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We consider the extension of primal dual interior point methods for linear programming on
symmetric cones, to a wider class of problems that includes approximate necessary optimality
conditions for functions expressible as the difference of two convex functions of a special form.
Our analysis applies the Jordan-algebraic approach to symmetric cones. As the basic method
is local, we apply the idea of the filter method for a globalisation strategy.
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1. Introduction

Consider the convex function

f(y) := sup{〈B∗y + c, p〉 | p ∈ K, Ap = b}, (1)

where K is (the closure of) a symmetric cone, and A is a linear mapping, such that
the constraint set for p is non-empty and bounded. The necessary and sufficient
optimality conditions for this class of functions may be expressed as

B∗y +A∗λ+ d+ c = 0, Ap = b, Bp = 0, p ◦ d = 0, p, d ∈ K, (2)

with ◦ denoting a Jordan algebra product. This set of equations belongs to the same
class as those for linear programs on symmetric cones, and very efficient algorithms
exist for approximately solving such equations; cf. e.g. [1, 8, 9, 18, 20, 25, 26] in
more general cases, and [3, 23, 32] in the special case of Euclidean norms, various
sums of which are included in the class (1).

We study the extension of these methods to so-called ε-semi-criticality conditions
for functions expressible as the difference of functions of class (1). Examples of such
problems include the multi-source Weber problem or K-spatial-medians, another
clustering objective from [30], as well the reformulations of the Euclidean travelling
salesperson problem from [29]. Also included are the Weber problem with attraction
and repulsion [4], along with the Euclidean Steiner tree problem.

The aforementioned extension faces the problem that the linearised perturbed
version of (2) may become singular, something that does not occur in the convex
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case under rather mild assumptions. We briefly present an analysis of such situa-
tions (more details may be found in [28]), through which we obtain an alternative
derivation of the perturbed version of conditions (2) – often also derived through
the use of barrier functions. Additionally we obtain an alternative interpretation of
what an “interior point” is, which, it could be said, makes our approach “graphical
programming”.

As our extension is, however, not globally convergent due to the above-mentioned
singularities, we also study globalisation strategies. One approach is that of a filter
method, following the line of research initiated in [12]. These methods crucially
depend on so-called restoration methods that restore feasibility after the main
filter method – which will presently be a variation of the interior point method
– runs into trouble. We therefore derive and analyse one based on the simple
(and common) idea of sequential convex programming (SCP). Although we provide
complete descriptions of these algorithms, and prove their convergence, at this
stage of development, they do not yet offer competitive practical performance, and
further development more practically-oriented is needed. This paper rather offers
an initial survey of some possibilities of extending the Jordan algebraic interior
point method approach to DC problems, and provides a range of theoretical results
relevant to further work on the algorithms.

Aside from the general literature on interior point methods (see e.g. [13, 22] and
references therein), and the already-cited papers on linear programs over symmet-
ric cones, the work in [10] and [33] bears some relationship to ours, in extending
the Jordan-algebraic approach. In the former, quadratic programs with symmet-
ric cone constraints are considered using a potential reduction approach, while in
the latter general non-linear programs with second-order cone constraints are con-
sidered employing merit functions under C2 assumptions. Within filter methods,
the works most related to ours appear to be in particular [27], as well as [31] in
having an interior point approach. However, the research on filter methods so far,
has concentrated on constrained programming, whereas we apply the idea to two
optimality criteria related to the original unconstrained objective function.

The rest of this paper is organised as follows. Section 2 introduces the basic
notation used in this paper, and contains a quick introduction to the Jordan-
algebraic machinery used. After that, in Section 3, we study the objective function
in some detail; however due to space constraints, a lot of the proofs are omitted and
the reader referred to the author’s Ph.D thesis [28]. In Section 4 the primal-dual
interior point method is developed and its convergence rate analysed. In Section 5
we discuss another method that merely applies interior point methods to convex
sub-problems. This method is then applied in Section 6 as a restoration method of
the discussed globalisation strategy. Finally, some preliminary practical experience
is presented and the paper concluded in Section 7.

2. Preliminaries

2.1. Sets and mappings

First we introduce some basic notation. Let A be a mapping. ThenR(A) denotes its
range. WhenA is also linear,N (A) denotes its null-space. The adjoint of a linear op-
erator A between two inner product spaces is denoted by A∗, and the pseudoinverse
by A†. For two mappings, (A,B)(x, y) := (Ax,By), and (A;B)(x, y) := Ax+By.

Let then C be a set. Its interior is denoted by intC, the relative interior by riC,
and the border by bdC.

Following [24], recall that the (contingent) tangent cone to a set C ⊂ Rm at
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x ∈ C is defined as

TC(x) := lim sup
τ↘0

(C − x)/τ = {∆x | x+ τ∆x′ ∈ C, τ ↘ 0,∆x′ → ∆x}.

This agrees with the tangent cone of convex analysis in the convex case, justifying
the notation. Taking the tangent to the graph of a set-valued function S at (y, z),
z ∈ S(y), we get the (contingent) graphical derivative

DS(y|z)(∆y) := {∆z | (∆y,∆z) ∈ TGraphS(y, z)}

= {∆z | z + τ∆z′ ∈ S(y + τ∆y′), τ ↘ 0, (∆y′,∆z′)→ (∆y,∆z)}.

2.2. Euclidean Jordan algebras

In this subsection we introduce the bare minimum of the theory of (finite-
dimensional Euclidean) Jordan algebras necessary for the analysis of this paper. We
will rely on the Jordan algebra of quadratic forms related to the familiar second-
order cone as a concrete example in our exposition. More detailed treatment may
be found in e.g. [7, 17].

A (real) Jordan algebra J is a real vector space endowed with a multiplication
operator ◦ : J × J → J , that is bilinear, commutative, and satisfies the property

x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) where x2 = x ◦ x.

We assume in addition that J is Euclidean (or formally real), satisfying: x2+y2 = 0
implies x = y = 0.

Then J has a multiplicative unit element e (x ◦ e = x). An element x is called
invertible, if there exists an element x−1, such that x◦x−1 = x−1◦x = e. We denote
by L(x) the symmetric linear operator (x ◦ ·) : J → J . L(x) is invertible precisely
when x is. We say that x and y operator-commute when L(x)L(y) = L(y)L(x).

An element c is called an idempotent, if c ◦ c = c. It is primitive, if it cannot be
composed by summing from other idempotents. A complete orthogonal system of
primitive idempotents or a Jordan frame c1, . . . , cr is such that ci ◦ cj = 0 for i 6= j,
and

∑r
j=1 cj = e. The number r is the rank of J .

It turns out that for each x ∈ J , there exist unique real numbers ζ1, . . . , ζr, called
the eigenvalues of x, and a Jordan frame c1, . . . , cr, such that x =

∑r
j=1 ζici. If all

the eigenvalues are positive, x is called positive-definite. The number of non-zero
eigenvalues is the rank of x. Powers of x may be defined as xα :=

∑
j ζ

α
i ci when

meaningful. We may also define the determinant detx :=
∏
j ζj , and the trace

trx :=
∑

j ζj .
The trace may be used to define the inner product 〈x, y〉 := tr(x ◦ y), which is

positive-definite and associative, satisfying 〈L(x)y, z〉 = 〈y, L(x)z〉. We may also
define the norms ‖x‖F :=

√∑
j ζ

2
j =

√
〈x, x〉 and ‖x‖2 := maxj |ζj |. According to

[25, Lemma 4], we have ‖x ◦ y‖F ≤ ‖x‖2‖y‖F ≤ ‖x‖F ‖y‖F .
The quadratic presentation of x is defined as Qx := 2L(x)2−L(x2). It turns out

that the invertibility of x is equivalent to the invertibility of Qx as well. Important
properties, which can be found in [26], include Qkx = Qxk , QQxy = QxQyQx,
Qxx

−1 = x, and Qxe = x2.
Also denote Qx,y := L(x)L(y) + L(y)L(x) − L(x ◦ y). Then Qx = Qx,x. For a

Jordan frame c1, . . . , cr, Qci,cj = 2L(ci)L(cj) = 2L(cj)L(ci) for i 6= j, and the
operators Qci (i = 1 . . . r) and 2Qci,cj (i < j) form a complete set of orthogonal
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projection operators in J . More precisely, R(Qci) = {x | L(ci)x = x} = Rci and
R(Qci,cj ) = {x | L(ci)x = L(cj)x = x/2} for i 6= j, as follows from the theory
of Peirce decompositions. If x =

∑r
i=1 ζici, then L(x) =

∑
i ζiQci +

∑
i<j(ζi +

ζj)Qci,cj =
∑

i,j(ζi + ζj)Qci,cj/2.

Example 2.1 Consider the space Em+1 of m+ 1 element vectors x = (x0, x̄) with
x0 ∈ R and x̄ ∈ Rm. Define the operator ◦ on Em+1 as

x ◦ y = (xT y, x0ȳ + y0x̄).

Then (Em+1, ◦) is a Euclidean Jordan algebra with inner product 〈x, y〉 = 2xT y,
identity e = (1, 0), and rank r = 2. The operator L(x) is given by

L(x) = Arw(x) :=
[
x0 x̄T

x̄ x0I

]

with I the identity matrix. Denote R :=
[

1 0
0 −I

]
. Then detx = xTRx = (x0)2−‖x̄‖2,

and x−1 = Rx/detx when detx 6= 0.

2.3. Symmetric cones

The cone of squares of J is defined as K = K(J ) := {x2 | x ∈ J }. It turns out that
the cones generated this way are precisely the so-called symmetric cones, and are
the same as the self-scaled cones of Nesterov and Todd [20]. Important properties
include [7, 17]

(i) intK = {x ∈ J | x is positive-definite} = {x ∈ J | L(x) pos. def.}.
(ii) 〈x, y〉 ≥ 0 for all y ∈ K iff x ∈ K, and
(iii) 〈x, y〉 > 0 for all y ∈ K \ {0} iff x ∈ intK.
(iv) Qx for x ∈ intK maps K onto itself.
(v) For x, y ∈ intK, there is a unique a ∈ intK, such that x = Qay.

(vi) For any x, y ∈ K, 〈x, y〉 = 0 iff x ◦ y = 0 [9].

In relation to (barrier) interior point methods, the following properties are partic-
ularly important:

(vii) B(x) := − log(detx) tends to infinity as x goes to bdK.
(viii) ∇B(x) = −x−1, ∇2B(x) = Qx when differentiated wrt. 〈·, ·〉.
(ix) ‖y‖x := ‖Q−1/2

x y‖F defines a local norm around x ∈ intK, such that ‖y −
x‖x = ‖Q−1/2

x y − e‖F ≤ 1 implies y ∈ K. (This follows by considering the
eigenvalue definition of ‖ · ‖F , and the onto-property of Qx; cf. also [20].)

Example 2.2 For the Jordan algebra of quadratic forms Em+1, we get the so-called
second order cone, K = {x | x0 ≥ ‖x̄‖}.

Definition 2.3: We say that two elements p, d ∈ K are strictly complementary,
if p ◦ d = 0, and p+ d ∈ intK [21, 26].

Lemma 2.4: Suppose that p, d are strictly complementary. Then p◦∆d+d◦∆p =
0 iff (∆p,∆d) = (L(p)η,−L(d)η) for some η ∈ J .

Proof : Since p ◦ d = 0, there exists a common Jordan frame c1, . . . , cr and eigen-
values ζ1, . . . , ζr ≥ 0 and σ1, . . . , σr ≥ 0 with ζiσi = 0 and ζi + σi > 0, such
that p =

∑
i ζici, and d =

∑
i σici. Therefore, recalling the representation of
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L(p) =
∑

i,j(ζi + ζj)Qci,cj/2 and L(d) =
∑

i,j(σi + σj)Qci,cj/2, we have

L(p)∆d+ L(d)∆p = 0 ⇐⇒ Qci,cj
(
(ζi + ζj)∆d+ (σi + σj)∆p

)
= 0 for all i, j.

Note that always either ζi + ζj > 0 or σi + σj > 0, so that ζi + ζj = 0 forces
Qci,cj∆p = 0, and the other way around. Consequently, ∆p is proportional to ∆d
on R(Qci,cj ). Therefore ∆p,∆d ∝ Qci,cjη for some η ∈ J , which may be chosen
the same for all i, j by orthogonality of the projection operators Qci,cj . The correct
proportionality factors are given by the choice ∆p = L(p)η and ∆d = −L(d)η for
some η ∈ J .

