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Abstract

Errors in the data and the forward operator of an inverse problem
can be handily modelled using partial order in Banach lattices. We
present some existing results of the theory of regularisation in this
novel framework, where errors are represented as bounds by means
of the appropriate partial order.

We apply the theory to diffusion tensor imaging (DTI), where cor-
rect noise modelling is challenging: it involves the Rician distribution
and the nonlinear Stejskal-Tanner equation. Linearisation of the latter
in the statistical framework would complicate the noise model even
further. We avoid this using the error bounds approach, which pre-
serves simple error structure under monotone transformations.

1 Introduction

Often in inverse problems, we have only very rough knowledge of noise
models, or the exact model is too difficult to realise in a numerical recon-
struction method. The data may also contain process artefacts from black
box devices [44]. Partial order in Banach lattices has therefore recently been
investigated in [33, 35, 34] as a less-assuming error modelling approach for
inverse problems. This framework allows the representation of errors in
the data as well as in the forward operator of an inverse problem by means
of order intervals (i.e., lower and upper bounds by means of appropriate
partial orders). An important advantage of this approach vs. statistical
noise modelling is that deterministic error bounds preserve their simple
structure under monotone transformations.
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We apply partial order in Banach lattices to diffusion tensor imaging
(DTI). We will in due course explain the diffusion tensor imaging progress,
as well as the theory of inverse problems in Banach lattices, but start by
introducing our model

min
u

R(u) subject to u > 0,
glj 6 Aju 6 guj , Ln-a.e. on Ω, (j = 1, . . . , N).

That is, we want to find a field of symmetric 2-tensors u : Ω → Sym2(R3)
on the domain Ω ⊂ R3, minimising the value of the regulariser R on the
feasible set. The tensor field u is our unknown image. It is subject a pos-
itivity constraint, as well as partial order constraints imposed through the
operators [Aju](x) := −〈bj , u(x)bj〉, and the upper and lower bounds glj :=

log(ŝlj/ŝ
u
0) and guj := log(ŝuj /ŝ

l
0). These model, in terms of error intervals

after logarithmic transformation, the Stejskal–Tanner equation

sj(x) = s0(x) exp(−〈bj , u(x)bj〉), (j = 1, . . . , N), (1.1)

central to the diffusion tensor imaging process.
To shed more light on u and the equation (1.1), let us briefly outline

the diffusion tensor imaging process. As a first step towards DTI, dif-
fusion weighted magnetic resonance imaging (DWI) is performed. This
process measures the anisotropic diffusion of water molecules. To cap-
ture the diffusion information, the magnetic resonance images have to be
measured with diffusion sensitising gradients in multiple directions. These
are the different bi’s in (1.1). Eventually, multiple DWI images {sj} are re-
lated through the Stejskal-Tanner equation (1.1) to the symmetric positive-
definite diffusion-tensor field u : Ω → Sym2(R3) [4, 30]. At each point
x ∈ Ω, the tensor u(x) is the covariance matrix of a normal distribution for
the probability of water diffusing in different spatial directions.

The fact that multiple bi’s are needed to recover u, leads to very long
acquisition times, even with ultra fast sequences like echo planar imaging
(EPI). Therefore, DTI is inherently a low-resolution and low-SNR method.
In theory, the amplitude DWI images exhibit Rician noise [25]. However,
as the histogram of an in vivo measurement in Figure 1 illustrates, this may
not be the case for practical data sets from black-box devices. Moreover, the
DWI process is prone to eddy-current distortions [53], and due to the slow-
ness of it, it is very sensitive to patient motion [28, 1]. We therefore have
to use techniques that remove these artefacts in solving for u(x). We also
need to ensure the positivity u, as non-positive-definite diffusion tensor are
non-physical. One proposed approach for the satisfaction of this constraint
is that of log-Euclidean metrics [3]. This approach has several theoretically
desirable aspects, but some practical shortcomings [57]. Special Perona-
Malik type constructions on Riemannian manifolds can also be used to
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(a) Slice of a real
MRI measurement

(b) 50-bin histogram of noise
estimated from background

(c) 50-bin histogram after
eddy-current correction
with FSL

Figure 1: The noise in the absolute values of complex MRI data should be
Rician. Here we have taken a 50-bin histogram of the noise in real data.
This divides the pixels into bins of 50 different noise levels. However, we
only find approximately 10 noise levels to have non-zero pixel count. As
the Rician distribution is continuous, we see that the noise cannot be Rician,
some bins of the 50-bin histogram being empty. The measurement setup of
the data used here is described in Section 5.3.

maintain the structure of the tensor field [14, 54]. Such anisotropic diffu-
sion is however severely ill-posed [60]. Recently manifold-valued discrete-
domain total variation models have also been applied to diffusion tensor
imaging [6].

Our approach is also in the total variation family, first considered for
diffusion tensor imaging in [48]. Namely, we follow up on the work in [57,
59, 58, 55] on the application of total generalised variation regularisation
[9] to DTI. We should note that in all of these works the fidelity function
was the ROF-type [45] L2 fidelity. This would only be correct, according
to the assumption that noise of MRI measurements is Gaussian, if we had
access to the original complex k-space MRI data. The noise of the inverse
Fourier-transformed magnitude data sj , that we have in practice access to,
is however Rician under the Gaussian assumption on the original complex
data [25]. This is not modelled by the L2 fidelity.

Numerical implementation of Rician noise modelling has been studied
in [40, 23]. As already discussed, in this work, we take the other direc-
tion. Instead of modelling the errors in a statistically accurate fashion, not
assuming to know an exact noise model, we represent them by means of
pointwise bounds. The details of the model are presented in Section 3. We
study the practical performance in Section 5 using the numerical method
presented in Section 4. First we however start with the general error mod-
elling theory in Section 2. Readers who are not familiar with notation for
Banach lattices or symmetric tensor fields are advised to start with the Ap-
pendix, where we introduce our mathematical notation and techniques.
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2 Deterministic error modelling

2.1 Mathematical basis

We now briefly outline the theoretical framework [33] that is the basis for
our approach. Consider a linear operator equation

Au = f, u ∈ U, f ∈ F, (2.1)

where U and F are Banach lattices, A : U → F is a regular injective op-
erator. The inaccuracies in the right-hand side f and the operator A are
represented as bounds by means of appropriate partial orders, i.e.

f l, fu : f l 6F f 6F f
u,

Al, Au : Al 6L∼(U,F ) A 6L∼(U,F ) A
u,

(2.2)

where the symbol 6F stands for the partial order in F and 6L∼(U,F ) for the
partial order for regular operators induced by partial orders in U and F .
Further, we will drop the subscripts at inequality signs where it will not
cause confusion.

The exact right-hand side f and operator A are not available. Given
the approximate data (f l, fu, Al, Au), we need to find an approximate solu-
tion u that converges to the exact solution ū as the inaccuracies in the data
diminish. This statement needs to be formalised. We consider monotone
convergent sequences of lower and upper bounds

f ln : f ln+1 > f ln, Aln : Aln+1 > Aln,

fun : fun+1 6 fun , Aun : Aun+1 6 Aun,

f ln 6 f 6 fun , Aln 6 A 6 Aun ∀n ∈ N,
‖f ln − fun‖ → 0, ‖Aln −Aun‖ → 0 as n→∞.

(2.3)

We are looking for an approximate solution un such that ‖un − ū‖U → 0 as
n→∞.

Let us ask the following question. What are the elements u ∈ U that
could have produced data within the tolerances (2.3)? Obviously, the exact
solution is one of such elements. Let us call the set containing all such
elements the feasible set Un ⊂ U .

Suppose that we know a priori that the exact solution is positive (by
means of the appropriate partial order in U ). Then it is easy to verify that
the following inequalities hold for all n ∈ N

ū >U 0, Aunū >F f
l
n, Alnū 6F f

u
n .

