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Abstract

We propose several variants of the primal-dual method due to Chambolle and Pock.
Without requiring full strong convexity of the objective functions, our methods are ac-
celerated on subspaces with strong convexity. This yields mixed rates, O (1/N 2) with
respect to initialisation andO (1/N ) with respect to the dual sequence, and the residual
part of the primal sequence. We demonstrate the e�cacy of the proposed methods on
image processing problems lacking strong convexity, such as total generalised varia-
tion denoising and total variation deblurring.

1 Introduction

Let G : X → R and F ∗ : Y → R be convex, proper, and lower semicontinuous
functionals on Hilbert spaces X and Y , possibly in�nite-dimensional. Also let K ∈
L (X ;Y ) be a bounded linear operator. We then wish to solve the minimax problem

min
x ∈X

max
y ∈Y

G (x ) + 〈Kx ,y〉 − F ∗ (y ).

One possibility is the primal-dual algorithm of Chambolle and Pock [11], a type of
proximal point or extragradient method, also classi�ed as the “modi�ed primal-dual
hybrid gradient method” or PDHGM by Esser [18]. If eitherG of F ∗ is strongly convex,
the method can be accelerated to produce Nesterov’s [25] optimalO (1/N 2) rates. But
what if we have only partial strong convexity? For example, what if

G (x ) = G0 (Px )
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for a projection operator P to a subspace X0 ⊂ X , and strongly convexG0 : X 0 → R?
This kind of structure is common in many applications in image processing and the
data sciences, as we will more closely review in Section 5. Under such partial strong
convexity, can we obtain a method that would give an accelerated rate of convergence
at least for Px?

We provide a partially positive answer: we can obtain mixed rates, O (1/N 2) with
respect to initialisation, andO (1/N ) with respect to bounds on the “residual variables”
y and (I − P )x . In this, our results are similar to the “optimal” algorithm of Chen et
al. [15]. Instead of strong convexity, they assume smoothness ofG to derive a primal-
dual algorithm based on backward–forward steps, instead of the backward–backward
steps of [11].

The derivation of our algorithms is based, �rstly, on replacing simple step length
parameters by a variety of abstract step length operators and, secondly, a type of
abstract partial strong monotonicity property

〈∂G (x ′) − ∂G (x ), T̃ −1 (x ′ − x )〉 ≥ ‖x ′ − x ‖2
T̃ −1,∗Γ′

−ψT̃ −1,∗ (Γ′−Γ) (x
′ − x ), (1.1)

the full details of which we provide in Section 2. In this, we make the monotonicity
dependent on the step length operator T̃ . Secondly, our factor of strong convexity
is the operator Γ, which is however shifted in (1.1) into a penalty term ψ through
the introduction of additional strong monotonicity in terms of Γ′ ≥ Γ. This exact
procedure can be seen as a type of smoothing, famously studied by Nesterov [26],
and more recently, for instance, by Beck and Teboulle [4]. In these approaches, one
computes a priori a level of smoothing—comparable to Γ′—needed to achieve certain
quality of solution, and then solves a smoothed problem at the optimalO (1/N 2) rate.
However, to achieve a better solution than the a priori chosen quality, one needs to
solve a new problem from scratch, or to develop restarting strategies. Our approach
does not depend on restarting and a priori chosen solution qualities. Indeed, Γ′ is
controlled automatically. In most applications, ψT̃ −1,∗ (Γ′−Γ) (x

′ − x ) = τ̃−1γ⊥C for γ⊥

the introduced strong monotonicity on the orthogonal complement X⊥0 . This kind of
constantψ can in particular be achieved on bounded domains, as was also employed
for the aforementioned mixed-rate algorithm [15].

The “fast dual proximal gradient method”, or FDPG [5], also possesses di�erent type
of mixed rates, O (1/N ) for the primal, and O (1/N 2) for the dual. This is however
under standard strong convexity assumptions. Other than that, our work is related
to various further developments form the PDHGM, such as variants for non-linear K
[32, 7], and non-convex G [24]. It has been the basis for inertial methods for mono-
tone inclusions [23], and primal-dual stochastic coordinate descent methods without
separability requirements [19]. Finally, the FISTA [3, 2] can be seen as a primal-only
version of the PDHGM. Not attempting to do full justice here to the large family of
closely-related methods, we point to [18, 30, 33] for further references.

The contributions of our paper are twofold: �rstly, to paint a bigger picture of what
is possible, we derive a very general version of the PDHGM. This algorithm, useful
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as a basis for deriving other new algorithms besides ours, is the content of Section 2.
A byproduct of this work is the shortest convergence rate proof for the accelerated
PDHGM known to us. Secondly, in Section 4, we derive from the general algorithm
two e�cient mixed-rate algorithms for problems exhibiting strong convexity only
on subspaces. The �rst one employs the penalty or smoothing ψ on both the primal
and the dual. The second one only employs the penalty on the dual. We do some of
the groundwork for these algorithms in Section 3. We �nish the study with numerical
experiments in Section 5. The main results of interest for readers wishing to apply our
work are Algorithms 3 and 4 along with the respective convergence results, Theorem
4.1 and Theorem 4.2.

2 A general primal-dual method

2.1 Background

As in the introduction, let us be given convex, proper, lower semicontinuous func-
tionals G : X → R and F ∗ : Y → R on Hilbert spaces X and Y , as well as a bounded
linear operator K ∈ L (X ;Y ). We then wish to solve the minimax problem

min
x ∈X

max
y ∈Y

G (x ) + 〈Kx ,y〉 − F ∗ (y ), (P)

assuming the existence of a solution û = (x̂ , ŷ ) satisfying the optimality conditions

− K∗ŷ ∈ ∂G (x̂ ), and Kx̂ ∈ ∂F ∗ (ŷ ). (OC)

Such a point always exists if lim‖x ‖→∞G (x ) = ∞ and lim‖y ‖→∞ F ∗ (y ) = ∞ [17,
Proposition VI.1.2 & Proposition VI.2.2]. More generally the existence has to be proved
explicitly. In �nite dimensions, see, e.g., [28] for su�cient conditions.

The primal-dual method of Chambolle and Pock [11] for (P) consists of iterating the
system

x i+1 := (I + τi∂G )−1 (x i − τiK
∗y i ), (2.1a)

x̄ i+1 := ωi (x
i+1 − x i ) + x i+1, (2.1b)

y i+1 := (I + σi+1∂F
∗)−1 (y i + σi+1Kx̄

i+1). (2.1c)

In the basic version of the algorithm, ωi = 1, τi ≡ τ0, and σi ≡ σ0, assuming that the
step length parameters satisfy τ0σ0‖K ‖

2 < 1. The method has O (1/N ) rate for the
ergodic duality gap. If G is strongly convex with factor γ , we may accelerate

ωi := 1/
√

1 + 2γτi , τi+1 := τiωi , and σi+1 := σi/ωi , (2.2)

to achieve O (1/N 2) convergence rates. To motivate our choices later on, observe
that σ0 is never needed, if we equivalently parametrise the algorithm by δ = 1 −
‖K ‖2τ0σ0 > 0, which gives the �xed ratio of σi to τi .
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We note that the order of the steps in (2.1) is reversed from the original ordering in
[11]. This is because with the present order, the method (2.1) may also be written in
the proximal point form. This formulation, �rst observed in [21] and later utilised in
[32, 27, 7], is also what we will use to streamline our analysis. Introducing the general
variable splitting notation,

u = (x ,y ),

the system (2.1) then reduces into

0 ∈ H (ui+1) +Mbasic,i (u
i+1 − ui ), (2.3)

for the monotone operator

H (u) :=
(
∂G (x ) + K∗y
∂F ∗ (y ) − Kx

)
, (2.4)

and the preconditioning or step-length operator

Mbasic,i :=
(

1/τi −K∗

−ωiK 1/σi+1

)
. (2.5)

We note that the optimality conditions (OC) can also be encoded as 0 ∈ H (û).

2.2 Abstract partial monotonicity

Our plan now is to formulate a general version of (2.1), replacing τi and σi by oper-
ators Ti ∈ L (X ;X ) and Σi ∈ L (Y ;Y ). In fact, we will need two additional operators
T̃i ∈ L (X ;X ) and T̂i ∈ L (Y ;Y ) to help communicate change in Ti to Σi . They re-
place ωi in (2.1b) and (2.5), operating as T̂i+1KT̃

−1
i ≈ ωiK from both sides of K . The

role of T̃i is to split the primal step length in space the X into two parts with poten-
tially di�erent rates, Ti and T̃i , while T̂i transfers T̃i into the space Y , to eventualy
control the dual step length Σi . In the basic algorithm (2.1), we would simply have
T̃i = Ti = τi I ∈ L (X ;X ), and T̂i = τi I ∈ L (Y ;Y ) for the scalar τi .

To make the notation de�nite, we denote by L (X ;Y ) the space of bounded linear
operators between Hilbert spaces X and Y . For T ∈ L (X ;X ), the notation T ≥ 0
means that T is positive semide�nite. In this case, we also denote

[0,T ] := {λT | λ ∈ [0, 1]}.
For M ∈ L (X ;X ), which can possibly not be self-adjoint, we employ the notation

〈a,b〉M := 〈Ma,b〉, and ‖a‖M :=
√
〈a,a〉M . (2.6)

We also use the notation T −1,∗ := (T −1)∗.

To start the algorithm derivation, we now formulate abstract forms of partial strong
monotonicity. As a �rst step, we take subspaces of invertible operators

T̃ ⊂ L (X ;X ), and T̂ ⊂ L (Y ;Y ),
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as well as subsets of positive semide�nite operators

0 ≤ K̃ ⊂ L (X ;X ), and 0 ≤ K̂ ⊂ L (Y ;Y ).

We assume T̃ and T̂ closed with respect to composition: T̃1T̃2 ∈ T̃ for T̃1, T̃2 ∈ T̃ .

We use the sets K̃ and K̂ as follows. We suppose that ∂G is partially strongly (ψ , T̃ , K̃ )-
monotone, which we take to mean that

〈∂G (x ′) − ∂G (x ), T̃ −1 (x ′ − x )〉 ≥ ‖x ′ − x ‖2
T̃ −1,∗Γ′

−ψT̃ −1,∗ (Γ′−Γ) (x
′ − x ),

(x ,x ′ ∈ X ; T̃ ∈ T̃ ; Γ′ ∈ [0, Γ] + K̃ ). (G-PM)

for some family of functionals {ψT : X → R}, and a linear operator 0 ≤ Γ ∈ L (X ;X )
which models partial strong monotonicity. The inequality in (G-PM), and all such set
inequalities in the remainder of this paper, is understood to hold for all elements of
the sets ∂G (x ′) and ∂G (x ). The operator T̃ ∈ T̃ acts as a testing operator, and the
operator Γ′ ∈ K̃ as introduced strong monotonicity. The functional ψT̃ −1,∗ (Γ′−Γ) is a
penalty corresponding to the test and the introduced strong monotonicity. The role
of testing will become more apparent in Section 2.3.

