. We denote by M(Ω,Rn) the space of Rn-valued Radon measures, i.e.
the dual space of (C0(Ω,Rn), ‖| · |‖∞) of continuous functions that vanish “at
infinity”. If we want to emphasize that a function or a measure is vector val-
ued we write ~ν but sometime we omit the emphasis. The dual pairing between
M(Ω,Rn) and C0(Ω,Rn) (and any two other spaces in duality) will be denoted

by 〈~f, ~µ〉. Consequently, the norm on M(Ω,Rn) is ‖~µ‖M = sup|~f |≤1

∫
~f · d~µ

and is called the Radon norm. We identify u ∈ L1(Ω,Rn) with the correspond-
ing measure u ∈ M(Ω,Rn), i.e. we treat L1(Ω,Rn) embedded into M(Ω,Rn).
The n-dimensional Lebesgue measure is denoted by Ln while the d-dimensional
Hausdorff measure is Hd.

For a measure µ on Ω, another set Ω′ and F : Ω → Ω′ the push-forward
of µ by F is µ#F (A) = µ(F−1(A)). On Ω × Ω we denote by proj1/2 the
projections onto the first and second component, respectively. Having a measure
γ on Ω × Ω we denote (with slight abuse of notation) by proj1/2 γ the push
forward of γ by proj1/2, i.e. the marginals of γ. The restriction of some measure
µ onto some set A is denoted by µxA. By Cb(Ω,Rn) we denote the space
of bounded and continuous functions on Ω. For f : Ω → R we denote by
Lip(f) = supx6=y |f(x)− f(y)|/|x− y| the Lipschitz constant of f .

For two points a, b ∈ Rn we define the line interval [a, b] = {ta + (1 − t)b |
t ∈ [0, 1]} and the vector measure Ja, bK to be

Ja, bK =
b− a
|b− a|

H1x[a, b].

By diam(Ω) = sup{|x − y| : x, y ∈ Ω} we denote the diameter on Ω. For
a set C we denote by IC the indicator function, i.e. IC(u) = 0 for u ∈ C and
=∞ otherwise.

2 Transport metrics

A variety of different metrics exist on measure spaces. As the study of metrics
on measure spaces has its origins in probability theory, most metrics are defined
on the space of probability measures, i.e., non-negative measures with total mass
equal to one. A popular class of such metrics is given by the Wasserstein met-
rics: For p ≥ 1 and two probability measures µ and ν define the p-Wasserstein
distance

Wp(µ, ν) =
(

inf{
∫

Ω×Ω

|x− y|p dγ(x, y) : proj1 γ = µ, proj2 γ = ν}
)1/p

. (1)

Note that this metric also makes sense if µ and ν are not probability measures
but still non-negative and have equal mass, i.e.,

∫
Ω

dµ =
∫

Ω
dν. However, if the

mass is not equal, no γ with µ and ν as marginals would exist.
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The celebrated Kantorovich duality [28, 63] states that, in the case of non-
negative measures with equal mass, the Wasserstein metric can be equivalently
expressed as

Wp(µ, ν) =
(

sup{
∫

Ω

φ dµ+

∫
Ω

ψ dν : φ, ψ ∈ Cb(Ω), φ(x)+ψ(y) ≤ |x−y|p}
)1/p

.

A particular special case is p = 1, and here, the Kantorovich-Rubinstein dual-
ity [29,63] states that

W1(µ, ν) = sup{
∫

Ω

f d(µ− ν) : Lip(f) ≤ 1}.

A particularly interesting fact is that this metric only depends on the difference
µ− ν. In fact, by setting

‖µ‖Lip∗ = sup{
∫

Ω

f dµ : Lip(f) ≤ 1}

one obtains the so-called dual Lipschitz norm on the space of measures with
zero mean and finite first moments (cf. [5, §8.10(viii)] where it is called modified
Kantorovich-Rubinstein norm). Note that the supremum is unbounded if µ has
a nonzero mean. To prevent the norm from blowing up in this case, and hence,
to obtain a norm on the space of all signed measures with finite first moments,
one can add the constraint that the test functions f shall be bounded. This
leads to the expression

sup{
∫

Ω

f dµ : |f | ≤ 1, Lip(f) ≤ 1},

which is called Kantorovich-Rubinstein norm in [5, §8.3]. Since we would like
the bound on the values of f and the bound on its Lipschitz constant to vary
independently in the following, we introduce for λ = (λ1, λ2) the norm

‖µ‖KR,λ = sup{
∫

Ω

f dµ : |f | ≤ λ1, Lip(f) ≤ λ2}. (2)

Note that in the extreme cases λ1 = ∞ and λ2 = ∞ we recover the dual
Lipschitz and the Radon norm

‖µ‖KR,(∞,1) = ‖µ‖Lip∗

‖µ‖KR,(1,∞) = ‖µ‖M.
(3)

Note that the norm ‖µ‖KR,(λ1,λ2) with λ1, λ2 > 0 is equivalent to the bounded
Lipschitz norm [63, §6] where one takes the supremum over all functions f such
that |f |+ Lip(f) ≤ 1. In general we have the following simple estimates:

Lemma 2.1 (Estimates by the Radon norm). For any λ = (λ1, λ2) ≥ 0 it holds
that

‖µ‖KR,λ ≤ λ1‖µ‖M.
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If µ is non-negative it holds that

‖µ‖KR,λ = λ1‖µ‖M.

If Ω has finite diameter diam(Ω), then it holds for any µ with
∫

Ω
dµ = 0 that

‖µ‖KR,λ ≤ λ2
diam(Ω)

2 ‖µ‖M.

Proof. The first inequality follows directly from the definition of ‖µ‖KR,λ by
dropping the constraint |∇f | ≤ λ2 and the second claim by observing that the
supremum is attained at f ≡ λ1.

For the last claim we estimate from above by dropping the constraint ‖f‖∞ ≤
λ1. However, since Ω has bounded diameter and µ has mean value zero, the con-
straint ‖|∇f |‖∞ ≤ λ2 implies that one also has a bound ‖f‖∞ ≤ λ2 diam(Ω)/2
(indeed, λ2 diam(Ω) is a bound on the value max f − min f , however, since∫

Ω
dµ = 0, we may add a constant to f without altering the outer supremum).

We obtain

‖µ‖KR,λ1,λ2
≤ sup
‖f‖∞≤λ2 diam(Ω)/2

∫
f dµ ≤ λ2 diam(Ω)‖µ‖M/2.

Remark 2.2. Note that the KR-norm may not be bounded from below by
the Radon norm in general: For µ = δx0 + δx1 it holds that ‖µ‖M = 2 while
‖µ‖KR,λ → 0 for |x0 − x1| → 0.

3 Primal formulations of the KR-norm

We present two reformulations of the KR-norm. The first, only shown form-
ally, is similar to the Kantorovich-Rubinstein duality and shows the relation to
optimal transport.