This observation motivates our choice of the feasible set:

Un = {u ∈ U : u >U 0, Aunu >F f
l
n, Alnu 6F f

u
n}.
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It is clear that the exact solution ū belongs to the sets Un for all n ∈ N.
Our goal is to define a rule that will choose for any n an element un of
the set Un such that the sequence un ∈ Un will strongly converge to the
exact solution ū. We do so by minimising an appropriate regularisation
functional R(u) on Un:

un = arg min
u∈Un

R(u). (2.4)

This method, in fact, is a lattice analogue of the well-known residual
method [24, 52]. The convergence result is as follows [33].

Theorem 2.1. Suppose that

1. R(u) is bounded from below on U ,

2. R(u) is lower semi-continuous,

3. level sets {u : R(u) 6 C} (C = const) are sequentially compact in U (in
the strong topology induced by the norm).

Then the sequence defined in (2.4) strongly converges to the exact solution ū and
R(un)→ R(ū).

Examples of regularisation functionals that satisfy the conditions of The-
orem 2.1 are as follows. Total Variation in L1(Ω), where Ω is a subset of
Rn, assures strong convergence in L1, given that the L1-norm of the solu-
tion is bounded. The Sobolev norm ‖u‖W 1,q(Ω) yields strong convergence
in the spaces Lp(Ω), where p > 1, q > np

p+n . The latter fact follows from
the compact embedding of the corresponding Sobolev W 1,q(Ω) space into
Lp(Ω) [17].

However, the assumption that the sets {u : R(u) 6 C} are strong com-
pacts in U is quite strong. It can be replaced by the assumption of weak
compactness, provided that the regularisation functional possesses the so-
called Radon-Riesz property.

Definition 2.1. A functionalF : U → R has the Radon-Riesz property (some-
times referred to as the H-property), if for any sequence un ∈ U weak con-
vergence un ⇀ u0 and simultaneous convergence of the values F (un) →
F (u0) imply strong convergence un → u0.

Theorem 2.2. Suppose that

1. R(u) is bounded from below on U ,

2. R(u) is weakly lower semi-continuous,

3. level sets R(u) 6 C (C = const) are weakly sequentially compact in U ,

4. R(u) possesses the Radon-Riesz property.
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Then the sequence defined in (2.4) strongly converges to the exact solution ū and
R(un)→ R(ū).

It is easy to verify that the norm in any Hilbert space possesses the
Radon-Riesz property. Moreover, this holds for the norm in any reflexive
Banach space [17].

As we explain in the Appendix, the spaces Lp(Ω; Sym2(Rm)) are not
Banach lattices, therefore, Theorems 2.1 and 2.2 cannot be applied directly.
Further theoretical work will be undertaken to extend the framework to the
non-lattice case. For the moment, however, we will prove that if there are
no errors in the operator A in (2.1), the requirement that the solution space
U is a lattice can be dropped.

Theorem 2.3. LetU be a Banach space, and F be a Banach lattice. Let the operator
A in (2.1) be a linear, continuous and injective operator. Let f ln and fun be sequences
of lower and upper bounds for the right-hand side defined in (2.3), and suppose that
there are no errors in the operatorA. Let us redefine the feasible set in the following
way

Un = {u ∈ U : f ln 6F Au 6F f
u
n}.

Suppose also that the regulariser R(x) satisfies conditions of either Theorem 2.1 or
Theorem 2.2. Then the sequence defined in (2.4) strongly converges to the exact
solution ū and R(un)→ R(ū).

Proof. Let us define an approximate right-hand side and its approximation
error in the following way

fδn =
fun + f ln

2
, δn =

‖fun − f ln‖
2

.

One can easily verify, that the inequality ‖f − fδn‖ 6 δn holds. Indeed, we
have

f − fδn 6 fun − fδn =
fun − f ln

2
,

− (f − fδn) 6 fδn − f ln =
fun − f ln

2
,

|f − fδn | = (f − fδn) ∨ (−(f − fδn)) 6
fun − f ln

2
,

‖f − fδn‖ 6
‖fun − f ln‖

2
.

The first two inequalities are consequences of the conditions (2.3), the third
one holds by the definition of supremum and the equality |f | = f ∨ (−f)
that holds for all f ∈ F , and the last inequality is due to the monotonicity
of the norm in a Banach lattice.

Similarly, one can show that for any u ∈ Un, we have

‖Au− fδn‖ 6 δn.
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Therefore, the inclusion Un ⊂ {u : ‖Au− fδn‖ 6 δn} holds.
Now we will proceed with the proof of convergence ‖un − ū‖ → 0.

Will prove it for the case when the regulariser R(u) satisfies conditions of
Theorem 2.1. Suppose that the sequence un does not converge to the exact
solution ū. Then it contains a subsequence unk such that ‖unk − ū‖ > ε for
any k ∈ N and some fixed ε > 0.

Since the inclusion ū ∈ Un holds for all n ∈ N, we have R(un) 6 R(ū)
for all n ∈ N. Since the level set {u : R(u) 6 R(ū)} is a compact set by as-
sumptions of the theorem, the sequence unk contains a strongly convergent
subsequence. With no loss of generality, let us assume that unk → u0. We
will now show that u0 = ū. Indeed, we have

‖Aunk −Aū‖ 6 ‖Aunk − fδn‖+ ‖f − fδn‖ 6 2δnk → 0.

On the other hand, we have

‖Aunk −Aū‖ → ‖Au0 −Aū‖

due to continuity of A and ‖ · ‖. Therefore, Au0 = Aū and u0 = ū, since A
is an injective operator. By contradiction, we get ‖un − ū‖ → 0.

Finally, since the regulariser R(u) is lower semi-continuous, we get that
lim inf R(un) = R(ū). However, for any nwe haveR(un) 6 R(ū), therefore,
we get the convergence R(un)→ R(ū) as n→∞.

2.2 Philosophical discussion and statistical interpretation

In practice, our data is discrete. So let us momentarily switch to measure-
ments f̂ = (f̂1, . . . , f̂n) ∈ Rn of a true data f ∈ Rn. If we actually knew
the pointwise noise model of the data, then one way to obtain potentially
useful upper and lower bounds for the deterministic model is by means of
statistical interval estimates: confidence intervals. Roughly, the idea is to
find for each true signal f individual random upper and lower bounds f̂u

and f̂ l such that
P (f̂u ≤ f ≤ f̂ l) = 1− θ.

If f̂u and f̂ l are computed based on multiple experiments (i.e., multiple
noisy samples f̂1, . . . , f̂m, of the true data f ), the interval [f̂u,i, f̂ l,i] will con-
verge in probability to the true data f̂ i, as the number of experiments m
increases. Thus we obtain a probabilistic version of the convergences in
(2.3).

Let us try to see, how such intervals might work in practice. For the
purpose of the present discussion, assume that the noise is additive and
normal-distributed with variance σ and zero mean—an assumption that
does not hold in practice, as we have already seen in Figure 1, but will
suffice for the next thought experiments. That is, f̂j = f + νj for the noise
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νj . Let the sample mean of {f̂j}mj=1 be f̄m = (f̄1
m, . . . f̄

n
m), and pointwise

sample variance σ = (σ1, . . . , σn). The product of the pointwise confidence
intervals Ii with confidence 1− θ is [15, 49]

n∏
i=1

Ii = [f̄m − k∗1−θ/2
σ√
m
, f̄m + k∗1−θ/2

σ√
m

], k∗1−t := Φ−1(t),

for Φ the cumulative normal distribution function. For θ = 0.05, i.e., the
95% confidence interval, Φ−1(0.05/2) = 1.96. Now, the probability that Ii
covers the true f i is 1− θ, e.g. 95%. If we have only a single sample m = 1,
the intervals stay large, but the joint probability, (1 − θ)n goes to zero as n
increases. As an example, for a rather typical single 128× 128 slice of a DTI
measurement, the probability that exactly φ = 5% (to the closest discrete
value possible) of the 1 − θ = 95% confidence intervals do not cover the
true parameter would be about 1.4%, or

1.4% ≈
(
n

m

)
θm(1− θ)n−m, where n = 1282 and m = dφne.

