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Abstract We study preconditioned proximal point methods for a class of saddle point
problems, where the preconditioner decouples the overall proximal point method into an
alternating primal–dual method. This is akin to the Chambolle–Pock method or the ADMM.
In our work, we replace the squared distance in the dual step by a barrier function on a
symmetric cone, while using a standard (Euclidean) proximal step for the primal variable.
We show that under non-degeneracy and simple linear constraints, such a hybrid primal–
dual algorithm can achieve linear convergence on originally strongly convex problems
involving the second-order cone in their saddle point form. On general symmetric cones,
we are only able to show an O(1/N ) rate. These results are based on estimates of strong
convexity of the barrier function, extended with a penalty to the boundary of the symmetric
cone. The main contributions of the paper are these theoretical results.

1 introduction

Interior point methods exhibit fast convergence on several non-smooth non-strongly-convex
problems, including linear problems with symmetric cone constraints [see, e.g., 15, 28, 30, 36].
The methods have had less success on large-scale problems with more complex structure. In
particular, problems in image processing, inverse problems, and data science, can often be
written in the form

(P) min
x

G(x) + F (Kx)

for convex, proper, lower semicontinuousG and F , and a bounded linear operator K . Often, with
G and F involving norms and linear operators, (P) can be converted into linear optimisation on
symmetric cones. This is even automated by the disciplined convex programming approach
of CVX [17, 18]. Nonetheless, the need to solve a very large scale and di�cult Newton system
on each step of the interior point method makes this approach seldom practical for real-world
problems. Therefore, �rst-order splitting methods such as forward–backward splitting, ADMM
(alternating directions method of multipliers) and their variants [2, 7, 16, 27] dominate these
application areas. In our present work, we are curious whether these two approaches—interior
point and splitting methods—can be combined into an e�ective algorithm?
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The saddle point form of (P) is

(S) min
x

max
y

G(x) + 〈Kx ,y〉 − F ∗(y).

A popular algorithm for solving this problem is the primal–dual method of Chambolle and Pock
[7]. As discovered in [21], the method can most concisely be written as a preconditioned proximal
point method, solving on each iteration for ui+1 = (x i+1,y i+1) the variational inclusion

(PP0) 0 ∈ H (ui+1) +Mi+1(u
i+1 − ui ),

where the monotone operator

H (u) :=
(
∂G(x) + K∗y
∂F ∗(y) − Kx

)
encodes the optimality condition 0 ∈ H (û) for (S). For the standard proximal point method [33],
one would take M i+1 = I the identity. With this choice, the system (PP0) is generally di�cult to
solve. In the Chambolle–Pock method the preconditioning or step length operator is given for
suitably chosen step length parameters τi ,σi+1,θi > 0 by

Mi+1 :=
(
τ−1i I −K∗

−θiK σ−1i+1I

)
.

This choice of Mi+1 decouples the primal x and dual y updates, making the solution of (PP0)
feasible in a wide range of problems. IfG is strongly convex, the step length parameters τi ,σi+1,θi
can be chosen to yield O(1/N 2) convergence rates of an ergodic duality gap and the squared
distance ‖x i − x̂ ‖2. If both G and F ∗ are strongly convex, then the method converges linearly.
Without any strong convexity, only the ergodic duality gap converges at the rate O(1/N ), and
the iterates weakly [40].

In our earlier work [39–41], we have modi�ed Mi+1 as well as the condition (PP0) to still allow
a level of mixed-rate acceleration whenG is strongly convex only on sub-spaces or sub-blocks of
the variable x = (x1, . . . ,xm), and derived a corresponding doubly-stochastic block-coordinate
descent method. As an extension of that work, our speci�c question now is:

(1.1) If F ∗ encodes the constraint Ay = b and y ∈ K

for a symmetric coneK , can we replaceMi+1 in (PP0) by a non-linear interior point preconditioner
that yields tractable sub-problems and a fast, convergent algorithm?

Our approach is motivated, �rstly, by the fact that (1.1) frequently occurs in applications,
in particular with K the second-order cone of elements y = (y0, sy) ∈ R1+n with y0 ≥ ‖sy ‖
and Ay = y0. This can be used to model F ∗ that could otherwise be written as the constraint
F ∗(y) = δB(0,b0))(sy). Secondly, why we speci�cally want to try the interior point approach is
that the standard and generic quadratic proximal term or preconditioner is not in any speci�c
way adapted to the structure of the ball constraint or the coneK : it is a penalty, but not a barrier
approach. The logarithmic barrier, on the other hand, is exactly tuned to the structure of the
problem. This suggests that it might be able to yield better performance.

Generalised proximal point methods motivated by interior point methods have been con-
sidered before in [9, 23, 26, 37, 43]. For iterates, which are generally shown to convergence,
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no convergence rates appear to be known. For function values, rates have been derived in
[26, 37]. This is in contrast to the superlinear convergence of a gap functional in conven-
tional interior point methods for linear programming on symmetric cones [15, 28, 30, 36].
The approach in the aforementioned works combining proximal point and interior point
methods has essentially been to replace the squared distance in the proximal point method
x i+1 := argminx ∈K G(x) + 1

2τ ‖x − x
i ‖2 for minx ∈K G(x) by a suitable Bregman distance sup-

ported on intK × intK , typically D(x ,x ′) := tr(x ◦ lnx − x ◦ lnx ′ + x ′ − x). In Section 4 of the
present work, we will instead replace the squared distance in the proximal point step for the
dual variable y by a more conventional barrier-based preconditioner −∇ log det(y). With this,
we are able to obtain convergence rates for the iterates of the method: in general symmetric
cones this is onlyO(1/N ) for the squared distance ‖xN − x̂ ‖2 between the primal iterate and the
primal solution. I the second-order cone under non-degeneracy andA = 〈a, · 〉 for a ∈ intK , this
convergence becomes linear. We demonstrate these theoretical results by numerical experiments
in Section 5.

The overall idea, how the theory works, is that the barrier-based preconditioner is strongly
monotone on bounded subsets of intK , and “compatible” with ∂F ∗ on ∂K in such a way
that these strong monotonicity estimates can, with some penalty term, be extended up to the
boundary. This introduces some of the strong monotonicity that ∂F ∗ itself is missing.

Since the performance of the overall algorithm we derive does not improve upon existing
methods, our main contributions are these theoretical results on symmetrical cones. An inter-
esting question for future research is, whether the results for general cones can be improved, or
whether the second-order cone is special? Nevertheless, our present theoretical results make
progress towards closing the gap between direct methods for (P), and primal–dual methods for
(S): among others, forward–backward splitting for (P) is known to obtain linear convergence
with strong convexity assumptions on G alone [8], but primal–dual methods generally still
require the strong convexity of F ∗ as well. For ADMM additional local estimates exist under
quadratic [3, 20] or polyhedrality assumptions [22]. On the other hand, it has been recently
established that forward–backward splitting converges at least locally linearly even under less
restrictive assumptions than the strong convexity of G [4, 25].

Our convergence results depend on the convergence theory for non-linearly preconditioned
proximal point methods from [40]. We quote the relevant aspects in Section 3. To use this
theory, we need to compute estimates on the strong convexity of the barrier, with a penalty up
to the boundary. This is the content of the latter half of Section 2, after introduction of the basic
Jordan-algebraic machinery for interior point methods on symmetric cones.

2 notation, concepts, and results on symmetric cones

We write L(X ;Y ) for space of bounded linear operators between Hilbert spaces X and Y . For
any A ∈ L(X ;Y ) we write N(A) for the null-space, and R(A) for the range. Also for possibly
non-self-adjoint T ∈ L(X ;X ), we introduce the inner product and norm-like notations

(2.1) 〈x , z〉T := 〈Tx , z〉, and ‖x ‖T :=
√
〈x ,x〉T , (x , z ∈ X ).

With R := [−∞,∞], we write C(X ) for the space of convex, proper, lower semicontinuous
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functions from X to R. With K ∈ L(X ;Y ), G ∈ C(X ) and F ∗ ∈ C(Y ) on Hilbert spaces X and Y ,
we then wish to solve the minimax problem (S) assuming the existence of a solution û = (x̂ , ŷ)
satisfying the optimality conditions 0 ∈ H (ŷ), in other words

(OC) − K∗ŷ ∈ ∂G(x̂), and Kx̂ ∈ ∂F ∗(ŷ).

For a function G, as above, ∂G stands the convex subdi�erential [34]. For a set C , ∂C is the
boundary. We denote by NC (x) = ∂δC (x) the normal cone to any convex set C at x ∈ C , where
δC is the indicator function of the set C in the sense of convex analysis.

In Section 4, we concentrate on F ∗ of the general form (2.2) in the next example.

Example 2.1 (From ball constraints to second-order cones). Very often in (P), we have F (z) =∑n
i=1 αi ‖zi ‖2, where the norm is the Euclidean norm on Rm and z = (z1, . . . , zn) ∈ Rmn .

Then F ∗(sy) = δB(0,αi )(syi ) for sy = (sy1, . . . , syn) ∈ Rmn . We may lift each syi into R1+m as
yi = (yi,0, syi ), and replace F ∗ by

(2.2) F̂ ∗(y) :=
n∑
i=1

δCi (yi ), where Ci := {yi ∈ K | Ay = b},

where, the linear constraint is de�ned by Ay := (y1,0, . . . ,yn,0) and b := (α1, . . . ,αn). The
cone constraint is given by K = Kn

soc for the second-order cone

Ksoc := {y = (y0, sy) ∈ R1+m | y0 ≥ ‖sy ‖}.