On the other hand, strictly complementary p and d operator-commute (as seen
from the Q-decomposition of L; cf. [26, Theorem 27]), so the equality follows from
the representation. �

3. The objective function

3.1. A class of convex functions

We will now consider convex functions on Rm of the form (1). That is,

f(y) := sup{〈B∗y + c, p〉 | p ∈ K, Ap = b} = σV (B∗y + c), (3)

where K is a symmetric cone with associated Jordan algebra J , A : J → RmA and
B : J → Rm (m > 0) are linear mappings, c ∈ J , V := {p ∈ K | Ap = b}, and σV
is the support function of V . We require that

N (B∗;A∗) = {0}, (4)

N (A) ∩ K = {0}, and (5)

b ∈ A(intK). (6)

Example 3.1

(i) If K is the second-order cone on Em+1, Ap := p0 = 〈e/2, p〉 (recalling that
the inner product on Em+1 is two times the standard Rm+1 inner product)
b := 1, c := (0,−a/2), and Bp := p̄ (whence B∗y = (0, y/2)), we get
f(y) = sup{(y − a)T p̄ | 1 = p0 ≥ ‖p̄‖} = ‖y − a‖.

(ii) Weighted sums
∑n

k=1 ‖Wk(y − ak)‖ of Euclidean norms can be repre-
sented by a straightforward extension: p = (p1, . . . , pn) ∈ Kn, Ap :=
(p0

1, . . . , p
0
n), b ≡ 1, B∗y := ((0,W1y), . . . , (0,Wny))/2, and c :=

−((0,W1a1), . . . , (0,Wnan))/2.
(iii) Finally, if we instead set Ap :=

∑n
k=1 p

0
k and b = 1, the supremum favours

maximum 〈Wk(y − ak), p̄〉. We therefore have f(y) = maxk=1,...,n ‖Wk(y −
ak)‖. Likewise, maxj=1,...,n

∑
k 6=j ‖Wk(y−ak)‖may be presented in the form

(3) with the help of slack variables (A(p, θ) := (p0
1+θ1, . . . , p

0
n+θn,

∑
i θi) ≡

1, θi ∈ [0,∞) = E0+1, etc.).

Lemma 3.2: Assumptions (4)–(6) imply

(i) V is bounded with non-empty relative interior.
(ii) If A∗λ ∈ K and 〈b, λ〉 = 0, then λ = 0.

Proof : (i) There is a pb ∈ intK such that Apb = b. Also N (A) 6= {0} by (4).
Thus V = (pb +N (A)) ∩ K has non-empty relative interior. A standard argument
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employing (5) shows boundedness.
(ii) Let U be a neighbourhood of pb in K. We have 〈p,A∗λ〉 ≥ 0 for all p ∈ K,

and in particular 〈pb, A∗λ〉 = 〈b, λ〉 = 0. But then, since N (A∗) = {0}, there is a
p′ ∈ U with 〈p′, A∗λ〉 < 0 unless λ = 0. �

Recall that the ε-subdifferential of a convex function f with respect to the inner
product 〈·, ·〉 is defined as [15]

∂εf(y) := {z | f(y′)− f(y) ≥ 〈z, y′ − y〉 − ε for all y′}.

Since the relative interior of V is non-empty by Lemma 3.2 above, the tools of
convex analysis (see, e.g., [15, Chapter XI]) yield for f defined by (3) that

∂εf(y) = B∂εσV (B∗y + c)

= {Bp | 〈p, d〉 ≤ ε, Ap = b, B∗y +A∗λ+ d+ c = 0, p, d ∈ K}.
(7)

Remark 3.1 : The set of equations for 0 ∈ ∂εf(y) are very similar to the standard
primal-dual equations for barrier methods, but without an explicit central path
(p ◦ d = µe) selected. Indeed, let fµ(y) := supp∈V {〈B∗y + c, p〉 + µ log(det p)} be
a barrier-smoothing of f . It is differentiable because log(det p) is strictly concave
in intK (with ∇2 log(det p) = −Qp), and we have ∇fµ(y) = B{p ∈ V | B∗y + c+
µp−1 ∈ −NV (p)} = {Bp | Ap = b, B∗y + A∗λ + c + d = 0, p ◦ d = µe, p, d ∈ K},
using d = µp−1.

After we look at the difference of functions of type (3) shortly, we will be doing
some second-order analysis, where we need the following notion of non-degeneracy.
Conditions ensuring this will be further discussed in Section 3.4.

Definition 3.3: We say that a strictly complementary pair (p, d) is non-
degenerate relative to a subspace X ⊂ J , if (L(d)η, L(p)η) ∈ R(A∗)× (X ∩N (A))
implies η = 0.

Example 3.4 Consider the base case of Example 3.1. At y = a, we have d = 0 and
strict complementarity holds for p = (1, p̄) with ‖p̄‖ < 1. As L(p) is non-singular,
(p, d) is not non-degenerate (relative to J ), but it is non-degenerate relative to
N (B) = Re = R(A∗).

3.2. Taking the difference

Let f be of the class (3), and subscript the data and variables as Bf , Af , cf , bf ,
Kf , etc. Let ν be another function in this class, with similar subscripts. Now let
fν := f − ν, making fν a diff-convex function; see e.g. [14, 16] for an overview of
the theory of this general class of functions.

Example 3.5 Recalling from Example 3.1 that sums and maxima of (matrix-
scaled) Euclidean distances can be represented in the form (3), we find that e.g.
the multisource Weber problem objective function

(y1, . . . , yK) 7→
n∑
k=1

min
i
‖ak − yi‖ =

n∑
k=1

K∑
i=1

‖ak − yi‖ −
n∑
k=1

max
j=1,...,K

∑
i 6=j
‖ak − yi‖

has the form fν . So does the clustering objective ȳ 7→
∑n

k=1

∑K
i=1 ‖ak − yi‖ −

λ
∑

i<j ‖yi − yj‖ considered in [30], as well as the reformulations of the Euclidean
TSP based on the above clustering criteria in [29].
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Our objective is then to minimise fν , or at least find an approximately critical
point. Recall that when ν is strictly differentiable, ∂◦fν(y) = ∂f(y) − ∇ν(y) for
the subdifferential of Clarke [5], among others. But at other points this does not
necessarily hold. Nevertheless, in trying to minimise fν , we may have to content
ourselves with semi-critical points (cf. [2, 30]), where it holds

0 ∈ ∂f(y)− ∂ν(y) or, equivalently ∂f(y) ∩ ∂ν(y) 6= ∅.

It is natural to extend this definition to ε-semi-critical points, mimicking the ε-
subdifferential formula for sums of convex functions (cf. [15])

0 ∈ ∂DC
ε fν(y) :=

⋃
{∂ε1f(y)− ∂ε2ν(y) | ε1 + ε2 = ε, ε1, ε2 ≥ 0}.

Now, note that the condition

tr pf ◦ df ≤ ε1 and tr pν ◦ dν ≤ ε2 for some ε1 + ε2 = ε, ε1, ε2 ≥ 0

reduces to tr(pf , pν) ◦ (df , dν) ≤ ε in the product algebra J := Jf × Jν . Thus,
recalling the representation of ∂εf from (7), we actually get with A := (Af , Aν),
B := (Bf ;Bν), B− := (Bf ;−Bν), c := (cf , cν), and b := (bf , bν) that

∂DC
ε fν(y) = {B−p | Ap = b, B∗y +A∗λ+ d+ c = 0, tr p ◦ d ≤ ε, p, d ∈ K}.

Note that the non-degeneracy condition relative to N (B) is equivalent to that
relative to N (B−): supposing it did not hold for one, replacing η = (ηf , ην) with
(ηf ,−ην) in the definition, shows that it does not hold for the other, for L(p)η ∈
N (A) and L(d)η ∈ R(A∗) are unaffected by such change.

3.3. Second order behaviour

In order to derive a second-order or Newton-type method for minimising fν , we
now study the second order derivative. Because of possible non-differentiability of
fν , we employ “graphical” notions of differentiation from [24], which we have briefly
introduced in Section 2.

Let begin by setting

Sε := {(p, d) ∈ K ×K | Ap = b, B∗y +A∗λ+ c+ d = 0, tr p ◦ d ≤ ε},

G(p, d) := ((I; 0)(B∗;A∗)†(−d− c), B−p), and

G−1
ε (v) := {(p, d) ∈ Sε | G(p, d) = v}. (8)

Then ∂DC
ε fν(y) = {z | (y, z) ∈ GSε}, and it is possible to show (see [28])

D(∂DC
ε fν)(y|z)(∆y) ⊃

⋃
(p,d)∈G−1

ε (y,z)

{∆z | (∆y,∆z) ∈ ∇G(p, d)TSε(p, d)}

with equality for ε = 0 when all (p, d) ∈ G−1
ε (y, z) are strictly complementary and

non-degenerate relative to N (B−).
The information in D(∂DC

ε fν) is not quite sufficient for our needs, however, so
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we extend it. More specifically, we let Ĝ(p, d) := (G(p, d), p ◦ d),

Ĝ−1
ε (y, z, q) := {(p, d) ∈ Sε | Ĝ(p, d) = (y, z, q)},

and consider

∂̂DC
ε fν(y) := {(z, q) | (y, z, q) ∈ ĜSε}.

We may regard the q-component of ∂̂DCfν as indicating a specific “selection”
y 7→ {z | (z, q) ∈ ∂̂DC

ε fν(y)} within ∂DC
ε fν , approximating the differences of sub-

gradients of f and ν. In particular, the selections q = (ε/r)e give the gradients
of barrier-approximations to fν ; see Remark 3.1. So ∂DC

ε fν is then a bundle with
the information of the particular approximation lost, whereas ∂̂DC

ε fν retains that
information. D(∂̂DC

ε fν)(y|z, q) then combines the gradient of a selection with inter-
selection differential information.

The following assumption will be used frequently in what follows. Conditions
ensuring the stated requirements will be further discussed in Section 3.4. Note
that it may happen that p ◦ d 6∈ K.

Assumption 3.6: Let (z, q) ∈ ∂̂DC
ε fν(y). Then q = 0 (resp. q ∈ K \ {0}) and

all (p, d) ∈ Ĝ−1
ε (y, z, q) are strictly complementary and non-degenerate relative to

N (B−) (resp. p, d ∈ intK).

We now get the following results. Due to space constraints, we refer to [28] for
the proofs.

Theorem 3.7 : Suppose Assumption 3.6 holds and ε > 0 (resp. ε = 0). Then

(∆z,∆q) ∈ D(∂̂DC
ε fν)(y|z, q)(∆y)

if and only if for some (p, d) ∈ Ĝ−1
ε (y, z, q) and (∆p,∆d,∆λ), we have

tr ∆q ≤ ∞(ε− tr p ◦ d) (resp. ∆q = 0), (9)

B∗∆y +A∗∆λ+ ∆d = 0, (10)

A∆p = 0, (11)

B−∆p = ∆z, (12)

p ◦∆d+ d ◦∆p = ∆q. (13)

Moreover, for ε = 0, we have ∂̂DCfν(y) = ∂DCfν(y)× {0}.

In the interior point methods that we will develop in the next section, it is of
importance to know when we can solve (0,∆q) ∈ D(∂̂DC

ε fν)(y|z, q)(∆y) for ∆y
with fixed ∆q, along with obtaining (∆p,∆d). The following result provides one
condition towards that end.

Lemma 3.8: Suppose Assumption 3.6 holds along with the following second order
condition: 0 ∈ D(∂̂DC

ε fν)(y|z, q)(∆y) implies ∆y = 0. Then the system (10)–(13) is
solvable for (∆p,∆d,∆y,∆λ) in a neighbourhood (in K×K) of (p, d) ∈ Ĝ−1

ε (y, z, q).

Remark 3.2 : When fν is twice continuously differentiable at y, we have
D(∂DCfν)(y|z)(∆y) = ∇2fν(y)∆y. Thus the second order condition reduces to
non-singularity of the Hessian.
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3.4. Non-degeneracy

The following results ensure relative non-degeneracy, uniqueness, and Assumption
3.6. We often use

Assumption 3.9: K =
∏mA

i=1Ki for symmetric cones Ki (in a Jordan algebra
Ji of rank ri), and Ap = (〈a′1, p1〉, . . . , 〈a′mA

, pmA
〉) with a′i ∈ intKi when p =

(p1, . . . , pmA
), pi ∈ Ki .