The probability of at least φ = 5% of the pointwise 95% confidence intervals
not covering the true parameter is in this setting approximately 49%. This
can be verified by summing the above estimates over m = dφne, . . . , n.

In summary, unless θ simultaneously goes to 1, the product intervals are
very unlikely to cover the true parameter. Based on a single experiment,
the deterministic approach as interpreted statistically through confidence
intervals, is therefore very likely to fail to discover the true solution as the
data size n increases unless the pointwise confidence is very low. But, if we
let the pointwise confidences be arbitrarily high, such that the intervals are
very large, the discovered solution in our applications of interest would be
just a constant!

Asymptotically, the situation is more encouraging. Indeed, if we could
perform more experiments to compute the confidence intervals, then for
any fixed n and θ, it is easy to see that the solution of the “deterministic”
error model is an asymptotically consistent and hence asymptotically unbi-
ased estimator of the true f . That is, the estimates converge in probability
to f as the experiment count m increases. Indeed, the error-bounds based
estimator f̃m, based on m experiments, by definition satisfies f̃m ∈

∏n
i=1 Ii.

Therefore, we have

P (|f̃ im − f̄ im| > ε for some i) = 0 whenever m ≥ (k∗1−θ/2σ/ε)
2.

Thus f P→ f̄ in probability. Since by the law of large numbers also f̄m
P→ f ,

this proves the claim, and to some extent justifies our approach from the
statistical viewpoint.
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It should be noted that this is roughly the most that has previously been
known of the maximum a posteriori estimate (MAP), corresponding to the
Tikhonov models

min
1

2
‖f̂ − u‖2 + αR(u).

In particular, the MAP is not the Bayes estimator for the typical squared
cost functional. This means that it does not minimise f̃ 7→ E[‖f − f̃‖2]. The
minimiser in this case is the conditional mean (CM) estimate, which is why
it has been preferred by Bayesian statisticians despite its increased compu-
tational cost. The MAP estimate is merely an asymptotic Bayes estimator
for the uniform cost function. In a very recent work [12], it has however
been proved that the MAP estimate is the Bayes estimator for certain Breg-
man distances. One possible critique of the result is that these distances are
not universal and do depend on the regulariser R, unlike the squared dis-
tance for CM. The CM estimate however has other problems in the setting
of total variation and its discretisation [37, 36].

3 Application to diffusion tensor imaging

We now build our model for applying the deterministic error modelling
theory to diffusion tensor imaging. We start by building our forward model
based on the Stejskal-Tanner equation, and then briefly introduce the regu-
larisers we use.

3.1 The forward model

For u : Ω → Sym2(R3), Ω ⊂ R3, a mapping from Ω to symmetric second
order tensors, let us introduce non-linear operators Tj , defined by

[Tj(u)](x) := s0(x) exp(−〈bj , u(x)bj〉), (j = 1, . . . , N).

Their role is to model the so-called Stejskal-Tanner equation [4]

sj(x) = s0(x) exp(−〈bj , u(x)bj〉), (j = 1, . . . , N). (3.1)

Each tensor u(x) models the covariance of a Gaussian probability distri-
bution at x for the diffusion of water molecules. The data sj ∈ L2(Ω),
(j = 1, . . . , N ), are the diffusion-weighted MRI images. Each of them is
obtained by performing the MRI scan with a different non-zero diffusion
sensitising gradient bj , while s0 is obtained with a zero gradient. After cor-
recting the original k-space data for coil sensitivities, each sj is assumed
real. As a consequence, any measurement ŝj of sj has—in theory—Rician
noise distribution [25].
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Our goal is to reconstruct u with simultaneous denoising. Following
[55, 32], we consider using a suitable regulariser R the Tikhonov model

min
u=0

N∑
j=1

1

2
‖ŝj − Tj(u)‖2 + αR(u). (3.2)

The constraint u = 0 is to be understood in the sense that u(x) is positive
semidefinite for Ln-a.e. x ∈ Ω (see Appendix for more details). Due to the
Rician noise of ŝj , the Gaussian noise model implied by theL2-norm in (3.2)
is not entirely correct. However, in some cases the L2 model may be accu-
rate enough, as for suitable parameters the Rician distribution is not too far
from a Gaussian distribution. If one were to model the problem correctly,
one should either modify the fidelity term to model Rician noise, or include
the (unit magnitude complex number) coil sensitivities in the model. The
Rician noise model is highly nonlinear due to the Bessel functional loga-
rithms involved. Its approximations have been studied in [5, 23, 40] for
single MR images and DTI. Coil sensitivities could be included either by
knowing them in advance, or by simultaneous estimation as in [31]. Ei-
ther way, significant complexity is introduced into the model, and for the
present work, we are content with the simple L2 model.

We may also consider, as is often the case, and as was done with TGV
in [57], the linearised model

min
u=0
‖f − u‖2 + αR(u), (3.3)

where, for each x ∈ Ω, f(x) is solved by regression for u(x) from the sys-
tem of equations (3.1) with sj(x) = ŝj(x). Further, as in [58], we may also
consider

min
u=0

N∑
j=1

1

2
‖gj −Aju‖2 + αR(u), (3.4)

with [Aju](x) := −〈bj , u(x)bj〉, and gj(x) := log(ŝj(x)/ŝ0(x)). In both of
these linearised models, the assumption of Gaussian noise is in principle
even more remote from the truth than in the nonlinear model (3.2). We will
employ (3.3) and (3.2) as benchmark models.

We want to further simplify the model, and forgo with accurate noise
modelling. After all, we often do not know the real noise model for the data
available in practice. It can be corrupted by process artefacts from black-
box algorithms in the MRI devices. This problem of black box devices has
been discussed extensively in [44], in the context of Computed Tomogra-
phy. Moreover, as we have discussed above, even without such artefacts,
the correct model may be difficult to realise numerically. So we might be
best off choosing the least assuming model of all – that of error bounds.
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This is what we propose in the reconstruction model

min
u

R(u) subject to u = 0,
glj 6 Aju 6 guj , Ln-a.e., (j = 1, . . . , N).

(3.5)

Here glj := log(ŝlj/ŝ
u
0) and guj := log(ŝuj /ŝ

l
0), glj , g

u
j ∈ L2(Ω), are our upper

and lower bounds on gj that we derive from the data.

3.2 Choice of the regulariser R

A prototypical regulariser in image processing is the total variation, first
studied in this context in [45]. It can be defined for a symmetric tensor field
u ∈ L1(Ω; Symk(Rm)) as

TV(u) := ‖Eu‖M(Ω;Symk+1(Rm))

:= sup

{∫
Ω
〈div φ(x), u(x)〉dx

∣∣∣∣ φ ∈ C∞c (Ω; Symk+1(Rm))
supx ‖φ(x)‖F ≤ 1

}
.

Observe that for scalar or vector fields, i.e., the cases k = 0, 1, we have
Sym0(Rm) = T 0(Rm) = R, and Sym1(Rm) = T 1(Rm) = Rm. Therefore, for
scalars in particular, this gives the usual isotropic total variation

TV(u) = ‖Du‖M(Ω)).

Total generalised variation was introduced in [9] as a higher-order ex-
tension of TV. Following [57], the second-order variant may be defined
using the differentiation cascade formulation for symmetric tensor fields
u ∈ L1(Ω; Symk(Rm)) as the marginal

TGV2
(β,α)(u) := min{Φ(β,α)(u,w) | w ∈ L1(Ω; Symk+1(Rm))} (3.6)

for

Φ(β,α)(u,w) := α‖Eu− w‖F,M(Ω;Symk+1(Rm)) + β‖Ew‖F,M(Ω;Symk+2(Rm)).