In the following, we look at the Jordan-algebraic approach to analysis on the second-order
cone and other symmetric cones.

2.1 euclidean jordan algebras

We now introduce the minimum amount of the theory of Jordan algebras necessary for our
work. For further details, we refer to [13, 24].

Technically, a real Jordan algebra J is a real (additive) vector space together with a bilinear
and commutative multiplication operator ◦ : J × J → J that satis�es the associativity
condition x ◦(x2 ◦y) = x2 ◦(x ◦y). Here we de�ne x2 := x ◦x . The Jordan algebra J is Euclidean
(or formally real) if x2 + y2 = 0 implies x = y = 0. We always assume that our Jordan algebras
are Euclidean.

We will not directly need the last two technical de�nitions, but do rely on the very important
consequence that J has a multiplicative unit element e: x ◦ e = x for all x ∈ J . An element x
of J is then called invertible, if there exists an element x−1, such that x ◦ x−1 = x−1 ◦ x = e .

Example 2.2 (The Jordan algebra of symmetric matrices). To understand these and the
following properties, it is helpful to think of the set of symmetricm ×m matrices. They form
a Jordan algebra endowed with the product A ◦ B := 1

2 (AB + BA). The inverse is the usual
matrix inverse, as is the multiplicative identity. So are the properties discussed next.
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An element c in a Jordan algebra J is an idempotent if c ◦ c = c . It is primitive, if it is not the
sum of other idempotents. A Jordan frame is a set of primitive idempotents {ei }ri=1 such that
ei ◦ej = 0 for i , j , and

∑r
j=1 ej = e . The number r is the rank of J . For each x ∈ J , there indeed

exist unique real numbers {λi }ri=1, and a Jordan frame {ei }ri=1, satisfying x =
∑r

j=1 λiei . The
numbers λi (x) = λi are called the eigenvalues of x . If all the eigenvalues are positive, we write
x > 0 and call x positive de�nite. Likewise we write x ≥ 0 if the eigenvalues are non-negative,
and call x positive semi-de�nite. With the eigenvalues, we can de�ne

(i) Powers xα :=
∑r

j=1 λ
α
i ei when meaningful,

(ii) The determinant detx :=
∏

j λj , and
(iii) The trace trx :=

∑r
j=1 λj .

(iv) The inner product 〈x ,y〉 := tr(x ◦ y), and the
(v) Frobenius norm ‖x ‖ := ‖x ‖F :=

√∑r
j=1 λ

2
j =

√
〈x ,x〉.

The inner product is positive-de�nite and associative, satisfying 〈x ◦ y , z〉 = 〈y ,x ◦ z〉. We also
frequently write

λmax(x) := max
i=1, ...,r

λi (x) and λmin(x) := min
i=1, ...,r

λi (x).

For conciseness, we de�ne for x ∈ J the operator L(x) by L(x)y := x ◦ y . The quadratic
presentation of x—this is one of the most crucial concepts for us, as we will soon see when
covering symmetric cones—is then de�ned as Qx := 2L(x)2 − L(x2). The invertibility of x is
equivalent to the invertibility of Qx . Other important properties include [13, 36]

(vi) Qα
x = Qxα for α ∈ R,

(vii) QQx y = QxQyQx (the fundamental formula of quadratic presentations),
(viii) Qxx

−1 = x ,
(ix) Qxe = x2, and
(x) det(Qxy) = det(x2)y = det(x)2y .

Moreover,Qx is self-adjoint with respect to the inner product de�ned above, and the eigenvalues
are products λi (x)λj (x) [13, 24], so that

(2.3) λ2min(x)‖y ‖
2 ≤ 〈Qxy,y〉 ≤ λmax(x)

2‖y ‖2 for all y when x ≥ 0.

Example 2.3 (The Euclidean Jordan algebra of quadratic forms). Let E1+m denote the space
of vectors x = (x0, sx) ∈ R1+m with x0 scalar. Setting

x ◦ y = (xTy ,x0sy + y0sx),

we make (E1+m , ◦) into a Euclidean Jordan algebra. The identity element is e = (1, 0), rank
r = 2, and the inner product is

(2.4) 〈x ,y〉 = 2xTy .

De�ning the diagonal mirroring operator R :=
( 1 0
0 −I

)
, we �nd that detx = xTRx = x20− ‖sx ‖

2,
and x−1 = Rx/detx when detx , 0.
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2.2 symmetric cones

The cone of squares of a Euclidean Jordan algebra J is de�ned as

K := {x2 | x ∈ J}.

The cones generated this way are precisely the so-called symmetric cones [13] K∗ = −K , or the
self-scaled cones of [30]. Their important properties include [13, 24]:

(i) intK = {x ∈ J | x is positive-de�nite} = {x ∈ J | L(x) pos. def.}.
(ii) 〈x ,y〉 ≥ 0 for all y ∈ K i� x ∈ K , and

(iii) 〈x ,y〉 > 0 for all y ∈ K \ {0} i� x ∈ intK .
(iv) Qx for x ∈ intK maps K onto itself.
(v) For x ,y ∈ intK , there exists unique a ∈ intK , such that x = Qay .

(vi) For any x ,y ∈ K , 〈x ,y〉 = 0 i� x ◦ y = 0 [14].
For application to interior point methods, and in particular for our work, the following properties
are particularly important:
(vii) The barrier function B(x) := − log(detx) tends to in�nity as x goes to bdK .

(viii) ∇B(x) = −x−1 and ∇2B(x) = Q−1x (di�erentiated wrt. the norm in J ).
(ix) The normal cone NK(x) = −{y ∈ K | 〈y,x〉 = 0} for x ∈ K [38, Lemma 3.1].

Example 2.4 (The cone of symmetric positive definite matrices). In the Jordan algebra of
symmetric matrices from Example 2.2, the cone of squares is the set of positive semi-de�nite
symmetric matrices.

Example 2.5 (The second order cone). The cone of squares of the Jordan algebra E1+m of
quadratic forms is the second order cone that we have already seen in Example 2.1,

K = Ksoc := {x ∈ E1+m | x0 ≥ ‖sx ‖}.

If 0 , x ∈ bdK , we have x2 = 2x0x . Rescaled, we get a primitive idempotent c = x/
√
2x0.

The only primitive idempotent orthogonal to c is c ′ = Rx/
√
2x0. Therefore, the normal cone

NK(x) = {−αRx | α ≥ 0}.
One has to be careful with the fact that the expressions for the barrier gradient and Hessian

in (viii) are based on the inner product (2.4) in E1+m . This is scaled by the factor r = 2 with
respect to the standard inner product on R1+m .

2.3 linear optimisation on symmetric cones

Let A ∈ L(J ;Rk ) for an arbitrary Euclidean Jordan algebra J with the corresponding cone of
squares K . We will frequently make use of solutions (yµ ,dµ , zµ ) ∈ intK × intK × Rk to the
system

(SCLPµ ) Ay = b, A∗z + c = d, y ◦ d = µe, y,d ∈ intK .
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These are meant to approximate solutions (ŷ , d̂, ẑ) ∈ K × K ×Rk to the system

(SCLP) Ay = b, A∗z + c = d, y ◦ d = 0, y ,d ∈ K .

The system (SCLP) arises from primal–dual optimality conditions for linear optimisation on
symmetric cones, speci�cally the problem

min
y ∈K, Ay=b

〈c,y〉.

The system (SCLPµ ) arises from the introduction of the barrier in the problem

(2.5) min
y ∈K, Ay=b

〈c,y〉 − µ log det(y).

The set of solutions to (SCLPµ ) for varying µ > 0 is called the central path. From [15, Theorem
2.2] we know that if there exists a primal–dual interior feasible point, i.e., some (y∗,d∗, z∗) ∈
intK × intK ×Rk such that Ay∗ = b and A∗z∗ + c = d∗, then there exists a solution (yµ ,dµ , zµ )
to (SCLPµ ) for every µ > 0. In particular, if there exists a solution for some µ > 0, there exist a
solution for all µ > 0. In fact, we have the following:

Lemma 2.1. Suppose the primal feasible set C := {y ∈ K | Ay = b} is bounded, and that there
exists a primal interior feasible point y∗ ∈ intK ∩C . Then there exists a solution (yµ ,dµ , zµ ) ∈
intK × intK ×Rk to (SCLPµ ) for all µ > 0.

Proof. The article [15] considers a more general class of linear monotone complementarity
problems (LMCPs) than our our SCLPs (symmetric cone linear programs). For the special case
of SCLPs, our assumption on the existence of y∗ implies that the feasible set in (2.5) non-empty
and closed. Since the objective function is level-bounded, proper, and lower semicontinuous, the
problem (2.5) has a solution y . This y has to satisfy (SCLPµ ) for some d and z. Now [15, Theorem
2.2] applies. �

Practical methods [30, 36] for solving (SCLP) by closely following the central path are based
on scaling the iterates (y i ,di ) by Qp for a suitable p ∈ intK . We will need this scaling for
di�erent purposes, and therefore recall the following basic properties.

Lemma 2.2. Let p ∈ intK , and y,d ∈ K . De�ne ỹ := Q 1/2
p y , and d˜ := Q−1/2p d . Then

(i) y ◦ d = 0 if and only if ỹ ◦ d˜ = 0.
(ii) If y,d ∈ intK and µ > 0, then y ◦ d = µe if and only if ỹ ◦ d˜ = µe .(iii) (SCLP) (resp. (SCLPµ )) is satis�ed for y and d if and only if it is satis�ed for ỹ and d˜with A

and c replaced by Ã := AQ−1/2p and c˜ := Q−1/2p c .