The idea for the first reformulation is to replace the constraint Lip(f) ≤ λ2

by a pointwise constraint of the form |f(x)− f(y)| ≤ λ2|x− y|, i.e., we have

‖µ‖KR,λ = sup{
∫
f dµ : |f(x)| ≤ λ1, |f(x)− f(y)| ≤ λ2|x− y|}.

We express the pointwise constraints by f(x)− λ1 ≤ 0, −f(x)− λ1 ≤ 0, f(x)−
f(y) − λ2|x − y| ≤ 0 and f(y) − f(x) − λ2|x − y| ≤ 0, introduce Lagrange
multipliers and clean up the resulting expression and finally arrive at

‖µ‖KR,λ = inf
γ≥0

[
λ1

∫
Ω

d|µ− proj1 γ + proj2 γ|+ λ2

∫
Ω×Ω

|x− y|dγ

]
. (4)

This expression may be compared to the following variant from [53]

‖µ‖KR′ = inf
γ≥0
{
∫

Ω×Ω

|x− y|dγ : proj1 γ − proj2 γ = µ},
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which is a “strict constraint” version of (4). Because we have a metric cost
function (x, y) 7→ |x−y|, this is the same as requiring proj1 γ = µ+,proj2 γ = µ−

and we recover the Wasserstein metric with p = 1 from (1).
We get another reformulation by dualizing the problem slightly differently.

The idea is to reformulate the constraint Lip(f) ≤ λ2 with the help of the dis-
tributional derivative of f as ‖|∇f |‖∞ ≤ λ2. This is allowed since for bounded,
convex and open domains Ω, it is indeed the case that ‖|∇f |‖∞ = Lip(f)
(cf. [1, Prop. 2.13]). Through this reformulation, the KR-norm can be seen to
be equivalent to the flat norm in the theory of currents [21,43].

Lemma 3.1. Let Ω ⊂ Rn be open, convex, and bounded, and let λ = (λ1, λ2) ≥
0. Then it holds that

‖µ‖KR,λ = min
~ν∈M(Ω,Rn)

λ1‖µ− div ~ν‖M + λ2‖|~ν|‖M (5)

where div ~ν is understood to be taken in Ω or, equivalently, in any open set U
containing Ω.

Proof. Using indicator functions, we have

‖µ‖KR,λ = sup
f

∫
Ω

f dµ− I{‖·‖∞≤λ1}(f)− I{‖|·|‖∞≤λ2}(∇f).

Now let U be an open set containing Ω, define the Banach spaces X = C1
c (U)

and Y = C0(U,Rn), and the subsets

A = {f ∈ X : sup
x∈Ω

|f(x)| ≤ λ1}

B = {~g ∈ Y : sup
x∈Ω

|~g(x)| ≤ λ2}.

Further define functionals F : X → R ∪ {∞} and G : Y → R ∪ {∞} by

F (f) = −
∫

Ω

f dν + IA(f), G(~g) = IB(~g)

as well as the linear operator K = ∇ : X → Y . With this notation we have

‖µ‖KR,λ = sup
f∈X
−F (f)−G(Kf).

To use the Fenchel-Rockafellar duality [20] we use the constraint qualification
from [3], i.e., that it holds that⋃

α>0

α[dom(G)−K dom(F )] ⊃
⋃
α>0

αA = Y.

Hence, we have

sup
f∈X
−F (f)−G(Kf) = inf

ν∈Y ∗
F ∗(−K∗ν) +G∗(ν).
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We have X∗ = M(U) and Y ∗ = M(U,Rn) and the conjugate functions of F
and G are expressed with the help of the sets

C = {η ∈M(U) : |η|(U \ Ω) = 0}
D = {~ν ∈M(U,Rn) : |~ν|(U \ Ω) = 0}

as

F ∗(η) = λ1‖µ+ η‖M(Ω) + IC(η), G∗(~ν) = λ2‖|~ν|‖M(Ω) + ID(~ν).

Since by the Kirszbraun theorem every f that is Lipschitz continuous on Ω can
be extended to U (with preservation of the Lipschitz constant) it follows with
K∗ = −div : Y ∗ → X∗ that

‖µ‖KR,λ = inf
~ν∈Y ∗

F ∗(−K∗~ν) +G∗(~ν)

= inf
ν∈M(U,Rn)

λ1‖µ− div ~ν‖M(U) + λ2‖|~ν|‖M(U) + IC(div ~ν) + ID(~ν).

Since bounded sets in M(U,Rn) are relatively weakly* compact, we can replace
the infimum by a minimum and since supp~ν ⊂ Ω implies that supp div ~ν ⊂ Ω
we can replace M(U,Rn) by M(Ω,Rn) and drop the constraints C and D and
arrive at

‖µ‖KR,λ = min
ν∈M(Ω,Rn)

λ1‖µ− div ~ν‖M(Ω) + λ2‖|~ν|‖M(Ω)

as desired.

In Theorem 3.4 below we will prove that actually we can take ~ν as an L1

vector field with L1 divergence in (5). Namely ~ν ∈ W 1,1(Ω; div), where for
Ω ⊂ Rn an open domain, we define

W 1,1(Ω; div) := {~ν ∈ L1(Ω;Rn) | div ~ν ∈ L1(Ω)}.

As such, our result is closely related to the work in [17], where this L1 property is
proved for the transport density |~ν|. Our proof is however different and shorter,
based on the following simpler geometric estimate.

Lemma 3.2. Let Ω ⊂ Rn be convex, open and bounded, and µ =
∑N
i=1 αiδxi .

Then any optimal solution ν to (5) has the form ν =
∑M
j=1 βjJaj , bjK, where

aj , bj = xi for some i. Moreover, the transport rays [aj , bj ] are approximately
parallel in the following sense: there exist constants c = c(n) and κ = κ(n) such
that if [aj , bj ]∩B(x, ρ) 6= ∅ and [ak, bk]∩B(x, ρ) 6= ∅ with aj , bj , ak, bk 6∈ B(x, cρ),
then [aj , bj ] and [ak, bk] satisfy aj , bj , ak, bk ∈ B(x, 2κρ) + Rz for some unit
vector z.

Proof. The claim that ν has the form ν =
∑M
j=1 βjJaj , bjK is trivial, as the

problem in (5) with discrete µ is a simple combinatorial problem.
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Suppose [aj , bj ]∩B(x, ρ) 6= ∅ and [ak, bk]∩B(x, ρ) 6= ∅, and that aj , bj , ak, bk 6∈
B(x, cρ), for c yet to be determined. If n = 2, let āj := aj , b̄j := bj , āk := ak,
and b̄k := bk. Also set d := 0, and v := 0. Otherwise, if n > 2, let v ∈ Rn be
the vector giving the minimum distance between the lines

Lj := aj + R(bj − aj), and Lk := ak + R(bk − ak).

We may then find a plane P ⊂ Rn orthogonal to v such that Lj ⊂ P and
Lk ⊂ v + P . After rotation and translation, if necessary, we may without loss
of generality assume that v = (0, d) ∈ Rn for some d ∈ Rn−2, and

aj = (āj , 0), bj = (b̄j , 0), and ak = (āk, d), bk = (b̄k, d).