It turns out that the standard BV norm

‖u‖BV(Ω;Symk(Rm)) := ‖u‖L1(Ω;Symk(Rm)) + TV(u)

and the “BGV norm” [9]

‖u‖′ := ‖u‖L1(Ω;Symk(Rm)) + TGV2
(β,α)(u)

are topologically equivalent norms [10, 11] on BV(Ω; Symk(Rm)), yielding
the same convergence results for TGV regularisation as for TV regularisa-
tion. The geometrical regularisation behaviour is however different, and
TGV tends to avoid the staircasing observed in TV regularisation.

Regarding topologies, we say that a sequence {ui} in BV(Ω; Symk(Rm))
converges weakly* to u, if ui → u strongly in L1, and Eui ∗⇀ Eu weakly* as
Radon measures [2, 51, 57]. The latter is characterised as

∫
Ω〈div φ(x), ui(x)〉 dx→∫

Ω〈div φ(x), u(x)〉 dx for all φ ∈ C∞c (Ω; Symk+1(Rm)).
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3.3 Compact subspaces

Now, for a weak* lower semi-continuous seminormR on BV(Ω; Symk(Rm)),
let us set

BV0,R(Ω; Symk(Rm)) := BV(Ω; Symk(Rm))/ kerR.

That is, we identify elements u, ũ ∈ BV(Ω; Symk(Rm)), such thatR(u−ũ) =
0. NowR is a norm on BV0,R(Ω; Symk(Rm)); compare, e.g., [42] for the case
of R = TV.

Suppose
‖u‖′ := ‖u‖L1(Ω) +R(u)

is a norm on BV(Ω; Symk(Rm)), equivalent to the standard norm. If also
the R-Sobolev-Korn-Poincaré inequality

inf
R(v)=0

‖u− v‖L1(Ω) ≤ CR(u) (3.7)

holds, we may then bound

inf
R(v)=0

‖u− v‖BV(Ω;Symk(Rm)) ≤ inf
R(v)=0

C ′‖u− v‖′

= inf
R(v)=0

C ′
(
‖u− v‖L1(Ω) +R(u− v)

)
≤ C ′(1 + C)R(u).

By the weak* lower semicontinuity of the BV-norm, and the weak* com-
pactness of the unit ball in BV(Ω; Symk(Rm))—we refer to [2] for these and
other basic properties of BV-spaces—we may thus find a representative ũ
in the BV0,R(Ω; Symk(Rm)) equivalence class of u, satisfying

‖ũ‖BV(Ω;Symk(Rm)) ≤ C
′(1 + C)R(u).

Again using the weak* compactness of the unit ball in BV(Ω; Symk(Rm)),
and the weak* lower semicontinuity of R, it follows that the sets

levaR := {u ∈ BV0,R(Ω; Symk(Rm)) | R(u) ≤ a}, (a > 0),

are weak* compact in BV0,R(Ω; Symk(Rm)), in the topology inherited form
BV(Ω; Symk(Rm)). Consequently, they are strongly compact subsets of
L1(Ω; Symk(Rm)). This feature is crucial for the application of the regu-
larisation theory in Banach lattices above.

On a connected domain Ω, in particular

BV0,TV(Ω) '
{
u ∈ BV(Ω)

∣∣∣∣∫
Ω
udx = 0

}
.

That is, the space consists of zero-mean functions. Then u 7→ ‖Du‖M(Ω;Rm)

is a norm on BV0,TV(Ω) [42], and this space is weak* compact. In particular,
the sets leva TV are compact in L1(Ω).
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More generally, we know from [8] that on a connected domain Ω, ker TV
consists of Symk(Rm)-valued polynomials of maximal degree k. By exten-
sion, ker TGV2 consists of Symk(Rm)-valued polynomials of maximal de-
gree k + 1. In both cases, (3.7), weak* lower semicontinuity of R, and the
equivalence of ‖ · ‖′ to ‖ · ‖BV(Ω;Symk(Rm)) hold by the results in [8, 11, 51].
Therefore, we have proved the following.

Lemma 3.1. Let Ω ⊂ Rm and k ≥ 0. Then the sets leva TV and leva TGV2 are
weak* compact in BV(Ω; Symk(Rm)) and strongly compact inL1(Ω; Symk(Rm)).

Now, in the above cases, kerR is finite-dimensional, and we may write

BV(Ω; Symk(Rm)) ' BV0,R(Ω; Symk(Rm))⊕ kerR.

Denoting by
BX(r) := {x ∈ X | ‖x‖ ≤ r},

the closed ball of radius r in a normed space X , we obtain by the finite-
dimensionality of kerR the following result.

Proposition 3.1. Let Ω ⊂ Rm and k ≥ 0. Pick a > 0. Then the sets

V := levaR⊕BkerR(a)

for R = TV and R = TGV2 are weak* compact in BV(Ω; Symk(Rm)) and
strongly compact in L1(Ω; Symk(Rm)).

The next result summarises Theorem 2.3 and Proposition 3.1.

Theorem 3.1. With U = L1(Ω; Symk(Rm)), let the operator A : U → F be
linear, continuous and injective. Let f ln and fun be sequences of lower and upper
bounds for the right-hand such that

f ln : f ln+1 > f ln, fun : fun+1 6 fun ,

f ln 6 f 6 fun , ‖f ln − fun‖ → 0 as n→∞.

Supposing that there are no errors in the operatorA and the exact solution ū exists,
define the feasible set as follows

Un = {u ∈ U : f ln 6F Au 6F f
u
n}.

Decomposing u ∈ U as u = u0 + u⊥ with u⊥ ∈ kerR, suppose

u ∈ Un =⇒ ‖u⊥‖ ≤ a (3.8)

for some constant a > 0, then for R = TV and R = TGV2, the sequence

un = arg min
u∈Un

R(u)

converges strongly in L1(Ω; Symk(Rm)) to the exact solution ū and R(un) →
R(ū).
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Proof. With the decomposition un = u0,n + u⊥n , where u⊥n ∈ kerR, we have
u0,n ∈ levaR for suitably large a > 0 through

R(u0,n) = R(un) = min
u′∈Un

R(u′) ≤ R(ū).

The assumption (3.8) bounds ‖u⊥n ‖ ≤ a. Thus un ∈ V for V as in Propo-
sition 3.1. The proposition thus implies the necessary compactness in U =
L1(Ω; Symk(Rm)) for the application of Theorem 2.3.

Remark 3.1. The condition (3.8) simply says forR = TV that the data has to
bound the solution in mean. This is very reasonable to expect for practical
data; anything else would be very non-degenerate. For R = TGV2 we
also need that the data bounds the entire affine part of the solution. Again,
this is very likely for real data. Indeed, in DTI practice, with at least 6
independent diffusion sensiting gradients, A is an invertible or even over-
determined linear operator. In that typical case, the bounds f ln and fun will
be translated into Un being a bounded set.

4 Solving the optimisation problem

4.1 The Chambolle–Pock method

The Chambolle–Pock algorithm is an inertial primal-dual backward-back-
ward splitting method, classified in [19] as the modified primal-dual hybrid
gradient method (PDHGM). It solves the minimax problem

min
x

max
y

G(x) + 〈Kx, y〉 − F ∗(y), (4.1)

where G : X → R and F ∗ : Y → R are convex, proper, lower semicon-
tinuous functionals on (finite-dimensional) Hilbert spaces X and Y . The
operator K : X → Y is linear, although an extension of the method to non-
linear K has recently been derived [55]. The PDHGM can also be seen as a
preconditioned ADMM (alternating directions method of multipliers); we
refer to [19, 47, 56] for reviews of optimisation methods popular in image
processing. For step sizes τ, σ > 0, and an over-relaxation parameter ω > 0,
each iteration of the algorithm consists of the updates

ui+1 := (I + τ∂G)−1(ui − τK∗yi), (4.2a)
ūi+1 := ui+1 + ω(ui+1 − ui), (4.2b)

yi+1 := (I + σ∂F ∗)−1(yi + σKūi+1). (4.2c)

We should remark that the order of the primal (u) and dual (y) updates
here is reversed from the original presentation in [13]. The reason is that
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when reordered, the updates can, as discovered in [27], be easily written in
a proximal point form.