Proof. The claim (i) is a consequence of the properties Section 2.2(iv) and (vi). The claim (iii)
is the content of [36, Lemma 28]. Finally, to establish (iii), the remaining linear equations in
(SCLP) and (SCLPµ ) are obvious. �
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As a last preparatory step, before starting to derive new results, we say that solutions y ,d ∈ K
to (SCLP) are strictly complementary if y ◦ d = 0 and y + d ∈ intK . We say that y is primal
non-degenerate if

(2.6) v = A∗z and y ◦v = 0 =⇒ v = 0.

Likewise d is dual non-degenerate if

(2.7) Av = 0 and d ◦v = 0 =⇒ v = 0.

2.4 convergence rate of the central path

We now study convergence rates for the central path, which we will need to develop approximate
strong monotonicity estimates. Some existing work can be found in [42], but overall the results
in the literature are limited; more work can be found on the properties and mere existence of
limits of the central path [5, 10, 19, 29, 31]. After all, in typical interior point methods, one is not
interested in solving (SCLPµ ) exactly; rather, one is interested in staying close to the central
path while decreasing µ fast. So here we provide the result necessary for our work.

Lemma 2.3. Let ŷ , d̂ ∈ K and ẑ ∈ Rk solve (SCLP). Also let yµ ,dµ ∈ intK and zµ ∈ Rk

solve (SCLPµ ) for some µ > 0. If ŷ and d̂ are strictly complementary, and both primal and dual
non-degenerate, then

(2.8) ‖yµ − ŷ ‖ ≤
2µ
√
r

λmin(Mŷ,d̂ )
,

where λmin(My,d ) > 0 is the minimal eigenvalue of the the linear operator My,d ∈ L(J ;J)
de�ned at y ,d ∈ J for η ∈ N(A) and ξ ∈ R(A∗) by

My,d (ξ + η) := L(y)ξ + L(d)η.

Proof. Observe that (yµ ,dµ , zµ ) solves (SCLPµ ) if and only if yµ = ŷ + ∆y and dµ = d̂ + ∆d with

∆y ∈ N(A), ∆d ∈ R(A∗), and Mŷ,d̂ (∆y + ∆d) = µe − ∆y ◦ ∆d .

Here we have used the fact that ŷ ◦ d̂ = 0. We may rearrange the �nal condition as

1
2Mŷ,d̂ (∆y + ∆d) = µe −

1
2 (ŷ + ∆y) ◦ ∆d −

1
2∆y ◦ (d̂ + ∆d).

This simply says that
1
2

(
Mŷ,d̂ +Myµ ,dµ

)
(∆y + ∆d) = µe .

From [15, Corollary 4.9] we know that the operator Mŷ,d̂ is invertible when the solution
(ŷ, d̂) is strictly complementary and both primal and dual non-degenerate. Moreover, for (yµ ,dµ )
satisfying (SCLPµ ), we know from [15, Corollary 4.6] that Myµ ,dµ is invertible. In fact, both
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Myµ ,dµ and Mŷ,d̂ are positive de�nite: in both cases, (y,d) = (ŷ, d̂), and (y ,d) = (yµ ,dµ ), the
map m(ζ ) := 〈ζ ,My,dζ 〉 is continuous on J , while m(η) > 0 and m(ξ ) > 0 for all η ∈ N(A)
and ξ ∈ R(A∗). For (y,d) = (ŷ , d̂) the positivity follows from the assumed primal and dual
non-degeneracy, as the operators L(ŷ) and L(d̂) are positive semi-de�nite. For (y ,d) = (yµ ,dµ ) ∈
intK × intK , the operators L(yµ ) and L(dµ ) are positive de�nite; see Section 2.2(i). By an
interpolation argument, a contradiction to invertibility would therefore be reached if My,d were
not positive semi-de�nite on the whole space [cf. 36, proof of Lemma 32].

As a sum of invertible positive de�nite operators, it now follows that Mŷ,d̂ + Myµ ,dµ is
invertible. Consequently we estimate

‖∆y ‖ ≤ ‖∆y + ∆d ‖ = 2µ‖e‖‖(Mŷ,d̂ +Myµ ,dµ )
−1‖

≤
2µ
√
r

λmin(Mŷ,d̂ +Myµ ,dµ )
≤

2µ
√
r

λmin(Mŷ,d̂ )
,

where the �rst inequality holds by the orthogonality of ∆y and ∆d . The claim follows. �

2.5 strong monotonicity of the barrier

If the barrier B(y) = − log(dety) is as in Section 2.2, then in the next lemma d = −∇B(y).
Therefore, the lemma provides an estimate of strong monotonicity of the gradient of the barrier.

Lemma 2.4. Let y ,y ′ ∈ intK , and denote d := y−1, and d ′ := (y ′)−1. Then

(2.9) − 〈d ′ − d,y ′ − y〉 ≥
1

λmax(y ′)λmax(y)
‖y ′ − y ‖2.

Proof. There exists a unique w ∈ intK s.t. d ′ = Q−1w y and d = Q−1w y ′; see, e.g., [30, Corollary
3.1]. We thus see (2.9) to hold if

(2.10) Q−1w ≥
1

λmax(y ′)λmax(y)
.

In fact, w is given by the Nesterov–Todd direction

(2.11) w =
(
Qy−1/2(Qy 1/2d ′)1/2

)−1
.

Indeed, using the fundamental formula for quadratic presentations (Section 2.1(vii)), we see

(2.12) Q−1w = Qw−1 = QQy−1/2 (Qy 1/2d
′)1/2 = Qy−1/2Q

1/2
Qy 1/2d

′Qy−1/2 .

Following [1, p.42], from this we quickly compute

Q−1w y = Qy−1/2Q
1/2
Qy 1/2d

′e = Qy−1/2Qy 1/2d ′ = d ′.

Inverting d ′ = Q−1w y , we get (d ′)−1 = y ′ = (Q−1v y)−1 = Qvy
−1 = Qvd . Hence d = Q−1v y . This

establishes the claimed properties of w .

9



Continuing from (2.12), we also have

(2.13) Q−1w = Qy−1/2[Qy 1/2Qd ′Qy 1/2]
1/2Qy−1/2

From Section 2.1(i) and (2.3), we observe that Qd ′ = Q
−1
y ′ ≥ λmax(y

′)−2I . Thus

(2.14) Q−1w ≥
1

λmax(y ′)
Qy−1/2[Qy ]

1/2Qy−1/2 =
1

λmax(y ′)
Qy−1/2 ≥

1
λmax(y ′)λmax(y)

.

This proves (2.10) and consequently (2.9). �

We now extend the estimate to the boundary of K with a penalty using the approximations
form Section 2.4.

Lemma 2.5. Let y,d ∈ intK and ŷ , d̂ ∈ K with d = y−1, and ŷ ◦ d̂ = 0. Suppose there exist
y ′,d ′ ∈ K such that

(2.15) 〈d̂ − d ′,y − ŷ〉 = 0 and y ′ ◦ d ′ = e .

Then for any α ∈ (0, 1) and any a ∈ intK holds

(2.16) − 〈d − d̂,y − ŷ〉 ≥
1 − α

λmax(ỹ)λmax(ỹ ′)
‖y − ŷ ‖2Qa

−
λmax(d)λmax(d

′)

4α ‖y ′ − ŷ ‖2,

where ỹ := Q 1/2
a y , and ỹ ′ := Q 1/2

a y ′.

Proof. Let Qw be as in the proof of Lemma 2.4.

(2.17)

−〈d − d̂,y − ŷ〉
(2.15)
= −〈d − d ′,y − ŷ〉 = 〈y − y ′,y − ŷ〉Q−1w

= 〈y − ŷ ,y − ŷ〉Q−1w + 〈ŷ − y
′,y − ŷ〉Q−1w

≥ (1 − α)‖y − ŷ ‖2
Q−1w
− 1

4α ‖y
′ − ŷ ‖2

Q−1w
.

In the �nal step we have used Cauchy’s inequality.
Let w˜ := Qa1/2w . By the fundamental formula of quadratic presentations (Section 2.1(vii)),

Q−1w = Q
1/2
a Q−1

Q 1/2
a w

Q 1/2
a = Q

1/2
a Q−1w˜Q 1/2

a .

We also observe using fundamental formula of quadratic presentations that w˜ is w from (2.11)
computed with the transformed variables ỹ = Q 1/2

a y and d˜′ = Qa−1/2d
′. We therefore estimate

Q−1w̃ as in (2.14). Since (2.13) implies

Q−1w = Qd 1/2[Qd−1/2Qd ′Qd−1/2]
1/2Qd 1/2 ,

we also estimate Q−1w ≤ λmax(d
′)λmax(d). Thus (2.16) follows from (2.17). �
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Lemma 2.6. Let y,d ∈ intK and ŷ , d̂ ∈ K with u ◦d = µe for some µ > 0, and ŷ ◦ d̂ = 0. Suppose
there exist y ′,d ′ ∈ K such that 〈d̂ − d ′,y − ŷ〉 = 0 and y ′ ◦ d ′ = µe . Then for any α ∈ (0, 1) holds

(2.18) − 〈d − d̂,y − ŷ〉 ≥
(1 − α)µ

λmax(ỹ)λmax(ỹ ′)
‖y − y ′‖2Qa

−
λmax(d)λmax(d

′)

4αµ ‖y ′ − ŷ ‖2.