We also denote x = (x̄, x0). Since Lj and Lk lie on the planes P and v + P at
a constant distance ‖d‖ ≤ 2ρ apart, we find that āj , b̄j , āk, b̄k 6∈ B(x̄, γncρ), for
some dimensional constant γn ∈ (0, 1). In fact, we may assume by shifting all
of the points closer towards x that

āj , b̄j , āk, b̄k ∈ ∂B(x̄, γncρ),

This is possible with c > 1 as the segments [āj , b̄j ] and [āk, b̄k] pass through
B(x̄, ρ), and so we may split each segment into three parts – two outside
B(x̄, γncρ), and one inside.

Let κ > 2. Observe now that in case n = 2 and generally for n > 2,
when looking from the direction v, we have one of the two-dimensional situation
depicted in Figure 1a or b. The segments [āj , b̄j ] and [āk, b̄k], starting and ending
on ∂B(x̄, γncρ), both pass through approximately (c� 1) in the middle of this
sphere, through ∂B(x, ρ). They are either within a cylinder of width 2κρ, as in
Figure 1b, or are not, as in Figure 1a.

If ‖aj − ak‖ < κρ and c is large enough that B(x, ρ) reduces to almost to a
point in comparison to B(x, γncρ), then ‖b̄j − b̄k‖ < 2κρ. This is because both
segments [āj , b̄j ] and [āk, b̄k] also pass through the ball B(x, ρ) and so cannot
diverge much on the opposite side of the ball. Trivially a unit vector z exists,
such that both segments lie in the cylinder B(x, 2κρ)+Rz. Otherwise, for large
enough c, both |āj − āk| ≥ κρ as well as |b̄j − b̄k| > κρ. Since d ≤ 2ρ < κρ, i.e.,
some midpoints of the segments are closer than the end points, we observe that
the two segments have to cross. That is [āj , b̄j ]∩ [āk, b̄k] = q̄ for some q̄. If c and
κ are large enough that B(x, ρ) reduces to a point in comparison to everything
else, we can make q̄ ∈ B(x̄, ρ). By simple geometrical reasoning, on the triangle
āj − q̄ − b̄k, compare Figure 1c, it now follows that

|āj − b̄k| ≤
√
|āj − q̄|2 − (κ− 2)2ρ2 +

√
|b̄k − q̄|2 − (κ− 2)2ρ2.

Likewise

|āk − b̄j | ≤
√
|āk − q̄|2 − (κ− 2)2ρ2 +

√
|b̄j − q̄|2 − (κ− 2)2ρ2.
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B(x̄, ρ) B(x̄, γncρ)

āj

b̄j

āk

b̄k

2κρ

(a) Approximately parallel case

B(x̄, ρ)

B(x̄, γncρ)

āj

b̄j

āk

b̄k

2κρ

(b) Intersecting case

B(x̄, ρ)

āj

b̄j

āk

b̄k

q̄

` >
(κ
−

2)
ρ

(c) Improvement of transport ray

Figure 1: Illustration of the two-dimensional projection in the proof of Lemma
3.2.

If n = 2, or more generally d = 0, it trivially follows that

|aj − bk|+ |ak − bj | < |aj − q|+ |bk − q|+ |ak − q|+ |bj − q|
= |aj − bj |+ |ak − bk|.

Otherwise, minding that |d| ≤ 2ρ and κ > 2, we calculate

|aj − bk|+ |aj − bk| =
√
|āj − b̄k|2 + |d|2 +

√
|āk − b̄j |2 + |d|2

≤
√

(|āj − q̄|+ |b̄k − q̄|)2 − 2(κ− 2)2ρ2 + d2

+
√

(|āk − q̄|+ |b̄j − q̄|)2 − 2(κ− 2)2ρ2 + d2

< |aj − q|+ |bk − q|+ |ak − q|+ |bj − q|
= |aj − bj |+ |ak − bk|.

This provides a contradicion to the optimality of the transport rays [aj , bj ] and
[ak, bk], and shows the claim.

Remark 3.3. If n = 2, we can take κ = 2, and the argument is simplified
considerably.

Theorem 3.4. Suppose Ω ⊂ Rn is convex, open, and bounded, and µ ∈ L1(Ω).
Then

‖µ‖KR,λ1,λ2 = min
ν∈W 1,1(Ω;div)

λ1‖µ− div ν‖L1(Ω;Rn) + λ2‖ν‖L1(Ω). (6)

Moreover the minimum is reached by ν satisfying
∫

Ω
div ν dLn = 0.
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Proof. We assume first that µ ∈ L∞(Ω). By Lemma 3.1, we have (5). To
replace Ω by Ω, we just have to show that that |ν|(∂Ω) = 0 for any ν reaching
the minimum in (5). This follows if ν � Ln. Hence it suffices to show that
actually ν and div ν are also absolutely continuous with respect to Ln. This is
where we need the convexity of Ω and the absolute continuity of µ.

Clearly by (5) we have

‖µ‖KR,λ1,λ2
≤ min
ν∈W 1,1(Ω;div)

λ1‖µ− div ν‖L1(Ω;Rn) + λ2‖ν‖L1(Ω),

so it remains to show the opposite inequality. We approximate µ in terms of
strict convergence of measures by {µi}∞i=1, where µi =

∑Ni

j=1 αi,jδxi,j . We may
clearly assume that xi,j ∈ Ω, because |µ|(∂Ω) = 0 by absolutely continuity.
Moreover, given a sequence εi ↘ 0, we may assume that there exist Voronoi
cells Vi,j ⊂ B(xi,j , εi), such that αi,j =

∫
Vi,j

µ(x) dx, as well as

Vi,j ∩ Vi,k = ∅, (i 6= k), and suppµ ⊂
Ni⋃
j=1

Vi,j , (i = 1, . . . , Ni). (7)

Then (5) is a finite-dimensional discrete/combinatorial problem, and we easily
discover an optimal solution νi. Because tranporting mass outside Ω incurs a
cost on ∂Ω, we see that

νi =

Mi∑
j=1

βi,jJai,j , bi,jK,

for some βi,j > 0 and ai,j , bi,j ∈ {xi,1, . . . , xi,Ni
}. We calculate

divJa, bK = δb − δa.

Moreover
div νi(Ω) = div νi(Ω) = 0, and div νi � |µi|. (8)

As minimisers, we have

‖νi‖M(Ω;Rn) ≤
λ1

λ2
‖µi‖M(Ω) ≤

λ1

λ2
‖µ‖M(Ω).

Therefore, after possibly moving to a subsequence, unrelabelled, we may assume
that νi ∗⇀ ν for some ν ∈ M(Ω;Rn). But by (8) we may also assume that
div νi ∗⇀ λ ∈ M(Ω), where λ � |µ|. From this absolute continuity it follows
that λ(Ω) = 0. (A priori it might be that λ(Ω) 6= 0.) Necessarily λ = div ν,
so that in particular div ν � Ln. Because ∂Ω is Ln-negligible, it follows that
div ν(Ω) = 0.