Lemma 3.10: Suppose Assumption 3.9 holds and b > 0. Then (5)–(6) hold, and
(p, d) ∈ S0 and L(d)η ∈ R(A∗) imply L(d)η = 0.

Proof : Assumptions (5)–(6) are immediate from the form of A. If L(d)η = A∗λ,
we may assume λ ≥ 0: by the independence of L(d) on the sub-algebras corre-
sponding to the Ki, by negating components, we could find such a λ′ ≥ 0 and η′

for which this holds. Therefore, unless λ = 0,

〈a′i, pi〉 = bi > 0 (14)

implies 0 < 〈b, λ〉 = 〈p,A∗λ〉 = 〈p, L(d)η〉 = 〈p ◦ d, η〉 = 0. This is a contradiction,
whence L(d)η = 0. �

Lemma 3.11: Suppose that B−p = (
∑

iW1ipi, . . . ,
∑

iWNipi) in addition to As-
sumption 3.9. Let B′− denote B− with those Wji removed, (j = 1, . . . , N) for which
di has rank ri − 1, (i = 1, . . . ,mA). Denote by A′ the corresponding modification
of A. Then L(p)η = 0 if

N (A′) ∩N (B′−) = {0}, (15)

(p, d) ∈ S0, L(d)η = 0, and L(p)η ∈ N (A) ∩ N (B−). Consequently, strict comple-
mentarity of (p, d) ∈ S0 and (15) imply non-degeneracy wrt. N (B−).

Proof : If di has rank ri − 1, then pi is proportional to a single primitive idem-
potent c complementary to di. This and L(di)ηi = 0 imply that ηi ∈ R(Q∗c) =
R(Qc) = Rc (as can be seen from the Q-decomposition of L(p)). Consequently
si := L(pi)ηi ∝ pi. But then si ∈ ±Ki, which is in contradiction to 〈a′i, si〉 = 0
unless si = 0, since a′i ∈ intKi. Therefore L(pi)ηi = 0, and we may consequently
remove the corresponding terms from the equations B−L(p)η = 0 and AL(p)η = 0.
The resulting equation has no non-zero solution when N (A′) ∩N (B′−) = {0}.

As for the final claim, Lemma 3.10 reduces the non-degeneracy requirement rela-
tive to N (B−) into (L(d)η, L(p)η) ∈ {0}× (N (A)∩N (B−)) implying η = 0. Since
L(d+ p) is invertible when p and d are strictly complementary, it suffices to show
that L(p)η = 0. The first part of this lemma did that. �

Corollary 3.12: Suppose each Ji has rank ri = 2 (i.e. Ki is isomorphic to the
second order cone), and N (Wji) ∩ N (〈a′i, ·〉) = {0}. Then strictly complementary
(p, d) are non-degenerate relative to N (B−) when for each j = 1, . . . , N , at most
one di = 0 with Wji 6= 0.

Proof : When di 6= 0, pi 6= 0 is proportional to a single primitive idempotent.
Consequently B′− has just one non-zero Wji on each row. By assumption N (Wji)∩
N (〈a′i, ·〉) = {0}, so (15) holds. Lemma 3.11 now shows non-degeneracy. �

The following results prove and simplify Assumption 3.6 through uniqueness.

Lemma 3.13: Suppose (p, d) ∈ Ĝ−1
0 (y, z, 0) is strictly complementary and non-

degenerate wrt. N (B−). Then it is unique. In particular, Assumption 3.6 holds.
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Proof : Suppose (p + ∆p, d + ∆d) ∈ Ĝ−1
0 (y, z, 0). Then ∆d ∈ R(A∗) and ∆p ∈

N (A)∩N (B−). Consequently tr ∆p ◦∆d = 0. As p ◦ d = (p+ ∆p) ◦ (d+ ∆d) = 0,
taking the trace we then find that tr(p ◦∆d + d ◦∆p) = 0. This says that tr(p +
α∆p)◦(d+α∆d) = 0 for all α ∈ [0, 1]. Because p+α∆p, d+α∆d ∈ K by convexity,
we find that (p + α∆p) ◦ (d + α∆d) = 0. Differentiating (p + α∆p) ◦ (d + α∆d)
at α = 0, we find p ◦ ∆d + d ◦ ∆p = 0. Now strict complementarity and Lemma
2.4 imply (∆p,∆d) = (L(p)η,−L(d)η) for some η ∈ J . By non-degeneracy η = 0.
Therefore, (p, d) is unique. �

Lemma 3.14: Suppose p, d ∈ K and q = p ◦ d ∈ intK. Then p, d ∈ intK, so
Assumption 3.6 holds.

Proof : If d ∈ bdK, there is a v ∈ K\{0} such that v ◦d = 0 (as this is equivalent
to 〈v, d〉 = 0). Now, 〈v, q〉 = 〈v, p ◦ d〉 = 〈v ◦ d, p〉 = 0, in contradiction to q ∈ intK.
The case p ∈ bdK is analogous. �

Example 3.15 Suppose f(y) =
∑n

i=1 ‖y − ci‖ and ci 6= cj for i 6= j. Strict
complementarity implies non-degeneracy and Assumption 3.6, because at most
one term is non-differentiable at a single point, with corresponding pi ∈ intKi,
and 〈a′i, pi〉 = p0

i , Wjipi = p̄i. Thus the linear independence condition N (Wji) ∩
N (〈a′i, ·〉) = {0}. holds. Similar results hold for more complex combinations of
norms; cf. also [23, Section 3].

3.5. Scaling

The following scaling invariance of the presentation of f , and by extension fν , holds
with respect to the automorphisms of the cone K.

Lemma 3.16: Let f have the representation (3), and let v ∈ intK. Define

f̃(y) := sup{〈B˜ ∗y + c˜, p̃〉 | p̃ ∈ K, A˜ p̃ = b}

with B˜ := BQ−1
v , A˜ := AQ−1

v , and c˜= Q−1
v c. Then f̃ = f with p̃ = Qvp producing

the same value. In the representation of ∂εf , same result is produced with d˜ = Q−1
v d.

Proof : Firstly note that assumptions (4)–(5) continue to hold after scaling, so f̃
has the required form (3). Now the claims follow in a straightforward manner from
Qv being a bijection in K. �

Remark 3.3 : The scaling invariance extends to fν and ∂DC
ε fν in the obvious way.

Note, however, that the q of (z, q) ∈ ∂̂DC
ε fν(y) generally depends on the scaling. In

the special case of the “central selection” q = µe, it is unaffected, as seen from [26,
Lemma 28] for µ > 0 and from the basic properties of symmetric cones for µ = 0.

4. A primal-dual interior point method

4.1. On interior point methods for the convex case

Suppose we’re given a point 0 ∈ ∂εf(y). To minimise f , we want to reduce ε, while
at the same time keeping the constraint 0 ∈ ∂εf(y). Thus we want to choose a
direction ∆y such that 0 ∈ D(∂εf)(y|0)(∆y) and ε can be reduced afterwards. If
(y, 0) ∈ int Graph ∂εf(y), any direction satisfies this. When we additionally want to
be moving towards a “central selection” from a selection q with (0, q) ∈ ∂̂εf(y), we
require that (0,∆q) ∈ D(∂̂εf)(y|0, q)(∆y) for ∆q := σµe − q, µ = µ(q) := tr q/r,
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and a chosen σ ∈ (0, 1). We may think of ∆q consisting of a “tangential step”
(σ − 1)µe aiming to reduce µ or ε, and a “normal step” µe − q aiming to move
closer to the central selection for ∂rµf .

Suppose furthermore that we have (p, d) ∈ Ĝ−1
ε (y, 0, q), and want to make our

movement in the neighbourhood of (p, d). Then q = p ◦ d and we arrive from
(∆y, 0, σµe− q) ∈ ∇Ĝ(p, d)TSε(p,d) into the system

A∆p = 0, B∆p = 0,

B∗∆y +A∗∆λ+ ∆d = 0,

p ◦∆d+ d ◦∆p = σµe− p ◦ d,

∆p ∈ TK(p),∆d ∈ TK(d).

When p, d ∈ intK and p ◦ d ∈ K, the linear system is solvable. By iterating steps
in directions found this way after suitable scaling and step length selection, we
get the usual primal-dual interior point method for linear programs on symmetric
cones; see [1, 8, 9, 18, 20, 25, 26].

Whereas typically the “interior” refers to the interior of a constraint set, and
the above system of equations have been derived through either the use of barrier
functions, or by perturbation of the KKT conditions, here the conditions have
been derived through subdifferential analysis, and we can alternatively consider
to be moving in the interior of ∂εf and even the set ĜS∞ = Graph ∂̂∞f , while
maintaining the ε-optimality constraint 0 ∈ ∂εf(y), reducing ε by a constant factor
at each iteration. Additionally, we try to stay close to a “central selection” p ◦ d =
µe, corresponding to the differential of a smoothing of f by a barrier function.

4.2. Solvability in the diff-convex case

Our objective is now analogous to the convex case: given (0, q) ∈ ∂̂DC
ε fν(y) and

(p, d) ∈ Ĝ−1
ε (y, 0, q), we try to solve (0,∆q) ∈ D(∂̂DC

ε f)(y|0, q)(∆y) near (p, d).
When p, d ∈ intK and ∆q = σµe − p ◦ d, the resulting set of equations may then
according to Theorem 3.7 be written

A∆p = 0, B−∆p = 0, (16)

B∗∆y +A∗∆λ+ ∆d = 0, (17)

p ◦∆d+ d ◦∆p = σµe− p ◦ d. (18)

This differs from the convex case by the use of B− instead of B in the condition for
∆p. Consequently, we run into the following two problems in a direct generalisation
of the methods for convex problems: (a) we may have 〈∆p,∆d〉 6= 0, and (b)
the system may not have a solution for any specific value of ∆q. Therefore other
strategies are needed for global convergence. But let us first analyse how far a
direct generalisation goes, and its convergence properties.

According to the results of Section 3.3 and Lemma 3.8 in particular, the system
(16)–(18) can be solved at least locally in the neighbourhood of a point y aris-
ing from relatively non-degenerate and strictly complementary (p, d), and where
0 ∈ D(∂̂DCfν)(y|0)(∆y) implies ∆y = 0. Furthermore, this second order condition
reduces to non-singularity of the Hessian when fν is twice continuously differen-
tiable.

Likewise, by the same lemma, the system (16)–(18) is solvable near nicely-
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behaving selections of ∂̂DC
ε fν . Also, since central selections q = µe ∈ K, µ > 0,

are unaffected by scaling as remarked in Section 3.5, the same applies to scaled
representation of f near central selections. Some further technical discussion on
solvability may be found in [28].

4.3. Neighbourhoods

Let P⊥e q := q − 〈e, q〉e/r be the projection of q to the subspace orthogonal to e.
If the spectrum of q is {ζi(q)}, then by the e-sum property of Jordan frames, the
spectrum of P⊥e q is {ζi(q) − µ(q)} with µ(q) :=

∑
j ζj(q)/r = tr q/r. Now, define

the distance functions

d•(p, d) := ‖P⊥e Q1/2
p d‖• and d∗•(p, d) := ‖P⊥e (p ◦ d)‖•,

with • ∈ {F, 2,−∞} and, abusing norm notation for the sake of convenience,
‖s‖−∞ := −mini ζi(s). For P⊥e q we then get ‖P⊥e q‖−∞ = µ(q) − min ζi(q),
‖P⊥e q‖F =

√∑
i(ζi(q)− µ(q))2, and ‖P⊥e q‖2 = maxi |ζi(q)− µ(q)|.

When p, d ∈ intK, we know from the effects of P⊥e on the spectrum and [26,
Proposition 21 and Lemma 30], that d•(d, p) = d•(p, d) ≤ d∗•(p, d) = d∗•(d, p) for
p, d ∈ intK. When p and d operator-commute, equality holds as then p◦d = Q

1/2
p d.