Proof. We apply Lemma 2.5 with d̂ , d , and d ′ replaced by d̂/µ, d/µ, and d ′/µ. This causes the
right-hand-side of the estimate (2.16) to be multiplied by µ, along with both λmax(d) and λmax(d

′)

to be divided by µ. �

Applied to solutions of (SCLPµ ), we can estimate λmax(y) and λmax(y
′).

Proposition 2.7. Suppose Ay = b implies 〈a,y〉 = b0 for some a ∈ intK and b0 > 0. Fix
µ > 0, and let (y,d, z) ∈ intK × intK × Rk solve (SCLPµ ). Likewise, suppose (yµ ,dµ , zµ ) ∈
intK × intK × Rk solves (SCLPµ ) for c = ĉ , where (ŷ , d̂, ẑ) solves (SCLP) for c = ĉ . If ŷ and d̂
are strictly complementary, d̂ dual non-degenerate, and ŷ primal non-degenerate, then for any
α ∈ (0, 1) holds

(2.19) − 〈d − d̂,y − ŷ〉 ≥
(1 − α)µ

b20
‖y − ŷ ‖2Qa

−
Cc,µCĉ,µr

αλmin(Mŷ,d̂ )
2 µ,

where for some �xed y∗ ∈ intK with Ay∗ = b the constants

(2.20) Cc,µ :=
µr + 2b0‖c ‖Q−1a

λmin(y∗)
.

Proof. We begin by applying Lemma 2.6 with (y ′,d ′) set to the µ-approximation (yµ ,dµ ) to
(ŷ, d̂) provided by Lemma 2.3. Inserting (2.8) into (2.18), we therefore obtain

(2.21) − 〈d − d̂,y − ŷ〉 ≥
(1 − α)µ

λmax(ỹ)λmax(ỹµ )
‖y − yµ ‖

2
Qa
−
µλmax(d)λmax(dµ )r

αλmin(Mŷ,d̂ )
2 .

It remains to estimate the eigenvalues in this expression.
First of all, we easily derive the necessary bounds on λmax(ỹ) and λmax(y

′) as

(2.22) λmax(ỹ) ≤ tr(ỹ) = 〈e, ỹ〉 = 〈a,y〉 = b0.

Secondly, regarding the estimate on λmax(d), we �x some y∗ ∈ intK satisfying Ay∗ = b. Such
a point exist by our assumption of there existing solutions to (SCLPµ ); see also Lemma 2.1. Since
d = A∗z + c for some z ∈ Rk , and d ◦ y = µe , we then derive

λmin(y
∗)λmax(d) ≤ λmin(y

∗)〈e,d〉 ≤ 〈y∗,d〉 = 〈ỹ∗,d˜〉
= 〈ỹ ,d˜〉 + 〈ỹ∗ − ỹ,d˜〉 = µr + 〈ỹ∗ − ỹ , c˜〉
≤ µr + ‖c˜‖(λmax(ỹ) + λmax(ỹ

∗)) ≤ µr + 2b0‖c˜‖.
In the last inequality we have used (2.22) for both ỹ and ỹ∗. Since y∗ ∈ intK , so that λmin(y

∗) > 0,
and ‖c˜‖ = ‖c ‖Q−1a , this gives the claimed bounds on λmax(d) and λmax(d

′). �
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Remark 2.8. In Proposition 2.7, the assumption that Ay = b implies 〈a,y〉 = b0 for some a ∈
intK was only used to derive the bound (2.22) on the maximum eigenvalues of the transformed
variable ỹ = Q 1/2

a y . If we did not have this assumption, we could still bound the eigenvalues of the
untransformed variable y in a local neighbourhood of ŷ . Since the factor in front of ‖y − ŷ ‖2Qa

in particular would now depend on ŷ , doing so would, however, require a more local convergence
analysis in Section 4.

2.6 strong monotonicity of the barrier in the second-order cone

In the second-order cone K = Ksoc ⊂ E1+m , under suitable constraints Ay = b, we have a
stronger result.

Lemma 2.9. Suppose y,y ′,d,d ′ ∈ intKsoc with y ◦ d = y ′ ◦ d ′ = µe for given µ > 0. Then

(2.23) − 〈d − d ′,y − y ′〉J ≥
det(d) + det(d ′)

µ
‖y − y ′‖2−R ,

where ‖y − y ′‖2
−R := ‖sy − sy ′‖2

Rm − (y0 − y
′
0)

2 = − det(y − y ′).

Proof. We have d = µRy/det(y) = µ−1 det(d)Ry . Likewise d ′ = µ−1 det(d ′)Ry ′. We write for
brevity β := µ−1 det(d) and β ′ := µ−1 det(d ′). Then

−〈d − d ′,y − y ′〉J = −〈βRy − β
′Ry ′,y − y ′〉J = 2〈βy − β ′y ′,y − y ′〉−R ,

where the second “inner product” is 〈x ,y〉−R := −〈Rx ,y〉R1+m . We can thus write

−〈d − d ′,y − y ′〉J = 2β ‖y − y ′‖2−R + 2(β − β
′)〈y ′,y − y ′〉−R

as well as
−〈d − d ′,y − y ′〉J = 2β ′‖y − y ′‖2−R + 2(β − β

′)〈y ,y − y ′〉−R .

Summing these two expressions we deduce

(2.24) − 〈d − d ′,y − y ′〉J = (β + β
′)‖y − y ′‖2−R + (β − β

′)(‖y ‖2−R − ‖y
′‖2−R).

Now observe that
‖y ‖2−R = y

2
0 − ‖sy ‖

2 = − det(y) = −µ2/det(d).
Thus

(β − β ′)(‖y ‖2−R − ‖y
′‖2−R) = µ(det(d) − det(d

′))(det(d ′)−1 − det(d)−1)
= µ(det(d ′) − det(d))2/(det(d) det(d ′)) > 0.

This and (2.24) immediately prove the claim. �

For solutions of (SCLPµ ) with one-dimensional linear constraints, we can extend the estimate
to the boundary with some penalty. For this, we �rst bound the determinant with the distance

DF (w,d) := ‖Q 1/2
w d − µw,de ‖ for µw,d = 〈w,d〉/r , (w,d ∈ K).

This distance is typically used to de�ne the so-called short-step neighbourhood of the central
path [see, e.g., 36].
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Lemma 2.10. Suppose y ,d ∈ intKsoc with y ◦ d = µe and 〈a,y〉 = b0 for some µ,b0 > 0 and
a ∈ intKsoc. Then

(2.25) 2µ2 +
√
2b0DF (a

−1,d)µ

b20 det(a)
≤ det(d) ≤ 4µ2 +

√
2b0DF (a

−1,d)µ

b20 det(a)
.

Proof. We de�ne ỹ := Q 1/2
a y , and d˜ := Q−1/2a d . Then 〈e, ỹ〉 = 〈a,y〉 = b0, and by [36, Lemma

28], ỹ ◦ d˜ = µe . These conditions expand to ỹ0d˜0 + s̃y
T

sd˜ = µ, ỹ0 sd˜+ d˜0s̃y = 0, and 2ỹ0 = b0. (In
the latter, recall that the E1+m-inner product satis�es 〈e, ỹ〉 = 2eT ỹ .) We reduce this system to
d˜2
0 − ‖

sd˜‖2 − 2d˜0µ/b0 = 0, from where we solve

(2.26) d˜0 =
µ +

√
µ2 + b20 ‖

sd˜‖2
b0

.

Thus

det(d˜) = d˜2
0 − ‖

sd˜‖2 = 2µ2 + 2µ
√
µ2 + b20 ‖

sd˜‖2
b20

,

from which we easily estimate

(2.27)
2µ2 + 2µb0‖ sd˜‖

b20
≤ det(d˜) ≤ 4µ2 + 2µb0‖ sd˜‖

b20
.

To �nish deriving (2.25), from Section 2.1(x) we recall that det(d˜) = det(a) det(d). We also
have rd˜0 = 〈d˜, e〉 = 〈d,a−1〉 for the rank r = 2, so

(2.28)
√
2‖ sd˜‖Rn = ‖d˜− d˜0e‖J = ‖Q

−1/2
a d − µa−1,de ‖J = DF (a

−1,d),

where we emphasise the standard Euclidean norm on sd˜ ∈ Rn versus the
√
2-scaled standard

norm on J . With this, (2.27) gives (2.25). �

If DF (a
−1, d̂) > 0, or alternatively det(ŷ) > 0, then the next proposition shows local strong

monotonicity of the barrier for d close to d̂ and µ > 0 small. Moreover, if DF (a
−1, d̂) > 0, the

factor of strong monotonicity does not vanish as µ ↘ 0.

Proposition 2.11. Let K = Ksoc, and suppose Ay = b implies 〈a,y〉 = b0 for some a ∈ intK and
b0 > 0. Let (y,d, z) ∈ intK × intK ×Rk solve (SCLPµ ), and likewise that (ŷ, d̂, ẑ) ∈ K ×K ×Rk

solve (SCLP) for c = ĉ . Then

(2.29) − 〈d − d̂,y − ŷ〉 ≥
µ + 2−1/2b0[DF (a

−1,d) + DF (a
−1, d̂)]

b20/2
‖y − ŷ ‖2Qa

− µ

+
2−1/2b0DF (a

−1, d̂)µ

2µ + 2−1/2b0DF (a−1,d)
+
µ + 2−1/2b0DF (a

−1,d)

b20/2
det(Q 1/2

a ŷ).
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Proof. We have

(2.30) 0 = ŷ ◦ d̂ = (ŷ0d̂0 + ŝy
T

ŝd, ŷ0 ŝd + d̂0ŝy).