We want to show that ν is an optimal solution to (5) for µ. We do this as
follows. With i fixed, within each Vi,j , (j = 1, . . . , Ni), we may construct a map
νi,j transporting the mass of µ within the cell Vi,j to the cell centre δxi,j , or the
other way around. That is

div νi,j = µχVi,j
− αi,jδxi,j
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with

‖νi,j‖ ≤ εi
∫
Vi,j

|µ(x)|dx.

It follows that
Ni∑
j=1

‖νi,j‖ ≤ εi‖µ‖.

If now ν∗ is an optimal solution to (5) for µ, defining

νi0 := ν∗ −
Ni∑
j=1

νi,j ,

we see that
‖νi0‖M(Ω) ≤ ‖ν

∗‖M(Ω) + Cεi

and
div νi0 = div ν∗ − µ+ µi.

Thus

λ1‖µi − div νi‖M(Ω)+λ2‖νi‖M(Ω;Rn)

≤ λ1‖µi − div νi0‖M(Ω) + λ2‖νi0‖M(Ω;Rn)

≤ λ1‖µ− div ν∗‖M(Ω) + λ2‖ν∗‖M(Ω;Rn) + Cεi.

By weak* lower semicontinuity

λ1‖µ− div ν‖L1(Ω)+λ2‖ν‖M(Ω;Rn)

≤ lim inf
i→∞

(
λ1‖µi − div νi‖M(Ω) + λ2‖νi‖M(Ω;Rn)

)
≤ lim inf

i→∞

(
λ1‖µ− div ν∗‖M(Ω) + λ2‖ν∗‖M(Ω;Rn) + Cεi

)
= λ1‖µ− div ν∗‖M(Ω) + λ2‖ν∗‖M(Ω;Rn).

Thus ν is an optimal solution to (5) for µ. Exploiting lower semicontinuity
of both of the terms, we moreover see that limi→∞ ‖νi‖M(Ω;Rn) = ‖ν‖M(Ω;Rn).

Thus {νi}∞i=1 converge to ν strictly in M(Ω;Rn). Likewise {µi − div νi}∞i=1

converge to µ−div ν strictly in M(Ω). But {µi}∞i=1 were already constructed to
converge strictly to µ, and we have above seen that (div νi)± ≤ (µi)±. Therefore
also {div νi}∞i=1 converge to div ν strictly in M(Ω).

It remains to show that ν ∈ W 1,1(Ω; div). We have already shown div ν �
LnxΩ, so that div ν ∈ L1(Ω). We just have to show that ν � LnxΩ to show
that ν ∈ L1(Ω;Rn). We do this by bounding the n-dimensional density of ν at
each point. Let M := ‖µ‖L∞(Ω). We now refer to Lemma 3.2, and approximate
the mass of the set of approximately parallel transport rays passing through
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B(x, ρ) by

max
‖z‖=1

∑
ai,j ,bi,j∈(B(x,κρ)+Rz)∩Ω

βi,jH
1(B(x, ρ) ∩ [ai,j , bi,j ])

≤ max
‖z‖=1

∑
ai,j ,bi,j∈(B(x,κρ)+Rz)∩Ω

βi,j2ρ

≤ max
‖z‖=1

∑
xi,j∈(B(x,κρ)+Rz)∩Ω

|αi,j |2ρ

≤ 2ρ max
‖z‖=1

∑
xi,j∈(B(x,κρ)+Rz)∩Ω

∫
Vi,j

|µ(y)|dy

≤ 2ρ max
‖z‖=1

∫
B(x,κρ+εi)+zR

|µ(y)|dy

≤ 2ρ(κρ+ εi)
n−1 diam(Ω)M.

Also the mass of the set of transport rays with start or end point in B(x, cρ)
may be approximated by∑
ai,j∈B(x,cρ))

βi,jH
1(B(x, ρ) ∩ [ai,j , bi,j ]) +

∑
bi,j∈B(x,cρ))

βi,jH
1(B(x, ρ) ∩ [ai,j , bi,j ])

≤
∑

xi,j∈B(x,cρ))

4αi,jρ

=
∑

xi,j∈B(x,cρ))

4ρ

∫
Vi,j

|µ(y)|dy

≤ 4ρ

∫
B(x,cρ+εi)

|µ(y)|dy.

It now follows that

|νi|(B(x, ρ)) ≤ 4ρ

∫
B(x,cρ+εi)

|µ(y)|dy + 2ρ(2κρ+ εi)
n−1 diam(Ω)M

Letting i→∞, we get by lower semicontinuity

|ν|(B(x, ρ)) ≤ 4ρ

∫
B(x,cρ)

|µ(y)|dy + 2nκn−1ρn diam(Ω)M

Thus

lim
ρ↘0

|ν|(B(x, ρ))

Ln(B(x, ρ))
≤ 0 + 2nκn−1 diam(Ω)M

It follows (see [35, Theorem 2.12]) that ν � LnxΩ with

‖ν‖L1(Ω;Rn) ≤ 2nκn−1 diam(Ω)MLn(Ω).

Finally, we consider the case of unbounded µ ∈ L1(Ω). We take

µM (x) := max{−M,min{µ(x),M}}, (M = 1, 2, 3, . . .).

12



Then µ±M ≤ µ±. Applying the point-mass approximation above to both µk

and µ, we can take (µiM )± ≤ (µi)±. Then by a simple argument we also have
|νiM | ≤ |νi| for each i, k = 1, 2, 3, . . .; compare [17, Proposition 4.3]. Indeed, let
µ̃iM := div νiM . Clearly

(µ̃iM )± ≤ (µiM )± ≤ (µi)±.

We can therefore find a measure τ iM ∈ M(Ω;Rn) with |τ iM | ≤ |νi| such that
div τ iM = µ̃iM . If τ iM is not optimal, then we find a contradiction to νi be-
ing optimal by replacing it with νi + νiM − τ iM . We may therefore assume
that νiM = τ iM . Consequently |νiM | ≤ |νi|. Similarly we prove that |νiM | ≤
|νiM+1|. By the strict convergence of νi to ν, we now deduce that |νM | ≤ |ν|
and |νM | ≤ |νM+1|. By an analogous argument we prove that (div νiM )± ≤
(div νi)±, (div νiM )± ≤ (div νiM+1)±, and consequently (div νM )± ≤ (div ν)±

and (div νM )± ≤ (div νM+1)±. Also |div νM |(Ω)→ |div ν|(Ω), because

‖ div ν − div νM‖M(Ω) ≤ ‖µ− µM‖M(Ω).

(This can be verified by the point-mass approximation.) It follows that div νM →
div ν strongly. In particular div νM − µM → div ν − µ strongly. By lower semi-
continuity of ‖·‖KR,λ1,λ2 we therefore deduce that lim infM→∞ |νM |(Ω) ≥ |ν|(Ω).
Since |νM | ≤ |ν|, it follows that νM → ν strongly in M(Ω;Rn). But the above
paragraphs say that νM ∈ L∞(Ω). Thus necessarily νM ∈ L1(Ω).