Similarly to (G-PM), we assume that ∂F ∗ is (ϕ, T̂ , K̂ )-monotone with respect to T̂ in
the sense that

〈∂F ∗ (y ′) − ∂F ∗ (y ), T̂ −1,∗ (y ′ − y )〉 ≥ ‖y ′ − y ‖2
T̂ −1R

− ϕT̂ −1R (y
′ − y ),

(y,y ′ ∈ Y ; T̂ ∈ T̂ ; R ∈ K̂ ) (F∗-PM)

for some family of functionals {ϕT : Y → R}. Again, the inequality in (F∗-PM) is
understood to hold for all elements of the sets ∂F ∗ (y ′) and ∂F ∗ (y ).

In our general analysis, we do not set any conditions on ψ and ϕ, as their role is
simply symbolic transfer of dissatisfaction of strong monotonicity into a penalty in
our abstract convergence results. As discussed in the introduction, these functionals
can be seen as an abstract approach to smoothing, however without any “restarting”
requirements on the algorithm. With this, K̃ and K̂ can be seen as sets of admissible
smoothing parameters.

Let us next look at a few examples on how (G-PM) or (F∗-PM) might be satis�ed. First
we have the very well-behaved case of quadratic functions.
Example 2.1. G (x ) = ‖ f − Ax ‖2/2 satis�es (G-PM) with Γ = A∗A, K̃ = {0}, and
ψ ≡ 0 for any invertible T̃ .
The next lemma demonstrates what can be done when all the parameters are scalar.
It naturally extends to functions of the form G (x1,x2) = G (x1) + G (x2) with corre-
sponding product-form parameters.
Lemma 2.1. LetG : X → R be convex, proper, and lower semicontinuous, with domG
bounded. Then

G (x ′) −G (x ) ≥ 〈∂G (x ),x ′ − x〉 +
γ

2
(
‖x ′ − x ‖2 −Cψ

)
, (2.7)
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Algorithm 1 Primal-dual algorithm with partial acceleration

Require: F ∗ and G satisfying (G-PM) and (F∗-PM) for some sets and spaces K̃ , K̂ ,
T̃ , T̂ , and 0 ≤ Γ ∈ L (X ;X ). Initial invertibleT0 ∈ L (X ;X ), T̃0 ∈ T̃ , T̂1 ∈ T̂ , and
Σ1 ∈ L (Y ;Y ), as well as δ ∈ (0, 1), satisfying for j = 0 the condition

S jMj ≥ δ

(
T̃ −1,∗
j T −1

j 0
0 0

)
. (2.8)

1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: repeat
3: Find invertible Ti+1 ∈ L (X ;X ), T̃i+1 ∈ T̃ , T̂i+2 ∈ T̂ , and Σi+2 ∈ L (Y ;Y )

satisfying (2.8) with j = i + 1, as well as the condition

Si (Mi + Γ̄i ) ≥ Si+1Mi+1

for some 0 ≤ Ri+1 ∈ K̂ and Γi ∈ [0, Γ] + K̃ .
4: Perform the updates

x i+1 := (I +Ti∂G )−1 (x i −TiK
∗y i ),

w̄ i+1 := T̂i+1KT̃
−1
i (x i+1 − x i ) + Kx i+1,

y i+1 := (I + Σi+1∂F
∗)−1 (y i + Σi+1w̄

i+1).

5: until a stopping criterion is ful�lled.

for some constant Cψ ≥ 0, every γ ≥ 0, and x ,x ′ ∈ X .

Proof. We denoteA := domG. If x ′ < A, we haveG (x ′) = ∞ so (2.7) holds irrespective
of γ and C . If x < A, we have ∂G (x ) = ∅, so (2.7) again holds. We may therefore
compute the constants based on x ,x ′ ∈ A. Now, there is a constant M such that
supx ∈A ‖x ‖ ≤ M . Then ‖x ′ − x ‖ ≤ 2M . Thus, if we pick C = 4M2, then (γ/2) (‖x ′ −
x ‖2 −C ) ≤ 0 for every γ ≥ 0 and x ,x ′ ∈ A. By the convexity of G, (2.7) holds. �

Example 2.2. An indicator function δA of a convex bounded set A satis�es the con-
ditions of Lemma 2.1. This is generally what we will use and need.

2.3 A general algorithm and the idea of testing

The only change we make to the proximal point formulation (2.3) of the method (2.1),
is to replace the basic step length or preconditioning operator Mbasic,i by the operator

Mi :=
(

T −1
i −K∗

−T̂i+1KT̃
−1
i Σ−1

i+1

)
.

As we have remarked, the operators T̂i+1 and T̃i play the role of ωi , acting from both
sides of K . Our proposed algorithm can thus be characterised as solving on each it-
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eration i ∈ N for the next iterate ui+1 the preconditioned proximal point problem

0 ∈ H (ui+1) +Mi (u
i+1 − ui ). (PP)

To study the convergence properties of (PP), we de�ne the testing operator

Si :=
(
T̃ −1,∗
i 0
0 T̂ −1

i+1

)
. (2.9)

It will turn out that multiplying or “testing” (PP) by this operator will allow us to de-
rive convergence rates. This is roughly akin to how distributions (generalised func-
tions) are applied to smooth test functions, hence the terminology. The testing of (PP)
by Si is also why we introduced testing into the monotonicity conditions (G-PM) and
(F∗-PM). If we only tested (PP) with Si = I , we could at most obtain ergodic conver-
gence of the duality gap for the unaccelerated method. But by testing with something
approriate and faster increasing, such as (2.9), we are able to extract better conver-
gence rates from (PP).

We also set

Γ̄i =

(
2Γi T̃ ∗i (KT̃

−1
i − T̂

−1
i+1K )∗

T̂i+1 (KT̃
−1
i − T̂

−1
i+1K ) 2Ri+1

)
,

for some Γi ∈ [0, Γ] + K̃ and Ri+1 ∈ K̂ . We will see in Section 2.1 that Γ̄i is a factor
of partial strong monotonicity for H with respect to testing by Si . With this, taking a
�xed δ > 0, the properties

Si (Mi + Γ̄i ) ≥ Si+1Mi+1, and (C1)

SiMi ≥ δ

(
T̃ −1,∗
i T −1

i 0
0 0

)
≥ 0, (C2)

will turn out to be the crucial de�ning properties for the convergence rates of the
iteration (PP). The resulting method can also be expressed as Algorithm 1. The main
steps in developing practical algorithms based on it, will be in the choice of the various
step length operators. This will be the content of Section 3 and 4. Before this, we
expand the conditions (C1) and (C2) to see how they might be satis�ed, and study
abstract convergence results.

2.4 A simpli�ed condition

We expand

SiMi =

(
T̃ −1,∗
i T −1

i −T̃ −1,∗
i K∗

−KT̃ −1
i T̂ −1

i+1Σ
−1
i+1

)
,

as well as

Si Γ̄i =

(
2T̃ −1,∗

i Γi T̃ −1,∗
i K∗ − K∗T̂ −1,∗

i+1
KT̃ −1

i − T̂
−1
i+1K 2T̂ −1

i+1Ri+1

)
, (2.10)
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and

Si (Mi + Γ̄i ) =

(
T̃ −1,∗
i (T −1

i + 2Γi ) −K∗T̂ −1,∗
i+1

−T̂ −1
i+1K T̂ −1

i+1 (Σ
−1
i+1 + 2Ri+1)

)
.

By Young’s inequality, (C2) is thus satis�ed when for some invertible Zi ∈ L (X ;X ),

T̂ −1
i+1Σ

−1
i+1 ≥ KZ−1

i Z−1,∗
i K∗, and (1 − δ )T̃ −1,∗

i T −1
i ≥ T̃

−1,∗
i Z ∗i ZiT̃

−1.

The second constraint is satis�ed as an equality if

Z ∗i Zi = (1 − δ )T −1
i T̃i . (2.11)

Note that this choice will also be optimal for the �rst constraint. By the spectral theo-
rem for self-adjoint operators on Hilbert spaces (e.g., [29, Chapter 12]), we can make
the choice (2.11) if

T −1
i T̃i ∈ Q := {A ∈ L (X ;X ) | A is self-adjoint and positive de�nite}.

Equivalently, by the same spectral theorem, T̃ −1
i Ti ∈ Q. Therefore (C2) holds when

T̃ −1
i Ti ∈ Q and T̂ −1

i+1Σ
−1
i+1 ≥

1
1 − δ

KT̃ −1
i TiK

∗. (C2′)

Also, (C1) can be rewritten(
T̃ −1,∗
i (T −1

i + 2Γi ) − T̃ −1,∗
i+1 T −1

i+1 T̃ −1,∗
i+1 K∗ − K∗T̂ −1,∗

i+1
KT̃ −1

i+1 − T̂
−1
i+1K T̂ −1

i+1 (Σ
−1
i+1 + 2Ri+1) − T̂

−1
i+2Σ

−1
i+2

)
≥ 0. (C1′)

2.5 Basic convergence result

Our main result on Algorithm 1 is the following theorem, providing some general
convergence estimates. It is, however, important to note that the theorem does not
yet directly prove convergence, as its estimates depend on the rate of decrease of
TN T̃

∗
N , as well as the rate of increase of the penalty sum

∑N−1
i=0 Di+1 coming from the

dissatisfaction of strong convexity. Deriving these rates in special cases will be the
topic of Section 4.
Theorem 2.1. Let us be given K ∈ L (X ;Y ), and convex, proper, lower semicontinuous
functionals G : X → R and F ∗ : Y → R on Hilbert spaces X and Y , satisfying (G-PM)
and (F∗-PM). Pick δ ∈ (0, 1), and suppose (C1) and (C2) are satis�ed for each i ∈ N

for some invertible Ti ∈ L (X ;X ), T̃i ∈ T̃ , T̂i+1 ∈ T̂ , and Σi+1 ∈ L (Y ;Y ), as well as
Γi ∈ [0, Γ]+K̃ and Ri+1 ∈ K̂ . Let û = (x̂ , ŷ ) satisfy (OC). Then the iterates of Algorithm
1 satisfy

δ

2
‖xN − x̂ ‖2

T̃ −1,∗
N T −1

N
≤ C0 +

N−1∑
i=0

Di+1, (N ≥ 1), (2.12)

for

Di+1 := ψT̃ −1,∗
i (Γi−Γ)

(x i+1 − x̂ ) + ϕT̂ −1
i+1Ri+1

(y i+1 − ŷ ), and C0 :=
1
2
‖u0 − û‖2S0M0

.

(2.13)
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Remark 2.1. The term Di+1 coming from the dissatisfaction of strong convexity,
penalises the basic convergence rate. If TN T̃N is of the order O (1/N 2), at least on a
subspace, and we can bound the penalty Di+1 ≤ C for some constant C , then we
clearly obtain mixedO (1/N 2)+O (1/N ) convergence rates on the subspace. If we can
assume that Di+1 actually converges to zero at some rate, then it will even be possible
to obtain improved convergence rates. Since typically T̃i , T̂i+1 ↘ 0 reduce to scalar
factors within Di+1, this would require prior knowledge of the rates of convergence
x i → x̂ and y i → ŷ . Boundedness we can however usually ensure.