The first and last update are the backward (proximal) steps for the pri-
mal (x) and dual (y) variables, respectively, keeping the other fixed. How-
ever, the dual step includes some “inertia” or over-relaxation, as specified
by the parameter ω. Usually ω = 1, which is required for convergence
proofs of the method. If G or F ∗ is uniformly convex, by smartly choos-
ing for each iteration the step length parameters τ, σ, and the inertia ω, the
method can be shown to have convergence rate O(1/N2). This is similar
to Nesterov’s optimal gradient method [43]. In the general case the rate
is O(1/N). In practice the method produces visually pleasing solutions in
rather few iterations, when applied to image processing problems.

In implementation of the method, it is crucial that the resolvents (I +
τ∂G)−1 and (I + σ∂F ∗)−1 can be computed quickly. We recall that they
may be written as

(I + τ∂G)−1(u) = arg min
u′

{
‖u′ − u‖2

2τ
+G(u′)

}
.

Usually in applications, these computations turn out to be simple projec-
tions or linear operations – or the soft-thresholding operation for the L1-
norm.

As a further implementation note, since the algorithm (4.2) is formu-
lated in Hilbert spaces (see however [29]), and we work in the Banach space
BV(Ω; Sym2(R3)), we have to discretise our problems before application of
the algorithm. We do this by simple forward-differences discretisation of
the operator E with cell width h = 1 on a regular rectangular grid corre-
sponding to the image voxels.

4.2 Implementation of deterministic constraints

We now reformulate the problem (3.5) of DTI imaging with deterministic
error bounds in the form (4.1). Suppose we have some upper and lower
bounds slj 6 sj 6 suj on the DWI signals sj , (j = 0, . . . , N ). Then the
bounds for gj = log(sj/s0) are

glj = log(slj/s
u
0); guj = log(suj /s

l
0), (j = 1, . . . , N), (4.3)

because gj is monotone in regards to sj . We are thus trying to solve

u = arg min
u′∈U=∩Uj

R(u′) (4.4)

where
U j = {u : glj 6 Aju 6 guj }

15



For the ease of notation, we write

g =
(
g1, . . . , gN

)
, and

Au =
(
A1u1, . . . , ANuN

)
, (4.5)

so that the Stejskal-Tanner equation is satisfied with

Au = g.

The problem (4.4) may be rewritten as

min
u′

F0(Au′) +R(u′),

for
F0(y) = δ(gl 6 y 6 gr)

with δ(gl 6 y 6 gu) denoting the indicator function of the convex set
{y : gl 6 y 6 gr}. Solving the conjugate

F ∗0 (y) =

{
〈gl, y〉, y < 0

〈gu, y〉, y ≥ 0.
,

and also writing
R(u) = R0(K0u)

for some R0 and K0, the problem can further be written in the saddle point
form (4.1) with

G(u) = 0,

K =

(
A
K0

)
,

F ∗(y, ψ) = F ∗0 (y) +R∗0(ψ).

To apply algorithm (4.2), we need to compute the resolvents of G∗0 and R∗0.
For details regarding R∗0 for R = TGV2

(β,α) and R = αTV in the discretised
setting, we refer to [57, 58]; here it suffices to note that for R = αTV, we
have K0 = αE and R∗0(φ) is the indicator function of the dual ball {φ |
supx ‖φ(x)‖F ≤ 1}. Thus the resolvent (I + τ∂R∗0)−1 becomes a projection
to the dual ball. The case of R = TGV2

(β,α) is similar. For F ∗0 we have

(I + τ∂F ∗0 )−1(y) = arg min
y′

F ∗0 (y′) +
|y − y′|2

2τ
,

which resolves pointwise at each ξ ∈ Ω into the expression

[(I + τ∂F ∗0 )−1(y)](ξ) = S(y(ξ))
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for

S(y(ξ)) =


y(ξ)− gu(ξ)σ, y(ξ) ≥ gu(ξ)σ,

0, gu(ξ)σ ≤ y(ξ) ≤ gl(ξ)σ,
y(ξ)− gl(ξ)σ, y(ξ) ≤ gl(ξ)σ.

Finally, we note that the saddle point system (4.1) has to have a solution
for the Chambolle–Pock algorithm to converge. In our setting, in particular,
we need to find error bounds gl and gu, for which there exists a solution u
to

gl 6 Au 6 gu. (4.6)

If one uses at most six independent diffusion directions (N = 6), as we
will, then, for any g, there in fact exists a solution to g = Au. The condition
(4.6) becomes gl 6 gu, immediately guaranteed through the monotonicity
of (4.3), and the trivial conditions slj 6 suj .

We are thus ready to apply the algorithm (4.2) to diffusion tensor imag-
ing with deterministic error bounds. For the realisation of (4.2) for models
(3.3), (3.4), and (3.2), we refer to [57, 58, 59, 55].

5 Experimental results

We now study the efficiency of the proposed reconstruction model in com-
parison to the different L2-squared models, i.e., ones with Gaussian error
assumption. This is based on a synthetic data, for which a ground-truth is
available, as well as a real in vivo DTI data set. First we, however, have to
describe in detail the procedure for obtaining upper and lower bounds for
real data, when we do not know the true noise model, and are unable to
perform multiple experiments as required by the theory of Section 2.2.

5.1 Estimating lower and upper bounds from real data

As we have already discussed, in practice the noise in the measurement sig-
nals ŝj is not Gaussian or Rician; in fact we do not know the true noise dis-
tribution and other corruptions. Therefore, we have to estimate the noise
distribution from the image background. To do this, we require a known
correspondence between the measurement, the noise, and the true value.
As we have no better assumptions available, the standard one that we use
is that of additive noise. Continuing in the statistical setting of Section 2.2,
we now describe the procedure, working on discrete images expressed as
vectors f̂ = sj ∈ Rn for some fixed j ∈ {0, 1, . . . , N}. We use superscripts
to denote the voxel indices, that is f̂ = (f1, . . . , fn).

In the i-th voxel, the measured value f̂ i is the sum of the true value f i

and additive noise νi:
f̂ i = f i + νi.
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All νi are assumed independent and identically distributed (i.i.d.), but their
distribution is unknown. If we did know the true underlying cumulative
distribution function F of the noise, we could choose a confidence param-
eter θ ∈ (0, 1) and use the cumulative distribution function to calculate
νθ/2, ν1−θ/2 such that1

P (νθ/2 6 νi 6 ν1−θ/2) = 1− θ. (5.1)

Let us instead proceed non-parametrically, and divide the whole image
into two groups of voxels - the ones belonging to the background region
and the rest. For simplicity, let the indices i = 1, . . . , k, (k < n), stand for the
background voxels. In this region, we have f i = 0 and f̂ i = νi. Therefore,
the background region provides us with a number of independent samples
from the unknown distribution of ν. The Dvoretzky–Kiefer–Wolfowitz in-
equality [18, 41, 38] states that

P
(
sup
t
|F (t)− Fk(t)| > ε

)
≤ 2e−2kε2 ,

for the empirical cumulative distribution function

Fk(t) :=
1

k

k∑
i=1

χ(−∞,f̂ i](t).

Therefore, computing νθ/2 and ν1−θ/2 such that

Pk(νθ/2 6 ν 6 ν1−θ/2) = 1− θ,

we also have

Pk(f
i + νθ/2 6 f̂ i 6 f i + ν1−θ/2) = 1− θ.