4 Kantorovich-Rubinstein-TV denoising

In this section we assume that Ω is a bounded, convex and open domain in Rn
and study the minimization problem

min
u
‖u− u0‖KR,λ + TV(u) (9)

for some u0 ∈ L1(Ω) and λ = (λ1, λ2) ≥ 0. We call this Kantorovich-Rubinstein-
TV denoising, or short KR-TV denoising. Using the different forms of the KR-
norm we have two different forms of the KR-TV denoising problem. The first
uses the definition (2) but we replace the constraint Lip(f) ≤ λ2 with the help
of the distributional gradient as |∇f | ≤ λ2. Then problem (9) has the form

min
u

max
|f | ≤ λ1

|∇f | ≤ λ2

∫
Ω

f(u− u0) + TV(u). (10)

We call this form, the saddle point formulation. Another formulation is obtained
by using Theorem 3.4 to obtain

min
u,~ν

λ1‖u− u0 − div ~ν‖L1 + λ2‖|~ν|‖L1 + TV(u). (11)

We call this the cascading or dual formulation.
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Note that the optimal transport formulation (4) will not be used any further
in this paper. The reason is, that this formulation does not seem to be suited
for numerical purposes as it involves a measure on the domain Ω × Ω which
leads, if discretized straightforwardly, to too large storage demands.

We denote

Hλ(u, f) =

{∫
f(u− u0) + TV(u), if |f | ≤ λ1, |∇f | ≤ λ2

−∞, otherwise.
(12)

Then, (10) reads as minu maxf Hλ1,λ2
(u, f).

4.1 Relation to L1-TV denoising

Similar to (3) one has ‖µ‖KR,(λ1,∞) = λ1‖µ‖M and for u ∈ L1(Ω) it holds that
‖u‖M = ‖u‖L1 . Hence, KR-TV is a generalization of the successful L1-TV
denoising [15]:

min
u
‖u− u0‖KR,(λ1,∞) + TV (u) = min

u
‖u− u0‖L1 + 1

λ1
TV(u). (13)

We will study the influence of the additional parameter λ2 in Section 6.1 and 6.2
numerically. Note, however, that it is possible that the minimizer of (13) may
also be a minimizer of (9) for λ2 large enough but finite: To see this, we express
L1-TV as a saddle point problem by dualizing the L1 norm to obtain

min
u

max
|f |≤λ1

∫
Ω

f(u− u0) + TV(u).

We denote by (ū, f̄) a saddle point for this functional. If the function f̄ is
already Lipschitz continuous with constant L, then (ū, f̄) is also a solution of
the saddle point problem

min
u

max
|f | ≤ λ1

Lip(f) ≤ λ2

∫
Ω

f(u− u0) + TV(u)

for any λ2 ≥ L and consequently, ū is a solution of the KR-TV problem.

4.2 Relation to TGV denoising

The cascading formulation (11) reveals an interesting conceptional relation to
the total generalized variation (TGV) model [7]. To define it, we introduce
Sn×n as the set of symmetric n × n matrices and for a function v with values
in Sn×n we set

(div v(x))i =

n∑
j=1

∂vij
∂xj

, div2 v(x) =

n∑
i,j=1

∂2vij
∂xj∂xi

.
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The total generalized variation of order two for a parameter α = (α1, α2) is

TGV2
α(u) = sup

{∫
Ω

udiv2 v dx : v ∈ C2
c (Ω, Sn×n),

|v(x)| ≤ α1, |div v(x)| ≤ α2

}
The TGV term has an equivalent reformulation as follows: denote by BD(Ω) the
space of vector fields of bounded deformation, i.e. vector fields ~w ∈ L1(Ω,Rn)
such that the symmetrized distributional gradient E ~w = 1

2 (∇~w + ∇~wT ) is a
Sn×n-valued Radon measure. Then it holds that

TGV2
α(u) = inf

~w∈M(Ω,Rn)
α1‖|E ~w|‖M + α2‖|∇u− ~w|‖M

(cf. [8, 9]), leading to the L1-TGV2 denoising problem

min
u∈L1(Ω), ~w∈M(Ω,Rn)

‖u− u0‖L1 + α1‖|E ~w|‖M + α2‖|∇u− ~w|‖M.

Note that this reformulation resembles the spirit of the reformulation of the
Kantorovich-Rubinstein norm from Lemma 3.1

‖µ‖KR,λ = min
~ν∈M(Ω,Rn)

λ1‖µ− div ~ν‖M + λ2‖|~ν|‖M.

We obtain a new (semi-)norm by “cascading”a higher order term in a new
minimization problem. In the TV case we go from TV(u) = ‖|∇u|‖M to TGV2

α

by cascading with a vector field and penalizing the symmetrized gradient of
this vector field. In the KR case, however, we go from ‖u‖L1 = ‖u‖M to
‖ · ‖KR,λ by cascading with the divergence of a vector field and penalizing with
the Radon norm of that vector field. One may say, that TGV2

α is a higher
order generalization of the total variation while the KR-norm is a lower order
generalization of the L1 norm (or the Radon norm).

4.3 Relation to G-norm cartoon-texture decomposition

In [41] Meyer introduced the G-norm as a discrepancy term in denoising prob-
lems to allow for oscillating patterns in the denoised images. The G-norm is
defined as

‖u‖G = inf{‖|~g|‖∞ : div~g = u, g ∈ L∞}.

Meyer proposed the following G-TV minimization problem

min
u
λ‖u− u0‖G + TV(u) = min

u,~g
λ‖|~g|‖∞ + TV(u) + δ{0}(div~g − (u− u0)).

This differs from problem (11) in two aspects: First, |~g| is penalized in the ∞-
norm instead of the 1-like Radon norm and second, the equality div~g = u− u0

is enforced exactly, while in (11) a mismatch is allowed. The Meyer model has
also been treated in numerous other papers, e.g. [4, 19,30,65].
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4.4 Properties of KR-TV denoising

Similar to the case of L1-TV denoising (cf. [15, Lemma 5.5]) there exist thresholds
for λ1 and λ2 such that the minimizer of (9) is u0 (if u0 is regular enough in
some sense) if λ1 and λ2 are above the thresholds:

Theorem 4.1. Let u0 ∈ BV (Ω) and assume that there exists a continuously

differentiable vector field ~φ with compact support such that

1. |~φ| ≤ 1 and

2.
∫
u0 div ~φ = TV (u0).

Then there exists thresholds λ∗1 and λ∗2 such that for λ1 > λ∗1 and λ2 > λ∗2, the
unique minimizer of (9) is u0.