Proof. Since 0 ∈ H (û), we have

〈H (ui+1), S∗i (u
i+1 − û)〉 ⊂ 〈H (ui+1) − H (û), S∗i (u

i+1 − û)〉.

Recalling the de�nition of Si from (2.9), and of H from (2.4), it follows

〈H (ui+1), S∗i (u
i+1 − û)〉 ⊂ 〈∂G (x i+1) − ∂G (x̂ ), T̃ −1

i (x i+1 − x̂ )〉

+ 〈∂F ∗ (y i+1) − ∂F ∗ (ŷ ), T̂ −1,∗
i+1 (y i+1 − ŷ )〉

+ 〈K∗ (y i+1 − ŷ ), T̃ −1
i (x i+1 − x̂ )〉

− 〈K (x i+1 − x̂ ), T̂ −1,∗
i+1 (y i+1 − ŷ )〉.

An application of (G-PM) and (F∗-PM) consequently gives

〈H (ui+1), S∗i (u
i+1 − û)〉 ≥ ‖x i+1 − x̂ ‖2

T̃ −1,∗
i Γi

+ ‖y i+1 − ŷ ‖2
T̂ −1
i+iRi+1

− ϕT̂ −1
i+1Ri+1

(y i+1 − ŷ ) −ψT̃ −1,∗
i (Γi−Γ)

(x i+1 − x̂ )

+ 〈KT̃ −1
i (x i+1 − x̂ ),y i+1 − ŷ〉 − 〈T̂ −1

i+1K (x i+1 − x̂ ),y i+1 − ŷ〉.

Using the expression (2.10) for Si Γ̄i , and (2.13) for Di+1, we thus deduce

〈H (ui+1), S∗i (u
i+1 − û)〉 ≥

1
2
‖ui+1 − û‖2Si Γ̄i

− Di+1. (2.14)

For arbitrary M ∈ L (X × Y ;X × Y ) we calculate

〈ui+1 − ui ,ui+1 − û〉M =
1
2
‖ui+1 − ui ‖2M −

1
2
‖ui − û‖2M +

1
2
‖ui+1 − û‖2M . (2.15)

In particular

〈Mi (u
i −ui+1), S∗i (u

i+1 − û)〉 = −
1
2
‖ui+1 −ui ‖2SiMi

+
1
2
‖ui − û‖2SiMi

−
1
2
‖ui+1 − û‖2SiMi

.

Using (C1) to estimate 1
2 ‖u

i+1 − û‖2SiMi
and (C2) to eliminate 1

2 ‖u
i+1 − ui ‖2SiMi

yields

〈Mi (u
i −ui+1), S∗i (u

i+1 − û)〉 ≤
1
2
‖ui − û‖2SiMi

−
1
2
‖ui+1 − û‖2Si+1Mi+1

+
1
2
‖ui+1 − û‖2Si Γ̄i

.

(2.16)
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Combining (2.14) and (2.16) through (PP), we thus obtain

1
2
‖ui+1 − û‖2Si+1Mi+1

≤
1
2
‖ui − û‖2SiMi

+ Di+1. (2.17)

Summing (2.17) over i = 1, . . . ,N − 1, and applying (C2) to estimate

δ

2
‖x i+1 − x̂ ‖T̃ −1,∗

N T −1
N
≤

1
2
‖ui+1 − û‖2SNMN

,

we obtain (2.12). �

3 Scalar diagonal updates and the ergodic duality gap

One relatively easy way to satisfy (G-PM), (F∗-PM), (C1) and (C2), is to take the “di-
agonal” step length operators T̂i and T̃i as equal scalars. Another good starting point
would be to choose T̃i = Ti . We however do not explore this route in the present
work, instead specialising now Theorem 2.1 to the scalar case. We then explore ways
to add estimates of the ergodic duality gap into (2.12). While this would be possible in
the general framework through convexity notions analogous to (G-PM) and (F∗-PM),
the resulting gap would not be particularly meaningful. We therefore concentrate on
the scalar diagonal updates to derive estimates on the ergodic duality gap.

3.1 Scalar specialisation of Algorithm 1

We take Ω̃i = ω̃i I , T̃i = τ̃i I , and T̂i = τ̃i I for some ω̃i , τ̃i > 0. With this (C2′) becomes

Ti ∈ Q, and Σ−1
i+1 ≥ ω̃i (1 − δ )−1KTiK

∗, (C2′′)

while, the diagonal terms cancelling out, (C1′) becomes

τ̃−1
i (I + 2ΓiTi )T −1

i ≥ τ̃
−1
i+1T

−1
i+1, and

τ̃−1
i+1 (Σ

−1
i+1 + 2Ri+1) ≥ τ̃

−1
i+2Σ

−1
i+2.

(C1′′)

For simplicity, we now assume ϕ andψ to satisfy the identities

ψT (−x ) = ψT (x ), and ψαT (x ) = αψT (x ), (x ∈ X ; 0 < α ∈ R). (3.2)

The monotonicity conditions (G-PM) and (F∗-PM) then simplify into

〈∂G (x ′) − ∂G (x ),x ′ − x〉 ≥ ‖x ′ − x ‖2Γ′ −ψΓ′−Γ (x
′ − x ), (x ,x ′ ∈ X ; Γ′ ∈ [0, Γ] + K̃ ),

(G-pm)

and

〈∂F ∗ (y ′) − ∂F ∗ (y ),y ′ − y〉 ≥ ‖y ′ − y ‖2R − ϕR (y
′ − y ), (y ,y ′ ∈ Y ; R ∈ K̂ ).

(F∗-pm)
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Algorithm 2 Primal-dual algorithm with partial acceleration—partially scalar

Require: F ∗ and G satisfying (G-pm) and (F∗-pm) for some sets K̃ , K̂ , and 0 ≤ Γ ∈
L (X ;X ). A choice of δ ∈ (0, 1). Initial invertible step length operators T0 ∈ Q

and Σ0 ∈ L (Y ;Y ), as well as step length parameter τ̃0 > 0.
1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: repeat
3: Find ω̃i > 0, Ωi ∈ L (X ;X ), and Γi ∈ [0, Γ] + K̃ satisfying

ω̃i (I + 2ΓiTi )Ωi ≥ I , and TiΩi ∈ Q. (3.1a)

4: Set
Ti+1 := TiΩi , and τ̃i+1 := τ̃iω̃i . (3.1b)

5: Find Σi+1 ∈ L (Y ;Y ) and Ri ∈ K̂ satisfying

Σ−1
i + 2Ri ≥ ω̃−1

i Σ−1
i+1 ≥ (1 − δ )−1KTiK

∗. (3.1c)

6: Perform the updates

x i+1 := (I +Ti∂G )−1 (x i −TiK
∗y i ),

x̄ i+1 := ω̃i (x
i+1 − x i ) + x i+1,

y i+1 := (I + Σi+1∂F
∗)−1 (y i + Σi+1Kx̄

i+1).

7: until a stopping criterion is ful�lled.

We have thus converted the main conditions (C2), (C1), (G-PM), and (F∗-PM) of The-
orem 2.1 into the respective conditions (C2′′), (C1′′), (G-pm), and (F∗-pm). Rewriting
(C1′′) in terms of Ωi and ω̃i satisfying Ti+1 = TiΩi and τ̃i+1 = τ̃iω̃i , we reorgan-
ise (C1′′) and (C2′′) into the parameter update rules (3.1) of Algorithm 2. For ease
of expression, we introduce there Σ0 and R0 as dummy variables that are not used
anywhere else. Equating w̄ i+1 = Kx̄ i+1, we observe that Algorithm 2 is an instance
of Algorithm 1. Observe that τ̃i and τ̂i disappear from the algorithm aside from the
residual factor ω̃i , which can give di�erent over-relaxation rates in the rule for x̄ i+1

compared to ωi in (2.1). Moreover, the parameter τ̃i will still play a critical role in our
study of convergence rate estimates.
Example 3.1 (The method of Chambolle and Pock). Let G be strongly convex with
factor γ ≥ 0. We take Ti = τi I , T̃i = τi I , T̂i = τi I , and Σi+1 = σi+1I for some scalars
τi ,σi+1 > 0. The conditions (G-pm) and (F∗-pm) then hold with ψ ≡ 0 and ϕ ≡ 0,
while (C2′′) and (C1′′) reduce with Ri+1 = 0, Γi = γ I , Ωi = ωi I , and ω̃i = ωi into

ω2
i (1 + 2γτi ) ≥ 1, and (1 − δ )/‖K ‖2 ≥ τi+2σi+2 ≥ τi+1σi+1.
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Updating σi+1 such that the last inequality holds as an equality, we recover the accel-
erated PDHGM (2.1)+(2.2). If γ = 0, we recover the unaccelerated PDHGM.

3.2 The ergodic duality gap and convergence

To study the convergence of an ergodic duality gap, we now introduce convexity
notions analogous to (G-pm) and (F∗-pm). Namely, we assume

G (x ′) −G (x ) ≥ 〈∂G (x ),x ′ − x〉 +
1
2
‖x ′ − x ‖2Γ′ −

1
2
ψΓ′−Γ (x

′ − x ),

(x ,x ′ ∈ X ; Γ′ ∈ [0, Γ] + K̃ ). (G-pc)

and

F ∗ (y ′) − F ∗ (y ) ≥ 〈∂F ∗ (y ),y ′ − y〉 +
1
2
‖y ′ − y ‖2R −

1
2
ψR (y

′ − y ),

(y,y ′ ∈ Y ; R ∈ K̂ ). (F∗-pc)

It is easy to see that these imply (G-pm) and (F∗-pm).

To de�ne an ergodic duality gap, we set

q̃N :=
N−1∑
j=0

τ̃−1
j , and q̂N :=

N−1∑
j=0

τ̂−1
j+1, (3.3)

and de�ne the weighted averages

xN := q̃−1
N

N−1∑
i=0

τ̃−1
i x i+1, and yN := q̂−1

N

N−1∑
i=0

τ̂−1
i+1y

i+1.