We may therefore use the values

f̂ l,i = f̂ i − ν1−θ/2, f̂u,i = f̂ i − νθ/2, (5.2)

as lower and upper bounds for the true values f i outside the background
region.

The Dvoretzky–Kiefer–Wolfowitz inequality implies that the interval
estimates converge to the true intervals, determined by (5.1), as the num-
ber of background pixels k increases with the image size n. This proce-
dure, with large k, will therefore provide an estimate of a single-experiment
(m = 1) confidence interval for f i. We note that this procedure will, how-
ever, not yield the convergence of the interval estimate [f̂ l,i, f̂u,i] to the true
data; for that we would need multiple experiments, i.e., multiple sample
images (m > 1), not just agglomeration of the background voxels into a
single noise distribution estimate. In practice, however, we can only afford
a single experiment (m = 1), and cannot go to the limit.

1Recall that for a random variable X with a cumulative distribution function F , the
quantile function F−1 returns a number xθ = F−1(θ) such that P (X 6 xθ) = θ.
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5.2 Verification of the approach with synthetic data

To verify the effectiveness of the considered approach and to compare it to
the other models, we use synthetic data. For the ground-truth tensor field
ug.t. we take a helix region in a 3D box 100×100×30, and choose the tensor
in each point inside the helix in such a way that the principal eigenvector
coincides with the helix direction (Figure 2). The helix region is described
by the following equations:

x = (R+ r cos(θ)) cos(φ),

y = (R+ r cos(θ)) sin(φ),

z = r sin(θ) + φ/φmax,

φ ∈ [0, φmax], r ∈ [0, rmax], θ ∈ [0, 2π].

The vector direction in every point coincides with helix direction:

~r =

−R sin(φ)
R cos(φ)
1/φmax

 .

We take the parameters R = 0.3, φmax = 4π, rmax = 0.07 in this numerical
experiment.

We apply the forward operators Tj(ug.t.), (j = 0, . . . , 6), to obtain the
data sj(x). We then add Rician noise to this data s̄j = sj + δ with σ = 2,
which corresponds to PSNR ≈ 27dB.

We apply several models for solving the inverse problem of reconstruct-
ing u: the linear and non-linear L2 approaches (3.3) and (3.2), and the con-
strained problem (3.5). As the regulariser we use R = TGV2

(0.9α,α), where
the choice β = 0.9α was made somewhat arbitrarily, however yielding
good results for all the models. This is slightly lower than the range [1, 1.5]α
discovered in comprehensive experiments for other imaging modalities [7,
16].

For the linear and non-linear L2 models (3.3) and (3.2), respectively, the
regularisation parameter α is chosen either by a version of the discrepancy
principle for inconsistent problems [52] or optimally with regard to the ‖ ·
‖F,2 distance between the solution and the ground-truth. In case of the
discrepancy principle, such an α was chosen that the following equality
holds:

∆ρ(α) =
∑
j

||Tj(u)− s̄j ||2 − τ
∑
j

||s̄j − sj ||2 = 0 (5.3)

We find α by solving this equation numerically using bisection method.
We start by finding such α1, α2 that ∆ρ(α1) > 0 and ∆ρ(α2) < 0. We
calculate ∆ρ(α3), α3 = α1+α2

2 and depending on its sign replace either α1 or
α2 with α3. We repeat this procedure until the stopping criteria is reached.
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Figure 2: Helix vector field for the principal eigenvector of the ground-truth
tensor field

As stopping criteria we use |f(α)| < ε. We use τ = 1.05, ε = 0.01 for
linear and τ = 1.2, ε = 0.0001 for non-linear L2 solution. A value of τ yield-
ing a reasonable degree of smoothness has been chosen by trial and error,
and is different for the non-linear model, reflecting a different non-linear
objective in the discrepancy principle. For the constrained problem we cal-
culate θ = 90%, 95%, and 99% confidence intervals to generate the upper
and lower bounds. We however digress a little bit from the approach of
Section 2.2. Minding that we do not know the true underlying distribution,
which fails to be Rician as illustrated in Figure 1, we do not use it to calcu-
late the confidence intervals, but use the estimation procedure described in
Section 5.1. We stress that we only have a single sample of each signal sj ,
so are unable to verify any asymptotic estimation properties.

The numerical results are in Table 1 and Figures 3–5, with the first of the
figures showing the colour-coded principal eigenvector of the reconstruc-
tion, the second showing the fractional anisotropy and principal eigenvec-
tors, and the last one the errors in the latter two, in a colour-coded manner.
All plots are masked to represent only the non-zero region. The field of
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Table 1: Numerical results for the synthetic data. For the linear and non-
linear L2 the free parameter chosen by the parameter choice criterion is
the regularisation parameter α, and for the constrained problem it is the
confidence interval.

Method Parameter choice Frobenius
PSNR

Pr. e.val.
PSNR

Pr. e.vect.
angle PSNR

Regression 33.90dB 25.04dB 47.86dB
Linear L2 Discr. Principle 32.93dB 27.81dB 61.89dB
Linear L2 Frob. Error-optimal 34.51dB 28.42dB 60.93dB
Non-linear L2 Discr. Principle 37.33dB 27.81dB 61.89dB
Non-linear L2 Frob. Error-optimal 37.44dB 28.03dB 61.12dB
Constraints 90% 32.28dB 28.86dB 65.65dB
Constraints 95% 30.97dB 28.14dB 64.80dB
Constrains 99% 27.86dB 24.51dB 61.41dB

fractional anisotropy is defined for a field u of 2-tensors on Ω ⊂ Rm as

FAu(x) =
(∑m

i=1(λi − λ̄)2
)1/2(∑m

i=1 λ
2
i

)−1/2
∈ [0, 1], (x ∈ Ω),

with λ1, . . . , λm denoting the eigenvalues of u(x). It measures how far the
ellipsoid prescribed by the eigenvalues and eigenvectors is from a sphere,
with FAu(x) = 1 corresponding a full sphere, and FAu(x) = 0 correspond-
ing to a degenerate object not having full dimension.

As we can see, the non-linear approach (3.2) performs overall the best
by a wide margin, in terms of the pointwise Frobenius error, i.e., error in
‖·‖F,2. This is expressed as a PSNR in Table 1. What is, however, interesting,
is that the constraint-based approach (3.5) has a much better reconstruction
of the principal eigenvector angle, and a comparable reconstruction of its
magnitude. Indeed, the 95% confidence interval in Figure 3(g) and Figure
4(g) suggests a nearly perfect reconstruction in terms of smoothness. But,
the Frobenius PSNR in Table 1 for this approach is worse than the simple
unregularised inversion by regression. The problem is revealed by Figure
5(f): the large white cloudy areas indicate huge fractional anisotropy errors,
while at the same time, the principal eigenvector angle errors expressed in
colour are much lower than for other approaches. Good reconstruction of
the principal eigenvector is important for the process of tractography, i.e.,
the reconstruction of neural pathways in a brain. One explanation for our
good results is that the regulariser completely governs the solution in areas
where the error bounds are inactive due to generally low errors. This re-
sults in very smooth reconstructions, which is in the present case desirable
as our synthetic tensor field is also smooth within the helix.
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(a) Ground-truth (b) Regression re-
sult

(c) Linear L2, dis-
crepancy principle

(d) Linear L2,
error-optimal

(e) Non-linear L2,
discrepancy prin-
ciple

(f) Non-linear L2,
error-optimal

(g) Constrained,
95% confidence
intervals

(h) Constrained,
90% confidence
intervals

Figure 3: Synthetic test data results. (a) ground-truth plot.
(b) regression result plot. (c)–(h) Plot of a slice of the solution
for L2, non-linear L2 and constrained models. The legend
on the right indicates the colour-coding of directions of the
principal eigenvector plotted.