Since 〈a, ŷ〉 = b0 > 0, and ŷ ∈ K , necessarily ŷ0 > 0. Since, moreover, ŷ , 0, we cannot have
d̂ ∈ intK for ŷ ◦ d̂ = 0 to hold. Therefore 0 = det(d̂) = d̂20 − ‖

ŝd ‖2. It follows from (2.30) that
d̂ = β̂Rŷ for

(2.31) β̂ = −
ŝy
T

ŝd

ŷ2
0
=
d̂0
ŷ0
=
‖ ŝd ‖Rm

ŷ0
≥ 0.

We may therefore repeat the steps of Lemma 2.9 until (2.24) to obtain

(2.32) − 〈d − d̂,y − ŷ〉 = (β + β̂)‖y − ŷ ‖2−R + (β − β̂)(‖y ‖
2
−R − ‖ŷ ‖

2
−R).

We have det(ŷ) = −‖ŷ ‖2
−R = ŷ2

0 − ‖ŝy ‖
2 ≥ 0. If this is non-zero, ŷ ∈ intK . But in that case

ŷ ◦ d̂ = 0 implies d̂ = 0, and consequently β̂ = 0. Thus β̂ ‖ŷ ‖2
−R = 0 whether or not ‖ŷ ‖2

−R = 0.
Using ‖y ‖2

−R = − det(y) = −µ
2/det(d) and β = det(d)/µ, we therefore obtain from (2.32) that

(2.33) − 〈d − d̂,y − ŷ〉 = (µ−1 det(d) + β̂)‖y − ŷ ‖2−R − µ +
β̂µ2

det(d) +
det(d) det(ŷ)

µ
.

If a = e , we have y0 = ŷ0 = b0/2, so that 2‖y − ŷ ‖2
−R = ‖y − ŷ ‖

2
J

. Reasoning as in (2.28), (2.31)
gives β̂ =

√
2DF (a

−1, d̂)/b0 =
√
2DF (e, d̂)/b0. With the help of Lemma 2.10, (2.33) thus yields

−〈d − d̂,y − ŷ〉 ≥
2µ +

√
2b0[DF (e,d) + DF (e, d̂)]

b20
‖y − ŷ ‖2 − µ

+
2µ +

√
2b0DF (e,d)

b20
det(ŷ),

(2.34)

where we have entirely eliminated the term β̂µ2/det(d) ≥ 0. Since λmin(e) = det(e) = 1, the
estimate (2.29) is immediate in the case a = e .

If a , e , we de�ne ỹ := Q 1/2
a y , and d˜ := Q−1/2a d as in Lemma 2.10. Then (ỹ,d˜, z) continues to

satisfy (SCLPµ ) with A replaced by Ã := AQ−1/2a and c˜ := Q−1/2a c . The same holds with (SCLP)
for ˜̂y := Q 1/2

a ŷ and d̂˜ := Q−1/2a d̂ . Therefore, (2.34) holds for these transformed variables. Since
DF (e,d˜) = DF (a

−1,d), as well as ‖ỹ − ˜̂y ‖2 = ‖y − ŷ ‖2Qa
, and −〈d − d ′,y − y ′〉 = −〈d˜− d̂˜, ỹ − ˜̂y〉,

we obtain the claim. �

Corollary 2.12. Let K = Ksoc, and suppose A = 〈a, · 〉 for some a ∈ intK . Suppose moreover
that 〈a−1, c〉 = 〈a−1, ĉ〉 = 0. Let (y ,d, z) ∈ intK × intK × Rk solve (SCLPµ ), and likewise that
(ŷ, d̂, ẑ) ∈ K × K ×Rk solve (SCLP) for c = ĉ . If ĉ , 0, then

−〈d − d̂,y − ŷ〉 ≥
µ + 2−1/2b0[‖c ‖Q−1a + ‖ĉ ‖Q−1a ]

b20/2
‖y − ŷ ‖2Qa

− µ .(2.35)
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Otherwise, if ĉ = 0 with ŷ = ba−1/2, then

(2.36) − 〈d − d̂,y − ŷ〉 ≥
µ + 2−1/2b0‖c‖Q−1a

b20/2
‖y − ŷ ‖2Qa

.

We say that (2.35) is strong monotonicity of the barrier “with a penalty”, µ.

Proof. We do not until the very end of the proof use the assumption A = 〈a, · 〉. For now, we use
the weaker assumption that Ay = b implies 〈a,y〉 = b0. We apply Proposition 2.11. This gives

(2.37) − 〈d − d̂,y − ŷ〉 ≥
µ + 2−1/2b0[DF (a

−1,d) + DF (a
−1, d̂)]

b20/2
‖y − ŷ ‖2Qa

− µ

+
2−1/2b0DF (a

−1, d̂)µ

2µ + 2−1/2b0DF (a−1,d)
+
µ + 2−1/2b0DF (a

−1,d)

b20/2
det(Q 1/2

a ŷ).

If DF (a
−1, d̂) = 0, by assumption ŷ = 2b0a−1. This implies det(Q 1/2

a ŷ) = b0/2. Consequently

µ + 2−1/2b0DF (a
−1,d)

b20/2
det(Q 1/2

a ŷ) ≥ µ .

Therefore no penalty is imposed, and (2.37) reduces to

(2.38) − 〈d − d̂,y − ŷ〉 ≥
µ + 2−1/2b0DF (a

−1,d)

b20/2
‖y − ŷ ‖2Qa

.

Suppose then thatDF (a
−1, d̂) > 0. On the right hand side of (2.37), only the term−µ is negative.

Thus the condition holds if

(2.39) − 〈d − d̂,y − ŷ〉 ≥
µ + 2−1/2b0[DF (a

−1,d) + DF (a
−1, d̂)]

b20/2
‖y − ŷ ‖2Qa

− µ .

Finally, using our assumptions that A = 〈a, · 〉 and 〈a−1, c〉 = 0, we have d = za + c and
µa−1,d = 〈a

−1,d〉/r = z for some z ∈ R. Thus

(2.40) DF (a
−1,d) = ‖Q−1/2a (d − za)‖ = ‖c ‖Q−1a .

Likewise DF (a
−1, d̂) = ‖ĉ‖Q−1a . Therefore, the cases DF (a

−1, d̂) > 0 and DF (a
−1, d̂) = 0 are

equivalent to the cases on ‖ĉ ‖ in the statement of the corollary. Inserting (2.40) into (2.38)
consequently yields the claimed estimates. �

Remark 2.13. Recall Remark 2.8 on removing the assumption on the existence of a ∈ intK such
that 〈a,y〉 = b0. In the proof of Proposition 2.11, this assumption was not used until the derivation
of (2.34) from (2.33). At that point, we used this fact to ensure that 〈a,y − ŷ〉 = 0 and, in particular,
that ‖y − ŷ ‖2

−R = ‖y − ŷ ‖
2 ≥ 0 when a = e after transformation. Could we still get our overall

estimates without this assumption?

15



On the two-dimensional Jordan algebraE1+1, picka = (a0, sa) < K ,b ∈ R, and setAy := a0y0+sasy .
Without loss of generality, by negating both a and b. Assume that sa < 0. Then y satisfying Ay = b
has the form y = θv + (b/a0)e for v = (−sa,a0) and some θ ∈ R. Since a < K and sa < 0, we have
−sa = |sa | > a0. Consequently, v ∈ intK .

Now, with y = θv + (b/a0)e and ŷ = θ̂v + (b/a0)e with θ , θ ∗, we have

‖y − ŷ ‖2−R = ‖(θ − θ
∗)v ‖2−R = −(θ − θ

∗)2 det(v) < 0.

This implies that the �rst term in (2.33) is negative for all the feasible points in every neighbourhood
of ŷ . This seems at �rst a negative result. If, however det(ŷ) > 0, then also det(d̂) > 0, so in a
neighbourhood of (ŷ , d̂), the last term of (2.33) will be bounded away from zero. We can therefore
still, locally, obtain quadratic estimates like those in Corollary 2.12.

On the other hand, if det(ŷ) = 0, we can run into di�culties. Consider b = 0, so that y = θv and
ŷ = 0. Then also β̂ = 0, so the right-hand-side of (2.33) is negative, and we do not get the quadratic-
penalised estimate. The solution ŷ = 0 would, however, be primal degenerate. Indeed, in the general
non-degenerate strictly complementary case, Proposition 2.7 and Remark 2.8 still guarantee a local
estimate with worse constants than the more �ne-grained approach of Proposition 2.7 might provide.

3 an abstract preconditioned proximal point iteration

In this section, we recall some of the core results from [40]. We start by setting

(3.1) H (u) :=
(
∂G(x) + K∗y
∂F ∗(y) − Kx

)
,

and for some τi ,ϕi ,σi+1,ψi+1 > 0, de�ning the step length and “testing” operators

(3.2) Wi+1 :=
(
τi I 0
0 σi+1I

)
, and Zi+1 :=

(
ϕi I 0
0 ψi+1I

)
.