With these, the ergodic duality gap at iteration N is de�ned as

GN :=
(
G (xN ) + 〈ŷ ,KxN 〉 − F

∗ (ŷ )
)
−

(
G (x̂ ) + 〈yN ,Kx̂〉 − F

∗ (yN )
)
,

and we have the following convergence result.
Theorem 3.1. Let us be given K ∈ L (X ;Y ), and convex, proper, lower semicontinuous
functionals G : X → R and F ∗ : Y → R on Hilbert spaces X and Y , satisfying (G-pc)
and (F∗-pc) for some sets K̃ , K̂ , and 0 ≤ Γ ∈ L (X ;X ). Pick δ ∈ (0, 1), and suppose
(C2′′) and (C1′′) are satis�ed for each i ∈ N for some invertible Ti ∈ Q, Σi ∈ L (Y ;Y ),

0 < τ̃i ≤ τ̃0, (C3′′)

as well as Γi ∈ ([0, Γ] + K̃ )/2 and Ri ∈ K̂ /2. Let û = (x̂ , ŷ ) satisfy (OC). Then the
iterates of Algorithm 2 satisfy

δ

2
‖xN − x̂ ‖2τ̃ −1

N T −1
N
+ q̃NG

N ≤ C0 +

N−1∑
i=0

Di+1. (3.4)
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Here C0 is as in (2.13), and Di+1 simpli�es into

Di+1 = τ̃
−1
i ψ (Γi−Γ) (x

i+1 − x̂ ) + τ̃−1
i+1ϕRi+1 (y

i+1 − ŷ ). (3.5)

If only (G-pm) and (F∗-pm) hold instead of (G-pc) and (F∗-pc), or we take Ri ∈ K̂ and
Γi ∈ [0, Γ] + K̃ , then (3.4) holds with GN := 0.
Remark 3.1. For convergence of the gap, we must accelerate less (factor 1/2 on Γi ).
Example 3.2 (No acceleration). Consider Example 3.1, where ψ ≡ 0 and ϕ ≡ 0. If
γ = 0, we get ergodic convergence of the duality gap at rate O (1/N ). Indeed, we are
in the scalar step setting, with τ̂j = τ̃j = τ0. Thus presently q̃N = Nτ0.
Example 3.3 (Full acceleration). With γ > 0 in Example 3.1, we know from [11,
Corollary 1] that

lim
N→∞

NτNγ = 1. (3.6)

Thus q̃N is of the order N 2. So is τ̃NTN = τ 2
N I . Therefore, (3.4) shows O (1/N 2) con-

vergence of the squared distance to solution. ForO (1/N 2) convergence of the ergodic
duality gap, we need to slow down (2.2) to ωi = 1/

√
1 + γτi .

Remark 3.2. The result (3.6) can be improved to estimate τN ≤ Cτ /N without a
quali�er N ≥ N0. Indeed, from [11, Lemma 2] we know for the rule ωi = 1/

√
1 + 2γτi

that given λ > 0 and N ≥ 0 with γτN ≤ λ, for any ` ≥ 0 holds
1

γτN
+
`

1 + λ
≤

1
γτN+`

≤
1

γτN
+ `.

If we pick N = 0 and λ = γτ0, this says
1
γτ0
+

`

1 + γτ0
≤

1
γτ`
≤

1
γτ0
+ `.

In particular,

τ` ≤
1

γ
(

1
γ τ0
+ `

1+γ τ0

) = 1 + γτ0

τ−1
0 + γ `

≤
γ−1 + τ0

`
.

Therefore, τN ≤ Cτ /N for Cτ := γ−1 + τ0. Moreover, τ−1
N ≤ τ

−1
0 + γN .

Proof of Theorem 3.1. The �nal non-gap estimate is a direct consequence of Theorem
2.1, so we concentrate on the gap estimate. We begin by expanding

〈H (ui+1), S∗i (u
i+1 − û)〉 = τ̃−1

i 〈∂G (x i+1),x i+1 − x̂〉 + τ̂−1
i+1〈∂F

∗ (y i+1),y i+1 − ŷ〉

+ τ̃−1
i 〈K

∗y i+1,x i+1 − x̂〉 − τ̂−1
i+1〈Kx

i+1,y i+1 − ŷ〉

Since then Γi ∈ ([0, Γ] + K̃ )/2, and Ri+1 ∈ K̂ /2, we may take Γ′ = 2Γi and R = 2Ri+1
in (G-pc) and (F∗-pc). It follows

〈H (ui+1), S∗i (u
i+1 − û)〉 ≥ τ̃−1

i

(
G (x i+1) −G (x̂ ) +

1
2
‖x i+1 − x̂ ‖22Γi −

1
2
ψ2Γi (x

i+1 − x̂ )
)

+ τ̂−1
i+1

(
F ∗ (y i+1) − F ∗ (ŷ ) +

1
2
‖y i+1 − ŷ ‖22Ri+1

−
1
2
ϕ2Ri+1 (y

i+1 − ŷ )
)

− τ̃−1
i 〈y

i+1,Kx̂〉 + τ̂−1
i+1〈ŷ,Kx

i+1〉 + (τ̃−1
i − τ̂

−1
i+1)〈y

i+1,Kx i+1〉.
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Using (2.6) and (3.2), we can make all of the factors “2” and “1/2” in this expression
annihilate each other. With Di+1 as in (3.5) (equivalently (2.13)) we therefore have

〈H (ui+1), S∗i (u
i+1 − û)〉 ≥ τ̃−1

i

(
G (x i+1) −G (x̂ ) + 〈ŷ,Kx i+1〉

)
+ ‖x i+1 − x̂ ‖2τ̃ −1

i Γi

+ τ̂−1
i+1

(
F ∗ (y i+1) − F ∗ (ŷ ) − 〈y i+1,Kx̂〉

)
+ ‖y i+1 − ŷ ‖2τ̂ −1

i+1Ri+1

+ (τ̃−1
i − τ̂

−1
i+1)

(
〈y i+1 − ŷ ,K (x i+1 − x̂ )〉 − 〈ŷ,Kx̂〉

)
− Di+1.

A little bit of reorganisation and referral to (2.10) for the expansion of Si Γ̄i thus gives

〈H (ui+1), S∗i (u
i+1 − û)〉 ≥ τ̃−1

i

(
G (x i+1) −G (x̂ ) + 〈ŷ,Kx i+1〉

)
+ τ̂−1

i+1
(
F ∗ (y i+1) − F ∗ (ŷ ) − 〈y i+1,Kx̂〉

)
− (τ̃−1

i − τ̂
−1
i+1)〈ŷ,Kx̂〉 +

1
2
‖ui+1 − û‖2Si Γ̄i

− Di+1.

(3.7)

Let us write

Gi
+ (u

i+1, û) :=
(
τ̃−1
i G (x i+1) + τ̃−1

i 〈ŷ,Kx
i+1〉 − τ̂−1

i F ∗ (ŷ )
)

−
(
τ̃−1
i+1G (x̂ ) + τ̂−1

i+1〈y
i+1,Kx̂〉 − τ̂−1

i+1F
∗ (y i+1)

)
.

Observing here the switches between the indices i + 1 and i of the step length param-
eters in comparison to the last step of (3.7), we thus obtain

〈H (ui+1), Si (u
i+1 − û)〉 ≥ Gi

+ (u
i+1, û) − Gi

+ (û, û) +
1
2
‖ui+1 − û‖2Si Γ̄i

− Di+1. (3.8)

Using (2.16) and (PP), we now obtain
1
2
‖ui+1 − û‖2Si+1Mi+1

+ Gi
+ (u

i+1, û) − Gi
+ (û, û) ≤

1
2
‖ui − û‖2SiMi

+ Di+1.

Summing this for i = 0, . . . ,N − 1 gives with C0 from (2.13) the estimate

1
2
‖uN − û‖2SNMN

+

N−1∑
i=0

(
Gi
+ (u

i+1, û) − Gi
+ (û, û)

)
≤ C0 +

N−1∑
i=0

Di+1. (3.9)

We want to estimate the sum of the gaps Gi
+ in (3.9). Using the convexity of G and

F ∗, we observe
N−1∑
i=0

τ̃−1
i G (x i+1) ≥ q̃NG (xN ), and

N−1∑
i=0

τ̂−1
i+1F

∗ (y i+1) ≥ q̂N F
∗ (yN ). (3.10)

Also, by (3.3) and simple reorganisation
N−1∑
i=0

τ̃−1
i+1G (x̂ ) = q̃NG (x̂ ) + τ̃−1

N G (x̂ ) − τ̃−1
0 G (x̂ ), and (3.11)

N−1∑
i=0

τ̂−1
i F ∗ (ŷ ) = q̂N F

∗ (yN ) − τ̂
−1
N F ∗ (ŷ ) + τ̂−1

0 F ∗ (ŷ ). (3.12)
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All of (3.10)–(3.12) together give

N−1∑
i=0
Gi
+ (u

i+1, û) ≥
(
q̃NG (xN ) + q̃N 〈ŷ ,KxN 〉 − q̂N F

∗ (ŷ )
)

−
(
q̃NG (x̂ ) + q̂N 〈yN ,Kx̂〉 − q̂N F

∗ (yN )
)

+

(
τ̃−1
N G (x̂ ) − τ̃−1

0 G (x̂ ) + τ̂−1
N F ∗

T̂ −1,∗
N

(x̂ ) − τ̂−1
0 F ∗ (ŷ )

)
.

Another use of (3.3) gives

N−1∑
i=0
Gi
+ (û, û) = (q̃N − q̂N )〈ŷ,Kx̂〉 +

(
τ̃−1
N G (x̂ ) − τ̃−1

0 G (x̂ ) + τ̂−1
N F ∗ (x̂ ) − τ̂−1

0 F ∗ (ŷ )
)
.

Thus
N−1∑
i=0

(
Gi
+ (u

i+1, û) − Gi
+ (û, û)

)
≥ q̃NG

N + rN , (3.13)

where the remainder

rN = (q̃N − q̂N ) (F
∗ (ŷ ) − F ∗ (yN ) − 〈ŷ − yN ,Kx̂〉) .

At a solution û = (x̂ , ŷ ) to (OC), Kx̂ ∈ ∂F ∗ (ŷ ), so rN ≥ 0 provided q̃N ≤ q̂N . But
q̃N − q̂N = τ̃

−1
0 − τ̃

−1
N , so this is guaranteed by our assumption (C3′′). Using (3.13) in

(3.9) therefore gives

1
2
‖uN − û‖2SNMN

+ q̃NG
N + rN ≤ C0 +

N−1∑
i=0

Di+1. (3.14)

A referral to (C2) to estimate SNMN from below shows (3.4), concluding the proof. �
Remark 3.3. We only used the assumption τ̃i = τ̂i to bound rN ≥ 0. It is possible to
streamline the proof if in addition to this we assume {τ̃i} to be non-increasing instead
of merely satisfying (C3′′), and de�ne yN based on q̃N instead of q̂N .

4 Convergence rates in special cases

To derive a practical algorithm, we need to satisfy the update rules (C1) and (C2), as
well as the partial monotonicity conditions (G-PM) and (F∗-PM). As we have already
discussed in Section 3, this is easiest when for some τ̃i > 0 we set

T̃i = τ̃i I , and T̂i = τ̃i I . (4.1)

The result is Algorithm 2, whose convergence we studied in Theorem 3.1. Our task
now is to verify its conditions, in particular (G-pc) and (F∗-pc) (alternatively (F∗-pm)
and (G-pm)), as well as (C1′′), (C2′′), and (C3′′) for Γ of the projection form γP .
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4.1 An approach to updating Σ

We have not yet de�ned an explicit update rule for Σ, merely requiring that it has to
satisfy (C2′′) and (C1′′). The former in particular requires

Σ−1
i+1 ≥ ω̃i (1 − δ )−1KTiK

∗.