x
y

z

5.3 Results with in vivo brain imaging data

We now wish to study the proposed regularisation model on a real in-
vivo diffusion tensor image. Our data is that of a human brain, with the
measurements of a volunteer performed on a clinical 3T system (Siemens
Magnetom TIM Trio, Erlangen, Germany), with a 32 channel head coil. A
2D diffusion weighted single shot EPI sequence with diffusion sensitising
gradients applied in 12 independent directions (b = 1000s/mm2). An ad-
ditional reference scan without diffusion was used with the parameters:
TR = 7900ms, TE = 94ms, flip angle 90◦. Each slice of the 3D data set
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(a) Ground-truth (b) Regression re-
sult

(c) Linear L2, dis-
crepancy principle

(d) Linear L2,
error-optimal

(e) Non-linear L2,
discrepancy prin-
ciple

(f) Non-linear L2,
error-optimal

(g) Constrained,
95% confidence
intervals

(h) Constrained,
90% confidence
intervals

Figure 4: Fractional anisotropy in greyscale superimposed
by principal eigenvector. Legend on left indicates the
greyscale intensities of the fractional anisotropy.

0 FA 1

has plane resolution 1.95mm × 1.95mm, with a total of 128 × 128 pixels.
The total number of slices is 60 with a slice thickness of 2mm. The data set
consists of 4 repeated measurements. The GRAPPA acceleration factor is 2.
Prior to the reconstruction of the diffusion tensor, eddy current correction
was performed with FSL [50]. Written informed consent was obtained from
the volunteer before the examination.

For error bounds calculation according to the procedure of Section 5.1,
to avoid systematic bias near the brain, we only use about 0.6% of the total
volume near the borders, or roughly k ≈ 6000 voxels.

To estimate errors for the all the considered reconstruction models, for
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(a) Regression re-
sult

(b) Linear L2, dis-
crepancy principle

(c) Linear L2,
error-optimal

(d) Non-linear L2,
discrepancy prin-
ciple

(e) Non-linear L2,
error-optimal

(f) Constrained,
95% confidence
intervals

(g) Constrained,
90% confidence
intervals

Figure 5: Colour-coded errors of fractional anisotropy and
principal eigenvector for the computations on the synthetic
test data. Legend on the right indicates the colour-coding
of errors between u and g0 as functions of the principal
eigenvector angle error θ = cos−1(〈v̂u, v̂g0〉) in terms of the
hue, and the fractional anisotropy error eFA = |FAu − FAg0 |
in terms of whiteness.

0

eFA

0.09

0◦ θ 10◦

each gradient direction bi we use only one out of the four duplicate mea-
surements. We then calculate the errors using a somewhat less than ideal
pseudo-ground-truth, which is the linear regression reconstruction from all
the available measurements.

The results are in Table 2 and Figures 6–8, again with the first of the
figures showing the colour-coded principal eigenvector of the reconstruc-
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Table 2: Numerical results for the in-vivo brain data data. For the L2 and
non-linear L2 reconstruction models the free parameter chosen by the pa-
rameter choice criterion is the regularisation parameter α, and for the con-
strained problem it is the confidence interval.

Method Parameter choice Frobenius
PSNR

Pr. e.val.
PSNR

Pr. e.vect.
angle PSNR

Regression 32.35dB 33.67dB 28.56dB
Linear L2 Discr. Principle 34.80dB 36.35dB 24.81dB
Linear L2 Frob. Error-optimal 34.81dB 36.32dB 24.97dB
Non-linear L2 Discr. Principle 33.53dB 35.87dB 27.12dB
Non-linear L2 Frob. Error-optimal 33.57dB 36.03dB 27.58dB
Constraints 90% 33.71dB 34.93dB 27.00dB
Constraints 95% 33.70dB 34.97dB 26.91dB
Constraints 99% 33.67dB 34.89dB 26.88dB

tion, the second showing the fractional anisotropy and principal eigenvec-
tors, and the last one the errors in the latter two, in a colour-coded manner.
Again, all plots are masked to represent only the non-zero region. In the fig-
ures, we concentrate on error bounds based on 95% confidence intervals, as
the results for the 90% and 99% cases do not differ significantly according
to Table 2.

This time, the linear L2 approach (3.3) has best overall reconstruction
(Frobenius PSNR), while the nonlinear L2 approach (3.2) has clearly the
best principal eigenvector angle reconstruction besides the regression, which
does not seem entirely reliable regarding our regression-based pseudo-ground-
truth. The constraints based approach (3.5), with 95% confidence intervals
is, however, not far behind in terms of numbers. More detailed study of the
corpus callosum in Figure 8 (small picture in picture) and Figure 7 however
indicates a better reconstruction of this important region by the nonlinear
approach. The constrained approach has some very short vectors there
in the white region. Naturally, however, these results on the in vivo data
should be taken with a grain of salt, as we have only a somewhat unreliable
pseudo-ground-truth available for comparison purposes.

5.4 Conclusions from the numerical experiments

Our conclusion is that the error bounds based approach is a feasible alter-
native to standard modelling with incorrect Gaussian assumptions. It can
produce good reconstructions, although the non-linear L2 approach of [55]
is possibly slightly more reliable. The latter does, however, in principle de-
pend on a good initialisation of the optimisation method, unlike the convex
bounds based approach.

Further theoretical work will be undertaken to extend the partial-order-
based approach to modelling errors in linear operators to the non-lattice
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(a) Pseudo-ground-truth (b) Regression result (c) Linear L2, discrepancy
principle

(d) Linear L2, error-
optimal

(e) Non-linearL2, discrep-
ancy principle

(f) Non-linear L2, error-
optimal

(g) Constrained, 95% con-
fidence intervals
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Figure 6: Reconstruction results on the in vivo brain data. (a) Pseudo-
ground-truth plot. (b) regression result. (c)–(g) Plot of a slice of the solution
for L2, non-linear L2 and constrained problem approach. The legend on
the bottom-right indicates the colour-coding of directions of the principal
eigenvector plotted.

case of the semidefinite partial order for symmetric matrices, which will
allow us to consider problems of diffusion MRI with errors in the forward
operator.

It shall also be investigated whether the error bounds approach needs
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(a) Pseudo-ground-truth (b) Linear L2, discrepancy
principle

(c) Linear L2, error-
optimal

(d) Non-linear L2, dis-
crepancy principle

(e) Non-linear L2, error-
optimal

(f) Constrained, 95% con-
fidence intervals

Figure 7: Fractional anisotropy of the corpus callosum in
greyscale superimposed by principal eigenvector. Legend
on the right indicates the greyscale intensities of the frac-
tional anisotropy.

0 FA 1

to be combined with an alternative, novel, regulariser that would amelio-
rate the fractional anisotropy errors that the approach exhibits. It is impor-
tant to note, however, that from the practical point of view, of using the
reconstruction tensor field for basic tractography methods based solely on
principal eigenvectors, these are not that critical. As pointed out by one
of the reviewers, the situation could differ with more recent geodesic trac-
tography methods [26, 22, 21] employing the full tensor. We provide basic
principal eigenvector tractography results for reference in Figure 9, with-
out attempting to extensively interpret the results. It suffices to say that
the results look comparable. With this in sight, the error bounds approach
produces a very good reconstruction of the direction of the principal eigen-
vectors, although we saw some problems with the magnitude within the
corpus callosum.