We also let Vi+1 : X × Y ⇒ X × Y for each i ∈ N be an abstract non-linear preconditioner,
dependent on the current iterate ui . Then we consider the generalised proximal point method,
which involves solving

(PP) 0 ∈Wi+1H (u
i+1) +Vi+1(u

i+1)

for the unknown next iterate ui+1. To obtain convergence rates for the resulting method, the
idea from [40, 41] will be to analyse the inclusion obtained after multiplying (PP) by the testing
operator Zi+1.

Assuming G to be (strongly) convex with factor γ > 0, we also introduce

Ξi+1(γ ) :=
(

2γτi I 2τiK∗
−2σi+1K 0

)
,

which is an operator measure of strong monotonicity of H .
The next lemma, which is relatively trivial to prove [40], forms the basis from which our

work proceeds.
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Theorem 3.1. Let us be given K ∈ L(X ;Y ), G ∈ C(X ), and F ∗ ∈ C(Y ) on Hilbert spaces X and Y .
For each i ∈ N, for some V ′i+1 : X × Y ⇒ X × Y andMi+1 ∈ L(X × Y ;X × Y ), take

(3.3) Vi+1(u) := V ′i+1(u) +Mi+1(u − u
i ).

Assume that (PP) is solvable, Zi+1Mi+1 is self-adjoint, andG is (strongly) convex with factor γ ≥ 0.
If for all i ∈ N the estimate

(C0-Γ) 1
2 ‖u

i+1 − ui ‖2Zi+1Mi+1︸                   ︷︷                   ︸
step length in local metric

+
1
2 ‖u

i+1 − û‖2Zi+1(Ξi+1(γ )+Mi+1)−Zi+2Mi+2︸                                         ︷︷                                         ︸
linear preconditioner update discrepancy

+ 〈∂F ∗(y i+1) − ∂F ∗(ŷ),y i+1 − ŷ〉Ψi+1Σi+1︸                                          ︷︷                                          ︸
variably useful remainder from H

+ 〈Zi+1V
′
i+1(u

i+1),ui+1 − û〉︸                          ︷︷                          ︸
from non-linear preconditioner

≥ −∆i+1

holds, then

(3.4) 1
2 ‖u

N − û‖2ZN+1MN+1
≤

1
2 ‖u

0 − û‖2Z1M1
+

N−1∑
i=0

∆i+1, (N ≥ 1).

Proof. This is [40, Theorem 3.1] specialised to scalar step length and testing operators Ti = τi I ,
Φi = ϕi I , Σi+1 = σi+1I , and Ψi+1 = ψi+1I , as well as Γ̃ = γ I . �

It is possible to extend this theorem to provide an estimate on an ergodic duality gap [see 40,
Theorem 4.6]. For the sake of conciseness, we have however decided against including such
estimates in the present work. For this reason, in the following, we concentrate on strongly
convex G.

4 a primal–dual method with a barrier preconditioner

Let F (y) := δ {A ·=b }(y) + δK(y) for some A ∈ L(J ;Z ), where J and Z are Hilbert spaces, J
also a Euclidean Jordan algebra. Let K be the cone of squares of J . We suppose there exists
some y ∈ intK with Ay = b. Then the subdi�erential sum formula (see, e.g., [34]) applies, so
that

(4.1) ∂F ∗(y) =

{
{A∗z | z ∈ Z } + NK(y), Ay = b and y ∈ K,

∅, otherwise.

In particular, if y ∈ intK with Ay = b, then ∂F ∗(y) = {A∗z | z ∈ Z }. Note from Section 2.2(ix)
and (vi) that

(4.2) NK(y) = {−d | d ∈ K, p ◦ d = 0} (y ∈ K).

Inserting (4.1) into 0 ∈ H (û), the latter expands as

0 ∈ ∂G(x̂) + K∗ŷ , 0 ∈ A∗ẑ + NK(ŷ) − Kx̂ ,Ay = b,y ∈ K
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for some ẑ ∈ Z . Based on (4.2), this may also be written as the existence of (x̂ , ŷ, d̂, ẑ) ∈
X × K × K × Z with

(IOC) − K∗ŷ ∈ ∂G(x̂), Aŷ = b, A∗ẑ − Kx̂ = d̂, ŷ ◦ d̂ = 0.

In the following, we develop an algorithm for solving this system, incorporating a barrier-
based nonlinear preconditioner for dual updates. As mentioned after Theorem 3.1, for conciseness
we limit our attention to strongly convexG , and only analyse the convergence of iterates, not the
gap. The theory from [40] could be used to extend the analysis to the gap. Moreover, following
the approach of [39], it would be possible to extend our work to stochastic and “spatially-adaptive”
updates.

4.1 a general estimate for dual barrier preconditioning

To construct algorithms with the help of the theory from Section 3, we have to construct the
preconditioner Vi+1(ui+1) := V ′i+1(ui+1) +Mi+1(u

i+1 − ui ). We speci�cally take

(4.3) Mi+1 =

(
I 0
0 0

)
, and V ′i+1(u

i+1) = (0,σi+1[K(x i+1 − x i ) − di+1]),

where di+1 ∈ intK is de�ned to satisfy y i+1 ◦ di+1 = µi+1e for some µi+1 > 0. The term
σi+1K(x

i+1 − x i ) in V ′i+1 decouples the primal and dual updates so that(PP) may be written as
the system

0 ∈ τi∂G(x i+1) + τiK∗y i+1 + (x i+1 − x i ),(4.4a)
0 ∈ σi+1[A∗zi+1 − Kx i − di+1], as well as(4.4b)

y i+1 ◦ di+1 = µi+1e and Ay i+1 = b with y i+1,di+1 ∈ intK .(4.4c)

For this general setup, we have the following lemma:

Lemma 4.1. Let F ∗ have the structure (4.1). TakeMi+1 andV ′i+1 according to (4.3). Suppose for some
ωi+1,δi+1 ∈ R for all i ∈ N that

−〈di+1 − d̂,y i+1 − ŷ〉 ≥ ωi+1‖y
i+1 − ŷ ‖2 − δi+1,(4.5a)

ψi+1σi+1 = ϕiτi ,(4.5b)
2ωi+1 ≥ τi ‖K ‖

2, and(4.5c)
ϕi+1 ≤ ϕi (1 + 2τiγ̃ ).(4.5d)

Then (C0-Γ) holds with ∆i+1 = ψi+1σi+1δi+1, and Zi+1Mi+1 is self-adjoint with

(4.6) Zi+1Mi+1 =

(
ϕi I 0
0 0

)
≥ 0.
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Proof. The condition (C0-Γ) now reads

(4.7) 1
2 ‖u

i+1 − ui ‖2Zi+1Mi+1︸                   ︷︷                   ︸
step in local norm

+
1
2 ‖u

i+1 − û‖2Di+2︸              ︷︷              ︸
lin. precond. upd. d.

+ψi+1σi+1〈K(x
i+1 − x i ),y i+1 − ŷ〉︸                                   ︷︷                                   ︸

de-coupling term from V ′

+ψi+1σi+1〈A
∗(zi+1 − ẑ),y i+1 − ŷ〉 −ψi+1σi+1〈d

i+1 − d̂,y i+1 − ŷ〉︸                                                                           ︷︷                                                                           ︸
F ∗ term from (C0-Γ) as well as d i+1 from V ′

≥ −∆i+1

with the linear preconditioner update discrepancy

Di+2 := Zi+1(Ξi+1(γ ) +Mi+1) − Zi+2Mi+2.

The expansion and estimate (4.6) are trivially veri�ed along with the self-adjointness of
Zi+1Mi+1. This expansion allows us to write

Di+2 =

(
ϕi (1 + 2τiγ )I − ϕi+1I 2ϕiτiK∗
−2ψi+1σi+1K 0

)
.

We use (4.5b) to cancel the o�-diagonals ofDi+2 in (4.7). Then we use the fact thatA(y i+1−ŷ) = 0
to cancel the �rst term on the second line of (4.7). Finally, we use ∆i+1 = ψi+1σi+1δi+1 and (4.5a)
to estimate the second term on the second line of (4.7). This gives the condition

(4.8) ϕi
2 ‖x

i+1 − x i ‖2 +
ψi+1σi+1ωi+1

2 ‖y i+1 − ŷ ‖2 +
ϕi (1 + 2γτi ) − ϕi+1

2 ‖x i+1 − x̂ ‖2

+ψi+1σi+1〈K(x
i+1 − x i ),y i+1 − ŷ〉 ≥ 0.

Application of (4.5d), as well as Cauchy’s inequality to the inner product term, shows that (4.8)
and consequently (C0-Γ) is satis�ed if

ψi+1σi+1ωi+1 ≥
1
2ϕ
−1
i ψ

2
i+1σ

2
i+1KK

∗.

This follows from (4.5b) and (4.5c). �

We de�ne τi through (4.5c) for a lower bound ω∗,i+1 of ωi+1. Likewise, we take (4.5d) as an
equality as the de�nition of ϕi+1. We observe that σi+1 andψi+1 are irrelevant to the algorithm
in (4.4), as will be the speci�c choice of ϕ0 > 0 to the satisfaction of (4.5). Taking ϕ0 = 1, we
obtain Algorithm 4.1 from (4.4).