Hiring the help of some linear operator F ∈ L (L (Y ;Y );L (Y ;Y )) satisfying

F (KTiK
∗) ≥ KTiK

∗, (4.2)

our approach is to de�ne

Σ−1
i+1 := ω̃i (1 − δ )−1F (KTiK

∗). (4.3)

Then (C2′′) is satis�ed provided T −1
i ∈ Q. Since τ̃−1

i+1Σ
−1
i+1 = τ̃

−1
i (1 − δ )−1F (KTiK

∗),
the condition (C1′′) reduces into the satisfaction for each i ∈ N of

τ̃−1
i (I + 2ΓTi )T −1

i − τ̃
−1
i+1T

−1
i+1 ≥ −2τ̃−1

i (Γi − Γ), and (4.4a)
1

1 − δ
(
τ̃−1
i F (KTiK

∗) − τ̃−1
i+1F (KTi+1K

∗)
)
≥ −2τ̃−1

i+1Ri+1. (4.4b)

To apply Theorem 3.1, all that remains is to verify in special cases these conditions
together with (C3′′) and the partial strong convexity conditions (G-pc) and (F∗-pc).

4.2 When Γ is a projection

We now take Γ = γ̄P for some γ̄ > 0, and a projection operator P ∈ L (X ;X ): idem-
potent, P2 = P , and self-adjoint, P∗ = P . We let P⊥ := I − P . Then P⊥P = PP⊥ = 0.
With this, we assume for some γ̄⊥ > 0 that

[0, γ̄⊥P⊥] ⊂ K̃ . (4.5)

To unify our analysis for gap and non-gap estimates of Theorem 3.1, we now pick
λ = 1/2 in the former case, and λ = 1 in the latter. We then pick 0 ≤ γ ≤ λγ̄ , and
0 ≤ γ⊥i ≤ λγ̄

⊥, and set

Ti = τiP + τ
⊥
i P
⊥, Ωi = ωiP + ω

⊥
i P
⊥, and Γi = γP + γ

⊥
i P
⊥. (4.6)

With this, τi ,τ⊥i > 0 guarantee Ti ∈ Q. Moreover, Γi ∈ λ([0, Γ] + K̃ ), exactly as
required in both the gap and the non-gap cases of Theorem 3.1.

Since
KTiK

∗ = τiKPK
∗ + τ⊥i KP

⊥K∗ = (τi − τ
⊥
i )KPK

∗ + τ⊥i KK
∗,

we are encouraged to take

F (KTiK
∗) := max{0,τi − τ⊥i }‖KP ‖2I + τ⊥i ‖K ‖2I . (4.7)
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Remark 4.1. If we requiredτ⊥i ≥ τi , a simpler choice would beF (KTiK
∗) = τ⊥i ‖K ‖

2I .
Numerical experiments however suggest τ⊥0 � τ0 being bene�cial. Nevertheless, for
large enough i , the condition τ⊥i ≥ τi will hold in our algorithms.
Observe that (4.7) satis�es (4.2). Inserting (4.7) into (4.3), we obtain

Σi+1 = σi+1I with σ−1
i+1 =

ω̃i

1 − δ
(
max{0,τi − τ⊥i }‖KP ‖2 + τ⊥i ‖K ‖2) . (4.8)

Since Σi+1 is a scalar, (4.4b), we also take Ri+1 = ρi+1I , assuming for some ρ̄ > 0 that

[0, ρ̄I ] ⊂ K̂ .

Setting
ηi := τ̃−1

i max{0,τi − τ⊥i } − τ̃−1
i+1 max{0,τi+1 − τ

⊥
i+1}

we thus expand (4.4) as

τ̃−1
i (1 + 2γτi )τ−1

i − τ̃i+1τ
−1
i+1 ≥ 0, (4.9a)

τ̃−1
i τ⊥,−1

i − τ̃−1
i+1τ

⊥,−1
i+1 ≥ −2τ̃−1

i γ⊥i , (4.9b)
1

1 − δ
(
ηi ‖KP ‖

2 + (τ̃−1
i τ⊥i − τ̃

−1
i+1τ

⊥
i+1)‖K ‖

2
)
≥ −2τ̃−1

i+1ρi+1. (4.9c)

We are almost ready to state a general convergence result for projective Γ. However,
we want to make one more thing more explicit. Since Γi −Γ = γ⊥i P

⊥ and Ri+1 = ρi+1I ,
we suppose for simplicity that

ϕRi+1 (y ) = ρi+1ϕ (y ) and ψΓi−Γ (x ) = γ
⊥
i ψ
⊥ (P⊥x ) (4.10)

for some ϕ : Y → R andψ⊥ : P⊥X → R. The conditions (G-pc) and (F∗-pc) reduce in
this case to the satisfaction for some γ̄ , γ̄⊥, ρ̄ > 0 of

G (x ′)−G (x ) ≥ 〈∂G (x ),x ′−x〉+
γ̄

2
‖P (x ′−x )‖2+

γ⊥

2
(
‖P⊥ (x ′ − x )‖2 −ψ (P⊥ (x ′ − x ))

)
,

(x ,x ′ ∈ X ; 0 ≤ γ⊥ ≤ γ̄⊥), (G-pcr)

and

F ∗ (y ′) − F ∗ (y ) ≥ 〈∂F ∗ (y ),y ′ − y〉 +
ρ

2
(
‖y ′ − y ‖2 − ϕ (y ′ − y )

)
,

(y,y ′ ∈ Y ; 0 ≤ ρ ≤ ρ̄). (F∗-pcr)

Analogous variants of (G-pm) and (F∗-pm) can be formed.

To summarise the �ndings of this section, we state the following proposition.
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Proposition 4.1. Suppose (G-pcr) and (F∗-pcr) hold for some projection operator P ∈
L (X ;X ) and scalars γ̄ , γ̄⊥, ρ̄ > 0. With λ = 1/2, pick γ ∈ [0, λγ̄ ]. For each i ∈ N,
suppose (4.9) is satis�ed with

0 ≤ γ⊥i ≤ λγ̄
⊥, 0 ≤ ρi ≤ λρ̄, and τ̃0 ≥ τ̃i > 0. (4.11)

If we solve (4.9a) exactly, de�ne Ti , Γi , and Σi+1 through (4.6) and (4.8), and set Ri+1 =

ρi+1I , then the iterates of Algorithm 2 satisfy withC0 and Di+1 as in (2.13) the estimate

δ

2
‖P (xN − x̂ )‖2 +

1
τ−1

0 + 2γ
GN ≤ τ̃NτN *

,
C0 +

N−1∑
i=0

Di+1+
-
. (4.12)

If we take λ = 1, then (4.12) holds with GN = 0.
Observe that presently

Di+1 = τ̃
−1
i γ⊥i ψ (x

i+1 − x̂ ) + τ̃−1
i+1ρi+1ϕ (y

i+1 − ŷ ). (4.13)

Proof. As we have assumed through (4.11), or otherwise already veri�ed its condi-
tions, we may apply Theorem 3.1. Multiplying (3.4) by τ̃NτN , we obtain

δ

2
‖xN − x̂ ‖2P + q̃N τ̃NτNG

N ≤ τ̃NτN

(
C0 +

N−1∑
i=0

Di+1

)
. (4.14)

Now, observe that solving (4.9a) exactly gives

τ̃−1
N τ−1

N = τ̃
−1
N−1τ

−1
N−1 + 2γτ̃−1

N−1 = τ̃
−1
0 τ−1

0 +

N−1∑
j=0

2γτ̃−1
j = τ̃

−1
0 τ−1

0 + 2γ q̃N . (4.15)

Therefore, we have the estimate

q̃N τ̃NτN =
q̃N

τ̃−1
0 τ−1

0 + 2γ q̃N
=

1
τ̃−1

0 τ−1
0 q̃−1

N + 2γ
≥

1
τ−1

0 + 2γ
. (4.16)

With this, (4.14) yields (4.12). �

4.3 Primal and dual penalties with projective Γ

We now study conditions that guarantee the convergence of the sum τ̃NτN
∑N−1

i=0 Di+1
in (4.12). Indeed, the right-hand-sides of (4.9b) and (4.9c) relate to Di+1. In most prac-
tical cases, which we study below, ϕ and ψ transfer these right-hand-side penalties
into simple linear factors withinDi+1. Optimal rates are therefore obtained by solving
(4.9b) and (4.9c) as equalities, with the right-hand-sides proportional to each other.
Since ηi ≥ 0, and it will be the case that ηi = 0 for large i , we however replace (4.9c)
by the simpler condition

1
1 − δ

(τ̃−1
i τ⊥i − τ̃

−1
i+1τ

⊥
i+1)‖K ‖

2 ≥ −2τ̃−1
i+1ρi+1. (4.17)
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Then we try to make the left hand sides of (4.9b) and (4.17) proportional with only
τ⊥i+1 as a free variable. That is, for some proportionality constant ζ > 0, we solve

τ̃−1
i τ⊥,−1

i − τ̃−1
i+1τ

⊥,−1
i+1 = ζ (τ̃

−1
i τ⊥i − τ̃

−1
i+1τ

⊥
i+1). (4.18)

Multiplying both sides of (4.18) by ζ −1τ̃i+1τ
⊥
i+1, gives on τ⊥i+1 the quadratic condition

τ⊥,2i+1 + ω̃i (ζ
−1τ⊥,−1

i − τ⊥i )τ
⊥
i+1 − ζ

−1 = 0.

Thus
τ⊥i+1 =

1
2

(
ω̃i (τ

⊥
i − ζ

−1τ⊥,−1
i ) +

√
ω̃2
i (τ
⊥
i − ζ

−1τ⊥,−1
i )2 + 4ζ −1

)
. (4.19)

Solving (4.9b) and (4.17) as equalities, (4.18) and (4.19) give

2τ̃−1
i γ⊥i =

2ζ (1 − δ )
‖K ‖2

τ̃−1
i+1ρi+1 = ζ (τ̃

−1
i+1τ

⊥
i+1 − τ̃

−1
i τ⊥i ). (4.20)

Note that this quantity is non-negative exactly when ω⊥i ≥ ω̃i . We have

ω⊥i
ω̃i
=

τ⊥i+1
τ⊥i ω̃i

=
1
2

(
1 − ζ −1τ⊥,−2

i +

√
(1 − ζ −1τ⊥,−2

i )2 + 4ζ −1ω̃−2
i τ⊥,−2

i

)
.

Thus ω⊥i ≥ ω̃i if

(1 − ζ −1τ⊥,−2
i )2 + 4ζ −1ω̃−2

i τ⊥,−2
i ≥ (1 + ζ −1τ⊥,−2

i )2.

This gives the condition ζ −1ω̃−2
i τ⊥,−2

i ≥ ζ −1τ⊥,−2
i , which says that (4.20) is non-

negative when ω̃i ≤ 1.