27



(a) Linear L2, discrepancy
principle

(b) Linear L2, error-
optimal

(c) Non-linear L2, discrep-
ancy principle

(d) Non-linear L2, error-
optimal

(e) Constrained, 95% con-
fidence intervals

0

eFA

0.15

0◦ θ 100◦

Figure 8: Colour-coded errors of fractional anisotropy and principal eigen-
vector for the computations on the synthetic test data. Legend on the right
indicates the colour-coding of errors between u and g0 as functions of the
principal eigenvector angle error θ = cos−1(〈v̂u, v̂g0〉) in terms of the hue,
and the fractional anisotropy error eFA = |FAu − FAg0 | in terms of white-
ness.
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Appendix: Notation and techniques

We recall some basic, not completely standard, mathematical notation and
concepts in this appendix. We begin with partially ordered vector spaces,
following the book [46]. Then we proceed to tensor calculus and tensor
fields of bounded variation and of bounded deformation. These are also covered
in more detail for the diffusion tensor imaging application in [57].
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Banach lattices

A linear space X , endowed with a partial order relation 6 is called an or-
dered vector space if the partial order agrees with linear operations in the
following way:

x 6 y =⇒ x+ z 6 y + z ∀x, y, z ∈ X,
x 6 y =⇒ λx 6 λy ∀x, y ∈ X and λ ∈ R+.

An ordered vector space is called a vector lattice if each pair of elements
x, y ∈ X have a supremum x ∨ y ∈ X and infimum x ∧ y ∈ X . Supremum
of two elements x, y of a Banach lattice X is the element z = x ∨ y with the
following properties: z > x, z > y and ∀z̃ ∈ X such that z̃ > x and z̃ > y
we have z̃ > z.

For any x ∈ X , the element x+ = x ∨ 0 is called its positive part, the
element x− = (−x)∨0 = (−x)+ is called its negative part, the element |x| =
x+ +x− is its absolute value. The equalities x = x+−x− and |x| = x∨ (−x)
hold for any x ∈ X .

It is obvious that suprema and infima exist for any finite number of
elements of a vector lattice. A vector lattice X is said to be order complete
if any bounded from above set in X has a supremum.

Let X and Y be ordered vector spaces. A linear operator U : X → Y is
called positive, if x >X 0 implies Ux >Y 0. An operator U is called regular,
if it can be written as U = U1 −U2, where U1 and U2 are positive operators.

Denote the linear space of all regular operators X → Y by L∼(X,Y ). A
partial order can be introduced in L∼(X,Y ) in the following way: U1 > U2,
if U1−U2 is a positive operator. IfX and Y are vector lattices and Y is order
complete, then L∼(X,Y ) is also an order complete vector lattice.

A norm ‖ · ‖ defined in a vector lattice X is called monotone if |x| 6 |y|
implies ‖x‖ 6 ‖y‖. A vector lattice endowed with a monotone norm is
called a Banach lattice if it is norm complete. IfX and Y are Banach lattices,
then all operators in L∼(X,Y ) are continuous.

Let us list some examples of Banach lattices. The space of continuous
functions C(Ω), where Ω ⊂ Rn, is a Banach lattice under the natural point-
wise ordering: f >C g if and only if f(x) > g(x) for all x ∈ Ω. The spaces
Lp(Ω), 1 6 p 6 ∞, are also Banach lattices under the following partial or-
dering: f >Lp g if and only if f(x) > g(x) almost everywhere in Ω. With
this partial order, Lp(Ω), 1 6 p 6 ∞, are order complete Banach lattices.
The Banach lattice of continuous functions C(Ω) is not order complete.

Tensors in the Euclidean setting

We call a k-linear mapping A : Rm × · · · × Rm → R a k-tensor, denoted
A ∈ T k(Rm). This is a simplification from the full differential-geometric
definition, sufficient for our finite-dimensional setting. We say that A is
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symmetric, denoted A ∈ Symk(Rm), if it satisfies for any permutation π of
{1, . . . , k} that

A(cπ1, . . . , cπk) = A(c1, . . . , ck).

With e1, . . . , em the standard basis of Rm, we define on T k(Rm) the inner
product

〈A,B〉 :=
∑

p∈{1,...,m}k
A(ep1 , . . . , epk)B(ep1 , . . . , epk),

and the Frobenius norm

‖A‖F :=
√
〈A,A〉.

The Frobenius norm is rotationally invariant in a sense crucial for DTI. We
refer to [57] for a detailed discussion of this, as well of alternative rotation-
ally invariant norms.

Example .1 (Vectors). Vectors A ∈ Rm are of course symmetric 1-tensors,
The inner product is the usual inner product in Rm, and the Frobenius norm
is the two-norm, ‖A‖F = ‖A‖2.

Example .2 (Matrices). Matrices are 2-tensors: A(x, y) = 〈Ax, y〉, while
symmetric matrices A = AT are symmetric 2-tensors. The inner product
is 〈A,B〉 =

∑
i,j AijBij and ‖A‖F is the matrix Frobenius norm.

We use the notation A ≥ 0 for positive-semidefinite matrices A. One
can verify that this relation indeed defines a partial order in the space of
symmetric matrices:

A ≥ B iff A−B is positive semidefinite. (.4)

With this partial order, the space of all symmetric matrices becomes an or-
dered vector space, but not a vector lattice. However, it enjoys some prop-
erties similar to those of vector lattices: for example, any directed upwards
subset2 has a supremum [39, Ch.8].

Symmetric tensor fields of bounded deformation

Let u : Ω→ Symk(Rm) for a domain Ω ⊂ Rm. We set

‖u‖F,p :=
(∫

Ω
‖u(x)‖pF dx

)1/p
, (p ∈ [1,∞)),

and
‖u‖F,∞ := ess supx∈Ω ‖u(x)‖F ,

2Recall that an indexed subset {xτ : τ ∈ {τ}} of an ordered vector space X is called
directed upwards if for any pair τ1, τ2 ∈ {τ} there exists τ3 ∈ {τ} such that xτ3 > xτ1 and
xτ3 > xτ2 .
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The spaces Lp(Ω; Symk(Rm)) are defined in the natural way using these
norms, and clearly satisfy all the usual properties of Lp spaces.

In the particular case of matrices (k = 2), partial order can be introduced
in the space Lp(Ω; Sym2(Rm)) in the following way:

u = v iff u(x) ≥ v(x) almost everywhere in Ω. (.5)

Recall that the symbol ≥ stands for the positive semidefinite order (.4) in
the space of symmetric matrices. Since the positive semidefinite order is
not a lattice, neither is the order (.5).

If u ∈ C1(Ω; Symk(Rm)), k ≥ 1, we define by contraction the divergence
div u ∈ C(Ω; Symk−1(Rm) as

[div u(·)](ei2 , . . . , eik) :=
m∑
i1=1

〈ei1 ,∇u(·)(ei1 , . . . , eik)〉. (.6)

It is easily verified that div u(x) is indeed symmetric. Given a tensor field
u ∈ L1(Ω; T k(Rm)) we then define the symmetrised distributional gradient
Eu ∈ [C∞c (Ω; Symk+1(Rm))]∗ by

Eu(ϕ) := −
∫

Ω
〈u(x), divϕ(x)〉 dx, (ϕ ∈ C∞c (Ω; Symk+1(Rm))).

With these notions at hand, we now define the spaces of symmetric tensor
fields of bounded deformation as (see also [57, 8])

BD(Ω; Symk(Rm)) :=
{
u ∈ L1(Ω; Symk(Rm))

∣∣∣ supϕ∈V k+1
F,s

Eu(ϕ) <∞
}
,

where
V k
F,s := {ϕ ∈ C∞c (Ω; Symk(Rm)) | ‖ϕ‖F,∞ ≤ 1}.

For u ∈ BD(Ω; Symk(Rm)), the symmetrised gradient Eu is a Radon mea-
sure, Eu ∈ M(Ω; Symk+1(Rm)). For the proof of this fact we refer to [20,
§4.1.5].

Example .3. The space BD(Ω; Sym0(Rm)) agrees with the space BV(Ω) of
functions of bounded variation. The space BD(Ω; Sym1(Rm)) = BD(Ω) is
the space of functions of bounded deformation of [51].
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