Algorithm 4.1 (Barrier-preconditioned primal–dual method).
Require: Linear operator K ∈ L(X ;J), strongly convex G ∈ C(X ), and F ∗ ∈ C(J) of the

form (4.1). Factor γ > 0 of the strong convexity of G. Rules for µi ,ω∗,i > 0.
1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: Set initial testing parameter ϕ0 := 1.
3: repeat
4: Calculate µi , ω∗,i , and step length

τi := 2ω∗,i+1/‖K ‖2.
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5: Update testing parameter

ϕi+1 := ϕi (1 + 2γτi ).

6: Perform dual update by solving for (y i+1,di+1, zi+1) ∈ intK × intK × Z the system

Ay i+1 = b, A∗zi+1 − Kx i = di+1, and y i+1 ◦ di+1 = µi+1e .

7: Perform primal update

x i+1 := (I + τi∂G)−1(x i − τiK∗y i+1).

8: until a stopping criterion is satis�ed.

Remark 4.2 (Solution of Line 6 of Algorithm 4.1). The system on Line 6 is a standard (SCLPµ ). In the
second-order cone withA = 〈e, · 〉 and 〈e,R(K)〉 = {0}, it is easy to solve. Indeed, (0, sdi+1) = −Kx i
while di+10 is given by the expression in (2.26). Finally

y i+1 = µi+1(d
i+1)−1 =

µi+1Rd
i+1

det(di+1) =
µi+1Rd

i+1

(di+10 )
2 − ‖ sdi+1‖2

.

More general cases A = 〈a, · 〉 and 〈a−1,R(K)〉 = {0} follow by scaling.

We leave the solution of more general problems than the easy one considered in Remark 4.2
for future research. In particular, we would expect to combine the overall algorithm with a
path-following interior point method in order to not have to solve the sub-problem exactly in
each step, but to merely take a single step of the path-following method towards its solution.
Such an approach may yield a primal–dual version of the work in [37].

4.2 convergence rates in general symmetric cones

We still need to specify µi+1, verify (4.5a), and produce convergence rates. In general symmetric
cones, we have:

Theorem 4.3. With K an arbitrary symmetric cone, and Z = Rk , let the requirements of Algo-
rithm 4.1 be satis�ed. Assuming that Ay = b implies 〈a,y〉 = b0 for some a ∈ intK and b0 > 0,
suppose there exists a solution (x̂ , ŷ , d̂, ẑ) ∈ X × K × K × Z to (IOC) with ŷ and d̂ strictly com-
plementary, d̂ dual non-degenerate, and ŷ primal non-degenerate. Suppose further that domG is
bounded, or that the primal iterates {x i }i ∈N of Algorithm 4.1 stay bounded through other means.
For some constant θ > 0 and ζ ∈ (0,b−20 ), take

(4.9) µi+1 := θϕ−1/2i , and ω∗,i+1 := ζ λmin(a)µi+1.

Then ‖xN − x̂ ‖2 = O(1/N ).

Remark 4.4. The assumptionZ = Rk is merely for the simplicity of application of Proposition 2.7 and
later Corollary 2.12. There would be nothing stopping us from applying the results on uncountable
products of symmetric cones, for example.
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Proof. We use Proposition 2.7, which veri�es (4.5a) with

δi+1 ≤ ĈC−Kx i ,µi+1C−Kx̂,µi+1µi+1 and ωi+1 = ω∗,i+1 = ζ λmin(a)µi+1

for C−Kx i ,µi+1 , C−Kx̂,µi+1 de�ned in (2.20), and some Ĉ > 0. From (2.20) we see that the former
constants are bounded as long as {µi }i ∈N is non-increasing, and the sequence {‖Kx i ‖}i ∈N
bounded. The latter is guaranteed by our assumptions, and the former by our construction of
µi+1 in (4.9) and Line 5 of the algorithm. Therefore δi+1 ≤ Cµi+1 for some constant C > 0. From
(4.5b) and (4.9) it now follows

(4.10) ∆i+1 := ψi+1σi+1δi+1 ≤ Cτiϕiµi+1 = Cθτiϕ
1/2
i .

Next we use Theorem 3.1 and Lemma 4.1. For C0 := 1
2 ‖u

0 − û‖2Z1M1
, (3.4), (4.6), and (4.10) give

the combined estimate

(4.11) ϕN
2 ‖x

N − x̂ ‖2 ≤ C0 +Cθ
N−1∑
i=0

τiϕ
1/2
i , (N ≥ 1).

Inserting ω∗,i+1 and µi+1 from (4.9), Lines 4 and 5 of the algorithm say

ϕi+1 = ϕi + γνϕ
1/2
i and τi = ϕ

−1/2
i ν/‖K ‖2 for ν := 2ζ λmin(a)θ .

It follows [see 41] that ϕN = Θ(N 2), while
∑N−1

i=0 τiϕ
1/2
i = Nν/‖K ‖2. Inserting these estimates

into (4.11), we verify the O(1/N ) rate. �

4.3 convergence rates in the second-order cone

In the second-order cone, we obtain linear convergence under dual non-degeneracy, Kx̂ = 0. In
image processing example such as those we consider in Section 5, we would have Kx = (0,∇x),
lifting a discretised gradient to the second-order cone (or a pointwise product cone). Therefore
Kx̂ = 0 means that the solution image cannot be �at.

Theorem 4.5. For K = Ksoc the second-order cone, Z = Rk , and A = 〈a, · 〉 for some a ∈ intK
with 〈a−1,R(K)〉 = {0}, let the requirements of Algorithm 4.1 be satis�ed. Suppose there exists a
solution (x̂ , ŷ , d̂, ẑ) ∈ X × K × K × Z to (IOC). If Kx̂ = 0, take ŷ = ba−1/2 and d̂ = 0. For some
θ > 0 and ζ ∈ (0, 2b−20 ], take

(4.12) µi+1 := θϕ−1/2i , and ω∗,i+1 := (µi+1ζ + 2−1/2b−10 ‖Kx i ‖Q−1a )λmin(a).

Suppose further that domG is bounded, or that the primal iterates {x i }i ∈N of Algorithm 4.1 stay
bounded through other means. Then for some C, ε > 0 holds

‖xN − x̂ ‖2 ≤

{
C(1 + ε)−N , Kx̂ , 0,
C/N 2, Kx̂ = 0.
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Proof. From Line 4 of the algorithm and (4.12), we expand

(4.13) τi := 2(ζθϕ−1/2i + ˜̀i+1)λmin(a)/‖K ‖
2 for ˜̀i+1 := 2−1/2b−10 ‖Kx i ‖Q−1a .

From (4.13) and Line 5, we estimate

(4.14) ϕN ≥ ϕ0 + 2γζθ
N−1∑
i=0

ϕ1/2i .

It follows from (4.13) that supi τi ≤ Cτ for some constant Cτ > 0. From (4.12), we also obtain
µi+1 ↘ 0.

We then use Corollary 2.12, which veri�es (4.5a) with

ωi+1 := (µi+1ζ + `i+1)λmin(a),


`i+1 :=

‖Kx i ‖Q−1a
b0/
√
2 , and δi+1 := 0, if Kx̂ = 0,

`i+1 =
‖Kx̂ ‖Q−1a

+‖Kx i ‖Q−1a
b0/
√
2 , and δi+1 = µi+1, if Kx̂ , 0.

Setting ` :=
√
2‖Kx̂ ‖Q−1a /b0 > 0, we have `i+1 = ˜̀i+1 + `.

Next we use Theorem 3.1 and Lemma 4.1. Recalling (4.5b) and that ∆i+1 = ψi+1σi+1δi+1 in
Lemma 4.1, setting C0 := 1

2 ‖u
0 − û‖2Z1M1

, (3.4) and (4.6) yield

(4.15) ϕN
2 ‖x

N − x̂ ‖2 ≤ C0 + DN for DN :=
N−1∑
i=0

τiϕiδi+1 (N ≥ 1).

In the case Kx̂ = 0, we have δi+1 = 0. As in the proof of Theorem 4.3, by a standard analysis
[39, 41], it follows from (4.14) that ϕN ≥ CN 2 for some C > 0. We therefore get from (4.15) the
claimed O(1/N 2) rate.

Consider then the case Kx̂ , 0. We estimate

(4.16) DN =

N−1∑
i=0

τiϕiµi+1 ≤ Cτ

N−1∑
i=0

ϕiµi+1

By Lines 4 and 5 of the algorithm, ϕN ≥ ϕ0 + 2γζ ‖K ‖−2
∑N−1

i=0 ϕiµi+1. Using these estimates in
(4.15), it follows that ‖xN − x̂ ‖ is bounded. If ˜̀i+1 ↘ 0, (4.13) and (4.14) shows that also τi ↘ 0.
Restarting our analysis from a later iteration, we can therefore make Cτ > 0 arbitrarily small.
Consequently, for any ϵ > 0, for large enough N holds ‖xN − x̂ ‖ ≤ ϵ . Since ` > 0, this is in
contradiction to ˜̀i+1 ↘ 0. We may therefore assume that ˜̀i+1 ≥ ϵ̃ for some ϵ̃ > 0, at least for
large i . Since our claims are asymptotical, we may without loss of generality assume this for all
i .

From (4.13), we now estimate τi ≥ ϵ̃λmin(a)/‖K ‖
2 =: τ∗ > 0. From Line 5 consequently

(4.17) ϕi+1 ≥ ϕi (1 + 2γτ∗).