The next lemma summarises these results for the standard choice of ω̃i .
Lemma 4.1. Let τ⊥i+1 by given by (4.19), and set

ω̃i = ωi = 1/
√

1 + 2γτi . (4.21)

Then ω⊥i ≥ ω̃i , τ̃i ≤ τ̃0, and (4.9) is satis�ed with the right-hand-sides given by the
non-negative quantity in (4.20). Moreover,

τ⊥i ≤ ζ
−1/2 =⇒ τ⊥i+1 ≤ ζ

−1/2. (4.22)

Proof. The choice (4.21) satis�es (4.9a), so that (4.9) in its entirety will be satis�ed
with the right-hand sides of (4.9b)–(4.9c) given by (4.20). The bound τ̃i ≤ τ̃0 follows
from ω̃i ≤ 1. Finally, the implication (4.22) is a simple estimation of (4.19). �

Specialisation of Algorithm 2 to the choices in Lemma 4.1 yields the steps of Algo-
rithm 3. Observe that τ̃i entirely disappears from the algorithm. To obtain conver-
gence rates, and to justify the initial conditions, we will shortly seek to exploit with
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Algorithm 3 Partial acceleration for projective Γ—primal and dual penalties
Require: F ∗ andG satisfying (G-pcr) and (F∗-pcr) for some γ̄ , γ̄⊥, ρ̄ ≥ 0, and a projec-

tion operator P ∈ L (X ;X ). A choice of γ ∈ [0, γ̄ ]. Initial step length parameters
τ0,τ

⊥
0 > 0, a choice of δ ∈ (0, 1), and ζ ≤ τ⊥,−2

0 , all satisfying (4.25).
1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: repeat
3: Set

ωi = 1/
√

1 + 2γτi , and

ω⊥i =
1
2

(
(1 − ζ −1τ⊥,−2

i )ωi +

√
(1 − ζ −1τ⊥,−2

i )2ω2
i + 4ζ −1τ⊥,−2

i

)
.

4: Update

τi+1 = τiωi , τ⊥i+1 = τ
⊥
i ω
⊥
i , and

σi+1 = ω
−1
i (1 − δ )/

(
max{0,τi − τ⊥i }‖KP ‖2 + τ⊥i ‖K ‖2) ,

5: With Ti = τiP + τ
⊥
i P
⊥, perform the updates

x i+1 := (I +Ti∂G )−1 (x i −TiK
∗y i ), (4.23a)

x̄ i+1 := ωi (x
i+1 − x i ) + x i+1, (4.23b)

y i+1 := (I + σi+1∂F
∗)−1 (y i + σi+1Kx̄

i+1). (4.23c)

6: until a stopping criterion is ful�lled.

speci�c ϕ and ψ the telescoping property stemming from the non-negativity of the
last term of (4.20).

There is still, however, one matter to take care of. We need ρi ≤ λρ̄ and γ⊥i ≤ λγ̄⊥,
although in many cases of practical interest, the upper bounds are in�nite and hence
inconsequential. We calculate from (4.19) and (4.21) that

γ⊥i =
ζ

2
(ω̃−1

i τ⊥i+1 − τ
⊥
i ) =

1
2

(
−ζτ⊥i − τ

⊥,−1
i +

√
(ζτ⊥i − τ

⊥,−1
i )2 + 4ζ ω̃−2

i

)
≤

1
2

√
(ζτ⊥i − τ

⊥,−1
i )2 − (ζτ⊥i + τ

⊥,−1
i )2 + 4ζ ω̃−2

i

=

√
ζ (ω̃−2

i − 1) =
√

2ζγτi ≤
√

2ζγτ0.

(4.24)

Therefore, we need to choose ζ and τ0 to satisfy 2ζγτ0 ≤ (λγ̄⊥)2. Likewise, we calcu-
late from (4.20), (4.21), and (4.24) that

ρi+1 =
ω̃i

c
γ⊥i =

‖K ‖2ω̃i

(1 − δ )ζ
γ⊥i ≤

‖K ‖2ω̃i

(1 − δ )ζ

√
2ζγτi =

‖K ‖2

(1 − δ )ζ

√
2ζγτ0.
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This tells us to choose τ0 and ζ to satisfy 2‖K ‖4/(1 − δ )2ζ −1γτ0 ≤ (λρ̄)2. Overall, we
get on τ0 and ζ the always satis�able condition

0 < τ0 ≤
λ2

2γ
min

{
γ̄⊥,2

ζ
,
ρ̄2ζ (1 − δ )2

‖K ‖4

}
. (4.25)

If now ϕ ≡ Cϕ and ψ ≡ C⊥ψ , using the non-negativity of (4.20) when 0 < ω̃i ≤ 1, we
may calculate

N−1∑
i=0

τ̃−1
i+1ρi+1ϕ (y

i+1 − ŷ ) =
‖K ‖2Cϕ

2(1 − δ )
*
,

N−1∑
i=0

τ̃−1
i+1τ

⊥
i+1

2
−

N−1∑
i=0

τ̃−1
i τ⊥i

2
+
-
≤
‖K ‖2Cϕ

2(1 − δ )
τ̃−1
N τ⊥N .

(4.26)
Similarly

N−1∑
i=0

τ̃−1
i γ⊥i ψ (x

i+1 − x̂ ) ≤
ζC⊥ψ

2
τ̃−1
N τ⊥N . (4.27)

Using these expression to expand (4.13), we obtain the following convergence result.
Theorem 4.1. Suppose (G-pcr) and (F∗-pcr) hold for some projection operator P ∈
L (X ;X ), scalars γ̄ , γ̄⊥, ρ̄ > 0, and

ϕ ≡ Cϕ , and ψ ≡ C⊥ψ

for some constantsCϕ ,C⊥ψ > 0. With λ = 1/2, �x γ ∈ (0, λγ ]. Select initial τ0,τ
⊥
0 > 0, as

well as δ ∈ (0, 1) and ζ ≤ (τ⊥0 )−2 satisfying (4.25). Then Algorithm 3 satis�es for some
C0,Cτ > 0 the estimate

δ

2
‖P (xN − x̂ )‖2 +

1
τ−1

0 + 2γ
GN ≤

C0C
2
τ

N 2 +
Cτ
2N

(
ζ 1/2C⊥ψ +

ζ −1/2‖K ‖2

1 − δ
Cϕ

)
, (N ≥ 0).

(4.28)

If we take λ = 1, then (4.12) holds with GN = 0.

Proof. During the course of the derivation of Algorithm 3, we have veri�ed (4.9),
solving (4.9a) as an equality. Moreover, Lemma 4.1 and (4.25) guarantee (4.11). We
may therefore apply Proposition 4.1. Inserting (4.26) and (4.27) into (4.12) and (4.13)
gives

δ

2
‖P (xN − x̂ )‖2 +

1
τ−1

0 + 2γ
GN ≤ τN τ̃N *

,
C0 +

ζC⊥ψ

2
τ̃−1
N τ⊥N +

‖K ‖2Cϕ

2(1 − δ )
τ̃−1
N τ⊥N

+
-
. (4.29)

The condition ζ ≤ (τ⊥0 )−2 now guarantees τ⊥N ≤ ζ −1/2 through (4.22). Now we note
that τ̃i is not used in Algorithm 3, so it only a�ects the convergence rate estimates.
We therefore simply take τ̃0 = τ0, so that τ̃N = τN for all N ∈ N. With this and the
bound τN ≤ Cτ /N from Remark 3.2, (4.28) follows by simple estimation of (4.29). �
Remark 4.2. As a special case of Algorithm 3, if we choose ζ = τ⊥,−2

0 , then we can
show from (4.19) that τ⊥i = τ

⊥
0 = ζ

−1/2 for all i ∈ N.
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4.4 Dual penalty only with projective Γ

Continuing with the projective Γ setup of Section 4.2, we now study the case K̃ = {0},
that is, when only the dual penalty ϕ is available with ψ ≡ 0. To use Proposition 4.1,
we need to satisfy (4.11) and (4.9), with (4.9a) exactly. Since γ⊥i = 0, (4.9b) becomes

τ̃−1
i τ⊥,−1

i − τ̃−1
i+1τ

⊥,−1
i+1 ≥ 0. (4.30)

With respect to τ⊥i+1, the left hand side of (4.9c) is maximised (and the penalty on the
right hand side minimised) when (4.30) is minimised. Thus we solve (4.30) exactly,
which gives

τ⊥i+1 = τ
⊥,
i ω̃−1

i .

In consequence ω⊥i = ω̃
−1
i , and (4.9c) becomes

1
1 − δ

ηi ‖KP ‖
2 +

τ̃−2
i

1 − δ
(1 − ω̃−2

i )‖K ‖2 ≥ −2τ̃−1
i+1ρi+1. (4.31)

Here ηi ≥ 0, so we estimate this as ηi = 0 as in (4.17). This suggests to choose

ω̃i :=
1

1 + ai τ̃ 2
i

and ωi :=
1

ω̃i (1 + 2γτi )
, (4.32)

for some, yet undetermined, ai > 0. Solving (4.31) as an equality for ρi+1, then

2τ̃−1
i+1ρi+1 = ai

‖K ‖2

1 − δ
.

This needs ρi+1 ≤ λρ̄. Since τ̃−1
i ≥ τ̃−1

0 , we can satisfy this for large enough i if
ai ↘ 0, or generally if τ̃0 is small enough and {ai} non-decreasing. In particular, if{ai} is descending, it su�ces

a0τ
⊥
0 τ̃

2
0
‖K ‖2

2(1 − δ )
≤ ρ̄ (4.33)

Noting that (4.32) ensures τ̃−2
i+1 = τ̃

−2
i + ai , we see that

τ̃−1
N τ−1

N = τ̃
−1
0 τ−1

0 + 2γ
N−1∑
i=0

√√√
τ̃−2

0 +

i−1∑
j=0

aj ≥ 2γ
N−1∑
i=0

√√√
τ̃−2

0 +

i−1∑
j=0

aj =: 1/µN0 .

Assuming ϕ to have the structure (4.10), moreover

N−1∑
i=0

Di+1 =

N−1∑
i=0

ϕτ̃ −1
i+1Ri+1 (y

i+1 − ŷ ) =
‖K ‖2

2(1 − δ )

N−1∑
i=0

aiϕ (y
i+1 − ŷ ).

Thus the rate (4.12) in Proposition 4.1 states

δ

2
‖P (xN − x̂ )‖2 +

1
τ−1

0 + 2γ
GN ≤ µN0 C0 +

‖K ‖2

2(1 − δ )
µN1 (4.34)
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for

µN1 := µN0
N−1∑
i=0

aiϕ (y
i+1 − ŷ ).

The convergence rate is thus completely determined by µN0 and µN1 .
Remark 4.3. If ϕ ≡ 0, that is, if F ∗ is strongly convex, we may simply pick ω̃i = ωi =

1/
√

1 + 2γτi , that is ai = 2γ , and obtain from (4.34) a O (1/N 2) convergence rate.
For a more generally applicable algorithm, suppose ϕ (y i+1 − ŷ ) ≡ Cϕ as in Theorem
4.1. We need to choose ai . One possibility is to pick some q > 0 and

ai := τ̃−2
0

(
(i + 1)q − iq

)
. (4.35)

This gives

N−1∑
i=0

√√√
τ̃−2

0 +

i−1∑
j=0

aj = τ̃
−1
0

N−1∑
i=0

iq/2 ≥ τ̃−1
0

∫ N−1

0
xq/2 dx =

τ̃−1
0

1 + q/2
(N − 1)1+q/2,

and
N−1∑
i=0

ai ≤ τ̃
−2
0 N q .