Now, let γ ∈ (0, 1), and for • ∈ {F, 2,−∞} define the corresponding short,
semi-long, and long-step neighbourhoods of K ×K as

C•(γ) := {(p, d) ∈ intK × intK | d•(p, d) ≤ γµ(p ◦ d)} and

C∗•(γ) := {(p, d) ∈ intK × intK | d∗•(p, d) ≤ γµ(p ◦ d)},

We then have C∗•(γ) ⊂ C•(γ), as well as CF (γ) ⊂ C2(γ) ⊂ C−∞(γ), and likewise for
the starred neighbourhoods. The unstarred neighbourhoods are scaling-invariant,
i.e., (p, d) ∈ C•(γ) implies (p̃, d˜) = (Qvp,Q−1

v d) ∈ C•(γ) for v ∈ intK by [26,
Proposition 29]. Furthermore, a scaling that results in operator-commutative (p̃, d˜)ensures that (p̃, d˜) ∈ C∗•(γ) for (p, d) ∈ C•(γ).

In the method we keep (p, d) in an appropriate γ-neighbourhood to ensure de-
sirable properties, such as p ◦ d ∈ intK (cf. Lemma 3.14).

4.4. Rate of convergence

We now provide some rate of convergence properties, assuming we have a solution
(∆p,∆d) of (16)–(18). The proofs here follow the outline of [26, Section 3], gen-
eralising where necessary to accommodate 〈∆p,∆d〉 6= 0, and also to rely less on
operator-commutativity. We note that our analysis does not actually depend on
the exact form of the linear equations (16)–(17). These conditions merely act as
source of proximity to singularities for the whole system, and therefore the analysis
could easily be applied to other linear systems sharing (18), arising from optimality
conditions for more general classes of problems.

So, let us set

p(α) := p+ α∆p, d(α) := p+ α∆d, µ(α) := tr p(α) ◦ d(α)/r. (19)
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Then, denoting ∆ := ∆p ◦∆d,

rµ(α) = tr p ◦ d+ α tr(p ◦∆d+ d ◦∆p) + α2 tr ∆p ◦∆d

= rµ+ α(σ − 1)rµ+ α2 tr ∆

= (1− α)rµ+ ασrµ+ α2 tr ∆.

(20)

The linear constraints of (p(α), d(α)) ∈ Srµ(α) obviously automatically continue
to hold for any α. The next lemma bounds the non-linear constraints.

Lemma 4.1: If (p, d) ∈ C∗•(γ) for some • ∈ {F, 2,−∞}, then (p(α), d(α)) ∈
C∗•(γ) ∪ C0 for α ∈ [0, ᾱ], where

ᾱ :=


σ/κ, κ ≥ σ,
1/(1− σ/2), κ = 0,√

(1− σ/2)2/κ2 + 2/κ− (1− σ/2)/κ, 0 6= κ ∈ (−(1− σ/2)2/2, σ),
∞, otherwise,

(21)

and κ := (‖P⊥e ∆‖F − γ tr ∆/r)/(γµ). When κ < σ, then ᾱ > 1.

Proof : It suffices to prove that for α ∈ (0, ᾱ), ‖P⊥e (p(α) ◦ d(α))‖• < γµ(α). For,
as follows from the relationships presented in Section 4.3, then the same holds for
• = −∞, and consequently

(1− γ)µ(α) < min
i
ζi(p(α) ◦ d(α)) ≤ min

i
ζi(Q

1/2
p(α)d(α)),

where the second inequality is proved in [26, Lemma 30], and applies when p(α) ∈
intK. But then, taking the power of r on both sides, we get

((1− γ)µ(α))r < det(Q1/2
p(α)d(α)) = det(p(α)) det(d(α)),

applying [7, Proposition III.4.2] on subalgebras for the equality. Now, by the con-
tinuity of the involved quantities in α, this condition would be violated if at some
point either p(α) or d(α) reached bdK while still µ(α) > 0. But if µ(α) = 0, we
must also have ‖P⊥e (p(α) ◦ d(α))‖• = 0, whence α = ᾱ. Thus (p(α), d(α)) ∈ C0,
and we have a solution to the problem.

We have

P⊥e (p(α) ◦ d(α)) = P⊥e (p ◦ d) + αP⊥e (p ◦∆d+ d ◦∆p) + α2P⊥e (∆d ◦∆p)

= P⊥e (p ◦ d) + αP⊥e (σµe− p ◦ d) + α2P⊥e ∆

= (1− α)P⊥e (p ◦ d) + α2P⊥e ∆.

To approximate the norm, for • = F we can use the triangle inequality, whereas for
• = 2,−∞, we apply [26, Lemma 14], which states that for x, y ∈ J , −min ζi(x+
y) ≤ −min ζi(x) + ‖y‖F , and max ζi(x+ y) ≤ max ζi(x) + ‖y‖F . Therefore, for all
• ∈ {F, 2,−∞}, we have the approximation

‖P⊥e (p(α)◦d(α))‖• ≤ |1− α| ‖P⊥e Q1/2
p d‖•+α2γ‖P⊥e ∆‖F ≤ |1− α| γµ+α2‖P⊥e ∆‖F .
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Comparing this approximation against µ(α) from (20), we get that

‖P⊥e (p(α) ◦ d(α))‖ ≤ γµ(α)

if

α2‖P⊥e ∆‖F ≤ (1− α− |1− α|+ ασ)γµ+ γα2 tr ∆/r,

i.e., α2κ ≤ (1− α− |1− α|+ ασ).
Suppose we have equality at 0 < α ≤ 1. Then κ ≥ σ, and we get the bound in

(21). On the other hand, if κ < σ, the inequality holds strictly for all α ∈ (0, 1]. So
equality is reached at α > 1, and we get the bound in (21) by solving the quadratic
equation α2κ− 2 + α(2− σ) = 0. When κ 6= 0, there are potentially two solutions,

α =
−(1− σ/2)±

√
(1− σ/2)2 + 2κ
κ

,

but the bound in (21) is the one we want. This follows for κ > 0, because the
other solution is negative. For κ < 0 this follows from observing that a quadratic
function with a negative quadratic term, which is also negative and increasing at
α = 0, has only positive roots, if any. Therefore, the smaller root, if any, gives the
bound, and otherwise it is infinite. Solving for the term under the square root to
equal zero gives the lower bound for the applicability of the expression in (21). �

Suppose tr ∆ > 0. Then, minimising µ(α) over α ≥ 0, we get σµ = 2α̌ tr ∆,
or α̌ := (1 − σ)/(2κ̌) with κ̌ := tr ∆/(rµ). For convenience, we set α̌ = ∞ when
tr ∆ ≤ 0.

Lemma 4.2: Assume the conditions of Lemma 4.1. Let α̂ := min{ᾱ, α̌}. Then

δ := 1− µ(α̂)/µ ≥ (1− σ)α̂/2. (22)

Proof : When tr ∆ > 0, α̌ ≥ α is equivalent to κ̌α ≤ (1−σ)/2. Then we find from
(20) that

µ(α)/µ− 1 = (σ − 1)α+ α2κ̌ ≤ (σ − 1)α+ (1/2)(1− σ)α = (1/2)(σ − 1)α.

When tr ∆ ≤ 0, the same result continues to hold because α2κ̌ ≤ 0 may be dropped,
and σ − 1 < 0. Therefore the claim holds when α̌ ≥ ᾱ.

When α̌ ≤ ᾱ, we get that µ(α̌)/µ− 1 = (σ − 1)α̌ + (1− σ)α̌/2, which gives the
desired result. �

Therefore, to obtain fast decrease in µ, it suffices to bound α̂ from below. For,
given a lower bound δ̂ ≤ δ, a standard argument1 shows that δ̂−1 log τ−1 steps are
sufficient to ensure that µ ≤ τµ for an initial µ > 0 and desired decrease factor
τ ∈ (0, 1).

If κ < σ, then ᾱ > 1 from Lemma 4.1. Therefore in this case, it suffices to have
a bound for α̌ from below. Consequently, it suffices to bound both κ and κ̌ from
above. Let us see how far that can be done.

1Each step obtains a proportional decrease of at least 1− δ̂ in µ, so one obtains the condition τ ≤ (1− δ̂)k.

Now apply the approximation − log(1− δ̂) ≥ δ̂.
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Lemma 4.3: Let u, v ∈ J and let Hu and Hv be invertible linear operators on
J , with the induced norm ‖H‖F := maxx 6=0 ‖Hx‖F /‖x‖F . Then

‖u‖F ‖v‖F ≤
1
2
‖H−1

u ‖F ‖H−1
v ‖F

(
‖Huu‖2 + ‖Hvv‖2

)
.

Proof : We have ‖u‖F = ‖H−1
u Huu‖ ≤ ‖H−1

u ‖F ‖Huu‖F and likewise for v. Now
apply the inequality 2ab ≤ a2 + b2. �

Lemma 4.4: Suppose p, d, q = p◦d ∈ intK, and that (18) holds. Suppose H0 is an
invertible linear operator in J that satisfies H0q = q1/2 and H0e = q−1/2. Let Hd :=
H0L(p) and Hp := H0L(d). Then ‖Hd∆d‖2F + ‖Hp∆p‖2F = θ − 2〈Hp∆d,Hd∆d〉
with

θ := θ(q, σ) :=
r∑
i=1

(σµ(q)− ζi(q))2

ζi(q)
.

Proof : Multiplying (18) from the left by H0, we get

Hd∆d+Hp∆p = H0(σµe− p ◦ d) = σµq−1/2 − q1/2,

where ‖σµq−1/2 − q1/2‖2 = tr[(σµq−1/2 − q1/2)2] = θ. On the other hand,

‖Hd∆d+Hp∆p‖2F − 2〈Hd∆d,Hp∆p〉 = ‖Hd∆d‖2F + ‖Hp∆p‖2F . �

Combining Lemmas 4.3 and 4.4, we get the bound

‖∆p‖F ‖∆d‖F ≤
1
2
‖H−1

p ‖F ‖H−1
d ‖F (θ − 2〈Hp∆p,Hd∆d〉).

Now, if 〈Hp∆p,Hd∆d〉 ≥ 0, we may drop it. Otherwise, we have for β = 1 that

−〈Hp∆p,Hd∆d〉 ≤ β‖Hp∆p‖F ‖Hd∆d‖F ≤
β

2
(‖Hp∆p‖2F + ‖Hd∆d‖2F ).

If we can actually take β < 1, we get a geometrical series converging to the limit
(‖H−1

p ‖F ‖H−1
d ‖F /2)θ/(1− β), and thus the estimate

‖∆p‖F ‖∆d‖F ≤
‖H−1

p ‖F ‖H−1
d ‖F θ

2(1− β)
.

On the other hand, if β = 1 is the only option, we have −〈Hp∆p,Hd∆d〉 =
‖Hp∆p‖F ‖Hd∆d‖F , which says that H0L(d)∆p+ τH0L(p)∆d = 0 for some τ ≥ 0.
That is, L(d)∆p + τL(p)∆d = 0, which means (16)–(18) must be singular. Con-
sequently, if β ↗ 1, (p, d) must be approaching a singularity of the system. Suffi-
ciently far from a singularity, we thus get the following bounds.

Lemma 4.5: Suppose β ∈ [0, 1) and

−〈Hp∆p,Hd∆d〉 ≤ β‖Hp∆p‖F ‖Hd∆d‖F .

Then

κ ≤ (1/γ + 1/r)θ′ and κ̌ ≤ (1/r)θ′
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for

θ′ :=
‖H−1

p ‖F ‖H−1
d ‖F

2(1− β)µ
θ.

Consequently

δ−1 ≤ 2 max
{1/γ + 1/r
σ(1− σ)

θ′,
2/r

(1− σ)2
θ′,

1
1− σ

}
.

Proof : Note that we have both ‖∆‖F ≤ ‖∆d‖F ‖∆p‖F , as remarked in Section
2.2, as well as − tr ∆ ≤ ‖∆d‖F ‖∆p‖F . Thus κ ≤ (1 + γ/r)‖∆d‖F ‖∆p‖F /(γµ) and
κ̌ ≤. Approximating

‖∆d‖F ‖∆p‖F /µ ≤ θ′,

as discussed above, and noting that (1 + γ/r)/γ = 1/γ + 1/r, yields the claimed
bounds for κ and κ̌. Now apply these bounds in ᾱ−1 = κ/σ (κ ≥ σ) and α̌−1 =
2κ̌/(1− σ), and insert the results into (22), i.e., δ−1 ≤ 2α̂−1/(1− σ), to yield the
first two terms of the maximum expression. The last term is obtained by bounding
α̂ ≤ ᾱ ≤ 1. �

The following result ensures that θ/µ stays bounded in the neighbourhoods C•
under consideration.