Proof. For any u ∈ BV we have

‖u− u0‖KR,λ1,λ2 + TV(u) ≥
∫
udiv ~φ+

[
min
~ν
λ1‖u− u0 − div ~ν‖M + λ2‖|~ν|‖M

]
=

∫
u0 div φ+ min

~ν

[
λ1‖u− u0 − div ~ν‖M + λ2‖|~ν|‖M

+

∫
(u− u0 − div ~ν) div ~φ+

∫
div ~ν div ~φ

]
≥ TV(u0) + min

~ν

[
(λ1 − ‖ div ~φ‖∞)‖u− u0 − div ~ν‖M+

(λ2 − ‖|∇ div ~φ|‖∞)‖|~ν|‖M
]

Hence, the values λ∗1 = ‖ div ~φ‖∞ and λ∗2 = ‖|∇ div ~φ|‖∞ are valid thresholds as
claimed.

Likewise there are thresholds in the opposite direction, again similarly to
the L1-TV case.

Theorem 4.2. Let Ω ⊂ Rn be a convex open domain with Lipschitz boundary.
Then there exists a constant C = C(Ω) such that any solution ū to (9) is a
constant whenever 1/C > λ1.

Proof. Let f maximize Hλ(ū, ·). Define ũ to be the constant function that equals
the mean value of ū over Ω, i.e.

ũ ≡ −
∫

Ω

ū(x) dx.

Let f̃ maximize Hλ(ũ, ·). Since ū solves (9), we have

Hλ(ũ, f̃) ≥ Hλ(ū, f).
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In other words, using TV(ũ) = 0, writing out Hλ, and rearranging terms∫
Ω

f̃(ū− u0) dx+

∫
Ω

f̃(ũ− ū) dx ≥
∫

Ω

f(ū− u0) dx+ TV(ū).

But, by the choice of f , we have∫
Ω

f̃(ū− u0) dx ≤
∫

Ω

f(ū− u0) dx.

Therefore

TV(ū) ≤
∫

Ω

f̃(ũ− ū) dx.

An application of Poincaré’s inequality yields

TV(ū) ≤ λ1C TV(ū).

This is a contradiction unless 1 < λ1C or TV(ū) = 0, i.e., ū is a constant.

The second of the above two theorems shows that for small λ1 one recovers
a constant solution. In fact, this has to be −

∫
Ω
u0 dx. The first of the above

two theorems shows that for parameters λ1 and λ2 large enough, one recovers
the input u0 from the KR-TV denoising problem. This behavior is similar to
the L1-TV denoising problem. If one leaves the regime of exact reconstruction
one usually observes that for L1-TV denoising mass disappears and also the
phenomenon of “suddenly vanishing sets” (cf. [18]). In contrast, for the KR-TV
denoising model, we have mass conservation of the minimizer even in the range
of parameters, where exact reconstruction does not happen anymore and noise
is being removed. The precise statement is given in the next theorem:

Theorem 4.3 (Mass preservation). If λ2

λ1
≤ 2

diam(Ω) , then

min
u
‖u− u0‖KR,λ1,λ2 + TV(u)

has a minimizer ū such that
∫

Ω
ū(x) dx =

∫
Ω
u0(x) dx.

Proof. The idea is, to prove that a minimizer of the KR-TV denoising problem
with λ1 =∞ is also a minimizer of the problem with finite but large enough λ1.
Hence we start by denoting with (ū, f̄) a solution of the following saddle-point
problem:

min
u

max
|∇f |≤λ2

∫
f(u− u0) dx+ TV(u) (14)

With the notation (12), (14) reads as minu maxf H∞,λ2
(u, f).

It holds that
∫

Ω
ūdx =

∫
Ω
u0 dx, because otherwise, the max would be ∞.

In other words: with λ1 =∞ we have mass preservation.
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Now let λ2

λ1
≤ 2

diam(Ω) . We aim to show that there is constant c such that

(ū, f̄ + c) is a solution of

min
u

max
|f | ≤ λ1

|∇f | ≤ λ2

∫
f(u− u0) dx+ TV(u). (15)

Since f̄ is Lipschitz with constant λ2, we get that f̄(x)− f̄(x) ≤ λ2|x− y|, and
hence, max f̄ − min f̄ ≤ λ2 diam(Ω). Consequently, there is a constant c such
that

|f̄ + c| ≤ λ2
diam(Ω)

2
≤ λ1

in other words: f̄ + c is feasible for (15). Since
∫
ū =

∫
u0 we also have

Hλ1,λ2
(ū, f̄ + c) =

∫
f̄(ū− u0) dx+ c

∫
(ū− u0) dx︸ ︷︷ ︸

=0

+TV (u) = H∞,λ2
(ū, f̄).

Since all f that are feasible for (15) are also feasible for (14), we have for all
these f that

Hλ1,λ2
(ū, f) ≤ H∞,λ2

(ū, f) ≤ H∞,λ2
(ū, f̄) = Hλ1,λ2

(ū, f̄ + c). (16)

Also we have by (ū, f̄) being a saddle-point for all u that

Hλ1,λ2(ū, f̄ + c) = H∞,λ2(ū, f̄) ≤ H∞,λ2(u, f̄).

But since TV(u) = TV(u + d) for every constant d we also have with d =
c
∫

(u− u0) dx/
∫
f̄ dx that

Hλ1,λ2
(ū, f̄ + c) ≤ H∞,λ2

(u+ d, f̄) =

∫
f̄(u− u0) dx+ d

∫
f̄ dx+ TV(u)

=

∫
(f̄ + c)(u− u0) dx+ TV(u) = Hλ1,λ2(u, f̄ + c).

(17)

Together, (16) and (17) show that for all f and u it holds that

Hλ1,λ2
(ū, f) ≤ Hλ1,λ2(ū, f̄ + c) ≤ Hλ1,λ2

(u, f̄ + c)

and this shows that (ū, f̄ + c) is a solution of (15).

Note that the above theorem remains valid if we replace the TV penalty by
any other penalty that is invariant under addition of constants such as Sobolev
semi-norms.

We state a lemma on the subdifferential of the total variation of the positive
and negative part of a function which we use in the following theorem.
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Lemma 4.4. Let u ∈ BV(Ω). Then ∂ TV(u) ⊂ ∂ TV(u+) and ∂ TV(u) ⊂
∂ TV(u−).

Proof. It suffices to prove the inclusion ∂ TV(u) ⊂ ∂ TV(u+), the other inclusion
being completely analogous. We begin by observing that if L ∈ ∂ TV(u), as a
linear functional L∗ ∈ [BV(Ω)]∗, then

TV(u) = L(u).

This follows from applying the definition of the subdifferential

TV(v)− TV(u) ≥ L(v − u), for all v ∈ BV(Ω), (18)

to both v = 0 and v = 2u. If we now apply the definition to v = u−, and also
use the fact that −L ∈ ∂ TV(−u), we deduce

TV(u−) ≥ |L(u−)|. (19)

Using TV(u) = TV(u+) + TV(u−) to rearrange (18), we have

TV(v)− TV(u+) ≥ L(v − u+) +
(
TV(u−) + L(u−)

)
, for all v ∈ BV(Ω).

Referring to (19) we deduce L ∈ ∂ TV(u+).

Theorem 4.5 (Weak maximum principle). Let u0 ≥ 0. Then there exists a
minimizer ū of (9) that also fulfills ū ≥ 0.