If N ≥ 2, we �nd with Ca = (1 + q/2)/(21+q/2λγ ) that

µN0 ≤
τ̃0Ca

N 1+q/2 , and µN1 ≤
CaCϕ

τ̃0N 1−q/2 . (4.36)

The choice q = 0 gives uniform O (1/N ) over both the initialisation and the dual
sequence. By choosing q < 2 large, we can get arbitrarily close to O (1/N 2) rate with
respect to the initialisation, at the cost of the rate µN1 with respect to the dual sequence
becoming closer and closer to zero.

With these choices, Algorithm 2 yields Algorithm 4, whose convergence properties
are stated in the next theorem.
Theorem 4.2. Suppose (G-pcr) and (F∗-pcr) hold for some projection operator P ∈
L (X ;X ) and γ̄ , γ̄⊥, ρ̄ ≥ 0 with ψ ≡ 0 and ϕ ≡ Cϕ for some constant Cϕ ≥ 0. With
λ = 1/2, choose γ ∈ (0, λγ̄ ], and pick the sequence {ai}∞i=0 by (4.35) for some q > 0.
Select initial τ0,τ

⊥
0 , τ̃0 > 0 and δ ∈ (0, 1) verifying (4.33). Then Algorithm 4 satis�es

δ

2
‖P (xN − x̂ )‖2 +

1
τ−1

0 + γ
GN ≤

τ̃0CaC0

N 1+q/2 +
CaCϕ ‖K ‖

2

2(1 − δ )τ̃ 2
0N

1−q/2 , (N ≥ 2). (4.38)

If we take λ = 1, then (4.38) holds with GN = 0.

Proof. We apply Proposition 4.1 whose assumptions we have veri�ed during the course
of the present section. In particular, τ̃i ≤ τ̃0 through the choice (4.32) that forces
ω̃i ≤ 1. Also, have already derived the rate (4.34) from (4.12). Inserting (4.36) into
(4.34), noting that the former is only valid for N ≥ 2, immediately gives (4.38) �
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Algorithm 4 Partial acceleration for projective Γ—dual penalty only
Require: G satisfying (G-pcr) (withψ ≡ 0) for some γ̄ > 0 and a projection operator

P ∈ L (X ;X ). F ∗ satisfying (F∗-pcr) for some ρ̄ > 0. A choice of γ ∈ [0, γ̄ ] and
a decreasing sequence {ai}∞i=0, for example as in (4.35). Initial step parameters
τ0,τ

⊥
0 , τ̃0 > 0, as well as δ ∈ (0, 1), satisfying (4.33).

1: Choose initial iterates x0 ∈ X and y0 ∈ Y .
2: repeat
3: Set

ω̃i := 1/(1 + ai τ̃ 2
i ), τ̃i+1 := τ̃iω̃i , τ⊥i+1 := τ⊥i /ω̃i ,

ωi := ω̃−1
i /(1 + 2γτi ), τi+1 := τiωi ,

as well as

σi+1 = ω
−1
i (1 − δ )/

(
max{0,τi − τ⊥i }‖KP ‖2 + τ⊥i ‖K ‖2) .

4: With Ti := τiP + τ⊥i P
⊥, perform the updates

x i+1 := (I +Ti∂G )−1 (x i −TiK
∗y i ),

x̄ i+1 := ω̃i (x
i+1 − x i ) + x i+1,

y i+1 := (I + σi+1∂F
∗)−1 (y i + σi+1Kx̄

i+1).

5: until a stopping criterion is ful�lled.

5 Examples from image processing and the data sciences

We now consider several applications of our algorithms. We generally have to con-
sider discretisations, since many interesting in�nite-dimensional problems necessi-
tate Banach spaces. Using Bregman distances, it would be possible to generalise our
work form Hilbert spaces to Banach spaces, as was done in [22] for the original
method of [11]. This is however outside the scope of the present work.

5.1 Regularised least squares

A large range of interesting application problems can be written in the Tikhonov reg-
ularisation or empirical loss minimisation form

min
x ∈X

G0 ( f −Ax ) + αF (Kx ). (5.1)

Here α > 0 is a regularisation parameter, G0 : Z → R typically convex and smooth
�delity term with data f ∈ Z . The forward operator A ∈ L (X ;Z )—which can often
also be data—maps our unknown to the space of data. The operator K ∈ L (X ;Y ) and
the typically non-smooth and convex F : Y → R act as a regulariser, although in case
of support vector machines, for example, the smooth function is the regulariser.

We are particularly interested in strongly convex G0 and A with a non-trivial null-
space. Examples include, for example Lasso—a type of regularised regression—with
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(a) True image (b) Noisy image (c) Blurry image

Figure 1: We use sample image (b) for denoising, and (c) for deblurring experiments.
Free Kodak image suite photo, at the time of writing online at http://r0k.us/graphics/kodak/.

G0 = ‖x ‖
2
2/2, K = I , and F (x ) = ‖x ‖1, on �nite-dimensional spaces. If the data of the

Lasso is “sparse”, in the sense that A has a non-trivial null-space, then our algorithm
can provide improved convergence rates.

In image processing examples abound; we refer to [13] for an overview. In total vari-
ation (TV) regularisation we still take F (x ) = ‖x ‖1, but K = ∇. Strictly speaking, this
has to be formulated in the Banach space BV(Ω), but we will consider the discretised
setting to avoid this problem. For denoising of Gaussian noise with TV regularisation,
we take A = I , and again G0 = ‖x ‖

2
2/2. This problem is not so interesting to us, as it

is fully strongly convex. In a simple form of TV inpainting—�lling in missing regions
of an image—we takeA as a sub-sampling operator S mapping an image x ∈ L2 (Ω) to
one in L2 (Ω\Ωd ), for Ωd ⊂ Ω the defect region that we want to recreate. Observe that
in this case, Γ = S∗S is directly a projection operator. This is therefore a problem for
our algorithms! Related problems include reconstruction from subsampled magnetic
resonance imaging (MRI) data (see, e.g., [6, 7]), where we take A = SF for F the
Fourier transform. Still, A∗A is a projection operator, so the problem perfectly suits
our algorithms.

Another related problem is total variation deblurring, where A is a convolution ker-
nel. This problem is slightly more complicated to handle, as A∗A is not a projection
operator.Assuming periodic boundary conditions on a box Ω =

∏m
i=1[ci ,di ], we can

write A = F ∗âF , multiplying the Fourier transform by some â ∈ L2 (Ω). If |â | ≥ γ on
a sub-domain, we obtain a projection-form Γ. (It would also be possible to extend our
theory to non-constant γ , but we have decided not to extend the length of the paper
by doing so. Dualisation likewise provides a further alternative.)

Satisfaction of convexity conditions In all of the above examples, when written in
the saddle point form (P), F ∗ is a simple pointwise ball constraint. Lemma 2.1 thus
guarantees (F∗-pcr). If F (x ) = ‖x ‖1 and K = I , then clearly ‖P⊥x̂ ‖ can be bounded in
Z = L1 for x̂ the optimal solution to (5.1). Thus, for some M > 0, we can add to (5.1)
the arti�cial constraint

G ′(x ) := δ ‖ · ‖Z ≤M (P⊥x ). (5.2)

In �nite dimensions, this gives a bound in L2. Lemma 2.1 gives (G-pcr) with γ̄⊥ = ∞.
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In case of our total variation examples, F (x ) = ‖x ‖1 and K = ∇. Provided mean-zero
functions are not in the kernel of A, one can through Poincaré’s inequality [1] on
BV(Ω) and a two-dimensional connected domain Ω ⊂ R2, show that even the original
in�nite-dimensional problems have bounded solutions in L2 (Ω). We may therefore
again add the arti�cial constraint (5.2) with Z = L2 to (5.1).

Dynamic bounds and pseudo duality gaps We seldom know the exact bound M , but
can derive conservative estimates. Nevertheless adding such a bound to Algorithm 4
is a simple, easily-implemented projection of P⊥ (x i −TiK∗y i ) into the constraint set.
In practise, we do not use or need the projection, and update the boundM dynamically
so as to ensure that the constraint (5.2) is never active. Indeed, A having a non-trivial
nullspace also causes duality gaps for (P) to be numerically in�nite. In [34] a “pseudo
duality gap” was therefore introduced, based on dynamically updating M . We will
also use this type of dynamic duality gaps in our reporting.

5.2 TGV2 denoising and related problem structure

So far, we have considered very simple regularisation terms. Total generalised varia-
tion, TGV, was introduced in [8] as a higher-order generalisation of TV. It avoids the
unfortunate stair-casing e�ect of TV—large �at areas with sharp transitions—while
preserving the critical edge preservation property that smooth regularisers lack. We
concentrate on the second-order TGV2. In all of our image processing examples, we
can replace TV by TGV2.

As with total variation, we have to consider discretised models due the original prob-
lem being set in the Banach space BV(Ω). For two parameters α , β > 0, the regulari-
sation functional is written in the di�erentiation cascade form of [9] as

TGV2
(β,α ) (u) := min

w
α ‖∇u −w ‖1 + β ‖Eu‖1.

Here E = (∇T + ∇)/2 is the symmetrised gradient. With x = (u,w ) and y = (y1,y2),
we may write the problem

min
u

G0 ( f −Au) + TGV2
(β,α ) (u), (5.3)

in the saddle-point form (P) with

G (x ) := G0 ( f −Au), F ∗ (y ) = δ ‖ · ‖L∞ ≤α (y1)+δ ‖ · ‖L∞ ≤β (y2), and K :=
(
∇ −I
0 E

)
.

If A = I , as is the case for denoising, this is an instance of the general structure

G (x1,x2) = G1 (x1)+G2 (x2), F ∗ (y1,y2) = F ∗1 (y1)+F
∗
2 (y2), and K :=

(
K1,1 K1,2

0 K2,2

)
,
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where G1 is strongly convex with factor γ . To apply Algorithm 3, we therefore need
to �nd Cψ and γ̄⊥ satisfying for all 0 ≤ γ⊥ ≤ γ̄⊥ the condition

G2 (x
′
2) −G2 (x2) ≥ 〈∂G2 (x2),x

′
2 − x2〉 +

γ⊥

2
(‖x ′2 − x2‖

2 −Cψ ), (x ′2,x2 ∈ X2). (5.4)

For both Algorithm 4 and Algorithm 3, we also need F ∗j , (j = 1, 2), to satisfy for all
0 ≤ ρ ≤ ρ̄ and some Cϕ the condition

F ∗j (y
′
j ) − F

∗
j (yj ) ≥ 〈∂F

∗
j (yj ),y

′
j − yj 〉 +

ρ

2
(‖y ′j − yj ‖

2 −Cϕ ), (y ′j ,yj ∈ Yj ). (5.5)

If these conditions hold, we have

Γ = γP for P =

(
I 0
0 0

)
.