Lemma 4.6: Suppose ‖P⊥e w‖• ≤ γµ(w) for γ ∈ (0, 1), w ∈ J . Then, for σ > 0,

θ(w, σ) ≤
(γ2 + (1− σ)2r

1− γ

)
µ(w) when • = F, and (23)

θ(w, σ) ≤
(

1− 2σ +
σ2

1− γ

)
µ(w)r when • = 2,−∞. (24)

Proof : See the proof of [26, Lemma 35], that actually only depends on the prop-
erties of w, not of s and x (p and d). �

It remains to consider Hp and Hd.

Lemma 4.7: Suppose p, d, q ∈ intK. Then in Lemma 4.4,

(i) We may take H0 = L(q)−1/2 or H0 = L(q−1/2).
(ii) When p and d operator-commute, we may take H0 = L(d)−1/2L(p)−1/2,

and get ‖H−1
p ‖F ‖H−1

d ‖F ≤
√

cond(H) for H := L(d)−1L(p).

Proof : (i) Clearly the operators are invertible. Furthermore, L(q)−1/2 = L(q−1/2)
on the space spanned by the eigenvectors of q. Therefore, for both alternatives,
H0q = q1/2 and H0e = q−1/2.

(ii) Since p, d ∈ intK operator-commute, H0 is symmetric and they share a
Jordan frame, wherefore qt = pt ◦ dt. Thus H0q = q1/2 and H0e = q−1/2. Also by
operator-commutativity Hd = H0L(p) = H1/2 and Hp = H0L(d) = H−1/2, so that
‖H−1

p ‖F ‖H−1
d ‖F = (‖H‖F ‖H−1‖F )1/2 =

√
cond(H). �

The results of this section are summarised in the following algorithm and theo-
rem, recalling that we may scale our representation of fν . For • = F , better

√
r

complexities could actually be obtained by limiting σ; see [26].

Algorithm 4.1: Interior point method for DC problems on symmetric cones
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(1) Choose target accuracy µ > 0, parameters γ, σ ∈ (0, 1), and an initial
iterate (p, d) ∈ C•(γ) ∩G−1

rµ (y, 0) for some • ∈ {F, 2,−∞} and y ∈ Rm.
(2) Choose a scaling Qv such that (p̃, d˜) ∈ C∗•(γ), and a H0 satisfying the

constraints of Lemma 4.4 wrt. (p̃, d˜).(3) Solve (∆p̃,∆d˜) from (16)–(18) if possible. Otherwise stop with failure.
(4) Update (p, d) := (Q−1

v p̃(α̂), Qvd˜(α̂)) as the new iterate.
(5) If µ ≤ µ, stop. Otherwise continue from Step (2)

Theorem 4.8 : Suppose that Step (3) of Algorithm 4.1 always succeeds, and there
exists at each iteration an H0 satisfying the conditions of Lemma 4.4 wrt. (p̃, d˜).Suppose furthermore that ‖H−1

p ‖F ‖H−1
d ‖F /(1 − β) can be bounded from above by

a constant M < ∞. Denote by µ the initial (maximal) µ and let τ := µ/µ. Then
O(Mr log τ−1) iterations are sufficient for µ ≤ µ.

Proof : Note that since C∗•(γ) ⊂ C•(γ), and the latter is scaling invariant, after
reverse scaling still (Q−1

v p̃(α), Qvd˜(α)) ∈ C•(γ). Therefore Step (4) and the method
are well-defined.

Other dependencies on r in the bound for δ−1 from Lemma 4.5 can be approx-
imated away, except the linear one in (23) or (24). Thus δ−1 = O(Mr), and the
claim follows from the discussion following Lemma 4.2. �

4.5. Operator-commutative scalings

Suppose we choose the scaling such that p̃ = Qvp and d˜ = Q−1
v d operator-commute.

As discussed in Section 4.3, then (p, d) ∈ C•(γ) implies (p̃, d˜) ∈ C∗•(γ), taking care
of that assumption in Theorem 4.8. Lemma 4.7 then says that it remains to bound
cond(H) (and stay away from a singularity).

In the Nesterov-Todd method [20], the scaling element is chosen to be v for the
unique element for which Qv2p = d, expressible as v = (Qp1/2(Qp1/2d)−1/2)−1/2; see
[26]. Then p̃ = d˜ operator-commute, and L(d˜)−1L(p̃) = I, so that consequently
cond(H) = 1. In the so-called “xs” method, v = d1/2, so that d˜ = e, wherefore
we have operator-commutativity, and get cond(H) ≤ 2/(1 − γ) for • = 2, F , and
cond(H) ≤ r/(1− γ) for • = −∞ [26]. In the “sx” method v = p−1/2, with similar
results. More generally, the so-called power class of scalings (or search directions)
considered by [19], yield bounded cond(H).

Of course, the question remains: what is the effect of scaling on the closeness of
the system (16)–(18) to a singularity? It follows from Lemma 3.8 that this is at
least somewhat unaffected close to a central selection.

5. Sequential convex programming

We now consider a simple method for general DC functions fν , and the application
of interior point methods to a sub-problem when f is of the form (3).

5.1. The general idea

Consider two arbitrary finite convex functions f and ν on Rm. Let ε ≥ 2ρ ≥ 0 be
chosen. Suppose z ∈ ∂ρν(y), z 6∈ ∂ε−ρf(y). In other words,

ν(y′)− ν(y) ≥ zT (y′ − y)− ρ, for all y′, (25)

f(y′′)− f(y) < zT (y′′ − y)− (ε− ρ), for some y′′. (26)
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Setting y′ = y′′ and summing,

fν(y′′)− fν(y) < −ε+ 2ρ

so that y is not ε− 2ρ -optimal.
Suppose then that we have z ∈ ∂ε′f(ŷ), i.e.

f(y′)− f(ŷ) ≥ zT (y′ − ŷ)− ε′, for all y′.

Setting y′ = y′′, and summing with (26), we have

f(y)− f(ŷ) > zT (y − ŷ)− ε′ + (ε− ρ).

Setting y′ = ŷ and further summing with (25),

fν(y)− fν(ŷ) > (ε− 2ρ)− ε′. (27)

Thus, if ε′ ≤ σSCP(ε− 2ρ) for σSCP ∈ (0, 1), a reduction of (1− σSCP)(ε− 2ρ) has
been achieved in the value of fν .

The conceptual algorithm for finding ε-semi-critical points of fν is now clear.

Algorithm 5.1: Sequential convex programming (SCP) method

(1) Choose target accuracy ε > 0, gradient accuracy ρ ∈ [0, ε/2), stepwise
reduction σSCP ∈ (0, 1), and an initial iterate y[0].

(2) Select a subgradient z[k] ∈ ∂ρν(y[k]).
(3) Set ε′ := σSCP(ε− 2ρ), and find ŷ such that z[k] ∈ ∂ε′f(ŷ).
(4) If a reduction of (1 − σSCP)(ε − 2ρ) is not obtained in the value of fν ,

by the above analysis it must have been that z[k] ∈ ∂ε−ρf(y[k]), so that
0 ∈ ∂DC

ε fν(y[k]), and we already were at a ε-semi-critical point. Therefore,
stop with result y[k].

(5) Otherwise repeat from Step (2) with y[k+1] := ŷ, and k := k + 1.

Clearly, as a constant reduction in the value of fν is achieved on each non-
final iteration, the method is convergent if Step (3) always succeeds, and fν is
bounded from below. For the success, we should have R(∂ν) ⊂ R(∂f). The stricter
bound clR(∂ν) ⊂ intR(∂f) along with bounded R(∂ν) in fact ensures that fν has
bounded level sets and is therefore bounded from below [30, Corollary 3].

We note that this method can be seen as an approximate variant of DCA [2], the
“simplified” version of which amounts to ρ = ε = 0 (while the “complete” version
sets further restrictions). The method of truncated codifferential considered by
Demyanov et al. [6] also bears many parallels to SCP.

Remark 5.1 : Alternatively, instead of fixing ε′ in Step (3), we may attempt to
find ŷ and ε′ > 0 with z ∈ ∂ε′f(ŷ), such that the objective function value is reduced
by 0 < ∆[k] ≤ ε− 2ρ, or (27) is violated (for y = y[k]), one of which must occur for
small enough ε′ > 0.

Remark 5.2 : The SCP argument actually proves convergence for inexact K-
means -style local convex optimisation methods. Suppose fν(y) = f(y) − ν(y) for
ν(y) := maxt∈T νt(y) for some finite index set T and convex functions νt, and that
ft := f−νt are convex. Now, suppose fν(y) = ft(y), and choose in the SCP method,
ft for f , 0 for ν, z = 0 and ρ = 0. If the predicted decrease is not achieved, then
the SCP argument says 0 ∈ ∂εft(y), that is f(y′)− f(y) ≥ νt(y′)− νt(y)− ε for all
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y′. But then for any z ∈ ∂νt(y) ⊂ ∂ν(y), f(y′) − f(y) ≥ zT (y′ − y) − ε. This says
z ∈ ∂εf(y), so that y is ε-semi-critical for fν .

5.2. Interior point SCP

If f (but not necessarily ν) has the form (3), we may apply Algorithm 4.1 in
Step (3) of Algorithm 5.1 to reducing ε′ > 0 in z ∈ ∂ε′f(ŷ), after finding initial
values for which this holds. For, as is clear from the analysis, Algorithm 4.1 always
maintains the linear constraints for any set values, and therefore works for other
values besides z = 0. If we can initialise each iteration in a bounded manner, we
have finite convergence. More precisely,

Theorem 5.1 : Suppose that for all y[k] and z[k] ∈ ∂ρν(y[k]), we can (in
negligible time) initialise (pf , df ) ∈ G−1

f,ε(y
′, z[k]) ∩ C•(γ) at some y′ for fixed

ε ≥ fν(y[0]) − min fν , γ ∈ (0, 1), and • ∈ {F, 2,−∞}. Then, if Algorithm 4.1
is used in Step (3) with one of the operator-commutative scalings from Section 4.5,
O(Kγ,rf τ

−1 log τ−1) steps of the interior point method are sufficient to reach an
ε-semi-critical point, with τ := (ε− 2ρ)/ε, and Kγ,rf a polynomial of 1/(1− γ) and
rf ,

Here and in the rest of this section, G−1
f,ε is G−1

ε as defined in (8) for the data of
f , while without the specifier, the data of all of fν is implied, as before. C•(γ) is a
subset of one of K, Kf , or Kν , depending on the context.

The factor Kγ,rf replaces Mrf and omitted terms from Theorem 4.8, where the
dependence on γ was de-emphasised, being something that can be chosen arbi-
trarily small by suitable initialisation. Here, however, z limits the quality of the
initialisation – which cannot be done if z 6∈ R(∂f).

Proof : The term 1/(1−γ) is the dominant one involving γ as γ ↗ 1 in the bounds
of Lemma 4.6 and the bounds for cond(H) in Section 4.5. Therefore, similarly to
the proof of Theorem 4.8, we find from Lemmas 4.5 and 4.2 that to find an ε− 2ρ
critical point, each invocation of Step (3) requires O(Kγ,rf log τ−1) steps of the
interior point method, where Kγ,rf is as claimed.

Since each non-terminal step of the SCP algorithm achieves a reduction of at
least (1 − σSCP)(ε − 2ρ) in the value of fν , and ∆0 := fν(y[0]) − min fν ≤ ε, we
get that n ≥ ∆0/((1 − σSCP)(ε − 2ρ)) = O(τ−1) iterations of the SCP method
are sufficient. This results in the claimed total number of iterations of the interior
point method. �

Next we study when the initialisation required above can be performed, and with
what quality. We begin with a few basic results needed towards that end.

Lemma 5.2: Suppose fν is bounded from below, ρ ≥ 0, ∆0 ≥ fν(y) − min fν ,
and z ∈ ∂ρν(y). Then z ∈ ∂∆0+ρf(y).