This shows that ϕN ≥ Θ((1 + γτ∗)N ) grows exponentially, predicting (4.15) to yield linear rates
if we can control the penalty DN .
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Continuing form (4.16), by Hölder’s inequality, since the conjugate exponent of 1/(1 − p) is
1/p, for any p ∈ (0, 1) holds

DN ≤ Cτθ
N−1∑
i=0

ϕ
1−p
i ϕ

p−1/2
i ≤ Cτθ

(
N−1∑
i=0

ϕi

) 1−p (
N−1∑
i=0

ϕ
1−1/(2p)
i

)p
.

By (4.17), the second sum on the right is bounded if 1 − 1/(2p) < 0, that is p ∈ (0, 1/2). From
Line 5 of the algorithm

ϕN − ϕ0 = 2γ
N−1∑
i=0

ϕiτi ≥ 2γτ∗
N−1∑
i=0

ϕi .

For some constant C ′ > 0 we therefore get

DN ≤ C ′(ϕN − ϕ0)
1−p ≤ C ′ϕ

1−p
N .

Minding (4.15) and (4.17), this shows the claimed linear rate. �

5 numerical demonstrations

We study the performance of the proposed algorithm on two image processing problems, total
variation (TV) denoising, and H 1 denoising. These can be written as

(5.1) min
x ∈Rn1n2

1
2 ‖z − x ‖

2
2 + αR(x),

wheren1×n2 is the image size in pixels, and z the noisy image as a vector in Rn1n2 . The parameter
α > 0 is a regularisation parameter, and R a regularisation term. For TV regularisation, it is
R(x) = ‖Dx ‖2,1, and for H 1 regularisation, it is R(x) = ‖Dx ‖2. Here D ∈ R2n1n2×n1n2 is a matrix
for a discretisation of the gradient, and ‖д‖2,1 :=

∑n1n2
i=1
√
дi,1 + дi,2 for д = (д·,1,д·,2) ∈ R2n1n2 .

We speci�cally take D as forward-di�erences with Neumann boundary conditions.
The problem (5.1) can in both cases be written in the saddle point form

min
x ∈Rn1n2

max
y ∈J

1
2 ‖z − x ‖

2
2 + 〈Kx ,y〉 − δK∩A−1b (y),

where for H 1 denoising

J = E1+2n1n2 , Kx = (0,Dx), Ay = y0, b = α ,

and for TV denoising, for i = 1, . . . ,n1n2,

J = (E1+2)
n1n2 , [Kx]i = (0, [Dx]i,1, [Dx]i,2), Ay = ((y1)0, . . . (yn1n2)0), b = (α , . . . ,α).

In the latter case, Line 6 of Algorithm 4.1 splits into n1n2 parallel problems of the form covered
by Remark 4.2. The remark therefore shows how to e�ciently solve the step for both example
problems.

While TV denoising [35] is a fundamental benchmark in mathematical image processing, we
have to emphasise here that H 1 denoising is not an approach of practical importance. It blurs
images unlike TV denoising. Nevertheless, it forms a non-trivial optimisation problem, as we
do not square the norm of the gradient. (The optimality conditions in that case would be linear:
in the continuous setting the heat equation.)
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5.1 remarks on convergence rates

The linear convergence results for the second-order cone in Section 4.3 apply to H 1 denoising,
but they do not apply to TV denoising. In the latter case,K = Kn1n2

soc is a product of second-order
cones, but not a second-order cone. It would be possible to extend the analysis of Section 4.3
to product cones. Due to the coupling through (4.5b), a straightforward approach would yield
linear convergence when mini ‖[Kx̂]i ‖ > 0. From the structure of the TV denoising problem,
it is however easy to see that it can often happen that [Kx̂]i = 0. This is the case when the
solution image is locally �at. This happens in total variation denoising more often than one
might expect, due to the characteristic staircasing e�ect of the approach [32]. Therefore, there is
little hope to obtain linear convergence on practical TV denoising problems using this approach.

5.2 numerical setup

We performed some numerical experiments on the parrot image (#23) from the free Kodak
image suite photo.1 We used the image, converted to greyscale, both at the original resolution of
n1×n2 = 768×512, and scaled down to n1×n2 = 192× 128 pixels. Together with the dual variable,
the problem dimensions are therefore 768 ·512 ·3 = 1179648 ' 106 and 128 ·128 ·3 = 49152 ≈ 4 ·104.
To the high-resolution test image, we added Gaussian noise with standard deviation 29.6 (12dB).
In the downscaled image, this becomes 6.15 (25.7dB). With the low-resolution image, we used
regularisation parameter α = 0.01 for TV denoising, and α = 5 for H 1 denoising. We scale these
up to α/0.25 for the high-resolution image [11].

We compared our algorithm (denoted PEDI, Primal Euclidean–Dual Interior) to the accelerated
Chambolle–Pock method (PDHGM, Primal–Dual Hybrid Gradient method, Modi�ed [12]) on
the saddle-point problem, as well as forward–backward splitting on the dual problem (Dual
FB). For Dual FB we took as the basic step size τ = 1/L2, where L :=

√
8 ≥ ‖K ‖ [6]. For the

PDHGM, we took τ0 ≈ 0.52/L and σ0 = 1.9/L, using the strong convexity parameter γ = 0.9 < 1
for acceleration. For our method, we took ζ = 0.9/b20 and θ = 1/ζ , keeping τ0 and γ unchanged
from the PDHGM. For the initial iterates we always took x0 = 0 and y0 = 0. The hardware we
used was a MacBook Pro with 16GB RAM and a 2.8 GHz Intel Core i5 CPU. The codes were
written in MATLAB+C-MEX.

For our reporting, we computed a target optimal solution x̂ by taking one million iterations of
the basic PDHGM. In Figure 1 and Table 1 for TV denoising, and Figure 2 and Table 2 for H 1 de-
noising, we report the following: the distance to x̂ in decibels 10 log10(‖x i−x̂ ‖2/‖x̂ ‖2), the primal
objective value val(x) := G(x) + F (Kx) relative to the target 10 log10((val(x) − val(x̂))2/val(x̂)2),
as well as the duality gap 10 log10(gap2/gap20), again in decibels relative to the initial iterate. For
forward–backward splitting, to compute the duality gap, we solve the primal variable x i from
the primal optimality condition K∗y i = ∇G(x i ) = x i − z.

5.3 performance analysis and concluding remarks

As expected, the performance of PEDI on TV denoising is not particularly good, re�ecting the
O(1/N ) rates from Theorem 4.3. For H 1 denoising we observe signi�cantly improved conver-

1At the time of writing online at h�p://r0k.us/graphics/kodak/.
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Figure 1: TV denoising convergence behaviour: high and low resolution images; gap, distance
to target solution, and primal objective value in decibels.

gence, re�ecting the linear rates from Theorem 4.5, and of dual forward–backward splitting.
While PEDI eventually has better gap behaviour than dual forward–backward splitting, overall,
however, the method appears no match for the latter in our sample problems. The results for the
high resolution and low resolution problem are comparable. Since the low-resolution problem
has size of order 104, and the high resolution problem has size of the relatively large order 106,
this suggests good scalability of the algorithm. Further research is required to see whether
there are problems for which the overall Primal Euclidean(Proximal)–Dual Interior or similar
approaches provide competitive algorithms.

Irrespective of the limited practicality of PEDI, our theoretical analysis helps to bridge the
gap in performance between direct primal or dual methods, and primal–dual methods. After all,
we have obtained linear rates without the strong convexity of both G and F ∗ in the saddle point
problem (S). As a next step to take from here, it will be interesting to see if convergence rates
can be derived in our overall setup for the “distance-like” preconditioners from [9, 23, 26, 43].
Moreover, we are puzzled by what, if anything, makes the second-order cone special? Finally,
numerically we have only considered problems of the form given in Remark 4.2, where the
interior point sub-problem can be solved exactly. This is su�cient for most image processing
and similar applications. However, it would be interesting to know whether we can combine a
path-following interior point algorithm for its solution into the overall proximal point method.
Such an approach may yield a primal–dual version of the work in [37].
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Table 1: TV denoising performance: CPU time and number of iterations (at a resolution of 10) to
reach given duality gap, distance to target, or primal objective value.

low resolution
gap ≤ −50dB tgt ≤ −50dB val ≤ −50dB

Method iter time iter time iter time
PDHGM 4 0.01s 30 0.09s 27 0.08s
PEDI 16 0.04s 270 0.73s 280 0.75s
Dual FB 12 0.03s 6 0.02s 9 0.02s

high resolution
gap ≤ −50dB tgt ≤ −50dB val ≤ −50dB
iter time iter time iter time

4 0.13s 34 1.42s 13 0.52s
86 3.78s – – 400 17.76s
14 0.62s 21 0.96s 12 0.53s
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Figure 2: H 1 denoising convergence behaviour: high and low resolution images; gap, distance
to target solution, and primal objective value in decibels.

Table 2: H 1 denoising performance: CPU time and number of iterations (at a resolution of 10) to
reach given duality gap, distance to target, or primal objective value.

low resolution
gap ≤ −150dB tgt ≤ −100dB val ≤ −100dB

Method iter time iter time iter time
PDHGM 360 0.91s – – 180 0.46s
PEDI 120 0.31s 87 0.22s 54 0.14s
Dual FB 44 0.11s 43 0.11s 22 0.05s

high resolution
gap ≤ −150dB tgt ≤ −100dB val ≤ −100dB
iter time iter time iter time
380 11.48s – – 120 3.60s

51 1.69s 39 1.28s 24 0.78s
17 0.74s 18 0.78s 8 0.32s
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