As this is compatible with the splitting of G into G1 and G2, the prox-update (4.23a)
splits into the uncoupled updates

x i+1
1 = (I + τiG

∗
1 )
−1 (x i1 − τiK

∗
1,1y

i
1),

x i+1
2 = (I + τ⊥i G

∗
2 )
−1 (x i2 − τ

⊥
i K
∗
1,2y

i
1 − τ

⊥
i K
∗
2,2y

i
2).

For the general class of problems, (F∗-pcr) with ρ̄ = ∞ is immediate from Lemma
2.1. For TGV2 denoising in particular, the Sobolev–Korn inequality [31] allows us to
bound on a connected domain Ω ⊂ R2 an optimal ŵ to (5.3) as

inf
w̄ a�ne

‖ŵ − w̄ ‖L2 ≤ CΩ‖Eŵ ‖1 ≤ CΩG0 ( f )

for some constant CΩ > 0. We may assume that w̄ = 0, as the a�ne part of w
is not used in (5.3). Therefore we may again add the arti�cial constraint G2 (w ) =
δ ‖ · ‖L2 ≤M (w ) to the TGV2 denoising problem. By Lemma 2.1,G will then satisfy (G-pcr)
with γ̄⊥ = ∞.

5.3 Numerical results

We demonstrate our algorithms on TGV2 denoising and TV deblurring. Our tests are
done on the photographs in Figure 1, both at the original resolution of 768× 512, and
scaled down by a factor of 0.25 to 192×128 pixels. For both of our example problems,
we calculate a target solution by taking one million iterations of the basic PDHGM
(2.1). We also tried interior point methods for this, but they are only practical for the
smaller denoising problem.

We evaluate Algorithm 3 and 4 against the standard unaccelerated PDHGM of [11], as
well as (a) the mixed-rate method of [15], denoted here C-L-O, (b) the relaxed PDHGM
of [12, 21], denoted here ‘Relax’, and (c) the adaptive PDHGM of [20], denoted here
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Figure 2: Step length parameter evolution, both axes logarithmic. ‘Alg.3’ and ‘Alg.4
q=1’ have the same parameters as our numerical experiments for the respective al-
gorithms, in particular ζ = τ⊥,−2

0 for Algorithm 3, which yields constant τ⊥. ‘Alg.3
ζ /100’ uses the value ζ = τ⊥,−2

0 /100, which causes τ⊥ to increase for some iterations.
‘Alg.4 q=2’ uses the value q = 2 for Algorithm 4, everything else being kept equal.

‘Adapt’. All of these methods are very closely linked, and have comparable low costs
for each step. This makes them straightforward to compare.

As we have discussed, for comparison and stopping purposes, we need to calculate
a pseudo duality gap as in [34], because the real duality gap is in practise in�nite
when A has a non-trivial nullspace. We do this dynamically, upgrading the M in (5.2)
every time we compute the duality gap. For both of our example problems, we use for
simplicity Z = L2 in (5.2). In the calculation of the �nal duality gaps comparing each
algorithm, we then take as M the maximum over all evaluations of all the algorithms.
This makes the results fully comparable. We always report the duality gap in decibels
10 log10 (gap2/gap2

0) relative to the initial iterate. Similarly, we report the distance to
the target solution û in decibels 10 log10 (‖u

i − û‖2/‖û‖2), and the primal objective
value val(x ) := G (x ) + F (Kx ) relative to the target as 10 log10 (val(x )2/val(x̂ )2). Our
computations were performed in Matlab+C-MEX on a MacBook Pro with 16GB RAM
and a 2.8 GHz Intel Core i5 CPU.

TGV2 denoising The noise in our high-resolution test image, with values in the
range [0, 255] has standard deviation 29.6 or 12dB. In the downscaled image, these
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Figure 3: TGV2 denoising performance, 20000 iterations, high and low resolution
images. The plot is logarithmic, with the decibels calculated as in Section 5.3. The
poor high-resolution results for ‘Adapt’ [20] have been omitted to avoid poor scaling
of the plots.

high resolution
gap ≤ −50dB tgt ≤ −50dB val ≤ 1dB

Method iter time iter time iter time
PDHGM 30 0.40s 50 0.53s 30 0.40s
C-L-O 500 4.67s 5170 51.78s 970 9.04s
Alg.3 20 0.29s 30 0.36s 20 0.29s
Alg.4 20 0.40s 200 1.92s 40 0.62s
Relax 20 0.34s 40 0.57s 20 0.34s
Adapt 5360 106.63s 6130 121.98s 3530 70.78s

high resolution
gap ≤ −50dB tgt ≤ −50dB val ≤ 1dB
iter time iter time iter time
50 8.85s 870 128.08s 30 5.13s

190 37.47s 6400 1261.36s 80 15.76s
80 12.30s 3320 512.35s 40 6.20s

2080 317.93s – – 340 52.06s
40 7.45s 580 106.05s 20 3.70s

Table 1: TGV2 denoising performance, maximum 20000 iterations. The CPU time and
number of iterations (at a resolution of 10) needed to reach given solution quality in
terms of the duality gap, distance to target, or primal objective value.

become, respectively, 6.15 or 25.7dB. As parameters (β,α ) of the TGV2 regularisation
functional, we choose (4.4, 4) for the downscale image, and translate this to the orig-
inal image by multiplying by the scaling vector (0.25−2, 0.25−1) corresponding to the
0.25 downscaling factor. See [16] for a discussion about rescaling and regularisation
factors, as well as for a justi�cation of the β/α ratio.

For the PDHGM and our algorithms, we take γ = 0.5, corresponding to the gap
convergence results. We choose δ = 0.01, and parametrise the PDHGM with σ0 =

1.9/‖K ‖ and τ ∗0 = τ0 ≈ 0.52/‖K ‖ solved from τ0σ0 = (1 − δ )‖K ‖2. These are val-
ues that typically work well. For forward-di�erences discretisation of TGV2 with cell
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Figure 4: TV deblurring performance, 10000 iterations, high and low resolution im-
ages. The plot is logarithmic, with the decibels calculated as in Section 5.3.

width h = 1, we have ‖K ‖2 ≤ 11.4 [34]. We use the same value of δ for Algorithm 3
and Algorithm 4, but choose τ⊥0 = 3τ ∗0 , and τ0 = τ̃0 = 80τ ∗0 . We also take ζ = τ⊥,−2

0
for Algorithm 3. These values have been found to work well by trial and error, while
keeping δ comparable to the PDHGM. A similar choice of τ0 with a corresponding
modi�cation of σ0 would signi�cantly reduce the performance of the PDHGM. For
Algorithm 4 we take exponent q = 1 for the sequence {ai}. This gives in principle a
mixedO (1/N 1.5) +O (1/N 0.5) rate, possibly improved by the convergence of the dual
sequence. We plot the evolution of the step length for these and some other choices
in Figure 2. For the C-L-O, we use the detailed parametrisation from [14, Corollary
2.4], taking as ΩY the true L2-norm Bregman divergence of B (0,α ) × B (0, β ), and
ΩX = 10 · ‖ f ‖2/2 as a conservative estimate of a ball containing the true solution.
For ‘Adapt’ we use the exact choices of α0, η, and c from [20]. For ‘Relax’ we use the
value 1.5 for the inertial ρ parameter of [12]. For both of these algorithms, we use the
same choices of σ0 and τ0 as for the PDHGM.

We take �xed 20000 iterations, and initialise each algorithm with y0 = 0 and x0 = 0.
To reduce computational overheads, we compute the duality gap and distance to tar-
get only every 10 iterations instead of at each iteration. The results are in Figure 3,
and Table 1. As we can see, Algorithm 3 performs extremely well for the low res-
olution image, especially in its initial iterations. After about 700 or 200 iterations,
depending on the criterion, the standard and relaxed PDHGM start to overtake. This
is a general e�ect that we have seen in our tests: the standard PDHGM performs in
practise very well asymptotically, although in principle all that exists is aO (1/N ) rate
on the ergodic duality gap. Algorithm 4, by contrast, does not perform asymptotically

30



high resolution
gap ≤ −50dB tgt ≤ −50dB val ≤ 1dB

Method iter time iter time iter time
PDHGM 200 1.29s 4800 32.72s 60 0.47s
C-L-O 10 0.14s – – 950 5.95s
Alg.3 70 0.62s 1630 13.40s 20 0.25s
Alg.4 20 0.29s 140 1.24s 10 0.22s
Relax 130 0.85s 3200 20.06s 40 0.29s
Adapt 70 0.73s 1210 11.30s 10 0.16s

high resolution
gap ≤ −50dB tgt ≤ −50dB val ≤ 1dB
iter time iter time iter time
500 49.84s – – 70 6.59s
10 1.05s – – 1000 96.60s

170 24.03s 6760 925.94s 40 6.13s
50 6.01s 1550 215.95s 30 3.66s

340 33.57s – – 50 5.29s
120 18.76s 5300 800.84s 30 4.72s

Table 2: TV deblurring performance, maximum 10000 iterations. The CPU time and
number of iterations (at a resolution of 10) needed to reach given solution quality in
terms of the duality gap, distance to target, or primal objective value.

so well. It can be extremely fast on its initial iterations, but then quickly �attens out.
The C-L-O surprisingly performs better on the high resolution image than on the low
resolution image, where it does somewhat poorly in comparison to the other algo-
rithms. The adaptive PDHGM performs very poorly for TGV2 denoising, and we have
indeed excluded the high-resolution results from our reports to keep the scaling of
the plots informative. Overall, Algorithm 3 gives good results fast, although the basic
and relaxed PDHGM seems to perform, in practise, better asymptotically.

TV deblurring Our test image has now been distorted by Gaussian blur of kernel
width 4, which we intent to remove. We denote by â the Fourier presentation of the
blur operator as discussed in Section 5.1. For numerical stability of the pseudo duality
gap, we zero out small entries, replacing this â by âχ |â ( · ) | ≥ ‖â ‖∞/1000 (ξ ). Note that this
is only needed for the stable computation ofG∗ for the pseudo duality gap, to compare
the algorithms; the algorithms themselves are stable without this modi�cation. To
construct the projection operator P , we then set p̂ (ξ ) = χ |â ( · ) | ≥0.3‖â ‖∞ (ξ ), and P =
F ∗p̂F .

We use TV parameter 2.55 for the high resolution image and the scaled parameter
2.55 ∗ 0.15 for the low resolution image. We parametrise all the algorithms is exactly
as TGV2 denoising above, of course with appropriate ΩU and ‖K ‖2 ≤ 8 for K = ∇
[10].

The results are Figure 4 and Table 2. It does not appear numerically feasible to go
signi�cantly below −100dB or −80dB gap. Our guess is that this is due to the numeri-
cal inaccuracies of the Fast Fourier Transform implementation in Matlab. The C-L-O
performs very well judged by the duality gap, although the images themselves and
the primal objective value appear to take a little bit longer to converge. The relaxed
PDHGM is again slightly improved from the standard PDHGM. The adaptive PDHGM
performs very well, slightly outperforming Algorithm 3, although not Algorithm 4.
This time Algorithm 4 performs exceedingly well.
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