Proof : By assumption ρ ≥ ν(y) − ν(y′) + zT (y′ − y) and ∆0 ≥ f(y) − ν(y) −
f(y′) + ν(y′) for all y′. By combining these inequalities, we get the claim. �

Lemma 5.2 and (7) thus show the existence of some (pf , df ) ∈ G−1
f,∆0+ρ(y[k], z[k]).

The objective is then to improve (pf , df ) ∈ C•(γ) for fixed γ ∈ (0, 1) without
ε ≥ ∆0 + ρ increasing unboundedly.

To provide such results, we need to show that ‖·‖−∞ actually satisfies the triangle
inequality (although it is not a norm).

Lemma 5.3: Suppose x, y ∈ J . Then ‖x+ y‖−∞ ≤ ‖x‖−∞ + ‖y‖−∞.
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Proof : As defined in Section 4.3, ‖z‖−∞ = −mini ζi(z), so it suffices to show
mini ζi(z) ≥ mini ζi(x) + mini ζi(y) for z = x + y. Let x =

∑r
i=1 ζi(x)xi, y =∑r

i=1 ζi(y)yi, and z =
∑r

i=1 ζi(z)zi be the decompositions of x, y, z ∈ K into sums
of primitive idempotents. Since primitive idempotents are in K, their inner product
is non-negative. Applying

∑
j xj = e and tr zi = 1, it thus follows that

ζi(z) = 〈zi, z〉 = 〈zi, x〉+ 〈zi, y〉 =
∑
j

(ζj(x)〈zi, xj〉+ ζj(y)〈zi, yj〉)

≥ min
k
ζk(x)〈zi,

∑
j

xj〉+ min
k
ζk(y)〈zi,

∑
j

yj〉 = min
j
ζj(x) + min

j
ζj(y). �

Assumption 5.4: We assume that A(p1, . . . , pn) = (〈a′1, p1〉, . . . , 〈a′n, pn〉) as in
Assumption 3.9, along with (R(A∗) ∩ intK)−1 ⊂ N (B) ∩N (〈c, ·〉).

Example 5.5 This assumption is satisfied by combinations of Euclidean norms
(cf. Example 3.1), where of pi = (p0

i , p̄i) ∈ Em+1, A depends only on p0
i , and B and

〈c, ·〉 on p̄i.

When the assumption holds, we set a := (φ1a
′
1, . . . , φna

′
n), where φi ∈ R is chosen

so that Aa−1 = b, i.e. ri = φibi. Then a ∈ R(A∗) ∩ intK, so that 〈a−1, B∗y〉 =
〈a−1, c〉 = 0. Also, µ(a ◦ p) = 1 for any p ∈ V = {p ∈ K | Ap = b}, because
〈a, p〉 =

∑
i φi〈a′i, pf,i〉 =

∑
i φibi =

∑
i ri.

Lemma 5.6: Suppose Assumption 5.4 holds, and that (p′, d′) ∈ G−1
ε′ (y, z) ∩

C−∞(γ′). Then, for 0 < ψ < γ ≤ γ′, there exist (p, d) ∈ G−1
ε (y, ψz) ∩ C−∞(γ) with

ε := ψ
γ′ − ψ
γ − ψ

〈p′, d′〉+
(1− ψ)2

γ − ψ
〈a−1, d′〉 ≤ 1 + (γ′ − 2)ψ

γ − ψ
ε′ +

(1− ψ)2

γ − ψ
v(y), (28)

where v(y) := supp∈V 〈p,B∗y + c〉. In particular, with γ′ = 1 and γ = (1 + ψ)/2,
we get ε = 2〈p, d′〉 and 1/(1− γ) = O(1/(1− ψ)).

By the definition of f and ν, when the lemma is applied to the data of f alone,
v = f , and when it is applied to fν , v = f + ν.

Proof : Letting p := ψp′+ (1−ψ)a−1, we have Bp = ψz, and by convexity p ∈ V .
Furthermore, Q1/2

a p = Q
1/2
a (ψp′) + (1−ψ)e, so that P⊥e Q

1/2
a p = ψP⊥e Q

1/2
a p′. Since

Q
1/2
a p′ ∈ K, we have mini ζi(Q

1/2
a p′) ≥ 0, and then

‖P⊥e Q1/2
a p‖−∞ = ψ‖P⊥e Q1/2

a p′‖−∞ ≤ ψµ(Q1/2
a p′) = ψ = ψµ(a ◦ p). (29)

Now, let d := d′ + λa, for yet unspecified λ ≥ 0. Clearly d ∈ K. Now Q
1/2
p d =

λQ
1/2
p a + Q

1/2
p d′, and both of the components are in K. Therefore, we may apply

Lemma 5.3 and get by the symmetricity ‖P⊥e Q
1/2
p a‖−∞ = ‖P⊥e Q

1/2
a p‖−∞ [26,

Proposition 21] that

‖P⊥e Q1/2
p d‖−∞ ≤ λ‖P⊥e Q1/2

p a‖−∞ + ‖P⊥e Q1/2
p d′‖−∞

≤ λ‖P⊥e Q1/2
p a‖−∞ + ψ‖P⊥e Q

1/2
d′ p

′‖−∞ + (1− ψ)‖P⊥e Q
1/2
d′ a

−1‖−∞

≤ λψ + ψγ′µ(p′ ◦ d′) + (1− ψ)µ(a−1 ◦ d′).
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Since

µ(p ◦ d) = λµ(p ◦ a) + µ(p ◦ d′) = λ+ ψµ(p′ ◦ d′) + (1− ψ)µ(a−1 ◦ d′), (30)

we therefore have ‖P⊥e Q
1/2
p d‖−∞ ≤ γµ(d ◦ p), if

ψ(γ′ − γ)µ(p′ ◦ d′) + (1− ψ)(1− γ)µ(a−1 ◦ d′) ≤ (γ − ψ)λ.

Setting this to equality and inserting the resulting λ in (30), gives the first half of
(28) (as ε = rµ(p ◦ d)).

For the second half of (28), observe that 〈a−1, d′〉 = 〈p′, d′〉 + 〈a−1 − p′, d′〉 =
〈p′, d′〉+ 〈p′− a−1, B∗y+ c〉 = 〈p′, d′〉+ 〈p′, B∗y+ c〉 ≤ ε+ v(y) by Assumption 5.4.

Finally, setting γ′ = 1 and γ = (1 + ψ)/2, we have γ − ψ = (1 − ψ)/2, and
therefore ε = 2(ψ〈p′, d′〉+ (1− ψ)〈a−1, d′〉). By the definition of p, this proves the
claim for that case. �

Lemma 5.7: Suppose Assumption 5.4 holds for f , and that R(∂ν) ⊂ ψR(∂f)
for some ψ ∈ (0, 1). Then there exist (pf , df ) ∈ G−1

f,ε(y, z) ∩ C−∞(γ), γ ∈ (0, 1),
with 1/(1− γ) = O(1/(1− ψ)), in the following cases:

(i) Varying y with fν(y) − min fν ≤ ∆0 and z ∈ ∂ρν(y), in which case ε =
O(∆0 + ρ+ ‖Vf‖F ‖cf‖F ).

(ii) Fixed y with z ∈ R(∂ν), in which case ε = O(f(y)) = O(‖Vf‖F ‖B∗fy +
cf‖F ).

As usual, the set norm is defined as ‖Vf‖F := maxp∈Vf ‖p‖F .

Proof : Note that clR(∂f) = cl
⋃
y∈Rm,ε≥0 ∂εf(y) = BfVf , also from the expres-

sion (7). Therefore, for z ∈ R(∂ν), there exists p′ ∈ Vf such that Bfp′ = z/ψ. An
application of Lemma 5.6 to (p′, d′) and z/ψ with γ′ = 1 and γ = (1 + ψ)/2 then
provides (pf , df ) := (p, d) and the requested bounds as follows:

(i) Let (p′′, d′) ∈ G−1
f,∆0+ρ(y, z) as shown to exist by Lemma 5.2 and the repre-

sentation (7). Now, for the p provided by Lemma 5.6 we approximate 〈p, d′〉 =
〈p′′, d′〉+ 〈p− p′′, d′〉 = 〈p′′, d′〉+ 〈p′′− p, cf 〉 ≤ ∆0 + ρ+ 2‖Vf‖F ‖cf‖F , where in the
second equality we have used Bfp = Bfp

′′ = z and Afp = Afp
′′ = b.

(ii) Choose (p′′, d′) ∈ G−1
f,0(y, z′) for some z′ ∈ ∂f(y). Then, as in case i), 〈p, d′〉 =

〈p′′, d′〉 + 〈p − p′′, d′〉 = 〈p′′ − p,B∗fy + cf 〉, and we readily get the claim by the
definition of f . �

According to Lemma 5.7, there then is a solution to our initialisation problem
under rather reasonable assumptions; cf. the level-boundedness results of [30, Theo-
rem 7]. But when can we actually find p such that Bfp = z/ψ in Vf? Since tr(Q1/2

a p)
is constant, by the proof of Lemma 5.6, ‖Q1/2

a p‖−∞ can be made small enough to
imply that p ∈ K. Therefore, after scaling by a to work on p̃ := Q

1/2
a p, and relaxing

the norm to • ∈ {F, 2,−∞}, this problem may be cast as minep ‖p̃‖• subject to
Wp̃ = xψ and p̃ ∈ K, where Wp̃ := (AfQ

−1/2
a p̃, BfQ

−1/2
a p̃) and xψ := (b, z/ψ).

If • = −∞, there exists an interior solution for non-minimal ψ. The prob-
lem then becomes minep(−minj ζj(p̃)) = minep maxj(−ζj(p̃)). If f has the prod-
uct presentation of Assumption 5.4, and each of the cones Ki are second-order
cones, the smallest eigenvalue in each cone is p̃0

i − ‖ ¯̃pi‖. But p̃0
i is fixed because

b = AfQ
−1/2
a p̃ = (φ−1

1 〈e, p̃1〉, . . . , φ−1
n 〈e, p̃2〉) = (b1p̃0

1, . . . , bnp̃
0
n). Therefore the

problem becomes minep maxi ‖ ¯̃pi‖ subject to the linear constraints.
If we set • = F , we have p̃ = W †xψ for the Moore-Penrose pseudo-inverse
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W † = W ∗(WW ∗)−1 (as by assumption N (W ∗) = {0}), if the minimiser p̃ ∈ intK.
Unfortunately this may not be so, unless the norm is small enough that there
actually exists a solution (p, a) ∈ CF (1). In some applications the pseudo-inverse
however provides a usable result (and is the solution for • = −∞ as well, in fact).

Example 5.8 In the simple case of the spatial median in Rm, f(y) =
∑n

i=1 ‖y−ai‖,
as in general for sums of Euclidean norms, we have pf = (pf,1, . . . , pf,n) with
pf,i = (p0

f,i, p̄f,i) ∈ Em+1, and a′i = e. Furthermore, Bfpf =
∑

i p̄f,i, so that a
simple solution with pf,i = pf,j exists, when at all z ∈ BfVf . This extends to sums of
spatial medians (

∑
k f(yk)), and suffices for our forthcoming application examples,

where R(∂ν) is small enough to be covered by the spatial median component of f ,
whence we may take p̄f,i = 0 for any remaining terms.

Remark 5.3 : In the SCP method and case i) of Lemma 5.7, actually ε =
O(∆0 + ‖Vf‖F ‖cf‖F ). This is because, if fν(y) −min fν ≤ 2ρ ≤ ε, then choosing
z ∈ ∂ν(y), we have z ∈ ∂εf(y), by Lemma 5.2, so y is ε-semi-critical. Therefore,
when y is not ε-semi-critical, we have ∆0 ≥ fν(y)−min fν ≥ 2ρ, yielding the claim.

6. A filter method

6.1. The idea

The idea of the filter method was first introduced for constrained optimisation by
Fletcher and Leyffer [12] in a sequential quadratic programming (SQP) framework,
with convergence proved in [11], for the case considered. Other works in filter
algorithms that seem most related to our work include [27, 31], where interior
point approaches are considered.