Proof. Writing the necessary and sufficient optimality conditions for the saddle
point formulation (10) of (9), we have [20, Theorem 4.1 & Proposition 3.2,
Chapter III]

0 ∈ f + ∂ TV(ū), and (20)

ū− u0 ∈ NC1
(f) +NC2

(f), (21)

where the constraint sets are

C1 := {f ∈ Lip(Ω) | −λ1 ≤ f(x) ≤ λ1 for all x ∈ Ω}, and (22)

C2 := {f ∈ Lip(Ω) | ‖∇f(x)‖ ≤ λ2 for all x ∈ Ω}. (23)

Application of Lemma 4.4 shows that

0 ∈ f + ∂ TV(ū+), (24)

so that the first condition (20) is satisfied by ū+ as well. Let us show that also
(21) is satisfied by ū+. To begin with we observe that at Ln-a.e. point x with
ū(x) < 0, either C1 or C2 is active. Indeed, since ū(x)−u0(x) < 0 at such point,
in the problem

max
f∈C1∩C2

∫
Ω

f(ū− u0) dx,
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the solution f should be as negative as possible within the constraints. If it is
as negative as possible, C1 is active, and

[NC1(f)](x) = (−∞, 0].

Otherwise, C2 has to be active, with f going as fast as possible to the least
possible value it can achieve. In this case,

[NC2
(f)](x) = [0,∞) sign[−div∇f(x)].

If C1 is not active, this has to be

[NC2
(f)](x) = (−∞, 0],

for ū to satisfy (21). In either case, the right hand side of (21) is (−∞, 0].
Therefore, trivially

ū+ − u0 ∈ NC1(f) +NC2(f) = (−∞, 0]. (25)

Combining (24) and (25) shows that ū+ is a solution to (10).

Corollary 4.6 (Weak boundedness). Let u0 ∈ L∞(Ω). Then there exists a
solution ū of (9) fulfilling ‖ū‖L∞(Ω) ≤ ‖u0‖L∞(Ω).

Proof. The problem (9) is affine-invariant, i.e., for data au0+c for any constants
a, c ∈ R we have aū + c as a solution. Setting M := ‖u0‖L∞(Ω) and applying
Theorem 4.5 to data u0 +M and −u0 +M proves the claim.

Corollary 4.7 (Non negative solutions if mass is preserved). If u0 ≥ 0 and
λ2

λ1
≤ 2

diam(Ω) then any minimizer of (9) is non-negative.

Proof. The proof of Theorem 4.5 reveals that if ū is a solution, then also ū+ is a
solution. However, if ū would have a negative part (i.e.

∫
Ω
ū− dx > 0) then ū and

ū+ would have a different mean value which would contradict Theorem 4.3.

5 Numerical solution

In this section we briefly sketch how one may solve the KR-TV denoising prob-
lem (9) numerically. Basically, we rely on methods to solve convex-concave
saddle point problems, see, e.g. [14, 23,34].

For the saddle point formulation (9) with Lipschitz constraint we reformulate
as follows:

min
u

max
f,φ

∫
Ω

f(u− u0) dx+

∫
Ω

∇u · φdx− I‖·‖∞≤1(|φ|)

− I‖·‖∞≤λ1
(f)− I‖|·|‖∞≤λ2

(∇f) (26)
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By dualizing the term I‖|·|‖∞≤λ2
(∇f) we obtain another primal variable q and

end up with

min
u,q

max
f,φ

∫
Ω

f(u− u0) dx+

∫
Ω

∇u · φ dx

− I‖·‖∞≤1(|φ|)− I‖·‖∞≤λ1
(f) + λ2‖|q|‖M −

∫
Ω

q · ∇f.
(27)

This is of the form

min
u,q

max
f,φ

G(u, q) + 〈K(u, q), (f, φ)〉 − F (f, φ)

with

G(u, q) = λ2‖|q|‖M

F (f, φ) = I‖|·|‖∞≤1(φ) + I‖·‖∞≤λ1
(f) +

∫
Ω

f u0 dx

K

[
u
q

]
=

[
id div
∇ 0

] [
u
q

]
=

[
u+ div q
∇u

]
Remark 5.1. We may also start from the cascading formulation (11) which is
already almost in saddle-point form:

min
u,ν

λ1‖u− u0 − div ν‖M + λ2‖|ν|‖M + TV(u)

= min
u,ν

max
φ

λ1‖u− u0 − div ν‖M + λ2‖|ν|‖M +

∫
Ω

∇u · φdx− I‖·‖∞≤1(|φ|)

= min
u,ν

max
f,φ

∫
Ω

(u− u0 − div ν) f dx+ λ2‖|ν|‖M +

∫
Ω

∇u · φ dx

− I‖|·|‖∞≤1(|φ|)− I‖·‖∞≤λ1
(f).

However, using −
∫

Ω
div ν f dx =

∫
Ω
ν · ∇f dx we arrive back at precisely the

same formulation as (27) (with ν instead of q).

Note that both F and G admit simple proximity operators (both implement-
able in complexity proportional to the number of variables in F or G, respect-
ively). Moreover, the operator K and its adjoint involve only one application
of the gradient and the divergence (and some pointwise operations) and hence,
can also be implemented in linear complexity. Hence, the application of general
first order primal-dual methods leads to methods with very low complexity of
the iterations and usually fast initial progress of the iterations. Moreover, note
that the norm of K can be estimated with the help of the norm of the (discret-
ized) gradient operator as ‖K‖ ≤

√
‖∇‖2 + 2. In our experiments we used the

inertial forward-backward primal-dual method from [34] with a constant inertial
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parameter α. The iteration reads as

ūk = uk + α(uk − uk−1)

ν̄k = νk + α(νk − νk−1)

φ̄k = φk + α(φk − φk−1)

f̄k = fk + α(fk − fk−1)

uk+1 = ūk − τ(−div φ̄k + f̄k)

νk+1 = proxτλ2‖|·|‖M(ν̄k − τ∇f̄k)

φk+1 = proj‖|·|‖∞≤1(φ̄k + σ∇(2uk+1 − ūk))

fk+1 = proj‖·‖∞≤λ1
(f̄k + σ(2uk+1 − ūk − div(2νk+1 − ν̄k)− u0))

with σ and τ such that στ ≤ ‖K‖−2 and some α ∈ [0, 1/3[ (cf. [34, Remark 3]).
For our one-dimensional examples in Section 6.1 the total number of variables

is small enough so that general purpose solvers for convex optimization can be
applied. Here we used CVX [24,25] with the interior point solver from MOSEK.1

6 Experiments

In this section we present examples of minimizers of the KR-TV problem. In
each subsection we do not have the aim to show that KR-TV outperforms
any existing method but to point out additional features of this new approach.
Hence, we do in general not compare the KR-TV functional against the most
successful method for the respective task, but to the closest relative among the
successful methods, i.e. to the L1-TV method.