The filter is basically a multi-dimensional generalisation of a monotonically de-
creasing sequence bounded from below, where the decrease at each step is sufficient
by some criterion. Each point inserted in the filter defines a cone of other points
it dominates. Points belonging in an envelope of such a cone are not allowed in
future iterations. A filter method is therefore multi-objective optimisation applied
to single-objective problems, where typically the additional objectives are related
to the constraints of the problem.

In practical methods in the literature so far, there are only two objectives, and
each of them are improved separately. One of them, typically the original objective
function value, is assigned to be the primary objective, and decrease in it is sought
while allowed by the filter, and some additional sufficient decrease conditions are
met. New points are inserted in the filter at appropriate places, to force conver-
gence in the future. When this primary phase of the algorithm runs into trouble,
a restoration phase is entered, with the purpose of improving the second objec-
tive and restoring feasibility and acceptability to the filter. Often this restoration
method is taken to be a black box.

The restoration method in [27], however, is closely related to the primary method,
and merely advances slightly differently. Indeed, although rather general (C2) con-
strained nonlinear programming is considered therein, the resulting analysis bears
many parallels to the work in Section 4, and more generally the work on linear
programming on symmetric cones. Their two elements of the filter actually include
the values µ(p ◦ d) and ‖P⊥e (p ◦ d)‖ (in the non-negative orthant of Rm, instead of
general symmetric cones), plus additional terms related to dissatisfaction of linear
constraints. However, to prove convergence for the filter method, it is assumed that
the equivalent of the system (16)–(18) is suitably far from a singularity. But with
such assumptions, the methods of Section 4 do already converge, “fast”. It is our
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intent to use the idea of the filter method to circumvent that assumption. We will
use a filter and a restoration method to restore feasibility, when the main interior
point method runs into trouble. To do this, we apply the results of Section 5, as a
consequence of which our restoration phase algorithm will also be closely related
to the primary phase algorithm.

6.2. The method

We take the filter F to be a set of pairs (gF , hF ) ∈ R × [0,∞). Then (g, h) is
considered acceptable to the filter if for prescribed values of δF ∈ (0, 1) and θF > 0,
we have

for all (gF , hF ) ∈ F either g ≤ gF − θFhF or h ≤ (1− δF )hF .

By augmenting the filter with (g, h) we mean replacing it with

{(g, h)} ∪ {(gF , hF ) ∈ F | gF < g or hF < h}.

The first part of the following lemma is standard:

Lemma 6.1: Suppose points added to the filter satisfy g ∈ [g, g] ⊂ (−∞,∞)
and h ≥ h > 0. Then the filter may be augmented only finitely many times with
acceptable points (g, h). If, furthermore, h ≤ h, then the filter may be augmented at
most [(g−g)/(θFh)+1][δ−1

F log τ−1 +1] times for τ := h/h. In particular, if g−g =
O(h), then we have the bound O(τ−1 log τ−1) for the number of augmentations.

Proof : Consider the square A := [h, h] × [g, g]. It is covered by the rectangles
(h(1 − δF )n[1 − δF , 1]) × (g − θFh[k, k + 1]), where n = 0, 1, . . . , N − 1, and k =
0, 1, . . . ,K−1. At most one point acceptable to the filter may lie in each rectangle,
so the number of rectangles KN gives an upper bound on the number of acceptable
points that may be inserted in the filter. Solving g > g − θFhK, we get K >

(g− g)/(θFh). Solving for N from h > (1− δF )Nh, we get the sufficient condition
N > log(h/h)δ−1

F (by application of − log(1 − δF ) ≥ δ2
F/2 + δF ≥ δF ). This gives

the desired bound in the case h ≤ h.
Suppose then that there’s an infinite sequence (h[k], g[k]) ∈ F , k = 1, 2, . . ., with

h[k+1] ≥ h[k]. Then g[k+1] ≤ g[k] − θFh[k] ≤ g[k] − θFh, so that g[k+1] ≤ g[1] − kθFh,
and for large enough k, g[k+1] < g, which is a contradiction. Therefore there exists
some finite h ≥ h, and only finitely many entries may be added in the filter. �

In our present situation, we take g = fν(y) as the quality of the solution in terms
of objective function value, and h = ε = rµ as the quality of the solution in terms
of 0 ∈ ∂DC

ε fν(y), as in Algorithm 4.1. Therefore, in contrast to the situation in
constrained optimisation, either filter element becoming sufficiently small provides
an approximate solution of prescribed quality. Unless the restoration method fails
(which our restoration method of choice will not do), it always generates either a
point acceptable to the filter, or a solution of such prescribed quality, by reducing
the value of fν or ε sufficiently. Therefore, Lemma 6.1 alone proves convergence of
the filter method in case of non-failure, if we augment the filter with acceptable
points between restoration steps.

A crude filter method would therefore simply augment the filter and enter the
restoration phase, whenever the main interior point method does not provide suffi-
cient decrease in ε (or sufficiently long step), or the candidate iterate is unacceptable
to the filter. The primary design goal of the filter method would, however, be to
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obtain greater practical convergence speeds than the pure restoration method or
this crude filter method. We do not, however, concentrate on this paper on finding
the best possible restoration and filter augmentation strategies. Rather, we con-
centrate on the theoretical aspects of using interior point SCP for restoration after
presenting a method based on an approach familiar from other filter methods in
the literature. The idea is to choose a shorter step size than allowed by the pure
interior point method, if fν is sufficiently descending in the search direction. Also,
if a linear model of the function does not predict decrease, we augment the filter
for future reference.

In the rest of this section, we assume that both f and ν are of the form (3).
Suppose y,∆y ∈ Rm are given, and 0 ∈ ∂DC

ε f(y). For arbitrary z ∈ ∂DCfν(y),
we define the linear model of fν ,

l(α) := fν(y) + α〈z,∆y〉.

We say that the model decreases sufficiently, if for prescribed κ > 0,

l(0)− l(α) ≥ κε, (31)

and that fν itself decreases sufficiently wrt. the model, if for given η > 0,

fν(y)− fν(y(α))
l(0)− l(α)

≥ η. (32)

Here we denote y(α) := y + α∆y akin to (19). We also introduce the notation
ε(α) := 〈p(α), d(α)〉 = rµ(α), where µ(α) is given by (20).

With these definitions, the filter method is as follows.

Algorithm 6.1: Filter method for DC problems on symmetric cones

(1) Choose target accuracy ε > 0, parameters δ, δF ∈ (0, 1), θF > 0, η ∈ (0, 1),
and κ > 0, as well as the filter F and its initial contents.

(2) Initialise the interior point method per instructions of Algorithm 4.1 for
the data of fν , yielding (p, d, y, ε) with (p, d) ∈ G−1

ε (y, 0) ∩ C•(γ).
(3) If ε ≤ ε, stop, for we have a solution.
(4) Calculate the direction (∆p,∆d,∆y) by solving, as in Algorithm 4.1, a

scaled version of (16)–(18). Set α := α̂ with the latter as in Lemma 4.2.
(5) If Step (4) failed, or ε(α)/ε > 1 − δ, augment F with (fν(y), ε), and enter

the restoration phase that either
a) Produces a new iterate (p, d, y, ε) with (p, d) ∈ G−1

ε (y, 0) ∩ C•(γ) and
(fν(y), ε) acceptable to the filter. In this case we continue from Step
(4).

b) Detects an ε-semi-critical point (or fails), in which case we stop.
(6) If (fν(y(α)), ε(α)) is acceptable to F , and either (31) fails or (32) holds, go

to Step (8).
(7) Set α := α/2, and go to Step (5).
(8) If (31) fails, augment F with (fν(y), ε).
(9) Update (p, d, y, ε) := (p(α), d(α), y(α), ε(α)), and continue from Step (3).

Theorem 6.2 : Suppose the filter F is initialised to include {(g, 0)} for some
g > min fν (and that the initial iterate is acceptable to F). Then Algorithm 6.1
converges in a finite number of iterations to an ε-semi-critical point (if the restora-
tion method does not fail). If, furthermore, always ε ≤ ε for some ε > ε such that
ε > g −min fν , and the restoration method is taken as an oracle, then the number
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of iterations is O(τ−1(log τ−1)2) for τ := ε/ε.

Proof : Step (5) ensures ε(α)/ε ≤ 1 − δ. Thus a standard argument (cf. Lemma
6.1) shows that there are at most O(log τ−1) iterations of the main phase of the
algorithm between each restoration phase. Since the filter is augmented before each
restoration phase with a point acceptable to it, Lemma 6.1 says that the restoration
method may be called only a finite number of times. Furthermore, when ε ≤ ε,
Lemma 6.1 with g = min fν provides the bound O(τ−1 log τ−1) for the number of
augmentations. �

Remark 6.1 : Instead of directly specifying δ, we could specify β ∈ (0, 1), and
calculate δ−1 according to Lemma 4.5. In this case we should include in the com-
plexity estimate, the contribution by r, and potentially γ as well, depending on
whether reinitialisation of (p, d) ∈ G−1

ε (y, 0) ∩ C•(γ) in the restoration method
allows free choice, or guarantees a bound.

6.3. Application of SCP to restoration phase

A variant of Algorithm 5.1 can be used for restoration in Algorithm 6.1, and it never
fails, so that convergence is attained. We simply add after Step (4) (of Algorithm
5.1) the step:

4+. Calculate (p, d, ε) such that (p, d) ∈ G−1
ε (ŷ, 0)∩C•(γ) (for the data of fν). If

(fν(ŷ), ε) is acceptable to F , return to the main phase with result (p, d, ŷ, ε).

If the basic version of Algorithm 5.1 is used (or the variant of Remark 5.1) then
provided that ε is large enough that the initialisation required by Theorem 5.1
can be performed (cf. Lemma 5.7), we have the bound O(Kγf ,rf τ

−1
ρ log τ−1

ρ ) with
τρ := (ε−2ρ)/ε for the number of interior point iterations in each restoration phase.
Since τρ ≤ τ = ε/ε, the total number of interior point iterations in Algorithm 6.1
(with those in the main phase for fν , and those in the restoration phase for f alone),
is therefore bounded by O(Kγf ,rf τ

−2
ρ (log τ−1

ρ )3), provided that the conditions in
Theorem 6.2 are satisfied, including ε ≤ ε on return from Step 4+ above.

This bounded reinitialisation in Step 4+ can indeed be enforced by adding such
a check (or including (0, ε) in the filter), in which case the SCP restoration method
simply churns out new candidates while decreasing fν , until it reaches an ε-semi-
critical point or an acceptable candidate. The check does not degrade the com-
plexity bounds calculated above, because SCP alone has lower complexity. The
complexity of the method is thus entirely dependent on τ , the worst initialisation
quality proportional to the desired solution quality, and ψ, which describes the
proportion of the concave component and closeness to level-unboundedness of fν .

We may, however, also calculate some bounds for reinitialisation quality, to ensure
that provided with big enough but reasonably bounded ε and γ, the enforcement of
ε ≤ ε does not simply reduce the filter method to SCP. The next result proves the
existence of such a “good” initialiser; later a more practical procedure is provided,
with bounds not so directly related to the quality of the current iterate. Note
from the proof that the bounds are also good for initialisation (of f data) for SCP
restoration, in addition to reinitialisation (of fν data) on return to the primary
phase.

Theorem 6.3 : Fix the constants ε ≥ 2ρ > 0. Suppose Assumption 5.4 holds for f
and R(∂ν) ⊂ ψR(∂f) for some ψ ∈ (0, 1). Suppose moreover that fν(y)−min fν ≤
∆0. Then either of the following holds:

(i) y is ε-semi-critical for fν .
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(ii) There exists (p, d) ∈ G−1
ε (y, 0) ∩ C−∞(γ) for ε = O(∆0 + ‖Vf‖F ‖cf‖F ),

γ ∈ [0, 1) with (1− γ)−1 = O((1− ψ)−2τ−1), and τ := ε/ε.

Proof : Find z ∈ Rm and (pν , dν) ∈ G−1
ν,ρ(y, z)∩C−∞(ψ) with exactly 〈pν , dν〉 = ρ.

This can be done, even with ψ = 0, because the selection pν ◦dν = µνe, with µν :=
ρ/rν , within ∂ν comes from the subdifferential of a barrier-smoothed function; cf.
Remark 3.1. An alternative way to see this, is to write ξν := −B∗νy− cν , to get the
system of equations

A∗νλν + dν = ξ′ν , Aνpν = bν , pν ◦ dν = µνe; pν , dν ∈ Kν , (33)

which characterises the solutions of (cf. e.g. [9, 26])

min [〈ξν , pν〉 − µν log(det pν)] subject to Aνpν = bν , pν ∈ Kν .