6.1 One-dimensional examples

Figure 2 shows the influence of the parameters λ1 and λ2 in three simple but
instructive examples: a plateau, a ramp and a hat.

For the L1-TV case the plateau either stays exact (for λ1 large enough) or
totally disappears (for λ1 small enough). If the plateau would have been wide
enough, then it would not disappear, but the minimizer would be constant 1
since the minimizer always approaches the constant median value for λ1 → 0.
In the KR-TV case, however, the plateau gets wider and flatter while the total
mass is preserved. In the limit λ2 → 0 the minimizer converges to a constant but
still has the same mass than u0 since for λ2 → 0 one approaches the constant
mean value.

For the ramp, L1-TV shows the known behavior that the ramp is getting
flatter and flatter for decreasing λ1. In the limit λ1 → 0 one obtains the constant
median. For KR-TV, somewhat unexpectedly, the ramp not only gets flatter
(it approaches the constant mean value, which equals the median here) but also
forms new jumps. For some parameter value, the minimizer is even a pure jump.

1http://mosek.com
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The observation for the hat is somehow similar to the ramp: L1-TV just
cuts off the hat-tip while KR-TV creates additional jumps.

Figure 2: One-dimensional illustrations for KR-TV denoising with varying para-
meters. Left: Original functions u0. Middle: Corresponding L1-TV minimizers
with λ1 decreasing (lighter gray corresponds to smaller λ1); λ2 is so large, that
the respective constraint is inactive throughout. Right: Corresponding KR-TV
minimizers with decreasing λ2 (lighter gray corresponds to smaller λ2); λ1 is so
large, that the respective constraint is inactive throughout.

6.2 Two dimensional denoising with KR-TV

We illustrate the denoising capabilities of KR-TV in comparison with L1-TV
in Figures 3 and 4. Figure 3 shows effects similar to those shown in Figure 2
in one dimension. While both L1-TV and KR-TV denoise the image well, L1-
TV tends to remove small structures completely while KR-TV mashes small
structures together before they are merged with the background.

In Figure 4 we took a piecewise affine image, contaminated by noise and
denoised it by L1-TV, KR-TV and L1-TGV. The parameters have been tuned
by hand to give a minimal L1-error to the ground truth, i.e. to the noise-free
u†. Even though this choice seems to be perfectly suited for L1-TV it turns
out that KR-TV achieves a smaller error. One the other hand, the superiority
of L1-TGV shows that the choice of the regularizer has a far larger impact in
this experiment. Also note that staircasing is slightly reduced by KR-TV in
comparison to L1-TV but also edges are a little more blurred for KR-TV. Since
L1-TGV is perfectly suited to this image (consisting of affine parts and jumps)
it is no surprise that this produces by far the best results on this image.
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L1-TV KR-TV

λ1 = 0.6 λ2 = 0.004

λ1 = 0.3 λ2 = 0.002

Figure 3: Denoising with KR-TV and L1-TV. In the right images λ1 is so large
that the respective constraint is inactive.

6.3 Cartoon-Texture decomposition

We compare the KR-TV model for cartoon texture decomposition with L1-TV
and also with Meyer’s G-TV (cf. Section 4.3). In Figure 5 we show decompos-
itions of Barbara into its cartoon and texture part. The parameters have been
chosen as follows: We started with the value λ1 for the L1-TV decomposition
(i.e. λ2 =∞) and chose it such that most texture is in the texture component
but also some structure is already visible. Then, for the G-TV the parameter
was adjusted such that the cartoon part has the same total variation as the car-
toon part from the L1-TV decomposition. For the KR-TV decomposition, the
value λ1 was set to ∞ while λ2 was again chosen such that the total variation
of the cartoon part equals the total variation of the other cartoon parts. The
rationale behind this choice is that the total variation is used as a prior for the
cartoon part in all three models. We remark that choosing the parameters such
that the L1-discrepancy of the texture part is equal for all three decompositions
leads to slightly different, but visually comparable results.

Note that, for these parameters the L1-TV decomposition already has some
structure in the texture part (parts of the face and of the bookshelf) and the
G-TV decomposition has structure and texture severely mixed, while for KR-
TV the texture component still mainly contains texture. Also note that KR-TV
manages to keep the smooth structure of the clothes in the cartoon part (see
e.g. the scarf and the trousers) while L1-TV gives a more “piecewise constant”
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u† noisy, u0

L1-TV KR-TV L1-TGV
‖u− u†‖L1 = 284.0 ‖u− u†‖L1 = 277.7 ‖u− u†‖L1 = 144.2

Figure 4: Denoising with KR-TV and L1-TV. Left: L1-TV denoising (i.e. only
λ1 is used), middle: KR-TV denoised by using the value λ2 only (λ1 so large,
that the bound is inactive), right: L1-TGV denoised. The respective values λ1,
λ2 and α1, α2 have been optimized to result is the smallest L1 error to the
original noise-free image.

cartoon image.

7 Conclusion

In this paper we propose a new discrepancy term in a total variation regularisa-
tion approach for images that is motivated by optimal transport. The proposed
discrepancy term is the Kantorovich-Rubinstein transport norm. We show rela-
tions of this norm to other standard discrepancy terms in the imaging literature
and derive qualitative properties of minimizers of a total variation regularization
model with a KR discrepancy. Indeed, we find that the KR discrepancy can be
seen as a generalization of the dual Lipschitz norm and the L1 norm, both of
which can be derived from the Kantorovich-Rubinstein norm by letting one of
the parameters go to infinity, respectively. Moreover, we show that this special-
ization is in fact crucial for obtaining a model in which the solution conserves
mass and that the model has a solution which preserves positivity.

The paper is furnished with a discussion of experiments where we use the
KR-TV regularisation approach in the context of image denoising and image
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Original L1-TV G-TV KR-TV

Figure 5: Cartoon-texture decomposition with L1-TV, G-TV, and KR-TV. Top
row: original and cartoon parts, bottom row: texture parts.

decomposition. Our numerical discussion suggests that the use of the KR norm
can reduce the TV staircasing effect and performs better when decomposing an
image into a cartoon-like and oscillatory component. Due to the mass conversa-
tion property we also expect that this approach is interesting in medical imaging,
where images are usually indeed density functions of physical quantities, as well
as in the context of density estimation where total variation approaches have
been used before in the context of earthquakes and fires, see [42] for instance.
The applicability of the KR discrepancy in other imaging problems such as op-
tical flow, image sequence interpolation or stereo vision has to be investigated
in future research.

While some analytical properties of the KR-TV method have been estab-
lished (e.g. a weak maximum principle and a mass preservation property), a
deeper understanding of the geometrical properties, as has been carried out for
L1-TV and L2-TV, as well as to some extent for TGV (see, e.g., [8, 13, 18, 47,
49,58,60,61]), would indeed be interesting. However, due to the non-locality of
the KR discrepancy, the analysis may be more complicated.
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[28] Leonid V. Kantorovič. On the translocation of masses. C. R. (Doklady)
Acad. Sci. URSS (N.S.), 37:199–201, 1942.
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