With z and (pν , dν) found, apply Lemma 5.7 to find (pf , df ) ∈ G−1
f,ε(y, z)∩C−∞(γ′)

for some ε = 〈pf , df 〉 = O(∆0 + ρ+ ‖Vf‖F ‖cf‖F ), and γ′ ∈ [0, 1) with (1− γ′)−1 =
O((1− ψ)−1). Apply the following Lemma 6.4, to get the claim of the theorem at
y for ε = O(ε) := O(∆0 + 2ρ + ‖Vf‖F ‖cf‖F ) and τ−1

y = O(τ−1). Finish the proof
by referring to Remark 5.3 to take out ρ from the complexity. �

Lemma 6.4: Assume we have fixed ε ≥ 2ρ ≥ θε > 0 for some θ > 0. Suppose
that for some γ′ ∈ [0, 1) and ε′ > 0, we have (pf , df ) = G−1

f,ε′(y, z) ∩ C−∞(γ′) and
(pν , dν) = G−1

f,ρ(y, z) ∩ C−∞(γ′) with exactly ε′ = 〈pf , df 〉 and ρ = 〈pν , dν〉. Then
either of the following holds:

(i) ε′ + ρ ≤ ε, in which case y is ε-semi-critical for fν .
(ii) (p, d) = ((pf , pν), (df , dν)) ∈ G−1

ε (y, 0) ∩ C−∞(γ) for ε := ε′ + ρ, and γ ∈
[0, 1) with (1− γ)−1 = O((1− γ′)−2τ−1

y ), and τy := ε/ε.

Proof : Let q = (qf , qν) := (Q1/2
pf df , Q

1/2
pν dν) = Q

1/2
p d. Denoting ζ(q) := mini ζi(q),

we have

(1− γ′)µ(qf ) ≤ ζ(qf ) ≤ µ(qf ), (34)

and likewise for ν. Therefore,

(1− γ′)µ(q) = (1− γ′)
rfµ(qf ) + rνµ(qν)

rf + rν
≤
rfζ(qf ) + rνζ(qν)

rf + rν
.

But employing (34) and the exactness assumption, we have

rνζ(qν)/ζ(qf ) ≤ rν
µ(qν)
µ(qf )

/(1− γ′) ≤ rf
ρ

ε′
/(1− γ′),

Because an analogous estimate holds with the roles of f and ν reversed, and ζ(q) =
min{ζ(qf ), ζ(qν)}, we get

(1− γ′)µ(q) ≤ 1 + max{ε′/ρ, ρ/ε′}
1− γ′

ζ(q).

If ε′ ≤ ρ, then ε′+ρ ≤ 2ρ ≤ ε, which is covered by case (i). So assume the contrary.
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We now get 1+ε′/ρ = (ρ+ε′)/ρ ≤ ε/(θε). Therefore, with γ defined by (1−γ)−1 =
(1 + ε′/ρ)(1 − γ′)−2, we have (1 − γ)−1 = O((1 − γ′)−2τ−1

y ), as well as γ ∈ [0, 1)
and (1− γ)µ(q) ≤ ζ(q). Hence, case (ii) applies. �

We can in principle solve (33) approximately by standard interior point methods.
After all, instead of pν ◦ dν = µνe ∈ C−∞(0), we only wanted C−∞(ψ). Then we
could calculate (pf , df ) and modify the result as indicated in the proof. However,
we would have to bound the quality of the initialisation for this method, which
would annoyingly seem to involve y or the linearisation error ` (to be defined
below). Sometimes (33) can be solved directly, however, as the examples below
show. After that, we would still have to find (pf , df ) ∈ G−1

f,ε′(y, z) ∩ C−∞(γ′) as
discussed towards the end of Section 5.2 above.

Example 6.5 Suppose Assumption 5.4 holds for ν. Let ξν = −B∗νy − cν be as
in Theorem 6.3. Then, dropping the ν-subscripts to simplify the notation for this
example, di = ξi + λia

′
i and pi = µd−1

i , assuming λi is big enough for di to be
invertible. The problem now is to have 〈a′i, pi〉 = bi, i.e. tr(Q1/2

a′i
d−1
i ) = bi/µ. Taking

Q
1/2
a′i

inside d−1
i (which can be done by e.g. [7, Proposition II.3.3]), we get

tr(Q−1/2
a′i

ξi + λie)−1 = bi/µ. (35)

Thus we can solve (33) if we can invert the trace of the resolvents of ξ˜i := Q
−1/2
a′i

ξi.

Example 6.6 Suppose that (each) Ki in Example 6.5 is a second order cone.
Then for x = (x0, x̄), we have x−1 = (x0,−x̄)/ det(x), det(x) = (x0)2 − ‖x̄‖2,
and trx = 〈e, x〉 = 2x0. By Assumption 5.4, 〈e, ξ˜i〉 = 〈(a′i)−1, ξi〉 = 0, which
implies ξ˜0

i = 0. Therefore, tr(ξ˜i + λie)−1 = 2λi/(λ2
i − ‖ξ̄˜i‖2), so we get from (35)

the quadratic equation (2µν/bi)λi = λ2
i − ‖ξ̄˜i‖2. This can be solved for λi, as we

wanted.

The proof of the next result provides a simpler reinitialisation method, although
with worse bounds near an actual minimum of fν . The practical performance some-
times seems better, however. The subgradient assumptions are guaranteed by the
SCP procedure.

Lemma 6.7: Suppose Assumption 5.4 holds (for both f and ν), and that z ∈
∂fε′(ŷ) and z ∈ ∂ρν(y). Denote the linearisation error of ν by ` := ν(ŷ) − ν(y) −
zT (ŷ − y). Then for all ψ ∈ (0, 1), there exist (p, d) ∈ G−1

ε (ŷ, 0) ∩ C−∞(γ) with
γ := (1 + ψ)/2 and ε/2 := ψ(ε′ + ρ+ `) + (1− ψ)(f(ŷ) + ν(ŷ)).

Proof : We note that by the definition of f , there exists p̂f (y) ∈ Vf such that
f(y) = 〈B∗fy + cf , p̂f (y)〉. Furthermore, by (7), there exists d̂f (y) = −B∗fy − cf −
A∗f λ̂f (y) ∈ Kf such that 〈p̂f (y), d̂f (y)〉 = 0. Therefore, for all p′f ∈ Vf

f(y)− 〈B∗fy + cf , p
′
f 〉 = 〈d̂f (y), p̂f (y)− p′f 〉 = 〈d̂f (y), p′f 〉. (36)

An analogous result holds for ν.
By the approximate subgradient transportation formula [15, Proposition

XI.4.2.4], z ∈ ∂νρ+`(ŷ). Therefore, we can find (p′, d′) ∈ G−1
ε′+ρ+`(ŷ, 0). In fact,

we can take d′ = d̂ := (d̂f (ŷ), d̂ν(ŷ)), since with ŷ fixed, the choice λ̂(ŷ) for λ
must minimise d′ 7→ 〈d′, p′〉. (If some other d′ at y achieved lower value, then also
〈d′, p̂〉 < 〈d̂, p̂〉 = 0, which is a contradiction to properties of symmetric cones.) We
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therefore have by Assumption 5.4 and (36) with p′ = a−1 that

〈a−1, d′〉 = f(ŷ) + ν(ŷ)− 〈B∗ŷ + c, a−1〉 = f(ŷ) + ν(ŷ). (37)

Applying Lemma 5.6 with γ′ = 1 and γ = (1 + ψ)/2 now yields the claim for

ε/2 = ψ〈p′, d′〉+ (1− ψ)〈a−1, d′〉.

It only remains to use (37) and 〈p′, d′〉 ≤ ε′ + ρ+ `. �

Remark 6.2 : The subgradient transportation formula actually holds for
fixed p′ν . To see this, suppose (p′ν , d

′
ν) ∈ G−1

ν,ρ(y, z) and calculate 〈p′ν , d̂ν(ŷ)〉 =
〈p′ν , d̂ν(y)〉+ 〈p′ν , d̂ν(ŷ)− d̂ν(y)〉 = 〈p′ν , d̂ν(y)〉+ν(ŷ)−ν(y)−〈B∗ν(ŷ−y), p′ν〉 ≤ ρ+`,
where we have applied (36) twice in the last equality.

This means that we can with simple modifications of (p′ν , d
′
ν) and (p′f , d

′
f ) ∈

G−1
f,ε′(ŷ, z), produce (p, d) satisfying the claims of Lemma 6.7: calculate d̂(ŷ), trans-

late p′ = (p′f , p
′
ν) towards a−1 by 1− ψ, and add a factor of a to d̂(ŷ).

Remark 6.3 : As we see, to ensure that (p, d) ∈ C−∞(γ), without any further
knowledge of the containment in C•(γ′) of (p′ν , d

′
ν) ∈ G−1

ν,ρ(ŷ, z) after transportation
of z from y to ŷ, we have to ensure that p is also far enough from the boundary of
K. To do so, we apply the translation towards a−1. But this component brings the
annoying f + ν sum (instead of difference) into the bound, which is not found in
the bound of Theorem 6.3.

7. Preliminary practical experience

As the performance of the algorithms does not appear stellar at this stage of devel-
opment, we have chosen to leave statistically significant testing outside the scope
of this mainly theoretical paper. In this section, we however list some observations
from our limited experience with the methods, helpful for further work.

The primary applications we had in mind in the study of Algorithms 4.1 and
6.1 were the K-spatial-median or multisource Weber problem, as well as the MO
clustering formulation from [30], along with reformulations of the Euclidean TSP
based on these clustering objectives from [29]. The MO clustering problem reads
with the notation ȳ = (y1, . . . , ys) ∈ Rsm, ā = (a1, . . . , an) ∈ Rnm as

min
ȳ
f(ȳ; ā)− wν(ȳ) (38)

for some w ∈ (0, n/(s− 1)), and

f(ȳ; ā) :=
s∑
i=1

n∑
k=1

‖yi − ak‖, ν(ȳ) :=
∑
i<j

‖yi − yj‖.

In the MO-TSP problem, we set s = n, w = 1, and add to (38), the path-length
penalty λTSPfTSP(ȳ) for some λTSP > 0 and fTSP(ȳ) :=

∑n
i=1 ‖yi − yi+1‖ (with

the identification yn+1 = y1).
According to [30], n(s− 1)−1R(∂ν) ⊂ R(∂f). Therefore, by our choice of w = 1

in the TSP problem, we may take ψ = (n − 1)/n in Lemma 5.7 and Theorem
6.3, and obtain (1 − γ)−1 = O((1 − ψ)−1) = O(n). Thus the complexity of the
method in this application only depends polynomially on n (through both r =
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2(n2 +n(n− 1)/2 +n) = 3n2 +n and γ), and log-polynomially on the reciprocal of
the desired relative solution quality τ . Recall from Example 5.8 that as a sum of
spatial medians, finding pf ∈ Vf satisfying Bfpf = z is easy, while we may choose
BTSPpTSP = 0 (pTSP = e) for the fTSP component.

Our principal observations from applying Algorithm 6.1 to these problems are:

(i) Good reinitialisation after restoration is difficult, resulting in unpredictable
performance. Often the filter method never succeeds in an interior point
step after returning from a restoration phase, and therefore performs worse
than plain SCP (which offers quite consistent but not stellar performance).
At other times the method performs well as wanted: some initial runs of
the restoration method find a good spot for local convergence of the main
interior point method, and the final steps are fast.

(ii) The spatial median of the data ā is quite attractive: Unless care is taken to
(re)initialise the method with p and d (and not just y) close to some other
attractor (semi-critical point, cf. Lemma 3.8), it is likely that some of the
variables yi will converge to the spatial median. Especially this appears to
be a problem when s is a considerable proportion of n, such as in the MO-
TSP case. The filter can of course be initialised to forbid such convergence,
but this may provoke long restoration runs.

In summary, we find that although the theoretical basis of our method is sound,
more research and experimentation is still needed to find out if and with what
parametrisation and modifications, the filter algorithm can provide competitive
practical performance in these, and other, applications.
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